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Abstract

In this thesis, I report on three projects which I have completed during my PhD. All

of these projects are related to quantum parameter estimation.

When simultaneously measuring all the parameters describing a unitary trans-

formation, a decision needs to be made regarding the relative importance of these

di↵erent parameters. In our first project, we show that the geometry of the group

of unitaries in question can guide us toward a natural way of weighting these dif-

ferent parameters. This allows us to transform the matrix Cramér-Rao inequality

into a simple parameter-independent scalar inequality. We use this new inequality to

calculate the best possible performances for a measurement of the parameters that

describe a general SU(d) unitary and we find an optimal scalable family of quantum

states which achieves this performance for SU(3) unitaries.

In our second project, we experimentally create and characterize the tetrahedron

state in the polarization of four photons. This entangled state is the optimal 4-photon

state for measuring the three parameters describing a SU(2) polarization rotation.

Interestingly, it possesses the same rotational symmetries as a tetrahedron, giving

the state its name. We perform state tomography on our experimental state and

measure a quantum state fidelity of F = (0.46± 0.02) with the ideal state. Our state

nevertheless shares many qualitative features with the latter.

Finally, in our last project, we propose a technique named SPLICE which allows

us to beat “Rayleigh’s curse”—the inability to measure the separation between two

incoherent point sources of light when said separation is below the imaging apparatus’
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Rayleigh’s criterion. We test this technique in a proof of principle experiment in the

laboratory and demonstrate its advantage over traditional methods.
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Chapter 1

Introduction and Theoretical

Background

1.1 Introduction

All the projects presented in this thesis concern Quantum Metrology, a field within

which I made my niche. Metrology is a scientific field that consists of the study

of measurements. It is a varied practice that has applications in a wide range of

human activities. Quantum Metrology, in turn, studies the limitations placed on

measurements when quantum e↵ects are taken into account [1–5]. Typically this is

done by considering the measurement device to be a quantum system. It is a field of

study with much promise, which could lead to the significant improvement of many

precision measurements by making use of quantum correlations to outperform their

standard counterparts.

One of the classic parameter estimation problems used to demonstrate the advan-

tage of quantum metrology is the measurement of a phase di↵erence ✓ between the two

arms a and b of a balanced interferometer. For the best measurement scheme using N

separable photons, the error in our estimate of ✓, �✓, scales as �✓ ⇠ 1/
p
N . This is

called the “shot-noise limit” [6–8], and is reflective of the fact that the measurement

process is done independently for each photon. On the other hand, the best general

measurement strategy for this estimation is to send the photons in a superposition of

being all in path a and of being all in path b. This highly entangled configuration is

called the “N00N state” [9–12] and with it, one can in theory achieve the Heisenberg

limit [3, 8, 13] of �✓ ⇠ 1/N , which is the best scaling allowed by quantum mechanics.

Similar advantages resulting from a proper utilization of quantum correlations can be

found in a plethora of di↵erent metrological scenarios.

At the moment, most of the results of the field consist of theoretical results and

1
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proof-of-principle experiments. Some ideas in the field however have already been

implemented in real experiments of considerable importance [14–17]. Furthermore,

the current limitation for many ideas from the field, our lack of ability to control

quantum systems, is rapidly improving. Although this progress is also driven by an

e↵ort to develop practical quantum computers, quantum metrology is well positioned

to benefit from this progress and to develop rapidly in the coming years.

In Section 1.2 of this chapter, we introduce a general template of a parameter

estimation scenario and we introduce methods typically used to calculate the per-

formance of di↵erent estimation schemes. These rely on the Fisher Information (FI),

the Cramér-Rao Bound (CRB) and their quantum analogue, the Quantum Fisher In-

formation (QFI) and the quantum Cramér-Rao Bound (qCRB), all of which will be

defined later.

In recent years, there has been much discussion regarding multi-parameter metrol-

ogy, the study of measurement of more than one quantity. It was found that, when

making optimal use of quantum correlations, measurement strategies that simultane-

ously estimate these multiple quantities outperform strategies where the quantities

are individually measured [18]. In single-parameter scenarios, the qCRB is a scalar

lower bound on the variance of the parameter to be estimated. For a given measure-

ment, it is a property of the quantum state originally used as a probe. Minimizing

the qCRB is a commonly used strategy to find the optimal probe quantum state for

a given measurement. In multi-parameter scenarios, a similar analysis based on the

QFI and the qCRB yields a matrix lower bound and leaves us with no clear scalar fig-

ure of merit to find an optimal probe quantum state. Several comprehensive reviews

highlight recent progress in this subject area [19–24]. In Chapter 2, we address the

case of unitary estimation, where the quantities to be measured are the parameters

used as a full description of a unitary operation. Based on a geometric argument, we

introduce a scalar form of the qCRB, which allows us to find unambiguous optimal

probe quantum states for this task. We explore the desirable properties of this simple

bound and apply it to unitaries drawn from di↵erent groups.

In Chapter 3, we use our results from Chapter 2 to rediscover the optimal states

to characterize unitaries drawn from the SU(2) group. These states are useful for a

wide range of applications, including magnetometry, the measurement of rotations

of the orbital angular momentum of light [25], and the measurement of polarization

rotations. These states have previously generated interest in the literature due some of

their interesting properties, their beautiful symmetries, and their metrological power.

In the laboratory, we create the entangled “tetrahedron state” in the polarization

of four indistinguishable photons. This is the unique optimal four-photon state for
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characterizing polarization rotations. We create it using spontaneous parametric

down-conversion (SPDC) and we characterize it by performing the full tomography

of the state.

Finally, in Chapter 4, we change gears and take a look at the task of measuring

the distance between two incoherent point sources of light. In traditional imaging

techniques, light from the point sources is focused in an imaging device onto an image

plane. At every position on this image plane, the intensity of the electromagnetic field

is recorded. It was found in a 2015 publication [26] that, while traditional imaging

techniques provide little information of that separation when it is below the Rayleigh

criterion of the imaging apparatus, the information is still present in the traditionally

discarded phase of the electromagnetic field at the image plane. We designed a simple

technique called SPLICE, which allows us to use that information to better estimate

the separation of closely separated point sources. This technique di↵ers from previous

super-resolution techniques [27, 28] by requiring no control of the illumination of the

point-sources, and therefore could play a big role in fields such as astronomy, where

such control is impossible. We tested our technique in a proof-of-principle experiment

in the laboratory.

1.2 Theoretical Background

In this section, we introduce general theoretical concepts that are widely used in

quantum metrology. This is aimed to be a quick introduction or a refresher, and will

also allow us to set the notation for the rest of the document.

1.2.1 Quantum Parameter Estimation

Quantum parameter estimation is the task of estimating numerical quantities encoded

in a quantum state. In a typical scenario, these parameters are physical quantities

that have been encoded in a quantum probe system through a dynamical process.

We depict a sketch of it in Figure 1.1.

In this case, the goal of the measurement is to estimate an array of parameters ✓.

These parameters are simply real numbers, most likely physical quantities of interest.

A probe quantum system is prepared in a definite quantum state, represented by

the density matrix ⇢, and sent through the measurement. During this process, some

information about the parameters ✓ is encoded into the quantum state of the probe

through the process map �✓. A subsequent quantum measurement of the probe

⇢✓ = �✓(⇢), modelled by the POVM {M̂X}, yields some results X which reveal these

parameters through an estimator function ✓̃(X). For the estimate to be accurate,
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Preparation Interaction with Parameters Quantum Measurement

Figure 1.1: Sketch of a typical scenario in Quantum Parameter Estimation. A quantum state
⇢ is prepared and sent to interact with some environment, which holds information about ✓, the
parameters to be estimated. During this process the quantum state ⇢ is transformed into ⇢✓ = �✓(⇢).
A quantum measurement is then performed on this state, modelled by the POVM {Mx}, which
results in a specific outcome x. From this outcome, the parameters ✓ can be estimated.

su�cient control of the quantum state needs to be maintained throughout the process.

Because of the fundamental probabilistic nature of quantum mechanics, the outcomes

of the final measurement are noisy, which puts fundamental limits on the precision

with which we can estimate the relevant parameters. In quantum metrology, one aims

to optimize the probe’s initial state, its interaction with the parameters, and the final

quantum measurement to yield a more precise estimate of ✓.

1.2.2 Classical Fisher Information

The Fisher Information (FI) [29–31] or Classical Fisher Information allows us to calcu-

late the amount of information that a set of data contains about previously unknown

parameters. When trying to design experiments to measure said physical parame-

ters, optimizing the Fisher Information in the expected data for that parameter is a

great way to ensure that the data collected are sensitive to said parameters and can

therefore be used to estimate them.

Let’s say a physicist wants to measure a parameter ✓ in the laboratory, they will

engineer an experiment which yields a vector of data X. In the context of Figure 1.1,

X would correspond to the results of the quantum measurement obtained at the very

end of the process. To simplify things for now, we assume only a single parameter is

to be estimated. The probability distribution for obtaining a certain data vector given
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the value of the parameter ✓ is p (X | ✓). It is often called the likelihood function. In

that context however, the parameter ✓ is considered the argument of the function.

For given values of the random variable X, we can calculate the score s (✓) [29]

s(✓) =
@

@✓
log (p (X | ✓)) . (1.1)

The score is the derivative of the log-likelihood function and setting its value to 0

gives us the maximum likelihood estimator for ✓. The average value of the score is

also 0, which is easy to prove using integration by parts with well-behaved boundary

conditions. In general however, its magnitude is an indication of how sensitive the

log-likelihood is to a change to the parameter ✓, which makes the variance of the score

an intuitive metric to see if the distribution p(X | ✓) is sensitive to the parameter ✓.

The variance of the score is the Fisher Information, which we label I. Under the

assumption that p(X | ✓) is well behaved [30, 31], we can write

I = E

"✓
@

@✓
log p (X | ✓)

◆2
#
= E


� @

2

@✓2
log p (X | ✓)

�
. (1.2)

The second part of this equation makes intuitive sense on its own. It looks like the

average of the average of the log-likelihood function’s curvature. In cases where the

data are very sensitive to ✓, we expect very sharply peaked likelihood functions and

therefore high curvatures close to the peak of the distributions.

1.2.3 Cramér-Rao Bound

The Cramér-Rao Bound (CRB) is in part what makes the FI so useful. It gives us a

lower bound on the variance of any unbiased estimator of ✓. In the previous section,

we mentioned the maximum-likelihood estimator for ✓, but in principle, there could

be many other estimators. An estimator is simply a function of the data ✓̃ (X). The

bias of an estimator b(✓) is the average di↵erence between the estimator and the true

value

b(✓̃) = E[✓̃ (X)]� ✓. (1.3)

An unbiased estimator has a bias of 0. For a good measurement of ✓, we aim for the

variance in the unbiased estimator to be as low as possible. The CRB takes a value

of the inverse of the FI and bounds this variance from below,

Var[✓̃(X)] � 1

I . (1.4)
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The power of this bound is that it gives us an idea of the best possible error we could

get for the estimated parameter, regardless of the way we analyze the data. Using

the FI to design an experiment can therefore e↵ectively decouple the performance of

the experiment itself from the performance of the analysis.

A big caveat however, is that this bound is only valid if the estimator is unbiased.

A trivial example of this bound failing for a biased estimator is if we arbitrarily

set the estimator function to be ✓̃(X) = a, where the estimator gives the value a

regardless of X. Then, the variance in that estimator is trivially 0, beating the CRB.

An estimator like this one is not useful. In later sections however, we will discuss

realistic cases where biased estimators are to be seriously considered. In these cases,

the CRB defined here is not a very useful tool.

1.2.4 Fisher Information with Multiple Parameters

In many experiments, the vector of data X is used to estimate more than one pa-

rameter. If we aim to estimate the vector of unknown parameters ✓, the FI takes the

form of a square matrix

[I]lm = E


� @

2

@✓l@✓m
log p (X |✓)

�
. (1.5)

Then, given an unbiased estimator ✓̃, with

E[✓̃] = ✓, (1.6)

the CRB takes the form of a bound on the covariance matrix of the estimators

h
Cov[✓̃(X)]

i

l,m

= E
h⇣
✓̃l � ✓l

⌘⇣
✓̃m � ✓m

⌘i
(1.7)

and the Cramér-Rao inequality becomes a matrix inequality

Cov[✓̃(X)] � I�1
. (1.8)

The right hand side of the inequality here is the matrix inverse of the QFI matrix

and the matrix inequality A � B means that A� B is positive semi-definite.

Mostly, the FI satisfies the same purpose for multi-parameter estimation as it does

for single-parameter estimation. One can note however that the FI matrix could be

non-invertible, in which case the data are insu�cient to separately estimate all the

parameters. This kind of problem often arises when, for example, p(X | ✓1, ✓2) is a

function of only a linear combination of ✓1 and ✓2. Then, only multiples of said linear

combinations can be estimated but the data are completely insensitive to any other
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combinations.

1.2.5 Quantum Fisher Information

The Quantum Fisher Information (QFI)[32–34] is similar to its classical analogue. In-

stead of looking at the amount of information that a classical probability distribution

p(X |✓) contains about certain parameters, however, we now attempt to quantify the

amount of information that a quantum state ⇢✓ contains about said parameters. Once

again, the power of the QFI is that it decouples di↵erent parts of the experimental

design. If we aim to maximize the QFI, we optimize the way the parameters are

encoded into the quantum state without having to consider the measurement process

yet. The QFI is well liked by theorists since it gives general and powerful results but

it should be used with care as it can lead some to ignore the sometimes very relevant

less-than-ideal conditions of real experiments. In the context of Figure 1.1, the QFI

is a property of ⇢✓, the quantum state in which the vector of parameter ✓ is encoded.

Again, we aim to estimate ✓ 2 Rd encoded into ⇢✓. In general, a measurement used

to estimate ✓ is a POVM {Mm} with an estimator function ✓̃(m). The observable

✓̂ =
P

m
Mm✓̃(m) acts as our estimator. To make use of the quantum CRB (qCRB),

which we will define later, we require the estimator to be locally unbiased, a weaker

version of unbiasedness. We require that the following expressions evaluated at ✓0

hold :
D
✓̂

E
=
X

m

Tr[Mm⇢✓]✓̃(m) = ✓0

r
D
✓̂

E
=
X

m

Tr[Mmr⇢✓]✓̃(m) = 1,
(1.9)

where 1 is the d ⇥ d identity matrix and the derivatives are with respect to the d

linearly independent parameters. These ensure that the estimator is unbiased in a

neighborhood of ✓0. The stronger condition of full unbiasedness would be that

D
✓̂

E
=
X

m

Tr[Mm⇢✓]✓̃(m) = ✓ 8 ✓. (1.10)

The QFI does not depend on the estimator but only on the quantum state. It

is often defined in terms of the symmetric logarithmic derivative operators L̂ (SLD).

These operators are defined implicitly by the equality

@✓l ⇢̂✓ =
1

2

⇣
⇢̂✓L̂l + L̂l⇢̂✓

⌘
. (1.11)
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The QFI then takes the form

[I⇢,✓]l,m = Tr
h
⇢̂✓

n
L̂l, L̂m

oi
, (1.12)

where {Â, B̂} = ÂB̂ + B̂Â is the anti-commutator. Again, it is a d ⇥ d matrix and

its inverse is the qCRB with

Cov[✓̂] =
D
(✓̂ � ✓)(✓̂ � ✓)>

E
� I

�1
✓

. (1.13)

Note that again, the QFI may not be an invertible matrix, which simply means that

the information in the state is insu�cient to simultaneously estimate all the param-

eters. When it comes using the QFI in practice, this inequality is not very useful,

as a matrix inequality does not give us a clear metric to quantify the performance

of ⇢✓. In a real life scenario, we would have an idea of the importance of each of

the parameters to estimate and we would be able to weight the di↵erent element of

Cov[✓̂] accordingly. By defining a weight matrix W > 0, we define those weights and

convert the above matrix inequality to a scalar one

wMSE(✓̂) := Tr[W Cov[✓̂]] � Tr[WI
�1
✓

] =: C(✓). (1.14)

Here the wMSE(✓̂) refers to the weighted mean squared error, which is simply the

weighted sum of the covariances weighted. We also define a scalar version of the

qCRB (C), which we will refer to as the scalar qCRB (s-qCRB) for the rest of the

document.

1.2.6 Saturability

The saturability of the qCRB is far from guaranteed in general. In the case of single

parameter, then the saturability is guaranteed for pure states and the optimal POVM

simply consists of projections onto the eigenvectors of the SLD [33]. Since the optimal

POVM may depend on the underlying value of the parameter being estimated, sat-

urability is only guaranteed in the asymptotic limit of many repetitions [35]. When

there are multiple parameters, the saturability is only achieved if the ideal POVM

elements (the SLDs) are compatible (i.e. if they can be performed at the same time).

And so we require that

h[Lm, Ll]i = 0 8 l,m. (1.15)

This was proven to be the necessary and su�cient condition for the saturability of the

qCRB[35, 36]. The Holévo Cramér-Rao[37] bound is a smilar bound to the qCRB but

is always saturable. Its main drawback is that it is di�cult to calculate. It essentially
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involves an optimization over all valid POVM and is often intractable analytically.

The good news is that the s-qCRB is always a decent bound as it was proven recently

that the Holévo bound is at most a factor of 2 higher than the s-qCRB[38–41].

1.2.7 Estimating a Unitary Operation

A particular case of the quantum parameter estimation scheme in Figure 1.1 is the

case where the dynamical process during which the parameters ✓ are encoded into

⇢ is a unitary acting on the probe state. In quantum mechanics, all time evolutions

are represented by unitary operations on some Hilbert space. In this specific case,

the unitary time-evolution is to act only on the probe. Typically, the to-be-measured

parameters appear either in the Hamiltonian generating this time evolution or as an

e↵ective interaction time. Under such evolution, the probe experiences the transfor-

mation

| i �! | ✓i = U✓ | i . (1.16)

Here, we assumed that the probe starts in a pure state to simplify the calculations.

In the next section, we will give two examples of physically relevant scenarios of this

type but first we derive some helpful equations.

For pure states, the Symmetric-Logarithm Derivative operators take the form

Ll = 2
⇣
(@✓lU✓) | i h |U †

✓ + U✓ | i h | (@✓lU
†
✓)
⌘
, (1.17)

and the Quantum Fisher Information

[I ,✓]l,m =
1

2
h |U †

✓

n
L̂✓l , L̂✓m

o
U✓ | i . (1.18)

Using the identity

0 = @✓l1 = @✓l(U
†
✓U✓) = (@✓lU

†
✓)U✓ + U

†
✓(@✓lU✓), (1.19)

the above expression can be reduced to

[I ,✓]l,m = 2 h | (@✓lU
†
✓)(@✓mU✓) + (@✓mU

†
✓)(@✓lU✓) | i

+4 h |U †
✓(@✓lU✓) | i h |U †

✓(@✓mU✓) | i .
(1.20)

To simplify this expression, we introduce operators

Ĥl = iU
†
✓@✓lU✓, (1.21)

which we call the generators of the unitary. By cleverly inserting the identity (U✓U
†
✓)
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in the first term of the above equation and reusing the identity in Eq. 1.19, we deduce

[I ,✓]l,m = 4C (Ĥl, Ĥm), (1.22)

where

C (Â, B̂) =

*
ÂB̂ + B̂Â

2

+
�
D
Â

ED
B̂

E
(1.23)

is a symmetrized version of the operator covariance. We can rewrite this equation

I ,✓ = 4C (Ĥ), (1.24)

with [C (Ĥ)]l,m = C (Ĥl, Ĥm). The s-qCRB defined in Equation 1.14 then becomes

wMSE(✓̂) � 1

4
Tr[W C (Ĥ)�1]. (1.25)

This very simple form of the QFI and of the s-qCRB will be very useful in the next

section where we tackle real problems.



