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Abstract The problem of finding a covariant expression for the distribution and
conservation of gravitational energy–momentum dates to the 1910s. A suitably
covariant infinite-component localization is displayed, reflecting Bergmann’s real-
ization that there are infinitely many conserved gravitational energy–momenta.
Initially use is made of a flat background metric (or rather, all of them) or connec-
tion, because the desired gauge invariance properties are obvious. Partial gauge-
fixing then yields an appropriate covariant quantity without any background met-
ric or connection; one version is the collection of pseudotensors of a given type,
such as the Einstein pseudotensor, in every coordinate system. This solution to
the gauge covariance problem is easily adapted to any pseudotensorial expression
(Landau–Lifshitz, Goldberg, Papapetrou or the like) or to any tensorial expres-
sion built with a background metric or connection. Thus the specific functional
form can be chosen on technical grounds such as relating to Noether’s theorem
and yielding expected values of conserved quantities in certain contexts and then
rendered covariant using the procedure described here. The application to angular
momentum localization is straightforward. Traditional objections to pseudoten-
sors are based largely on the false assumption that there is only one gravitational
energy rather than infinitely many.
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1 Introduction

The problem of finding a covariant expression for the distribution and conserva-
tion of gravitational energy–momentum for General Relativity dates to the 1910s.J. B. Pitts University of Notre Dame 100 Malloy Hall Notre Dame, IN 46556, USA
jpitts@nd.edu
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Einstein took the requirement that the gravitational field equations alone entail
energy–momentum conservation as a criterion for finding his field equations in
his process of discovery [1; 2; 3; 4]; ironically, it was widely concluded that the
final theory lacked any local conservation law for energy–momentum. The equa-
tion

∇µ T µν = 0, (1)

though a consequence of Einstein’s equations, is a balance equation, not a con-
servation equation, because the covariant divergence of a rank 2 tensor (with
any index placement and density weight) cannot be written using a coordinate
divergence, as is required for integral conservation laws. Gravitational energy–
momentum has been reviewed on several occasions [5; 6; 7; 8]. While there is
no difficulty in writing down quantities satisfying local conservation laws (in the
sense of a coordinate divergence), there seem to be too many expressions with-
out the anticipated interconnections [9]. More specifically, it has been expected
that there ought to be a (10- or 16-component) tensor, geometric object, or other
suitably covariant expression that describes the local distribution of gravitational
energy–momentum, and yet evidently there is not one. Pseudotensorial answers go
back to the Einstein’s work in 1916 [10], while objections to them from Schrödinger
and from Bauer appeared in 1918 [11; 12; 13; 14]. Later developments included
the introduction of additional background structures, such as a flat background
metric [15; 16; 17], an orthonormal tetrad [18; 19], or a flat connection [20; 21].
While the introduction of such further structures has achieved tensorial form with
respect to coordinate transformations, this result has always come at the cost of
introducing a new sort of gauge dependence, because the choice of specific back-
ground metric, tetrad, or connection lacks physical meaning and yet affects the
results. The introduction of additional structures appears simply to move the lump
in the carpet, not to flatten it out. Though new background structures continue to
be introduced, the inductive lesson only gets stronger that the gauge dependence
problem is not resolvable in such a fashion [8]. In this respect it is unclear that
much has been gained beyond the original dependence of pseudotensors on coor-
dinates found in the 1910s.

The solution to the problem of gauge dependence, briefly, is to take all possible
auxiliary structures of a given type together. Thus, for example, the collection of
all flat background metrics does not depend on the choice of any particular back-
ground metric. Changing the flat background metric from one specific example
to another merely leads to another member of the same collection. Looking for
some finite-component expression that is covariant under a change of the back-
ground metric, though traditional, is a mistake. Similar remarks hold for tetrads,
connections, and even coordinate systems. Indeed the cases of background met-
rics, background connections, and coordinate systems seem closely related, while
the tetrad case differs and so will not be discussed much here. Its introduction
of a gratuitous local Lorentz group is a major disadvantage, and it is in fact not
required for spinors, as will appear below.

Some authors, especially those who emphasize how different General Rela-
tivity is from other field theories rather than how similar it is, have tried to make
the best out of the apparent non-existence of gauge-invariant gravitational energy
localization. Thus the question has been rejected as inappropriate, as shown by the
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equivalence principle: “[a]nybody who looks for a magic formula for ‘local grav-
itational energy–momentum’ is looking for the right answer to the wrong ques-
tion.”
[22, p. 467] However, this is an ad hoc move. Noether’s theorems do not care
about the equivalence principle; they simply give results in any coordinate system
[23]. Rather than criticizing the results of Noether’s theorem in terms of precon-
ceived notions of invariance and then mysteriously invoking a principle irrele-
vant to Noether’s theorem to reduce the puzzlement over the lack of an invariant
energy complex, it is preferable to learn from the results of Noether’s theorem
that there is a broader notion of invariance suited to the existence of infinitely
many distinct conserved energies. There is no reason to expect the components
of a pseudotensor to transform into each other once the vast multitude of grav-
itational energy–momenta is recognized. The importance of considering messy
mathematical details rather than relying on geometrical shortcuts and picture-
thinking is increasingly being recognized both in technical General Relativity lit-
erature [24; 25] and the foundations of physics [26].

2 Infinite-component geometric objects

At this stage it will be helpful to introduce the notion of an infinite-component geo-
metric object. An old standard definition of a geometric object (slightly stream-
lined for physicists’ use in local field theories) by Trautman assumes a finite num-
ber N of ordered components:

Let X be an n-dimensional differentiable manifold.. . .
Let p ∈ X be an arbitrary point of X and let {xa},{xa′} be two systems of
local coordinates around p. A geometric object field y is a correspondence

y : (p,{xa})→ (y1,y2, . . . ,yN) ∈ RN

which associates with every point p ∈ X and every system of local coordi-
nates {xa} around p, a set of N real numbers, together with a rule which
determines (y1′ , . . . ,yN′), given by

y : (p,{xa′})→ (y1′ , . . . ,yN′) ∈ RN

in terms of the (y1,y2, . . . ,yN) and the values of [sic] p of the functions
and their partial derivatives which relate the coordinate systems {xa} and
{xa′}.. . . The N numbers (y1, . . . ,yN) are called the components of y at p
with respect to the coordinates {xa} [27, pp. 84, 85].

(In more modern-style literature, geometric objects have turned into natural bun-
dles [21; 28].) The infinite-component entity needed for present purposes has the
same cardinality as the set of all flat metric tensors, the set of all vector fields, or
the set of all coordinate systems (with some continuity assumptions), so imposing
an order is an unattractive prospect. No ordering is required to gather the compo-
nents into a set, however. One may therefore take an infinite-component geomet-
ric object to be analogous to a geometric object of the familiar sort, but with an
infinity of components collected into a set. An example of an infinite-component
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geometric object is the set of all flat metric tensors. Using the universal quantifier
∀ (“for all”), one can write this object as

{(∀ηρσ ) ηρσ}. (2)

(Here one can read the Greek indices as abstract indices.) In this case each element
is a coordinate tensor and hence a geometric object in the usual sense, but that
feature is not guaranteed in general.

