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Abstract CPT groups of higher spin fields are defined in the framework of automorphism
groups of Clifford algebras associated with the complex representations of the proper or-
thochronous Lorentz group. Higher spin fields are understood as the fields on the Poincaré
group which describe orientable (extended) objects. A general method for construction of
CPT groups of the fields of any spin is given. CPT groups of the fields of spin-1/2, spin-1
and spin-3/2 are considered in detail. CPT groups of the fields of tensor type are discussed.
It is shown that tensor fields correspond to particles of the same spin with different masses.

Keywords CPT groups · Fields on the Poincaré group · Clifford algebras · Automorphism
groups · Higher spin fields

1 Introduction

In 2003, CPT group was introduced [56] in the context of an extension of automorphism
groups of Clifford algebras. The relationship between CPT groups and extraspecial groups
and universal coverings of orthogonal groups was established in [56, 58]. In 2004, So-
colovsky considered the CPT group of the spinor field with respect to phase quantities [51]
(see also [10–13, 37]). CPT groups of spinor fields in the de Sitter spaces of different sig-
natures were studied in the works [59, 61]. The following logical step in this direction is
a definition of the CPT groups for the higher spin fields. The formalism developed in the
previous works [56, 58] allows us to define CPT groups for the fields of any spin on the
spinspaces associated with representations of the spinor group Spin+(1,3) (a universal cov-
ering of the proper orthochronous Lorentz group).

Our consideration based on the concept of generalized wavefunctions introduced by
Ginzburg and Tamm in 1947 [22], where the wavefunction depends both coordinates xμ and
additional internal variables θμ which describe spin of the particle, μ = 0,1,2,3. In 1955,
Finkelstein showed [18] that elementary particles models with internal degrees of freedom

V.V. Varlamov (�)
Siberian State Industrial University, Kirova 42, Novokuznetsk 654007, Russia
e-mail: vadim.varlamov@mail.ru

mailto:vadim.varlamov@mail.ru


1454 Int J Theor Phys (2012) 51:1453–1481

can be described on manifolds larger then Minkowski spacetime (homogeneous spaces of
the Poincaré group). The quantum field theories on the Poincaré group were discussed in the
papers [3, 5, 17, 23, 26, 28, 30, 33, 34, 52]. A consideration of the field models on the ho-
mogeneous spaces leads naturally to a generalization of the concept of wave function (fields
on the Poincaré group). The general form of these fields is related closely with the structure
of the Lorentz and Poincaré group representations [4, 21, 23, 36] and admits the following
factorization f (x, z) = φn(z)ψn(x), where x ∈ T4 and φn(z) form a basis in the representa-
tion space of the Lorentz group. At this point, four parameters xμ correspond to position of
the point-like object, whereas remaining six parameters z ∈ Spin+(1,3) define orientation
in quantum description of orientable (extended) object [24, 25] (see also [27]). It is obvious
that the point-like object has no orientation, therefore, orientation is an intrinsic property of
the extended object. On the other hand, measurements in quantum field theory lead to ex-
tended objects. As is known, loop divergences emerging in the Green functions in quantum
field theory originate from correspondence of the Green functions to unmeasurable (and
hence unphysical) point-like quantities. This is because no physical quantity can be mea-
sured in a point, but in a region, the size of which (or ‘diameter’ of the extended object) is
constrained by the resolution of measuring equipment [2]. Taking it into account, we come
to consideration of physical quantity as an extended object, the generalized wavefunction of
which is described by the field

ψ(α) = 〈x,g|ψ〉
on the homogeneous space of some orthogonal group SO(p, q), where x ∈ Tn (position) and
g ∈ Spin+(p, q) (orientation), n = p + q . So, in [45, 46] Segal and Zhou proved conver-
gence of quantum field theory, in particular, quantum electrodynamics, on the homogeneous
space R1 × S3 of the conformal group SO(2,4), where S3 is the three-dimensional real
sphere.

In the present work we describe discrete symmetries of the generalized wavefunctions
ψ(α) = 〈x,g|ψ〉 (fields on the Poincaré group) in terms of involutive automorphisms of the
subgroup Spin+(p, q). As is known, the universal covering of the proper Poincaré group is
isomorphic to a semidirect product SL(2;C) � T4 or Spin+(1,3) � T4. Since the group T4

is Abelian, then all its representations are one-dimensional. Thus, all the finite-dimensional
representations of the proper Poincaré group in essence are equivalent to the representations
C of the group Spin+(1,3).

An algebraic method for description of discrete symmetries was proposed by author in
the works [53, 54, 56, 58], where the discrete symmetries are represented by fundamental
automorphisms of the Clifford algebras. So, the space inversion P , time reversal T and their
combination PT correspond to an automorphism � (involution), an antiautomorphism ˜

(reversion) and an antiautomorphism �̃ (conjugation), respectively. The fundamental auto-
morphisms of the Clifford algebras are compared to elements of the finite group formed
by the discrete transformations. In turn, a set of the fundamental automorphisms, added
by an identical automorphism, forms a finite group Aut(C�), for which in virtue of the
Wedderburn-Artin Theorem there exists a matrix (spinor) representation. Further, other im-
portant discrete symmetry is the charge conjugation C. In contrast with the transformations
P , T , PT , the operation C is not space-time discrete symmetry. This transformation is
firstly appeared on the representation spaces of the Lorentz group and its nature is strongly
different from other discrete symmetries. For that reason the charge conjugation C is rep-
resented by a pseudoautomorphism A → A which is not fundamental automorphism of the
Clifford algebra. All spinor representations of the pseudoautomorphism A → A were given
in [56]. An introduction of the transformation A → A allows us to extend the automorphism



Int J Theor Phys (2012) 51:1453–1481 1455

group Aut(C�) of the Clifford algebra. It was shown [56] that automorphisms A → A�,

A → ˜A, A → ˜A�, A → A, A → A�, A → ˜A and A → ˜A� form a finite group of order 8
(an extended automorphism group Ext(C�) = {Id, �, ˜, �̃, , �, ˜, �̃}). The group Ext(C�)

is a generating group of the full CPT group {±1,±P,±T ,±PT,±C,±CP,±CT,±CPT}.
There are also other realizations of the discrete symmetries via the automorphisms of the
Lorentz and Poincaré groups, see [9, 21, 29, 35, 50].

The present paper is organized as follows. In Sect. 2 we briefly discuss the basis notions
concerning Clifford algebras and CPT groups, and also we consider their descriptions within
universal coverings of orthogonal groups and spinor representations. In Sect. 3 we introduce
the main objects of our study, CPT groups of higher spin fields. These groups are defined on
the system of complex representations of the group Spin+(1,3). In Sects. 4–6 we consider
in detail CPT groups for the fields (1/2,0)⊕ (0,1/2), (1,0)⊕ (0,1) and (3/2,0)⊕ (0,3/2).
In Sect. 7 we define CPT groups for the fields of tensor type.

2 Algebraic and Group Theoretical Preliminaries

In this section we will consider some basic facts concerning automorphisms of the Clifford
algebras and universal coverings of orthogonal groups.

Let F be a field of characteristic 0 (F = R, F = C), where R and C are the fields of real
and complex numbers, respectively. A Clifford algebra C� over a field F is an algebra with 2n

basis elements: e0 (unit of the algebra) e1, e2, . . . , en and products of the one-index elements
ei1i2...ik = ei1 ei2 . . . eik . Over the field F = R the Clifford algebra is denoted as C�p,q , where
the indices p and q correspond to the indices of the quadratic form

Q = x2
1 + · · · + x2

p − · · · − x2
p+q

of a vector space V associated with C�p,q .
An arbitrary element A of the algebra C�p,q is represented by a following formal poly-

nomial:

A = a0e0 +
n
∑

i=1

aiei +
n
∑

i=1

n
∑

j=1

aij eij + · · · +
n
∑

i1=1

· · ·
n
∑

ik=1

ai1···ik ei1···ik +

+ · · · + a12...ne12···n =
n
∑

k=0

ai1i2···ik ei1i2···ik .

In Clifford algebra C� there exist four fundamental automorphisms.

(1) Identity: An automorphism A → A and ei → ei .
This automorphism is an identical automorphism of the algebra C�. A is an arbitrary

element of C�.
(2) Involution: An automorphism A → A� and ei → −ei .

In more details, for an arbitrary element A ∈ C� there exists a decomposition
A = A′ + A′′, where A′ is an element consisting of homogeneous odd elements, and
A′′ is an element consisting of homogeneous even elements, respectively. Then the au-
tomorphism A → A� is such that the element A′′ is not changed, and the element A′
changes sign: A� = −A′ + A′′. If A is a homogeneous element, then

A� = (−1)k A, (1)
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where k is a degree of the element. It is easy to see that the automorphism A → A� may
be expressed via the volume element ω = e12...p+q :

A� = ωAω−1, (2)

where ω−1 = (−1)
(p+q)(p+q−1)

2 ω. When k is odd, the basis elements ei1i2...ik the sign
changes, and when k is even, the sign is not changed.

(3) Reversion: An antiautomorphism A → ˜A and ei → ei .
The antiautomorphism A → ˜A is a reversion of the element A, that is the substitution

of each basis element ei1i2···ik ∈ A by the element eik ik−1···i1 :

eik ik−1···i1 = (−1)
k(k−1)

2 ei1i2···ik .