Chapter 2

Intrinsic Sensitivity Limit for

Multi-Parameter Quantum

Metrology

In this chapter, we present theoretical results previously published in [42]. These

results stand alone but also greatly motivate the experimental results presented in

Chapter 3, as they were derived precisely to further motivate our experiments.

2.1 Motivation

The goal of this project is to study how to properly weight the di↵erent parameters

that characterize a unitary. As we can see from Eq. 1.25, the particular form of the

weight matrixW is important to retrieve a scalar bound to optimize. Di↵erent choices

of W can lead to di↵erent optimal probe states and optimal experimental designs,

making its determination crucial. In many cases, we are interested in measuring

physical parameters encoded in the unitary. Then the choice of the weight is specific

to the particular needs of the physicists in their given experiment. In other cases,

the object to be estimated is the unitary itself and the measured parameters are used

simply to mathematically parameterize the unitary. In these cases, the geometry of

the unitary group specifies a natural way to weight the di↵erent parameters. This

should yield a result independent of the choice of parametrization. We will try to

make a clear distinction between these two objectives using two di↵erent examples of

estimation tasks.

11
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2.1.1 Estimation of a Magnetic Field with an Atomic Spin

In the first example, we want to measure a classical magnetic field B in a small region

of space. At our disposition, we have one atom with a magnetic moment operator

µ̂ = �Ĵ , where the vector Ĵ is the angular momentum operator for the atom and �

is the gyromagnetic ratio. Setting ~ = 1, the Hamiltonian describing the interaction

of the atom with the field is given by ĤI = �µ̂ · B = ��Ĵ · B. If we interact the

atom with the field for a time t, the unitary time-evolution on the atom is

Û = e
�i�tB·Ĵ

. (2.1)

Unitaries of this form are a representation of the Lie group SU(2). The Lie algebra

for this group in this case is generated by the angular momentum operators, with

their usual commutation relations

[Ĵi, Ĵj] =
X

k

i✏ijkĴk, (2.2)

where ✏ijk is the Levi-Civita symbol. In this case, we truly are interested in the

physical parametersB and we don’t care much about the unitary itself. If for example

�t|B| = 2⇡, then the unitary would simply be the identity (Û = 1̂) and although we

could measure that, we would have no way of knowing the direction of the field B.

This is an example of a situation where the QFI matrix would be non-invertible and

the qCRB would diverge.

The behavior of the QFI is exactly what we desire here. We are interested in the

magnetic field and this measurement protocol fails at measuring it. An obvious way

to fix this problem would be to change the interaction time t, which would then in

turn change the unitary.

2.1.2 Estimation of the Action of a Two-Mode Generalized Interferome-

ter with Photons

In our second example, we aim to measure the action of a two-mode interferometer,

a task which may be necessary in photonic quantum computing for example. Two-

mode interferometers are used as single-qubit gates and optimizing their frequent

re-calibration could be a useful task. A two-mode interferometer is a device that

transforms two modes of the electromagnetic field into two others. In the Heisenberg

picture, it transforms the annihilation operators of the input modes (â1, â2) into new

ones for the output modes (â01, â
0
2). Quantum mechanics enforces the transformation
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to be linear  
â1

â2

!
�!

 
â
0
1

â
0
2

!
= M

 
â1

â2

!
, (2.3)

where the complex matrixM represents the linear map, and the commutation relation

[âi, â
†
j
] = i�ij must be valid for both the input and output modes, which constrains M

to be unitary. This makes M an element of the group SU(2) up to an irrelevant global

phase. A generalized interferometer can make any of the transformations with the

restriction above, therefore spanning the full group. In practice these can be realized

by Mach-Zender or Michelson interferometer where the beam splitters have variable

transmission and reflection coe�cients. This is the same transformation group as the

group in the previous problem of magnetic field sensing, despite dealing with very

di↵erent physical systems. To better help describe the unitary, we define the angular

momentum operators as

Ĵx =
1

2
(â†1â2 + â1â

†
2)

Ĵy =
�i

2
(â†1â2 � â1â

†
2)

Ĵz =
1

2
(â†1â1 � â

†
2â2) =

1

2
(n̂1 � n̂2)

Ĵ0 =
1

2
(â†1â1 + â

†
2â2) =

1

2
(n̂1 + n̂2).

(2.4)

These have the same commutation relations as Eq. 2.2 and also follow

Ĵ
2
x
+ Ĵ

2
y
+ Ĵ

2
z
= Ĵ0(Ĵ0 + 1). (2.5)

This set of operators are generators of the Lie algebra su(2) associated with the Lie

group SU(2). A quantum state of the two modes can be generally written in the Fock

basis

| i =
X

n1n2

cn1n2 |n1, n2i =
X

n1n2

cn1n2p
n1!n2!

(a†1)
n1(a†2)

n2 |0i , (2.6)

where n1 and n2 are the photon numbers in mode 1 and 2 respectively. Here, the

choice of parametrization for the unitary is ours to make. No choice of parametrization

is preferred since we are interested in characterizing the unitary itself. A popular

choice of parametrization is the Euler-Angle parametrization. If we go back to the

Schrödinger picture, we can write the evolution of the state through the interferometer

as

Û = e
�iĴz✓1e

�iĴy✓2e
�iĴz✓3 , (2.7)
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a rotation around the y-axis, preceded and followed by two di↵erent z-axis rotations.

In this parametrization, we notice that the performance of parameter estimation

depends on the coordinates in a di↵erent way than in the last example. This is most

apparent in the singularities. We notice, for example, that when ✓2 = 0, the individual

parameters ✓1 and ✓3 can no longer be estimated, as the unitary only depends on their

sum. These divergences strictly depend on the choice of the coordinate system. In

Example 1, if we tried to estimate B in the neighbourhood of B = 0, where Û = 1̂,

there were no divergences. Varying any of the three parameters yielded di↵erent

unitaries. In Example 2, this is no longer the case. The distinction is that the

motivation in Example 1 and 2 are not the same. The coordinate divergences are not

problematic in Example 2. We have no attachment to the particular value of ✓1, ✓2
and ✓3. Our inability to estimate them precisely does not mean that we can’t estimate

Û . There should be a geometric way to choose the weight matrix W to remove the

coordinate dependent quirks of the s-qCRB.

2.2 More on the Unitaries’ Generators

In quantum mechanics, unitaries can always be written in the form

Û = e
iÂ (2.8)

where the operator Â is a Hermitian operator. Furthermore, if Û is a part of a compact

semi-simple Lie group like SU(2), then it has an associated Lie algebra, su(2) in this

case. Say X̂ are the generators of such an algebra, then the unitary can be written

as

Û = 1+ ir⌦(✓) · X̂ +O(X̂2) = e
i⌦(✓)·X̂ , (2.9)

where the vector function⌦✓, which we assume to be smooth, encodes the parametriza-

tion of the unitary. This form is valid for any parametrization and is also independent

of the particular Hilbert Space on which these operators act. Using the Wilcox for-

mula[43] for the the derivative of the exponential map

@(eÂ)

@�
=

Z 1

0

e
(1��)Â@Â

@�
e
�Â

d�, (2.10)

we can use Equation 1.21 and Equation 2.9 to find the following expression for the

generators of the unitary :

Ĥj = �@⌦✓

@✓j
·
Z 1

0

Û
��

X̂Û
�
d�. (2.11)
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This formula illustrates that, in general, generators Ĥj are linear combinations of the

Lie algebra generators with real coe�cients, which makes them elements of the Lie

algebra themselves. Knowing that fact, we define the real vectors {hi} forming the

matrix H,

Ĥj = hj · X̂
H = (h1, . . . ,hj, . . . )

>
.

(2.12)

This linear combination is the same for any representation of the group, as neither

the Hilbert space, nor its dimensions were used in the calculation. When it comes

to calculating what these linear combinations are, our preference is to calculate the

derivatives explicitly from a low-dimensional representation of the unitary operators.

Then we don’t need to worry about putting the unitary in the form of Eq. 2.9, nor

do we need to explicitly calculate the integral in Eq. 2.11.

Looking back at Eq. 1.22, 1.23 and 1.24, we see that

C (Ĥl, Ĥm) =

*
(
P

i
HliX̂i)(

P
j
HmjX̂j) + (

P
i
HmiX̂i)(

P
i
HljX̂j)

2

+

�
*
(
X

i

HliX̂i)

+*
(
X

j

HmjX̂j)

+
,

(2.13)

becomes

C (Ĥl, Ĥm) =
X

ij

Hli

 *
X̂iX̂j + X̂jX̂i

2

+
�
D
X̂i

ED
X̂j

E!
H

>
jm
, (2.14)

after a small change index variable, resulting in a new expression for the QFI

I ,✓ = 4C (Ĥ) = 4HC (X̂)H>
. (2.15)

Then, the s-qCRB becomes

wMSE(✓̂) � C(✓̂) = 1

4
Tr[(H�1

WH
>�1

) C (X̂)�1], (2.16)

using the cyclic permutability of the trace. This form of the s-qCRB is very elegant as

it separates the terms depending on the parameters (in parenthesis in the equation)

from the terms which depend on the initial state, which we ultimately aim to optimize.

Furthermore, we can see that the all that matters about the state for the purpose

of this optimization is the covariance of the generators of the Lie algebra, which can

reveal useful information before even calculating H. For example, if C (X̂) is non-
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invertible, then we already know that the state will be completely unsuitable to the

estimation of all the parameters with a diverging wMSE.

2.2.1 Example : Two-Mode Interferometer with Euler Angles

We look back at the two-mode interferometer example with the Euler angle parametrizaiton.

To calculate the H matrix, it is nice to consider the unitary in a very low dimensional

Hilbert Space. As we have shown before, the results will be general and the repre-

sentation of the SU(2) Lie group won’t matter. The representation of SU(2) with

the lowest dimensions describe the transformation on a single photon in this inter-

ferometer. The angular momentum operators take the form of the well-known Pauli

operators,

(Ĵ0, Ĵx, Ĵy, Ĵz) =
1

2
(1̂, �̂x, �̂y, �̂z) (2.17)

We then use the identities

e
�ia(n·�) = 1 cos a� i(n · �) sin a

{�i, �j} = 2�ij1,
(2.18)

after which the derivatives are easy to calculate. We find that

Ĥ1 = � sin ✓2 cos ✓3Ĵx + sin ✓2 sin ✓3Ĵy + cos ✓2Ĵz

Ĥ2 = sin ✓3Ĵx + cos ✓3Ĵy

Ĥ3 = Ĵz.

(2.19)

Gathering the coe�cient, the H matrix is

H =

0

B@
� sin ✓2 cos ✓3 sin ✓2 sin ✓3 cos ✓2

sin ✓3 cos ✓3 0

0 0 1

1

CA . (2.20)

After many simplifications, the problem, now represented by the matrix H, has a fairly

simple form. Given a weight matrix W , one can now compute (H�1
WH

>�1
) and find

the optimal state covarariance matrix. For example, if we are equally interested in

these parameters, such that we aim to minimizes the sum of the variances on each
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parameters, we get

Var[✓1] + Var[✓2] + Var[✓3] �
1

4
Tr[(H�11H�1>)C (Ĵ)

�1]

=
1

4
Tr[

0

B@

1
sin2 ✓2

0 � cos ✓2
sin2 ✓2

0 1 0

� cos ✓2
sin2 ✓2

0 1
sin2 ✓2

1

CAC (Ĵ)
�1].

(2.21)

In general, the optimal states and their covariance matrices depend on the value of

the parameters. It may seem strange that we require knowledge of the parameters

to obtain their measurement. This is a feature of the Fisher Information, which, if

we remember the definition, is a very local metric, that simply looks at the di↵erence

between one state and a state infinitesimally close to it. As such, we tend to consider

the Fisher Information useful when we already have a very good estimate of the

parameters. An example of this would be a tracking measurement, where we know

that the parameters are in the neighbourhood of certain values because we have

recently measured them. Other bounds, typically of Bayesian inspiration[44, 45],

don’t su↵er from this problem, optimizing for a given arbitrary prior distribution.

Bayesian bounds are sometimes harder to calculate. In the absence of prior knowledge,

it has been shown that adaptive schemes, where better estimates of the parameters

are used to better optimize the next iteration of measurement, will asymptotically

approach the bounds calculated with the Fisher Information. The Fisher Information

and the CRB therefore remain useful performance metrics.

2.3 The Killing Form and the Cartan Metric

We have hinted at that there was a natural way of defining the weight metric for

a given group of unitary. In fact, Lie groups[46] are di↵erential manifolds and have

geometrical properties, much like geometrical objects. These formal mathematical

properties can help us find a metric intrinsic to the Lie group in question, which

then imposes itself as the natural weight metric. Importantly, this metric, expressed

in a given coordinate system, is a tensor depending purely on the geometry of the

group. For the Lie algebra su(n), which we will restrict ourselves to for this result,

the Killing Form B(X, Y ) = 2nTr[X†
Y ] introduces an inner product on the space.

(X, Y ) = B(X, Y ) (2.22)
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This inner product can in turn be used to define the Cartan metric

ds
2 = (dU, dU) (2.23)

This metric is the one that we will use. Using

dU =
X

i

@Û

@✓i
d✓i = �iU

X

i

Ĥid✓i, (2.24)

the metric tensor elements gij defined by

ds
2 =

X

ij

gijd✓id✓j (2.25)

become

gij = Tr[ĤiĤj] (2.26)

up to an irrelevant overall constant. This can be further simplified by decomposing

Ĥ into the orthonormal generators of the Lie algebra X̂,

gij = Tr[(hi · X̂)(hj · X̂)] = hi · hj, (2.27)

again up to an insignificant constant. The matrix form of the metric is

g = HH
>
. (2.28)

We propose that the geometry of the SU(n) Lie group is such that the natural way

to weight the parameters used to describe said unitaries is to use W = g. With

this choice, we see much simplification to the s-qCRB. Indeed, when substituting this

choice of metric in Eq. 2.16, we obtain

wMSE(✓̂) � C(✓̂) = 1

4
Tr[(H�1(HH>)H>�1

) C (X̂)�1] =
1

4
C (X̂)�1

. (2.29)

This formula is the main result of our work on this topic. It is a very simple and

elegant formula. The s-qCRB now only depends on the state and the covariance

matrix of the Lie algebra generators. The parameter dependence has completely

dropped o↵ the equation, indicating a certain equivalence between all element of the

group, which can be estimated with equal precision. We also note that for any unitary

Û belonging to the Lie group in question,

C (ÛX̂Û
†) = C (X̂). (2.30)
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Rotating the state prior to the unitary’s action does not a↵ect the performance of a

state. Prior to this result, it was well known that when trying to estimate a single

parameter encoded in the unitary of the form e
iÂ✓, the performance of the scheme

was constant along the unitary’s orbit [35]. Our result generalizes that statement to

multi-parameter estimation.

2.4 SU(d) on a d-Mode System

With this result in our toolbox, we immediately can tackle much more general prob-

lems than before. This is partly due to the fact that we need not worry about specific

parametrizations. The calculation of the H matrix, which could grow to be very

messy in groups with lots of parameters, is no longer necessary. We illustrate this

point by tackling the problem of a d-mode generalized interferometer, corresponding

to a SU(d) transformation. A SU(d) transformation can be parametrized by d
2 � 1

parameters. Identically, its Lie algebra, su(d), has d
2 � 1 generators X̂. They can

easily be constructed from the generalized Gell-Mann matrices {�i}d2�1[47], with

X̂i =
1

2

⇣
â
†
1 · · · â

†
d

⌘
(�i)

0

BB@

â1
...

âd

1

CCA . (2.31)

There is a quadratic Casimir invariant for these representations of the Lie algebra

given by

⌦d(N) =
X

i

X̂iX̂i =
d� 1

2d
N (N + d) =: ⌦̃d(N)1̂, (2.32)

which can be derived by using the form of the generalized Gell-Mann matrices in

Ref. [47].

When trying to find the optimal state to estimate these SU(d) transformations,

we use the identity

Tr[1]2 = Tr[M1/2
M

�1/2]2  Tr[M ] Tr[M�1], (2.33)

to put a lower bound on the s-qCRB. Then,

C ,✓ =
1

4
⇥ Tr[C (X̂)�1] � (d2 � 1)2

4Tr[C (X̂)]
. (2.34)

This identity also guarantees the saturation of the bound when M or C (X̂) is
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proportional to 1. The trace of the covariance matrix is given by

Tr[C (X̂)] =
X

i

✓D
X̂

2
i

E
�
D
X̂i

E2◆

*
X

i

X̂
2
i

+
= ⌦̃d(N). (2.35)

Therefore, under the conditions that

D
X̂

E
= 0

C (X̂) =
⌦̃d(N)

d2 � 1
1,

(2.36)

the optimal bound of

C ,✓ =
(d2 � 1)2

4⌦̃d(N)
=

d
4 + d

3 � d
2 � d

2N(N + d)
(2.37)

is reached. Interestingly, beyond guaranteeing the optimal s-qCRB, these criteria

are also su�cient to ensure its saturability. Indeed, it is easy to show that the

commutators of the SLDs are linear combinations of {X̂}, meaning that

h[Li, Lj]i = 0 8{i, j}. (2.38)

In Figure 2.1, we plot the optimal C compared to the performance of a sub-optimal

generalized N00N state

| i = 1p
d
(|N, 0, · · · , 0i+ |0, N, · · · , 0i+ · · ·+ |0, 0, · · · , Ni). (2.39)

We discuss N00N states in Sec. 3.1.3. We show that for di↵erent d, we get the promised

Heisenberg scaling of O(1/N2), as opposed to the N00N state, which only performs

as O(1/N) in multi-parameter estimation.

More precisely, the optimal scaling is O(d4/N2), with the number of parameters

scaling as d2. Some schemes known in the literature as “seqential estimation scheme”

or “individual estimation schemes”[48] require splitting photons into O(d2) groups.

In each of these groups, they use the best state to measure a single parameter. These

states only have a Heisenberg scaling for that single parameter and are either in-

sensitive, or have a bad scalings to estimate the other parameters. The generalized

N00N states are examples of such states. When the results of the di↵erent groups

are used together to estimate the unitary, the wMSE also leads to a Heisenberg

scaling. However, splitting the physical resources among the O(d2) groups remains

ine�cient. With a variance of O(d4/N) for each individual parameter, their sum

goes as O(d6/N), a factor of d2 more than the optimal scaling. This di↵ering factor



2.5. OPTIMAL STATES FOR SU(3) 21
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Figure 2.1: Scalar Quantum Cramér-Rao Bound C for the estimation of an SU(d) transformation
vs. number of photon used N . Solid lines refer to the performances of generalized N00N states while
dashed lines refer to the best possible performances. The N00N states exhibit a shot-noise scaling,
with C / 1/N while the optimal bounds satisfy the Heisenberg scaling C / 1/N2 for su�ciently
large N .

of the number of parameters d2 between the best sequential estimation schemes and

the best simultaneous estimation schemes seems general. Similar famous results have

been found in the case of multiple phase estimation[48, 49].