3 Infinite-component covariant density in terms of all flat backgrounds

It might seem that achieving covariance of the gravitational energy–momentum
distribution by letting it depend on all possible flat background metrics (or other
auxiliary structures) would give a baroque construction without physical mean-
ing. That, however, is wrong, primarily because it reflects the almost universal
but usually tacit assumption that there ought to be just one gravitational energy–
momentum (with 10 or perhaps 16 components). This assumption of uniqueness is
especially clear in treatments by Goldberg [7], Faddeev [29] and Szabados [8, sec-
tion 3.1.3]. Faddeev [29] writes, “The energy of the gravitational field is not local-
ized, i.e., a uniquely defined energy density does not exist.” While stated with spe-
cial clarity in some cases, the assumption of uniqueness is implicit almost every-
where in the literature in the expectation that a pseudotensorial expression (per-
haps Einstein’s) in one coordinate system ought ideally to be related by a trans-
formation law to that pseudotensor in another coordinate system in order to have
the intended physical meaning of representing gravitational energy–momentum
density. This expectation of uniqueness makes sense if, as in other theories, there
is only one energy in General Relativity. It has been known at least since 1958
due to Bergmann and Komar, however, that there are infinitely many gravitational
energies, and that any vector field generates one [30; 31]. Some of them might be
zero; for example, a vector field derived by index-raising from an exact covector
has vanishing Komar energy density. (The resulting Komar energies are unsat-
isfactory [32], so there is reason to expect the energies to depend on more than
just a single vector field and the metric.) Some of the energies might plausibly
regarded as faces of a single energy, such as if a Lorentz or affine transformation
relates them. But the point remains that there are a great many different gravita-
tional energy–momenta, uncountably infinitely many, far more than one naively
expected, and any vector field (subject to some restrictions on differentiability,
etc.) yields one. Why can’t they all be real? (The assumption of uniqueness has
been so widespread, however, that even Komar went on to look for restrictions on
the vector field that his formalism required with the goal of achieving or approach-
ing uniqueness [31; 33; 34].) Thus there is no reason whatsoever to expect distinct
conserved quantities to behave mathematically as though they were just faces of
one (finite-component) conserved quantity; the paradox dissolves. If a transfor-
mation law relating the components of the Einstein pseudotensor existed, then its
components in one coordinate system would determine its components in all coor-
dinate systems, thus implying that there was only one energy, a known falsehood.
An arbitrary vector field also generates a coordinate transformation, whether of the
familiar infinitesimal form (e.g., [35]) or the finite form [36; 37; 38]. An arbitrary
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coordinate transformation will convert one flat metric into any other, so using all
flat background metrics (or all flat connections or all coordinate systems) plausibly
gives the right number of gravitational energy–momentum densities.

Let tµ

ν be one’s favorite gravitational energy–momentum tensor, or related to it
by index lowering and perhaps density-reweighting with the flat metric ηµν . This
expression presumably is chosen based on technical considerations involving get-
ting the expected values for integrated conserved quantities in suitable contexts,
relation to Noether’s theorem, and the like. A good candidate is due to Joseph
Katz, Jiřı́ Bičák and Donald Lynden-Bell [38; 39; 40]. Or perhaps the appropri-
ate form depends on the boundary conditions [41; 42].1 Whatever the specific
form, this gravitational energy–momentum tensor tµ

ν [gαβ ,ηρσ ] for a given curved
metric gαβ is some functional of the curved metric gαβ and a flat metric tensor
ηρσ , depending on their values and maybe one or two partial derivatives. (Alter-
natively, a mere flat connection can be used.) Instead of taking partial derivatives,
one can take covariant derivatives using the flat connection built out of ηµν , yield-
ing a manifestly tensorial but still gauge-dependent expression. When General
Relativity is formulated with a background metric, the action has two invariances,
one under changes of coordinates and one under gauge transformations. The lat-
ter transformations alter the mathematical relationship between gµν and ηµν . For
this reason tµ

ν is tensorial with respect to coordinate transformations, but gauge-
variant under gauge transformations [37; 38; 43; 44; 45]. For finite one-parameter
transformations, one can write coordinate transformations as

gσρ → e£ξ gσρ , u → e£ξ u, ηµν → e£ξ ηµν , (3)

where u stands for any bosonic matter fields. (Spinors will be discussed in the next
section.) This transformation induces the same Lie-Taylor series for the connec-
tion, using the commutativity of Lie and partial derivatives and the Leibniz rule
for the Lie derivative [36; 46; 47]. By contrast gauge transformations are written
as

gσρ → e£ξ gσρ , u → e£ξ u, ηµν → ηµν , (4)

which leave the flat metric (and connection) alone. If one wishes, one can combine
a gauge transformation with a coordinate transformation in the ‘opposite direc-
tion’ to yield a modified gauge transformation that alters the background metric
ηµν while leaving gµν and any matter fields u alone [48]. Clearly the set of all flat
metrics {(∀ηρσ ) ηρσ} is gauge-invariant: a gauge transformation changes one flat
metric into another, but the set as a whole is unchanged.

One can now write down the infinite-component covariant expression for the
distribution of gravitational energy–momentum. It is obtained by simply collect-
ing all the energy–momentum tensors together for the various background metrics:

1 As a referee notes, the work of Nester and collaborators and the proposal here have in
common a tendency to find meaning in infinite ambiguity rather than to reject it.
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{
(∀ηρσ ) tµ

ν [gαβ ,ηρσ ]
}

. (5)

This expression does not depend on the choice of any particular flat background
metric, so it is gauge-invariant. Each element is a coordinate tensor; the whole col-
lection is gauge-invariant although no part of it is. Feeding the gauge-invariant set
{(∀ηρσ ) ηρσ} of all flat background metrics into the stress energy tensor formula
gives a gauge-invariant set of energy–momentum tensors. A gauge transforma-
tion turns a specific element tµ

ν [g,η1] into another element tµ

ν [g,η2], but the set
is unchanged. Each element of the set is covariantly conserved with respect to
the torsion-free connection induced by its own flat metric, due to Einstein’s field
equations:

∂1µ tµ

ν [g,η1] = 0, ∂1µ η1αβ ≡ 0,

∂2µ tµ

ν [g,η2] = 0, ∂2µ η2αβ ≡ 0,

etc. The generalization to the use of a mere flat background connection is imme-
diate. Note that if (per impossible) there were a nonzero tensorial and gauge-
invariant expression with only 10 (or 16) components, as many have wished,
then it could represent only a single energy, rather than the infinitely many that
Bergmann and Komar taught us to expect. When Bergmann and Anderson said
that gravitational energy–momentum did not form a geometric object [30; 35],
it was assumed that the geometric object would have finitely many components.
Instead there is an infinite-component geometric object. The expression given here
has infinitely many components in two senses: a somewhat trivial sense due to its
availability in any coordinate system and the nontrivial sense due to the use of
every flat background metric (so it describes infinitely many energies). A similar
gauge-invariant collection could be obtained, for example, by raising an index and
reweighting with the relevant flat metrics to get

{(∀ηρσ )
√
−ηtµν [gαβ ,ηρσ ]}. (6)

Obtaining a gauge-invariant quantity by collecting together the result for every
gauge bears some resemblance to the technique of group averaging [49], but in
this case one merely collects the pieces together into a set rather than adding them
up.

