@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

JACoW Publishing
doi: 10.18429/JACoW-IPAC2023-WEPL038

MODEL-INDEPENDENT DETERMINATION OF SOLENOID OFFSETS IN
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Abstract

The SEALAB (SRF Electron Accelerator LABoratory)
project at HZB is composed of an SRF photo gun and an
SRF booster, followed by a diagnostic line and a recirculation
path for ERL applications, formerly bERLinPro. In an SRF
injector, only a single solenoid can be utilized to optimally
focus the beam for small emittance. The alignment of the
solenoid is crucial, as it is the dominant source of trajectory
distortions in the facility. Polynomial Chaos Expansion
(PCE) is a technique developed for risk management and
uncertainty quantification. It is well suited for application
in accelerators, although not well known. In this paper,
PCE is used to set up surrogate models from calculated or
measured data to determine the misalignment of the solenoid
in SEALAB.

INTRODUCTION

The focus of SEALAB is the operation and use of the
SRF gun and booster within the “Accelerator Research and
Development” framework of the Helmholtz Association,
ARD. Besides the successful operation of a 5 mA SRF injec-
tor, with an emittance < 1 mm mrad, also user experiments
like Ultra-fast Electron Diffraction applications, UED, are
foreseen.

In SRF gun injectors only a single solenoid can be utilized.
It is positioned as close as possible to the gun cavity. In the
case of the SEALAB gun module, the superconducting (sc)
solenoid is operated at 4K to 5K, see Fig. 1.
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Figure 1: A sketch of the SEALAB gun. The sc solenoid
(red) is located next to the 1.4-cell gun cavity. The first
screen is located at 1.7 m behind the cathode.

The purpose of the solenoid is to focus the diverging beam
coming out of the gun cavity. Its field is crucial for the emit-
tance compensation. The exact positioning of the solenoid
in the transverse directions (offsets and angles) with respect
to the beam is vital for the trajectory. A misaligned solenoid
also impacts the emittance, but more importantly, it leads to
a highly non-linear and highly coupled dependence of the
trajectory and the beam size on the solenoid field, which
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impedes operation and the interpretation of experimental
results. Fig. 2 shows the motion of the beam on the first
screen behind the solenoid for a transverse displacement
of the solenoid by 0.25 mm in both directions, when the
solenoid field is varied between —0.2 T to 0.2 T.
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Figure 2: Left: The motion of the beam on the screen next
to the gun module, for varying solenoid field and transverse
solenoid offsets of 0.25 mm. Right: The related beam sizes.

The SEALAB solenoid is therefore mounted on a Hexa-
pod mover, allowing for alignment in 6D space. Unluckily,
the Hexapod mover lacks an absolute positioning system
and the beam axis after cool-down might differ from the
warm state, due to thermal effects. Therefore, a beam-based
procedure to determine solenoid misalignment is needed for
the commissioning of SEALAB.

POLYNOMIAL CHAOS EXPANSION

Polynomial Chaos Expansion (PCE) is a method for ap-
proximating a variable with unknown distribution by a series
of polynomials, where the polynomials are functions of vari-
ables with known distribution. This paper introduces PCE
as a helpful means during accelerator commissioning.

As PCE is a map between distributions, the application
is not straightforward in a system like an injector, which
usually has a single, optimized working point. Distribu-
tions need to be created first. In the example of solenoid
misalignment, known distributions (Gaussian, uniform) of
the transverse offsets and angles can be used to create an
unknown distribution of beam positions on a screen. PCE
can then deliver a surrogate model for the beam positions
as a function of solenoid misalignment for a fixed solenoid
field. Only relatively few data points are needed to set up
the surrogate model. More important, the PCE approxima-
tion can be established exclusively from experimental data
without relying on any machine model.

Detailed discussions on Uncertainty Propagation and PCE
can be found in [1], [2], or [3] and references therein. The
mathematical anchor of PCE is the Cameron-Martin theo-
rem, which states that every random distribution (with finite
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variance) can be represented in terms of polynomial series
developed around arbitrary canonical probabilistic distribu-
tions (uniform, Gaussian...), similar to the approximation
of arbitrary functions by Taylor series.