2.5 Optimal States for SU(3)

Although we have presented criteria for the optimality of the s-qCRB, we have not

shown that states which satisfy them exist. SU(2) is a well studied group and even

though the form of the s-qCRB presented in this paper has only been recently pub-

lished, families of states have been found which satisfy our criteria in Eq. 2.36. We

shall discuss them more in Section 3.1.3. Here, we tackle the problem of SU(3) oper-

ations on 3 modes of the field. We were quickly able to find a family of optimal state

which provides the ideal scaling. In the second-quantized formalism, states which

obey

| i = 1p
3
(|k � l, k, k + li+ |k, k + l, k � li+ |k + l, k � l, ki) (2.40)

for non-zero integers k and l such that k = N/3 and 4l2 = 3k(k + 1), satisfy all the

required properties. The set of values of k with a corresponding l is sparse but infinite,

meaning that a scheme relying on these state would be scalable. If one wanted to

tackle the problem in earnest it would be fruitful to spend more time looking for an
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alternate family containing an optimal state for more values of photon number N .

We think that the ease with which we were able to provide a meaningful analysis of

the metrological landscape of SU(3) transformations demonstrates the power of the

bound we derived. A parametrization-dependent analysis of SU(3) would inevitably

be very di�cult with a minimum of 8 parameters to deal with and many 8⇥8 matrices

to calculate and optimize.

2.6 A Note On Mixed States

Up until now, we have restricted ourselves to pure states. Fortunately, this was not

for any fundamental reason, but rather to simplify the mathematics. For the mixed

state formulation of this bound, we need to start with the equivalent Lyapunov form

of the QFI [35]

[I⇢✓]lm = 2

Z 1

0

dsTr[@✓l(Û✓⇢Û
†
✓)e

�(Û✓⇢Û
†
✓)s@✓m(Û✓⇢Û

†
✓)e

�(Û✓⇢Û
†
✓)s]. (2.41)

If we substitute in the generators Ĥ , we get that

@✓l(Û✓⇢Û
†
✓) = (@✓lÛ✓)⇢Û

†
✓ + Û✓⇢(@✓lÛ

†
✓) = iÛ✓(⇢Ĥj � Ĥj⇢)Û

†
✓, (2.42)

and so

I⇢✓ = 2

Z 1

0

dsTr[(⇢Ĥ � Ĥ⇢)e�⇢s(Ĥ>
⇢� ⇢Ĥ

>)e�⇢s]. (2.43)

In fact, a quick inspection reveals that simply substituting the covariances in the

expressions for pure state with

C (X̂) 7�! 1

2

Z 1

0

dsTr[(⇢X̂ � X̂⇢)e�⇢s(X̂>
⇢� ⇢X̂

>)e�⇢s], (2.44)

yields correct expressions for the s-qCRB. With this slightly modified formula, the

main feature of our result, namely the parameter independence of the s-qCRB when

using the intrinsic metric of the corresponding Lie group, remains, allowing the for

the possibility of using this technique to analyze scenarios with noise.

2.7 Concluding Remarks

In conclusion, we found a way to weight the di↵erent variances of di↵erent parameters

in multi-parameter estimation that seems to be natural given the geometry of the

group of unitaries in which the parameters are encoded. Using this weighting gives a

very simple form for the scalar quantum Cramér-Rao Bound, which could lead to an
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easier optimization. Before this result, analyzing the performances of di↵erent states

in estimating unitaries was often derailed by discussion of the group itself and the

specific choice of its parametrization. Because this result completely removes these

distractions, we hope it finds great use in the field. That said, it must be stressed

that all the caveats regarding the saturability of the CRB discussed in Sec. 1.2.6 are

applicable to our recent results. In the published paper[42], we demonstrated the

power of the method using the group SU(2) and SU(3) as example. The former was

already well studied[50, 51] but our simple result quickly led us to progress on the

latter. We shall revisit the SU(2) Lie group in Chapter 3, in which we will further

discuss unitary estimation from an experimental perspective.
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Chapter 3

Experimental Generation of the

Tetrahedron State

In this chapter, we present the results of an experiment soon to be submitted for

publication. The goal of this experiment is to create a tetrahedron state in the labo-

ratory, a 4-photon polarization-entangled state optimal for characterizing polarization

rotations.

3.1 Theory

We start by continuing the theory presented in Chapter 2. First, we introduce the

formalism necessary to discuss polarization rotations. Second, we introduce di↵erent

ways to visualize quantum states. Finally, we discuss di↵erent families of quantum

states and quantify their performance in estimating polarization rotations.

3.1.1 Polarization Rotations

Polarization is a degree of freedom of light living in a two dimensional vector space.

In quantum mechanics, the polarization of a single photon constitutes a qubit, or a

Spin-1/2 system(S1/2). An orhonormal basis for this qubit is the H/V basis,

|Hi = â
†
H
|0i = |1H , 0V i

|V i = â
†
V
|0i = |0H , 1V i .

(3.1)

Unitaries acting on qubits generally form the SU(2) group. In this case, the gener-

ators of the su(2) algebra take the form of Pauli operators, a special case of their

representation stated in Equation 2.4. If we consider N distinguishable such photons,

their polarization state is contained in the Hilbert Space (S1/2)⌦N . Global polariza-

25
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tion rotations, which rotate the polarization states of each of the photons identically,

are still elements of SU(2). They can be described by the operator (R̂(1/2))⌦N , where

R̂(1/2) is the operator for a rotation acting on S1/2. It is known that

(S1/2)
⌦N =

N/2M

j=[0,1/2]

Sj � · · ·� Sj| {z }
dj times

, (3.2)

where Sj is the Hilbert Space of a spin with total angular momentum j. The lower

bound in the tensor sum is 0 if N is even and 1/2 if N is odd. The integers dj, rep-

resenting the multiplicity of each spin sectors, vary depending on the photon number

N but dN/2 is always 1. A given state can be expressed in bases naturally following

the two equivalent Hilbert Space decompositions above. The transfer from one basis

to the other can be done using a Clebsch-Gordan transformation matrix. In Ap-

pendixA, we give the example of a Clebsch-Gordan transform matrix for N = 4. The

spin Hilbert spaces Sj are commonly studied and so are the spin operators Ĵ (j) acting

on them. These are the generators of rotations on these spaces. In the Spin tensor

sum decomposition of the Hilbert Space, the generators of the global polarization

rotation are

Ĵ =
N/2M

j=[0,1/2]

Ĵ
(j) � · · ·� Ĵ

(j)

| {z }
dj times

. (3.3)

An example of parametrization of a general global rotation is given by the Cartesian

parametrization

R̂ = e
i✓·Ĵ

, (3.4)

with the Ĵ operators defined above. For each of the spin sectors in Eq. 3.2, there is

an associated symmetry related to particle exchanges. For example, when N = 2 and

(S1/2)⌦2 = S1 � S0, the spin-1 sector contains the triplet states |HHi, 1p
2
(|HV i +

|V Hi) and |V V i, all fully symmetric under the exchange of the two particles. The

spin-0 sector on the other hand contains the singlet state 1p
2
(|HV i � |V Hi), anti-

symmetric under that same exchange. More can be learned of these symmetries by

analyzing Young’s diagrams[52]. For the purpose of this work, all we need to know is

that the unique largest spin sector, j = N/2, is fully symmetric under the exchange

of any particle. We will sometimes refer to it as the full-symmetric sector.

Photons are bosons, which means that in the absence of distinguishability, their

wave-functions are full-symmetric. If we look at a system where the photons are indis-

tinguishable, it can be convenient to describe it with a second-quantized formalism.

Here, the system consists of two modes, one for each polarization, and is occupied by
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N photons. We have analyzed this scenario in Sec. 2.1.2. This system, with its Lie

algebra as we previously defined it, is equivalent to the SN/2 sector as expected. For

this reason, we will also use notations from the second-quantized picture to denote

the di↵erent states. For example, with N = 3, the following notations for the state

with j = 3/2 and m = 1/2 will be considered interchangeable:

|3/2, 1/2i = |2H , 1V i =
1p
3
(|HHV i+ |HVHi+ |V HHi). (3.5)

3.1.2 State Visualization

We now present two ways to visualize quantum states in the full-symmetric quadrant

of the Hilbert Space.

Majorana Representation

The Majorana Representation[53] is a way to visualize full-symmetric pure states,

with N points spread on the Bloch sphere. Given the full-symmetric nature of such

states, there is always an ensemble of N single photon pure states { i} such that

| i /
X

↵2SN

| ↵1i ⌦ · · ·⌦ | ↵N
i , (3.6)

where, in this instance, SN is the set of permutations of {1, · · · , N}. To find this fam-

ily of single photon states { k}, we write the state in the second-quantized formulation

of quantum mechanics as a polynomial of creation operators acting on vacuum,

| i /
NX

k=0

ck |kH , (N � k)V i =
 

NX

k=0

ck
(a†

H
)k(a†

V
)N�k

p
k!
p

(N � k)!

!
|0i . (3.7)

The latter expression is a polynomial of two variables a†
H

and a
†
V
. It can always be

factored into product of single particle creation operators by finding the N roots of

the polynomial. Then,

| i /
 

NY

i=k

(↵ka
†
H
+ �ka

†
V
)

!
|0i (3.8)

and we can conclude that

| ki = (↵ka
†
H
+ �ka

†
V
) |0i = ↵k |Hi+ �k |V i . (3.9)
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In order to represent these states { k} as points on the Bloch sphere, we discard the

global phase and express them as

| ki = cos
✓k

2
|Hi+ e

i�k sin
✓k

2
|V i . (3.10)

We then use (✓k,�k) as the spherical coordinates for each of the N points.

Wigner Distribution

The Wigner distribution o↵ers another visualization of states contained in the full-

symmetric sector. In an analogue to the Wigner distributions of infinite dimensional

quantum states, the Wigner distribution of states in SN/2 is a quasi-probability dis-

tribution. In this case, its domain is not the complex plane but the Bloch sphere, the

natural phase-space for a spin system. Much like on the complex plane, many such

distributions can be created, the more well-known ones are the Glauber, the Husimi

and the Wigner distribution. These distributions can be plotted as colour maps on

the sphere, or on 2D projections of the sphere, to quickly visualize the phase-space

features of the states that they represent. Furthermore, as opposed to the Majorana

representation, these distributions are well defined for mixed states, which is invalu-

able in an experimental scenario. We use the definition of the Wigner Function in

[54–56]. We first introduce the state multipole operators

T̂KQ =
N/2X

m=�N/2

N/2X

m0=�N/2

(�1)N/2�m
p
2K + 1

 
N/2 K N/2

�m Q m
0

!
|N/2,mi hN/2,m0| ,

(3.11)

where the notation for the kets is the |j,mi spin notation and the object with six

inputs in parenthesis is the Wigner-3j coe�cient. The Wigner representation is then

W⇢̂(✓,�) =
NX

K=0

KX

Q=�K

Tr[⇢̂T̂KQ]Y
⇤
KQ

(✓,�), (3.12)

where YKQ(✓,�) are the spherical harmonic functions and (✓,�) are the spherical

coordinates. Note that certain sources have an insignificant discrepancy of a constant

factor
q

4⇡
N+1 .

3.1.3 Choosing the optimal state

When trying to find the optimal state to estimate SU(2) rotations, we can use our

results from Sec. 2.4 to find the best scalar quantum Cramér-Rao bound. In that

section, we were concerned about SU(d) operation on d-modes of light. This system
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is the particular case with d = 2, representing the two polarization modes. The

full-symmetric nature of the states however are no longer being assumed. We can

immediately see that the optimal state in our current case lies in the full-symmetric

subspace and that the results are therefore identical.

Following the proof in Sec 2.4, we see that the conditions

D
Ĵ

E
= 0

C (Ĵ) / 1
(3.13)

should still be respected to reach the optimum performance. The only di↵erence

is that we now have multiple spin sectors, each with their own quadratic Casimir

invariant

Ĵ
(j)2

x
+ Ĵ

(j)2

y
+ Ĵ

(j)2

z
= j(j + 1)1̂. (3.14)

Therefore, the trace of the spin covariance matrix is

Tr[C (Ĵ)] =
3X

i=1

D
Ĵi

2
E
=

N/2X

j=[0,1/2]

Pj(j(j + 1))  N

2

✓
N

2
+ 1

◆
(3.15)

with Pj being the probability that the state is in a Sj quadrant. Only when the state

is fully in the j = N/2 sector is the inequality saturated. Then, the s-qCRB takes an

optimal value of

C ,✓ =
9

4
�
N

2

�
N

2 + 1
�� =

9

N (N + 2)
. (3.16)

As we can see, this is the same bound found in Sec 2.4. To gather more intuition about

the state space, we next look at three families of states of physical significance. These

states are all contained in the full-symmetric sector. The last one, which contains

what we call second-order unpolarized states, is optimal.

If someone was unconvinced by the importance this form of the s-qCRB and was

questioning our choice of the weight metric W , it should be noted that the same

bound can be found for a di↵erent problem. In the Cartesian parametrization of the

rotation in Eq. 3.4, if we look at the neighbourhood around ✓ = 0 (Û = 1̂), we find

that H = 1̂. If we give an equal weighting to the three parameters (W = 1), we

recover the same form of the s-qCRB, meaning that in the optimal case,

(�✓1)
2 + (�✓2)

2 + (�✓3)
2 � C ,✓ =

9

N(N + 2)
. (3.17)

This result was first published in [50]. It was then argued that if one wants to make

sure that two Cartesian reference frames stay aligned, sending states with this optimal
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(a) (b) (c)

Figure 3.1: Three di↵erent visual representations of the spin coherent state |4H , 0V i. (a) Majorana
representation of the state. All points are identically placed on the North Pole on the Bloch sphere,
aligned with |Hi. (b) Wigner distribution on the sphere. The quasi-probability distribution is
heavily concentrated on the north pole of the sphere. (c) Equirectangular projection (longitude vs
latitude) of the Wigner distribution.

bound between the two frames and continuously measuring ✓ would be the optimal

strategy.

Spin coherent states

Spin coherent states[57], depicted in Fig. 3.1 (a), are separable states in the symmetric

subspace of N photons. They consist of all N photons sharing the same polarization

properties. One of those states is

| cohi = |NH , 0V i , (3.18)

where all the photons are horizontally polarized. The rest of the spin coherent states

can be obtained by rotating this state. The spin covariance matrix for this state is

given by

C coh
(Ĵ) =

0

B@
N/4 0 0

0 N/4 0

0 0 0

1

CA , (3.19)

and is not invertible, which leads to a divergence in the s-qCRB and an “infinitely

bad” performance at fully characterizing SU(2) rotations. Intuitively, this is due to

the state being completely undisturbed by any rotation around the polarization axis

of the separable particles. It is therefore incapable of estimating one of the three

parameters necessary to characterize the rotation, which leads to a divergence in the

weighted sum of the variance of those parameters. In the example above, all the

polarizations of all photons were aligned with H, which leads to a variance of 0 for

Ĵz, the spin operator aligned with that axis.
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(a) (b) (c)

Figure 3.2: Three di↵erent visual representations of the N00N state 1/
p
2(|4H , 0V i + |0H , 4V i. (a)

Majorana representation of the state. All points are placed equally spaced on the equator of Bloch
sphere. (b) Wigner distribution on the sphere. The quasi-probability distribution is concentrated on
the North and South Pole with four fringes along longitude lines of the sphere. (c) Equirectangular
projection (longitude vs latitude) of the Wigner distribution.

To remedy this situation, we could imagine dividing our available photons into

three di↵erent spin coherent states aligned with the x, y or z axes. Because the

quantum Fisher information is additive for uncorrelated measurements [35], C can be

found by inverting the sum of the di↵erent spin covariance matrices for each of these

states. Assuming N is divisible by 3, the resulting matrix and the corresponding

s-QCRB are

X

i

C
 
(i)
coh

(Ĵ) =
N

6
⇥ 1, C =

9

2N
. (3.20)

As we can see, by splitting our photons into three batches, we retain sensitivity to

every parameter and recover the expected shot-noise scaling from a classical state.

N00N states

N00N states are entangled states of N photons. N00N states are notable for being

the most sensitive states for measuring the phase di↵erence between two arms of

an interferometer, or equivalently for estimating the angle of a polarization rotation

around a known axis[9–12]. N00N states were first experimentally studied in [58,

59]. The particular N00N state aligned with the z-axis, visualized in Fig. 3.2, can be

written as

| N00Ni =
1p
2
(|NH , 0V i+ |0H , NV i) (3.21)
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When it comes to estimating all parameters of a rotation however, we see from the

following spin covariance matrix and its corresponding bound

C N00N (Ĵ) =

0

B@
N/4 0 0

0 N/4 0

0 0 N
2
/4

1

CA ,

C =
2

N
+

1

N2
,

(3.22)

that the performance of N00N states still exhibits a classical scaling. This is because

N00N states fail at performing the estimation of the other two parameters with a

quantum advantage and their contributions to the s-qCRB dominate in the high N

limit.

We can attain a quantum scaling, however, by splitting the N00N state into three

batches, as with the spin coherent state. If the photons are split equally between

N00N states aligned with the x, y and z-axes, we get

X

i

C
 
(i)
N00N

(Ĵ) =
1

36
(N (N + 6))⇥ 1,

C =
27

N(N + 6)
.

(3.23)

While splitting photons into three batches recovers the advantageous Heisenberg scal-

ing, it causes us to pick up a factor of 3 in the leading order of N . Informally, we can

think of the scaling as O(3⇥ 1/(N/3)2) = O(33/N2).

Second-order unpolarized states

It was proven in [50, 60, 61] that the optimal states for the task at hand are pure

states that exhibit the following properties:

D
Ĵ

E
= 0

D
ĴlĴm

E
=

N

6

✓
N

2
+ 1

◆
�l,m. (3.24)

These states have the property that they are isotropic up to the second moment of

the spin angular-momentum operators, hence their name. Indeed, no initial rotation

would change the two properties above for any state that satisfies them. These states

do not exist in all dimensions. It is, for example, impossible to satisfy these conditions

with one, two, or three photons. There is one solution for four photons but then again

none for five photons. The dimensionality of the spaces for which these states exist

still constitutes a topic of research [62, 63] that may be intimately connected to

spherical t-designs [64–67] and other problems for distributing points on the surface
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of a sphere [68–72].

Multiple names have been used to describe these states and their usefulness has

been theoretically demonstrated for a range of applications. They were initially stud-

ied for being the opposite of spin coherent states, earning the epithet “anticoher-

ent” [62, 73, 74], making them in some sense the most quantum states. Since they

are the furthest states from the set of spin coherent states, they have been termed

“Queens of quantumness” [75]. In the context of polarization, they manifest “hidden

polarization” [76], as their classical (first-order) polarization properties are ignorant

of higher-order polarization features [77]. They minimize the cumulative multipoles of

their polarization distribution, for which they earned the moniker “Kings of quantum-

ness” [67, 78], and are optimal states for rotation sensing, explaining the sobriquet

“Quantum rotosensors” [79, 80]. Because they sometimes exhibits symmetries of

platonic solids, they have also been dubbed “Platonic Solid States”[50] or “Platonic

States”, a name that we will use parsimoniously in this document.