Constructing a gauge-invariant set by collecting together an expression in
every gauge works even if one quantifies only over all elements satisfying some
suitable condition, perhaps some inequalities restricting the allowed coordinates
[50; 51] or allowed bimetric gauges [47]: the gauge-invariant collection is found
by collecting the complexes for all the allowed gauges or coordinates. One then
has only a (Brandt) groupoid, not a group, of gauge transformations [47]: the
allowed transformations depend on the configuration, so not every pair of ele-
ments can be multiplied.

The problem of treating integral conservation laws is not addressed here. How-
ever, it seems evident that having both coordinate freedom and gauge freedom
available via the use of a background metric or connection would be helpful in
permitting the coordinates to be adapted to the integration hypersurface while
retaining gauge freedom.

Given that the Hilbert action gives the wrong (Komar) conserved quantities
[32], an alternative dependent on a coordinate system or background metric or
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connection is required [21; 29; 52]. While any such action is gauge-dependent,
one can obtain a gauge-invariant multi-action principle by feeding all possible
background structures into the Lagrangian density, thereby obtaining an infinite-
component Lagrangian density. The equivalence of the field equations from the
many Lagrangians should render this procedure innocuous at least at the classical
level.

4 Spinors as almost geometric objects

Given the most common ways of treating spinor fields, it is not obvious how grav-
itational energy localization in the form proposed here would work. Introducing
an orthonormal basis and treating spinors as coordinate scalars is a standard move
(when an orthonormal basis exists [53]). Møller’s orthonormal tetrad formalism
was motivated in part by its supposed necessity to accommodate spinor fields
[18]. The local Lorentz group introduced in the tetrad formalism [19] seems quite
unhelpful for localizing gravitational energy, however, even if one accepts all the
tetrads at once. Whereas the background metrics or background connections are
closely related to the coordinate transformation freedom that is already present
and ineliminable from the manifold, the local O(3,1) group apparently bears no
such relation. Thus the gauge invariant energy localization scheme presented here
seems potentially inapplicable or at best purely formal in the presence of spinors.

Fortunately it is not the case that a tetrad is necessary for spinors, contrary to
widely held opinion. Thus the local Lorentz group is gratuitous not only in rela-
tion to gravitational energy localization, but also in relation to coupling spinors to
a curved metric. The tetrad formalism and local Lorentz group follow only if one
insists on a linear coordinate transformation law for spinors as opposed to a non-
linear one
[54, p. 234], [55]. It is possible to include spinor fields almost like tensors in the
Ogievetsky-Polubarinov-Bilyalov formalism [55; 56; 57]. The spinor and the met-
ric
together form a nonlinear geometric object 〈gµν ,ψ〉 [55; 56; 57] (up to a sign for
the spinor part), with mild restrictions on the admissible coordinates to distinguish
the time coordinate from the spatial coordinates. (The inequalities restricting the
coordinates serve the same purpose as Bilyalov’s matrix T that interchanges two
coordinates [58] to get time listed first.) The nonlinearity is due to the fact that the
new components of the spinor depend not only (linearly) on the old spinor com-
ponents, but also on the metric in a nonlinear fashion [55]. Nonlinear geometric
objects in classical differential geometry, which were studied briefly in the 1950s–
1960s [46; 59; 60], turn out to be basically a special case of the nonlinear group
representations that particle physicists started studying in the 1960s [61; 62].
〈gµν ,ψ〉 is a nonlinear representation (up to a sign for the spinor) of the gen-
eral coordinate transformation group, or a sufficiently large subgroupoid thereof,
which is linear for the Poincaré subgroup, and indeed for the 15-parameter con-
formal group, the stability group. Roughly and locally speaking, the Ogievetsky–
Polubarinov–Bilyalov formalism resembles the tetrad-spinor formalism with the
tetrad in the symmetric gauge. However, the symmetric square root of the metric
makes sense on any manifold with a metric (with mild coordinate restrictions),
unlike an orthonormal basis. Thus spinors, as treated in [55; 56; 57], require some
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technical modifications, but do not require treatment fundamentally different from
tensors and more general geometric objects in classical differential geometry. In
particular, Lie and covariant differentiation are well defined for 〈gµν ,ψ〉 [56; 57],
though not for the spinor separately, just as one expects for nonlinear geometric
objects [46; 59; 60]; such invariant derivatives need only the coordinate transfor-
mation behavior near the identity. This excursus on spinors shows that the gravi-
tational energy localization proposed here also applies to spinors, which is not at
all obvious for some well known spinor formalisms.

5 Infinite-component covariant energy density in terms of all coordinates
and one metric

The use of a background metric or connection, or rather, of the whole collection
thereof, is actually not essential to the technique of getting a gauge-invariant infi-
nite component localization of gravitational energies. The use of a background
metric or connection has the virtue that it manifestly has every sort of invariance
that one would expect—both tensoriality under coordinate transformations and
covariance under gauge transformations. It is initially somewhat less clear what
one should expect in a formalism with no background metric. Fortunately one can
gauge-fix the formalism above with a flat background metric or connection to find
out. I will ignore global issues by pretending that all coordinate charts are defined
everywhere. One ought to globalize the results using bundles, but the basic idea
will be clear without such techniques. Globalizing the results for topologically
nontrivial space-times might be nontrivial [63; 64], but recalcitrant difficulties
might be features of gravitational energy rather than limitations of the formalism
at hand. (The use of a background metric or connection provides a more globally
robust formalism [21].)