Therefore, for any A ∈ C�p,q we have

˜A = (−1)
k(k−1)

2 A. (3)

(4) Conjugation: An antiautomorphism A →˜A� and ei → −ei .
This antiautomorphism is a composition of the antiautomorphism A → ˜A with the

automorphism A → A�. In the case of a homogeneous element from the formulae (1)
and (3), it follows

˜A� = (−1)
k(k+1)

2 A. (4)

As is known, the complex algebra Cn is associated with a complex vector space C
n. Let

n = p+q , then an extraction operation of the real subspace R
p,q in C

n forms the foundation
of definition of the discrete transformation known in physics as a charge conjugation C.
Indeed, let {e1, . . . , en} be an orthobasis in the space Cn, e2

i = 1. Let us remain the first p

vectors of this basis unchanged, and other q vectors multiply by the factor i. Then the basis

{e1, . . . , ep, iep+1, . . . , iep+q} (5)

allows one to extract the subspace R
p,q in C

n. Namely, for the vectors R
p,q we take the

vectors of C
n which decompose on the basis (5) with real coefficients. In such a way we

obtain a real vector space Rp,q endowed (in general case) with a non-degenerate quadratic
form

Q(x) = x2
1 + x2

2 + · · · + x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q,

where x1, . . . , xp+q are coordinates of the vector x in the basis (5). It is easy to see that the
extraction of R

p,q in C
n induces an extraction of a real subalgebra C�p,q in Cn. Therefore,

any element A ∈ Cn can be unambiguously represented in the form

A = A1 + iA2,

where A1, A2 ∈ C�p,q . The one-to-one mapping

A −→ A = A1 − iA2 (6)

transforms the algebra Cn into itself with preservation of addition and multiplication oper-
ations for the elements A; the operation of multiplication of the element A by the number
transforms to an operation of multiplication by the complex conjugate number. Any mapping
of Cn satisfying these conditions is called a pseudoautomorphism. Thus, the extraction of
the subspace R

p,q in the space C
n induces in the algebra Cn a pseudoautomorphism A → A

[39, 40].
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Table 1 The multiplication table of the CPT/Z2 group

1 P T PT C CP CT CPT

1 1 P T PT C CP CT CPT

P P 1 PT T CP C CPT CT

T T PT 1 P CT CPT C CP

PT PT T P 1 CPT CT CP C

C C CP CT CPT 1 P T PT

CP CP C CPT CT P 1 PT T

CT CT CPT C CP T PT 1 P

CPT CPT CT CP C PT T P 1

An introduction of the pseudoautomorphism A → A allows us to extend the automor-
phism set of the complex Clifford algebra Cn. Namely, we add to the four fundamental
automorphisms A → A, A → A�, A → ˜A, A →˜A� the pseudoautomorphism A → A and
following three combinations:

(1) A pseudoautomorphism A → A�. This transformation is a composition of the pseu-
doautomorphism A → A with the automorphism A → A�.

(2) A pseudoantiautomorphism A → ˜A. This transformation is a composition of A → A
with the antiautomorphism A → ˜A.

(3) A pseudoantiautomorphism A → ˜A� (a composition of A → A with the antiautomor-
phism A →˜A�).

Thus, we obtain an automorphism set of Cn consisting of the eight transformations. Let
us show that the set {Id, �, ˜, �̃, , �, ˜, �̃} forms a finite group of order 8 and let us give a
physical interpretation of this group.

Proposition 1 ([56]) Let Cn be a Clifford algebra over the field F = C and let Ext(Cn) =
{Id, �, ˜, �̃, , �, ˜, �̃} be an extended automorphism group of the algebra Cn. Then there
is an isomorphism between Ext(Cn) and CPT/Z2 group of the discrete transformations,
Ext(Cn) 	 {1,P ,T ,PT,C,CP,CT,CPT} 	 Z2 ⊗ Z2 ⊗ Z2. In this case, space inversion
P , time reversal T , full reflection PT , charge conjugation C, transformations CP, CT and
the full CPT-transformation correspond to the automorphism A → A�, antiautomorphisms
A → ˜A, A → ˜A�, pseudoautomorphisms A → A, A → A�, pseudoantiautomorphisms

A → ˜A and A →˜A�, respectively.

Proof The group {1,P ,T ,PT,C,CP,CT,CPT} at the conditions P 2 = T 2 = (PT)2 =
C2 = (CP)2 = (CT)2 = (CPT)2 = 1 and commutativity of all the elements forms an Abelian
group of order 8, which is isomorphic to a cyclic group Z2 ⊗ Z2 ⊗ Z2. The multiplication
table of this group shown in Table 1.

In turn, for the extended automorphism group {Id, �, ˜, �̃, , �, ˜, �̃} in virtue of com-

mutativity ˜(A�) = (˜A)�, (A�) = (A)�, (˜A) = ˜(A), (˜A�) = ˜(A)� and an involution property
�� = ˜˜ = = Id we have the multiplication table shown in Table 2. The identity of
multiplication tables proves the group isomorphism

{1,P ,T ,PT,C,CP,CT,CPT} 	 {Id, �, ˜, �̃, , �, ˜, �̃} 	 Z2 ⊗ Z2 ⊗ Z2.
�
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Table 2 The multiplication table of the extended automorphism group

Id � ˜ �̃ � ˜ �̃

Id Id � ˜ �̃ � ˜ �̃

� � Id �̃ ˜ � �̃ ˜

˜ ˜ � Id � ˜ �̃ �

�̃ �̃ ˜ � Id �̃ ˜ �

� ˜ �̃ Id � ˜ �̃

� � �̃ ˜ � Id �̃ ˜

˜ ˜ �̃ � ˜ �̃ Id �

�̃ �̃ ˜ � �̃ ˜ � Id

Further, in the case of P 2 = T 2 = · · · = (CPT)2 = ±1 and anticommutativity of the
elements we have an isomorphism between the CPT/Z2 group and a group Ext(Cn). The
elements of Ext(Cn) are spinor representations of the automorphisms of the algebra Cn.
As mentioned previously, the Wedderburn-Artin Theorem allows us to define any spinor
representations for the automorphisms of Cn. We list these transformations and their spinor
representations (for more details see [56]):

A −→ A�, A� = WAW−1, (7)

A −→ ˜A, ˜A = EATE−1, (8)

A −→˜A�, ˜A� = CATC−1, C = EW, (9)

A −→ A, A = �A∗�−1, (10)

A −→ A�, A� = KA∗K−1, K = �W, (11)

A −→ ˜A, ˜A = S
(

AT
)∗

S−1, S = �E, (12)

A −→˜A�, ˜A� = F
(

A∗)T
F−1, F = �C, (13)

where the symbol T means a transposition, and ∗ is a complex conjugation. The detailed
classification of the extended automorphism groups Ext(Cn) was given in [56]. First of
all, since for the subalgebras C�p,q over the ring K 	 R the group Ext(Cn) is reduced to
Aut±(Cn) (reflection group [54]), then all the essentially different groups Ext(Cn) corre-
spond to subalgebras C�p,q with the quaternionic ring K 	 H, p − q ≡ 4, 6 (mod 8). The
classification of the groups Ext(Cn) is given with respect to the subgroups Aut±(C�p,q).
Taking into account the structure of Aut±(C�p,q), we have at p − q ≡ 4, 6 (mod 8) for the
groups Ext(Cn) = {I,W,E,C,�,K,S,F} the following realizations [56]:

Ext1(Cn) = {I, E12···p+q, Ej1j2···jk , Ei1i2···ip+q−k
, Eα1α2···αa , Eβ1β2···βb

, Ec1c2···cs , Ed1d2···dg },
Ext2(Cn) = {I, E12···p+q, Ej1j2···jk , Ei1i2···ip+q−k

, Eβ1β2···βb
, Eα1α2···αa , Ed1d2···dg , Ec1c2···cs },

Ext3(Cn) = {I, E12···p+q, Ei1i2···ip+q−k
, Ej1j2···jk , Eα1α2···αa , Eβ1β2···βb

, Ed1d2···dg , Ec1c2···cs },
Ext4(Cn) = {I, E12···p+q, Ei1i2···ip+q−k

, Ej1j2···jk , Eβ1β2···βb
, Eα1α2···αa , Ec1c2···cs , Ed1d2···dg }.

The groups Ext1(Cn) and Ext2(Cn) have Abelian subgroups Aut−(C�p,q) (Z2 ⊗Z2 or Z4). In
turn, the groups Ext3(Cn) and Ext4(Cn) have non-Abelian subgroups Aut+(C�p,q) (Q4/Z2

or D4/Z2). The full number of different realizations of Ext(Cn) is 64.
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As is known, the Lipschitz group �p,q , also called the Clifford group, introduced by
Lipschitz in 1886 [31], may be defined as the subgroup of invertible elements s of the algebra
C�p,q :

�p,q = {s ∈ C�+
p,q ∪ C�−

p,q | ∀x ∈ R
p,q, sxs−1 ∈ R

p,q
}

.

The set �+
p,q = �p,q ∩ C�+

p,q is called special Lipschitz group [14].
Let N : C�p,q → C�p,q , N(x) = x̃x. If x ∈ R

p,q , then N(x) = x(−x) = −x2 = −Q(x).
Further, the group �p,q has a subgroup

Pin(p, q) = {s ∈ �p,q | N(s) = ±1
}

. (14)

Analogously, a spinor group Spin(p, q) is defined by the set

Spin(p, q) = {s ∈ �+
p,q | N(s) = ±1

}

. (15)

It is obvious that Spin(p, q) = Pin(p, q)∩C�+
p,q . The group Spin(p, q) contains a subgroup

Spin
+

(p, q) = {s ∈ Spin(p, q) | N(s) = 1
}

. (16)

The groups O(p, q),SO(p, q) and SO+(p, q) are isomorphic, respectively, to the following
quotient groups

O(p, q) 	 Pin(p, q)/Z2, SO(p, q) 	 Spin(p, q)/Z2,

SO+(p, q) 	 Spin+(p, q)/Z2,

where the kernel Z2 = {1,−1}. Thus, the groups Pin(p, q), Spin(p, q) and Spin+(p, q) are
the universal coverings of the groups O(p, q),SO(p, q) and SO+(p, q), respectively.

