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Abstract

Charged Current (CC) coherent neutrino-nucleus pion production is characterized by

small momentum transferred to the nucleus, which is left in its ground state. Despite

the relatively large uncertainties on the production cross-section, coherent production

of mesons by neutrinos represents an important process, as it can shed light on the

structure of the weak current and can also constitute a potential source of background

for modern neutrino oscillation experiments and searches for Beyond Standard Model

(BSM) physics. This Ph.D. thesis presents a new measurement of CC coherent pion

production in the NOvA near detector at the Fermi National Accelerator Laboratory

(Fermilab). The analysis is based on the use of both particle identification and kine-

matic selection criteria based on Convolutional Neural Networks (CNN) to achieve a

selection purity of 60%. Given the energy range 1-5 GeV accessible with the avail-

able NOvA exposure in the NuMI beam, the results will also be relevant for future

neutrino experiments like the Deep Underground Neutrino Experiment (DUNE).

v



Table of Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Introduction to Neutrino Physics . . . . . . . . . . . . 1

1.1 Standard Model Physics . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Physics Beyond Standard Model . . . . . . . . . . . . . . . . . . . . . 3

1.3 Overview of Neutrino Physics . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 2 Coherent Pion Production By Neutrinos . . . . . . . 32

2.1 Weak interaction Scattering . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Weak Interaction Scattering Amplitude . . . . . . . . . . . . . . . . 33

Chapter 3 The NOvA Experiment . . . . . . . . . . . . . . . . . . . 43

3.1 NuMI Neutrino Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vi



3.2 The NOvA Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Overview of Data Acquisition System . . . . . . . . . . . . . . . . . . 56

3.4 Performance of the NOvA Detectors . . . . . . . . . . . . . . . . . . 59

3.5 Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 4 Event Simulation . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Flux Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Neutrino Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Propagation of Particles . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Transport of Photon in Detector . . . . . . . . . . . . . . . . . . . . . 64

4.5 Readout Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 The APD Sag Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Cherenkov Light Simulation . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Birks-Chou Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 5 Event Reconstruction and Calibration . . . . . . . . 71

5.1 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Chapter 6 Selection of νµ Charged Current Coherent π+ events 89

6.1 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Fiducial Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Event Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Containment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



6.5 Muon Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Reconstruction of Momenta . . . . . . . . . . . . . . . . . . . . . . . 101

6.7 Selection of Signal Events . . . . . . . . . . . . . . . . . . . . . . . . 102

6.8 Signal Region from |t| Distribution . . . . . . . . . . . . . . . . . . . 109

6.9 Selected Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Chapter 7 Background Determination and Cross-Section Mea-
surements . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1 Background Control Samples . . . . . . . . . . . . . . . . . . . . . . . 114

7.2 Extraction of the number of Signal Events . . . . . . . . . . . . . . . 124

7.3 Determination of the flux averaged cross-section . . . . . . . . . . . . 126

Chapter 8 Systematic Uncertainties . . . . . . . . . . . . . . . . . 129

8.1 Systematic uncertainties on the measured cross-section . . . . . . . . 129

8.2 Target normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.3 Neutrino flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.4 Background Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.5 Coherent modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.6 Muon energy scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.7 Pion energy scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.8 Light level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.9 Detector calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.10 Background systematics . . . . . . . . . . . . . . . . . . . . . . . . . 139

Chapter 9 Results and Summary . . . . . . . . . . . . . . . . . . . . 144

viii



9.1 Comparing Data to Total MC in Signal Region . . . . . . . . . . . . 144

9.2 Extraction of the Number of Signal Events . . . . . . . . . . . . . . . 145

9.3 Comparing Signal histograms (Data Vs MC) in Signal Region . . . . 146

9.4 Cross-Section from extracted Signal Events from Data . . . . . . . . . 147

9.5 Comparison with world data . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

ix



List of Tables

Table 1.1 Summary of fundamental interactions in the SM. . . . . . . . . . . 2

Table 1.2 Quantum numbers of SM particles under gauge symmetry SU(3)C×
SU(2)L × U(1)Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Table 3.1 Composition of liquid scintillator [57]. . . . . . . . . . . . . . . . . 51

Table 6.1 Cut Table made for the event selection . . . . . . . . . . . . . . . 111

Table 6.2 Cut Table by removing signal box (Data Quality and Fiducial
cuts contain signal box) . . . . . . . . . . . . . . . . . . . . . . . . 112

Table 6.3 Two 3D Prong Cut Efficiency Ratio . . . . . . . . . . . . . . . . . 113

Table 7.1 Efficiency ratios calculated to correct main cuts . . . . . . . . . . . 117

Table 7.2 Cut Table made for the event selection normalized to Two Prong
cut and data-driven corrections applied (Data Quality and Fidu-
cial cuts contain signal box) . . . . . . . . . . . . . . . . . . . . . . 118

Table 7.3 Integrals of the histograms with errors (signal extractions done
using Figure 7.12) . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Table 7.4 Target Composition . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Table 8.1 Efficiency calculations for each light level shift for HitID cut . . . . 137

Table 8.2 Efficiency calculations for each calibration shift for PionID cut . . 138

Table 8.3 Efficiency calculations for each calibration shift for HitID cut . . . 138

Table 8.4 List of systematic and statistical uncertainties. . . . . . . . . . . . 139

Table 8.5 PionID Cut Efficiency comparison Light Level Up, Down and
No Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

x



Table 8.6 HitID Cut Efficiency comparison Light Level Up, Down and No
Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Table 8.7 Background Predictions made by using Nominal . . . . . . . . . . 142

Table 8.8 PionID Cut Efficiency comparison Calibration Up, Down and
No Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Table 9.1 Integrals of the histograms with errors (signal events extracted
by using Figure 9.2) . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Table 9.2 Table of existing cross-section measurements . . . . . . . . . . . . 149

xi



List of Figures

Figure 1.1 The standard neutrino interaction with a target, exiting with a
(charged or neutral) lepton and massive hadrons in final state. . . 15

Figure 1.2 Charged Current (left) and Neutral Current (right) neutrino-
nucleus interaction process. . . . . . . . . . . . . . . . . . . . . . 16

Figure 1.3 CC (left) and NC (right) neutrino-nucleus coherent pion pro-
duction in the PCAC picture [11]. . . . . . . . . . . . . . . . . . . 17

Figure 1.4 Charged current resonance neutrino-nucleus interaction process. . 18

Figure 1.5 Quasi-elastic charged current neutrino-nucleus interaction process. 20

Figure 1.6 Charged current DIS neutrino-nucleus interaction process. . . . . 23

Figure 1.7 Charged current meson exchange current neutrino-nucleus in-
teraction process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 1.8 Cartoon of a potential wall (left) and a comparison of Local
Fermi Gas and Global Fermi Gas model (right). Both figures
are reprinted from [45]. . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 1.9 Ratio of RPA/noRPA for GENIE neutrino events with the
full central weighting as a function of four-momentum trans-
fer squared. This figure is taken from Ref. [50] . . . . . . . . . . . 28

Figure 1.10 Diagram of a final state interaction reprinted from Ref. [52] . . . 29

Figure 2.1 Total elastic pion Carbon cross section versus pion laboratory
momentum. Left: The dotted line represents the Rein-Sehgal
model, and the solid line represents the Berger-Sehgal model
by fitting with the pion carbon data. Right: The fitting result
of the coefficients A1,b1 of the Berger-Sehgal equation. Ref. [55] . 42

Figure 3.1 Fermilab accelerator complex . . . . . . . . . . . . . . . . . . . . 44

xii



Figure 3.2 Fermilab accelerator complex . . . . . . . . . . . . . . . . . . . . 46

Figure 3.3 Plot of neutrino energy and pion energy for different off-axis angles. 48

Figure 3.4 The neutrino energy spectra for near detector for various off-
axis angles and the y-axis represents expected number of charged
current νµ events (a) and the flux times cross-section for differ-
ent neutrino components in the NuMI beam as a function of
neutrino energy (b). . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.5 A plane created by connecting 32 plastic PVC cells. . . . . . . . . 50

Figure 3.6 Extruded PVC Cell array. . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.7 NOvA far detector (a). Schematic diagram of NOvA cell, the
walls are made up of PVC with a loop of wavelength shifting
fiber is read out by one APD (b). . . . . . . . . . . . . . . . . . 53

Figure 3.8 near detector (a) and muon catcher region (b) with steel plates
alternating with scintillation planes, whose height is two-thirds
that of the active region. . . . . . . . . . . . . . . . . . . . . . . 54

Figure 3.9 The ends of 32 wavelength-shifting fibers collected at the end
of scintillation cells to mount to an APD (a). The front face of
an APD will be pressed against the fiber ends (b). . . . . . . . . . 55

Figure 3.10 Schematic drawing of DAQ data flow. . . . . . . . . . . . . . . . . 57

Figure 3.11 fractional uptime as a function of time. Uptime has steadily
increased over the time as the experiment moved from commis-
sioning to steady state running. . . . . . . . . . . . . . . . . . . . 59

Figure 3.12 Weekly exposure and cumulative exposure vs date from starting
of NOvA data taking in neutrino mode as well as anti-neutrino
mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.1 Template function of collection rate of scintillation photons
(left).Cell wall reflectivity as a function of wavelength (right). . . 66

Figure 4.2 The Cherenkov light production as a function of wavelength for
different velocity of particles (β) and the red shaded region is
absorption spectrum of the k-27 dye in the optical fiber(left).
The photon production comparison as a function of βγ for scin-
tillation is in blue and Cherenkov radiation is in red (right). . . . 69

xiii



Figure 4.3 Comparing the photo-electron spectrum in cosmic rays between
the ND data and simulation reveals a discrepancy. The differ-
ence observed at high photo-electron counts can be attributed
to the fact that the gain in each cell of the detector is individu-
ally set in the data, whereas the simulation assumes a uniform
gain value across all cells. . . . . . . . . . . . . . . . . . . . . . . 70

Figure 5.1 (νµ) CC neutrino interaction with long muon (top). (νe) CC
neutrino interaction with electron shower (middle), Neutral cur-
rent (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 5.2 Illustration of the 3D prong reconstruction using the fuzzy-k
means algorithm for a simulated νe CC QE process in the FD.
The reconstructed prongs are visualized in the xz and yz views,
with the electron prong displayed in red and the proton prong in
green. The corresponding cumulative energy profile histograms,
which are utilized to determine appropriate matches for the 3D
prongs, are also depicted in the Figure 5.3 [75] . . . . . . . . . . . 80

Figure 5.3 Representation of potential 3D match candidates as shown in
Figure 5.2 displays the cumulative energy profile of prongs as
a function of path length along the prong. The red and blue
curves correspond to prongs in the XZ view (vertical planes)
and the YZ view (horizontal planes), respectively. In the upper-
left and lower-right figures, the preferred matches are shown,
indicated by the green and red tracks, respectively. These
matches exhibit similar energy profiles. The off-diagonal ele-
ments demonstrate the dissimilarity in energy profile shape for
incorrect combinations [75]. . . . . . . . . . . . . . . . . . . . . . 82

Figure 5.4 The process of selecting tri-cells related to a cosmic ray muon
involves identifying specific cells based on their neighboring cells
being triggered by the same cosmic ray. In the illustration, the
dark red cell represents a tri-cell since its adjacent cells are also
triggered by the same cosmic ray. The path length within this
cell is determined by the variable Ly/cy. . . . . . . . . . . . . . . 83

Figure 5.5 Examples of well-fitted attenuation curves with LOWESS cor-
rections for the ND. The blue curve represents the full attenua-
tion fit that incorporates the LOWESS fit, while the red curve
represents the double exponential fit. The plot on the left cor-
responds to the horizontal view cells, while the plot on the right
corresponds to the vertical view cells. . . . . . . . . . . . . . . . . 86

xiv



Figure 5.6 Examples of the ratio between the mean reconstructed energy
and the true energy as a function of W. The red dots represent
the results before the calibration is applied, while the blue dots
represent the results after the calibration is applied. The plot
on the left corresponds to the horizontal view cells, while the
plot on the right corresponds to the vertical view cells. . . . . . . 87

Figure 5.7 The graph on the left shows the corrected response of the de-
tector as a function of the distance from the track end in both
the ND data and Monte Carlo (MC) simulations. On the right,
the graph illustrates the calibrated energy distribution per unit
path length as a function of the distance from the track end in
the ND data and MC simulations. . . . . . . . . . . . . . . . . . . 88

Figure 6.1 Optimizing Fiducial Volume using Figure of merit plot: Sensitivity 92

Figure 6.2 Selected Topology used for analysis (i.e. events that only con-
tain two 3D prongs and zero 2D prongs ) . . . . . . . . . . . . . . 93

Figure 6.3 Graphical representation of the fiducial and containment vol-
umes defined to study charged current coherent events . . . . . . 94

Figure 6.4 Simulated muon (hashed blue) and non-muon (dashed red) track
distributions in: dE/dx log-likelihood differences between that
of a muon and a pion (top left), multiple scattering log-likelihood
differences (top right), average dE/dx in last 10 cm (bottom
left) and average dE/dx in last 40 cm (bottom right) used in
the MuonID selector [77]. . . . . . . . . . . . . . . . . . . . . . . 95

Figure 6.5 Correlation matrix of MuonID input variables for signal tracks
(left) and correlation matrix of input variables for background
tracks (right) [77]. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 6.6 Number of Kalman tracks after Two 3D Prong cut . . . . . . . . 96

Figure 6.7 Muon Candidate table after prongs to track mapping . . . . . . . 97

Figure 6.8 Plots of MuonID made for signal and background muon candi-
date Kalman tracks . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 6.9 The MuonID cut value optimized by FOM as a function of
MuonID Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xv



Figure 6.10 Muon Reconstruction Efficiency as a function of Muon Kinetic
Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 6.11 Fractional Resolution of the Muon Energy estimator . . . . . . . 100

Figure 6.12 Pion Reconstruction Efficiency as a function of Pion Kinetic Energy100

Figure 6.13 Fractional Resolution of the Pion Energy estimator . . . . . . . . 101

Figure 6.14 Feynman diagram of charged current quasi-elastic scattering
that produces muon and proton in final state . . . . . . . . . . . 103

Figure 6.15 Mixing matrices made by analyzing input variables for True
Pions (on left) and the dominating background: true protons
(on right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 6.16 Creating a cut based on PionID . . . . . . . . . . . . . . . . . . . 104

Figure 6.17 CC Resonant interaction simulated in NOvA Near Detector . . . 105

Figure 6.18 Mixing matrices made for input variables used to train HitID . . 106

Figure 6.19 Creating a cut based on Hit Score . . . . . . . . . . . . . . . . . . 106

Figure 6.20 Reconstruction of the event kinematics for individual events . . . 107

Figure 6.21 Mixing matrices made for input variables used to train Kine-
matic ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Figure 6.22 Creating a cut based on Kinematic Score . . . . . . . . . . . . . . 109

Figure 6.23 Reconstructed |t| after MuonID Cut . . . . . . . . . . . . . . . . 110

Figure 6.24 Reconstructed |t| after complete event selection . . . . . . . . . . 110

Figure 6.25 Composition of Other Backgrounds survived after event selection 111

Figure 6.26 Number of reconstructed prongs Data Vs Total MC . . . . . . . . 112

Figure 7.1 Plot of PionID Score made with events that failed either Kine-
matic Score or Hit Score cuts (Kinematic Score < 0.84 or Hit
Score < 0.46) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xvi



Figure 7.2 Plot of Hit Score made with events that failed either Kinematic
Score or PionID Score cuts (Kinematic Score < 0.84 or PionID
Score < 0.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 7.3 Plot of Kinematic Score made with events that failed either
PionID Score or Hit Score cuts (PionID Score < 0.05 or Hit
Score < 0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 7.4 Plot of |t| distributions made with failed events (PionID Score
< 0.05 or Hit Score < 0.05) and (Kinematic Score > 0.84). An
absolute normalization to the expected pot is used for the MC,
corrected by the factors from table 7.1 . . . . . . . . . . . . . . . 118

Figure 7.5 Plot of |t| ratio made with failed events (PionID Score < 0.05
or Hit Score < 0.05) and (Kinematic Score > 0.84). . . . . . . . . 120

Figure 7.6 Plot of |t| ratio by applying shifts for GENIE Knob: CCRESMa . 121

Figure 7.7 Plot of |t| ratio by applying shifts for GENIE Knob: CCRESMv . 121

Figure 7.8 Plot of Background |t| split into different interaction types in
background control region . . . . . . . . . . . . . . . . . . . . . . 122

Figure 7.9 Plot of Background |t| split into different interaction types in
signal region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 7.10 Plot of |t| predictions made for signal region using data . . . . . . 123

Figure 7.11 Plot of total |t| Data-based prediction using Signal MC . . . . . . 124

Figure 7.12 Plot of subtracted Signal |t| from total |t| prediction with errors . 125

Figure 7.13 Plot of NOvA flux seen by Near Detector (Normalized to Data
POT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Figure 7.14 Plot of total cross-section as a function of Neutrino Energy . . . . 128

Figure 8.1 Plot of Background Prediction for different MaCCRES shifts
{Nominal,+1σ,−1σ} . . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 8.2 Plot of Background Prediction for different MvCCRES shifts
{Nominal,+1σ,−1σ} . . . . . . . . . . . . . . . . . . . . . . . . 132

xvii



Figure 8.3 Plot of νµ CC Coherent cross-section ratio after applying 20%
shift to CCCOH_Ma knob as a function of neutrino energy . . . 133

Figure 8.4 Plots of Cumulative Ratios made for PionID by introducing
light level shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Figure 8.5 Efficiency calculations for each light level shift for PionID cut . . 136

Figure 8.6 Plots of Cumulative Ratios made for HitID by introducing light
level shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 8.7 Plots of Cumulative Ratios made for PionID by introducing
calibration shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Figure 8.8 Plots of Cumulative Ratios made for HitID by introducing cal-
ibration shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 8.9 Plots of PionID with the presence of Light Level Up, Down and
No Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Figure 8.10 Plots of HitID with the presence of Light Level Up, Down, and
No Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Figure 8.11 Plots of PionID with the presence of Calibration Up, Down,
and No Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Figure 8.12 Plots of HitID with the presence of Calibration Up, Down and
No Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Figure 9.1 Plot of reconstructed |t| Data Vs Total MC in signal region . . . . 144

Figure 9.2 Plot of total |t| Data-based prediction using Signal MC . . . . . . 145

Figure 9.3 Plot of reconstructed |t| histograms for signal Data Vs MC
based in signal region . . . . . . . . . . . . . . . . . . . . . . . . . 146

Figure 9.4 Plot of total cross-section as a function of Neutrino Energy . . . . 147

Figure 9.5 Comparing NOvA total cross-section to existing measurements
as a function of Neutrino Energy . . . . . . . . . . . . . . . . . . 148

xviii



Chapter 1

Introduction to Neutrino Physics

1.1 Standard Model Physics

The Standard Model (SM) is the most established theoretical model, which describes

the interaction between the elementary particles at the most fundamental level and

could explain almost all the experimental data observed. The Standard Model con-

tains two types of particles: bosons and fermions.

1.1.1 Bosons

Bosons are elementary particles with integer spins that satisfy the Bose-Einstein

statistics. In the SM these are of two types (a) vector gauge bosons with spin one

(gluon (g), photon (γ), W±, Z0) and (b) scalar Higgs boson with spin zero. The gluon

is a massless vector boson that mediates strong interaction. Quantum chromodynam-

ics (QCD) is the theory of strong force with the coupling strength represented by the

QCD coupling constant αs. This interaction is responsible for the strong binding of

quarks inside the hardons. The strong force, as well as the electromagnetic, weak,

and gravitational forces, are the four elemental forces of our nature. Electromagnetic

interactions can be well explained by quantum electrodynamics (QED) and the corre-

sponding coupling strength is represented in terms of the fine structure constant (α).

The massless photon is the carrier of this interaction. The mediators for weak force

are the W± and Z0 bosons. This interaction allows quarks to change their flavors

with each other. The strength of this force is represented by the Fermi constant (GF ).

The gravitational force is the weakest fundamental force and is mediated by gravi-
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tons. Graviton is an exceptional hypothetical gauge boson with spin 2, which is not

part of the SM and has no experimental proof so far. A summary of the fundamental

interactions is presented in 8.4.

Table 1.1 Summary of fundamental interactions in the SM.