One convenient gauge fixing takes the bimetric formalism above and dispenses
with the flat background metric tensors by choosing (for example) Cartesian coor-
dinates for each flat metric separately. Thus each flat metric tensor ηµν in the set
{(∀ηρσ ) ηρσ} is downgraded to a matrix

ηMN = diag(−1,1,1,1) (7)

and its resulting connection is downgraded to a three-index entity with only van-
ishing components, which can be ignored. Now the former coordinate freedom (3)
is destroyed, but the former gauge freedom (4) is formally converted into coordi-
nate freedom (which has no effect on the numerical matrix ηMN). The new coor-
dinate freedom is still gauge freedom in the sense of Dirac-Bergmann constrained
dynamics [65]). In a chart one has one’s favorite pseudotensor tµ

ν [gµν ,ηMN], where
the expression gµν now means the coordinate components of the curved metric.
Using Einstein’s field equations, the pseudotensor tµ

ν [gµν ,ηMN] (or tµ

ν [gµν ]) is
conserved in the sense of having vanishing coordinate divergence

∂

∂xµ
tµ

ν [gµν ,ηMN] = 0 (8)

in every coordinate system. A vanishing coordinate divergence is just what one
needs to obtain an integral conservation law [35]. The gauge-invariant infinite-
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component gravitational energy–momentum distribution is just a certain pseu-
dotensor in every coordinate system U :{

∀U tµ

ν [gµν ,ηMN]
}

. (9)

The curved metric thus appears in all possible coordinate systems. This expression
for the localization of gravitational energies has infinitely many components in a
nontrivial sense: each coordinate system picks out a distinct conserved energy.
The distinctness depends on the fact that the expression tµ

ν is not a tensor (or
other geometric object [30; 35]). The components of a tensor or any geometric
object with respect to all coordinate systems give infinitely many faces of the
same entity, but here we have infinitely many distinct entities, each appearing in
its own adapted coordinate system.

If one previously used a flat background connection only, rather than a flat
background metric, then the auxiliary matrix ηMN is not present. Some pseudoten-
sors depend on the matrix ηMN, such as Papapetrou’s [66; 67], while others do not,
such as Einstein’s. Some time ago Goldberg found a family of energy–momentum
pseudotensors and a family of angular momentum complexes, but the preferred
versions lacked the simple relationship for which one might have hoped [68]. If
one admits a background metric as a reference configuration, then many more
options are available and this problem disappears [69].

One might think that, in a mature subject such as differential geometry, every
mathematical entity worth using would have a name and that its name would
reflect its usefulness. As it turns out, there is a useful mathematical entity that
does not have a name based on the reason that it is useful, and pseudotensors
are an example of it. In older literature on geometric objects, one encounters at a
preliminary stage the concept of “object,” used as a technical term (for example,
[36; 70]). Thus Nijenhuis writes [36, p. 28]:

[t]he definition of the geometric object goes via the object: an object at a
point P of Xn is a correspondence between all coordinate systems defined
for P and sets of N numbers, such that with each coordinate system there
is associated one such set of numbers, called the components of the object
with respect to the coordinate system. An object field in a region R of Xn is
a correspondence between all coordinate systems defined in subregions of
R, and sets of N functions, such that with each coordinate system there is
associated one such set of functions, defined and analytic in the region in
which the coordinate system is defined. The values taken by the functions
at a point are the components of the object at that point with respect to the
coordinate system to which the functions belong.

An object (field) counts as a geometric object (field) if and only if a there is
a transformation law relating the components in the various (overlapping) coor-
dinate systems. It is evident that the collection of components of one’s favorite
pseudotensor in every coordinate system forms an object in Nijenhuis’s sense, but
not a geometric object.

The usual attachment to geometric objects (including tensors) is due in part
to the unity imposed by the transformation law. Without a transformation law, the
components of an object in different coordinate systems might have nothing to do
with each other, apart from the stipulation that they are components of the object
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in question. The different sets of components pick out distinct entities, rather than
representing the same entity relative to different conventional choices of coor-
dinates. Not all geometric objects are physically interesting, however. Some of
them represent things in physical theories, while others are merely mathemati-
cal collections of numbers bearing an interesting formal relation of equivalence.
It is clear, then, that having a transformation law in itself is not what makes a
geometric object of interest. What the transformation law does is ensure that the
seemingly disparate components of an object are in fact equivalent, so if one set
of components has physical meaning, then the other sets of components have that
same physical meaning. The components of an object can have a physical meaning
or not, and they can be interrelated by a transformation law (yielding a geomet-
ric object) or not. It is important to realize that these questions are independent,
so that one could potentially have a physically meaningful geometric object, a
physically meaningless geometric object, a physically meaningless non-geometric
object, and, most importantly for present purposes, even a physically meaningful
non-geometric object. Pseudotensors are an example of the latter. If the idea of a
physically meaningful non-geometric object is difficult, a formal move below will
show it to be numerically equal to an infinite-component geometric object built by
taking all the natural coordinate bases as auxiliary objects.

It will be useful to compare and contrast the set of pseudotensor components
with respect to every coordinate system with the set of Einstein tensor components
with respect to every coordinate system and the set of metric tensor components
with respect to every coordinate system. For a geometric object, one has a set of
components at every point (where defined) in every chart, and also a transforma-
tion rule to infer one set of components from another, as appeared above [27; 36].
Thus the components of a geometric object form a natural kind mathematically:
they constitute faces of one and the same entity by virtue of being interrelated by
a coordinate transformation law.

For the Einstein tensor Gµν or the metric tensor gµν , one has a further sort of
unity in terms of physical meaning. For the Einstein tensor, the physical meaning
is displayed in a recipe for constructing the components of the Einstein tensor in a
coordinate system from the components of the metric and its partial derivatives in
that same coordinate system. Because of the tensor transformation law, the various
sets of components of gµν and of Gµν are physically and mathematically equiva-
lent; they are just faces of the same entity, the metric tensor or the Einstein tensor,
respectively. The components of the Einstein tensor form a natural kind in two
senses, mathematically by virtue of the tensor transformation law and physically
by virtue of being constructed from the metric by the same recipe in every coor-
dinate system. Likewise the components of the metric tensor form a natural kind
not only mathematically by the tensor transformation law, but also physically by
virtue of being related to measurements in the same way.

A pseudotensor tµ

ν shares with the Einstein tensor Gµν the physically interest-
ing property of having a single recipe for inferring its components in a coordinate
system from the metric components and their partial derivatives in that coordi-
nate system. Thus the components do form a natural kind in that physical sense.
However, there is no transformation rule that allows one to infer the components
with respect to one coordinate system from the components in another, so there
is no mathematical unity. While this is generally taken to be a serious problem,
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it is in fact an essential virtue for representing infinitely many distinct energies.
The components of a pseudotensor with respect to different coordinate systems,
being components of an object but not a geometric object, are just different enti-
ties, just as is required to describe the localization of different energy–momenta.
While the possibility of writing down a pseudotensor in every coordinate system is
occasionally discussed [10; 38], the fact that the resulting collection is coordinate-
invariant in a non-standard way and hence appropriate for representing the infinity
of gravitational energies seems never to have been noticed explicitly.