Over the field F = R there exist 64 universal coverings of the real orthogonal group
O(p, q):

ρa,b,c,d,e,f,g : Pina,b,c,d,e,f,g −→ O(p, q),

where

Pina,b,c,d,e,f,g(p, q) 	 (Spin+(p, q) � Ca,b,c,d,e,f,g)

Z2
, (17)

and

Ca,b,c,d,e,f,g = {±1,±P,±T ,±PT,±C,±CP,±CT,±CPT}
is a full CPT group [56, 58]. Ca,b,c,d,e,f,g is a finite group of order 16. The group

Ext(C�p,q) = Ca,b,c,d,e,f,g

Z2
	 CPT/Z2

is called the generating group. In essence, Ca,b,c,d,e,f,g are five double coverings of the group
Z2 ⊗Z2 ⊗Z2 (extraspecial Salingaros groups, see [6, 43]). All the possible double coverings
Ca,b,c,d,e,f,g are given in the Table 3. The group (17) with non-Abelian Ca,b,c,d,e,f,g is called
Cliffordian group and respectively non-Cliffordian group when Ca,b,c,d,e,f,g is Abelian. It is
easy to see that in the case of the algebra C�p,q (or subalgebra C�p,q ⊂ Cn) with the real
division ring K 	 R, p − q ≡ 0, 2 (mod 8), CPT-structures, defined by the groups (17), are
reduced to the eight Shirokov-Da̧browski PT-structures [16, 47–49].
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Table 3 Extraspecial finite
groups Ca,b,c,d,e,f,g of order 16 abcdefg Ca,b,c,d,e,f,g Type

+++++++ Z2 ⊗ Z2 ⊗ Z2 ⊗ Z2 Abelian

three ‘+’ and four ‘−’ Z4 ⊗ Z2 ⊗ Z2

one ‘+’ and six ‘−’ Q4 ⊗ Z2 Non-Abelian

five ‘+’ and two ‘−’ D4 ⊗ Z2

three ‘+’ and four ‘−’
∗
Z 4 ⊗ Z2 ⊗ Z2

3 CPT Groups on the Representation Spaces of Spin+(1,3)

Let us consider the field

ψ(α) = 〈x,g|ψ〉, (18)

where x ∈ T4, g ∈ Spin+(1,3). The spinor group Spin+(1,3) 	 SU(2) ⊗ SU(2) is a univer-
sal covering of the proper orthochronous Lorentz group SO0(1,3). The parameters x ∈ T4

and g ∈ Spin+(1,3) describe position and orientation of the extended object defined by the
field (18) (the field on the Poincaré group). The basic idea is to define discrete symmetries
of the field (18) within the group

Pina,b,c,d,e,f,g(1,3) 	 Spin+(1,3) � Ca,b,c,d,e,f,g

Z2
.

The automorphisms (discrete symmetries) of Pina,b,c,d,e,f,g(1,3) are outer automorphisms
with respect to transformations of the group Spin+(1,3). We define CPT groups Ca,b,c,d,e,f,g

of physical fields of any spin on the representation spaces of Spin+(1,3).

Theorem 1 Let

Pina,b,c,d,e,f,g(1,3) 	 Spin+(1,3) � Ca,b,c,d,e,f,g

Z2

be the universal covering of the proper Lorentz group SO(1,3), where Ca,b,c,d,e,f,g =
{±1,±P,±T ,±PT,±C,±CP,±CT,±CPT} is a CPT group of some physical field de-
fined in the framework of finite-dimensional representation of the group Spin+(1,3). At
this point, there exits a correspondence P ∼ W, T ∼ E, PT ∼ C, C ∼ �, CP ∼ K, CT ∼ S,
CPT ∼ F, where {I,W,E,C,�,K,S,F} 	 Ext(Cn) is an automorphism group of the algebra
Cn. Then CPT group of the field (l,0) ⊕ (0, l̇) is constructed in the framework of the finite-
dimensional representation Cl0+l1−1,0 ⊕ C0,l0−l1+1 of Spin+(1,3) defined on the spinspace
S2k ⊗ S2r with the algebra

C2 ⊗ C2 ⊗ · · · ⊗ C2
︸ ︷︷ ︸

k times

⊕ ∗
C 2 ⊗ ∗

C 2 ⊗ · · · ⊗ ∗
C 2

︸ ︷︷ ︸

r times

,

where (l0, l1) = ( k
2 , k

2 +1), (−l0, l1) = (− r
2 , r

2 +1). In turn, a CPT group of the field (l′, l′′)⊕
(l̇′′, l̇′) is constructed in the framework of representation Cl0+l1−1,l0−l1+1 ⊕ Cl0−l1+1,l0+l1−1 of
Spin+(1,3) defined on the spinspace S2k+r ⊕ S2k+r with the algebra
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C2 ⊗ C2 ⊗ · · · ⊗ C2

⊗ ∗
C 2 ⊗ ∗

C 2 ⊗ · · · ⊗ ∗
C 2

︸ ︷︷ ︸

k+r times

⊕ ∗
C 2 ⊗ ∗

C 2 ⊗ · · · ⊗ ∗
C 2

⊗

C2 ⊗ C2 ⊗ · · · ⊗ C2
︸ ︷︷ ︸

r+k times

,

where (l0, l1) = ( k−r
2 , k+r

2 + 1).

Proof As is known, when C�p,q is simple, then the map

C�p,q

γ−→ EndK(S), u −→ γ (u), γ (u)ψ = uψ (19)

gives an irreducible and faithful representation of C�p,q in the spinspace S2m(K) 	 Ip,q =
C�p,qf , where ψ ∈ S2m , m = p+q

2 .
On the other hand, when C�p,q is semi-simple, then the map

C�p,q

γ−→ End
K⊕K̂

(S ⊕ Ŝ), u −→ γ (u), γ (u)ψ = uψ (20)

gives a faithful but reducible representation of C�p,q in the double spinspace S ⊕ Ŝ, where
Ŝ = {ψ̂ |ψ ∈ S}. In this case, the ideal S ⊕ Ŝ possesses a right K ⊕ K̂-linear structure, K̂ =
{λ̂|λ ∈ K}, and K ⊕ K̂ is isomorphic to the double division ring R ⊕ R when p − q ≡ 1
(mod 8) or to H ⊕ H when p − q ≡ 5 (mod 8). The map γ in (19) and (20) defines the so
called left-regular spinor representation of C�(Q) in S and S⊕ Ŝ, respectively. Furthermore,
γ is faithful which means that γ is an algebra monomorphism. In (19), γ is irreducible
which means that S possesses no proper (that is, �= 0,S) invariant subspaces under the left
action of γ (u), u ∈ C�p,q . Representation γ in (20) is therefore reducible since {(ψ,0) |
ψ ∈ S} and {(0, ψ̂) | ψ̂ ∈ Ŝ} are two proper subspaces of S ⊕ Ŝ invariant under γ (u) (see
[15, 32, 38]).

Since the spacetime algebra C�1,3 is the simple algebra, then the map (19) gives an irre-
ducible representation of C�1,3 in the spinspace S2(H). In turn, representations of the group
Spin+(1,3) ∈ C�+

1,3 	 C�3,0 are defined in the spinspace S2(C).
Let us consider now spintensor representations of the group G+ 	 SL(2;C) which, as is

known, form the base of all the finite-dimensional representations of the Lorentz group, and
also we consider their relationship with the complex Clifford algebras. From each complex
Clifford algebra Cn = C ⊗ C�p,q (n = p + q) we obtain the spinspace S2n/2 which is a
complexification of the minimal left ideal of the algebra C�p,q : S2n/2 = C ⊗ Ip,q = C ⊗
C�p,qfpq , where fpq is the primitive idempotent of the algebra C�p,q . Further, a spinspace
related with the Pauli algebra C2 has the form S2 = C ⊗ I2,0 = C ⊗ C�2,0f20 or S2 = C ⊗
I1,1 = C⊗C�1,1f11(C⊗I0,2 = C⊗C�0,2f02). Therefore, the tensor product of the k algebras
C2 induces a tensor product of the k spinspaces S2:

S2 ⊗ S2 ⊗ · · · ⊗ S2 = S2k .

Vectors of the spinspace S2k (or elements of the minimal left ideal of C2k) are spintensors of
the following form:

sα1α2···αk =
∑

sα1 ⊗ sα2 ⊗ · · · ⊗ sαk , (21)

where summation is produced on all the index collections (α1 . . . αk), αi = 1,2. For the each

spinor sαi from (21) we have ′sα′
i = σ

α′
i

αi s
αi . Therefore, in general case we obtain
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′sα′
1α′

2···α′
k =

∑

σ
α′

1
α1 σ

α′
2

α2 · · ·σα′
k

αk sα1α2···αk . (22)

A representation (22) is called undotted spintensor representation of the proper Lorentz
group of the rank k.