We can quickly see that the states satisfying Eq. 3.24 outperform all the other

schemes imagined here by looking at their spin covariance matrix and the s-QCRB:

C plat
(Ĵ) =

1

12
(N (N + 2))⇥ 1,

C =
9

N(N + 2)
.

(3.25)

The first thing to notice is that, in the leading order of N , these states recover the

factor of 3 that was lost from splitting the N00N state photons into three batches.

Indeed, our cost function is now bounded by something on the order of O(9/N2)

instead of O(27/N2). This is in line with what we found in Sec. 2.4, where the increase

in performance between sequential and simultaneous scheme is of order d
2 � 1 = 3

for SU(2).

In Figure 3.3, we show the performance scalings for the di↵erent families of state

presented here.

3.1.4 The Tetrahedron State

The second-order unpolarized state with the smallest photon number (N = 4) is the

one we call the “tetrahedron state”. It is named as such because it has the same

symmetries as the tetrahedron under rotation, which is apparent in its Majorana

representation (depicted in Fig. 3.4(a)), where the points fall on the vertices of a
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Sequential - N00N State
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Figure 3.3: Scalar Quantum Cramér-Rao Bound C of four di↵erent schemes vs Photon Number N

used. The four di↵erent colours represent the four di↵erent schemes presented in Sec. 3.1.3. While
simultaneous parameter estimation with N00N states and sequential parameter estimation with
coherent states have shot-noise scalings (C / 1/N), sequential parameter estimation with N00N
states and simultaneous parameter estimation with Platonic states reach the Heisenberg scaling
(C / 1/N2)), with the latter beating the former by a factor of 3 for large enough N .

(a) (b) (c)

Figure 3.4: Three di↵erent visual representations of the tetrahedron state 1/
p
3(|4H , 0V i +p

2 |1H , 3V i). (a) Majorana representation of the state. The points are placed on the vertices
of a tetrahedron inscribed in the Bloch sphere (b) Wigner distribution on the sphere. The quasi-
probability distribution has fringes in the shape of a tetrahedron. (c) Equirectangular projection
(longitude vs latitude) of the Wigner distribution.
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tetrahedron inscribed in the Bloch sphere. The state can be written as

| tetrai =
r

1

3
|4H , 0V i+

r
2

3
|1H , 3V i . (3.26)

In this work, we create the tetrahedron state in the polarization state of four photons

ideally in the same spatial and temporal mode, which guarantees the polarization

to be full-symmetric. Second-order unpolarized states of dimension higher than the

tetrahedron state have been previously studied experimentally [25] in the orbital

angular momentum space of a single photon, which can be analogous to Sj. While

the work was impactful, the creation of these states in this fashion requires no particle

entanglement and we believe that the creation of the entangled tetrahedron state in

the polarization of 4 photon remains a very interesting and new experiment.

3.2 Apparatus

In this section, we will talk about the apparatus we used to create and characterize

the tetrahedron state. We will start with a high level description of the scheme before

being a bit more technical as we take a deeper look at some parts of the apparatus.

Some of the details included here are mostly for future group members who will wish

to reuse sections of the apparatus for other purposes.

3.2.1 Concept

We create the tetrahedron state using an approach intuitive in the Majorana picture.

This approach, conceptually illustrated in Figure 3.5, is to combine a 3-photon N00N

state with a heralded single-photon. We first create a N00N state in the polarization

of 3 photons in a single spatial/temporal mode. We label the two creation operators

for the polarization modes â
†
H

and â
†
V
. At the same time, a heralded horizontally-

polarized single-photon is created in a di↵erent spatial mode b with the creation

operator b̂†
H
. The photon is created in pair with a photon in a spatial mode c, whose

detection heralds the b photon. The creation of those two states will be discussed in

Sec. 3.2.4 and 3.2.5.

Then, in a polarization interferometer named the Tetrahedron Assembly stage, the
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Figure 3.5: Conceptual illustration of the tetrahedron state’s creation process using the Majorana
representation. The H polarization of a 3-photon N00N state (three red points on the vertices of
an equilateral triangle on the equator) is partially attenuated resulting in a triangle of points with
lower latitude (red). Simultaneously, an H polarized heralded single-photon is probabilistically added
(green). The result is a 4-photon state represented by four points on the vertices of a tetrahedron.

following mode transformation is performed:

â
†
H
�! e

i�
â
†
V

â
†
V
�! â

†
Hp
2

b̂
†
H
�! â

†
Hp
2
.

(3.27)

In this transformation, we attenuate the H polarization of the N00N state and

probabilistically combine it with the H-polarized heralded single photon. This trans-

formation results in the tetrahedron state.
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⇣
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/ 1p
3
|4H , 0V i+

r
2

3
e
3i� |1H , 3V i

As described, this non-unitary operation accepts three orthogonal modes as inputs

and has two orthogonal modes as outputs. In reality, we rely on many photons leaving
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the interferometer undetected through hidden output modes b̂†H/V to partially polar-

ize the 3-photon N00N state. The detection of the tetrahedron state is conditioned

on four photons being detected in modes a and one herald photon being detected in

mode c. When photons are lost, less than 5 photons are simultaneously detected and

these events are discarded, ideally not a↵ecting the results.

3.2.2 Experimental Scheme

The full optical arrangement for the experiment is presented in Figure 3.6, with a

description in its caption.

The experiment can be divided in four main parts: the N00N state source, the her-

alded single photon source, the tetrahedron assembly stage and the state tomography

apparatus. The only part of the experiment not depicted in Figure 3.6 is some optics

that we use to lock the N00N state source. It will be discussed more in Sec. 3.2.5.

3.2.3 Hardware

We use a commercial Ti-Saph mode-locked pulsed laser to power the experiment. The

make of the laser is Coherent and the model is the Chameleon. The laser was originally

purchased in 2013 but started failing in the summer of 2018. It was then exchanged for

a nearly new model as part of a “repair” program o↵ered by the company. This laser

system is a unit made for a wide range of applications, which requires little technical

skill to operate. It is a turnkey system, with much of the design being proprietary

and hidden from the user. The limited information available to the public can be

found in the user manual.

Maintenance of the system is easy and straightforward. The laser should preferably

be turned on relatively frequently to ensure that the laser cavity is not so far out of

alignment that the laser does not lase. Once the laser is in operation, the laser

cavity is automatically aligned to maximize the power of the beam. Furthermore, the

coolant needs to be regularly changed. It was recommended to me by a technician

from Coherent to change it every month if using distilled water or every six months

using the solution sold by Coherent for this purpose. I believe this solution contains

a fungicide to help prevent the growth of algae in the cooling pipes.

The output of the laser system is a beam of light in free space. The beam is pulsed

with a repetition rate of 80MHz and a pulse duration of 140 fs. The centre wavelength

of the pulses can be tuned to be anywhere between 680 nm and 1080 nm but for this

experiment we chose to operate at around 807 nm to match the narrow-band filters

we used. At 800 nm, the laser’s average power is maximal and specified to be at least
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Figure 3.6: Experiment overview. (a) A 808 nm pulsed beam (red) is used to generate a 404 nm beam
(blue) through second harmonic generation (SHG) in a 1mm barium borate (BBO) crystal. Part
of this blue beam is sent to generate co-propagating pairs of horizontally-polarized 808 nm photons
(red) through type-I spontaneous parametric down-conversion (SPDC) in a 2mm BBO crystal while
the red beam is attenuated and rotated to a vertical polarization. The two beams are recombined
on a polarizing beamsplitter (PBS) and polarization rotated to form a three-photon N00N state
in the H/V basis. (b) Another blue beam then pumps a second SPDC (2mm BBO) to generate
another photon pair. Here, after a 3 nm narrow-band filter, a detection at a single photon counting
module (SPCM) labelled “T” heralds the presence of a photon in the upper path. (c) Both the
N00N state and heralded single photon enter a displaced polarization Sagnac interferometer. The
heralded photon strictly takes the clockwise path while the N00N state is split equally amongst the
paths. The half-waveplate (HWP) in the counter-clockwise path is set at 45� to transmit all the
light in the upwards output while the HWP in the clockwise path is set at 22.5� to attenuate the V
polarization of the N00N state by half and transmit the heralded single-photon half of the time (see
Figure 3.5 for context). After being re-combined, all photons pass through a 3 nm narrow-band filter
to make sure their spectra are the same. (d) The state is transmitted via single-mode (SM) fibre
to a tomography apparatus for projection onto an arbitrary polarization axis. Each output path is
coupled to a multi-mode fibre-splitter to allow for partial photon number counting capabilities (a
maximum of three detections per polarization). Five-fold detection events between T and any four
SPCMs in the tomography setup are recorded.
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3.5W. Our model over-performs and we get around 3.7W at 807 nm.

For best and consistent results, it is best to let the laser run for at least an hour

before taking meaningful measurements. It is also recommended to scan the frequency

before starting the use. There is a built-in method in the software provided by

Coherent to do this scan in an automated manner. This helps with the automated

optimization of the alignment, all of which is obscured to the operator.

As for detectors, we use the very popular Single-Photon Counting Module (SPCM)

from the manufacturer Excelitas. These used to be fabricated by Perkin-Elmer. For

this experiment, we used nine di↵erent detectors from di↵erent years and with a

variety of models.

All the detectors used are Single-Photon Avalanche Diode (SPAD) built with Sil-

icon diodes, which work well with near infrared (NIR) light. The timing jitter is

relatively low (350 ps) compared to the time between laser pulse (12 ns), which allows

us to identify if two di↵erent detections or more come from the same laser pulse.

The specifications for the current model quote the absolute detection e�ciency to be

⇡ 62%.

We use two home-built coincidence counting units built by Alan Stummer, who

is now retired. Proper documentation regarding the coincidence box can be found

on his website [81]. The device counts the coincidences between any of the eleven

input channels. The inputs are TTLs, presumably coming from the SPCM outputs.

There is an adjustable window for each channel, from 0ns to 255 ns. Following a first

detection, each of the photons falling in the coincidence window associated with this

channel will be considered coincident. We can retrieve the number of coincidences in

each of the 211 = 2048 possible coincidence configurations.

3.2.4 SPDC

Spontaneous parametric down conversion(SPDC)[82] is a quantum non-linear optics

phenomenon in which a high-energy photon is destroyed to create two low-energy

photons. It is the time-reverse of a classical process called sum-frequency genera-

tion (SFG), where two low-frequency light beams interact in a non-linear material to

generate a light at the sum of the two original frequency. Unlike SFG, which can

be modelled by the classical Maxwell’s equation in a nonlinear medium, SPDC is a

strictly quantum process, requiring vacuum fluctuations, a feature of quantum theory.

As a result, the quantum state of the light resulting from SPDC is quantum (meaning

it cannot be described classically) and is a resource used in a plethora of quantum

information schemes, including the violation of Bell’s inequalities[83–85]. One appli-

cation of SPDC is that it is used to create heralded single photons. Even though the
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low-energy photons are created at random times during SPDC, they are only created

in pairs, and so the detection of one of the photons guarantees the presence of an-

other, thereby “heralding” it. SPDC is also used to create a “squeezed-state”, a state

of light very useful in quantum metrology[15] as well as in quantum computing[86].

SPDC is at the heart of this experiment. Both the N00N state source(Fig. 3.6(a))

and the heralded single photon source(Fig. 3.6(b)) rely on this phenomenon. To mit-

igate the naturally low rate of pair creations, we typically use a high-power high-

frequency beam to maximize the number of photons which could potentially decay

into a photon pair. We call this beam our pump beam. Furthermore, we try to use

as long of a crystal as possible, increasing the non-linear region in which SPDC can

occur.

In this experiment, the high-frequency pump is generated with a 1mm Barium-

Borate crystal (BBO), in which we send the full output of the Chameleon laser at

⇠ 807 nm. In that crystal, second harmonic generation (SHG) occurs[87]. This is a

special case of SFG where both the inputs are of the same beam and the resulting high

energy beam is at twice the original frequency. In SHG, the output intensity depends

quadratically on the input intensity for low conversion e�ciencies. The pulsed nature

of our laser is very good for the conversion e�ciency, e↵ectively increasing the peak

intensity by a factor of 12 ns/150 fs ⇡ 8⇥ 104 from a CW beam of the same average

power. We also focus this beam into the crystal with a 10 cm lens, further increasing

the intensity in the crystal. Using the Chameleon output at full power (⇡ 3.7W), we

can generate our pump beam at ⇡ 403.5 nm (blue) with more than 600mW of power.

Both SPDC processes in the experiment use 2mm BBO crystal as the non-linear

medium. We divide the blue beam into two to act as their pumps. In the N00N

state source, we intend the two photons produced from the SPDC to be in the same

mode, both in frequency and k�vector. The resulting state is what we call a vacuum

squeezed state [82, 88]
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where ⌘ is the squeezing parameter. The probability of a pair being created during

each pulse scales as ⌘2 and is linear in the incoming pump power. In the heralded

single photon source, we want the photons to be emitted in di↵erent directions because

we would like to detect one of them immediately and send its partner to be used as
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part of the tetrahedron state. The ideal result is a two-mode squeezed state[82]
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where µ is the squeezing parameter. Going from a SPDC photon source where the pair

of photons leave in the same direction to one where the pair leave in di↵erent directions

can be done by tuning the angle between the extraordinary axis of the crystal and of

the average pump beam’s k-vector, thereby changing the phase-matching relations.

In both sources, we want both photons of the same pair to be polarized equally in the

H polarization. We therefore use Type I phase matching relation [87]. We align our

pump’s polarization to V and the optic axis of our BBO crystal to be in the plane

formed by the average k-vector of the pump and its vertical polarization.

The equations above are idealized however. In the laboratory, the result of SPDC

is a very multi-mode state with, in general, anti-correlations between frequency (!)

of the two photons in the photon pair and anti-correlations between their angle of

emission relative to the average k-vector of the pump. These anti-correlations are

consequence of the phase-matching relations, which ensure conservation of energy

and momentum throughout the SPDC process. If we label the two photons of a pair

the signal (s) and the idler (i), the energy conservation and phase-matching conditions

are

!s + !i = !p

ks + ki = kp.

(3.31)

These relations and the resulting anti-correlations are not completely strict. The finite

bandwidth of the pump due its pulsed nature, the finite phase-matching bandwidth

of the crystal[87] caused by its finite length, and the non-zero range of the transverse

k-vectors of the pump, which is focused into the crystal, all contribute to the partial

reduction of the anti-correlations resulting from the phase-matching conditions.

These anti-correlations are a big problem for our experiment as they increase the

distinguishability between photons from di↵erent pairs and di↵erent sources. To get

rid of them, we filter our beams to suppress the anti-correlations. For the frequency

anti-correlation, we introduce 3 nm filters after the SPDC. This is almost su�cient to

get rid of the anti-correlation completely as 3 nm is very close to the wavelength width

of our original transform limited 140 fs pulse. For the directional anti-correlation, we

collect the photons in single-mode fibres, thereby ensuring that a single mode is

collected from the N00N state source, and that only two modes are collected from

the heralded source. Although this helps greatly with distiguishibility, these filtering
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Figure 3.7: (a and c) Normalized coincidence count rate of the colinear SPDC source in the N00N
state sources as a function of the collection lens focal length under various settings for the pump lens
focal length and the crystal width. (b and d) Collection e�ciency as a function of the collection lens
focal length the same conditions. (c - d) are taken with the photons from the SPDC going through
a 3 nm filter while in (a - b), the filter is removed.

processes increase photon losses after the SPDC. Loss is problematic for us in part

because it decreases the state creation rate. Furthermore, loss leads to events when

only one photon of a given pair is detected. This is particularly problematic as

it decreases the quality of the squeezed states created through the SPDC. We will

explain in more details what the repercussions are to our experiment in Section 3.4.

Many theoretical discussions on how to filter while introducing the least amount of

loss, both in frequency[89, 90], by changing the width of the filter, and in direction[90,

91], by changing the di↵erent lens shaping the size of the collection modes, can be

found in the literature. While we kept these studies in mind when designing our

apparatus, none seem to be exactly applicable to the source we needed and we took

a more empirical approach. We tried various arrangements of crystal length, filter

width, and lenses to focus the pump and the collection. The result can be found in

Figure 3.7.

I wished we could have taken more points to fill this figure but the process ended

up very time-consuming, with each point taking up to a long day of work, and we

decided to cut the process short. I especially wish we had more points with the 2mm

crystal and the 3 nm filters, which we ended up using. In the end, for the N00N state

source, we chose a filter width of 3 nm. We tried using two filters in succession with
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di↵erent tilt angles to further reduce the window without much success. We chose to

focus the pump beam with 200mm lens before the 2mm crystal. After the crystal,

we first collimate the pairs with a 60mm lens and then focus them into fibre with an

asphere of 8mm focal length. For the heralded sources, the lens focusing the pump

had to be changed for a 150mm lens and the lens used to collimate the collection

mode was a 100mm lens. The range of the focal length of the lens we tried was

limited by physical constraints in our apparatus.

Right before we started data collection for our experiment, the N00N state source

had a maximum coincidence rate of 53 kHz and a maximum heralding e�ciency of

13.4% and the heralded source had a maximum coincidence rate of 32 kHz and a

maximum heralding e�ciency of 11.5% at full power. In a non-colinear geometry, the

typical formula for the heralding e�ciency is the coincidence detection rate divided

by the product of the square root of each individual single detection rate. In our

application, we found it more useful to report it as twice the coincidence detection

rate over the sum of the single detection rate, replacing the geometric average of the

single rate with the arithmetic one. Furthermore, for the N00N state source where

both photons are emitted into the same mode, we first need to split these photons

probabilistically in order to detect them with SPCMs. This decreases the e�ciency

which we need to readjust by multiplying by a factor depending on the arrangement

used to split them in order for the measurement to be compared with that of the

heralded source. For the numbers we just cited, three detectors were used and this

factor is ⇡ 1.6, while in Fig. 3.7, only two detectors were used and the factor is ⇡ 2.

3.2.5 The N00N State Source

The N00N state source depicted in Figure 3.6(a) is the part of the apparatus we use

to generate the 3-photon N00N state. The idea for this type of source dates back to

2007[92, 93], when it was realized that a remarkably simple apparatus was enough

to create highly entangled N00N states. Since then, a few sources of this type have

been built and used in a few experiments, some of which from our group[94, 95]. One

has been demonstrated to create N00N states for up to 5 photons[96]. All that is

required is to interfere a single-mode squeezed state with a coherent state[97, 98] at

a beam-splitter. As a reminder a coherent state |↵i can be expressed as

|↵i
aV

= e
� 1

2 |↵|
2
X

i

↵
i

i!
â
†i
V
|0i = e

� 1
2 |↵|

2
X

i

↵
i

p
i!
|ii

aV
. (3.32)

The coherent state is a classical state, commonly thought to be the quantum descrip-

tion of the state of a laser beam. A sketch of a conceptual N00N state source is



44 CHAPTER 3. EXPERIMENTAL GENERATION OF THE TETRAHEDRON STATE
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Figure 3.8: Sketch of an ideal N00N state source. In (a), the N00N state source is created in the
two output mode of the BS. In (b), the N00N state source is created in the two polarization mode
of the output beam.

depicted in Figure 3.8. The state generated is in a superposition of states with many

total photon number N . What was realized is that for any N � 2, we can set the

ratio of the coherent state amplitude ↵ and the squeezing parameter ⌘, to make a

state very close to a N00N state when post-selecting on the subspace with N total

photons. For some values of N, like N = 2 or N = 3, the N00N state can be reached

exactly. In general, the state has at least 89% fidelity with the N00N state.