Forces Gauge Group Mediator Range (m) Coupling Strength
Strong SU(3)C gluon ≤ 10−15 <1

Electromagnetic U(1)Y Photon infinity 1/137
Week SU(2)L W±, Z0 10−18 10−6

Gravitational ... graviton infinity 10−39

Glashow, Salam, and Weinberg unified the electromagnetic and weak forces [1–3]

into the electroweak interaction, which again combines with the strong interaction

to form a single unifying model, named the Standard Model. SM is represented by

the SU(3)C × SU(2)L × U(1)Y gauge group, where SU(3)C is for strong interaction,

where C stands for color charge, SU(2)L is for weak interaction, where L implies

the coupling of W±, Z0 bosons with only left-handed fermions, and U(1)Y stands

for hypercharge interaction with Y = 2(Q − T3) as hypercharge. The masses of the

fermions and bosons are measured experimentally. However, the SM gauge symmetry

imposes on the SM particles that they are massless. Then, how do W±, Z0 bosons get

mass? The answer to this puzzle is the Higgs mechanism [4–7], where spontaneous

symmetry breaking of SU(2)L×U(1)Y −→ U(1)em occurs. As a result of the symmetry

breaking, the vacuum expectation value (VEV) of the Higgs scalar field is found to

be zero, which will give masses to the weak gauge bosons. The interactions of the

Higgs scalar field with fermions provide masses for them. This Higgs field, which was

discovered in 4th July 2012 by the ATLAS and CMS Collaboration [8, 9]. In Table

1.2, we list the properties of SM particles in the SU(3)C × SU(2)L × U(1)Y gauge

group.
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1.1.2 Fermions

Fermions are odd half-integral spin subatomic particles that make up matter and obey

Fermi-Dirac statistics. These are further categorized into quarks and leptons, which

are elementary particles with no substructure. Each group of leptons and quarks is

classified into three generations.

Quarks

There exist six flavors of quarks, namely, up (u), down (d), charm (c), strange (s),

top (t) and bottom (b). Quarks of different flavors combine with each other to form

hadrons, which in general are of two types (a) baryons, which have a triquark state and

(b) mesons, which are made up of a quark and an antiquark. Baryons are associated

with baryon quantum numbers, which should be conserved in the SM. The problem

arising in the triquark state associated with the Pauli-exclusion principle gave birth

to a new quantum number called a “color charge, which is of three types, namely red

(R), green (G), and blue (B). The corresponding antiquarks have anticolors as the

composite particles should be colorless.

Leptons

Similarly to quarks, leptons also have six flavors which consist of charged leptons

namely electron (e), muon (µ), tau (τ ) and the corresponding neutral leptons known

as electron neutrino (νe), muon neutrino (νµ), tau neutrino (ντ ). Leptons are color-

singlet and do not carry any color quantum number. Each family of leptons is linked

to the corresponding lepton number Li.

1.2 Physics Beyond Standard Model

Though the SM of elementary particle physics is a profound and proficient theory, it

fails to explain many physical phenomena like matter-antimatter asymmetry, neutrino
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Table 1.2 Quantum numbers of SM particles under gauge symme-
try SU(3)C × SU(2)L × U(1)Y .

Fields SU(3)C , SU(2)L, U(1)Y

Leptons LL =
(
e
νe

)
L

,

(
µ
νµ

)
L

,

(
τ
ντ

)
L

eR, µR, τR

(1, 2,-1/2)
(1, 1,-1)

Quarks

(
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

uR, cR, tR
dR, sR, bR

(3, 2, 1/6)
(3, 1, 2/3)
(3, 1, -1/3)

Higgs H (1, 2, 1)

mass, and gravitational force, and it does not have any component of dark matter and

dark energy etc. These failures of SM imply that there should be new physics beyond

SM. The most general demerits of SM include the following unresolved puzzles:

• The elementary particles are organized into three families. But there is no

proper reason for the existence of only 3 generations. So, an interesting question

arises here: ’Why are there only three families of leptons and quarks?’

• We do not have any idea of why the masses of third-generation particles are

more massive than that of the second-generation, which has a comparatively

higher mass than the first-generation fundamental particles of the universe.

Thus, the next puzzle of the SM is ’why is there a mass hierarchy?’

• Though an equal amount of particle and antiparticle was produced during the

time of big-bang, the existence of stars, galaxies and our Universe implies the

dominance of matter over antimatter. Here the most existing question arises,

“Why the present universe is matter dominated?”.

• SM does not have any explanation for the gravitational force, which is the fourth

fundamental interaction of nature.
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• The components of dark matter and dark energy are absent in the SM, though

95% of our universe belongs to the invisible sector.

• Although neutrinos are massless in the SM, the confirmation of oscillation be-

tween different flavors of neutrino implies that they have masses.

These open questions forced physicists to think beyond the SM. Now, theoreticians

are building new physics models in order to resolve these problems. Besides these

open puzzles, there are many issues in the neutrino sector, which we are going to

discuss in the next chapter.

1.3 Overview of Neutrino Physics

Neutrinos, which are among the numerous subatomic particles in the standard model,

have a significant presence in our universe. They came into existence soon after the

Big Bang and continue to be generated by supernova explosions, star deaths, and

nuclear reactions on Earth. Despite approximately one hundred trillion neutrinos

passing through our bodies every second, we have limited knowledge of their behavior.

As the lightest colorless fermions lack an electric charge, neutrinos only interact

weakly with other SM fermions through weak interaction. This weak interaction

makes neutrinos the least understood of all fundamental particles. It was not until

the emergence of beta-decay puzzles that the scientific community began to uncover

the mysteries surrounding neutrinos.

1.3.1 History of Neutrinos

The area of neutrino physics started with the proposal of the existence of a new

hypothetical neutral fermion by the theorist Wolfgang Pauli in 1930. Before the

prediction on neutrino, beta decay was considered to be a two-body decay process;
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n0 −→ p+ + e (1.1)

Since the daughter nuclei are almost at rest, one should expect a discrete energy

spectrum for the electron particle due to the energy conservation. However, the

distribution of electron energy values is found to be continuous. Furthermore, the

direction of the recoiling nuclide was not completely opposite to the direction of the

emitted electron. Thus, if beta decay is assumed to be a two-body process, the

energy-momentum is not conserved in this process. Since anti-electron neutrino with

spin half react and produce two spin half fermions in the nuclear reactor united with

protons, creating neutron and positron:

ν̄e + p+ −→ n0 + e+ (1.2)

Afterward, the pair annihilation process occurs, i.e., the positron combines with

an electron to produce two gamma rays,

e+ + e− −→ γ + γ (1.3)

and the neutron is captured by the cadmium nuclei producing a photon

n+ Cd108 −→ Cd109 + γ (1.4)

This was the first experiment, where the anti-electron neutrino was detected, for

which Reines and Cowan won the Nobel Prize in 1995. After the observation of K0

mixing in the quark sector, Pontecorvo proposed the possibility of neutrino mixing

in 1957. In 1962, a new type of neutrino was discovered at Brookhaven National

Laboratory (BNL), showing different behaviors with electrons and muon. This was

the discovery of the second neutrino, known as muon neutrino νµ for which Lederman,

Schwartz, and Steinberger received the Nobel Prize in 1988. Just after the discovery

of muon neutrinos, Maki and Sakata developed the theory of oscillation in 1962.
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Thereafter, the DONUT experiment has discovered the tau neutrino 2000. In 2015,

Takaaki Kajita and Arthur B. McDonald, and others have been awarded the Nobel

Prize for their contribution to the discovery of neutrino oscillations, which showed

that neutrinos have mass.

1.3.2 Neutrino Oscillations

Neutrinos come in three flavors, and they change flavor as they travel from one

place to another irrespective of means by means of the medium through the earth or

vacuum. The amount they change depends on how long they have to change. This

time is directly related to the distance of the neutrino traveled and the energy of the

neutrino itself. Distance is much easier to measure than neutrino energy estimation.

Neutrino oscillations occur because neutrino flavor states are a quantum superposition

of mass eigenstates.

|να⟩ =
∑

i

Uαi |νi⟩ (1.5)

where, |να⟩ is the flavor eigenstate, with α = e, µ, τ and |νi⟩ is the mass eigenstate

and i = 1,2,3. In quantum mechanics, the neutrino can be described either in flavor

bases or in mass basis. They are related to a unitary leptonic mixing matrix Uαi,

commonly known as Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. In general,

the relation can be written as follows:


νe

νµ

ντ

 = U


ν1

ν2

ν2

 (1.6)

1.3.3 Neutrino Oscillations in Vacuum

Let us consider a given neutrino source at position x = 0, and time t = 0. After a

certain distance of travel by neutrinos, let us say the position and time are x and t,
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respectively. One can obtain the evolution of neutrino mass state in time using the

Schrodinger equation. The solution of the equation provides a plane wave equation

associated with a phase. The mass eigenstate of the neutrino at a point in space-time

(x, t) is given by

|να(x, t)⟩ =
n∑

i=1
Uαi |νi(x, t)⟩ =

n∑
i=1

Uαie
−iϕ1 |νi(0, 0)⟩ (1.7)

Here, ϕ is the phase. The transition amplitude A can be written for α neutrino

flavor at space-time (0,0) to β neutrino flavor at later space-time (x,t) is:

A(να −→ νβ) = ⟨νβ(x, t)|να(x, t)⟩

=
n∑

i=1

n∑
j=1

U∗
βjUαi ⟨νj(x, t)|νi(0, 0)⟩

=
n∑

i=1
UαiU

∗
β,ie

iϕi

(1.8)

The transition probability is:

Pα,β = |A(να −→ νβ)|2

=
∣∣∣∣∣

n∑
i=1

UαiU
∗
β,ie

iϕi

∣∣∣∣∣
2

=
n∑

i=1

n∑
j=1

UαiU
∗
βiU

∗
αjUβje

−i(ϕj−ϕi)

(1.9)

Considering neutrino a relativistic particle, the energy Ei of neutrino mass eigen-

states νi, with mass mi, can be approximated as:

Ei =
√
p2

i +m2
i ≃ p+ m2

i

2E (1.10)

The phase difference tells us about the neutrino mass splitting:

ϕi − ϕj = (Ei − Ej)L− (pi − pj) x =
∆m2

ijL

2E (1.11)

where:

∆m2
ij = m2

i −m2
j (1.12)
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If the neutrino has two flavors, they are related to a rotation matrix and θ is the

mixing angle.

U =

 cos θ sin θ

− sin θ cos θ

 (1.13)

The oscillation probability of a neutrino να oscillates into νβ for the two flavor

neutrinos is:

Pνα→νβ
(Eν) = sin2 2θ sin2

(
1.27∆m2

21 L
4Eν

)
(1.14)

The probability of neutrino oscillation depends on the L / E ratio and the si-

nusoidal function. From Eq 1.14 it is evident that neutrino oscillations are actually

implying neutrino masses within the measured energy region. If the mass squared

difference is zero, the oscillation probability is zero, implying the existence of at least

one nonzero neutrino mass state. So far, we have experimentally observed only a

mass-squared difference, not the absolute mass of the neutrino. Furthermore, ∆m2

is involved in the sin square, which means that there is no sensitivity of the sign

of ∆m2. Again, the mixing angle is involved in terms of sin22θ, in the two-flavor

framework, the oscillation amplitude is the same for the mixing angle 400 or 500. But

they resulted differently in the three neutrino oscillation frameworks. Extending the

two-flavor neutrino oscillation to the three-flavor oscillation, the 3 × 3 unitary PMNS

matrix U can be expressed as:

U =


c13c12 c13s12 s13e

−iδ

−c23s12 − s23c12s13e
iδ c23c12 − s23s12s13e

iδ c13s23

s23s12 − c23c12s13e
iδ −s23c12 − c23s12s13e

iδ c13s23

 (1.15)

where: cij = cos θij and sij = sin θij.

One more interesting feature is that charge-parity (CP) violation comes into the

picture in the three-flavor neutrino oscillation framework and it is not seen in the

two-flavor case. The transition probability of a neutrino να oscillates into νβ for a
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3-flavor neutrino can be expressed using 3 × 3 unitary PMNS matrix Uij as:

Pνα→νβ
= δαβ − 2

∑
i>j

Im
[
U⋆

βjUαjUβiU
⋆
αi

]
sin

∆m2
jiL

2E

+ 4
∑
i>j

Re
[
U⋆

βjUαjUβiU
⋆
αi

]
sin2 ∆m2

jiL

4E

(1.16)

1.3.4 Neutrino Oscillations in Matter

When electron neutrinos propagate through matter they interact with the electron

content of the matter because neutrinos interact with their corresponding leptons.

Electron neutrinos interact with electrons in matter under both charged and neutral

current processes, but for other flavors, only neutral current interactions are possible.

Thus, the flavor experiences an asymmetric potential, the so-called Wolfenstein term,

which is popularly known as the Mikheyev- Smirnov-Wolfenstein (MSW) effect [10].

For simplicity, starting with 2-flavor, the MSW effect can be expressed according to

the Schrodinger equation:

i
d

dL

 νe

νµ

 =

U


m2
1

2E
0

0 m2
2

2E

U∗ + Vcc

 1 0

0 0


+

 νe

νµ



= 1
4E

 −∆m2 cos 2θ + 4EVcc ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ


 νe

νµ


(1.17)

where Vcc = ±
√

2GFρe, GF is the Fermi constant, ρe is the electron number

density, and the positive and negative signs are for neutrinos and anti-neutrinos,

respectively.

The effective Hamiltonian in the mass basis can be derived from the diagonaliza-

tion of the effective Hamiltonian in the flavor basis through a unitary matrix:

UT
MHFUM = HM (1.18)
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Here, HF is effective Hamiltonian flavor basis, UM is the effective mixing matrix

in matter:

UM =

 cos θM sin θM

− sin θM cos θM

 (1.19)

and HM is effective Hamiltonian in mass basis, expressed as:

HM = ∆m2

4E

 −1 0

0 1

 (1.20)

Simplifying Eq 1.20 and Eq 1.19, the effective mass-squared differences and mixing

angles can be expressed as:

∆m2
M =

√
(∆m2 cos 2θ ∓ 2EVcc)2 + (∆m2 sin 2θ)2 (1.21)

tan 2θM = tan 2θ
1 ∓ 2EVcc

∆m2 cos 2θ

(1.22)

where ∆m2 and θ represent the split and mixing angle in vacuum. The matter

effect modifies the oscillation parameters on the basis of the matter density and

neutrino energy. When cos2θ = 2EVcc it is found that ∆m2
M = ∆m2, which leads to

resonance. This resonance corresponds to the electron number density as:

Vcc =
√

2GFρe

= ∆m2 cos 2θ
2E

ρres = ∆m2 cos 2θ
2
√

2GFE

(1.23)

At resonance, the effective mixing angle becomes maximal (450) which leads to an

amplification of the oscillation probabilities. The matter effect will be significant if

neutrinos pass through more dense material, for example, at the core of the Sun. This

method is used to fix the mass ordering of neutrinos in solar neutrino mixing and long-

baseline neutrino oscillation experiments to find the mass ordering of ν3. Furthermore,

as positive and negative signs denote neutrino and antineutrino, respectively, the

oscillation probability will also be different, so there is an expected charge-parity
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asymmetry. The oscillation probability for muon neutrinos oscillating into electron

neutrinos is:

Pνµ→νe = sin2 θ23 sin2 2θ13
sin2 (∆m2

31 ∓ aL)
(∆m2

31 ∓ aL)2 ∆m4
31

+ sin 2θ23 sin 2θ13 sin 2θ12
sin (∆m2

31 ∓ aL)
(∆m2

31 ∓ aL) ∆m2
31

sin(∓aL)
(∓aL) ∆m2

21(
cos ∆m2

32 cos δ ∓ sin ∆m2
32 sin δ

)
+ cos2 θ23 sin2 2θ12

sin2(∓aL)
(∓aL)2 ∆m4

21

(1.24)

where a = GF ρe√
2 and the signs minus and plus are for neutrinos and antineutrinos,

respectively.

1.3.5 Importance of Cross-section

Neutrino oscillation experiments do not measure the oscillation probability, but rather

the event rate. Therefore, we need to measure the number of neutrinos as a function

of the neutrino energy at near and far detectors. The number of neutrinos at the

near detector is the convolution of flux, cross-section, and detection efficiency of the

near detector:

NND
να

(Eν) ∝ ϕ (Eν) × σ (Eν) × ϵND (Eν ,Tα,Θα . . .) (1.25)

The flux (ϕ(Eν)) is defined as the number of neutrinos produced by the accelerator

per cm2, per energy, for a given number of protons on target. The probability of

interaction of the neutrinos in the material of the detector is known as the cross-

section (σ(Eν)) and efficiency (ϵ) corrects for events which we lose during selection

(threshold, acceptance, containment, etc.). Due to the convolution of flux and cross-

section, even if there is a high correlation between flux, cross-section, and detector

efficiency between near and far detectors, it will not remove all dependencies. The

event rate approximately can be written as :

NF D
νβ

NND
να

≈
ϕF D

νβ
(Eν)

ϕND
να

(Eν) ×
σF D

νβ
(Eν)

σND
να

(Eν) ×
ϵF D

νβ

ϵND
να

× Pνα→νβ
(Eν) (1.26)
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The oscillated flux at the far detector is not the same as the un-oscillated flux

measured at the near detector, as the far detector sees a point source of neutrino

beam, whereas near detector sees a broad spectrum of neutrino source. Also, the

acceptance of particles is different at both the near and far detectors, efficiency cal-

culation depends on the simulated particles from an event generator which is based

on the neutrino-nucleus interaction model. The dependence of efficiency on the kine-

matics of the final state, which is driven by cross-section, and the different model

predicts different particle multiplicity in the final state, which gives birth to uncer-

tainty. The uncertainty does not cancel exactly due to the difference in the near- and

far-detectors.

1.3.6 Neutrino Kinematics

Before moving on to various neutrino-nucleus interactions, we need to familiarize

ourselves with the neutrino kinematics notation, which has widespread use through-

out this dissertation. In general, the neutrino interacts with a target nucleus that

produces a lepton or neutrino depending on the type of interaction (charged current

or neutral current) and a messy final state particle (Figure 1.1). Let us consider

the four-momentum of the incoming neutrino k(Eν , p⃗ν) and the outgoing leptons be

k′(El, p⃗l), the target nucleus four-momentum p(EN , p⃗N) and the final-state hadrons,

p′(EH , p⃗H). q is the four-momentum transferred between the neutrino-lepton system

and the square of this transfer (q2) is Lorentz invariant and is usually used as

Q2 = −q2 (1.27)

which determines what final states are available to an interaction and mostly

depends on the neutrino energy.

13



q2 = (k′ − k)2

= (El − Eν)2 − (−→pl − p⃗ν)2

= −Q2

(1.28)

The energy transfer will be ν = Eν − El. The fraction of the initial neutrino’s

energy transferred by the interaction is defined as inelasticity (y) and represented as

y = p · q
p · k

= Eν − El

Eν

.

(1.29)

in the laboratory frame. The fraction of the target nucleon’s momentum carried by

the quark is termed as Bjorken scaling variable (x) :

x = Q2

2p · q

= Q2

2MTν
,

(1.30)

in laboratory frame. where MT is mass of the target nucleus. The total invariant

mass of the outgoing final-state particles is represented by W and can be written as:

W 2 = (p+ q)2

= M2
T + 2MTEH −Q2,

(1.31)

where EH is mass of the hadrons.

1.3.7 Neutrino Nucleus Interaction

The neutrino-nucleus interaction largely depends on the energy of the neutrino; the

higher the neutrino energy, the better it can reach the small scale of length. We

are dealing with two types of interaction such as charged current (CC) and neutral

current (NC) interactions. The interaction process in which neutrino is in and charge

lepton is out occurs through the exchange of a charged (W) boson. The flavor of
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Figure 1.1 The standard neutrino interaction with a target, exiting
with a (charged or neutral) lepton and massive hadrons in final state.

the outgoing lepton ’tags’ the flavor of the incoming neutrino and the charge of the

outgoing lepton determines whether it is neutrino or antineutrino (Figure 1.2). In

the NC process, the neutrino is in both the initial and final states since it is mediated

by a neutral boson (Z). It is impossible to reconstruct the kinematics of final-state

particles in NC interactions, and these typically appear in oscillation measurements

as backgrounds.

The inclusive muon neutrino charged-current analysis implies that at least one

muon will be among the final-state particles irrespective of the particular interaction

process in which it takes care of summing over all possible nuclear final states.