Further, let
∗
C 2 be the Pauli algebra with the coefficients which are complex conjugate to

the coefficients of C2. Let us show that the algebra
∗
C 2 is derived from C2 under action of the

automorphism A → A� or antiautomorphism A → ˜A. Indeed, in virtue of an isomorphism
C2 	 C�3,0 a general element

A = a0e0 +
3
∑

i=1

aiei +
3
∑

i=1

3
∑

j=1

aij eij + a123e123

of the algebra C�3,0 can be written in the form

A = (a0 + ωa123
)

e0 + (a1 + ωa23
)

e1 + (a2 + ωa31
)

e2 + (a3 + ωa12
)

e3, (23)

where ω = e123. Since ω belongs to a center of the algebra C�3,0 (ω commutes with all the
basis elements) and ω2 = −1, then we can to suppose ω ≡ i. The action of the automorphism
� on the homogeneous element A of the degree k is defined by the formula A� = (−1)k A.
In accordance with this the action of the automorphism A → A�, where A is the element
(23), has the form

A −→ A� = −(a0 − ωa123
)

e0 − (a1 − ωa23
)

e1 − (a2 − ωa31
)

e2 − (a3 − ωa12
)

e3. (24)

Therefore, � : C2 → − ∗
C 2. Correspondingly, the action of the antiautomorphism A → ˜A

on the homogeneous element A of the degree k is defined by the formula ˜A = (−1)
k(k−1)

2 A.
Thus, for the element (23) we obtain

A −→ ˜A = (a0 − ωa123
)

e0 + (a1 − ωa23
)

e1 + (a2 − ωa31
)

e2 + (a3 − ωa12
)

e3, (25)

that is, ˜ : C2 → ∗
C 2. This allows us to define an algebraic analogue of the Wigner’s

representation doubling: C2 ⊕ ∗
C 2. Further, from (23) it follows that A = A1 + ωA2 =

(a0e0 + a1e1 + a2e2 + a3e3) + ω(a123e0 + a23e1 + a31e2 + a12e3). In general case, by virtue
of an isomorphism C2k 	 C�p,q , where C�p,q is a real Clifford algebra with a division ring
K 	 C, p − q ≡ 3,7 (mod 8), we have for the general element of C�p,q an expression
A = A1 + ωA2, here ω2 = e2

12...p+q = −1 and, therefore, ω ≡ i. Thus, from C2k under ac-
tion of the automorphism A → A� we obtain a general algebraic doubling

C2k ⊕ ∗
C 2k. (26)

The tensor product
∗
C 2 ⊗ ∗

C 2 ⊗ · · · ⊗ ∗
C 2 	 ∗

C 2r of the r algebras
∗
C 2 induces the tensor

product of the r spinspaces Ṡ2:

Ṡ2 ⊗ Ṡ2 ⊗ · · · ⊗ Ṡ2 = Ṡ2r .

Vectors of the spinspace Ṡ2r has the form

s α̇1α̇2···α̇r =
∑

s α̇1 ⊗ s α̇2 ⊗ · · · ⊗ s α̇r , (27)

where the each cospinor s α̇i from (27) is transformed by the rule ′s α̇′
i = σ

α̇′
i

α̇i
s α̇i . Therefore,
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′s α̇′
1α̇′

2···α̇′
r =

∑

σ
α̇′

1
α̇1

σ
α̇′

2
α̇2

· · ·σ α̇′
r

α̇r
s α̇1α̇2···α̇r . (28)

The representation (28) is called a dotted spintensor representation of the proper Lorentz
group of the rank r .

In general case we have a tensor product of the k algebras C2 and the r algebras
∗
C 2:

C2 ⊗ C2 ⊗ · · · ⊗ C2

⊗ ∗
C 2 ⊗ ∗

C 2 ⊗ · · · ⊗ ∗
C 2 	 C2k ⊗ ∗

C 2r ,

which induces a spinspace

S2 ⊗ S2 ⊗ · · · ⊗ S2

⊗

Ṡ2 ⊗ Ṡ2 ⊗ · · · ⊗ Ṡ2 = S2k+r

with the vectors

sα1α2···αkα̇1α̇2···α̇r =
∑

sα1 ⊗ sα2 ⊗ · · · ⊗ sαk ⊗ s α̇1 ⊗ s α̇2 ⊗ · · · ⊗ s α̇r . (29)

In this case we have a natural unification of the representations (22) and (28):

′sα′
1α′

2···α′
k
α̇′

1α̇′
2···α̇′

r =
∑

σ
α′

1
α1 σ

α′
2

α2 · · ·σα′
k

αk σ
α̇′

1
α̇1

σ
α̇′

2
α̇2

· · ·σ α̇′
r

α̇r
sα1α2···αkα̇1α̇2···α̇r . (30)

So, a representation (30) is called a spintensor representation of the proper Lorentz group
of the rank (k, r).

Further, let g → Tg be an arbitrary linear representation of the proper orthochronous
Lorentz group G+ = SO0(1,3) and let Ai (t) = Tai (t) be an infinitesimal operator corre-
sponding to the rotation ai(t) ∈ G+. Analogously, let Bi (t) = Tbi (t), where bi(t) ∈ G+ is
the hyperbolic rotation. The operators Ai and Bi satisfy to the following relations:

[A1,A2] = A3, [A2,A3] = A1, [A3,A1] = A2,

[B1,B2] = −A3, [B2,B3] = −A1, [B3,B1] = −A2,

[A1,B1] = 0, [A2,B2] = 0, [A3,B3] = 0,

[A1,B2] = B3, [A1,B3] = −B2,

[A2,B3] = B1, [A2,B1] = −B3,

[A3,B1] = B2, [A3,B2] = −B1.

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(31)

Denoting I23 = A1, I31 = A2, I12 = A3, and I01 = B1, I02 = B2, I03 = B3 we write the relations
(31) in a more compact form:

[

Iμν, Iλρ
]= δμρ Iλν + δνλIμρ − δνρ Iμλ − δμλIνρ.

As is known [21], finite-dimensional (spinor) representations of the group SO0(1,3) in
the space of symmetrical polynomials Sym(k,r) have the following form:

Tgq(ξ, ξ) = (γ ξ + δ)l0+l1−1(γ ξ + δ)
l0−l1+1

q

(

αξ + β

γ ξ + δ
; αξ + β

γ ξ + δ

)

, (32)

where k = l0 + l1 − 1, r = l0 − l1 + 1, and the pair (l0, l1) defines some representation of the
group SO0(1,3) in the Gel’fand-Naimark basis:

H3ξkν = mξkν,

H+ξkν =√(k + ν + 1)(k − ν)ξk,ν+1,

H−ξkν =√(k + ν)(k − ν + 1)ξk,ν−1,
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F3ξkν = Cl

√

k2 − ν2ξk−1,ν − Alνξk,ν − Ck+1

√

(k + 1)2 − ν2ξk+1,ν ,

F+ξkν = Ck

√

(k − ν)(k − ν − 1)ξk−1,ν+1 − Ak

√

(k − ν)(k + ν + 1)ξk,ν+1 +
+ Ck+1

√

(k + ν + 1)(k + ν + 2)ξk+1,ν+1,

F−ξkν = −Ck

√

(k + ν)(k + ν − 1)ξk−1,ν−1 − Ak

√

(k + ν)(k − ν + 1)ξk,ν−1 −
− Ck+1

√

(k − ν + 1)(k − ν + 2)ξk+1,ν−1,

Ak = il0l1
k(k + 1)

, Ck = i
k

√

(k2 − l2
0)(k

2 − l2
1)

4k2 − 1
, (33)

ν = −k,−k + 1, . . . , k − 1, k,

k = l0 , l0 + 1, . . . ,

where l0 is positive integer or half-integer number, l1 is an arbitrary complex number. These
formulae define a finite–dimensional representation of the group SO0(1,3) when l2

1 = (l0 +
p)2, p is some natural number. In the case l2

1 �= (l0 + p)2 we have an infinite-dimensional
representation of SO0(1,3). The operators H3, H+, H−, F3, F+, F− are

H+ = iA1 − A2, H− = iA1 + A2, H3 = iA3,

F+ = iB1 − B2, F− = iB1 + B2, F3 = iB3.

Let us consider the operators

Xl = 1

2
i(Al + iBl ), Yl = 1

2
i(Al − iBl ),

(l = 1,2,3).

(34)

Using the relations (31), we find that

[Xk,Xl] = iεklmXm, [Yl ,Ym] = iεlmnYn, [Xl ,Ym] = 0. (35)

Further, introducing generators of the form

X+ = X1 + iX2, X− = X1 − iX2,

Y+ = Y1 + iY2, Y− = Y1 − iY2,

}

(36)

we see that in virtue of commutativity of the relations (35) a space of an irreducible finite–
dimensional representation of the group SL(2,C) can be spanned on the totality of (2l +
1)(2l̇ + 1) basis vectors |l,m; l̇, ṁ〉, where l,m, l̇, ṁ are integer or half–integer numbers,
−l ≤ m ≤ l, −l̇ ≤ ṁ ≤ l̇. Therefore,

X−|l,m; l̇, ṁ〉 =√(l + m)(l − m + 1)|l,m − 1, l̇, ṁ〉 (m > −l),

X+|l,m; l̇, ṁ〉 =√(l − m)(l + m + 1)|l,m + 1; l̇, ṁ〉 (m < l),

X3|l,m; l̇, ṁ〉 = m|l,m; l̇, ṁ〉,
Y−|l,m; l̇, ṁ〉 =

√

(l̇ + ṁ)(l̇ − ṁ + 1)|l,m; l̇, ṁ − 1〉 (ṁ > −l̇),

Y+|l,m; l̇, ṁ〉 =
√

(l̇ − ṁ)(l̇ + ṁ + 1)|l,m; l̇, ṁ + 1〉 (ṁ < l̇),

Y3|l,m; l̇, ṁ〉 = ṁ|l,m; l̇, ṁ〉.