It is sometimes held that modern differential geometry is or ought to be “coordinate-
free,” and while one might need to “introduce” a coordinate system on certain
occasions, such occasions ought to evoke regret. The excellent text by Robert
Wald [71] is representative. Thus Wald [71, p. 286] describes any “additional
structure on spacetime, such as a preferred coordinate system or a decomposi-
tion of the spacetime metric into a ‘background part’ and a ‘dynamical part’,”
which one would need to get a “meaningful expression quadratic in first deriva-
tives of the metric” (as some famous pseudotensors are), as “completely counter to
the spirit of general relativity, which views the spacetime metric as fully describ-
ing all aspects of spacetime structure and the gravitational field.” In a moment of
practical application, Wald manages to employ a pseudotensor anyway (pp. 84,
85), though presumably without relish. It is worth pointing out, however, that
if there is any such thing as coordinate-free differential geometry, it isn’t dis-
played in the bulk of Wald’s book or most other literature where one might have
thought to find it. One ought to recall that all possible coordinate systems are
already introduced in the definition of a manifold [71, p. 12]. Because the coor-
dinate systems are already introduced in the greatest imaginable profusion at the
start, there can be no objection to using them in the localization of gravitational
energy–momentum. The only possible objection (apart from possible difficulties
in globalizing the results with bundle technology [63; 64]) can be to preferring
some over others. The tacit assumption of the uniqueness of gravitational energy–
momentum appears in the singular nouns: “a preferred coordinate system or a
decomposition” [71, p. 286]. Obviously the infinite-component entity constructed
from a pseudotensorial expression in all coordinate systems avoids preferring any
particular coordinate system or class thereof over others. Apparently there just
isn’t any “coordinate-free” way to express gravitational energy–momentum local-
ization without auxiliary objects besides the metric. Coordinate systems are one
option, and they are already present anyway. The natural conclusion is that certain
aspirations to mathematical elegance and economy are chimerical, but relaxing
excessively strict standards lets a solution appear. If one is committed to avoiding
the use of any coordinate basis components (and hence avoiding using all of them)
in favor of a formally “coordinate (basis) free” presentation, one can take all pos-
sible bases of commuting tangent vector fields as the relevant auxiliary structures.
A basis of commuting tangent vector fields is just the natural basis for a chart [71,
p. 27], [72, p. 471] by another name, so all possible bases of commuting tangent
vectors are just the natural bases for all possible charts.
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6 Energy–momentum localization as infinite-component geometric object
in one metric

If one does not wish to express the metric gµν in terms of every coordinate sys-
tem, but rather to express it in just one coordinate system, then that goal can be
achieved in a certain sense. The bimetric formalism gives an easy path to the
result. Whereas above the coordinates were fixed so that the flat metrics all took
the form diag(−1,1,1,1) while the components of the curved metric took various
forms, one can instead fix the coordinates so that the curved metric takes a single
form while the flat metrics take various forms. These various forms will all look
like ∂xM

∂yα ηMN
∂xN

∂yβ
for all possible coordinate transformations ∂xM

∂yα , with the anal-
ogous result for a flat background connection. The resulting infinite-component
collection singles out some specific coordinate system as primary for expressing
the metric gµν , while also making reference to all other coordinate systems. The
result is the set of components of an infinite-component geometric object in the
chosen coordinate system.

7 Objections to pseudotensors wrongly assume uniqueness of energy

Having developed the covariant construction of localized energy–momenta, one
can now easily resolve some standard objections to pseudotensors, which already
appeared in Pauli’s review [13] and have reappeared in countless places since then.
For example, it is noted with disappointment that a given pseudotensor (at least
one without second derivatives) can be made to vanish at any point or along any
worldline by a suitable choice of coordinates. With the tacit assumption that grav-
itational energy–momentum is unique, one then concludes that there is no real fact
of the matter pertaining to the density of gravitational energy–momentum at that
point or along that worldline. But the point or worldline was arbitrary, so there is
no fact of the matter about gravitational energy–momentum localization in gen-
eral. (Sometimes it is held that the situation improves somewhat when symmetries
yield Killing vectors, as in the case of spherical symmetry [22, p. 603].) It is now
clear how this objection goes astray: the components of a given pseudotensor with
respect to different coordinate systems in fact pick out different energies, some
but not all of which vanish at the arbitrarily chosen point or along the arbitrarily
chosen worldline. The fact that some energies vanish there but others don’t is a bit
unfamiliar, but it is in no way paradoxical on reflection.

Given long disappointment with gravitational energy localization, many authors
have turned to seeking quasilocalization, in which the energy in some volume is
specified, rather than the energy density at a point. Quasilocal energy is generally
expected to be unique. The injustice of that expectation, however, follows from the
multitude of local energy densities pointed out by Bergmann [30]. Pseudotensors
are related to quasilocal methods [41; 42]. It is sometimes expected that a good
quasilocal mass (energy) should vanish in flat spacetime, though that criterion
does not hold for every proposed definition [73]. Likewise positive definiteness
is sometimes expected, though not always achieved [8; 73]. Local gravitational
energy–momentum expressions do not reliably vanish in Minkowski space-time
for all gauges either; instead they vanish in some coordinate systems (or some
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gauges [38]) but not others. If this result seems problematic, the resolution, again,
is to notice that different coordinate systems/gauges pick out different energies. It
is a bit surprising that some of them fail to vanish even in Minkowski space-time,
but it is not absurd. Minkowski space-time is perhaps unusual in that there exists
an energy–momentum density that vanishes everywhere. In Minkowski spacetime
some energy densities will not vanish, but will integrate to vanishing total mass-
energy; if the curved metric differs from the flat metric (or matrix diag(−1,1,1,1)
solely due to some localized gauge transformation, then such a situation should
arise [37]. If the total energy can vanish for an energy density that does not vanish
everywhere, then positivity must also fail. It appears, then, that both vanishing for
Minkowski spacetime and positive definiteness are excessively strong conditions
to impose on all of the infinitely many energies in a gauge-invariant localization,
whether local or quasilocal. The existence of one such energy (out of the infinite-
component complex) with such properties is not ruled out, of course. If one could
find some way to restrict the auxiliary structures to take notice of any Killing
vectors (or commuting ones at least) of the metric gµν and adapt the coordinates
accordingly, then a gauge-covariant energy–momentum expression that vanishes
in flat spacetime might perhaps be devised; it would no longer be necessary to
admit all coordinate systems in order to achieve gauge invariance. The proposal
that energy localization makes sense in General Relativity just in case there is
spherical symmetry [22, p. 603] is a variant, albeit too restrictive, of this idea.

Concerning Bauer’s objection that flat spacetime in unimodular spherical coor-
dinates has nonzero Einstein pseudotensor energy density [12; 13], the fact that the
same pseudotensorial expression in different coordinate systems picks out differ-
ent energies removes the paradox. The fact that the total energy in these spherical
coordinates diverges [13, p. 176] is not terribly surprising, given that spherical
coordinates have marvelously strong coordinate effects. Due to the unimodular
condition

√
−g = 1, the components of the metric tensor gµν tend to vanish or

diverge at the origin and also at infinity; the inverse metric and their derivatives
inherit comparable bad behavior. (The unimodular condition is not too impor-
tant apart from the details of this sort of misbehavior.) Furthermore, spherical
coordinates are not well-defined everywhere that a corresponding set of Carte-
sian coordinates is defined, such as at the origin, so it is not clearly meaningful
(especially without introducing bundle techniques) to calculate the energy of all
space in spherical coordinates. The problem here seems to lie more with a poorly
formulated question than with an absurd answer.