Let z be a random input vector of dimension d, with a
given probability density function f(z) = H]il]j-(zj), i.e.
the problem depends on d variables. Let u(z) be the system
or model response to z, again a multi-dimensional random
variable with finite variance. Then u(z) can be written as

wz) = Y a;¥),
|i1=0

where i is a multi-index, i € N, and a; € R. The a;
have to be determined and represent the moments of the dis-
tribution of u(z). The ¥;(z) form the PCE basis composed
of multivariate orthonormal polynomials. The polynomial
basis to be used is determined by the distribution chosen for
the random input data. Uniform distributions use Legendre
polynomials, Gaussian distributions use Hermite polynomi-
als [2]. Any truncation of the series at a certain polynomial
order represents an approximation to the model response, a
surrogate model. The coefficients «; are computed by mini-
mizing the mean square residual error between the model
response and the truncated series, for details see [4].

The number of coefficients, no(a;), used in the surrogate
model is given by
(p+d)!

pld! >’

where p is the order of the polynomial series and d is the
number of variables. The approximate number of sample
points, sp, that should be provided, depends on the method
used to fit the polynomial coefficients to the data [2]. Using
linear regression, the number is

no(a;) =

sp; = (d —1) % no(a;).

The mathematical theory behind PCE has been coded in
libraries like Chaospy for Python, or UQLAB in MATLAB.

THE SURROGATE MODEL

To simulate the experiment, an arbitrary, but fixed mis-
alignment of the solenoid has to be assumed: z; =
(x9>Y0, 00> $o) = 3 mm, -2 mm, -5 mrad, 7 mrad), where
0 and ¢ denote the angle with respect to the horizontal and
vertical axis, respectively. For successful beam position
measurements, the focal point of the solenoid is moved close
to the location of the screen by using a solenoid field value
S=0.04T.

The relative displacement of the solenoid with respect
to its initial position is simulated using the sampler option
of OPAL, [5]. The relative transverse offsets are +5 mm,
and the angular offsets are varied by 10 mrad. For these
24 = 16 cases, the beam is tracked from the cathode to the
screen. In addition, random test cases have to be calculated.
Fig. 3 summarizes the tracking calculations. Blue dots
represent the relative offsets of the solenoid (left plot),
the angles are not shown. The positions on the screen are

WEPL: Wednesday Poster Session: WEPL
MC5.D13: Machine Learning

JACoW Publishing

ISSN: 2673-5490 doi: 10.18429/JACoW-IPAC2023-WEPL038

relative offsets screen positions

Ax [mm]
y on screen [mm]
o

-5 0 5 -20 -10 0 10 20
Ay [mm] X on screen [mm]
Figure 3: Left: The relative offsets used in the sample run
(blue) and in the test run (red), (the angles are not shown).
Right: The resulting beam positions on the screen.

displayed on the right plot. The circle marks the size of the
screen. The red dots indicate 10 random test cases. The
surrogate model is calculated in a Jupyter notebook, [6],
using the chaospy . py package, [7], and the scipy.stats
statistics package, [8]. The distributions of the additional
displacements Ax, Ay, Af, and A¢ are uniform. The nor-
malized parameters of the distributions are calculated using
getattr(scipy.stats, distribution). From the
distribution parameters, the joint distribution is calculated
(chaospy.J). A generic polynomial of the respective order
is set up using chaospy.expansion.stieltjes(order,
jointdistribution). Finally, a regression fit
(cp.fit_regression) adjusts the coefficients of the
polynomial to the tracking data.

For different polynomial orders, Table 1 displays the num-
ber of coeflicients used in the expansions, the number of
sample points needed to set up a reasonable model, and the
relative error compared to tracking results for a single, arbi-
trary data point, indicating quick convergence. The differ-
ence between the 24 and 3" order polynomials is ~0.02 %.
16 sample points correspond to a PCE of first order.

Table 1: Number of Coefficients and Samples

order #a; #samples error 8X, 8y [%]
1 5 15 -1.3156, 1.2445
2 15 45 -0.0219, 0.1696
3 35 105 -0.0006, -0.0013

The quality of the first- and second-order surrogate models
are displayed in Table 2. The accuracy of the second-order
model on the sample points is higher, but due to the insuffi-
cient number of samples, the test data is not well represented,
showing large errors.