(37)
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From the relations (35) it follows that each of the sets of infinitesimal operators X and Y
generates the group SU(2) and these two groups commute with each other. Thus, from the
relations (35) and (37) it follows that the group SL(2,C), in essence, is equivalent locally
to the group SU(2) ⊗ SU(2). In contrast to the Gel’fand–Naimark representation for the
Lorentz group [21, 36], which does not find a broad application in physics, a representation
(37) is a most useful in theoretical physics (see, for example, [1, 41, 42, 44]). This repre-
sentation for the Lorentz group was first given by Van der Waerden in [63]. It should be
noted here that the representation basis, defined by the formulae (34)–(37), has an evident
physical meaning. For example, in the case of (1,0) ⊕ (0,1)–representation space there is
an analogy with the photon spin states. Namely, the operators X and Y correspond to the
right and left polarization states of the photon. The following relations between generators
Y±, X±, Y3, X3 and H±, F±, H3, F3 define a relationship between the Van der Waerden and
Gel’fand-Naimark bases:

Y+ = −1

2
(F+ + iH+), X+ = 1

2
(F+ − iH+),

Y− = −1

2
(F− + iH−), X− = 1

2
(F− − iH−),

Y3 = −1

2
(F3 + iH3), X3 = 1

2
(F3 − iH3).

The relation between the numbers l0, l1 and the number l (the weight of representation in
the basis (37)) is given by the following formula:

(l0, l1) = (l, l + 1).

Whence it immediately follows that

l = l0 + l1 − 1

2
. (38)

As is known [21], if an irreducible representation of the proper Lorentz group SO0(1,3) is
defined by the pair (l0, l1), then a conjugated representation is also irreducible and is defined
by a pair ±(l0,−l1). Therefore,

(l0, l1) = (−l̇, l̇ + 1).

Thus,

l̇ = l0 − l1 + 1

2
. (39)

Further, representations τ s1,s2 and τ s′
1,s′

2
are called interlocking irreducible representa-

tions of the Lorentz group, that is, such representations that s ′
1 = s1 ± 1

2 , s ′
2 = s2 ± 1

2 [20].
The two most full schemes of the interlocking irreducible representations of the Lorentz
group (Gel’fand-Yaglom chains) for integer and half-integer spins are shown on Figs. 1
and 2. As follows from Fig. 1 the simplest field is the scalar field

(0,0).

This field is described by the Fock-Klein-Gordon equation. In its turn, the simplest field
from the Fermi-scheme (Fig. 2) is the electron-positron (spinor) field corresponding to the
following interlocking scheme:

(

1

2
,0

)

↔
(

0,
1

2

)

.
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(s,0) · · ·

...

(2,0) · · ·
(

s + 2

2
,
s − 2

2

)

· · ·

(1,0)

(

3

2
,

1

2

)

· · ·
(

s + 1

2
,
s − 1

2

)

· · ·

(0,0)

(

1

2
,

1

2

)

(1,1) · · ·
(

s

2
,
s

2

)

· · ·

(0,1)

(

1

2
,

3

2

)

· · ·
(

s − 1

2
,
s + 1

2

)

· · ·

(0,2) · · ·
(

s − 2

2
,
s + 2

2

)

· · ·

...

(0, s) · · ·
Fig. 1 Interlocking representation scheme for the fields of integer spin (Bose-scheme)

This field is described by the Dirac equation. Further, the next field from the Bose-scheme
(Fig. 1) is a photon field (Maxwell field) defined within the interlocking scheme

(1,0) ↔
(

1

2
,

1

2

)

↔ (0,1).

This interlocking scheme leads to the Maxwell equations. The fields (1/2,0)⊕ (0,1/2) and
(1,0) ⊕ (0,1) (Dirac and Maxwell fields) are particular cases of fields of the type (l,0) ⊕
(0, l). Wave equations for such fields and their general solutions were found in the works
[55, 57, 60].

It is easy to see that the interlocking scheme, corresponded to the Maxwell field, contains
the field of tensor type:

(

1

2
,

1

2

)

.

Further, the next interlocking scheme (see Fig. 2)
(

3

2
,0

)

↔
(

1,
1

2

)

↔
(

1

2
,1

)

↔
(

0,
3

2

)

,
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(s,0) · · ·

...

(

3

2
,0

)

· · ·
(

2s + 3

4
,

2s − 3

4

)

· · ·

(

1

2
,0

) (

1,
1

2

)

· · ·
(

2s + 1

4
,

2s − 1

4

)

· · ·

(

0,
1

2

) (

1

2
,1

)

· · ·
(

2s − 1

4
,

2s + 1

4

)

· · ·

(

0,
3

2

)

· · ·
(

2s − 3

4
,

2s + 3

4

)

· · ·

...

(0, s) · · ·
Fig. 2 Interlocking representation scheme for the fields of half-integer spin (Fermi-scheme)

corresponding to the Pauli-Fierz equations [19], contains a chain of the type
(

1,
1

2

)

↔
(

1

2
,1

)

.

In such a way we come to wave equations for the fields ψ(α) = 〈x,g |ψ〉 of tensor type
(l1, l2) ⊕ (l2, l1). Wave equations for such fields and their general solutions were found in
the work [62].

A relation between the numbers l0, l1 of the Gel’fand-Naimark representation (33) and
the number k of the factors C2 in the product C2 ⊗ C2 ⊗ · · · ⊗ C2 is given by the following
formula:

(l0, l1) =
(

k

2
,
k

2
+ 1

)

.

Hence it immediately follows that k = l0 + l1 − 1. Thus, we have a complex representa-
tion Cl0+l1−1,0 of the group Spin+(1,3) in the spinspace S2k . If the representation Cl0+l1−1,0

is reducible, then the space S2k is decomposed into a direct sum of irreducible subspaces,
that is, it is possible to choose in S2k such a basis, in which all the matrices take a block-
diagonal form. Then the field ψ(α) is reduced to some number of the fields corresponding
to irreducible representations of the group Spin+(1,3), each of which is transformed inde-
pendently from the other, and the field ψ(α) in this case is a collection of the fields with
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more simple structure. It is obvious that these more simple fields correspond to irreducible
representations C.

Analogously, a relation between the numbers l0, l1 of the Gel’fand-Naimark representa-

tion (33) and the number r of the factors
∗
C 2 in the product

∗
C 2 ⊗ ∗

C 2 ⊗ · · · ⊗ ∗
C 2 is given by

the following formula:

(−l0, l1) =
(

− r

2
,
r

2
+ 1

)

.

Hence it immediately follows that r = l0 − l1 + 1. Thus, we have a complex representation
C0,l0−l1+1 of Spin+(1,3) in the spinspace S2r .

As is known [21, 36, 41], a system of irreducible finite-dimensional representations of
the group G+ is realized in the space Sym(k,r) ⊂ S2k+r of symmetric spintensors. The dimen-
sionality of Sym(k,r) is equal to (k +1)(r +1). A representation of the group G+, defined by

such spintensors, is irreducible and denoted by the symbol D(l,l̇)(σ ), where 2l = k, 2l̇ = r ,
the numbers l and l̇ are integer or half-integer. In general case, the field ψ(α) is the field of
type (l, l̇). As a rule, in physics there are two basic types of the fields:

(1) The field of type (l,0). The structure of this field (or the field (0, l̇)) is described by
the representation D(l,0)(σ ) (D(0,l̇)(σ )), which is realized in the space S2k (S2r ). At

this point, the algebra C2k 	 C2 ⊗ C2 ⊗ · · · ⊗ C2 (correspondingly,
∗
C 2k 	 ∗

C 2 ⊗ ∗
C 2 ⊗

· · · ⊗ ∗
C 2) is associated with the field of the type (l,0) (correspondingly, (0, l̇)). The

trivial case l = 0 corresponds to a Pauli-Weisskopf field describing the scalar particles.
Further, at l = l̇ = 1/2 we have a Weyl field describing the neutrino. At this point the
antineutrino is described by a fundamental representation D(1/2,0)(σ ) = σ of the group
G+ and the algebra C2. Correspondingly, the neutrino is described by a conjugated

representation D(0,1/2)(σ ) and the algebra
∗
C 2. In essence, one can say that the algebra

C2 (
∗
C 2) is the basic building block, from which other physical fields built by means of

direct sum or tensor product. One can say that this situation looks like the de Broglie
fusion method [8].