Another traditional objection, this one due to Schrödinger, calls attention to
the vanishing of an Einstein pseudotensor (outside the Schwarzschild radius) for
the Schwarzschild space-time in nearly Cartesian coordinates with the unimodular
condition

√
−g = 1 [11; 13]. Once again the existence of many distinct energy

densities is helpful to recognize. Possibly one would expect the total mass-energy
to come out “right” in this context, but various localizations are known to exist,
in some cases with the energy all in some small region, in others not [38; 74].
If Schrödinger had shown that all the gravitational energies vanished outside the
Schwarzschild radius, such a result might be worrisome, but no such thing was
shown. That his particular energy vanishes is an interesting feature of gravitational
energy as defined by the Einstein pseudotensor, but it is no real objection. In short,
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traditional objections to pseudotensors are unpersuasive once faulty assumptions,
especially the assumption of uniqueness, are cleared away.

In the last decade or two there has been in some circles a renewed interest in
pseudotensors as yielding physically meaningful energy–momentum localizations
(e.g., [75; 76]). While the calculation of energy–momentum distributions using
a finite collection of pseudotensors for a finite collection of metrics in a finite
collection of coordinate systems might give suggestive results, no answer to the
gauge dependence problem could be achieved. Gauge invariance requires using
all admissible coordinate systems.

8 Comparison to Komar energies and Schutz–Sorkin Noether operator

It is a somewhat familiar point that there are infinitely many gravitational energies
[21; 30; 31; 35; 77], though this fact has not had the influence that it ought to have,
even on some of these authors. As noted above, some of the energies might vanish,
while others might in some contexts be regarded as faces of the same entity. Every
vector field yields a Komar ‘energy’ flux (using the term broadly enough to ignore
whether the vector is timelike), so one has a gravitational energy–momentum oper-
ator that is differential, not algebraic as with simpler field theories, in its operation
on the vector field. If the Komar expressions were satisfactory, then a family of
tensorial energies based on a family of vector fields would be a suitably covari-
ant result depending in a fairly minimal way on auxiliary structures. However, it
is known that the Komar expression gives the wrong values for global conserved
quantities in key cases, such as the “factor of 2” mismatch between mass and
angular momentum for the Kerr solution [8; 21; 32; 78; 79]. One of the most
basic tasks of an energy–momentum localization is surely the derivation of cor-
rect global conserved quantities. Thus the Komar expression cannot be correct.
Given the uniqueness of the Komar result [80; 81], the right answer must be non-
covariant or, alternatively, depend on additional auxiliary structures. An obvious
choice is to use the natural basis from a coordinate system. A coordinate system
xµ yields a natural cobasis of exact covectors dxµ and its reciprocal natural basis

∂

∂xµ of commuting tangent vectors. One can feed a natural basis into the (typically
non-tensorial) Noether operator [82; 83; 84; 64] to get components of a pseudoten-
sor. Thus the components of the Noether operator relative to all natural bases yield
the same sort of infinite-component covariant object as was obtained above.

9 Logical equivalence of all conservation laws to Einstein’s equations

In a typical field theory, one achieves energy–momentum conservation by not-
ing that every field present in the equations of motion either has Euler–Lagrange
equations or has generalized Killing vector fields in the sense of vanishing Lie
derivative [85]. (The generic notion of Lie differentiation for geometric objects
is known, but not very widely [59; 86; 87].) In General Relativity as typically
formulated (without a background metric or connection), every field present has
Euler–Lagrange equations; there are no non-variational fields (to borrow a useful
term [88]). One might then expect that the energy–momentum of matter and grav-
ity together to be conserved using both the gravitational field equations and the
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matter field equations. A distinctive feature of General Relativity is that, because
of gravitational gauge invariance (see, e.g., [48]), conservation follows using the
gravitational field equations alone, without using the matter equations [35]. One
can take the gravitational stress-energy tµ

ν

√
−g to be

tµ

ν

√
−g =def −Gµ

ν

√
−g−F

[µα]
ν ,α , (10)

where F
[µα]
ν ,α is an arbitrary expression apart from having identically vanish-

ing divergence and being built from the metric components and their derivatives
and perhaps some constant matrices such as ηMN. (Newton’s constant has been
suppressed for convenience.) Combining the gravitational and material stress-
energies gives the total energy–momentum complex T

µ

ν

√
−g =def T µ

ν

√
−g+tµ

ν

√
−g.

This total stress-energy complex satisfies a conservation law with a coordinate
divergence:

∂

∂xµ

(
T

µ

ν

√
−g

)
=

∂

∂xµ

(
T µ

ν

√
−g+ tµ

ν

√
−g

)
=

∂

∂xµ

(
T µ

ν

√
−g−Gµ

ν

√
−g−F

[µα]
ν ,α

)
=

∂

∂xµ

(
T µ

ν

√
−g−Gµ

ν

√
−g

)
−F

[µα]
ν ,αµ

=
∂

∂xµ

(
T µ

ν

√
−g−Gµ

ν

√
−g

)
= 0, (11)

where Einstein’s field equations have been used in the last line. One now sees that
the total energy–momentum density vanishes (when Einstein’s equations hold)
except for a curl, for which reason one can calculate conserved quantities with a
surface integral. Einstein’s equations entail a pseudotensorial conservation law in
every coordinate system. As has been observed above, the collection of pseudoten-
sorial laws of a given form in all coordinate systems is invariant in an appropriate,
although unfamiliar, sense.

The collection of all of the pseudotensorial conservation laws is in fact equiva-
lent to Einstein’s equations [35], so the reverse entailment also holds, as will now
appear. In any coordinate system, from the conservation law ∂/∂xµ(T µ

ν

√
−g +

tµ

ν

√
−g) = 0 (with tµ

ν

√
−g defined as above), one obtains

T µ

ν

√
−g−Gµ

ν

√
−g = F

[µα]
ν ,α (12)

for some F
[µα]
ν ,α (which might, for all that has appeared so far, vary from one

coordinate system to another, because of the arbitrary curl that one can include in
F

[µα]
ν ,α , like a constant of integration). But the left side is a tensor density, so the

right side must be one also. There is no nonzero tensor density that is built out of
the allowed ingredients and that has the right number of indices, so the right side
must be zero. Thus the totality of the pseudotensorial conservation laws indeed
entails Einstein’s equations T µ

ν

√
−g−Gµ

ν

√
−g = 0. The fact that the conserva-

tion laws entail the field equations sheds light on those approaches to General
Relativity that aim to derive the field equations using the conservation laws as
premises or lemmas [1; 48; 89].
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Pseudotensor conservation laws routinely have been accused of being physi-
cally meaningless on account of vicious dependence on a choice of coordinates.
While some authors emphasize the physical reality of gravitational radiation that
can heat or move objects, notwithstanding mathematical difficulties [90, pp. xxvi,
219], [91], or choose to accentuate the positive features of pseudotensors [92],
others emphasize mathematical purity and belittle the conservation laws [22; 93].
It is now clear that there is no vicious coordinate dependence. Even apart from
recognizing that fact, it is highly doubtful that anything physically meaningless
is logically equivalent to
Einstein’s equations. This logical equivalence is another way of recognizing that
the set of all pseudotensor conservation laws is indeed gauge invariant and hence
physically meaningful. This section could be repeated with insignificant changes
to show the logical equivalence of the collection of all bimetric conservation laws
(each of which is gauge dependent) to Einstein’s equations, thus showing the phys-
ical significance and gauge invariance of the whole collection. One might stop
short of saying that General Relativity just is local energy–momentum conserva-
tion, but it is difficult to imagine a greater disagreement than that between the usual
claim that General Relativity does not support a law of local energy–momentum
conservation and the mathematical fact that Einstein’s equations are logically
equivalent to a gauge-invariant infinite-component local energy–momentum con-
servation law. From this point of view it is obvious that there is a connection
between the first law of thermodynamics and Einstein’s equations.