Coherent Scattering (Coh)

Coherent scattering is a process by which a neutrino interacts with a nucleus, the

nucleus is not excited to a higher energy state and coherently scatters off the target
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Figure 1.2 Charged Current (left) and Neutral Current (right)
neutrino-nucleus interaction process.

nucleus with the small exchange of energy between nucleus and neutrino with single

meson (pions, kaons, rho) in the final state. The charge current and neutral current

coherent processes are:

νµA → µ−Aπ+, ν̄µA → µ+Aπ−

νµA → νµAπ
0, ν̄µA → ν̄µAπ

0
(1.32)

The coherent interaction process plays an important role in the νµ → νe oscillation

analysis. As the final state has π0, which decays to two photons if any one of the

photons is missing from this sample, which can be misidentified as a signal event

νe. This might occur when a missed photon exits the detector before showering

or is not able to produce a shower. Also, the misidentification of charged current

coherent π+ as proton disturbs the reconstruction of neutrino energy in particularly

νµ disappearance analysis. The coherent scattering process occurs in the low Q2

region and requires a small momentum transfer to the target nucleus. According to

the partially conserved axial current (PCAC) hypothesis, the differential cross section

at Q2 = 0 is given by:

d3σ(νA → lAπ)
dxdydQ2

∣∣∣∣∣
Q2=0

= G2
F

π2 f
2
πMEν(1 − y)σ(πA → πA)

dQ2

∣∣∣∣∣
Eνy=Eπ

, (1.33)
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Figure 1.3 CC (left) and NC (right) neutrino-nucleus coherent pion
production in the PCAC picture [11].

where x, y are the Bjorken scaling variables, GF is the weak coupling constant,

f is the pion decay constant, M is the mass of the nucleon, and Q2 is the square of

the four-momentum transferred to the target nucleus. At Q2 ̸= 0, the cross-section

is dipole dependent, and the cross-section is calculated from measured data on total

and inelastic pion scattering from protons and deuterium.

Resonance Pion Production (Res)

In this process, meson production is performed in the final state through the excitation

of the nucleon into a resonant state. The resonant states are unstable and further

decay to mesons and nucleons. A charged lepton is produced in the case of charge

current interaction (Figure 1.4). It is more active at the invariant mass W < 2 GeV

and contributes more in the neutrino energy range 0.5 − 3 GeV. The intermediate

resonance state is ∆33 (1232) in the lower neutrino energy that produces single pions

and in the higher neutrino energy range the higher mass resonances are P11(1440), S11

(1535) and D13(1520) which decay to multiple pions, kaons, and photons in addition

to single pions. Examples of different channels of charge current and neutral current
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resonance processes are:

νµn → µ−nπ+, ν̄µp → µ+pπ−

νµn → µ−pπ0, ν̄µp → µ+nπ−

νµp → µ−pπ+, ν̄µn → µ+nπ0

νµp → νµpπ
0, ν̄µp → ν̄µpπ

0

νµn → νµnπ
0, ν̄µn → ν̄µnπ

0

νµp → νµnπ
+, ν̄µp → ν̄µnπ

+

νµn → νµpπ
−, ν̄µn → ν̄µpπ

−

The double differential cross-section for a single meson production is given by:

Figure 1.4 Charged current resonance neutrino-nucleus interaction
process.
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d2σ

dQ2dν
= 1

32πME2
ν

1
2
∑

spins

|T (νN → lN∗)|2 δ
(
W 2 −M2

)
, (1.34)

where M is the mass of the initial state of the nucleon, ν is the energy trans-

fer, T (νN → lN∗) is the amplitude of a given resonance production, and W is the

hadronic invariant mass. The amplitude is calculated using the FKR model [12].

Quasi-elastic Interaction (QE)

The neutrino scatters elastically off the nucleon, ejecting a nucleon from the target

and a charged lepton in the final state with an exchange of W boson in the charge

current process, whereas, in the anti-neutrino scattering, a proton is converted into

a neutron.

νµn → µ−p,

ν̄µp → µ+n

(1.35)

In the charged current interaction process the "quasi" term arises because the

neutrino changes its identity to a charged lepton and the neutron can change into a

proton by switching from d quark to u quark. In general, the quasi-elastic term refers

to the events that are close to the quasi-elastic peak in lepton kinematics. However,

for a neutral current process, it is simply termed elastic scattering.

QE interaction plays a central role in the neutrino energy of ∼ 2GeV and is

commonly used as signal events in many neutrino oscillation experiments operating

in this energy range. In this process, a muon can be clearly detected in the final state.

According to Llewellyn-Smith formalism [13] neutrino-nucleon quasi-elastic cross-

section is expressed as:

dσ

dQ2
QE

 νln → l−p

ν̄lp → l+n

 = M2G2
F cos2 θc

8πE2
ν

{
A
(
Q2
)

∓ B
(
Q2
) s− u

M2 + C
(
Q2
) (s− u)2

M4

}

(1.36)
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Figure 1.5 Quasi-elastic charged current neutrino-nucleus interac-
tion process.

where the sign of the B term is negative for neutrinos and positive for anti-

neutrinos. M is the average nucleon mass (939 MeV).θC is the Cabbibo angle (cos θC =

13 0.9742). Here, s and u are Mandelstam variables. Eν the incoming neutrino energy.

A, B, and C are combinations of hadronic form factors.

A
(
Q2
)

=
m2

µ +Q2

M2

{(
1 + Q2

4M2

)
F 2

A −
(

1 − Q2

4M2

)
F 2

1

+ Q2

4M2

(
1 − Q2

4M2

)
(ξF )2 + Q2

M2 Re (F ∗
1 ξF2) − Q2

M2

(
1 + Q2

4M2

)(
(F )3

A

)2
−

µ2

4M2

[
|F1 + ξF2|2 + |F1 + 2Fp|2 − 4

(
1 + Q2

4M2

)((
(F )3

A

)2
+ F 2

p

)]}

B
(
Q2
)

= Q2

M2 Re [F ∗
A (F1 + ξF2)] − µ2

M2 Re
[
(F1 − τξF2)F 3∗

V −
(
F ∗

A − Q2

2M2Fp

)
F 3

A

]
,

C
(
Q2
)

=1
4

{
F 2

A + F 2
1 + τ (ξF2)2 + Q2

M2

(
F 3

A

)2
}

(1.37)

Out of six form factors, two are vector (F1 and F2), an axial vector (FA), a
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pseudoscalar (FP ), and two small second-order terms (F 3
A and F 3

V ).

The vector form factors (F1 and F2) can be expressed considering the conserved

vector current hypothesis (CVC) [14], [15] in terms of the form factors.

F1
(
Q2
)

=
GV

E (Q2) + Q2

4M2G
V
M (Q2)

1 + Q2

4M2

.

ξF2
(
Q2
)

= GV
M (Q2) −GV

E (Q2)
1 + Q2

4M2

(1.38)

where GV
M and GV

E are the electron scattering form factors and are represented by

GV
E

(
Q2
)

= Gp
E

(
Q2
)

−Gn
E

(
Q2
)
,

GV
M

(
Q2
)

= Gp
M

(
Q2
)

−Gn
M

(
Q2
)
,

(1.39)

where Gp
E and Gm

E are the electric form factors of the proton and neutron, Gp
M

and Gn
M are the magnetic form factors of the proton and neutron. The behavior of

the form factor changes according to Q2 and can be measured by electron scattering

experiments. When Q2 = 0, the electric form factors correspond to the electric charge

of the proton (1) and neutron (0), however, the magnetic form factors correspond to

the magnetic moments of the proton and neutron. At Q2 > 0, the form factors are

determined via dipole approximation, and nucleon charge is distributed exponentially

ρ(r) = ρ0e
−Mr and the dipole form factor can be obtained from Fourier transformation

as:
GD

(
Q2
)

= 1(
1 + Q2

4M2
V

)2 ,

Gp
E

(
Q2
)

= GD

(
Q2
)
,

Gn
E

(
Q2
)

= 0,

Gp
M

(
Q2
)

= µpGD

(
Q2
)
,

Gn
M

(
Q2
)

= µnGD

(
Q2
)
,

(1.40)

where M is the mass of the nucleon, MV is the vector mass = 0.843 GeV ·µp = 2.79

and µn = −1.91 are the magnetic moments of the proton and neutron, respectively.
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The pseudo-scalar form factor (FV ) is related to the axial form factor (FA) and

can be expressed as

FP

(
Q2
)

= 2M2

Q2 +m2
π

FA

(
Q2
)
,

FA

(
Q2
)

= gA(
1 + Q2

M2
A

)2 ,
(1.41)

FA is parameterized as a dipole. The average axial mass constant MA = 1.014 ±

0.014GeV/c2 was extracted by Bodek et al. [16] and the best axial vector constant

gA = 1.267 and is known from beta decay experiments. More details of MA can be

found in Ref. [17].

Deep-inelastic Scattering (DIS)

In this interaction process, the neutrino scatters a quark in the nucleon, producing

a messy hadronic system in the final state. As the neutrino has enough energy

to interact at the quark level in the nucleons, it is termed as “deep”. Beyond the

resonance interaction range, the DIS interaction range is at the invariant mass W ≥

2GeV and at high momentum transfer of Q2 ≥ 1GeV 2.

The intermediate state between the resonance process and the DIS process is called

shallow inelastic scattering (SIS). In the DIS interaction, as it is occurring in high

neutrino energy, most of the energy is transferred to the hadronic system and a small

energy goes to the lepton, so we detect a short track length of muon. Examples of

charge current and neutral current DIS interaction processes are as follows:

νµN → µ−X, ν̄µN → µ+X

νµN → νµX, ν̄µN → ν̄µX,

(1.42)

where N is the nucleon bound inside a nucleus and X is the hadrons in the final state.
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Figure 1.6 Charged current DIS neutrino-nucleus interaction pro-
cess.

The double-differential cross-section for this interaction is determined as follows:

d2σ

dxdy
= G2

FMEν

π

[(
1 − y + y2

2 + C1

)
F2(x) ± y

(
1 − y

2 + C2

)
xF3(x)

]
, (1.43)

where x, y are the Bjorken scaling variable as defined in the 2.4 and C1, C2 depend

on these variables and defined as:

C1 = M2
l (y − 2)

4MEνx
− Mxy

2Eν

− M2
l

4E2
ν

,

C2 = − M2
l

4MxEν

,

(1.44)

where Ml and M are the mass of the final-state lepton and nucleons, respectively.

The F2(x), xF3(x) are the nucleon structure functions calculated using the parton

distribution function [18].
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Meson Exchange Current (MEC)

There is another process beyond the above processes that currently draws more at-

tention in the neutrino scattering community. In this process, when a neutrino com-

municates with nucleons through W, it is absorbed by nucleons and knocking out

two-nucleon and two-hole pairs (2p-2h) through an exchange of a meson (Figure 1.7).

Figure 1.7 Charged current meson exchange current neutrino-
nucleus interaction process.

There is also a possibility of producing 3p-3h in the final state, so overall this

is called np-nh or multi-nucleon excitation. Today, excitation of multi-nucleon and

charged lepton in the final state except the pion absorption is termed quasi-elastic-

like events. The excitation of 2p-2h was first proposed by Delorme and Ericson in

the neutrino scattering process [19]. This process has a significant contribution to

neutrino-nucleus scattering, and the community agrees that meson exchange currents

are needed to explain the neutrino QE data. However, there are several phenomeno-
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logical approaches by Lalakulich, Mosel et. al. [20], [21], [22], [23] and Bodek et. al.

[24] and the most competitive theoretical approach by Martini et. al [25], [26], [27],

[28], [29], Nieves et. al. [30], [31], [32], [33], [34] and Amaro et. al. [35], [36], [37],

[38], [39], [40], [41], [42] to address the contributions of np-nh to the neutrino-nucleus

cross section.

1.3.8 Nuclear Effects

Almost all modern neutrino detectors are made of heavy nuclei. Much of the un-

certainty on cross-section models is due to poorly understood nuclear effects. This

systematic uncertainty is one of the biggest uncertainties for the oscillation experi-

ments such as NOvA, T2K, and future long-baseline experiments DUNE and Hyper-

Kamiokande. In these accelerator-based experiments, the neutrino beam energy

ranges from hundreds of MeV to a few GeV. Using such neutrino energies, a neu-

trino can probe the structure of the nucleus at the nucleon level. The effects of the

nuclear environment on neutrino interactions are substantial, and some of them are

discussed below.

Relativistic Fermi Gas (RFG) Model

According to the Pauli exclusion principle, no two identical fermions can occupy the

same state. In nuclei, there will be many protons and neutrons that are distributed

by Fermi-Dirac statistics. Nucleons occupy states in Fermi gas (all the nucleons are

noninteracting and all states are filled up in the same order) up to Fermi level. In

the Fermi gas model, nucleons move independently within the nuclear volume in a

constant binding potential generated by all nucleons. This is known as the Fermi

motion. The Fermi momentum is denoted by kF . Another term called Pauli blocking

is related to the Relativistic Fermi Gas model, in which nucleons cannot achieve the

momentum state that is already occupied, so it should have a momentum above Fermi
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momentum. When an interaction with a neutrino transfers enough energy to put a

nucleon above the Fermi level and binding energy, the nucleon is ejected and the rest

of the nucleons remain as spectators, otherwise it is Pauli blocked, the reaction is

suppressed, and the kinematic distributions are modified due to Pauli blocking.

In general, the above approach of the relativistic Fermi gas model is known as the

Global Fermi Gas (GFG) model. In the case of GFG, the nucleus is assumed as a box

of constant nuclear density and the momentum distribution is the size of the nucleus,

defined as:

pGF G
F = ℏ

r0

(9πN
4A

)1/3
, (1.45)

where N(A − Z) is the number of neutrons and, for proton, the momentum dis-

tribution is replaced by Z instead of N . A is the atomic mass and R = r0A1/3 in the

radius of the Fermi sphere (the energy state occupied by nucleons with momentum

space in the sphere) and the value of r0 = 1.25 ± 0.20fm. The minimal extension of

the RFG model is called the local Fermi Gas (LFG) model, where Fermi momentum

and binding energy (the amount of energy needed to exit the nucleon from the nu-

cleus) depend on the radial position in the nucleus, following the density profile of

the nuclear matter.

pLF G
F = ℏ

(
3π2ρ(r)N

A

)1/3
, (1.46)

where rho is the nuclear density depending on the radius (distance from the center

of the nucleus). This distribution arises from the electron scattering data [43]. The

comparative distribution of LFG and GFG is shown. The use of a local Fermi gas

model will affect the final-state nucleon energy distribution [44] as well as the cross-

section.

Short Range Correlation (SRC)

The Relativistic Fermi Gas model is used to describe the nuclear effects in the QE

region, which is based on the simplest independent particle model called the Fermi
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Figure 1.8 Cartoon of a potential wall (left) and a comparison of
Local Fermi Gas and Global Fermi Gas model (right). Both figures
are reprinted from [45].

gas model. Here all the nucleons in the nucleus are degenerate, or in other words,

nucleons are uncorrelated. If we think that nucleons in the nucleus are correlated, and

the distance between two nucleons is very short (< 15fm) there is an involvement of

a mechanism called short-range correlation [46] in which strong short-range forces get

to increase their relative momentum (more than Fermi momenta) and impel the two

nucleons far off-shell. A nucleon involved in this process is about 20% of the time,

and most of the time, participation in correlation is proton-neutron [47], [47].

The short-range correlation generates two high-energy isosinglet nucleons with

opposite isospins and an isotriplet component which can contribute to proton-proton,

proton-neutron, and neutron-neutron pairs. More details can be found in ref. [48].

Random Phase Approximation (RPA)

The Random Phase Approximation (RPA) method has been developed to under-

stand the long-range correlation between nucleons in the nucleus, it also outlines the

collective excitation of the nucleus. Collective excitations of different momenta are

orthogonal and phases can be treated randomly, so it is termed as “Random Phase”.

The RPA is a non-perturbative method to describe the complexity of many-body in-

teractions. So far RPA has been studied in the QE regime where there is a knockout

27



of a single nucleon and one of the great successes is the prediction of collective surface

vibrations, called giant resonances in the energy range that are between 0.015 and

0.030 GeV [49].

Figure 1.9 Ratio of RPA/noRPA for GENIE neutrino events with
the full central weighting as a function of four-momentum transfer
squared. This figure is taken from Ref. [50]

RPA also considers modification of electroweak coupling strengths, due to the

presence of strongly interacting nucleons in the nucleus in comparison to its free nu-

cleon coupling strength [51]. RPA corrections strongly decrease as the neutrino en-

ergy increases. RPA is strongly suppressed at low four-momentum transfer (it shows

that nucleons are embedded in nuclear potential); also there is mild enhancement

at higher four-momentum transfer (almost no RPA effect increases as Q2 increases,

which means that if high energy is transferred to the nucleus, then nucleons, quarks

might be free) is shown in Figure 1.10). A variant of RPA, called continuum RPA,

takes into account that the final nucleon is in the continuum.
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Final State Interactions (FSI)

Initially, when a neutrino interacts with one of the nucleons, it generates hadrons

(pions, protons, etc.) by ejecting a final-state charged lepton exiting from the nucleus.

The hadronic shower again scatters and rescatters with the rest of the nucleons inside

the dense nuclear matter before exiting the nucleus. This changes the kinematics,

multiplicity, and charge of the hadrons in the final state described. FSI effects on the

topology of events reconstruction. For example, if we see a muon and a proton in

the final state and no pions in the detector, we cannot tell if this was a real CCQE

event or a RES event where the pion has been reabsorbed in the nucleus. It resulted

in CC-RES events showing up as CCQE-like (CC0π) events.

Figure 1.10 Diagram of a final state interaction reprinted from Ref.
[52]

One more important thing is that the neutrino energy is unknown when it is en-
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tering the nucleus. The neutrino energy is reconstructed from the final-state particles

that we observe in our detector. It is also happening that some energy gets lost in the

rescattering in the nucleus and cannot be reconstructed. Therefore, FSI has impact

on neutrino calorimetric energy reconstruction. FSI can be estimated by computing

a mean free path for scattering (λ) of the struck nucleon,

λ(r) = [σρ(r)]−1

where ρ(r) is the nuclear density, σ is the scattering cross section between nucleon

and nucleon.

1.4 Motivation

The main objective of this analysis is to measure the total cross-section of the charge

current coherent pion production. The process of charged-current (CC) coherent

neutrino-nucleus pion production is characterized by minimal momentum transfer

to the nucleus, leaving it in its ground state. Despite the inherent uncertainties in

the production cross section, coherent meson production by neutrinos is significant,

as it offers insights into the structure of the weak current and can serve as a po-

tential background source for modern neutrino oscillation experiments and searches

for physics beyond the Standard Model (BSM). This Ph.D. thesis presents a novel

measurement of CC coherent pion production in the NOvA near detector at the Fer-

milab facility. The analysis utilizes Convolutional Neural Networks (CNN) for both

particle identification and kinematic selection criteria, achieving a selection purity of

60%. The energy range of 1-5 GeV covered by the available NOvA exposure in the

NuMI beam makes the results valuable for future neutrino experiments like the Deep

Underground Neutrino Experiment (DUNE).
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1.5 Thesis Overview

This chapter delves into the particle composition of the SM, while also highlighting

its triumphs and shortcomings, highlighting the existence of potential novel physics,

and providing an overview of physics and neutrino-nucleus interactions. The subse-

quent chapter, Chapter 2, primarily elaborates on the theories governing Coherent

Meson production by neutrinos. In Chapter 3, we provide a concise overview of the

NOvA experiment. Chapter 4 outlines the simulation chain employed in the NOvA

experiment, followed by the reconstruction and calibration processes in Chapter 5. A

detailed explanation of the analysis and its outcomes is presented in Chapter 6 and

later chapters.
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Chapter 2

Coherent Pion Production By Neutrinos

Before moving on to theoretical models of coherent pion interaction, it is essential to

define the notation.

2.1 Weak interaction Scattering

Before we talk about any theoretical models of coherent meson interaction, let us

define some notations used in this chapter.

• pν and pµ: The incoming neutrino and the outgoing lepton’s four-momentum.

• Eν and Eµ: The incoming neutrino and outgoing lepton’s energy.

• p and p′: The four-momentum of the initial and final state of the hadronic

system.

• q: The four-momentum transfer (out of the leptonic system).

• ν: Energy transfer out of the leptonic system.

• Q2: The negative square of the four-momentum transfer.

• M : The target mass.