(2) The field of type (l,0) ⊕ (0, l̇). The structure of this field admits a space inversion and,
therefore, in accordance with a Wigner’s doubling [64] is described by a representation
D(l,0) ⊕ D(0,l̇) of the group G+. This representation is realized in the space S22k . The

Clifford algebra, related with this representation, is a direct sum C2k ⊕ ∗
C 2k 	 C2 ⊗

C2 ⊗ · · · ⊗ C2
⊕

∗
C 2 ⊗ ∗

C 2 ⊗ · · · ⊗ ∗
C 2. In the simplest case l = 1/2 we have bispinor

(electron–positron) Dirac field (1/2,0)⊕(0,1/2) with the algebra C2 ⊕ ∗
C 2. It should be

noted that the Dirac algebra C4, considered as a tensor product C2 ⊗C2 (or C2 ⊗ ∗
C 2) in

accordance with (21) (or (29)) gives rise to spintensors sα1α2 (or sα1α̇1 ), but it contradicts
with the usual definition of the Dirac bispinor as a pair (sα1 , s α̇1). Therefore, the Clifford

algebra, associated with the Dirac field, is C2 ⊕ ∗
C 2, and a spinspace of this sum in virtue

of unique decomposition S2 ⊕ Ṡ2 = S4 is a spinspace of C4.
Spinor representations of the units of Cn we will define in the Brauer-Weyl represen-

tation [7]:
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E1 = σ1 ⊗ 12 ⊗ · · · ⊗ 12 ⊗ 12 ⊗ 12,

E2 = σ3 ⊗ σ1 ⊗ 12 ⊗ · · · ⊗ 12 ⊗ 12,

E3 = σ3 ⊗ σ3 ⊗ σ1 ⊗ 12 ⊗ · · · ⊗ 12,

· · ·
Em = σ3 ⊗ σ3 ⊗ · · · ⊗ σ3 ⊗ σ1,

Em+1 = σ2 ⊗ 12 ⊗ · · · ⊗ 12,

Em+2 = σ3 ⊗ σ2 ⊗ 12 ⊗ · · · ⊗ 12,

· · ·
E2m = σ3 ⊗ σ3 ⊗ · · · ⊗ σ3 ⊗ σ2,

(40)

where

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i

i 0

)

, σ3 =
(

i 0
0 −i

)

are spinor representations of the units of C2, 12 is the unit 2 × 2 matrix.
(3) Tensor fields (l′, l′′) ⊕ (l̇′′, l̇′). The fields (l′, l′′) and (l̇′′, l̇′) are defined within the arbi-

trary spin chains (see Figs. 1 and 2). Universal coverings of these spin chains are con-
structed within the representations Cl0+l1−1,l0−l1+1 and Cl0−l1+1,l0+l1−1 of Spin+(1,3) in

the spinspaces S2k+r associated with the algebra C2 ⊗ C2 ⊗ · · · ⊗ C2
⊗

∗
C 2 ⊗ ∗

C 2 ⊗
· · · ⊗ ∗

C 2. A relation between the numbers l0, l1 of the Gel’fand-Naimark basis (33) and

the numbers k and r of the factors C2 and
∗
C 2 is given by the following formula:

(l0, l1) =
(

k − r

2
,
k + r

2
+ 1

)

.

Finally, extended automorphisms groups Ext(C2k ⊕ ∗
C 2k) and Ext(C2k ⊗ ∗

C 2k) (correspond-
ingly, CPT groups) can be derived via the same procedure that described in detail in our
previous work [56]. �

4 The CPT Group of the Spin-1/2 Field

In accordance with the general Fermi-scheme (Fig. 1) of the interlocking representations of
G+ the field (1/2,0) ⊕ (0,1/2) is defined within the following chain:

(

1

2
,0

)

↔
(

0,
1

2

)

.

A double covering of the representation associated with the field (1/2,0) ⊕ (0,1/2) is re-
alized in the spinspace S2 ⊕ Ṡ2. This spinspace is a space of the representation C1,0 ⊕ C0,−1

of Spin+(1,3). Further, the algebra C2 ⊕ ∗
C 2 corresponds to C1,0 ⊕ C0,−1 and the auto-

morphisms of this algebra are realized within the representations of Pin(1,3), that is, they
are outer automorphisms with respect to the transformations of the group Spin+(1,3). The
spinor representations of the automorphisms, defined on the spinspace S2 ⊕ Ṡ2, are con-

structed via the Brauer-Weyl representation (40). The spinbasis of the algebra C2 ⊕ ∗
C 2 is

defined by the following 4 × 4 matrices:

E1 = σ1 ⊗ 12 =
(

0 12

12 0

)

, E2 = σ3 ⊗ σ1 =
(

iσ1 0
0 −iσ1

)

,
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Table 4 The multiplication table of the CPT/Z2 group of the field (1/2,0) ⊕ (0,1/2)

14 E1234 E34 E12 E23 E14 E24 E13

14 14 E1234 E34 E12 E23 E14 E24 E13

E1234 E1234 14 E12 E34 E14 E23 E13 E24

E34 E34 −E12 14 E1234 −E24 −E13 −E23 −E14

E12 E12 E34 E1234 14 −E13 −E24 −E14 −E23

E23 E23 E14 E24 E13 14 E1234 E34 E12

E14 E14 E23 E13 E24 E1234 14 E12 E34

E24 E24 E13 E23 E14 −E34 −E12 −14 −E1234

E13 E13 E24 E14 E23 −E12 −E34 −E1234 −14

E3 = σ2 ⊗ 12 =
(

0 −i12

i12

)

, E4 = σ3 ⊗ σ2 =
(

iσ2 0
0 −iσ2

)

. (41)

In accordance with (7) we have for the matrix of the automorphism A → A� the following
expression:

W = E1 E2 E3 E4 = E1234 ∼ P.

Further, it is easy to see that among the matrices of the basis (41) there are symmetric and
skewsymmetric matrices:

E T
1 = E1, E T

2 = E2, E T
3 = −E3, E T

4 = −E4.

In accordance with˜A = EATE−1 (see (8)) we have

E1 = EE1E−1, E2 = EE2E−1, E3 = −EE3E−1, E4 = −EE4E−1.

Hence it follows that E commutes with E1 and E2 and anticommutes with E3 and E4, that
is, E = E3 E4 ∼ T . From the definition C = EW (see (9)) we find that the matrix of the
antiautomorphism A → ˜A� has the form C = E1 E2 ∼ PT . The basis (41) contains both
complex and real matrices:

E ∗
1 = E1, E ∗

2 = −E2, E ∗
3 = −E3, E ∗

4 = E4.

Therefore, from A = �A∗�−1 (see (10)) we have

E1 = �E1�
−1, E2 = −�E2�

−1, E3 = −�E3�
−1, E4 = �E4�

−1.

From the latter relations we obtain � = E2 E3 ∼ C. Further, in accordance with K = �W (the
definition (11)) for the matrix of the pseudoautomorphism A → A� we have K = E1 E4 ∼
CP. Finally, for the pseudoantiautomorphisms A → ˜A and A → ˜A� from the definitions
S = �E and F = �C (see (12) and (13)) it follows that S = E2 E3 E3 E4 = E2 E4 ∼ CT and
F = E2 E3 E1 E2 = E1 E3 ∼ CPT . Thus, we come to the following automorphism group:

Ext(C4) = {I,W,E,C,�,K,S,F} 	 {1,P ,T ,PT,C,CP,CT,CPT}
	 {14, E1 E2 E3 E4, E3 E4, E1 E2, E2 E3, E1 E4, E2 E4, E1 E4}.

The multiplication table of this group is shown in Table 4. From this table it fol-
lows that Ext(C4) 	 D4, and for the CPT group we have the following isomorphism:
C+,+,+,+,+,−,− 	 D4 ⊗ Z2.
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5 The CPT Group of the Spin-1 Field

In accordance with the general Bose-scheme of the interlocking representations of G+ (see
Fig. 1), the field (1,0) ⊕ (0,1) is defined within the following interlocking scheme:

(1,0) ↔
(

1

2
,

1

2

)

↔ (0,1).

A double covering of the representation, associated with the field (1,0) ⊕ (0,1), is realized
in the spinspace

S2 ⊗ S2

⊕

Ṡ2 ⊗ Ṡ2, (42)

This spinspace is a space of the representation C2,0 ⊕ C0,−2 of the group Spin+(1,3). The
algebra

C2 ⊗ C2

⊕ ∗
C 2 ⊗ ∗

C 2 (43)

is associated with C2,0 ⊕ C0,−2. The automorphisms of this algebra are realized within rep-
resentations of the group Pin(1,3), that is, they are outer automorphisms with respect trans-
formations of the group Spin+(1,3). Spinor representations of the automorphisms, defined
on the spinspace (42), are constructed via the Brauer-Weyl representation (40). A spinbasis
of the algebra (43) is defined by the following 8 × 8 matrices:

E1 = σ1 ⊗ 12 ⊗ 12 =
⎡

⎢

⎣

0 0 12 0
0 0 0 12

12 0 0 0
0 12 0 0

⎤

⎥

⎦
,

E2 = σ3 ⊗ σ1 ⊗ 12 =
⎡

⎢

⎣

0 i11 0 0
i12 0 0 0
0 0 0 −i12

0 0 −i12 0

⎤

⎥

⎦
,

E3 = σ3 ⊗ σ3 ⊗ σ1 =
⎡

⎢

⎣

−σ1 0 0 0
0 σ1 0 0
0 0 σ1 0
0 0 0 −σ1

⎤

⎥

⎦
,

E4 = σ2 ⊗ 12 ⊗ 12 =
⎡

⎢

⎣

0 0 −i12 0
0 0 0 −i12

i12 0 0 0
0 i12 0 0

⎤

⎥

⎦
,

E5 = σ3 ⊗ σ2 ⊗ 12 =
⎡

⎢

⎣

0 12 0 0
−12 0 0 0

0 0 0 −12

0 0 12 0

⎤

⎥

⎦
,

E6 = σ3 ⊗ σ3 ⊗ σ2 =
⎡

⎢

⎣

−σ2 0 0 0
0 σ2 0 0
0 0 σ2 0
0 0 0 −σ2

⎤

⎥

⎦
.
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Using these matrices, we construct CPT group for the field (1,0)⊕(0,1). At first, the matrix
of the automorphism A → A� has the form

W = E1 E2 E3 E4 E5 E6 = E123456 ∼ P.