10 Angular momentum localization

A suitably covariant localization of gravitational energy–momentum was obtained
above by collecting together the pseudotensors of a given type (such as that of
Einstein or of Landau and Lifshitz or one of Goldberg’s [68]) in every coor-
dinate system. The resulting pseudotensors can depend on the auxiliary matrix
diag(−1,1,1,1), though some choices do not. Those that do not [68] tend to
behave worse regarding angular momentum than those that do [69]. For angu-
lar momentum, one introduces the coordinates xµ and a symmetric choice of total
energy–momentum complex

√
−gTµν so that

Mµνα =def
√
−gTµν xα −

√
−gTµα xν (13)

satisfies the conservation law

∂

∂xµ
Mµνα = 0 (14)

because of ∂

∂xµ (
√
−gTµν) = 0. By parity of reasoning with the above, the collec-

tion of these angular momentum densities in every coordinate system is an appro-
priate covariant infinite-component object. Thus angular-momentum achieves a
gauge-invariant localization in the same way as energy–momentum. If flat back-
ground metrics are used instead of coordinate systems, then position 4-vectors
take the place of the coordinates. Of course any non-uniqueness of the gravita-
tional energy–momentum (pseudo-)tensor due to relocalization by adding a curl
will have consequences for angular momentum localization.
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11 Conceptual benefits of energy localization and conservation

One reason for seeking a conservation law for gravitational energy–momentum is
to characterize the properties of various gravitational fields or space-times. Komar
wrote some time ago of part of his own work that

all of the above attempts to generalize energy and momentum to arbitrar-
ily curved manifolds are formal in character, and the “correct” choice, if
indeed there is one, must be determined by the use to which we wish to
put the resulting conservation laws. One is not particularly interested in a
formal definition of energy if it teaches us nothing about the properties of
the spaces under consideration [33, p. 1413].
If one is aware of the uses to which the supposed lack of an energy conserva-

tion law in General Relativity has been put by now, however, then the benefits of
even a formal local energy conservation law become evident. The received view
that there is no gauge-invariant and hence physically meaningful local conser-
vation law for energy–momentum in General Relativity tends to inspire (though
not strictly entail) a variety of unwarranted conclusions. Some have criticized or
rejected General Relativity (or Big Bang cosmology in particular) as having mys-
tical tendencies on account of its supposed lack of conservation laws, while others
have appealed to General Relativity for certain purposes for the same reason. It
has been claimed, to be specific, that the lack of a local conservation implies:
1. that General Relativity is false (by Logunov and collaborators [94; 95], addressed

in [29; 43; 44; 96]);
2. that Big Bang cosmology violates energy conservation and so is false (by

Robert Gentry, addressed in [97; 98]);
3. that Big Bang cosmology is plausibly true and yet violates energy conserva-

tion, which is so fundamental as to transcend physics into metaphysics (by
Mario Bunge [99]); the tension seems not to be noticed;

4. that Big Bang cosmology violates energy conservation and so is a useful
heat sink for anomalous terrestrial heat production (by Russell Humphreys,
addressed in [100]);

5. that General Relativity makes it easier than do other field theories for imma-
terial souls to affect bodies (by Robin Collins [101]);

6. and that universes with zero total energy can come into being without violat-
ing energy conservation (by Edward Tryon [102] and Walter Thirring [103]).

Concerning the last claim, once the gauge-invariant local conservation of ener-
gies is recognized, it is clear that only universes for which all the uncountably
many energies vanish could pop into existence without violating energy conser-
vation, a condition that is difficult or impossible to satisfy. While these six con-
clusions are seen not to follow when the effort to produce a sufficiently detailed
and subtle analysis is made, unwarranted conclusions continue to arise because
the knock-out blow to forestall them, namely, a satisfactory local conservation
law including gravitational energy, is incompatible with the received view of that
subject. Larry Laudan has argued that scientific progress can occur not only by
solving empirical problems, but also by solving conceptual problems [104]. Iden-
tifying gauge-invariant and hence physically meaningful local conservation laws
therefore contributes to scientific rationality by resolving a conceptual problem in
General Relativity.
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12 Conclusion

It is ironic that though Einstein used energy conservation as a criterion for finding
his field equations, it was widely concluded that the resulting theory lacked any
local conservation law for energy–momentum. That irony is resolved by recog-
nition of an infinite-component gauge-invariant local energy–momentum conser-
vation law, which is shown to follow from Einstein’s equations. Local energy–
momentum conservation, as Anderson noted, is even logically equivalent to Ein-
stein’s equations. The principle that the real is the invariant, characteristic of twen-
tieth century mathematical physics [105], has appeared to be an obstacle to the
reality of gravitational energy localizations until now. The principle does not say
with respect to what invariance is desired or how it should manifest itself, but
generally accepted background assumptions provided an answer, albeit a flawed
one. Pseudotensors are not invariant in the sense traditionally expected, so the
corresponding local conservation laws have been widely viewed as mere mathe-
matical artifices. Now that the appropriate sense of invariance has been noticed
and the connection to the existence of infinitely many gravitational energies has
been recognized, there is no difficulty in regarding the whole infinite family of
gravitational energy localizations (as picked out by some specific pseudotensorial
functional form or the like) as gauge-invariant and hence real. Thus the conceptual
problem of gauge-dependence of gravitational energy–momentum is solved.

The question of gauge-dependence of gravitational energy–momentum local-
ization is largely orthogonal to the question of getting the ‘right answers’ for the
conserved quantities (except for disqualifying the Komar expression), a matter
of the technical details of the specific choice of pseudotensor. For that project,
one needs to choose an appropriate functional dependence on the metric and
auxiliary structures. One would expect gravitational energy–momentum to have
(besides the now-resolved gravitational gauge dependence problem) all the usual
non-uniqueness (even on-shell in some cases) of symmetrizing, improving [106],
relocalizing by curls in general [35; 107], making field redefinitions [108], and
the like, presented by other field theories. There might be ways to tame that non-
uniqueness either for every solution in the same fashion [39] or on a case-by-
case basis [41; 42]. A satisfactory treatment of gravitational energy ought to be
achievable by taking the best functional form on technical grounds and rendering
it covariant it in the way outlined here.