In the previous chapter, we have already defined Bjorken x and y as follows:

y = ν

Eν

x = Q2

2p · q
= Q2

2Mν

(2.1)
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2.2 Weak Interaction Scattering Amplitude

In most neutrino oscillation experiments, the mass of the W boson is much larger

than the mass of momentum transfer, the scattering amplitude of a neutrino charged

current interaction can be expressed as:

M = GF√
2
jα

wwα (2.2)

Where GF is the Fermi coupling constant, jα
w is the weak leptonic current coupled

with charged W boson, ωα is the corresponding hadronic current. The CC leptonic

current can be expressed as follows:

jα
w = ψ̄lγ

α
(
1 − γ5

)
ψν (2.3)

The form of the hadronic current is not the same as the leptonic one, since the

nucleon/nucleus is not a point particle but a composite system made of quarks and

gluons/multiple nucleons. Generally, it is expressed as:

wα = ψ̄pγ
α (Vα − Aα)ψn (2.4)

The Vα Aα here are the vector and axial-vector components of the current, re-

spectively. Combining the leptonic and hadronic currents we have:

M = GF√
2
ψ̄lγ

α
(
1 − γ5

)
ψν [Vα − Aα] (2.5)

.The square of the scattering amplitude gives:

|M|2 = G2
F

2 ψ̄lγ
α
(
1 − γ5

)
ψν [Vα − Aα]

{
ψ̄lγ

β
(
1 − γ5

)
ψν [Vβ − Aβ]

}∗

= G2
F

2 ψ̄lγ
α
(
1 − γ5

)
ψν [Vα − Aα]

[
V ∗

β − A∗
β

]
ψ̄νγ

β
(
1 − γ5

)
ψl

= G2
F

2 ψ̄νγ
β
(
1 − γ5

)
ψlψ̄lγ

α
(
1 − γ5

)
ψν [Vα − Aα]

[
V ∗

β − A∗
β

]
= G2

F

2 Tr
(
ψνψ̄νγ

β
(
1 − γ5

)
ψlψ̄lγ

α
(
1 − γ5

))
[Vα − Aα]

[
V ∗

β − A∗
β

]
= G2

F

2 Tr
(
pνγ

β
(
1 − γ5

)
(pµ +mµ) γα

(
1 − γ5

))
[Vα − Aα]

[
V ∗

β − A∗
β

]
≡ G2

F

2 LαβWαβ

(2.6)
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In the middle, the Casimir trick is used. And spins are implicitly summed for

incoming neutrino and outgoing lepton by the equation:

∑
spins

uū = γµpµ +m (2.7)

Normally, the initial particle spins are averaged, and the final particle spins

are summed. But neutrinos are always left-handed(antineutrinos are always right-

handed). Also defined:

Lαβ = Tr
(
̸ pνγ

β
(
1 − γ5

)
(̸ pµ +mµ) γα

(
1 − γ5

))
Wαβ = [Vα − Aα]

[
V ∗

β − A∗
β

] (2.8)

Note: the subscripts ν and µ represent the neutrino and the muon, not the four-vector

indices. The leptonic tensor can be calculated as:

Lαβ = 2
[
Tr
(
̸ pνγ

βpµγ
α +mµ Tr

(
pνγ

βγα
)

− Tr
(
pνγ

βγ5pµγ
α
)

−mµ Tr
(
̸ pνγ

βγαγ5
)]

(2.9)

The trace of any odd number of gamma matrices will be zero. Therefore, the

second trace does not contribute. γ5 contains an even number of gamma matrices.

Therefore, if it is paired with an odd number of gamma matrices, the trace is zero,

so the last term does not contribute. After using some "trace theorems" which can

be found in most quantum field theory books, we are left with:

Lαβ = 8
[
pβ

νp
α
µ + pα

ν p
β
µ − (pν · pµ) gαβ − iϵαβλσ (pν)λ (pµ)σ

]
(2.10)

If we assume negligible lepton mass we’ll have:

pν · pµ = Q2

2 (mµ → 0) (2.11)

Taking the low limit Q2, then, the term ρν ρµ vanishes. Since Q2 = 2EνEµ(1 −

cos θ), in the limit Q2 → 0, θ → 0, the muon is parallel to the neutrino. So in this

limit, −→pν
−→pµ and q⃗ all three vectors are parallel. Because we are neglecting muon mass
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for high energies, we can describe the lepton 4-vectors in terms of the 4 -momentum

transfer:
pν =

(
Eν

ν

)
q

pµ =
(
Eν

µ

)
q

(2.12)

Therefore, the leptonic tensor can be expressed in terms of q:

Lαβ = 8EνEµ

ν2

[
qαqβ + qβqα − iϵαβλσqλqσ

]
(2.13)

The last term contains an antisymmetric tensor multiplied by a term that is sym-

metric under the same exchange; so the term will vanish after summation. Therefore,

we have our final form of the leptonic tensor as follows:

Lαβ = 16EνEµ

ν2 qαqβ (2.14)

2.2.1 Hadronic tensor Wαβ

One of the fundamental postulates of quantum mechanics is the representation of

momentum and energy as derivatives of space and time.

p⃗ −→ −i∇⃗

E −→ i∂t

(2.15)

Applying this to the classical equation of conservation of energy (E = p2/2m+ V ),

we immediately get the Schrödinger equation, and we can obtain the Klein-Gordon

equation by applying it to the relativistic version. A simpler 4-vector way to describe

the above relation is:

pµ = (E, p⃗) −→ i∂µ = i
(
∂t,−∆⃗

)
(2.16)

Considering the amplitude for a one-particle pion state with momentum q,

⟨0 |Jα(x)| π⟩ =
〈
0
∣∣∣eiP̂ xJα(0)e−iP̂ x

∣∣∣ π〉 = ⟨0 |Jα(0)| π⟩ e−iqx (2.17)
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The derivative of this is:

∂α ⟨0 |Jα| π⟩ =
〈
0
∣∣∣∂α

(
Jα(0)e−iqx

)∣∣∣ π〉 =
〈
0
∣∣∣−iqβJ

α(0)e−iqx∂αx
β
∣∣∣ π〉

=
〈
0
∣∣∣−iqβJ

α∂αx
β
∣∣∣ π〉 =

〈
0
∣∣∣−iqβJ

αδβ
α

∣∣∣ π〉
= −iqα ⟨0 |Jα| π⟩

(2.18)

from this we can conclude:

∂αJ
α = −iqαJ

α (2.19)

which is in accordance with the fundamental postulate in Equation 2.16. Further-

more, the square of the amplitude’s derivative is :

|∂αJ
α|2 = (−iqαJ

α)
(
iqβJ

β∗
)

= qαqβJ
αJβ∗ = qαqβW

αβ (2.20)

Once we put the final form of the leptonic tensor into the amplitude squared, we’ll

arrive at:

|M|2 = G2
F

2 16EνEµ

ν2 qαqβWαβ = 8G2
F

EνEµ

ν2 |∂α (Vα − Aα)|2 (2.21)

By CVC we have ∂αVα = 0 at low Q2, which leaves only the dependence on the

axial-vector current in the squared amplitude.

|M|2 = 8G2
F

EνEµ

ν2 |∂αAα|2
(
Q2 → 0 and ml = 0

)
(2.22)

The PCAC hypothesis relates the divergence of the axial vector current to the

amplitude of the pion field, ϕπ.

∂λA
λ = fπm

2
πϕπ (2.23)

According to Adler using PCAC[40] and the Goldberger-Treiman relation we can

equate the divergence of the axial-vector current with the corresponding scattering

of a pion. ∣∣∣〈β ∣∣∣∂λ A
λ
∣∣∣α〉∣∣∣2 = f 2

π |M(πα → β)|2 (2.24)
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putting this into our form of |M|2, we have:

|M|2 = 8G2
F

EνEµ

ν2 f 2
π |M(πα → β)|2 (2.25)

At this point, we have related the weak neutrino interaction to pion nucleus scat-

tering and we are in a good position to calculate the cross-section. According to

Fermi’s Golden rule on the cross-section for one incoming particle hit on a static

target:

dσ = |M|2

2Eν2M

(
d3pµ

(2π)3
1

2Eµ

)(
d3p′

(2π)3
1

2p′
0

)
(2π)4δ4 (pν + p− pµ − p′)

= G2
F

Mν2f
2
π |M(πα → β)|2

(
d3pµ

(2π)3

)(
d3p′

(2π)3
1

2p′
0

)
(2π)4δ4 (pν + p− pµ − p′)

(2.26)

2.2.2 Deriving dσ in terms of dQ2 and dν

It is possible to express dσ in terms of dQ2 and dν rather than d3pµ. By ignoring the

lepton mass, we have Q2 ≈ 2EE ′(1 − cos θ). By taking its derivative:

dQ2 =
(
∂Q2

∂θ

)
dθ +

(
∂Q2

∂E ′

)
dE ′ (2.27)

The initial energy is assumed to be fixed. Therefore, it’s not included here. Now

for dν we have dν = d (E − E ′) = dE − dE ′ → dν = −dE ′, The minus sign is a

simple matter of changing the integration limits.

∫ E

0
dE ′ = −

∫ 0

E
dν =

∫ E

0
dν (2.28)

It is easier to understand in the way that when the outgoing lepton has zero energy,

then the full energy E has been transferred to the hadronic system. Therefore, it’s

totally safe to take dν = dE ′ and we multiply both sides with them respectively, we

get:

dQ2dν =
(
∂Q2

∂θ

)
dθdE ′ +

(
∂Q2

∂E ′

)
(dE ′)2 (2.29)
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The second term is too small to be integrated and we finally have:

dQ2dν =
(
∂Q2

∂θ

)
dθdE ′ = (2EE ′ sin θ) dθdE ′ (2.30)

For d3p we have:

d3p = |⃗k|2d|⃗k|dΩ ≈ E ′2dE ′dΩ = 2πE ′2dE ′ sin θdθ

= π
E ′

E
dQ2dν

(2.31)

Use this equation to replace d3pµ then, We have:

dσ = G2
FEµdQ

2dν

2π2νEν

f 2
π

[
|M(πα → β)|2

2M2ν

(
d3p′

(2π)3
1

2p′
0

)
(2π)4δ4 (pν + p− pµ − p′)

]
(2.32)

Now we want to replace the amplitude of the pion scattering process with the

cross-section of it. We will have the same target α with 4-momentum p = (M, 0, 0, 0),

the same final hadron state β with 4-momentum p′, and an initial pion with 4-

momentum (pν − pµ). We are going to make an assumption that the relative velocity

can be approximated as unity when either the initial pion is off-shell by an amount

on the order of its mass or we are assuming a very high energy pion where its mass

is negligible. To reiterate, we must take the 4-vector of the initial pion to be the

difference of the lepton 4-vector.

pπ = pν − pµ (2.33)

Also,

Eπ = yEν (2.34)

With this result, we can find out the cross-section for the pion scattering process:

dσ(πα → β) =
[

|M(πα → β)|2
2M2ν

(
d3p′

(2π)3
1

2p′
0

)
× (2π)4δ4 (pν + p− pµ − p′)

]
(2.35)

By comparing this cross-section with the neutrino cross-section we arrived a while

ago, everything in the brackets are exactly the same, so we finally have:

d2σ(να → µβ)
dQ2dν

∣∣∣∣∣
Q2→0

=
(
G2

Ff
2
π(1 − y)
2π2ν

)
dσ(πα → β)

∣∣∣∣∣
Ez=yEν

(2.36)

38



This expression is known as Adler’s theorem [53], it relates the weak neutrino-nucleus

cross-section to that of the strong pion-nucleus cross-section.

2.2.3 cross-section of Antineutrino

It should be easy to figure out that the antineutrino cross-section is identical to its

neutrino counterpart:

σ(ν̄α → µβ) = σ(να → µβ) (2.37)

2.2.4 The Neutral Current Cross-Section

For the neutral current, it is required to replace the pion’s decay constant due to

isospin.

fπ0 = fπ±√
2

(2.38)

Therefore, the cross-section simply becomes:

d2σ(να → µβ)
dQ2dν

∣∣∣∣∣
Q2→0

=
(
G2

Ff
2
π(1 − y)
4π2ν

)
dσ(πα → β)

∣∣∣∣∣
Ez=yEν

(2.39)

The NC cross-section is simply half of the CC cross-section. This quantity is often

given in terms of Bjorken variables x and y. From the definition of x and y, we have:

Q2 = 2Mνx

ν = Eνy

(2.40)

By taking the derivatives of them we’ll have (dEν = 0) :

dQ2 = 2Mνdx+ 2Mxdν

ν = Eνdy

(2.41)
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so, we’ll have:

dQ2dν = (2Mνdx+ 2Mxdν) (Eνdy)

= (2MEνydx+ 2MxEνdy) (Eνdy)
(dy)2=0= 2ME2

νydxdy

(2.42)

By taking this into the cross-section equation and after some organization, we

finally have our cross-section:

d3σ (να → νπ0α)
dxdydt

∣∣∣∣∣
Q2=0

=
(
G2

Ff
2
πMEν(1 − y)

2π2

)[
dσ(πα → πα)

dt

]
Eπ=yEν

(2.43)

2.2.5 Rein and Sehgal Model

The cross-section for coherent pion production is derived from Adler’s PCAC theorem.

So far, we assumed that Q2 = 0. Rein and Sehgal model [54] extended it to non-

zero Q2, and used pion-nucleon scattering to model the pion-nucleus cross section.

Rein and Sehgal introduced a form factor to transit the cross section from zero Q2 to

non-zero Q2 :

d3σ (νA → νπ0A)
dxdydt

=
(
G2

Ff
2
πMEν(1 − y)

2π2

)(
M2

A

M2
A +Q2

)2 [
dσ(πA → πA)

dt

]
(2.44)

In order to model the pion-nucleus cross section, the authors used forward pion-

nucleon scattering:

dσ(πA → πA)
d|t|

= A2 |FA(t)|2 dσ (π0N → π0N)
d|t|

∣∣∣∣∣
t=0

(2.45)

where FA(t) is the nuclear form factor and A is the number of nucleons within

the nucleus. With the optical theorem, we have the following.

dσ(πN → πN)
d|t|

= 1
16π

[
σπ0N

tot

]2 (
1 + r2

)
; r = Re (fπN(0))

Im (fπN(0)) (2.46)

fπN(0) is the forward amplitude π −N and σπ0N
tot gives the total cross section for

the scattering π −N . The nuclear form factor is modeled with an exponential:
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|FA(t)|2 = e−b|t|Fabs; b = 1
3R

2; R = R0A
1/3 (2.47)

Here Fabs representing the effects of pion absorption in the nucleus. R is the

nuclear radius and R0 is 1.12fm. By combining all the above, we have our final R.S.

formula:

dσ

dxdyd|t|
= G2

FM

2π2 f 2
πA

2Eν(1 − y) 1
16π

[
σπ0N

tot (Eνy)
]2 (

1 + r2
)( M2

A

M2
A +Q2

)2

e−b|t|Fabs

(2.48)

The absorption factor can be estimated by

Fabs = e−<x>/λ (2.49)

where < x > is the average path length traversed by a π0 produced in the nucleus,

and λ is the absorption length defined in terms of the inelastic cross-section of the

pion-nucleon and the nuclear density ρ by λ−1 = σinel. ρ where ρ = A (4/3πR3)−1.

Finally, we get:

Fabs = e
− 9A1/3

16∗R2
0

σinel (2.50)

Rein Sehgal model agrees very well with data for neutrino energy above 2GeV.

This is adequate for the precision required on coherent pion cross-section measure-

ment. However, for precise oscillation measurements, the neutrino energy centers

around only a few GeV, correction of Rein Sehgal model or different methods are

needed for this low-energy challenge.

2.2.6 Berger Sehgal model

The Berger-Sehgal model [55] is proposed to address the low-energy problem suffered

by the Rein and Sehgal model. In the resonance region, the derivation 2.45 and
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Figure 2.1 Total elastic pion Carbon cross section versus
pion laboratory momentum. Left: The dotted line repre-
sents the Rein-Sehgal model, and the solid line represents
the Berger-Sehgal model by fitting with the pion carbon
data. Right: The fitting result of the coefficients A1,b1 of
the Berger-Sehgal equation. Ref. [55]

2.50 based on a simple classical ansatz may not be a valid estimation of pion-nucleus

scattering. To circumvent the uncertainties in modeling nuclear processes, Berger’s

model directly appeals to data on pion nucleus elastic scattering. They found that

the elastic πp cross section can be simply parametrized by:

dσ(πA → πA)
d|t|

= A1e
−b1t (2.51)

where coefficients A1, b1 can be fitted by external data. The result based on the

fitted equation is shown in Figure 2.1, in comparison with the Rein-Sehgal model’s

prediction. It is clear that the cross-section from Berger Sehgal’s fitting with pion

Carbon data is much below the Rein Sehgal model and when Pπ approaches 1GeV,

the two curves become consistent which justifies the ansatz. It also suggests that

the Rein Sehgal model fails in the region of the ∆ resonance, but may be a valid

description at higher energies.
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Chapter 3

The NOvA Experiment

The NOvA experiment (NuMI Off-axis νe Appearance) involves two detectors, namely

the near detector and the far detector. It is a long baseline oscillation experiment

that utilizes a high-intensity neutrino source provided by Fermilab’s Neutrinos at the

Main Injector (NuMI) [56]. The purpose of placing the two detectors at a significant

distance is to observe neutrino oscillation phenomena.

The near detector (ND) is located 1km downstream from the neutrino source.

Its main role is to measure the composition of the neutrino beam before oscillation

occurs, since it is close to the source where neutrinos have not had the opportunity

to oscillate. Additionally, the near detector offers an excellent opportunity for cross-

section measurements. On the other hand, the far detector is located 810 km away

from the neutrino source in Ash River, Minnesota. Its purpose is to measure the

oscillated neutrinos.

Both detectors have similar functionality but differ in size. The NuMI beam can

produce both neutrinos and antineutrinos. The oscillation probability for neutrinos

and antineutrinos is different, primarily due to the matter effect. By comparing the

appearance probability in neutrinos and antineutrinos, it is possible to determine

whether the mass ordering is normal or inverted. Furthermore, the discrepancy in

oscillation probability between neutrinos and anti-neutrinos allows measurement of

the charge-parity (CP) violating phase, denoted δ. This chapter provides a detailed

description of the NuMI beams and the design of the NOvA detector.
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3.1 NuMI Neutrino Beam

3.1.1 Fermilab Accelerator Complex

The neutrino beam produced by Fermilab’s accelerator complex (depicted in Figure

3.1) is considered to be the most potent in this particular scenario. It serves as the

source for various neutrino experiments conducted at Fermilab.

Figure 3.1 Fermilab accelerator complex

First, negative hydrogen atoms are created and accelerated to a kinetic energy

of 0.4 GeV in the Linear Accelerator (LINAC). These negatively charged hydrogen

atoms are then converted into positively charged hydrogen atoms (protons) by pass-

ing through a carbon foil before being sent into the booster ring, where they are

accelerated to a kinetic energy of 8 GeV. The selected protons from the booster are

directed into the Main Injector (MI) synchrotron accelerator, which accelerates them

to 120 GeV over a circumference of 3.3 km. The proton beam is extracted from the

MI and bent 58 mrad downward towards the MINOS detectors.
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Initially, the NuMI beam was designed for the MINOS on-axis neutrino exper-

iment. However, to achieve the desired beam power of 700 kW for the NOvA ex-

periment, upgrades were made to the Fermilab accelerator complex. The detailed

descriptions can be viewed in NOvA TDR [57]. The beam power was increased by

reducing the cycle time from 2.2 to 1.33 seconds in the MI, achieved by adding two

radio frequency (RF) cavities to accelerate the protons at a higher rate. The antipro-

ton storage ring from the Tevatron era was transformed into the recycler storage ring.

Protons from the Booster are first injected into the Recycler, which then feeds them

into the MI. Improvements were made to the slip-stacking process in the recycler to

increase the beam intensity of the NuMI beam.

In the slip-stacking process, the initial six proton bunches from the Booster enter

the recycler and are decelerated by reducing the RF pulse. Then, six new bunches

from the booster are introduced to the recycler, resulting in two bunches with different

energies that slip with respect to each other. At a tuned RF frequency, the two

bunches overlap, creating larger bunches before the next bunches are introduced.

Finally, these bunches are extracted into the MI, and the intensity of each bunch or

spill is (value) protons within a 10-microsecond beam window.

3.1.2 NuMI Beamline

The NuMI beamline originates from Fermilab in Batavia, IL and travels towards the

MINOS detector hall before extending to Minnesota and eventually exiting Earth.

The beam consists of protons with a kinetic energy of 120 GeV, which results in the

production of high-energy mesons that further decay into energetic neutrino fluxes.

The protons interact with a segmented graphite target consisting of 47 rectangular

pieces (fins) stacked together. Each fin is 20.0 mm long and separated by a space of

0.3 mm, resulting in a total target length of 95.4 cm. The target has a density of

1.78g/cm3.
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To enhance the proton-target interactions, the target is water-cooled using two

stainless steel pipes surrounding the fins. The hadrons emerging from the target are

focused through two parabolic-shaped magnetic horns, which cancel out the trans-

verse momentum of the hadrons. The magnetic horn is a coaxial conductor sheet

made of aluminum and filled with a low-density gas like air, helium, or argon. A

current of 200 kA is passed through the horn, creating a 1/R magnetic field, as per

Ampere’s law. This field focuses charged particles of a specific sign, while deflecting

particles of the opposite sign. By adjusting the current, it is possible to focus on

either positively charged particles, resulting in neutrinos upon decay, or negatively

charged particles to produce antineutrinos.

The focused charged particles are allowed to decay within a decay pipe that is

675 m long and has a radius of 1 m. The decay of hadrons produces neutrinos

and charged leptons. Following the decay pipe, the particles pass through a hadron

monitor consisting of a water-cooled aluminum absorber, followed by three ionization

chambers that monitor the muons. These components are spaced between rocks.