In our case, with N = 3, it is easy to see how we obtain a N00N state from this

device. We can see that the only ways to obtain three photons in the final state is to

get either three photons from the coherent state or two photons from the SPDC and

one photon from the coherent state. Then, if we set

↵ =
p
2⌘, (3.33)

and perform the beam-splitter operation

â
†
H
�! 1p

2
(â†

H
+ â
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H
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V
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we get

(â†
2

H
â
†
V
+ a

†3
V
) |0i �! (â†

3

H
� â

†3
V
) |0i / 1p

2
(|3H , 0V i+ |0H , 3V i) , (3.35)

which is the N00N state. As it could be guessed from the mode labels, in practice we

use polarization to encode the N00N state. The beam-splitter operation is performed
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Figure 3.9: Normalized single photon spectra of the SPDC photons from the N00N state source (red)
and of the coherent state from the N00N state source (blue). The spectra were taken with a grating
spectrometer followed by a cooled CCD.

by a Half-Wave Plate (HWP) oriented at 22.5� from the H polarization axis. The

coherent state |↵i is the leftover red laser beam directly from the Chameleon after

going through the SHG. The beam is separated from the blue beam with dichroic

mirrors and frequency filters. It is then attenuated with many neutral density (ND)

filters and its polarization is prepared to V with a HWP. The squeezed vacuum and

the coherent state which are now of orthogonal polarization are then brought back

into the same spatial mode with a polarizing beam-splitter (PBS) before the final

aforementioned HWP.

N00N state visibility

As we can see in Eq. 3.35 with the three photon example, it is important for the

modes of the coherent state and the mode of the squeezed vacuum to only di↵er in

polarization. If the modes with the creation operators â†
H
and â

†
V
can be distinguished

spatially or temporally, the interference that leads to the cancellation of many terms

during the HWP rotation would not occur and the final state would be substantially

di↵erent than a N00N state.

In order to make all these photons indistinguishable, we first need to make sure

that their spectra are overlapped. In Fig. 3.9, we compare the single photon spectra

of both the coherent state and of the SPDC after the 3 nm filters that we use for the

experiment. We find an overlap exceeding 95%. The SPDC single photon spectrum
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is much wider than the transmission spectrum of the filters and will therefore take

the shape of the latter. The coherent state width however is comparable to that of

the filter. It is very important to keep the filter’s transmission spectrum centred on

the spectrum of the coherent state. It can be changed by adjusting the tilt of the

filter.

Then, we need to make sure that the photons from the coherent state arrive on the

PBS at the same time as the photons from the SPDC. Because these pulses are very

short (⇡ 140 fs), we cannot simply measure their arrival time to synchronize them.

Instead we must use the interference e↵ect that we aim to optimize. To do so, we

look at the two-photon N00N state. This particular N00N state is interesting because

it already looks like a N00N state before the final rotation by the HWP. The said

rotation simply leaves the state unchanged. Once again, there are two ways to obtain

two photons from both beams. We can get a single pair from the SPDC or a pair

from the coherent state. If we tune the amplitude for these two pathways to be equal,

by setting ↵ =
p
2⌘, we get the N00N state

�� (2�N00N)

↵
=

1p
2
(|HHi+ |V V i) , (3.36)

which we have expressed here in the first-quantized formalism. In the experiment,

the coherent state timing on the PBS can be controlled with a motorized translation

stage, and with a piezoelectric actuator for finer adjustments. Consider the temporal

mode of the SPDC photon to be in |1i, while the coherent state photons are in |2i.
The N00N state then becomes

�� (2�N00N)

↵
=

1p
2
(|HHi |11i+ |V V i |22i) . (3.37)

We use ⌧ to denote the di↵erence in arrival time between the coherent state photons

and the SPDC photons. If ⌧ ⌧ 150 fs, then the temporal modes are almost overlapped

and h1|2i ⇡ e
i!⌧ . If ⌧ � 150 fs, then the temporal modes are almost orthogonal

h1|2i ⇡ 0. If we take the partial trace over the temporal modes, in the first case, we

have a pure state

⇢ =
1

2

�
|HHi+ e

i2!⌧ |V V i
� �

hHH|+ e
�i2!⌧ hV V |

�
, (3.38)

while in the latter case, we have a mixed state that no longer depends on ⌧

⇢ =
1

2
(|HHi hHH|+ |V V i hV V |) . (3.39)

A simple projection on |D,Di hD,D|, where |Di = 1/
p
2 (|Hi+ |V i) reveals the
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Figure 3.10: Coincidence rate after a hD,D| polarization projection of the photons from the N00N
state source as a function of (a) the translation stage position governing the coarse path length
di↵erence between the SPDC photon and the coherent state photons and (b) the voltage in the
piezoelectric actuator governing the fine path length di↵erence.

interference. In the first case

PDD =
1

4
+

1

4
cos(2!⌧), (3.40)

while in the second case, PDD = 1/4. In the laboratory, we exploit this interference to

set the path length in the interferometer in the N00N state source. We use waveplates

and a PBS to perform the projection and then scan the path length in steps of ⇡ 1µm

until we see a region where points deviate significantly from step to step. At this

stage, we are probing coarsely enough that we cannot resolve the interference fringes

and the points appear fall randomly within an envelope in which the fringes lie. An

example of such one such scan can be seen in Fig. 3.10(a). We then set our motorized

stage to the peak of the envelope and perform a scan with the piezo-electric actuator.

This will map out the fringe pattern, which allows us to measure the visibility of the

interference pattern. This can be seen in Fig. 3.10(b). Prior to the data collection for

the experiment, we measured the visibility to be 88%. We think that the remaining

imperfections might be due to a mismatch in the two-photon spectra of the SPDC and

of the coherent state. Indeed, even if the single-photon spectra looked very closely

matched, there could be anti-correlations in the spectrum of the photon pair which

are not completely removed by the 3 nm filter.

Lock

Once we set the phase between the coherent state and the SPDC, it is important

that this phase remains the same throughout the experiment. Unfortunately, in

practice, path lengths tend to perpetually shift due to air currents, vibrations and

thermal expansions and contractions of optical components. Once we do everything
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to passively reduce the impact of such e↵ects by enclosing the N00N state source

into a box, we still have significant drifts. The drifting speed varies but we would

frequently measure drifts on the order of one fringe per 5-10 minutes. It is therefore

important that we actively monitor these drifts and correct them in real time. To

do this, we slightly change the polarization of the squeezed-vacuum state and of

the coherent state before the PBS with HWPs. This has ideally little e↵ect on the

intended output state from the N00N state source but allows us to collect a bit of

light from both states in the second output from the PBS, with their polarizations

reversed. We then perform a polarization projection on both photons and measure

the coincidence rate with a beam-splitter and two SPCM. The projection is chosen so

that, while ⌧ = 0, the lock signal is in the middle of a fringe, the point most sensitive

to small changes in ⌧ . Our lock is fairly slow, with a measurement every 2 s. We

use only an integral gain to calculate the correction voltage sent to the piezo-electric

actuator. We set the gain to be as low as possible while keeping the lock-signal

robustly around the set-point. Throughout the experiments, there were many times

when the correction voltage exceeded the range of the piezo-electric actuator. When

this happened, we automatically reset the actuator voltage to the middle of its range

and let the interferometer re-lock on its own. We then excluded the data points which

had been taken during the times when the interferometer was not in lock. Because

the set point using this method is not on a zero-crossing of the lock signal, we are

sensitive to drifts in the SPDC rate or in the coherent state rate. We would typically

re-calibrate the set point every 8-12 hours of data collection to reduce the impact of

these drifts.

3.2.6 The Tetrahedron Assembly

The tetrahedron assembly stage is where the 3-photon N00N state and the heralded

singled photons are combined to create the tetrahedron. It is depicted in Figure 3.6(c).

We already talked about the ideal transformation that is performed at this stage in

Section 3.2.1, where we gave an overview of the tetrahedron state creation process.

In short, it is a polarization displaced Sagnac interferometer with two inputs, each

with its own polarization. We adjust a di↵erent HWP in each of the path allowing us

to change which polarization from each path exits in which output. In Figure 3.6(c),

the N00N state enters from the top. The H photons take the counter-clockwise path,

go through a HWP at 45� and exit as V polarized through the top path. Meanwhile

both the V photons from the N00N state source and the H heralded single photon

coming from the left output take the clockwise path. In this path, there is a HWP

at 22.5�, which means that when they hit the PBS on their exit, they interfere. The
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Figure 3.11: Triple coincidence rate between the herald detector and the pairs of detectors placed
at the output of the tetrahedron assembly stage as a function of the translation stage position
controlling the path length of the heralded single photon before the tetrahedron assembly. The peak
we see is the result of a reverse HOM e↵ect, where photon bunching is observed in a single output of
the PBS in the tetrahedron assembly stage where the heralded single photon meet a coherent state
photon from the N00N state source.

H polarization of this beams exits from the top and there we have our tetrahedron

state. The V contribution leaves through the side port and is left undetected. The

phase di↵erence between the two paths, represented by � in Equations 3.27 and 3.29,

is left uncontrolled and takes an arbitrary value. Thanks to the Sagnac geometry of

this interferometer, it remains stable throughout the data collection without active

locking.

Once again, it is important to make sure that the arrival time of the heralded

photon and the N00N state at the PBS in the Sagnac interferometer is identical. We

control this arrival time di↵erence with a motorized translation stage in the path of

the N00N state. This time however, the phase between the two beams is an irrelevant

global phase, and so we need no fine control or active locking of this path di↵erence.

To make sure that we our path di↵erence is aligned, we block the SPDC from the N00N

state source and look for the Hong-Ou-Mandel[99] interference between the heralded

single photon and the coherent state when they meet on the tetrahedron assembly’s

PBS. The e↵ect comes from the single-photon contribution of the coherent state,

which is dominant at low power. Because we only collect one of the paths, we look

for a bump in coincidences between two detectors placed in that path, as opposed to

a more traditional dip in coincidence between two detectors placed in di↵erent paths.

This is sometimes called a reverse HOM e↵ect. An example of such a scan can be

seen in Fig. 3.11. All that remains is to set the translation stage to the position of
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the peak.

3.2.7 The State Tomography Apparatus

To characterize the tetrahedron state we created, we perform state tomography in

the section of the apparatus depicted in Fig.3.6(d). We will discuss the tomography

protocol in much detail in Section 3.3.1 but we will briefly discuss the hardware used

here. As we will discuss later, all we need is the ability to perform a polarization

measurement in the same basis on all four photons of the tetrahedron state. We can

perform these measurements by sending our tetrahedron state through a QWP and

a HWP followed by a PBS. The QWP and HWP set the basis of the measurement

and the PBS separates the two orthogonal polarizations in said basis. In the reflected

path of the PBS, we set another PBS mounted vertically, which lets through most of

the light reflected but removes some of the horizontally polarized light that leaks in

small amount in the reflected port of the PBS. In each port of the PBS, we place what

we call a probabilistic photon number resolving detector (PPNRD). They consist of a

network of fibre beam-splitters, which probabilistically route photons onto di↵erent

SPCMs. Here, we use 3 SPCMs in each of the port. Since there are 4 photons in the

tetrahedron state, this allows us to register 3 di↵erent outcomes of the polarizations

measurement in any of the basis. We label these by the projectors |3T , 1Ri h3T , 1R|,
|2T , 2Ri h2T , 2R| and |1T , 3Ri h1T , 3R|. nT and nR indicate the number of photons

that were transmitted and reflected at the PBS. This corresponds to a polarization

measurement on the state prior to the tomography apparatus in a basis determined

by the QWP and HWP’s positions. Note that the projectors |4T , 0Ri h4T , 0R| and
|0T , 4Ri h0T , 4R| cannot be measured as each of our PPNRD only have 3 SPCMs.

It is important to note that the projector |nT , nRi hnT , nR| is not a projector only

on the symmetric basis. Any state with nT transmitted photons and nR reflected

photons is part of this projector’s subspace, including the non-full-symmetric ones.

This may be a small abuse of notation as it looks like those kets are expressed in a

second-quantized formalism.

3.3 Results and Discussion

3.3.1 Tomography with Hidden Di↵erences

The Hilbert space for 4 photons’ polarization is

H =
�
S1/2

�⌦4
= (S2)� (S1)

�3 � (S0)
�2 (3.41)
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The change of basis between these two decompositions can be found in AppendixA.

As explained, the tetrahedron state is fully contained in S2, the full-symmetric sector.

In practice, we can expect some mismatch in the modes of the photons from di↵erent

sources, which allows other spin sectors to be populated. Importantly, the parasitic

distinguishability between the photons cannot be accessed, i.e., we have no practical

way of favorably selecting photons from one source over another, which means that

the only measurements we can perform have projectors symmetric under particle

exchange. As a result, only the parts of the density matrix depicted in Fig. 3.12 (a)

can be reconstructed. They specifically consist of the spin sectors in the tensor

sum decomposition of the Hilbert space. The coherences between these sectors are

inaccessible. Furthermore, we are only sensitive to the sum of the di↵erent spin sectors

with the same spin value. We make the choice to report their average in each of the

di↵erent sectors. Importantly, although our knowledge of the full state of the system

is fundamentally limited in this way, the accessible information is enough to predict

the result of any symmetric measurement done on the same state.

The technique we use to reconstruct this part of the density matrix is called “To-

mography with Hidden Di↵erences” [52, 100–102]. It consists of a sequence of mea-

surements on the polarization of our state akin to Stern-Gerlach measurements for a

spin. The relevant section of the experimental apparatus is depicted in Fig. 3.6 (d)

and has already been described in Sec. 3.2.6. We perform this polarization measure-

ment in 13 di↵erent bases, chosen to be roughly uniformly spread on the Bloch sphere.

In Figure 3.13, we illustrate these array of bases, each represented by a vector going

through the centre of the faces of a small rhombicuboctahedron inscribed in the Bloch

sphere. We chose this solid with 26 faces for nothing more than its apparent sym-

metry. For every vector in this set, the opposite vector, representing the orthogonal

state, is also included. This pair of vector forms a redundant measurements, simply

substituting T for R and vice-versa in the associated projectors. We keep this re-

dundancy as a sanity check and hope to cancel out potential systematic bias between

the two outcomes. With 13 measurement bases (26 waveplate settings), and with

3 projectors per basis, we can perform 39 di↵erent projections, which is enough to

estimate the 35 linearly independent parameters of the accessible sections of the den-

sity matrix. For that purpose, we use a maximum likelihood method, following the

method outlined in [103], except we use a Poisson distribution to model our counts.

We further modify our model to account for the detector ine�ciencies as well as to

account for potential losses incurred in the PPNRDs due to multiple photons landing

on the same SPCM. The inclusion of this loss in our model is critical since it a↵ects

di↵erent projectors di↵erently. We discuss it in more details in Sec. 3.4.2.
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Figure 3.12: (a) Layout of the full density matrix. ⇢sym is the part of the state contained in
full-symmetric S2 sector(blue). The S1 (red) and S0(green) sectors are also shown. (b) The full
tomographically reconstructed density matrix, ⇢exp. In hidden di↵erences tomography, coherences
between spin sectors are neglected and sectors of the same spins are chosen to be identical. (c) Real
and imaginary parts of the reconstructed ⇢sym. The density matrix of the ideal tetrahedron state
is shown for comparison (dashed). Elements of the density matrix are labeled with spin notation
|j,mi. (d) Real and imaginary parts of a S1 sector. The population in each S0 sector is less than
10�10.
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Figure 3.13: Illustration of the polarization basis measured during the tomography. All the axes go
through the centre of the faces of a small rhombicuboctahedron. Vectors opposite of one another
represent the same basis rotated so that the meaning of a transmission and reflection through the
PBS are interchanged. For example, the vectors going through the North (South) poles indicate a
measurement where the H (V) photons are transmitted through the PBS.

3.3.2 Results

Overall, during the experiment, 2434 successful events were recorded in 85 hours of

counting time. These counting hours were distributed over the course of 8 days. The

rest of the time was used to turn the tomography waveplates or was wasted while

the interferometer in the N00N state source (Fig. 3.6 (a)) was out-of-lock. Every 8-12

hours, minor realignments were made to readjust the couplings in single-mode fibres

and to reset the set-point of the locked interferometer.

Figure 3.12 shows the tomographic reconstruction of the density matrix ⇢exp. For

ease of comparison with the theoretical tetrahedron state | tetrai, a rotation e
�iĴz�

with arbitrary phase � was added to the reconstructed ⇢exp. We estimated � by max-

imizing the fidelity (F = h tetra| ⇢exp | tetrai) between the reconstructed and tetrahe-

dron state. We find � = 0.135 for a fidelity with the tetrahedron state of (0.46±0.02)

and plot the appropriately rotated density matrix. Error bars on the entries of the

density matrix were determined by a Monte-Carlo simulation of the tomographic

reconstruction process, where the simulated number of detection events for each pro-

jection was drawn from a Poisson distribution centred on the actual measurement

results. The full reconstructed density matrix and the corresponding error bars can

be seen in Appendix B. Despite the low fidelity between the theoretical tetrahedron

state and our reconstructed density matrix, it retains many of the notable features of
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the former. As expected, most of the population (87±4%) is in the full-symmetric S2

subspace (⇢sym in Fig. 3.12 (a)). The excess population in the other sectors is small

but not quite consistent with zero, indicating that there were small mode mismatches

between the di↵erent photons. As intended, the two basis elements with the biggest

population in ⇢sym are |2, 2i and |2,�1i. The ratio between these populations how-

ever is (0.73±0.12), which is significantly larger than the theoretical value of 1/2. We

unfortunately measure significant population (⇡ 10%) in the states |2, 0i and |2,�2i
that are meant to be empty. Finally, the biggest coherence measured is between |2, 2i
and |2,�1i. Theoretically, this is the only non-zero coherence and it takes a value

of
p
2/3. Here, we measure the significantly lower value of (0.13 ± 0.02), also much

lower than (0.32 ± 0.02), the maximum possible value given the corresponding pop-

ulations. The coherence quoted is perfectly real specifically because we allowed an

optimal rotation around the H/V axis in the reconstructed density matrix. Most of

these discrepancies can be explained by considering the contributions of events where

six or more photons were created but were detected as a successful five-fold coinci-

dence due to photon loss at the detectors or in the optical apparatus. In principle,

the importance of these background terms could be made negligible by reducing the

overall state creation rate, or by reducing the loss in the experiment. We dedicate

Sec. 3.4 to discuss these sources of background.

3.3.3 Tetrahedral Symmetry

The most striking features of the tetrahedron state is its tetrahedral symmetry, which

can be visualized in both its Majorana representation and in its Wigner function. The

experimental state we created and reconstructed qualitatively shares these feature.

In Fig. 3.14, we can see the Wigner function of our state on the Bloch sphere. It can

be compared to the ideal Wigner function depicted in Fig. 3.4. The symmetry may

be more apparent on a 2D projection of the Wigner function. Because the projection

deforms the shape of the features depending of their locations, we depict four di↵erent

projections of the same state from di↵erent viewpoints in Fig. 3.15. For any state

with tetrahedral symmetry, including the ideal tetrahedron state, these four di↵erent

projections would look identical. In Figure 3.15, we see that the four projections are

qualitatively very similar, with the main features, minima and maxima, being located

in the same place.