Further, since

E T
1 = E1, E T

2 = E2, E T
3 = E3, E T

4 = −E4, E T
5 = −E5, E T

6 = −E6,

then in accordance with˜A = EATE−1 we have

E1 = EE1E−1, E2 = EE2E−1, E3 = EE3E−1, E4 = −EE4E−1,

E5 = −EE5E−1, E6 = −EE6E−1.

Hence it follows that E commutes with E1, E2, E3 and anticommutes with E4, E5, E6, that
is, E = E456 ∼ T . From the definition C = EW we find that a matrix of the antiautomor-
phism A →˜A� has the form C = E123 ∼ PT . The basis {E1, E2, E3, E4, E5, E6} contains both
complex and real matrices:

E ∗
1 = E1, E ∗

2 = −E2, E ∗
3 = E3, E ∗

4 = −E4, E ∗
5 = E5, E ∗

6 = −E6.

Therefore, from A = �A∗�−1 we have

E1 = �E1�
−1, E2 = −�E2�

−1, E3 = �E3�
−1, E4 = −�E4�

−1,

E5 = �E5�
−1, E6 = −�E6�

−1.

From the latter relations we obtain � = E246 ∼ C. Further, in accordance with K = �W
for the matrix of the pseudoautomorphism A → A� we have K = E135 ∼ CP . Finally, for

the pseudoantiautomorphisms A → ˜A, A → ˜A� from the definitions S = �E, F = �C it
follows that S = E25 ∼ CT , F = E1346 ∼ CPT . Thus, we come to the following automorphism
group:

Ext(C6) 	 {I,W,E,C,�,K,S,F} 	 {1,P ,T ,PT,C,CP,CT,CPT}
	 {18, E123456, E456, E123, E246, E135, E25, E1346}.

The multiplication table of this group is given in Table 5. From this table it fol-
lows that Ext(C6) 	 D4, and for the CPT group we have the following isomorphism:
C−,+,+,+,+,−,+ 	 D4 ⊗ Z2.

6 The CPT Group of the Spin-3/2 Field

In accordance with the general Fermi-scheme of the interlocking representations of G+ (see
Fig. 2), the field (3/2,0) ⊕ (0,3/2) is defined within the following interlocking scheme:

(

3

2
,0

)

↔
(

1,
1

2

)

↔
(

1

2
,1

)

↔
(

0,
3

2

)

.

A double covering of the representation, associated with the field (3/2,0) ⊕ (0,3/2), is
realized in the spinspace

S2 ⊗ S2 ⊗ S2

⊕

Ṡ2 ⊗ Ṡ2 ⊗ Ṡ2. (44)



Int J Theor Phys (2012) 51:1453–1481 1473

Table 5 The multiplication table of the CPT/Z2 group of the field (1,0) ⊕ (0,1)

18 E123456 E456 E123 E246 E135 E25 E1346

18 18 E123456 E456 E123 E246 E135 E25 E1346

E123456 E123456 −18 E123 −E456 −E135 E246 −E1346 E25

E456 E456 −E123 18 −E123456 −E25 E1346 −E246 E135

E123 E123 E456 E123456 18 E1346 E25 E135 E246

E246 E246 E135 E25 E1346 18 E123456 E456 E123

E135 E135 −E246 E1346 −E25 −E123456 18 −E123 E456

E25 E25 −E1346 E246 −E135 −E456 E123 −18 E123456

E1346 E1346 E25 E135 E246 E123 E456 E123456 18

This spinspace is a space of the representation C3,0 ⊕ C0,−3 of the group Spin+(1,3). The
algebra

C2 ⊗ C2 ⊗ C2

⊕ ∗
C 2 ⊗ ∗

C 2 ⊗ ∗
C 2 (45)

is associated with the representation C3,0 ⊕ C0,−3. Spinor representations of the automor-
phisms, defined on the spinspace (44), are constructed via the Brauer-Weyl representation
(40). A spinbasis of the algebra (45) is defined by the following 16 × 16 matrices:

E1 = σ1 ⊗ 12 ⊗ 12 ⊗ 12 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 12 0 0 0
0 0 0 0 0 12 0 0
0 0 0 0 0 0 12 0
0 0 0 0 0 0 0 12

12 0 0 0 0 0 0 0
0 12 0 0 0 0 0 0
0 0 12 0 0 0 0 0
0 0 0 12 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

E2 = σ3 ⊗ σ1 ⊗ 12 ⊗ 12 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 i12 0 0 0 0 0
0 0 0 i12 0 0 0 0

i12 0 0 0 0 0 0 0
0 i12 0 0 0 0 0 0
0 0 0 0 0 0 −i12 0
0 0 0 0 0 0 0 −i12

0 0 0 0 −i12 0 0 0
0 0 0 0 0 −i12 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

E3 = σ3 ⊗ σ3 ⊗ σ1 ⊗ 12 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 −12 0 0 0 0 0 0
−12 0 0 0 0 0 0 0

0 0 0 12 0 0 0 0
0 0 12 0 0 0 0 0
0 0 0 0 0 12 0 0
0 0 0 0 12 0 0 0
0 0 0 0 0 0 0 −12

0 0 0 0 0 0 −12 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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E4 = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−iσ1 0 0 0 0 0 0 0
0 iσ1 0 0 0 0 0 0
0 0 iσ1 0 0 0 0 0
0 0 0 −iσ1 0 0 0 0
0 0 0 0 iσ1 0 0 0
0 0 0 0 0 −iσ1 0 0
0 0 0 0 0 0 −iσ1 0
0 0 0 0 0 0 0 iσ1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

E5 = σ2 ⊗ 12 ⊗ 12 ⊗ 12 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 −i12 0 0 0
0 0 0 0 0 −i12 0 0
0 0 0 0 0 0 −i12 0
0 0 0 0 0 0 0 −i12

i12 0 0 0 0 0 0 0
0 i12 0 0 0 0 0 0
0 0 i12 0 0 0 0 0
0 0 0 i12 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

E6 = σ3 ⊗ σ2 ⊗ 12 ⊗ 12 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 i12 0 0 0 0 0
0 0 0 i12 0 0 0 0

−i12 0 0 0 0 0 0 0
0 −i12 0 0 0 0 0 0
0 0 0 0 0 0 −i12 0
0 0 0 0 0 0 0 −i12

0 0 0 0 i12 0 0 0
0 0 0 0 0 i12 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

E7 = σ3 ⊗ σ3 ⊗ σ2 ⊗ 12 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 i12 0 0 0 0 0 0
−i12 0 0 0 0 0 0 0

0 0 0 −i12 0 0 0 0
0 0 i12 0 0 0 0 0
0 0 0 0 0 −i12 0 0
0 0 0 0 i12 0 0 0
0 0 0 0 0 0 0 i12

0 0 0 0 0 0 −i12 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

E8 = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−iσ2 0 0 0 0 0 0 0
0 iσ2 0 0 0 0 0 0
0 0 iσ2 0 0 0 0 0
0 0 0 −iσ2 0 0 0 0
0 0 0 0 iσ2 0 0 0
0 0 0 0 0 −iσ2 0 0
0 0 0 0 0 0 −iσ2 0
0 0 0 0 0 0 0 iσ2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Using this spinbasis, we construct CPT group for the field (3/2,0) ⊕ (0,3/2). At first, the
matrix of the automorphism A → A� has the form

W = E1 E2 E3 E4 E5 E6 E7 E8 = E12345678 ∼ P.

Further, since
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Table 6 The multiplication table of the CPT/Z2 group of the field (3/2,0) ⊕ (0,3/2)

116 W E5678 E1234 E24567 E138 E248 E13567

116 116 W E5678 E1234 E24567 E138 E248 E13567

W W −116 −E1234 E5678 E138 −E24567 −E13567 −E248

E5678 E5678 −E1234 −116 W E248 −E13567 −E24567 E138

E1234 E1234 E5678 W 116 E13567 E248 E138 E24567

E24567 E24567 −E138 −E248 E13567 116 −W −E5678 E1234

E138 E138 E24567 E13567 E248 W 116 E1234 E5678

E248 E248 E13567 E24567 E138 E5678 E1234 116 W

E13567 E13567 −E248 −E138 E24567 E1234 −E5678 −W 116

E T
1 = E1, E T

2 = E2, E T
3 = E3, E T

4 = E4, E T
5 = −E5,

E T
6 = −E6, E T

7 = −E7, E T
8 = −E8,

then in accordance with˜A = EATE−1 we have

E1 = EE1E−1, E2 = EE2E−1, E3 = EE3E−1, E4 = EE4E−1,

E5 = −EE5E−1, E6 = −EE6E−1, E7 = −EE7E−1, E8 = −EE8E−1.

Hence it follows that E commutes with E1, E2, E3, E4 and anticommutes with E5, E6, E7, E8,
that is, E = E5678 ∼ T . From the definition C = EW we find that a matrix of the antiauto-
morphism A → ˜A� has the form C = E1234 ∼ PT . The basis {E1, E2, E3, E4, E5, E6, E7, E8}
contains both complex and real matrices:

E ∗
1 = E1, E ∗

2 = −E2, E ∗
3 = E3, E ∗

4 = −E4, E ∗
5 = −E5,

E ∗
6 = −E6, E ∗

7 = −E7, E ∗
8 = E8.