Only the neutrinos continue towards the MINOS building. The schematic view of

the NuMI beamline can be seen in Figure 3.2.

Figure 3.2 Fermilab accelerator complex
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3.1.3 Off-Axis Detectors

Within the decay pipe, charged hadrons undergo decay processes that result in the

production of muon neutrinos. Specifically, positive pions (π+) decay into positive

muons (µ+) and muon neutrinos (νµ) according to the process π+ → µ+ + νµ, with a

branching ratio of 99.98%. Similarly, positive kaons (K+) decay into a positive muon

and a muon neutrino with a branching ratio of 63.55%: K+ → µ+ + νµ.

In the rest frame of the decaying particles, the decay of pions and kaons is

isotropic, resulting in the production of monoenergetic neutrinos. However, in the

laboratory frame, considering relativistic kinematics, the neutrino flux (Φ) can be

expressed as a function of the angle and the cross-sectional area (A) of the detector

located at a distance (L):

Φ =
(

2γ
1 + γ2θ2

)2
A

4πL2 (3.1)

The energy spectra of neutrino (Eν) as a function of pion energy and an angle is

given by:

Eν = 0.43Eπ

1 + γ2θ2 (3.2)

In the given equation, θ represents the angle between the outgoing neutrino and

the direction of the decaying meson. The parameter γ is defined as the ratio of the

energy (Eπ) of the meson to its rest mass (mπ). The relationship between the neutrino

energy (Eν) and the energy of the meson (Eπ) is dependent on the off-axis angle, as

illustrated in Figure 3.3.

Figure 3.3 depicts the relationship between Eν and Eπ for various off-axis an-

gles. The red curve in the figure represents the off-axis angle chosen for the NOvA

detectors, which is optimized to enhance the sensitivity to the oscillation of muon

neutrinos into electron neutrinos.

By selecting an off-axis angle of 14.6 milliradians, the NuMI beams produce a

narrow range of neutrino energy spectra, as illustrated in the left figure of Figure
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Figure 3.3 Plot of neutrino energy and pion energy for different
off-axis angles.

3.4. This off-axis angle has several advantages: it suppresses neutral current events,

increases the statistics of signal events (specifically νµ charged current events) at

the desired energy range, and reduces background interference. In neutral current

events, where the outgoing neutrino cannot be detected and carries away energy, it

appears as a lower energy electron neutrino charged current event. By reducing high-

energy neutral current events, the purity of muon neutrino charged current events is

improved by minimizing background from charged pions. Additionally, high-energy

neutral current events can mimic our signal electron neutrino events in the detector,

so minimizing neutral current events overall increases the signal-to-background ratio.

The NuMI beamline (described in Subsection 3.1.2) can operate in neutrino or

antineutrino mode by switching the polarity of the horn. In neutrino mode, the

wrong-sign component in the near detector is approximately 1.8% for neutrino ener-

gies in the range of 1-3 GeV. The background of νe + ν̄e is around 0.7%, while the

remaining approximately 97.5% consists of νµ events in the 1-3 GeV energy region,

48



as shown in the right figure of Figure 3.4.
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Figure 3.4 The neutrino energy spectra for near detector for various off-axis angles
and the y-axis represents expected number of charged current νµ events (a) and the
flux times cross-section for different neutrino components in the NuMI beam as a
function of neutrino energy (b).

3.2 The NOvA Detectors

The NOvA long baseline neutrino oscillation experiment utilizes two detectors, which

are identical in structure and data acquisition architecture. One detector is located at

Fermilab, while the other is located 810 km away in Ash River, MN. Both detectors

are positioned 14.6 mrad off-axis from the center of the neutrino beam. This similarity

in physical structure and data acquisition design plays a crucial role in mitigating the

effects of systematic uncertainties.

3.2.1 The Cells

Both detectors consist of reflective PVC tubes (cells) (Figure 3.7 (b)) filled with

liquid scintillator. Each cell is equipped with a single fiber, representing a pixel of

the detector. A module consists of 32 cells, as shown in Figure 3.5.

The 16 cells make a PVC extrusion (Figure 3.6) and two of the 16 cells are glued

together to form a module.
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Figure 3.5 A plane created by connecting 32 plas-
tic PVC cells.

Figure 3.6 Extruded PVC Cell array.

A plane is formed by connecting a series of modules, with 12 modules in the Far

Detector and 3 modules in the Near Detector. The cells have a cross section of 3.6

cm by 5.6 cm and a length of 4.2 m in the Near Detector (ND), while in the Far

Detector (FD) they are 15.2 m long. To enable three-dimensional particle tracking,

cells are stacked in alternating horizontal and vertical planes. Each cell is coated

with titanium dioxide, serving as a reflective agent to enhance light collection in
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the scintillator. Inside the cell, a wavelength-shifting fiber is looped to collect light

produced by the interaction of a charged particle with the liquid scintillator. Fiber

ends are connected to a single pixel of an avalanche photodiode (APD), as shown in

Figure 3.9.

3.2.2 The Liquid Scintillator

The liquid scintillator solution used in NOvA consists of various components that

contribute to its scintillating properties. It comprises 5% pseudocumene (1, 2, 4-

trimethylbenzene), which emits light in the wavelength range of 270-320 nm, and 95%

mineral oil, which serves as a solvent. Two wavelength shifters are also included: PPO

(2,5-diphenyloxazole), which excites photons in the range of 340-380 nm, and bis-MSB

(1,4-bis-(2-methylstyryl)-benzene), which de-excites photons in the range of 390-440

nm. Additionally, the solution contains stadis-425 as an antistatic agent to reduce the

risk of fire hazards caused by charge build-up and sparking during the filling process.

To prevent the scintillator from yellowing and maintain its transparency over time, an

antioxidant, tocopherol (vitamin E), is incorporated. Table 3.1 provides a summary

of the composition of the liquid scintillator used in NOvA.

Table 3.1 Composition of liquid scintillator [57].

Component Purpose Mass Fraction (%)
Mineral Oil Solvent 95.8

Pseudocumene Scintillant 4.1
PPO Wave Shifter 0.091

bis-MSB Wave Shifter 0.0013
Stadis-425 Anti-Static agent 0.0003
Vitamin E Antioxidant 0.0010

Total 100
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3.2.3 The APD

APDs play a crucial role in the NOvA experiment by converting photons generated

by charged particles passing through the scintillator in the PVC tubes of the detectors

into electronic signals. Each APD is connected to a Front End Board (FEB), with

one FEB assigned to each APD, which amplifies and reads out the electronic signal.

Hamamatsu manufactures the APDs used in the NOvA detector.

The working principle of the APD is as follows: When photons excite electron-hole

pairs, a strong electric field, created by a high reverse bias voltage, accelerates these

pairs. Through an impact ionization process, highly energetic electrons collide with

other electrons, releasing them and creating a chain reaction of free electrons and

holes. This avalanche effect results in a significant amplification of the photocurrent.

The APD has a quantum efficiency of 85% for light signals with wavelengths in the

range of 520-550 nm, allowing for the detection of low intensity light signals in long

PVC tubes.

To reduce thermal noise and dark current (current generated in the absence of

light), each APD is cooled to a temperature of −150C using a thermoelectric cooler

(TEC). Cool water continuously flows to remove excess heat. To minimize surface

currents, the APD is coated with paralene and dry nitrogen gas flows through a

system of tubes to prevent ice formation on the surface. Each APD operates at a

voltage of 425V, resulting in a gain of approximately 100. The signal is amplified

by integrated circuits, and the FEB digitizes hits above the threshold and reads the

analog signal from the APD. Hit information from the FEB is collected by a Data

Concentrator Module (DCM).
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3.2.4 Far Detector

The far detector consists of a total of 896 planes, comprising 344,064 channels. The

active detector mass is 14 kt, with 65% of it composed of a liquid scintillator. The

detector is constructed by combining two sets of 32 plane blocks, resulting in a total

of 14 diblocks for the far detector.

(a) (b)

Figure 3.7 NOvA far detector (a). Schematic diagram of NOvA cell, the walls are
made up of PVC with a loop of wavelength shifting fiber is read out by one APD (b).

Each diblock in the far detector is equipped with 12 Data Concentrator Modules

(DCMs), each containing 64 Front End Boards (FEBs). As the far detector is located

on the surface, it is exposed to 50-70 cosmic rays during each 550-microsecond readout

window. The main objective of the far detector is to accurately measure the energy

spectra of beam neutrinos by distinguishing between charged-current interactions of

muon and electron neutrinos and neutral-current interactions.
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3.2.5 Near Detector

The near detector, located 105 meters underground, is specifically positioned at this

depth to minimize interactions with cosmic rays. Additionally, its proximity to the

NuMI beam, which is directed downward at an angle of 58 milliradians, allows for a

significantly higher rate of neutrino interactions compared to the far detector. The

purpose of the near detector is to accurately measure the unoscillated spectra of

the beam neutrinos, which serves as a prediction for the spectra observed in the far

detector. The detector itself has a length of 15.9 meters along the direction of the

beam and is divided into two regions. The first region is the active region, measuring

12.67 meters in length, followed by a 3.23-meter-long muon catcher at the downstream

end, as depicted in Figure 3.8.

(a) (b)

Figure 3.8 near detector (a) and muon catcher region (b) with steel plates alternat-
ing with scintillation planes, whose height is two-thirds that of the active region.

The muon catcher in the near detector is designed to effectively capture muons

by employing alternating steel and scintillating planes. The total mass of the near

detector is 290 tons, with 130 tons dedicated to the liquid scintillator. The active

region, which constitutes the majority of the detector’s mass, weighs 193 tons and
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contains approximately 18,000 channels distributed over 192 planes. Following the

active region, there are 22 additional planes and 10 steel planes, each with a thickness

of 10 cm. The dimensions of the active region are 3.9 meters in height, 3.9 meters in

width and 12.67 meters in length (h x w x l).

The electronics for the active region are divided into three diblocks, with each

diblock accommodating two Data Concentrator Modules (DCMs) for both the vertical

and horizontal planes. The DCMs are equipped with either 64 or 32 Front End Boards

(FEBs) depending on their configuration.

As for the muon catcher, it consists of a periodic arrangement of horizontal and

vertical planes made of steel and a liquid scintillator. In this section, there are two

DCMs, one for the horizontal module and the other for the vertical module.

(a) (b)

Figure 3.9 The ends of 32 wavelength-shifting fibers collected at the end of scintilla-
tion cells to mount to an APD (a). The front face of an APD will be pressed against
the fiber ends (b).
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3.3 Overview of Data Acquisition System

The photon signal generated by 32 individual cells is amplified by an Avalanche

Photodiode (APD). Each APD is connected to a single Front End Board (FEB)

that contains four circuits. The voltage signal from the APD is then sent to an

Application Specific Integrated Circuit (ASIC), which shapes the signal to enable

timely hit detection. The output of the ASIC is further processed by an Analog-

to-Digital Converter (ADC) to digitize the signal and identify hits that exceed the

threshold. These threshold-passing hits are directed to a Field Programmable Gate

Array (FPGA), where they are assigned a timestamp for each channel. The FPGA

also handles the programming of rise and fall times in the ASIC, as well as the

threshold in the ADC.

Another important component of FEBs is the Thermoelectric Cooler (TEC),

which monitors and maintains the temperature of the APD at -15°C to ensure a

stable gain. Each FEB digitizes the hits from 32 individual channels or pixels. A

Data Concentrator Module (DCM) is connected to a maximum of 64 FEBs. In the far

detector (FD), all 168 DCMs are connected to the maximum number of FEBs, while

in the near detector (ND), the 14 DCMs are connected to between 22 and 64 FEBs.

The DCM utilizes custom software to continuously collect data from nanoslices and

combine them into 50 µs slices called microslices [58]. The FPGA in the DCM co-

ordinates the pooling of data from the FEBs to form nanoslices, and if any header

information is missing, the microslice is identified as corrupt.

During the construction of a microslice, the DCM performs integrity checks, and

if any check fails, the microslice is flagged as corrupt. Corruption can occur due to

various factors such as flipped bits or malfunctioning FEBs, and the exact cause is

not always known.
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If a DCM consistently generates a significant number of corrupt microslices, it

indicates hardware failure, and the DCM is typically replaced. The schematic repre-

sentation of the Data Acquisition (DAQ) data flow is illustrated in Figure 3.10.

Figure 3.10 Schematic drawing of DAQ data flow.

The Data Concentrator Modules (DCMs) transmit microslices to buffer nodes in

a round-robin fashion. Each DCM sends its first microslice to the first buffer node,

the second microslice goes to the second buffer node, and so on. DCMs employ a

simple algorithm to determine the appropriate buffer node for sending the microslice.

The buffer node opens a millislice and collects microslices from each DCM. Once a

millislice is complete, it is copied to shared memory, where it can be read by trigger

messages from the Global Trigger. Each buffer node maintains a large pool of data,

approximately 8GB in size. When a microslice is read out, it is not immediately

deleted from the node. Instead, as new microslices arrive, the older ones expire and

delete themselves.

If a buffer node does not have any microslices corresponding to a trigger, it will

send an empty data block (a set of all triggered microblocks, which are sets of mi-

croslices from all DCMs) for that event. All data for a triggered event is sent to a

single Data logger. The data logger waits until it receives data from every buffer node

before writing the trigger event to the data disk. The data disk has the capability
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to save an event to multiple streams. In the far detector, the cosmic-ray event rate

is high, approximately 100 kHz, since it is located on the surface. In contrast, the

rate of beam neutrino events is low, only a few events per day. The NuMI beam spill

trigger receives a timestamp from the Fermilab accelerator, with a time correction

applied to account for the neutrinos’ time of flight.

When the detector detects a NuMI beam spill, the buffer farm selects 1000 mi-

croblocks or 500 µs slices of data from the entire detector and writes them to the

data disk. The beam data is collected within a 10 µs beam spill window, typically

ranging from 218 µs to 228 µs. Each trigger has a start time, an end time, and a

trigger ID. The detector also records data from other triggers for exotic searches, but

those triggers are not the focus of this thesis.

The synchronization of the DAQ system in the NOvA detector is achieved through

the timing system, and further details can be found in [59]. Timing Distribution Units

(TDUs) function similarly to DCMs, as they send timing commands to all DCMs.

Upon receiving a timing command, a DCM distributes it to all Front End Boards

(FEBs). The FEBs are connected to the DCM via cables of equal length. The Master

Timing Distribution Unit (MTDU) extracts timing information from the universal

time based on its link to the Global Positioning System (GPS) and distributes the

timing signal to the first Slave Timing Distribution Units (STDUs) in the chain. This

synchronization process ensures that each channel in the NOvA detector is aligned

and that the corresponding timestamps are recorded for each hit. Additionally, at

Fermilab, the MTDU system is used to convert timestamps into NOvA time for the

beam spill information received from the NuMI accelerator, with the corrected spill

time then transmitted to the near and far detectors.
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3.4 Performance of the NOvA Detectors

The monitoring of detector performance is crucial for the success of any particle

physics experiment. In the case of the NOvA experiment, several tools have been

developed to track and assess the performance of the detectors. Performance metrics,

created using automated scripts, enable the monitoring of data quality. An important

metric used to evaluate the overall performance of the detectors is the fractional up-

time, as depicted in Figure 3.11.

Figure 3.11 fractional uptime as a function of time. Uptime has steadily
increased over the time as the experiment moved from commissioning to
steady state running.

Ensuring maximum uptime is of utmost importance for the experiment. Despite

having advanced tools for reconstructing neutrino kinematics, their usefulness is lim-

ited if the data was not recorded in the first place.
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3.5 Exposure

Exposure plays a crucial role in scaling the distributions of selected events in the

NOvA experiment. Livetime, detector mass, and protons on target (POT) are essen-

tial quantities for measuring useful exposure. Livetime is used to scale cosmic rays

and electronic noise, while the active mass of the detector is necessary for accurate

normalization, especially when certain parts of the detector are blocked. The pro-

duction of neutrinos is directly related to the number of decayed pions, which in turn

depends on the number of protons delivered to the graphite target. The neutrino

exposure is meticulously tracked and stored in a database on a spill-by-spill basis.

Cumulative neutrino exposure, both for neutrino and antineutrino modes, since the

start of the NOvA experiment is depicted over time in Figure 3.12.
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Figure 3.12 Weekly exposure and cumulative exposure vs date from starting of
NOvA data taking in neutrino mode as well as anti-neutrino mode.

The accumulated POT for this analysis is the 3.14 × 1021 POT of the neutrino

beam collected between August 2014 and February 2022.
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Chapter 4

Event Simulation

Simulation is crucial for nearly all of our experiments, and it serves various purposes

in data analysis. It provides an independent dataset for particle identification training

and analysis optimization, helps estimate selection efficiency, and determines back-

ground components associated with signals. Researchers rely on simulation to make

measurements and estimate parameters such as neutrino energy.

In the NOvA experiment, the simulation process consists of two main parts: beam

simulation and detector simulation. The former simulates the creation of neutrinos,

while the latter models how the detector behaves when exposed to those neutrinos.

This chapter offers a comprehensive overview of the NOvA simulation chain, covering

everything from neutrino production to the final recording of detector data.

4.1 Flux Prediction

The NuMI beam simulation begins by simulating the interaction between 120 GeV

protons from the Main Injector and a graphite target. It concludes with the generation

of flux files containing information about the simulated neutrinos, including their

flavor types, directions, energy, and momentum. The expected flux from the NuMI

beam is simulated using G4NuMI, a Monte Carlo simulation based on the GEANT4

framework [60].

G4NuMI simulates the production of hadrons when incoming protons interact

with the NuMI target. It then traces the decay of neutrinos or the absorption of

muons and hadrons by the downstream hadron monitors. Neutrinos generated from
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the decay of these particles are saved for future use in the simulation. Tracking all the

final products of particles interacting with the target is computationally expensive and

time consuming, so not every particle is individually tracked. Instead, the kinematic

properties of the neutrino parents are saved in the flux files, along with information

such as neutrino flavors, directions, decay points, momentum, and energy. This

information can be later utilized to generate neutrinos that interact with the NOvA

detectors. Additionally, retaining parent information aids in event re-weighting based

on studies of hadronic models.

4.2 Neutrino Interactions

The GENIE (version 3.00) event generator [61] is used in the NOvA experiment

to model beam neutrino interactions in the detectors. It takes a flux file as input

and creates interactions in the detector volumes based on the neutrinos generated

from the beam simulation. The GENIE model incorporates neutrino interaction

cross sections to determine the energy of the interacting neutrinos. Various types of

neutrino interactions (already explained in Chapter 1), such as quasi-elastic scattering

(QE), resonance (RES), deep inelastic scattering (DIS), coherent scattering (COH),

and meson exchange current interactions (MEC), are simulated using different cross-

section models.

The GENIE model produces a list of final-state particles resulting from the inter-

actions between the neutrinos and the detector material’s nuclei. Kinematic informa-

tion is saved for each particle. Quasi-elastic scattering follows the Llewellyn-Smith

formalism described in Section 1.3.7, utilizing a dipole form with a default value of

the axial vector mass (MA) of 0.99 GeV/c2. The electromagnetic form factor is pa-

rameterized using the BBBA2005 model [62]. The Rein-Sehgal model [63] is used

to simulate resonance neutrino-nucleus interactions, with a default value of the reso-

nance axial vector mass (MA) set to 1.12 GeV/c2. GENIE incorporates 16 out of 18

62



baryon resonances from its original paper.

The coherent scattering process is simulated using the Rein-Sehgal model, focusing

on events within the low Q2 region, where the PCAC hypothesis predicts a single-

dipole form factor. The deep inelastic scattering (DIS) interaction employs the Bodek

and Yang model for low Q2 values. Various cascade-hedronization models based on

experimental measurements and theoretical models are available to determine the

final-state particles and their kinematics, with the default model being the custom

AGKY model in GENIE. For events with low invariant mass, the Koba-Nielsen-

Olesen (KNO) scaling [64] is used, while the PYTHIA/JETSET model [61] is used

for higher invariant masses. In GENIE an empirical MEC model is used to account

for the discrepancies observed with data around 1 GeV in the Q2 region between

quasielastic and resonant events.

Final-state interaction (FSI) rates are derived from free hadron cross sections and

the density of nucleons. GENIE employs the Introduce program to simulate final-state

interactions. These models have large uncertainties, which directly affect the observed

energy of neutrinos in experiments. GENIE also provides systematic uncertainty

estimates for various parameters related to the cross-section models through global

fits, enabling error bands to be placed on the predictions of various analyses.

The simulation includes not only the detector volume, but also the surrounding

materials in the detector hall. Neutrino interactions in the near detector occur in

the upstream rock, outside the detector hall, resulting in particle interactions in the

detector alongside neutrinos that interact within the detector. To account for this,

rock interactions are simulated separately and independently of in-detector events due

to their computational complexity and cost. The number of simulated rock events

is smaller and are randomly overlaid with the detector events to ensure that the

total number of neutrino interactions in the detector is consistent with expectations.