To take a deeper look at the reconstructed state, we also analyze the performance

of our state for single parameter estimation, and compare it to the ideal tetrahedron

state. To estimate the rotation angle ✓ of a rotation with a known rotation axis using

an ideal tetrahedron state, a projection onto the original tetrahedron state is the ideal
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Figure 3.14: Wigner distribution of ⇢sym, our reconstructed experimentally created tetrahedron
state.

measurement for small angles of rotation. The probability of a successful projection

for an arbitrary state ⇢ is

P (✓) = h tetra| ein·Ĵ✓
⇢e

�in·Ĵ✓ | tetrai . (3.42)

In Figure 3.16, we plot P as a function of ✓ for the x, y, and z-axes, for our re-

constructed state ⇢exp. We compare these curves with similar curves for the ideal

tetrahedron state. As we can see, our state starts with a low probability of a suc-

cessful projection at ✓ = 0 and this probability stays fairly low for all axes and for

all ✓. This is a reflection of the low fidelity we have with the ideal tetrahedron state

to begin with. We note however, that if we disregard this anomaly, the qualitative

feature in these two sets of curves are similar. For all rotation axes, we clearly see an

oscillation with a periodicity of 2⇡/3, a distinct feature of the tetrahedron state, and

once again, the maximia and minima for both states are aligned. The performance

of such a measurement with our reconstructed state is worse. We plot the sensitivity

of this measurement

�✓ =

p
P
p
1� P��@P
@✓

�� (3.43)

for multiple rotations as a function of the rotation angle ✓ in Figure 3.17. The features

here are a bit di↵erent, with divergences in the sensitivity appearing whenever a max-

imum or a minimum in P (✓) takes a value lower that 1 or higher that 0 respectively.

It is worthy to note that the tetrahedron state was not the optimal state for single
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(d)

(a) (b)

(c)

Figure 3.15: (a - d) Equirectangular projection (Longitude vs. Latitude map) of the Wigner function
of ⇢sym rotated in 4 di↵erent ways to give di↵erent perspective on the Wigner function’s features.
The 4 di↵erent rotations are all anti-clockwise 2⇡/3 rotations around axes defined by each of the
vertices of the ideal tetrahedron. All these rotations would leave | tetrai unchanged. The similitude
between these four figures is indicative that ⇢sym qualitatively possesses tetrahedral symmetry.
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x- axis

y- axis

z- axis

Figure 3.16: Projection of a ⇢exp and ⇢ideal = | tetrai h tetra| onto the the tetrahedron state h tetra|
vs. the rotation angle ✓. The rotation is around three di↵erent known axes, x, y and z. Both ⇢exp
and ⇢ideal have three fringes per rotation, a feature of the tetrahedron state.

x- axis

y- axis

z- axis

Figure 3.17: Sensitivity of a ⇢exp and ⇢ideal = | tetrai h tetra| to the angle of a rotation around a
known axis when projected back onto h tetra| vs. the rotation angle ✓. The rotation is around three
di↵erent known axes, x, y and z.
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parameter estimation to begin with, nor the projection on a tetrahedron state the

optimal measurement with our reconstructed state. We simply showed these plots to

observe the qualitative resemblance between ⇢exp and | tetrai.

3.3.4 Reconstructed Eigenstates

Because ⇢exp is mixed, it does not have a Majorana representation. A useful exercise

however is to look at its eigenstates. Since the state lives in a 16-dimensional space,

we can expect 16 di↵erent eigenstates. Since the tomography with hidden di↵erences

constrains all coherences between the di↵erent spin sector to 0, each eigenvector

is fully contained in a single spin block. Furthermore, we have imposed that the

three di↵erent S1 sectors and the two di↵erent S0 sectors of the density matrix be

identical. This means that the eigenvectors contained in these blocks will be identical

to the eigenvectors of the similar spin sectors. Overall, this means that we have 5

di↵erent eigenvectors for the S2 sector, 3 di↵erent eigenvectors repeated 3 times in

each of the S1 sectors and an eigenvector for each of the two S0 sectors. The two

S0 eigenvectors are the trivial ones since S0 has one dimension. In Table 3.3.4, we

can see the Majorana representation of each of these eigenvectors with the associated

eigenvalue. Note that for S1, the Majorana representation does not strictly have

the same interpretation as for S2. These states are still formed of by four photons,

despite their Majorana representation being comprised of two vectors. However, we

can still use the Majorana representation to provide intuition on the behaviour of

these states under rotations.

The biggest eigenstate, with eigenvalue � = 0.490, looks remarkably like the tetra-

hedron state, with an overlap of 92%, confirming that almost half the time, we create

a state very similar to the intended tetrahedron. Its Majorana representation is plot-

ted in Fig 3.18 with a comparison to the tetrahedron state.

3.3.5 Experimental s-qCRB

Finally, we analyze how ⇢exp performs when characterizing SU(2) rotations. Unfortu-

nately, we did not experimentally characterize any rotations. Rather, we look at the

ideal performance for ⇢exp, the density matrix we tomographically reconstructed. We

compute the QFI with the formula for mixed states[35]

[I]jk =
X

lm

(�l + �m)

✓
�l � �m

�l + �m

◆2

hl| (Ĥk �
D
Ĥk

E
) |mi hm| (Ĥj �

D
Ĥj

E
) |li (3.44)
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Figure 3.18: Majorana representation of the eigenstate of ⇢exp with the biggest eigenvalue (blue)
and Majorana representation of | tetrai (red).
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Spin-2 (Multiplicity 1)

� = 0.490 � = 0.255 � = 0.116

Spin-2 (Multiplicity 1) Spin-0 (Multiplicity 2)

N/A
� = 3.94⇥ 10�3

� = 1.41⇥ 10�6
� = 6.76⇥ 10�11

Sipn-1 (Multiplicity 3)

� = 3.94⇥ 10�2
� = 5.46⇥ 10�3

� = 7.72⇥ 10�11

Table 3.1: Majorana representation of the di↵erent eigenstates of ⇢exp with their respective eigen-
values. There are 5 di↵erent eigenstates in S2 and three di↵erent eigenstates in S1, repeated for each
of the 3 S1 sectors. The 2 S0 eigenstates are one dimensional and can therefore not be depicted.
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Figure 3.19: Scalar quantum Cramér-Rao for the estimation of SU(2) polarization rotation of ⇢exp
and of its main eigenstate, both with a photon number of 4. These two s-qCRB are plotted with the
performances of the multiple measurement strategies discussed in Sec. 3.1.3. We see that the main
eigenstate of ⇢exp comes close to the optimal strategy while ⇢exp is too noisy.

where |mi and �m are the eigenvectors of ⇢exp. We set both H and W to 1, which, as

we discussed in Sec. 3.1.3, leads to the same s-qCRB as the s-qCRB calculated when

W is the natural Cartan metric. We find the s-qCRB to be

C⇢exp = 0.91± 0.09. (3.45)

As noted in Sec 3.1.3, the Tetrahedron state has a s-qCRB of 0.375. In Figure 3.19,

we plot these values on a graph similar to Fig. 3.3 and compare our results with the

di↵erent measurement strategies introduced in Sec. 3.1.3. We also calculate the s-

qCRB of the main eigenstate of ⇢exp, which is (0.40 ± 0.05). This gives a hint of

the kind of performance that could be achieved had we managed to reduce the noise

levels in our experiment.

3.4 Background

The main source of background in this experiment happens when more photons than

expected are created, either in the coherent state or in any of the SPDC processes.

Even though the probability of creating high photon number states decreases expo-

nentially with the number of photons, in this experiment, the likelihood of creating

one or two photons above the five photons required for a successful detection event

is significant. This type of background is common in all high photon number exper-
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iments based on SPDC. Because these experiments rely on more than one pair of

SPDC photons to be created, they have to operate in regimes which are inherently

susceptible to an extra undesirable pair being created from time to time. In this

experiment, we also use a coherent state in the state generation process, allowing for

a single undesirable photon to be created. This is even more likely and makes the

problem even worse.

Furthermore, the loss of photons throughout the experiment prevents us from

discriminating the desirable events, where five photons are created (the tetrahedron

photons and the herald), from the undesirable events, where more than five photons

are created. Loss also significantly reduces the probability discrepancies between the

desirable and undesirable events, increasing the levels of background.

It is important to properly model this background during the design phase of the

experiment. As we will explain later, the background contributions can be made

smaller at the price of an overall state creation rate reduction. The modelling can

therefore help us tune the di↵erent rates to help us strike a balance between the quality

of the state and its creation rate, which needs to be high enough to accumulate decent

measurement statistics in a reasonable time.

3.4.1 Modelling the State Creation

In this section, we describe how we model the state creation process and calculate

the quantum states of the two polarization modes right before entering the state

tomography stage in Fig. 3.6(d). Our main aim with this model is to calculate the

impact of the backgrounds coming from the accidental creation of too many photons.

We neglect other experimental complications. For example, we won’t worry about the

potential temporal or spectral mode mismatch between photons of di↵erent sources.

First, we assume that the coherent state |↵i
aV
, the squeezed vacuum state |⌘i

aH
, and

the two-mode squeezed vacuum state |µi
bH ,cH

are all ideal states of their kind defined

by Equations 3.29, 3.30 and 3.32. We truncate the series expansions to exclude terms

with more than 6 photons, which have very low probability. Second, we introduce

loss. We model the loss by adding imaginary beam splitters to the optical diagram

as depicted in Fig. 3.6. This adds three spatial modes d, e and f to the experiment

where the lost photons are imagined to go. We labelled the modes and input states

in Fig. 3.20. This is a common method for modelling loss in quantum optics. The

magnitude of the loss is encoded in the transmission and reflection properties of these

imaginary beam splitters. Here, we denote the transmission probability through each

beam splitters as t, ⌧1 and ⌧2. In Section 3.4.3, we will discuss how to experimentally

measure ↵, ⌘, µ, t, ⌧1 and ⌧2, the free parameters of the models. We can model loss this
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Figure 3.20: Schema of the experiment with the added virtual beam splitters modelling the loss
channels of the experiments. These introduces the three new spatial modes d, e and f , which are
populated by lost photons.

way because all the linear losses commute with every stage of the experiment, which

consist of linear optics transformations. For that reason, it does not matter where the

loss occurs and we can concentrate it in these three points in our model. Importantly,

this is only valid for linear loss, which applies identically to every photon. In Sec. 3.4.2,

we will discuss a form of non-linear loss which happens in our probabilistic photon

number resolving detectors in the state tomography apparatus. We will need to deal

with that kind of loss di↵erently. Finally, we apply the mode transformations for each

of the optical elements used in the apparatus to the state |⌘i
aH

⌦ |↵i
aV

⌦ |µi
bH ,cH

,

including the virtual loss’ BSs. At this stage, the model consists of a huge quantum

state for the occupation of the modes a, b, c, d, e and f . The a mode is really two

modes since it carries both polarizations aH and aV . The expression for this quantum

state is too large to be shown here. We keep track of all the terms using the Wolfram

Mathematica software. The ideal tetrahedron state has only 4 photons in the a mode,

and 1 photon in the c mode. From this expansion, we select some of the prominent

background terms. These consist of terms satisfying these same criteria but which

also have an extra photon in either b, c, d, e or f . All these terms have 4 photons

shared between aH and aV and we can express these 4 photon polarization states as

density matrices in the symmetric sector S2. The probability for each of these states

to be created is a function of the parameters of the model. Once we trace over the

population in the extra modes, these density matrices add incoherently. In the next

section, we describe how we deal with two other terms which have 5 photons in a and

1 photon in c.
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1
2

m

1
2
3

2 Photons 3 Detectors n Photons m Detectors
(a) (b)

Figure 3.21: (a) Schematic description of both the transmitted and the reflected port of the PBS
in the state tomography apparatus. The beam is split by optical fibre beam splitter onto three
detectors. This allows the detection of a maximum of three photons per port. In this example, the
two incoming photons can be both detected if they fall on di↵erent detectors or one photon can be
lost if they both fall on the same detector. (b) A sketch of a general probabilistic photon number
resolving detector, with m detectors.

3.4.2 Modelling the Loss in the PPNRDs

The above model accounts for all the losses which are identically experienced by

each of the photons. In the state tomography apparatus, we use PPNRDs to mock

up photon number resolving detector. They consist of networks of beam splitters

with a SPCM at every output. In Figure 3.21(a), we see the exact configuration

of the PPNRD we use at each of the output of the PBS, making the polarization

measurement. They each have 2 BSs and 3 SPCMs. If a single photon enters one of

them, it is guaranteed to be detected, whereas if four photons simultaneously enters

one, at least one photon is guaranteed to be lost. This is a type of loss with a very

non-linear behaviour and we need to model it di↵erently than the linear loss.

More importantly, because of the non-linear loss, the expected detection prob-

abilities are di↵erent for the di↵erent projectors, which have di↵erent numbers of

transmitted and reflected photons. It is very important that we weight the di↵er-

ent projectors accordingly when we perform the tomography, as we alluded to in

Sec. 3.3.1.

Say we have n photons entering a general PPNRD, which has m SPCMs. This

scenario is depicted in Figure 3.21(b). We introduce the array of probabilities {Pi}mi=1,

where Pi is the probability that a single photon entering the PPNRD is detected

by detector i. These probabilities need not have
P

m

i
Pi = 1 if the detectors are

not perfectly e�cient. We classify the possible outcomes of such a scenario by an

ordered list of up to m integers, representing the number of photons which could

simultaneously fall on the same detectors. For example, if we have n = 3 and m = 2,

the two possible outcomes are {3} and {2, 1}, indicating that either all photons fall on
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the same detector, or two photon fall on one detector and one on the other. Similarly,

if n = 2 and m = 3, the possible outcomes are {2} and {1, 1}. We call this set of

outcomes ⇤n

m
, and define it as

⇤n

m
=

(
{ni} | 1  i  m;

X

i

ni = n;ni � ni+1 � 1

)
. (3.46)

For any {ni} 2 ⇤n

m
, we can find the probability of that event with the formula

�(n,m, {ni}, {Pi}) =
  

n

n1

! 
n� n1

n2

! 
n� n1 � n2

n3

!
· · ·
!

⇥
X

↵2S{ni}

X

�⇢{Pi};|�|=|{ni}|

|{ni}|Y

i=1

�
↵i

i
,

(3.47)

where we have used | · | to denote the length of a set and S{ni} to denote the set of all

permutations of {ni}. For example, if we have n = 2 photons and m = 3 detectors,

as is the case in Fig 3.21(a), if we want to know the probability of the two photons

being detected, we consider the case {1, 1} and find

�(2, 3, {1, 1}, {Pi}) =
 
2

1

!
(P1P2 + P2P3 + P1P3) = 2P1P2 + 2P2P3 + 2P1P3. (3.48)

Similarly, if we want to find the probability that two photons land on the same

detector (i.e., one photon is lost), we find

�(2, 3, {2}, {Pi}) =
3X

i=1

P
2
i

(3.49)

Using these coe�cients, we can calibrate the di↵erent projectors used in the tomog-

raphy. In our experiment, we name the detectors in the transmitted port of the PBS,

detectors 1, 2 and 3 and the detectors in the reflected port of the PBS, detectors 4,

5 and 6. We measure {Pi} by sending a coherent state to the transmitted port of

the PBS and record the single rate at each detector. Then we change its polarization

to send it to the reflected port and do the same. We then divide all those rates by

the sum of the rates in the transmitted port to normalize them. In this way, we only

account for the relative detection ine�ciency between the di↵erent detectors. The

overall contribution to the detection ine�ciency is irrelevant to the tomography and

can be attributed to linear loss in our model. We find the array

{Pi} = {0.508318, 0.251097, 0.240585, 0.21236, 0.103793, 0.492823} (3.50)
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for each of our 6 detectors. The various projectors in the tomography need to be

weighted by the coe�cients :

|3T , 1Ri h3T , 1R| : �(3, 3, {1, 1, 1}, {P1, P2, P3})�(1, 3, {1}, {P4, P5, P6})
= 6P1P2P3(P4 + P5 + P6) = 0.14905

|2T , 2Ri h2T , 2R| : �(2, 3, {1, 1}, {P1, P2, P3})�(2, 3, {1, 1}, {P4, P5, P6})
= 4(P1P2 + P2P3 + P1P3)(P4P5 + P5P6 + P4P6) = 0.220775

|1T , 3Ri h1T , 3R| : �(1, 3, {1}, {P1, P2, P3})�(3, 3, {1, 1, 1}, {P4, P5, P6})
= 6P4P5P6(P1 + P2 + P3) = 0.0651753.

(3.51)

When trying to characterize the background of our experiment, we make a few

simplifications to estimate the non-linear loss in our PPNRDs. First, we will only

concern ourselves with the average loss. Since each of the projectors have di↵erent

losses, it can be tricky to model. In e↵ect, one would have di↵erent losses for each

of the projectors, making the state e↵ectively di↵erent in each of the measurement

in the di↵erent bases. We simplify by averaging over all measurement bases and all

projectors. We make the further assumption that our state’s polarization averaged

over each of the measurement basis is isotropic, meaning that each of the properly

weighted projectors should on average succeed with the same probability. This allows

us to simplify our model and consider the PBS where the measurement is done as

a polarization independent BS. With this simplification, the entire tomography ap-

paratus becomes a single PPNRD with 6 detectors. In the last section, our model

of the linear loss in the experiment predicted the creation of the tetrahedron state

and of a few other states where 4 photons entered the tomography apparatus. These

should be weighted by the probability that they go through the measurement appara-

tus and get properly detected. This probability is �(4, 6, {1, 1, 1, 1}, {Pi}6i=1/
P

Pi).

To this group of states, we should add the states with 5 photons entering the to-

mography apparatus, for which two of the photons end up on the same detector.

These states will be weighted by the coe�cient �(5, 6, {2, 1, 1, 1}, {Pi}6i=1/
P

Pi). In

order to represent these states as a 4-photon density matrix, we pretend that the

non-linear loss in the PPNRD is linear and choose a loss coe�cient which would give

�(5, 6, {2, 1, 1, 1}, {Pi}6i=1/
P

Pi) as the probability of 1 photon out of 5 being lost.

We model this loss with a BS and consider the 4 photon contribution of the trans-

mitted state. Since either an H or a V photon can be lost in this fashion, we add

two more background terms to our list. The polarization state of each of them can

be once again represented by a density matrix in S2.
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3.4.3 Calibrating the model

To calibrate the model and find the values of ↵, ⌘, µ, t, ⌧1 and ⌧2, we performed a

series of small measurements prior to the real experiment. The configuration of the

optical arrangement was the same as throughout the experiment, except that some

beams were blocked and some wave-plates were turned to better estimate the relevant

parameters. We calibrate ⌘ and t together by blocking the coherent state and the

heralded single photon source and by directing all the light from the squeezed in the

N00N state source to the the tomography apparatus. Inside the tomography appa-

ratus, we make sure that the light is horizontally polarized so that it is transmitted

at the PBS and sent to the PPNRD in that output. We then record the coincidence

rate among any two pairs of detectors as well as the total single detection rate.