Acknowledgments I thank Don Howard and Alexander N. Petrov for conversations and Kather-
ine Brading for discussion of the role of energy conservation in Einstein’s process of discovery
of General Relativity.
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Mathématiques, Astronomiques et Physiques 11 687

61. C.J. Isham A. Salam J. Strathdee (1971) Nonlinear realizations of space-
time symmetries. Scalar and tensor gravity Ann. Phys. 62 98

62. Y.M. Cho P.G.O. Freund (1975) Non-Abelian gauge fields as Nambu-
Goldstone fields Phys. Rev. D 12 1711

63. C.W. Misner (1963) Gravitational field energy and g00 Phys. Rev. 130 1590
64. W. Thirring R. Wallner (1978) The use of exterior forms Einstein’s gravi-

tation theory Revista Brasileira de Fı́sica 8 686
65. Sundermeyer, K.: Constrained Dynamics: With Applications to Yang–Mills

Theory, General Relativity, Classical Spin, Dual String Model. Lecture
Notes in Physics, vol. 169. Springer, Berlin (1982)

66. A. Papapetrou (1948) Einstein’s theory of gravitation and flat space Proc.
R. Ir. Acad. A 52 11

67. Leclerc, M.: Noether’s theorem, the stress-
energy tensor and Hamiltonian constraints (2006).
arXiv:gr-qc/0608096v4

68. J.N. Goldberg (1958) Conservation laws in general relativity Phys. Rev. 111
315

69. Chang, C.-C., Nester, J.M., Chen, C.-M.: Energy-
momentum (quasi-)localization for gravitating
systems. In: Liu, L., Luo, J. Li, X.-Z., Hsu, J.-P. (eds.) The Proceed-
ings of the Fourth International Workshop on Gravitation and Astrophysics:
Beijing Normal University, China, 10–15 October 1999, p. 163. World
Scientific, Singapore (2000). gr-qc/9912058v1

70. M. Kucharzewski M. Kuczma (1964) Basic concepts of the theory of
geometric objects Rozprawy Matematyczne=Dissertationes Mathematicae



Gauge-invariant localization of infinitely many gravitational energies 23

43 1
71. R.M. Wald (1984) General Relativity University of Chicago Chicago
72. J.M. Lee (2003) Introduction to Smooth Manifolds Springer New York
73. G. Bergqvist (1992) Positivity and definitions of mass Class. Quantum

Gravity 9 1917
74. Petrov, A.N.: The Schwarzschild black hole as a point particle. Found. Phys.

Lett. 18, 477 (2005). gr-qc/0503082v2
75. N. Rosen K.S. Virbhadra (1993) Energy and momentum of cylindrical

gravitational waves Gen. Relat. Gravit. 25 429
76. Xulu, S.S.: Total energy of the Bianchi type I

universes. Int. J. Theor. Phys. 39, 1153 (2000).
gr-qc/9910015

77. T. Regge C. Teitelboim (1974) Role of surface
integrals in the Hamiltonian formulation of general
relativity Ann. Phys. 88 286

78. J. Katz (1985) Note on Komar’s anomalous factor Class. Quantum Gravity
2 423

79. J. Katz A. Ori (1990) Localisation of field energy Class. Quantum Gravity
7 787

80. R. Pavelle (1975) Conserved vectors of the Komar type and compatibility
identities in Lagrangian field theories J. Math. Phys. 16 696

81. R. Pavelle (1975) Conserved vector densities and their curl expressions J.
Math. Phys. 16 1199

82. B.F. Schutz R. Sorkin (1977) Variational aspects of relativistic field theo-
ries, with applications to perfect fluids Ann. Phys. 107 1

83. R. Sorkin (1977) On stress-energy tensors Gen. Relat. Gravit. 8 437
84. L.B. Szabados (1992) On canonical pseudotensors, Sparling’s form and

Noether currents Class. Quantum Gravity 9 2521
85. A. Trautman (1966) The general theory of relativity Sov. Phys. Uspekhi 89

319
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d’invariance Tôhoku Math. J. 2 166
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Yasskin, P.B.: Momentum maps and classical fields. Part I: Covariant field
theory, www.arxiv.org (2004). physics/9801019v2

89. Deser, S.: Self-interaction and gauge invariance. Gen. Relat. Gravit. 1, 9
(1970). gr-qc/0411023v2

90. Feynman, R.P., Morinigo, F.B., Wagner, W.G., Hatfield, B., Preskill, J.,
Thorne, K.S.: Feynman Lectures on Gravitation. Addison-Wesley, Reading
(1995). Original by California Institute of Technology, 1963

91. J. Earman J. Norton (1987) What price spacetime substantivalism? The
hole story Br. J. Philos. Sci. 38 515

92. S. Weinberg (1972) Gravitation and Cosmology Wiley New York
93. C. Hoefer (2000) Energy conservation in GTR Stud. Hist. Philos. Mod.

Phys. 31 187
94. A.A. Logunov V.N. Folomeshkin (1977) The energy-momentum problem

www.arxiv.org


24 J. B. Pitts

and the theory of gravitation Theor. Math. Phys. 32 749
95. A.A. Logunov Y.M. Loskutov Y.V. Chugreev (1986) Does general rela-

tivity explain gravitational effects? Theor. Math. Phys. 69 1179
96. Y.B. Zel’dovich L.P. Grishchuk (1988) The gen-

eral theory of relativity is correct! Sov. Phys. Uspekhi 31
666

97. J.B. Pitts (2004) Has Robert Gentry refuted Big Bang cosmology? On
energy conservation and cosmic expansion Perspect. Sci. Christ. Faith 56
4 260

98. J.B. Pitts (2004) Reply to Gentry on cosmological energy conservation and
cosmic expansion Perspect. Sci. Christ. Faith 56 4 278

99. M. Bunge (2000) Energy: Between physics and metaphysics Sci. Educ. 9
457

100. J.B. Pitts (2009) Nonexistence of Humphreys’ “volume cooling” for ter-
restrial heat disposal by cosmic expansion Perspect. Sci. Christ. Faith 61 1
23

101. R. Collins (2008) Modern physics and the energy-conservation objection to
mind-body dualism Am. Philos. Q. 45 31

102. E.P. Tryon (1973) Is the universe a vacuum fluctuation? Nature 246 396
103. Thirring, W.E.: God’s traces in the laws of nature. In: The Cultural Values of

Science, p. 362. The Pontifical Academy of Sciences, Vatican City (2003)
104. L. Laudan (1977) Progress and Its Problems: Towards a Theory of Scientific

Growth University of California Berkeley
105. D. Howard (1998) Astride the divided line: Platonism, empiricism, and Ein-

stein’s epistemological opportunism N. Shanks eds Idealization IX: Ideal-
ization in Contemporary Physics. Poznań Studies in the Philosophy of the
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