During the analysis cut stage, rock interactions are rejected, thus having a negligible
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impact on the analysis results.

4.3 Propagation of Particles

The output generated by GENIE [61] is entered into GEANT4 [60] to simulate the

propagation of particles through the detector geometry. The geometry consists of the

NOvA detectors, detector halls, and the surrounding rocks, which are described in

CERN’s Geometry Description Markup Language (GDML) files that are parsed by

ROOT’s geometry classes. GEANT4 simulates particle propagation and records en-

ergy depositions until the particles have less than 100 eV of kinetic energy remaining.

GEANT4 does not rely on a single modeling algorithm, especially for hadrons, to

cover the entire energy range from zero to TeV and all known processes and particles.

Instead, physical processes are simulated using different physics lists. Our standard

physics list is QGSP BERT HP, which applies electromagnetic processes, utilizes the

Bertini-style cascade (BERT) for modeling up to 9.5 GeV, and employs the Quark

Gluon String (QGSP) model for high-energy (approximately 20 GeV and above) in-

teractions involving protons, neutrons, pions, kaons, and nuclei. When high-energy

interactions create an excited nucleus, it is passed to the precompound model for

nuclear deexcitation. Additionally, a data-driven high precision (HP) neutron model

is used to transport neutrons below 20 MeV down to thermal scattering energy. The

output obtained from GEANT4 consists of the energy depositions of individual par-

ticles, which are particularly important for subsequent simulation steps.

4.4 Transport of Photon in Detector

GEANT4 calculates the amount of energy deposited by the particles in the NOvA

detector cells. This energy deposition involves the conversion of scintillation light into

electrons, which are then read out from each channel or cell. When more charge is

produced in the Avalanche Photodiode (APD), it results in higher scintillation light
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production and therefore a greater amount of energy deposited in the cell. The scin-

tillation light scatters, gets absorbed, and is transported through wavelength-shifting

fibers, ultimately reaching the APD where the signal is detected. The captured signal

is simulated using custom NOvA software developed internally by NOvA analyzers.

In order to determine the collection of scintillation photons by the fiber, a ray

tracing algorithm has been developed (Figure 4.1). Several assumptions are made

regarding the detector parameters, such as a scintillator emission time of 9 ns, and a

uniform cell wall reflectivity of 87. 7% (Figure. 4.1), an index of reflectivity of 1.47

in oil, and an exponential photon capture probability with a capture length of 30.66

cm. As mentioned above in Chapter 3, all NOvA readout cells are treated identically,

since they are composed of many identical cells. A template function is generated on

the basis of a ray-tracing simulation to parameterize the transport of photons.

The transportation of photons through the fiber determines the expected number

of photons arriving at the APD as a function of time, assuming that the photons are

collected in the fiber. The captured photons are divided equally, with half traveling

in each direction along the fiber, and they are attenuated based on measurements

obtained from fiber quality control tests. Finally, the number of photoelectrons ab-

sorbed by the APD is determined, taking into account the quantum efficiency and

Poisson statistics. Additionally, APDs exhibit excess noise, which introduces variance

to the detected signal in addition to the Poisson variation caused by the number of

photoelectrons captured by the APD. This excess noise is modeled using a theoretical

distribution, specifically, a log-normal distribution.

4.5 Readout Simulation

The subsequent step in simulating the detector response involves the front-end board

(FEB) electronics. The FEB consists of three chips: an application-specific integrated

circuit (ASIC), an analog-to-digital converter (ADC) and a field-programmable gate
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array (FPGA). The ASIC’s role is to preamplify and shape the signal produced by the

photoelectrons. The pre-amplifier integrates the charge generated by the Avalanche

Photodiode (APD), and a pulse is generated using a capacitor-resistor differentiator

and a resistor-capacitor integrator (CR-RC) circuit. The pulse has a fast rise time

controlled by an integrator unit and a slow fall time controlled by a differentiator

unit. Pulse shaping was modeled using the analytical solution of the response of

Figure 4.1 Template function of collection rate of scintillation pho-
tons (left).Cell wall reflectivity as a function of wavelength (right).

the CR-RC circuit to a unit charge impulse as

f(t) = F

F −R

(
e− (t−t0)

F − e− (t−t0)
R

)
(4.1)

where t0 is the time that the photoelectron pulse was collected by the APD, F

and R is the fall and rise time of the CR-RC circuit, respectively. The pulse shap-

ing process generates a signal that is fed into the analog-to-digital converter (ADC).

When photoelectrons are produced by a cell, individual analog traces (equation 4.1)

are created for each photoelectron and then combined to form the final trace. For

the Far Detector (FD), four analog traces are digitized every 62.5 ns, while for the

Near Detector (ND), eight analog traces are digitized. The digitization involves trun-

cating the trace to integer values and constraining the values within the range of 0

to 4095 ADC counts. After digitization, a constant baseline offset is applied. The

baseline value determines the dynamic range of the output signal before saturation.
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In Monte Carlo simulations, the saturation peak has a sharp spike due to a constant

baseline across all channels. However, in real data, the peak is broader and occurs at

lower energies. The Gaussian distribution of the baseline is studied on a per-channel

basis using Digital Scanning Oscilloscope (DSO) scans. At the beginning of each

run, a baseline in ADC units is randomly drawn for each channel from a Gaussian

distribution with specific mean and RMS values.

The trace is then converted from photoelectron units (PE) to ADC units using a

conversion factor determined through charge injection studies. The baseline value is

obtained from the distribution of modes observed in the pedestal scan.

Finally, the FPGA identifies peaks above a threshold in the dual-correlated sam-

pling trace, which is defined as the difference between the current digitization sample

(ADCi) and the sample three time slices earlier (ADCi−3).

Noise is also modeled for cells that do not contain actual physics hits. This is done

using a data-driven method that generates noise hits from a template. The template

is constructed by creating a 3D histogram based on the differences between adc1 -

adc0, adc2 - adc0, and adc3 - adc0 for noise hits in the noise slice. This histogram

is normalized by the product of livetime and the number of active channels for all

sub-runs, reflecting the probability of recording a noise hit per channel and per unit

time.

4.6 The APD Sag Simulation

In an avalanche photodiode (APD), the pixels are connected to a common voltage

source that drives the multiplication of the avalanche. When a high-energy deposit

occurs on one pixel, it causes a temporary decrease in voltage for all other pixels on

the APD. This voltage decrease, known as “sag”, is influenced by ASIC and digital

signal processing, which measure the differences between samples taken at different

times. The sag recovers over time, representing a genuine energy deposit, and a
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digital value is created at the triggered time. The magnitude of the sag was found

to be 0.0186 times the amplitude of the pulse on the channel with an actual energy

deposit.

In order to simulate the sag effect, a sagged trace is generated by summing the

light captured by all pixels of an APD that exceeds 5000 ADC within a 15 ns window.

This is done even for pixels that do not contain actual physics hits. This modeling

accounts for the flashing behavior observed in the data when high-energy cosmic rays

pass through the detector.

4.7 Cherenkov Light Simulation

When a particle propagates through a medium and if the speed of light is faster

than the speed of light through a medium, radiation is emitted called Cherenkov

radiation [65]. The energy spectrum per unit length of the track is described by the

Frank-Tamm formula [66]:

d2Nγ

dxdλ
= 2παz2

λ2

(
1 − 1

β2n2(λ)

)
(4.2)

where β is the speed of the particle, n(λ) is the refraction index, λ is the wave-

length. The energy spectrum changes ∼ 1/λ2 if the refraction index changes slowly.

At the wavelength between 400-500 nm, the scintillation light is absorbed by the

wavelength-shifting fiber and the Cherenkov radiations are indistinguishable from

scintillation light which amplifies our light production for fast particles. The Cherenkov

light production as a function of wavelength for the different velocity of particles is

shown in Figure 4.2. The refraction index of mineral oil used by NOvA is 1.47 and

Cherenkov light represents roughly 4% of the light collected by fast particles, as shown

in Figure 4.2.
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Figure 4.2 The Cherenkov light production as a function of wave-
length for different velocity of particles (β) and the red shaded region
is absorption spectrum of the k-27 dye in the optical fiber(left). The
photon production comparison as a function of βγ for scintillation
is in blue and Cherenkov radiation is in red (right).

4.8 Birks-Chou Parameters

The relationship between energy deposition and light yield is determined using GEANT4.

The light yield is directly proportional to the energy lost along the particle’s path for

lower energies. However, at higher energy-loss rates, organic scintillators experience

recombination and quenching effects, leading to a reduction in the final light yield.

Birks Law is an empirical model that attempts to capture this behavior by introduc-

ing a second-order correction term [67], [68]. Birks law is represented by the following

equation:

dL

dx
=

L0
dE
dx

1 + kB
dE
dx

+ kC

(
dE
dx

)2 (4.3)

Here, kB and kC are the Birks’ and Chou constants, respectively. These constants

are determined by analyzing ND events with single muon and single proton tracks.

A comparison is made between the dE
dx

distributions, as a function of the number of

planes from the end of the track, in both data and Monte Carlo (MC). The values of

kB = 0.040, gMeV−1, cm−2 and kC = −0.0005,MeV−2, cm−2 were found to produce

the best match between the data and MC, taking into account the oversuppression
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in the last plane caused by the large Birks suppression. The negative contribution

from the Chou constant helps mitigate this over-quenching effect.

There is a tunable parameter in the conversion factor that relates the energy

deposited in the detector to the creation of scintillation photons. For the NOvA

scintillator, the expectation of 3360 photons/MeV is set. During the tuning process,

only 3/4 of the cell is used to avoid roll-off regions, and the scaling of the MC at-

tenuation curves is adjusted to match the dimmer regions of the cell. The scaling

factors for the X and Y views in the ND are determined to be 0.610058 and 0.598244,

respectively. The data/MC comparison of the detector response to cosmic ray muons

without offline calibrations for the ND is shown in Figure 4.3.

Figure 4.3 Comparing the photo-electron spectrum in cosmic rays
between the ND data and simulation reveals a discrepancy. The
difference observed at high photo-electron counts can be attributed
to the fact that the gain in each cell of the detector is individually
set in the data, whereas the simulation assumes a uniform gain value
across all cells.
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Chapter 5

Event Reconstruction and Calibration

5.1 Reconstruction

The NOvA experiment aims to reconstruct neutrino interactions in detail for analysis

purposes. Different types of interaction have different event signatures. Charged cur-

rent interactions involving electron neutrinos (νe) result in electromagnetic electron

showers, while charged current interactions involving muon neutrinos (νµ) produce

narrow muon tracks along their trajectories (Fig. 5.1). Neutral current interactions

involving a single π0 present challenges in reconstruction. The electromagnetic show-

ers produced by the decay of π0 into two photons can be difficult to distinguish from

electron showers. Scintillating light is produced when photons convert into e−/e+

pairs, but before that conversion, the photons travel a certain distance (the pho-

ton conversion distance is 38cm or 6 planes). Hence, various reconstruction tools

have been developed in the NOvA experiment to address different purposes. The

reconstruction process is described in the following sections.

Raw data from the NOvA detectors, known as cell hits, are collected from the

readout. These hits contain information about the plane, cell, time, and charge. The

spatial and temporal correlations between the hits are then grouped into “slices” that

form the basis for later-stage reconstruction (explained in Section 5.1.1). Straight-

line features within the slices, serving as seeds, are identified using a modified Hough

transformation (Section 5.1.2). The Hough lines are utilized to reconstruct a global

3D neutrino interaction vertex through an Elastic Arms algorithm (Section 5.1.3).
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Prongs, defined as collections of cell hits with a start point and direction, are gener-

ated using the “fuzzy-k-means” algorithm and provide information about the parti-

cles’ activity in the event, with the vertex as a seed (Section 5.1.4). Another tracking

algorithm based on a Kalman filter produces reconstructed tracks from individual

slices. The tracking algorithm aims to trace the trajectory of particles that deposit

energy in the detector, which is particularly useful for identifying particles that do

not produce large electromagnetic or hadronic showers, such as muons (Section 5.1.5).

5.1.1 Isolating Neutrino Interaction

NOvA’s data collection involves capturing hits in 550µs read-out windows for the

entire detector, although physics interactions occur within shorter timeframes. In

the FD, which is located on the surface, the main challenge is to separate 50-70

cosmic rays within the 550µs read-out windows.

q (ADC)10 102 310

q (ADC)10 102 3
10

q (ADC)10 102 310 q (ADC)10 102 310

νμ

e
νe

ν

p

μ

p

p

π

γ

γ

1m

1m

π0

long straight track

𝝂𝝁	𝑪𝑪

𝝂𝒆	𝑪𝑪
shorter, wider, fuzzy shower

NC

Diffuse 
Activity 

Figure 5.1 (νµ) CC neutrino interaction with long muon (top). (νe)
CC neutrino interaction with electron shower (middle), Neutral cur-
rent (bottom).
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The ND, on the other hand, is designed to separate approximately 5 neutrino

interactions within each 10-microsecond neutrino beam window. The beam spill,

which represents the time period during which neutrino interactions from the beam

are expected to occur, lasts only 10 microseconds. The time outside the beam spill

is used to determine the background.

ϵ =
(

|∆T | − |∆r⃗|/c
Tres

)2

+
(

∆Z
Dpen

)2

+
(

∆X or Y
Dpen

)2

(5.1)

where Tres is the timing resolution for the quadratic sum of two hits (time reso-

lution for FD is ∼ 10 ns and for ND is ∼ 5 ns ), Dpen is a distance penalty, ∆T is

the time between two hits (order of nanoseconds), ∆Z and ∆X or Y are the distance

between hits in each view ( in cm). The hits which occurred in the same view of the

distance can be written as |∆r⃗| =
√

∆Z2 + ∆X or Y 2, however, for hits in opposite

views |∆r⃗| = ∆Z.

The slicing algorithm called the "Slicer," ensures that each slice contains a single

interaction. The performance of the slicer is evaluated using two metrics: efficiency

and purity. Efficiency measures the ratio of the energy deposited in a slice of a specific

interaction to the total energy deposited in that slice from all interactions. Purity, on

the other hand, measures the ratio of the energy deposited in a slice from a specific

interaction to the total energy in that slice.

Efficiency = Energy deposited in slice from interaction

Total energy deposited in slice from interaction
(5.2)

Purity = Deposited energy in slice from interaction

Total energy in slice
(5.3)

In simulations of cosmic events in the FD, the slicing algorithm achieved effi-

ciency and purity of 99.3%. In the ND neutrino simulations, the slicing algorithm

demonstrated an efficiency of 94.4% and a purity of 98.5% [69].
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5.1.2 Identifying Lines with Multi-Hough Transform

The next step after slicing is to identify lines in each slice using a modified Hough

transform algorithm [70]. This algorithm takes as input pairs of points characterized

by a straight line passing through them and parameterized in the polar coordinate

system, where ρ gives the perpendicular distance from the line to the origin and θ

gives the angle between ρ and the x axis. The algorithm makes lines and fits in each

detector view separately. The line passing through each pair of hit points in the slice

creates a Gaussian smear vote

After the slicing process, the next step involves identifying the lines within each

slice using a modified Hough transform algorithm [70]. This algorithm takes pairs of

points as input, which define a straight line passing through them and are parame-

terized in a polar coordinate system. In this system, ρ represents the perpendicular

distance from the line to the origin, and θ represents the angle between ρ and the

x-axis. The algorithm performs line fitting separately for each detector view.

For each pair of hit points in the slice, the line passing through them generates a

Gaussian smear vote:

vote = e
−(ρ−ρ0)2

2σ2
ρ e

−(θ−θ0)2

2σ2
θ (5.4)

where σρ = 3√
12 , σθ = 3

d
√

6 and d represents the distance between the two hits.

The Hough transform creates a map by accumulating these votes in the phase space,

and the peak in the map is identified as the line of interest. The algorithm iteratively

creates new lines in the Hough map. It removes the last peak result from the Hough

space and searches for new peaks among the remaining entries. This process continues

until no more peaks above a defined threshold can be found in the Hough space. The

algorithm aims to deliver the dominant Hough lines that pass through and intersect

near the primary vertex of the slice.
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The algorithm’s performance in the Far Detector (FD) is measured in terms of

the mean distance to the vertex for different types of interaction. For neutral current

interactions, the mean distance is approximately 6.9 cm, while for muon neutrino

charged current interactions it is around 4.1 cm, and for electron neutrino charged

current interactions it is approximately 2.7 cm. The mean distance for the secondary

Hough line is approximately 9.9 cm for the neutral current, 8.2 cm for the muon

neutrino charged current, and 8.8 cm for the electron neutrino charged current [69].

5.1.3 Identification of Vertex using Elastic Arms

After the slicing and the Hough algorithm, the next step in the reconstruction process

is to apply an elastic arm algorithm to each slice to locate the primary neutrino

interaction point. This algorithm utilizes the lines generated by the Hough algorithm

to seed a global 3D vertex point. The vertex is determined as the single point where

the prong arms intersect within a slice. An elastic arm is a straight line defined by

the polar angle θa and azimuth angle ϕa. It is described in Cartesian coordinates by

the following equations:

x(s) = x0 + sSinθaCosϕa (5.5)

y(s) = y0 + sSinθaSinϕa (5.6)

z(s) = z0 + sCosθa (5.7)

To determine the event topology accurately, the Elastic Arm algorithm [71] finds the

parameters (x0, y0, z0, θ⃗, ϕ⃗) by minimizing an energy function. The energy function

is formulated as follows:
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E =
N∑

i=1

M∑
a=1

ViaMia + λ
N∑

i=1

(
M∑

a=1
Via − 1

)2

+ 2
λν

M∑
a=1

Da (5.8)

Here, M and N represent the total number of arms and hits in the slice, re-

spectively. Mia is the distance from cell hit i to arm a, which is computed as the

perpendicular distance from hit i to the projection of the arm in the two 2D detector

views. The term Mia is calculated as:

Mia =
(
dprep

ia

σi

)2

(5.9)

where σi is a normalized factor (half of the cell depth /
√

12 = 0.9 cm). Via

represents the likelihood that hit i associated with arm a is assumed proportional to

e−βMia , and the noise is assumed to be a constant factor e−βλ:

Via = e(−βMia)

e(−βλ) +∑M
b=1 e

(−βMia) . (5.10)

The distance Da is the distance from the vertex to the first hit on arm a. β

represents the range of influence, and the penalty terms are controlled by λ and λν .

The first 44 terms in equation 5.8 evaluate the goodness of fit between the arms and

the hits, which minimizes when arm passes through the hits. The energy function

evaluates the fit between the arms and the hits, penalizes arms that do not contain

any hits, and considers the penalty for the vertex position being far from the first

hit. The likelihood for a photon that propagates with a distance d before converting

is proportional to e where λν = 7/9x0 (30 cm), leads to a penalty term:

χ2 = 2lnL = 2d
λν

(5.11)

The elastic arms are seeded for all the vertices, and the directions are scanned to

minimize the energy cost function using ROOT’s MINUIT class. The fit procedure
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starts with low values of β to avoid local minima and gradually adjusts β until the

final vertex point is obtained within the slice.

The vertex resolutions indicate the performance of both the Multi-Hough and

Elastic Arms algorithms. The resolutions are approximately 11.6 cm (about 2 NOvA

cells), 10.9 and 28.8cm for νµ CC, νe CC, and NC events, respectively.

5.1.4 Prong Formation with Fuzzy k-Means

The subsequent step in the reconstruction process involves identifying prongs, which

are clusters of hits with a start point and direction. To achieve this, we employ

a possibilistic fuzzy-k means algorithm [72], [73]. This algorithm assigns a prong

membership to each cell hit within the slice. The term “possibilistic” signifies that

the sum of membership values across all prongs for a hit does not need to be unity,

allowing for outlier hits to be treated as noise. This algorithm effectively separates

noise hits. The “fuzziness” property allows a hit to belong to multiple prongs.

The fuzzy-k means algorithm generates prongs separately in the XZ and YZ views

by utilizing the cell hits within the slice. It begins with a 2D view and subsequently

matches the prongs between the two views to produce a 3D prong. The algorithm

considers the vertex obtained from the Elastic Arms algorithm as the event’s origin

in both detector views. The cell hits within the slice manifest as peaks of deposited

energy in a 1-D angular space around the vertex. Uncertainty is assigned on the basis

of the distance from the vertex. The line connecting a cell hit to the vertex forms an

angle with respect to the z-direction of the detector, ranging from +pi to -π.