Using our model we calculate the expected rate of coincidence detection

⌦2 ⇡ R⇥ ⌘
2 ⇥ t

2 ⇥
�
1� P

2
1 � P

2
2 � P

2
3

�
, (3.52)

where R is 80MHz, the repetition rate of the laser. We predict the expected single

detection rate to be

⌦1 ⇡ 2R⇥ ⌘
2
t
2⇥
�
1� P

2
1 � P

2
2 � P

2
3

�
+ ⌘

2
t
2⇥
�
P

2
1 � P

2
2 � P

2
3

�
+2⌘2t(1� t), (3.53)

making sure to account for the fact that coincident detection also leads to two single

detections. Taking the ratio of these equations, we get that

t =
2⌦2/⌦1

1�
P

i
P

2
i
(1� ⌦2/⌦1)

(3.54)

which allows us to in turn determine ⌘,

⌘ ⇡

s
⌦2

Rt2 (1�
P

i
P

2
i
)
. (3.55)

A similar measurement can be made to calibrate µ, ⌧1 and ⌧2. Mode b in Figure 3.20

is simply sent directly to the forward port of the tomography apparatus, with all other

beams blocked. Then by measuring the coincidence rate between any of the three

detectors in the PPNRD and the herald detector in mode c as well as the herald single

detection rate and the total single detection rate in the PPNRD, we can easily find

µ, ⌧1 and ⌧2.

Finally, for the creation of the tetrahedron state, we typically match the coinci-

dence rate from the coherent state to the coincidence rate from the squeezed vacuum,

when these are successively sent directly to the forward port in the measurement
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apparatus. This ensures that

↵ ⇡
p

2⌘t, (3.56)

which is the condition necessary to the creation of the tetrahedron state in the first

place.

3.4.4 Model Predictions and Discussion

By using the measured values of ⌘ = 0.078, t = 0.16, µ = 0.14, ⌧1 = 0.12 and

⌧2 = 0.12, we can calculate the probability to create all the background terms that

we previously gathered. These background terms are listed in Table 3.4.4. They

are all the terms which were created with an extra photon, which subsequently was

subsequently lost. Both an analytic and numerical expression for their probabilities

are displayed as well as their normalized density matrices. These terms can be com-

pared to the tetrahedron term displayed on the first line of the table. The dominant

background term is on the sixth row of Table 3.4.4. This term occurs when an extra

coherent state photon compensates for the loss of a photon from the SPDC in the

N00N state source into mode d. This term is the dominant source of the reduction

in the coherence between the |4H , 0V i and |1H , 3V i state in ⇢exp. It has a large and

negative coherence between these basis elements to cancel the positive coherence of

the tetrahedron state. Lowering ⌘ or increasing t would reduce the prominence of

this term relative to the ideal state.

By mixing all these states, we can make a prediction of the final state being

reconstructed by our tomography ⇢pred. This state is in S2 as losses give no mechanism

to distinguish the photons. Its density matrix is

⇢pred =

0

BBBBBB@

0.296 �0.049 0.109 0.135 0.031

�0.049 0.034 �0.041 0.07 �0.017

0.109 �0.041 0.09 �0.083 0.029

0.135 0.07 �0.083 0.472 �0.032

0.031 �0.017 0.029 �0.032 0.107

1

CCCCCCA
. (3.57)
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We compare this state to ⇢sym, the re-normalized S2 portion of ⇢exp,

⇢sym =

0

BBBBBB@

0.315± 0.034 (�0.024� 0.035i)± (0.024 + 0.03i)

(�0.024 + 0.035i)± (0.024 + 0.03i) 0.045± 0.015

(0.061 � 0.024i)± (0.02 + 0.021i) (�0.005 + 0.043i)± (0.017 + 0.018i)

(0.139 � 0.06i)± (0.023 + 0.026i) (0.038 � 0.054i)± (0.019 + 0.02i)

(0.034 + 0.066i)± (0.013 + 0.045i) (0.036 + 0.002i)± (0.016 + 0.017i)

(0.061 + 0.024i)± (0.02 + 0.021i) (0.139 + 0.06i)(±(0.023 + 0.026i))

(�0.005� 0.043i)± (0.017 + 0.018i) (0.038 + 0.054i)± (0.019 + 0.02i)

0.093± 0.022 (�0.072 + 0.055i)± (0.032 + 0.042i)

(�0.072� 0.055i)± (0.032 + 0.042i) 0.43± 0.03

(0.045 � 0.015i)± (0.019 + 0.015i) (�0.077 + 0.02i)± (0.022 + 0.025i)

(0.034 � 0.066i)± (0.013 + 0.045i)

(0.036 � 0.002i)± (0.016 + 0.017i)

(0.045 + 0.015i)± (0.019 + 0.015i)

(�0.077� 0.02i)± (0.022 + 0.025i)

0.117± 0.028

1

CCCCCCA
.

(3.58)

The similitude between these two states indicates that we have a very good grasp of

the imperfections of our experiment.

Even with the current losses, lowering ⌘ and µ would in principle lead to a much

better state, since the probabilities of the background terms always depend on higher

powers of ⌘ or µ than the probability of the ideal state. This would come at the cost

of lowering the total tetrahedron creation rate. In our experiment, we felt that 8 days

of data-taking was already substantial and did not wish to reduce the rate further.

3.5 Concluding Remarks

The tetrahedron state is a hard state to make. With our method, it requires the

simultaneous creation of 5 photons. These are very unlikely events and happen infre-

quently. Many optical components were required for this experiment and they needed

to be very well aligned throughout a long period of data collection. The state we have

created, ⇢exp, is not perfect, but as we have explained, shares a lot of the qualitative

features of the tetrahedron state. We think that we have also demonstrated a good
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Analytical Numerical Density
Probability Probability Matrix

0.0830⇥ ⌘
3
µ
2
t
3
⌧1⌧2 2.96⇥ 10�11

2

66664

0.333 0. 0. 0.471 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.

0.471 0. 0. 0.667 0.
0. 0. 0. 0. 0.

3

77775
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⌧1⌧2 2.44⇥ 10�12

2
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0.418 �0.189 0.245 �0.189 0.334
�0.189 0.086 �0.111 0.086 �0.151
0.245 �0.111 0.144 �0.111 0.196
�0.189 0.086 �0.111 0.086 �0.151
0.334 �0.151 0.196 �0.151 0.267

3
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2
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0.016 �0.034 0.04 �0.115 0.
�0.034 0.073 �0.084 0.244 0.
0.04 �0.084 0.098 �0.282 0.

�0.115 0.244 �0.282 0.813 0.
0. 0. 0. 0. 0.

3
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0.6 0. 0.49 0. 0.
0. 0. 0. 0. 0.
0.49 0. 0.4 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.

3
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0.33 �0.125 0.108 0. �0.441
�0.125 0.047 �0.041 0. 0.166
0.108 �0.041 0.035 0. �0.144
0. 0. 0. 0. 0.

�0.441 0.166 �0.144 0. 0.587

3
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0.24 �0.17 0.196 �0.339 0.
�0.17 0.12 �0.139 0.24 0.
0.196 �0.139 0.16 �0.277 0.
�0.339 0.24 �0.277 0.48 0.

0. 0. 0. 0. 0.

3
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0.211⇥ ⌘
4
µ
2
t
4(1� ⌧1)⌧2 7.18⇥ 10�12

2

66664

0.051 �0.029 0.05 �0.058 0.204
�0.029 0.016 �0.028 0.033 �0.116
0.05 �0.028 0.049 �0.057 0.2

�0.058 0.033 �0.057 0.065 �0.231
0.204 �0.116 0.2 �0.231 0.818

3
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⌧
2
1 (1� ⌧2)⌧2 5.62⇥ 10�12
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66664

0.6 0. 0.49 0. 0.
0. 0. 0. 0. 0.
0.49 0. 0.4 0. 0.
0. 0. 0. 0. 0.
0. 0. 0. 0. 0.

3

77775

Table 3.2: List of the di↵erent relevant states predicted to be produced incoherently by our exper-
iment. The first row is tetrahedron term followed by background terms due to the loss of a single
photon. The first column is an analytical expression for the probability of each of these states. The
second column is the numerical evaluation of these probability using the measured value of the pa-
rameters of our model. The last column is the density matrix for these states. In order, the origin of
loss of a single photon for these 7 background states are: in the tomography apparatus (H photon);
in the tomography apparatus (V photon); in the herald mode c (with another photon present); in
the b mode after the transformation in the tetrahedron assembly stage; in mode d; in mode e; and
in mode f .
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understanding of the origins of the imperfections of our experiment, which is a first

step in trying to improve upon our results. Ultimately, the levels of backgrounds

present in the experiment are not fundamental obstacles. With a better optical de-

sign leading to significant reductions in the photon loss, with high e�ciency photon

number resolving detectors, and with a more stable experiment, allowing for a longer

period of data collection, some of the challenges we have experienced would be greatly

reduced. We hope that this work will be regarded as a step forward in the pursuit of

better measurements at the ultimate quantum limit.
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Chapter 4

Beating Rayleigh’s Curse Using

SPLICE

In this chapter, we present results previously published in 2017[104]. Most of the

chapter is heavily drawn from this article.

4.1 Motivation

Any imaging device such as a microscope or telescope has a resolution limit, a mini-

mum separation it can resolve between two objects or sources; this limit is typically

defined by “Rayleigh’s criterion” [105], although in recent years there have been a

number of high-profile techniques demonstrating that Rayleigh’s limit can be sur-

passed under particular sets of conditions [27, 28, 106]. As an electromagnetic wave,

light is characterized by both an amplitude and a phase. Traditional imaging systems

use lenses or mirrors to refocus this wave and project an image of the source onto a

screen or camera, where the intensity (or rate of photon arrivals) is recorded at each

position. (We refer to all such techniques as ”image-plane counting” or IPC). Al-

though the phase of the wave at the position of the optics plays a central role during

the focusing, any information about the phase in the image plane is discarded. When

light passes through finite-sized optical elements, di↵raction smears out the spatial

distribution of photons so that point sources map (via the point spread function or

PSF) onto finite-sized spots at the image-plane. Thus, our ability to resolve the point

sources is inhibited when their separation in the image plane, �, is comparable to or

less than the width � of the PSF.

The typical response to di↵raction limits has been to build larger (or higher

numerical-aperture) optics, thereby making the PSF sharper/narrower. In recent

years, techniques have been developed in specific cases that address these limits in
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more novel ways [27, 28, 94, 106–112]. Despite their success, these techniques require

careful control of the source of illumination, which is not always possible in every

imaging application (e.g. astronomy). In order to beat the di↵raction limit for fixed,

mutually incoherent sources, a paradigm shift arising from the realisation that there

is a huge amount of information available in the phase discarded by IPC may prove

revolutionary.

With Yang et al.[113], Sheng et al.[114], Paúr et al.[115], our paper [104], which

we present here, shares the honour of being one of the first experimental study of this

new paradigm. All these works were more or less published during the same period

of time and were all done independently. Since then, many new meaningful results

have sprouted from this line of research. At the time of the writing of this thesis, a

very comprehensive list of meaningful references was maintained on Mankei Tsang’s

website[116]. He also wrote a review paper on the topic[117] in 2019. These references

should help the interested readers navigate the progress of the field.

4.2 Theory

Inspired by ideas in quantum information and quantum metrology [3, 5, 59, 118,

119], Tsang et al [120] showed that whereas in IPC the Fisher Information, I[29],
vanishes quadratically with the separation � between two equal-intensity incoherent

point sources of weak thermal light with gaussian PSF, it remains undiminished when

the full electromagnetic field is considered. Later, these results were extended to more

general types of sources [121, 122]. I is related to the performance of a statistical

estimator by :

Var (�est) �
1

I

✓
1 +

@ (bias)

@�actual

◆
, (4.1)

where �est is some estimator of �actual and bias ⌘ h�esti � �actual[29].

In the case of an unbiased estimator, this limit is the CRB ( 1I ). The vanishing of

I as � ! 0 suggests that for closely separated sources, the variance in an IPC-based

estimate of � is cursed to diverge. That it is independent of � for the full field, on the

other hand, appears to suggest that this divergence can be averted by using phase as

well as intensity information.

One natural way to do this would be to use SPAtial mode DEmultiplexing (SPADE)[120,

123], in which incoming light is decomposed into its Hermite-Gauss (HG)[124] com-

ponents and the amplitude of each is measured. This HG basis is centred exactly

between the two PSF, and the width of the 0th mode(TEM00) matches the width

of the gaussian PSF. It can be shown that the full set of HG amplitudes contains
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the same I as the full EM field. A reduced version called binary SPADE prescribes

discriminating only between the TEM00 mode and the sum of all other modes. For

small �, only one other mode acquires significant amplitude in any case, so the I
available to binary SPADE becomes essentially equal to the full Fisher information.

The method can be understood as follows: the projection always succeeds (P00 = 1)

when the two point-sources are overlapped (� = 0), but has a failure probability

1 � P00 which grows quadratically with �. Knowing the TEM00 component as a

proportion of all HG amplitudes (i.e. P00 and 1 � P00) allows one to deduce �. All

the results above and the experimental work below deal with gaussian PSFs, which

are of interest because they are frequently used as approximations for the Airy rings

produced by circular apertures. However, recent results[125] have shown that in the

small separation regime, a small number of suitable spatial projections of the elec-

tromagnetic field capturing the full Fisher information can also be generated for any

PSF.

In this proof-of-priciple experiment, we continue with gaussian PSFs. The spatial

wavefunction of the EM field of the two sources is given by

 1/2 (x, y) = exp

 
�(x± �/2)2 + y

2

4�2

!
(4.2)

Experimentally, merely capturing the TEM00 component (say, by coupling into a

single mode fibre) without a normalization factor (which allows us to deduce 1�P00)

provides no advantage over IPC. Practically speaking, the crucial information comes

from a projection onto some mode orthogonal to TEM00 in order to estimate 1�P00.

While a mode such as TEM10 would contain all the information (for a separation in

the x-direction in that example), the same scaling can be obtained by projecting onto

any spatially antisymmetric field mode. As a proof of principle, we have designed and

implemented an experimentally convenient method, SPLICE (Super-resolved Position

Localisation by Inversion of Coherence along an Edge), which instead carries out one

single technically straightforward projection onto the mode function

 ? (x, y) = exp

✓
�x

2 + y
2

4�2

◆
sign (x) . (4.3)

This function is constructed such that its inner product with TEM00 vanishes. The

probability that such a projection succeeds is:

P? =
1

2

�
|h 1| ?i|2 + |h 2| ?i|2

�
= e

�2�erf2
p
� (4.4)
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Figure 4.1: Theory plot of Fisher information for IPC, SPLICE and Binary SPADE vs beam sepa-
ration �, normalized to units of N/4�2 and � respectively.

where � = �
2
/32�2, and � is the separation between point sources on the image plane,

and  1/2 is the field from each source.

The per-photon Fisher information can be written as

I =

⇣
e
��

p
⇡�erf

p
�� e

�2�
⌘2

2⇡�2

+

⇣
e
��

p
⇡�erf2

⇣p
�
⌘
� e

�2�erf
p
�
⌘2

2⇡�2
⇣
e2� � erf2

p
�
⌘ , (4.5)

where the first term comes from P? and the second from 1�P?. Crucially, as � ! 0,

1 � P? vanishes, meaning that an experimentally simple scheme for projecting only

onto  ? does as well as a more complicated scheme which could measure multiple

projections simultaneously. In Fig. 4.1., we plot the Fisher information for SPLICE in

comparison with other methods. It is easy to see that it remains non-zero as � ! 0,

evading Rayleigh’s curse, and extracting nearly 2/3 of the total information available

to full SPADE using an experimentally simple technique. More sophisticated methods

relying on waveguides or cavities could be designed to approach 100% of the optimal

I.
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Figure 4.2: Shown is the experimental apparatus. In the lower right-hand box is a representation
of SPLICE, the measurement scheme tested in this experiment. In the upper right-hand box is a
sketch of the spatial profile of the electromagnetic field before the measurement. The rest of the
figure depicts the device used to simulate the two light sources, which can be displaced around their
centroid by the displacement of the top mirror.

4.3 Experiment and Results

In order to experimentally demonstrate improved performance over IPC, we used

two mutually incoherent collimated TEM00 Gaussian beams in place of distant point

sources and an imaging optical setup. The beams were directed through a Sagnac-

like beam displacer shown in Fig. 4.2. By moving a mirror on a motorized translation

stage as shown, we precisely control the separation � between the otherwise parallel

beams. The separation is induced symmetrically, such that the geometrical centroid

(x0, y0) remains static.

At zero separation, the beams are overlapped and are both coupled into single-

mode TEM00 fibre (coupling e�ciencies are 90% and 85% respectively). Collimation

of the beams is such that their waists are closely matched immediately before the fibre

coupler (� = 434± 3µm and 420± 7µm) in order to emulate Gaussian point spread

functions of distant sources. The projection onto  ? (the SPLICE measurement) is

achieved by inserting a phase plate immediately in front of the coupler such that when

� = 0, a semi-circular cross-section of the beams undergoes a ⇡-phase shift whereas

the other half experiences none. The phase plate consists of two transparent glass

flat microscope cover slips, connected along one sharp rectangular edge. They are

mounted such that one glass slip tilts relative to the other by pivoting along that

edge. We then position this contraption such that the connected edge of the glass

slips bisects the circular beam cross-sections when both beams are overlapped (i.e.
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� = 0). Thus, we can impart di↵erent phase-shifts onto opposite halves of the beams

by tilting one glass slip relative to the other (which we do, in order to minimize

coupling into an otherwise well-aligned coupler). We typically achieve an extinction

of � 99%.

The light source used to create the two mutually incoherent beams is an 805-nm

heralded single-photon source which relies on type-I spontaneous parametric down-

conversion (SPDC) in a 2mm-thick BBO crystal. The crystal is pumped by 402.5 nm

light obtained from a frequency-doubled 100-fs Ti:Sapph laser. One photon from the

SPDC pair is used to herald the presence of a signal photon as a means of rejecting

spurious background light and detector dark counts (our accidental coincidences av-

erage 2 ± 1counts/sec). Our SPDC source has a very low probability of producing

more than one photon per coherence time (⇡ 150 fs). This resembles the regime in-

vestigated in the original theory proposal[120]. Furthermore, the low intensity of the

source allows us to directly compare our experimental performance with the quantum

limit shown in Fig. 4.1. It must be noted that the use of heralded single photons is not

necessary to this scheme, which is independent of the photon statistics of the point

sources. In order to emulate two point sources, the other photon is split at a 50/50

fibre-splitter and out-coupled to free-space. The two resulting beams are incoherent;

they have splitter-to-coupler distances that di↵er by 5 cm whereas the SPDC photons

are filtered to �� = 3nm (i.e. coherence length ⇡ 10 µm). ND filters were used to

reduce the intensity imbalance between the beams to ⇡ (3± 3)%.

To compare the performance of our method (SPLICE) with a more traditional

imaging setup relying on IPC, we replaced the phase plate with a 200µm slit that

served as the image plane, coupling all the light transmitted through the slit into a

multimode fibre. Scanning the slit, we were able to perform one-dimensional IPC.

With SPLICE, the separation of the incoherent beams was scanned, with the de-

tectors counting for 1 second at each step. Two sets of SPLICE scans were performed,

one at coarse intervals of � (spanning �1.96mm to +1.94mm, in steps of 0.1mm).