Table 2: Model Quality (L,-norm)

order 5x Sy
model data 1 0.0023 0.0013
model data 2 0.0001  0.0001
test data 1 0.0035 0.0031
test data 2 2.1398 3.9318
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Misalignment Determination

Surrogate models for two field values are needed to deter-
mine the misalignment of the solenoid. For a fixed solenoid
field value, the x and y positions of the beam on the screen
can be represented by a first-order polynomial of the 4 mis-
alignment components:

x=a,Ax+b.Ay+c,A0+d. AP +e,
y =ay,Ax+byAy +c,A0 +d,Ap + e,

where e, and e, are the beam’s positions for zy. The coef-

ficients are determined by the PCE. For two solenoid field
values, we look for the misalignment that satisfies :

ex,l ax,l bx,l Cx,l dx,l Ax
eyaf_ %1 by e dya| | Ay
ex,2 ax,Z bx,2 Cx,2 dx,2 Af
€y,2 ayp byy ¢yn dyy A¢

The solution z7;, = (3.0097,-2.0055, -5.0079,7.0012),
has an absolute error < 10 um (offsets) and < 8 prad (an-

gles).

Error Analysis

Errors occur in the PCE model and the experiment. The
Hexapod mover is specified with a um, resp. prad precision
and repeatability. The error analysis, therefore, concentrates
on the modeling error and the position measurement error.

Modeling Error: 10 different randomly misaligned
solenoids were investigated. Fig. 4 shows the initial mis-
alignment on the left, offsets in red, and angles in blue. The
absolute error, 8z, of the fitted misalignment, Zrips is dis-
played on the right. The RMS error is better than 5 um for
the offsets and 4 prad for the angles.
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Figure 4: Left: 10 random solenoid misalignments (red) and
angles (blue). Right: the absolute model error for each case.

Experimental Error: Gaussian distributed errors are
added to the (calculated) positions on the screen. For 50
random error distributions, the PCE model is set up and the
solenoid misalignment is determined. In Fig. 5 the result is
shown, separately for each component of z;;;. The colored
circles show the absolute error of each case, the black bars
indicate the RMS error for increasing measurement errors
of 0.001, 0.01, 0.05, and 0.1 mm. For a realistic position
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measurement error of 10 pm, the transverse RMS position
error is 2.3 um, and the RMS angular error is =12 yrad. The
measurement error translates linearly into the uncertainty of
the solenoid position.
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Figure 5: Absolute error of 50 seeds (colored circles) and
RMS error (black error bars) for each component of zy;;.

It should be mentioned, that the scope of PCE reaches
far beyond linear models. E.g., the beam motion shown
in Fig. 2 (left) can be reproduced well, using a 7" order
polynomial, [9]. Successful models using a 6 order PCE
have been set up to predict the bunch length or the emittance
of the bERLinPro injector, including the field flatness in the
gun, cathode position, laser pulse length, and spot size, the
gun voltage and the solenoid field as input parameters, [10].

CONCLUSION

A new method to determine solenoid misalignment in
low-emittance injectors is proposed. It differs from existing
methods in keeping the solenoid strength fixed while vary-
ing the alignment of the solenoid. The method, therefore,
depends on a remote-controlled 4D positioning system that
allows for adjustment of the solenoid position.

For a constant solenoid field, the beam’s position depends
dominantly linear on each separate misalignment. The first-
order PCE decomposes the motion of the beam into these
linear contributions.

The method is completely model-independent. It uses
relative deviations from the solenoid’s position and beam
position measurements. Both can be very accurate so the ac-
curacy of the method is high. The time needed to re-position
the solenoid 2 x 16 times and to measure the respective beam
position is estimated to be much less than 1 h. The numeri-
cal calculation of the misalignment from the measured data
takes no time. So besides being highly accurate, the method
also is fast. The injector of bERLinPro will be ready for
commissioning towards the end of 2023. To our knowledge,
this will be the first time where PCE is applied online in an
operating accelerator.
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