To determine the uncertainty associated with the angle, we model it after the

multiple scattering of 1-2 GeV electrons and muons associated with each cell hit,

considering its distance from the vertex position. In order to identify the prongs in

angular space, we seed a prong and search for minima in dense cell hits using the
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density matrix w:

wk =
n∑

i=1
e

(
− θk−θi

σi

)2

(5.12)

here:

θk = π + k ∗ π
180 , 0 ⩽ k < 360 (5.13)

The process of associating each cell hit with a prong begins by assuming that

there is a single prong centered on the region with the highest density of cell hits

in angular space. The prong centers are then added and updated using an iterative

method. The distance from each cell hit j to the prong center i is calculated as:

dij =
(
θi − θj

σi

)2

(5.14)

and the prong membership is assigned with

Uij = e−
m

√
adij
β (5.15)

In this case, the variable a represents the number of prong centers in the slice.

The variable m is a measure of the fuzziness of the prongs and is set to 2, allowing

membership to be shared between prongs. The variable σ is a normalization factor

that represents the expected spread of hits around the prong center. Additionally,

the prong centers are updated using:

θ′
i = θi +

∑n
i=1

Um
ij

σj
(θj − θi)∑n

i=1
Um

ij

σj

(5.16)

The prong formation stage involves updating prong angles and adding additional

prongs until all cell hits have at least a 1% membership in a prong or the maximum

number of prong seeds has been reached. Prongs with significant membership overlaps

are merged, while prongs with large spatial gaps indicating two co-linear particles are

split.

After the prong formation stage, there are separate sets of 2D prongs for each

view of the NOvA detector. The next step is to match the prongs between views to
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form 3D prongs. This matching process compares the energy profile of a prong in

each view using a Kuiper metric. The Kuiper metric (i.e K = D+ +D−) is calculated

as the sum of the largest positive (D+) and negative (D-) distances between the

energy profiles and used to find the best match for prong. In this case, D+ =

max
(
EXZ(s) − EY Z(s)

)
and D− = max

(
EY Z(s) − EXZ(s)

)
, respectively (Figure

5.2, 5.3)

The performance of this algorithm is evaluated on the basis of the completeness

of hits produced by the primary lepton in charged current (CC) interactions. For

electron neutrino (νe) CC events, the average completeness is 88%, with 95% for

quasi-elastic events and 86% and for non-quasi-elastic events. For muon neutrino

(νe) CC events, the corresponding numbers are 93%, 98%, and 92% respectively.

5.1.5 Kalman Track

The Kalman algorithm [74] is a widely used track reconstruction algorithm in NOvA’s

muon neutrino disappearance analysis. It operates on individual slices and forms

tracks separately in the XZ and YZ views of the detector. Initially, 2D tracks are

created by seeding, where a seed segment consists of a pair of hits that are close

together (less than 4 cells apart). The seed is then extended and additional hits are

added using a Kalman filter, which utilizes the current track position and slope to

propagate the track and incorporate compatible hits from the next cell. This process

continues until no more hits can be added to the track.

Track propagation starts from the downstream end of the detector, moving to-

wards the upstream direction, as particles emerging from the interaction are expected

to be most separated in the downstream end. The propagation continues as long as

there are consistent hits, and the probability of a gap between hits is below a thresh-

old of 0.0001. Once the track reaches the upstream end, the propagation direction is

reversed to pick up any missing hits from the initial propagation.
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Figure 5.2 Illustration of the 3D prong reconstruction using the fuzzy-k means al-
gorithm for a simulated νe CC QE process in the FD. The reconstructed prongs are
visualized in the xz and yz views, with the electron prong displayed in red and the pro-
ton prong in green. The corresponding cumulative energy profile histograms, which
are utilized to determine appropriate matches for the 3D prongs, are also depicted in
the Figure 5.3 [75]

To ensure the quality of tracks, there is an optimization process that aims to

maximize the efficiency of reconstructing long tracks, particularly for muons, while

rejecting poorly reconstructed tracks.

After creating all the 2D tracks in each view independently, the next step is to

match the 2D tracks from the two views. This matching is based on a score metric

that quantifies the overlap of the 2D tracks in the z-direction of both views. The

definition of the scoring metric is as follows:

S = Startdiff + Stopdiff

Length of Overlap in z − direction
(5.17)

Startdiff = |zlow of xz track − zlow of yz track| (5.18)
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Stopdiff = |zhigh of xz track − zhigh of yz track| (5.19)

Matching begins with the lowest value of the scoring metric S and proceeds to

higher values. The process of merging tracks is performed iteratively, combining 2D

tracks to form a 3D track, until no further matches can be made.

5.2 Calibration

The purpose of calibration is to convert the recorded signal into physically meaningful

units of energy, ensuring a consistent detector response throughout the entire NOvA

detector. Cosmic ray muons are employed for calibration as they provide a reliable

source of energy deposition across the detector. The initial step in the calibration

process involves selecting the hits associated with the reconstructed 3D cosmic muon

tracks using the CosmicTrack algorithm. This algorithm fits a straight line to all the

hits in a given slice and eliminates any hits that are inconsistent with the fit.

Additionally, a tri-cell criterion is applied to determine the track’s path length

through the cell. A tri-cell is defined as a cell that contains hits on a track and also

has hits in the adjacent upper and lower cells in the same plane, as depicted in Figure

5.4. The calibration procedure is summarized in the calibration tech note [76].

If there are not enough statistics to meet the tri-cell criterion (let’s say having a

bad channel next to a good channel), one can require that the hit in the adjacent cell

was also hit in the planes. For corner cells, there is no requirement on the tri-cell

criterion (no adjacent cell) but rather an average path length over all the directions

that the track can have is used. A 2D plot of the mean response (PE/cm) from

tri-cell vs W is drawn for each cell; where W is the distance from the readout, W =

0 is the center of the cell along the fiber, and a positive value of W is closer to the

readout end. The profile of 2D plot is taken and a cell-by-cell attenuation is performed

after applying a threshold and shielding corrections. The threshold corrections refer
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Figure 5.3 Representation of potential 3D match candidates as shown in Figure 5.2
displays the cumulative energy profile of prongs as a function of path length along
the prong. The red and blue curves correspond to prongs in the XZ view (vertical
planes) and the YZ view (horizontal planes), respectively. In the upper-left and lower-
right figures, the preferred matches are shown, indicated by the green and red tracks,
respectively. These matches exhibit similar energy profiles. The off-diagonal elements
demonstrate the dissimilarity in energy profile shape for incorrect combinations [75].

to a minimum number of hit requirements for reaching APD as it slightly upwards

fluctuation in the number of photons produced by the energy deposition. Shielding

is defined as the average visible energy depositions from minimum ionizing particles

(MIPs) that are not truly spatially uniform in the detector due to their own mass of

the detector. To account for these two effects a correction factor is applied in each
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Figure 5.4 The process of selecting tri-cells related
to a cosmic ray muon involves identifying specific
cells based on their neighboring cells being trig-
gered by the same cosmic ray. In the illustration,
the dark red cell represents a tri-cell since its ad-
jacent cells are also triggered by the same cosmic
ray. The path length within this cell is determined
by the variable Ly/cy.

cell defined as :

In cases where the tri-cell criterion cannot be met due to insufficient statistics, an

alternative requirement can be imposed. This involves ensuring that the hit in the

adjacent cell was also registered in the corresponding planes. For corner cells where

there is no adjacent cell, the tri-cell criterion does not apply. Instead, an average

path length across all possible track directions is used.

To assess the response of each cell, a 2D plot is created, depicting the mean

response (PE/cm) (in photoelectrons per centimeter) as a function of distance from

the readout, denoted as W. In this plot, W = 0 represents the center of the cell along

the fiber, and positive values of W indicate proximity to the readout end. The profile
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of the 2D plot is analyzed, and cell-by-cell attenuation is performed after applying

threshold and shielding corrections.

Threshold corrections account for the minimum number of hits required to trigger

the avalanche photodiode (APD), compensating for slight fluctuations in the number

of photons generated during energy deposition. Shielding corrections, on the other

hand, address the non-uniform distribution of visible energy depositions from mini-

mum ionizing particles (MIPs) within the detector, which arises due to the detector’s

own mass. To correct for these effects, a correction factor is applied to each cell, as

defined by the given equation:

T = PE
λ

· ETrue

EMIP

(5.20)

where T is the combined threshold and shielding correction factor, PE is the

number of simulated photoelectrons registered by the electronic readout, λ is the

number of simulated photons seen at the readout without fluctuations, ETrue is the

true energy deposited in the cell and EMIP is the energy expect to be deposited and

it depends on the path length through the cell.

5.2.1 Attenuation Correction

The light within the detectors undergoes attenuation as it travels through the wavelength-

shifting (WLS) fiber. This fiber serves the purpose of transporting the light generated

by a charged particle passing through the scintillator to the avalanche photodiode

(APD). The process of attenuation calibration aims to correct the amount of energy

deposited in the detector and registered by the APD. This calibration is denoted

as PECorr, representing the corrected number of photoelectrons, regardless of the

position where the energy was deposited.

The ADC/cm (analog-to-digital converter per centimeter) is recorded for a specific

cell by creating a 2D histogram with W (distance from the readout) as the variable.
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Prior to constructing the histogram, a correction factor is applied, taking into account

the threshold and shielding effects. The 2D histogram profile is formed by calculating

the median value within each W bin, and then fitted to a double exponential function

that considers both the travel of light along short and long paths. The functional

form of this fit is as follows:

y = C + A
(
e

w
X + e− L+W

x
)

(5.21)

Where L represents the total length of the cell, and C, A, and X are parameters

that can be adjusted freely. Parameter X provides the attenuation length of the cell.

The fitting process encompasses the central portion of the cell, which corresponds

to the range of [-150, 150] cm for Y view ND Muon Catcher cells and active cells,

and [-150, 50] cm for X view ND Muon Catcher cells. Hits near the beginning and

end of the cell exhibit distinct characteristics compared to the majority of hits within

the cell. This discrepancy arises because the light that reaches the white PVC cell

walls is reflected back into the scintillator. On the contrary, the top of the cell is

constructed from black plastic, which has a lower reflectivity and consequently results

in greater light loss. To correct for this effect, a polynomial function is introduced

in the exponential form mentioned above at the two ends of the cell. The roll-off

behavior is empirically defined as follows:

y =



1 − αR (W −WR)4 , if W > +WR

1, otherwise

1 − αL (W −WL)4 , if W > −WL

(5.22)

This scenario presents another situation where significant discrepancies are ob-

served in certain cells. These discrepancies arise due to variations in the position of

the fiber within the cell. Typically, the fiber is placed along the corners of the cell.

However, if the fiber somehow deviates and moves towards the central part of the cell,
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it captures a greater amount of light than anticipated, leading to these deviations. In

such instances, the exponential function fails to accurately characterize the response.

A LOWESS(Locally Weighted Scatter plot Smoothing) fit is done using a tricube

weight,

wi =


(

1 −
∣∣∣W −Wi

σ

∣∣∣3)3
, if |W −Wi| < σ

0 if |W −Wi| ≥ σ

(5.23)

In the given expression, Wi represents the neighboring point ith surrounding a local

point. wi represents the weight assigned to Wi, and W represents the local point on

the curve. The range of measurements that affect the value of W is indicated by σ,

which is set at 30cm. An illustration of complete attenuation fits for NOvA ND is

presented in Figure 5.5. Figure 5.6 provides examples of the cell view for the ND

before and after calibration, both horizontally and vertically. Attenuation calibration

incorporates all of the aforementioned conditions to achieve a smoother cell response.

Figure 5.5 Examples of well-fitted attenuation curves with LOWESS corrections
for the ND. The blue curve represents the full attenuation fit that incorporates the
LOWESS fit, while the red curve represents the double exponential fit. The plot on
the left corresponds to the horizontal view cells, while the plot on the right corre-
sponds to the vertical view cells.
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Figure 5.6 Examples of the ratio between the mean reconstructed energy and
the true energy as a function of W. The red dots represent the results before
the calibration is applied, while the blue dots represent the results after the
calibration is applied. The plot on the left corresponds to the horizontal view
cells, while the plot on the right corresponds to the vertical view cells.

5.2.2 Absolute Energy Scale

The primary objective of absolute energy calibration is to convert the relative cor-

rected scale, represented in arbitrary units known as PEcorr/cm, into a physical

energy scale measured in GeV/cm. In order to achieve this, the absolute calibration

process utilizes stopping cosmic ray muons instead of muons that pass through the

entire detector, in addition to the tri-cell criterion. Stopping muons are identified

by the presence of a Michel electron at the end of the muon track, resulting from

the muon decay (µ → e− + νe + νµ), which can be accurately described using the

Bethe-Bloch formula. The Bethe-Bloch equation is applied to estimate the amount of

energy lost through ionization within the scintillator while ignoring the energy depo-

sition through the PVC material. Also, the determination of scale factor for absolute

calibration is the ratio between the mean of the muon energy unit MEUtruth to mean

of the MEUreco. MEU is the mean of the detector response in units of PECorr (or

simulated energy deposition in MeV) to a stopping muon tri-cell hit within the track

window (100 − 200 cm) divided by the path length. In the NOvA liquid scintillator

(consisting of chains of polyethylene), the expected energy loss per unit length due
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to a minimum ionizing particle is 1.79 MeV/cm.

The energy depositions occurring between 100 and 200 cm from the end of a

track are considered to be within the minimum ionizing particle (MIP) region in the

detector, which is utilized for determining the absolute energy calibration. Corrected

photo-electrons per length (PECorr/cm) distribution between the data and simulation

is shown in Figure 5.7. The scale factor is used to convert the PECorr/cm in data

to MeV/cm. In this approach, we calibrate NOvA detectors independently and the

constant is stored in the database, also they stored for different time periods so that

a PE signal in raw digit object is converted to an energy unit.

Figure 5.7 The graph on the left shows the corrected response of the detector as a
function of the distance from the track end in both the ND data and Monte Carlo
(MC) simulations. On the right, the graph illustrates the calibrated energy distribu-
tion per unit path length as a function of the distance from the track end in the ND
data and MC simulations.
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Chapter 6

Selection of νµ Charged Current Coherent π+

events

As discussed in Section 1.3.7 νµ induced charged current coherent interactions create

two final state particles in the near detector (muon and a pion). The signal definition

made for analysis is νµ coherent charged current events formed within the fiducial

volume. All other events will be treated as background events. An event display

view of a clean signal event simulated in NOvA near detector is shown in Figure 6.2.

Event selection is capable of separating signal events from the background with an

absolute efficiency of 1.42% and 59% purity and will be explained in a later section.

Before diving into the signal estimation for the cross-section analysis is performed,

basic selection (preselection) criteria are enforced to ensure good data-taking con-

ditions. Pre-selection is defined to ensure removal of poorly reconstructed events,

removal of events that are near the edges of the detector, removal of events with

more or less than two 3D reconstructed prongs for the two final-state particles (muon

and pion) due to reconstruction inefficiencies, removal of events that are not fully

contained in the containment volume (as explained in Section 6.3) to precisely recon-

struct 4-momenta of final-state particles and finally remove events that contain parti-

cle candidates other than muons in muon candidate Kalman tracks. The data quality

criteria and the containment requirement are borrowed from NOvA νµ Charged Cur-

rent inclusive cross analysis [77].
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The pre-selection consists of the following selection criteria:

• Data Quality cut

• Fiduical cut

• Two Prong cut

• Containment cut

• Muon ID cut

6.1 Data Quality

Data quality criteria are intended to remove detector noise and poorly reconstructed

events for which particle four-momenta cannot be reliably estimated.

• Hits per slice > 20: A lesser number of hits in an individual slice is likely due

to neutral current interaction or a partially reconstructed event.

• A vertex is reconstructed: An interaction vertex is required for downstream

reconstruction algorithms. If a vertex was not reconstructed, the hits clustered

by the slicing algorithm are likely noise.

• At least one track: Since there are two final-state particles expected, this anal-

ysis relies on the formation of tracks and prongs for the estimation of final-state

particle kinematics.

• Number of continuous planes > 4: This requirement is enforced for both the

XZ and YZ views of the detector to ensure there is enough energy deposition

in the detector to reliably reconstruct the particle’s energy.
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6.2 Fiducial Volume

We optimize the fiducial volume for this analysis by applying Data Quality cut for

NOvA production version 5.1 forward horn current Monte Carlo events. In this case,

the chosen figure of merit function is Sensitivity and is defined as follows:

Sensitivity = Number of selected Signal Events√
Number of selected (Signal + Background) Events

(6.1)

In this case, Signal events are charged with current coherent events. We calculate the

cumulative signal (in red), the cumulative background (in blue), and the sensitivity

(in black) for each coordinate separately. The lower and upper thresholds for each

(x, y, z) coordinate were determined based on the coordinate values that maximize

sensitivity. As shown in Figure 6.1, six different figures of merit graphs (area normal-

ized) (two figures of merit graphs to determine lower and upper thresholds for each

coordinate) were made to finalize the boundaries of the fiducial volume.

Therefore, the optimized fiducial volume considered in the νµ charged-current

coherent analysis is the following:

−160.0 < X(cm) < 170.0 (6.2)

−150.0 < Y (cm) < 160.0 (6.3)

50.0 < Z(cm) < 1200.0 (6.4)

The graphical representation of the fiducial volume (in blue) can be seen in Figure

6.3.
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Figure 6.1 Optimizing Fiducial Volume using Figure of merit plot: Sensitivity
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6.3 Event Topology

Under ideal reconstruction, the expected number of 3D prongs is two with zero 2D

prongs. Due to reconstruction inefficiencies (such as the failure to identify pion inter-

action at the end of the trajectory), there will be other topologies, as shown in Figure

6.2 (b) (Histogram of the number of 2D vs. 3D Prongs normalized to data POT). To

accurately calculate the kinematics of the two final-state particles (i.e. µ− and π+) it

is required to select events that only contain two 3D-reconstructed prongs with zero

2D prongs. The selected topology and the event display are shown in Figure 6.2 (a),

also known as the golden event sample!

𝜇! 	Trajectory

𝜋 "	Trajectory

(a) Event display view of clean Charged-Current
Coherent event
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Figure 6.2 Selected Topology used for analysis (i.e. events that only contain two
3D prongs and zero 2D prongs )

6.4 Containment

In this case, the same containment cut defined in the inclusive analysis of CC was

used (as described in docdb-32688-v3). After selecting muon candidate Kalman

track (as explained in section 6.5
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• The forward projection of the muon candidate track is greater than 5 cells from

the edge of the detector. This aims at removing events with uncontained muons.

• The backward projection of the muon candidate track is greater than 10 cells

from the edge of the detector. This is to remove contamination from neutrino

interactions outside the detector.

• Remove all events with muon candidate tracks that could have exited the active

region of the detector before reentering the muon catcher (“air gap events”):

the end z-position of the track is less than 1275 cm or

(trk.kalman.tracks[ibesttrk].stop.Z() < 1275 ||

trk.kalman.tracks[ibesttrk].trkyposattrans < 55).
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Figure 6.3 Graphical representation of the fiducial and containment volumes defined
to study charged current coherent events
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6.5 Muon Identification

Signal events are selected using an optimized cut on a BDT-based muon identifier de-

veloped for the νµ CC inclusive analysis (as described in docdb-32688-v3) MuonID.

MuonID is trained to identify muons by considering properties of reconstructed tracks:

muon likelihood of track dE/dx, muon likelihood of a scattering metric based on the

angle and length of the scattering between the scattering events, dE/dx in the last

10 cm of the track, and dE/dx in the last 40 cm of the track. The plots of the inputs

used to train the BDT are shown in Figure 6.4. The correlation matrices made for

the signal and background tracks are shown in Figure 6.5.