Another scan at finer intervals (�0.56mm �  +0.44mm in steps of 0.04mm) was

performed to provide more data points in the region of low separation, where SPLICE

provides an advantage. Data from nine repetitions of the coarse scan and fifteen of

the fine scan were recorded. The raw data can be observed in Fig. 4.3.

Whereas the ideal functional form for the resulting count rate vs separation � is

proportional to equation 4.4, we add a constant � to account for residual background

counts:

SPLICE counts = ↵ exp

 
�(� � �0)2

16�2
f

!
erf2

✓
�

4
p
2�f

◆
+ � (4.6)
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Figure 4.3: Raw data plot for SPLICE coarse scans. Dots are experimental photon coincidence
counts plotted versus actual beam separation �. Solid overlay is a fit to equation 4.6.

A calibration curve was obtained from a least squares fit of this function to data

from a longer run (2 sec count time instead of 1 sec for each �). This calibration

curve can be seen in Fig. 4.4. From a fit to the singles counts (counts which are not

conditioned on the simultaneous detection of a heralding photon), the beam waist

�f (0.46mm) and �0 were extracted. Then, the normalisation ↵(1206) was extracted

from a fit to coincident counts. The background � was fixed to an average of multiple

values detected at a separation of �0(2.73mm). This step might be thought of as

being analogous to characterizing one’s imaging optics before use. One might then

use the curve as a ”lookup table” from which � can be estimated from count rates.

We performed such a lookup with the remainder of our data. The resulting estimates

for � are plotted versus their actual values(as reported by motorized translation stage

controllers) in Fig. 4.5(a).

The traditional image plane counting data were acquired using the configuration

described above, scanning the 200 µm slit between �1mm and +1mm of the centroid

of the two beams, counting for 4 seconds at each step. Again, we repeated this for

various separations � and in turn repeated the whole scan several times. As before,a

set of coarse scans (�0.04mm �  1.56mm in steps of 0.08mm, 16 repetitions) and

a set of fine scans (�0.52mm �  0.44mm in steps of 0.04mm, 17 repetitions) were

performed. Estimation of � in this IPC comparison was done by least-squares fitting

the resulting image plane intensity profile to

IPC counts = ↵
⇥
exp� +exp+ +�

⇤
(4.7)
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Figure 4.4: Calibration data plot for SPLICE scans. Dots are experimental photon single counts
plotted versus actual beam seperation �. Solid overlay is a fit to Eq. 4.6. From this fit, the value of
the beamwaist is taken to be 0.46mm. This value is larger than the measured value of the waistof
the two beams(0.420mm and 0.434mm). Furthermore, the fit here overshoots the data for extreme
values of �. We do not have an adequate explanation for this behavior. However, the important
fact is that the fit is in good aggrement with the data for central values of �, which is the important
regime. This allowed us to use this parameter as a calibration to extract a separation from our
SPLICE measurement. The other parameters for the calibration were taken from similar data but
using coincidence counts.

Figure 4.5: Inferred separation vs known actual separation for a) SPLICE(from “lookup” on cali-
bration curve) and b) IPC. Note that the spread in the IPC estimates grows drastically as � ! 0,
while the spread for SPLICE remains essentially constant.
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Figure 4.6: (a) Renormalized Standard Deviation (SD) and (b) Un-normalized Root Mean-Square
Error (RMSE) in the estimated separation plotted as functions of actual separation for both IPC
and SPLICE. We plot the computed SD multiplied by

p
N to compensate for the scaling of the

uncertainty with the size of the data set. The solid and dashed curves are the corresponding Monte
Carlo simulations. The dotted curve is the CRB for IPC and the dashed horizontal line represents
the absolute fundamental limit of 2�/

p
N . The RMSE (unlike SD) is not similarly rescaled. It

allows us to gauge absolute error relative to the known value of the parameter being estimated
so that biases are accounted for. Note that two methods were used in the fitting of IPC data to
equation 4.7; for small � (< 0.65mm), equation 4.7 was expanded to 2nd order and linear regression
was performed whereas for large � (> 0.4mm), a nonlinear fitting routine built into Mathematica
was used.

where exp± = exp
⇥
� (x± �/2)2 /2�2

⇤
. Again, a calibration waist � and background

� were obtained beforehand, leaving the scale ↵ and separation � as the only fitting

parameters. In practice, the fitting procedure used to fit IPC data for small � was

di↵erent from the one used to treat data for large �. For the latter, we simply used

built-in numerical algorithms in Mathematica and NumPy. For small �’s however, the

routines exhibited convergence and stability issues, forcing us to Taylor expand equa-

tion 4.7 to 2nd order in � and manually invert the resulting 2⇥ 2 design matrix. The

resulting estimated separations are plotted against actual separations in Fig. 4.5(b).

As is immediately apparent, for separations below about 0.25mm (approximately

0.6�), the spread of the IPC data begins to grow, while that of the SPLICE data

remains essentially constant.

Two key metrics for the performance of either method are the standard deviation

or SD (i.e. ”spread”) and root-mean-square error (RMSE) of the estimated beam sep-

aration. The SD measures the precision of a dataset but not necessarily its accuracy,

while the RMSE is sensitive to the accuracy since it quantifies the error relative to

a known actual value and not simply the reported result. In Fig. 4.6, SD and RMSE

are plotted versus known actual separations.

In order to ensure a reasonably even-footed comparison between IPC and SPLICE,

the spreads in inferred separation plotted in Fig. 4.6(a) are scaled by
p
N . For IPC,
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N is simply the total photons that comprise an “image” on the image plane, which

in our case is actually a set of photon counts, one at each position of the 200 µm slit.

For SPLICE, during a calibration run, we estimate N by counting at our detector

over a 1 second window while both beams are centred (i.e. � = 0) on the coupler into

TEM00 fibre with the phase plate removed. Since our source intensity is stable, this

gives us an estimate of the number of incident photons for subsequent measurements

when � 6= 0.

The RMSE plotted in Fig. 4.6(b) is not similarly normalized because in addition to

possible systematics, the inferred separation is biased relative to the actual separation

when � is small (see Fig. 4.7 and Sec. 4.4). A priori, there is no reason to suspect

either bias or systematics to scale as
p
N . Despite not normalizing and despite using

approximately twice as many photons, the IPC method performs noticeably worse

than SPLICE when � < 0.6mm.

4.4 Discussion

The attentive reader will note that while the spread is greater for IPC, it does not

diverge as � ! 0. In fact, it would be implausible for the uncertainty on � to ever ex-

ceed � (as is clear from inspection of Fig. 4.6(b) at small �). The apparent discrepancy

with the vanishing of the Fisher information can be understood by recognizing that

the practically implemented IPC estimator is not unbiased. To better understand

the bounds on the advantage that one can expect of SPLICE over IPC, we return to

equation 4.1. Clearly, one needs to know the bias to evaluate the RHS. For SPLICE,

a potential source of bias is the lookup procedure. If, for example, a less-than-perfect

visibility results in a calibration curve that does not vanish at � = 0, then one might

obtain ”unphysical” datapoints that fall under the minima of the calibration curve,

thereby resulting in a bias when a lookup is attempted. In our case, this is negligi-

ble since our visibility exceeds 99%. The CRB is therefore just the reciprocal of I,
implying a 1/

p
N scaling in the spread of �est.

With IPC, the least-squares estimate of � is heavily biased at small �. An intu-

itive way to understand this is to note that since the problem being addressed is the

resolving of two equal intensity sources, the +� and �� cases are physically indistin-

guishable; therefore, what is really being estimated is the absolute value |�|. But as

long as the spread in the estimated � is non-zero, the mean estimated |�| is never zero.
Fig. 4.7 shows a plot of mean inferred � (averaged across all our datasets) vs actual

�. Overlayed is a theory curve for IPC, which takes into account an expected bias

at small �. The vanishing of the slope of this curve at low separations means that
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Figure 4.7: Mean estimated � for IPC and SPLICE plotted against known actual �. Two methods
were used in the fitting of IPC data to equation 4.7; for small � (< 0.65mm), equation 4.7 was ex-
panded to 2nd order and linear regression was performed whereas for large � (> 0.4mm), a nonlinear
fitting routine built into Mathematica was used.

any attempt to invert it, generating an unbiased estimator, will introduce a diverging

uncertainty.

We can notice in the form of the CRB for biased estimator presented in Eq. 4.1,

that if the bias term for IPC falls to �1 su�ciently quickly when � ! 0, the RHS of

the inequality can tend to a finite value as both I ! 0 and � ! 0.

For IPC at small separations each image was fitted to a Taylor expansion of the

detection probability pi (the usual sum of two Gaussians) to 2nd order:

pi ⇡
A

�
p
2⇡

exp


� x

2
i

2�2

�
+

A�
2

8�5
p
2⇡

exp


� x

2
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2�2

� �
x
2
i
� �

2
�

Subscripts i were added in anticipation of an image consisting of many pixels at

various values of some axis x. Performing a linear regression of a set of photon

detection rates pi yields parameters A and A�
2. Notice that the design matrix, M ,

in this case contains only xi’s and � and so is independent of photon number N . If

we now assume that the noise at each pixel location is mutually independent, then:
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where oij =
h�
M

T
M
��1

M
T

i

ij

. Supposing that our only source of noise is Poissonian

in nature, then �pj ⇠
p
pj so that �A and � (A�2) both ⇠

p
N .

Now elementary error propagation gives:
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which in the small � limit reduces to

�
�
�
2
�
⇡ � (A�2)

A
⇠ 1/

p
N

Thus we expect the estimate of �2 from this method to have a spread that scales

approximately as 1/
p
N .

If there is a su�ciently large number of pixels in our image, the central limit

theorem imposes a Gaussian distribution on �
2, with width s = � (�2) = �/

p
N

where � is some constant of proportionality. Although at first glance negative values

of �2 appear problematic, we can avoid having to censor parts of our data where this

is the case by noting that they have a natural physical interpretation if we also allow

� ! �� since the quadratic term is paired with an odd �5 term. We can therefore

compute the moments of the distribution relevant to the mean and spread of our

estimate of �:

h�i =
1

s

r
2

⇡

Z 1

�1

p
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�(x� �

2
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#
dx

⌦
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2
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2
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dx

In the limit where �actual ! 0, we find the scalings: h�i ⇠
p
s ⇠ N

�1/4 and h�2i ⇠
s ⇠ N

�1/2. More crucially, h�i can be shown to approach a constant value su�ciently

quickly as �actual goes to 0 for the CRB to converge to a finite value. h�i is plotted in

figure 4.7.

Note that the emergence of a bias in our estimate isn’t specific to our treatment

of the negative tail of �2; the same bias and scalings can be obtained even if we had

opted for the lazier approach of censoring parts of our data that produce negative

�
2 values (tantamount to simply ”chopping” rather than ”folding” that tail of the

distribution). Rather, the bias is more generally a consequence of performing the

regression on �2 instead of �.

The bias vanishes if the two sources have unequal intensities. The breaking of this
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symmetry introduces a term in pi that is linear in �. If this term is much larger than

the quadratic (�2) term, we can use � as a fit parameter instead, thereby obtaining

an unbiased estimator. We explored scenarios with di↵erent intensities in [126], but

focused on cases where the centroid of the beams and the intensity imbalances were

unknown. This reintroduces the bias and brings a plethora of other challenges.

Thus while SPLICE does not o↵er an infinite advantage over IPC as a naive anal-

ysis might have us believe, it does nevertheless o↵er a substantial improvement in the

absolute error and the scaling with photon number, while simultaneously eliminating

the problem of bias.

4.5 Concluding Remarks

In summary, we have developed and demonstrated a simple technique that surpasses

traditional imaging in its ability to resolve two closely spaced point-sources. For

� < 0.2mm(0.47�), the average spread in the measured separation was approxi-

mately twice the quantum limit. Nearing zero separation, SPLICE has outperformed

IPC by reducing the normalized standard deviation by a factor of 2 and the unnor-

malized total error by a factor of 3 despite the higher photon number used in IPC.

Furthermore, unlike existing superresolution methods, ours requires no exotic illumi-

nation with particular coherence/quantum properties and is applicable to classical

incoherent sources. Crucially, as a proof of principle, this technique highlights that

the fundamental limits on the precision with which one can estimate the separation

between two point sources ( 2�/
p
N) are independent of the separation itself. In

traditional imaging techniques discarding the phase information (IPC), for separa-

tion below Rayleigh’s criterion(� . �), the standard deviation in the measurement of

separation goes as 2
p
2�2

/(�
p
N) for the best unbiased estimator or as approximately

↵�/N
1/4, where ↵ is a numerical factor of the order of unity, when the bias becomes

dominant. We expect that SPLICE and other related techniques that do not discard

the phase information will be developed in the future for a broad range of imaging

applications.
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Chapter 5

Conclusion

In this thesis, I reported on three projects that I completed during my PhD.

In Chapter 2, we presented a new fundamental lower bound on the precision of

quantum multi-parameter estimation measurements. It has the advantage of being

a scalar bound independent of the quantities to be measured, making it an easy

quantity to optimize for finding optimal measurement schemes. We are hopeful that

this bound will pave the way for studying many multi-parameter estimation problems.

Its application to the characterization of SU(d) unitaries, which we have considered,

could be immediately applied to the estimation of unitaries acting identically on

collections of qudits, or to the characterization of a general multiport interferometer,

which could find application in boson sampling and other quantum information task

with photons.

In Chapter 3, we reported on the creation in the laboratory of the tetrahedron

state, the first of the platonic-solid states. It is a four-photon polarization-entangled

state which is optimal for the characterization of SU(2) polarization rotation. This

proof-of-principle experiment is another step in the direction of quantum schemes be-

ing used for real measurements. As we argued, it is our belief that the the quality of

our state could be greatly increased with an e↵ort to reduce the photon loss through

the experiment. In order to scale up and create platonic-solid states with higher

photon numbers, it may be necessary to use to a more naturally scalable infrastruc-

ture. Approaches like ours, using SPDC, lead to a state creation rate exponentially

decreasing with the photon number. The exploration of alternative systems in which

to create these platonic-solid states could be a very interesting line of future research.

In Chapter 4, we presented a new technique named SPLICE, which dramatically

improves the precision of the measurement of the separation between two equal-

intensity, incoherent point sources of light below Rayleigh’s criterion. This is done

by taking advantage of the information contained in the phase of the electromagnetic

87



88 CHAPTER 5. CONCLUSION

field at the image plane of the imaging apparatus in a novel way. We demonstrated

the e�cacy of this technique in a proof-of-principle experiment. A next step is to

relax the assumption that the point sources have equal intensities and to study the

scenario where their intensities are both unequal and unknown. This is a much

more interesting problem, closer to more realistic measurement settings. We have

already published some theory work on the topic demonstrating that a technique like

SPLICE with minor modifications retains part the advantage observed here. Our

group is currently in the process of building a new experiment to test this proposal.

The field of quantum optics is changing rapidly. With the recent enthusiasm for

quantum computing and the large financial investments that followed, a fraction of the

activities that used to be done in an academic setting is now being tackled by private

companies. As a PhD student, it can be challenging to navigate this climate. Many of

the capabilities of the smaller academic groups are being outpaced by those of these

large companies and collaborations. On the other hand, there are many interesting

scientific endeavours left to explore which are outside their sphere of interest.

Quantum metrology is in essence a fundamentally scientific discipline. Measure-

ments are at the heart of science and the improvement of their precision has always

been a vector of scientific progress, with each improvement giving us a window to

peer into a previously inaccessible part of the universe. I believe quantum metrology

to be a noble and promising field and I am happy to have played a minor role in its

development during my PhD.
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Appendix A

Clebsch-Gordan Matrix

We give the Clebsch-Gordan coe�cient matrix, which is used to change the state

of 4 photons’ polarization from a basis natural for the Hilbert Space decomposition�
S1/2

�⌦4
to a basis natural for the Hilbert Space decomposition (S2)�(S1)

�3�(S0)
�2.

The basis elements for both bases are displayed in order below. We use the H/V

notation for the first basis and the spin
��j(�),m

↵
notation for the latter. The index �

(1  �  dj) is used to denote the multiplicities of the spin sectors when necessary.

|HHHHi |2, 2i
|HHHV i |2, 1i
|HHVHi |2, 0i
|HHV V i |2,�1i
|HVHHi |2,�2i
|HVHV i

��1(1), 1
↵

|HV V Hi
��1(1), 0

↵

|HV V V i
��1(1),�1

↵

|V HHHi
��1(2), 1

↵

|V HHV i
��1(2), 0

↵

|V HV Hi
��1(2),�1

↵

|V HV V i
��1(3), 1

↵

|V V HHi
��1(3), 0

↵

|V V HV i
��1(3),�1

↵

|V V V Hi
��0(1), 0

↵

|V V V V i
��0(2), 0

↵
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98 APPENDIX A. CLEBSCH-GORDAN MATRIX
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Appendix B

Density Matrix ⇢exp

We give the full reconstructed density matrix ⇢exp. To fit it on the page, we only give

the non-empty spin sectors. Refer to Fig. 3.12(a) to see the position of those sectors

in the full 16⇥ 16 density matrix. We only display one copy of the repeated sectors

S1 and S0.

⇢
(S2)
exp

=

0

BBBBBB@

0.27± 0.03 (�0.02� 0.03i)± (0.02 + 0.03i)

(�0.02 + 0.03i)± (0.02 + 0.03i) 0.039± 0.013

(0.056 � 0.006i)± (0.017 + 0.019i) (�0.010 + 0.036i)± (0.014 + 0.016i)

(0.131± 0.019) (0.044 � 0.036i)± (0.017 + 0.018i)

(�0.00 + 0.06i)± (0.02 + 0.03i) (0.028 + 0.013i)± (0.014 + 0.016i)

(0.056 + 0.006i)± (0.017 + 0.019i) 0.131± 0.019

(�0.010� 0.036i)± (0.014 + 0.016i) (0.0440 + 0.036i)± (0.017 + 0.018i)

0.08± 0.02 (�0.06 + 0.06i)± (0.03 + 0.04i)

(�0.06� 0.06i)± (0.03 + 0.04i) 0.37± 0.03

(0.041 � 0.002i)± (0.016 + 0.014i) (�0.068 + 0.01i)± (0.019 + 0.02i)

(�0.00� 0.06i)± (0.02 + 0.03i)

(0.028 � 0.013i)± (0.014 + 0.016i)

(0.041 + 0.002i)± (0.016 + 0.014i)

(�0.068� 0.01i)± (0.019 + 0.02i)

0.10± 0.02

1

CCCCCCA
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100 APPENDIX B. DENSITY MATRIX ⇢EXP

⇢
(S1)
exp

=

0

B@
0.0153± 0.006 (�0.016� 0.007i)± (0.005 + 0.004i)

(�0.016 + 0.007i)± (0.005 + 0.004i) 0.022± 0.007

(0.004 + 0.003i)± (0.004 + 0.004i) (�0.002� 0.008i)± (0.004 + 0.004i)

(0.004 � 0.003i)± (0.004 + 0.004i)

(�0.002 + 0.008i)± (0.004 + 0.004i)

0.007± 0.005

1

CA

⇢
(S0)
exp

=
�
6.76⇥ 10�11

�
(B.1)