Therefore, from A = �A∗�−1 we have

E1 = �E1�
−1, E2 = −�E2�

−1, E3 = �E3�
−1, E4 = −�E4�

−1,

E5 = −�E5�
−1, E6 = −�E6�

−1, E7 = −�E7�
−1, E8 = �E8�

−1.

From the latter relations we obtain � = E24567 ∼ C. Further, in accordance with K = �W
for the matrix of the pseudoautomorphism A → A� we have K = E138 ∼ CP. Finally, for

the pseudoantiautomorphisms A → ˜A and A → ˜A� from the definitions S = �E and F =
�C it follows that S = E248 ∼ CT , F = E13567 ∼ CPT . Thus, we come to the following
automorphism group:

Ext(C8) 	 {I,W,E,C,�,K,S,F} 	 {1,P ,T ,PT,C,CP,CT,CPT}
	 {116, E12345678, E5678, E1234, E24567, E138, E246, E13567}.

The multiplication table of this group is given in Table 6. From this table it fol-
lows that Ext(C8) 	 D4, and for the CPT group we have the following isomorphism:
C−,−,+,+,+,+,+ 	 D4 ⊗ Z2.
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7 CPT Groups of the Tensor Fields

As it is shown in Sect. 3 double coverings of the representations associated with the tensor

fields are constructed within the product C2 ⊗C2 ⊗· · ·⊗C2
⊗

∗
C 2 ⊗ ∗

C 2 ⊗· · ·⊗ ∗
C 2, where

we have k algebras C2 and r algebras
∗
C 2. A relation between the number l (a weight of the

representation in the Van der Waerden basis (37)) and the numbers k and r is given by the
formula

l = k − r

2
. (46)

It is easy to see that a central row in the scheme shown on the Fig. 1,

(0,0)

(

1

2
,

1

2

)

(1,1) · · ·
(

s

2
,
s

2

)

· · · (47)

in virtue of (46) is equivalent to the following row:

[0,0] [0,0] [0,0] · · · [0,0] · · ·
Analogously, the row shown on the Fig. 2,

(

1

2
,0

) (

1,
1

2

)

· · ·
(

2s + 1

4
,

2s − 1

4

)

· · · (48)

is equivalent to

[

1

2
,0

] [

1

2
,0

]

· · ·
[

1

2
,0

]

· · ·

Therefore, all the representations of Spin+(1,3) can be divided on the equivalent rows
which we show on Figs. 3 and 4. On the other hand, the row (47) corresponds to the follow-
ing chain of the algebras:

1 −→ C2 ⊗ ∗
C 2 −→ C2 ⊗ C2

⊗ ∗
C 2 ⊗ ∗

C 2 −→ · · ·
−→ C2 ⊗ C2 ⊗ · · · ⊗ C2

︸ ︷︷ ︸

s times

⊗ ∗
C 2 ⊗ ∗

C 2 ⊗ · · · ⊗ ∗
C 2

︸ ︷︷ ︸

s times

−→ · · · .

In its turn, the row (48) corresponds to the chain

C2 −→C2 ⊗ C2

⊗ ∗
C 2 −→ · · · −→ C2 ⊗ C2 ⊗ · · · ⊗ C2

︸ ︷︷ ︸

(2s+1)/2 times

⊗ ∗
C 2 ⊗ ∗

C 2 ⊗ · · · ⊗ ∗
C 2

︸ ︷︷ ︸

(2s−1)/2 times

−→ · · · .

Moreover, these chains induces the following chains of the spinspaces:

S0 −→ S4 −→ S16 −→ · · · −→ S22s −→ · · ·
and

S2 −→ S8 −→ · · · −→ S22s −→ · · · .
Thus, the row (47) (or (48)) induces a sequence of the fields of the spin 0 (or 1/2) realized in
the spinspaces of different dimensions. In general case presented on Figs. 3 and 4 we have
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[s,0] · · ·

...

[2,0] · · · [2,0] · · ·

[1,0] [1,0] · · · [1,0] · · ·

[0,0] [0,0] [0,0] · · · [0,0] · · ·

[0,1] [0,1] · · · [0,1] · · ·

[0,2] · · · [0,2] · · ·

...

[0, s] · · ·
Fig. 3 Integer spin representations of the group Spin+(1,3)

sequences of the fields of the same spin realized in the different representation spaces of
Spin+(1,3). One can say that this situation corresponds to particles of the same spin with
different masses, like proton −→ electron −→ · · · (spin 1/2). With the aim to give more
detailed explanation for this statement let us consider a Gel’fand-Yaglom mass spectrum
formula [21]:

μ(l) = κ

l + 1
2

= 2κ

2l + 1
, (49)

where the mass μ(l) corresponds the spin l, κ is a constant. It is easy to see that the de-
nominator 2l + 1 in (49) is equal to a dimensionality of the representation space Sym(k,0)

corresponding to the field ψ(α) of type (l,0) (or (0, l̇) and Sym(0,r)). For the tensor fields
ψ(α) of type (ll̇) we have

μ(s) = κ

(k + 1)(r + 1)
, (50)

where s = |k − r|/2 is a spin of the field ψ(α). In this case, the denominator in (50) is
equal to a dimensionality of the representation space Sym(k,r) corresponding to the ten-
sor field. Mass spectrum formulas (49) and (50) give a relationship between dimensions of
the representation spaces of Spin+(1,3) and particle masses. From the formula (50) it fol-
lows directly that on the parallel rows presented on Figs. 3 and 4 we have particles of the
same spin with different masses. When l → ∞ (or (k + 1)(r + 1) → ∞) we come to par-
ticles with zero mass (like a photon). In this case, finite-dimensional representation spaces
Sym(k,0) and Sym(k,r) should be replaced by a Hilbert space, and such (massless) particles
should be described within principal series of infinite-dimensional representations of the
group Spin+(1,3).
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Fig. 4 Half-integer spin
representations of the group
Spin+(1,3)

[s,0] · · ·

...

[

3

2
,0

]

· · ·
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2
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]

· · ·

[

1

2
,0

] [

1

2
,0

]

· · ·
[

1

2
,0

]

· · ·

[

0,
1

2

] [

0,
1

2

]

· · ·
[

0,
1

2

]

· · ·

[

0,
3

2

]

· · ·
[

0,
3

2

]

· · ·

...

[0, s] · · ·

CPT groups of the tensor fields are constructed via the same procedure that considered
in Sects. 4–6. For example, the tensor field of the spin 1/2 corresponding to the interlocking
scheme

(

3

2
,1

)

↔
(

1,
3

2

)

(which is equivalent to (1/2,0) ⊕ (0,1/2)), is constructed within the algebra

C2 ⊗ C2 ⊗ C2

⊗ ∗
C 2

⊕ ∗
C 2 ⊗ ∗

C 2

⊗

C2 ⊗ C2 ⊗ C2. (51)

This algebra induces the spinspace

S2 ⊗ S2 ⊗ S2

⊗

Ṡ2 ⊗ Ṡ2

⊕

Ṡ2 ⊗ Ṡ2

⊗

S2 ⊗ S2 ⊗ S2 	 S64.

The spinbasis of the algebra (51) is defined by the following 64 × 64 matrices:

E1 = σ1 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12, E2 = σ3 ⊗ σ1 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12,

E3 = σ3 ⊗ σ3 ⊗ σ1 ⊗ 12 ⊗ 12 ⊗ 12, E4 = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ1 ⊗ 12 ⊗ 12,
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E5 = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ1 ⊗ 12, E6 = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ1,

E7 = σ2 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12, E8 = σ3 ⊗ σ2 ⊗ 12 ⊗ 12 ⊗ 12 ⊗ 12,

E9 = σ3 ⊗ σ3 ⊗ σ2 ⊗ 12 ⊗ 12 ⊗ 12, E10 = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ2 ⊗ 12 ⊗ 12,

E11 = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ2 ⊗ 12, E12 = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ2.

The extended automorphism group Ext(C12) can be derived from this spinbasis via the same
calculations that presented in the Sects. 4–6.

8 Summary

We have presented a group theoretical method for description of discrete symmetries of the
fields ψ(α) = 〈x,g |ψ〉, where x ∈ T4 and g ∈ Spin+(1,3), in terms of involutive automor-
phisms of the subgroup Spin+(1,3) 	 SU(2)⊗ SU(2). We have shown that an extended au-
tomorphism group Ext(Cn), where Cn is a complex Clifford algebra, lead to CPT groups of
the fields ψ(α) = 〈x,g |ψ〉 of any spin defined on the representation spaces (spinspaces) of
Spin+(1,3). We considered in detail CPT groups for the fields of the type (l,0)⊕ (0, l) (for
example, (1/2,0)⊕(0,1/2), (1,0)⊕(0,1) and (3/2,0)⊕(0,3/2)). Also we discussed CPT
groups for the fields of tensor type and their relations to particles of the same spin with differ-
ent masses. It would be interesting to consider extended automorphism groups Ext(C�p,q),
where C�p,q is a real Clifford algebra, defined on the real representations of Spin+(1,3).
It would be interesting also to consider CPT groups for the fields ψ(α) = 〈x,q|ψ〉 on
the de Sitter group, where x ∈ T5 and q ∈ Spin+(1,4) 	 Sp(1,1), and for the fields
ψ(α) = 〈x, c|ψ〉 on the conformal group, where x ∈ T6 and c ∈ Spin+(2,6) 	 SU(2,2).
Our next paper will be devoted to these questions.
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