Figure 6.4 Simulated muon (hashed blue) and non-muon (dashed red) track
distributions in: dE/dx log-likelihood differences between that of a muon and
a pion (top left), multiple scattering log-likelihood differences (top right),
average dE/dx in last 10 cm (bottom left) and average dE/dx in last 40 cm
(bottom right) used in the MuonID selector [77].
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Figure 6.5 Correlation matrix of MuonID input variables for signal tracks (left) and
correlation matrix of input variables for background tracks (right) [77].
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Figure 6.6 Number of Kalman tracks after Two 3D Prong cut
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6.5.1 Selecting Muon Candidate Track

If the neutrino event contains only one reconstructed Kalman track; then that Kalman

track will be selected as the muon candidate (as shown in Figure 6.6) and the muon

candidate prong will be the reconstructed prong that most overlaps (the opening

angle between the track and the prong minimized) with the muon candidate Kalman

track. In all the other cases, the muon-candidate Kalman track will be selected on

the basis of the most overlapped Kalman track with the muon-candidate prong. In

this case, the muon candidate prong was selected based on length (> 500cm) with the

highest muonID score (CVN single particle trained prong). This method increases

the number of correct choices from 88.1% to 96.8% (as described in table 6.7)

Figure 6.7 Muon Candidate table after prongs to track
mapping

Muon Candidate Number of Events Percentage
13 6683 96.757

211 158 2.288
-13 46 0.666
22 6 0.087

-211 2 0.029
11 1 0.014

-321 1 0.014
2212 10 0.145

6.5.2 MuonID Cut

An optimization is performed by calculating the figure of merit: sensitivity as a

function of the MuonID cut value of the Muon candidate Kalman track, where events

with MuonID evaluations less than the value found on the x axis are removed. In this

case, the signal is the sample that contains true muons in Muon candidate Kalman

track, and the background sample contains muon candidates that are not true muons
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(see Figure 6.8). There is a maximum at MuonID = 0.4 and therefore we require

selected events to have MuonID greater than 0.4 (as shown in Figure 6.9).
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Figure 6.8 Plots of MuonID made for signal and back-
ground muon candidate Kalman tracks
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Figure 6.9 The MuonID cut value optimized by FOM as
a function of MuonID Score
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6.5.3 Muon Energy

The same muon energy estimator that was used for the νµ charged current inclusive

analysis [77] is employed without any lower limit on the kinetic energy of the true

muon. The reconstruction efficiency of the muons as a function of the true kinetic

energy of the muons is shown in Figure 6.10 in the background true muon kinetic

energy spectrum.
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Figure 6.10 Muon Reconstruction Efficiency as a function
of Muon Kinetic Energy

Fractional Resolution = (EReco. − ET rue)
ET rue

(6.5)

According to the Gaussian fit created to the fractional resolution (as explained in

equation 6.5), the mean value is −3 × 10−6 and the standard deviation is 3.5 × 10−2

(the fractional resolution plot is shown in Figure 6.11). To compensate for the offset of

the fractional energy resolution, a constant correction factor: 1.0008 was calculated.
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Figure 6.11 Fractional Resolution of the Muon Energy es-
timator

6.5.4 Pion Energy

A multi-variate regression was trained to estimate the pion energy by using the calori-

metric energy of the pion prong and the angle between the direction of the average

beam and the pion prong.
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Figure 6.12 Pion Reconstruction Efficiency as a function
of Pion Kinetic Energy
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Previously, different types of inputs were used to train pion energy estimators.

On the basis of the studies, the best pion energy resolution was obtained by using the

pion calorimetric energy and the angle between the pion prong and the average beam

direction. Currently, there is no lower threshold applied to the true pion Kinetic

Energy. The efficiency of re-construction of the pions as a function of the true kinetic

energy of the pion is shown in Figure 6.12. The mean value is 1 × 10−5 and the

standard deviation is 1.53 × 10−1 (the fractional resolution plot is shown in Figure

6.13). To offset the fractional energy resolution to zero, a constant correction factor:

0.963 was calculated.

Figure 6.13 Fractional Resolution of the Pion En-
ergy estimator

6.6 Reconstruction of Momenta

After selecting the correct muon candidate (already explained in section 6.5.1 ) it is

important to reconstruct the kinematic properties of the muon and pion accurately

to measure the reconstructed |t|. We rely on NOvA’s track and prong reconstruction

algorithms and apply corrections to further reduce the reconstruction bias on energy
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resolution. The track selected to represent the muon of a selected event is chosen as

described in Section 6.5.1. The resulting fraction of correct choices is 96.8%.

The magnitude of the particle momentum |Pi| (here i = µ, π) is calculated using

estimated particle energy Ei using following equation:

Ei =
√
P 2

i +m2
i (6.6)

Here, mi is the mass of the particle.

The direction of the particle is calculated by taking the unit vector (since the direction

of the reconstructed track is known and the length of the reconstructed track is

known it is possible to calculate the unit vector) of the particle candidate track (ûi).

Therefore,
−→
Pi = |Pi|ûi (6.7)

6.7 Selection of Signal Events

After applying preselection, the next step is to apply the main selection criteria

to further separate charged current coherent events from backgrounds. The event

selection consists of mainly three cuts:

• Pion ID cut: optimized to mainly remove protons present in Pion candidate

prong.

• Hit ID cut: optimized to remove backgrounds that create higher hadronic ac-

tivity around the reconstructed vertex.

• Kinematic ID cut: optimized to further remove coherent-like background events

by investigating kinematics.
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6.7.1 Pion Identification

After selecting the muon candidate prong, the next challenge is to remove events

containing particles other than pions in the pion candidate prong. Studies reveal

that the dominant background present in the candidate prong for the pion is protons.

These protons come from backgrounds such as CCQE (Figure 6.14) and CCDIS. A

Figure 6.14 Feynman diagram of charged
current quasi-elastic scattering that pro-
duces muon and proton in final state

deep neural network is trained using the following calculations of the pion candidate

prong as input:

• Minimum Hit Energy

• Maximum Hit Energy

• Average Hit Energy

• PionID-old (single particle trained prong CVN)

• MuonID (single particle trained prong CVN)

This training was done by applying Data Quality, Fiducial, Two Prong, Contain-

ment, and MuonID cuts (only pre-selection). Figure 6.15 demonstrates the correla-
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tion matrices made by taking input variables for both the signal (true pions) and the

background (true protons) samples.

Figure 6.15 Mixing matrices made by analyzing input variables for True Pions (on
left) and the dominating background: true protons (on right)

(a) PionID Score Testing Vs Training (b) PionID Figure of Merit Plot

Figure 6.16 Creating a cut based on PionID

PionID is trained to separate pions from nonpion particles of candidate pions, such

as protons. Signal events are selected using an optimized cut on PionID using the

sensitivity FOM as a function of the PionID score. The FOM is maximized iteratively

considering the PionID cut as the final cut and the finalized optimum cut value is

PionID = 0.3 and therefore we require that the selected events have PionID greater

than 0.3 (as shown in Figure 6.16).
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6.7.2 Hit Energy Distributions

Hit Score is trained to separate Coherent events from Coherent-like events. Figure

6.17 (a) is the Feynman diagram that represents the CCRES event. Figure 6.17 (b)

is the same event simulated in the NOvA near detector.

(a) Feynman diagram of CCRES event

Higher hadronic activity near the reconstructed vertex

(b) CCRES event simulated in Near Detector

Figure 6.17 CC Resonant interaction simulated in NOvA Near Detector

A neural network (Multi-Layer Perceptron) is trained by using the following cal-

culations of the Muon and Pion candidate prongs as inputs:

• First hit’s energy of the muon candidate prong

• Second hit’s energy of the muon candidate prong

• Third hit’s energy of the muon candidate prong

• First hit’s energy of the pion candidate prong

• Second hit’s energy of the pion candidate prong

• Third hit’s energy of the pion candidate prong

• Vertex Energy calculated by 3D-prong hits enclosed in 10cm side cube

• Vertex Energy calculated by 3D-prong hits enclosed in 20cm side cube
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• Hit Ratio (Ratio between total hits in muon and pion candidate prongs to slice

hits)

The mixing matrices made for input variables as shown in Figure 6.18.

(a) Signal Matrix (b) Background Matrix

Figure 6.18 Mixing matrices made for input variables used to train HitID

(a) Hit Score Testing Vs Training (b) Hit Score Figure of Merit Plot

Figure 6.19 Creating a cut based on Hit Score

Signal events are selected using an optimized cut on the Hit Score using the

sensitivity FOM as a function of the Hit Score. The FOM is maximized in an iterative

way by considering the Hit Score cut as the final cut, and the finalized optimum cut

value is Hit Score = 0.46. Therefore, the selected events must have a Hit Score greater

than 0.46. (as shown in Figure 6.19)
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6.7.3 Event Kinematics

Even after applying the PionID cut and the HitID cut to remove background events

such as CCQE and CCRES, signal events are still dominated by coherent-like back-

ground events. In order to remove such events, particle kinematics was studied. In

Figure 6.20 the kinematics were calculated for both the final-state muon and pion by

calculating momenta in the transverse and longitudinal directions.
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Figure 6.20 Reconstruction of the event kinematics for individual
events

After estimating the energies of the muon and pion candidates, the kinematics of

the muon and pion candidates can be calculated (as explained in Section 6.5.3). The

kinematic score is trained to separate coherent events from background events.
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A neural network (Multi-Layer Perceptron) is trained by using the following cal-

culations of the Muon and Pion candidate prongs as inputs:

• Missing Transverse momentum P⃗ T
m

• Muon’s Transverse momentum P⃗ T
µ

• Pion’s Transverse momentum P⃗ T
π

• Opening Angle (The angle between Muon and Pion prongs θµπ)

• Visible Angle (The angle between the sum of Muon and Pion momenta to the

average beam direction θPtotal
)

Correlation matrices were made for the input variables by taking sample signal

and background events as shown in Figure 6.21.

(a) Signal Matrix (b) Background Matrix

Figure 6.21 Mixing matrices made for input variables used to train Kinematic ID

Signal events are selected using an optimized cut on the kinetic score using the

sensitivity FOM as a function of the kinetic score. The FOM is maximized in an

iterative way by considering the kinematic score cut as the final cut and the finalized

optimum Kinematic Score = 0.84.
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(a) Kinematic Score Testing Vs Training (b) Kinematic Score Figure of Merit Plot

Figure 6.22 Creating a cut based on Kinematic Score

Therefore, it is necessary to select events with a Kinematic Score greater than

0.84 (as shown in Figure 6.22).

6.8 Signal Region from |t| Distribution

The 4-momentum transferred to the nucleus is calculated by using the following

equation:

|t| ≈

 ∑
i=µ,π

Ei − pi,L

2

+

∣∣∣∣∣∣
∑

i=µ,π

pi,T

∣∣∣∣∣∣
2

(6.8)

Here,

• Eµ is the energy of the muon

• Eπ is the energy of the pion

• pµ,T is the transverse momentum of the muon w.r.t. average beam direction

• pπ,T is the transverse momentum of the pion w.r.t. average beam direction

• pµ,L is the longitudinal momentum of the muon w.r.t. average beam direction

In Figure 6.23 represents the reconstructed |t| after muonID cut (right after pre-

selection). Coherent events are denoted by red color histogram, background events

are in blue color, and the signal events are dominated by backgrounds.
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Figure 6.23 Reconstructed |t| after MuonID Cut
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Figure 6.24 Reconstructed |t| after complete event selec-
tion

In Figure 6.24 the reconstructed |t| histograms are made after applying the entire

event selection (Data Quality, Fiducial, Two-prong, Containment, MuonID, PionID,

Hit ID, Kinematic ID cuts), and these two figures clearly demonstrate the power of

our event selection.
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6.9 Selected Events

After finalizing the selection of events as mentioned above, the summarized cut table

is produced as shown in Table 6.1. Absolute efficiency (that is, selected signal events

/ total number of true signal events) is 1.42% with purity 59%.

6.9.1 Cut Table with MC only

Cut Name CC COH CC QE CC RES CC DIS CC MEC NC Other Total Bkgd Total MC Efficiency (%)
No Cut 112522.6 9212641.2 18716893.2 34217464.3 4782497.0 14710277.2 263914.6 81903687.4 82016209.9 97.05
Data Quality 112171.3 6474801.0 13394817.1 25566361.7 3164765.0 8224225.1 205291.6 57030261.6 57142432.8 96.74
Fiducial 110039.5 4144679.7 8407700.5 12521810.2 2149302.1 5418945.6 85330.7 32727768.6 32837808.2 94.9
Two Prong 10654.2 847830.8 300559.6 116956.3 275948.6 62522.3 8797.4 1612614.9 1623241.3 9.16
Containment 4417.7 156090.7 81372.9 18100.0 83664.5 31756.7 2864.1 373848.9 378266.6 3.81
Muon ID 3725.9 126642.8 64669.6 11222.4 70733.7 4678.6 2274.4 280221.5 283947.4 3.21
Pion ID 2792.9 24436.0 16307.8 3988.3 26934.1 1303.9 1143.5 74113.5 76906.4 2.41
Hit ID 2473.5 22726.9 5901.7 2433.8 25633.9 809.2 491.2 57996.7 60470.2 2.13
Kinematic ID 1651.2 43.5 699.5 106.8 21.7 38.3 228.9 1138.6 2789.7 1.42

Table 6.1 Cut Table made for the event selection

The composition of the “Other” backgrounds is shown in Figure 6.25. The dom-

inant background variant in the “Other” category is due to diffractive scattering.
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Figure 6.25 Composition of Other Backgrounds survived after event selection
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Cut Name CC COH CC QE CC RES CC DIS CC MEC NC Other Total Bkgd Total MC Data Data/MC
Data Quality 114839.2 6474801.0 13394817.1 25566361.7 3164765.0 8224225.1 202623.7 57027593.7 57142432.8 55469310 0.97
Fiducial 110718.8 4144679.7 8407700.5 12521810.2 2149302.1 5418945.6 84651.4 32727089.3 32837808.2 31680510 0.96
Two Prong 5664.1 846090.6 296850.4 114800.9 275315.1 61895.8 7839.5 1602792.3 1608456.4 1782981 1.11
Containment 2432.4 156027.6 80526.5 17963.4 83638.2 31443.4 2587.7 372186.8 374619.2 414796 1.11
Muon ID 2077.2 126599.3 63967.8 11121.6 70708.8 4636.6 2042.0 279076.2 281153.4 308715 1.10
Pion ID 1143.9 24392.5 15606.0 3887.4 26909.3 1261.9 911.4 72968.6 74112.4 80051 1.08
Hit ID 820.8 22220.5 5141.3 2202.1 25033.4 742.0 259.6 55598.9 56419.7 59982 1.06

Table 6.2 Cut Table by removing signal box (Data Quality and Fiducial cuts contain
signal box)

6.9.2 Cut Table with Data and MC without Signal Box

After granting permission to analyze neutrino events of the data sample essential

steps are taken to investigate DataMC variations. Since permission to examine neu-

trino events of the data sample has not yet been granted, to investigate Data/MC

variations in main event selection cuts, the signal box was removed by applying a

check: !(PionID > 0.3 && HitID > 0.46 && KinematicID > 0.84). After

removing the events that qualify in the signal box, the cut table was made to check

the DataMC ratio as shown in Table 6.2.

6.9.3 Distribution of reconstructed topologies
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Figure 6.26 Number of reconstructed prongs Data Vs Total MC
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Studying the Data/Total MC ratio calculated in Table 6.2 revealed that there is a

discrepancy of 11% in Data/MC at Two 3D prong cut. In order to understand where

the discrepancy comes from, the number of 3D prongs and the number of 2D prongs

were studied. In Figure 6.26 (a) the number of 3D prongs was compared between the

data and Monte Carlo. Our cut value for 3D prongs is 2 and there is no significant

discrepancy between data and Monte Carlo at 2. Further investigations were done

with the number of 2D prongs with the selection of 2-3D prongs. A significant

data/total Monte Carlo discrepancy was observed in our choice at 0-2D prongs, as

shown in Figure 6.26.

Cut Name Data Efficiency (%) Total MC Efficiency (%) Efficiency Ratio (Data/Total MC)
2-3D Prong Cut 27.54695 26.77438 1.02885
2-3D & 0-2D Png Cut 20.6569 18.46245 1.11886
Combined 5.6903 4.9432 1.15114

Table 6.3 Two 3D Prong Cut Efficiency Ratio

To apply a data-driven correction at 2-3D prong cut, we first calculated efficiencies

for neutrino events from both data and Monte Carlo, then the efficiency data/total

MC ratio was calculated as shown in Table 6.3. The correction factor 1.15114 will be

applied in Section 7.1.1.
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Chapter 7

Background Determination and Cross-Section

Measurements

So far, the numbers mentioned in the cut table 6.1 are determined by MC statistics.

In reality, the numbers might be different for both the signal and the background

events. Therefore, it is necessary to define control samples to check whether the

numbers are accurate.

7.1 Background Control Samples

The analysis is mainly based on three cuts:

1. PionID Cut

2. HitScore Cut

3. Kinematic Cut

Therefore, 3 discriminants can be made using PionID Score, Hit Score, and Kinematic

Score and the idea is to control the shape specifically around the cut region for each

of the 3 discriminants by using the events which fail any of the other 2 cuts. Looking

at the same samples in the data, we can compare the shapes in which the signal

distributions are negligible.

After inverting the Hit ID cut (i.e. HitID < 0.46) and Kinematic ID cut (i.e.

Kinematic ID < 0.84) Pion ID score was graphed for Data, Total MC, Signal and

Background events.
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The efficiencies were calculated for the events from data and total MC samples at

the cut value: 0.3.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PionID

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

 P
O

T
21

N
um

be
r o

f E
ve

nt
s 

/ 1
.3

6 
x 

10

NOvA Preliminary

Data
Total MC
Signal
Background

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PionID

1

1.05

1.1

D
at

a/
M

C

Figure 7.1 Plot of PionID Score made with events that failed either Kinematic Score
or Hit Score cuts (Kinematic Score < 0.84 or Hit Score < 0.46)

The cumulative ratio of the data to the total MC is plotted in Figure 7.1. Similarly,

the HitID score was graphed for data, total MC, signal and background events by

inverting the PionID cut (i.e. Pion ID < 0.3) and Kinematic ID cut (i.e. Kinematic

ID < 0.84).
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The cumulative ratio of the data to the total MC was then plotted in Figure 7.2.
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Figure 7.2 Plot of Hit Score made with events that failed either Kinematic Score or
PionID Score cuts (Kinematic Score < 0.84 or PionID Score < 0.3)

The efficiencies were calculated for the events from data and total MC samples at

the cut value: 0.46. Finally, the Kinematic ID score was plotted for the data, total

MC, signal and background events by setting the Pion ID < 0.05 and Hit ID < 0.05.

The cumulative ratio of the data to the total MC was then plotted in Figure 7.3. The

efficiencies were calculated for the events from the data and total MC samples at the

cut value: 0.84.
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Figure 7.3 Plot of Kinematic Score made with events that failed either PionID Score
or Hit Score cuts (PionID Score < 0.05 or Hit Score < 0.05)

Table 7.1 Efficiency ratios calculated to correct main cuts

Cut Name Data Efficiency (%) Total MC Efficiency (%) Efficiency Ratio (Data/Total MC)
Pion ID Cut 25.975 26.386 0.984
Hit ID Cut 46.884 47.712 0.983
Kinematic ID Cut 2.026 1.607 1.261

The calculated efficiency ratios (Data/Total MC) at each cut level can be found

in Table 7.1.

117



7.1.1 Cut Table with Data Normalized to Two Prong Cut

The data-driven correction factors calculated in Table 7.1 were applied to the cut

table 6.2 and normalized all background columns with respect to the two-prong cut.

The final cut table was made by removing the signal box and is shown in Table 7.2.

Table 7.2 Cut Table made for the event selection normalized to Two Prong cut and
data-driven corrections applied (Data Quality and Fiducial cuts contain signal box)
Cut Name CC COH CC QE CC RES CC DIS CC MEC NC Other Total Bkgd Total MC Data Data/MC
Data Quality 127471.5 7187029.1 14868247.0 28378661.5 3512889.2 9128889.9 224912.3 63300629.0 63428100.4 55469310 0.876
Fiducial 122897.9 4600594.4 9332547.5 13899209.3 2385725.3 6015029.6 93963.1 36327069.1 36449967.1 31680510 0.870
Two Prong 6287.1 939160.6 329504.0 127429.0 305599.7 68704.3 8701.8 1779099.4 1785386.5 1782981 1.000
Containment 2700.0 173190.7 89384.4 19939.4 92838.4 34902.2 2872.4 413127.3 415827.3 414796 0.999
Muon ID 2305.7 140525.2 71004.3 12345.0 78486.8 5146.7 2266.6 309774.5 312080.2 308715 0.991
Pion ID 1269.7 26642.5 17045.5 4246.0 29391.4 1378.3 995.5 79699.2 80948.5 80051 0.990
Hit ID 911.1 23857.5 5520.1 2364.3 26877.6 796.7 278.7 59695.0 60576.2 59982 0.992

7.1.2 Background Determination from Data
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Figure 7.4 Plot of |t| distributions made with failed events
(PionID Score < 0.05 or Hit Score < 0.05) and (Kinematic
Score > 0.84). An absolute normalization to the expected
pot is used for the MC, corrected by the factors from table
7.1
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We have already defined a region where the signal is not visible. The signature of

the charged current-coherent events is to have a small |t| distribution. We will look

at the |t| distribution of the data in the background region. Here, all Monte Carlo

histograms are normalized to the nominal POT. The Total Background histogram

was scaled using the product of 1.261 (efficiency ratio calculated for the Kinematic

ID cut in table 7.1) and 1.11 (data / MC ratio calculated at the two-prong cut in table

6.2). The total Monte Carlo histogram was created by adding signal and background

histograms. The integral of the Data histogram is 3736.0 and the integral of the To-

tal MC histogram is 3758.95. Therefore, the Data/MC ratio is 0.994. After applying

data-driven corrections we can control the Data/Total MC ratio as a function of cuts

to about 1%!

The next step is to create a data-based background prediction in the signal region. In

order to create prediction in the signal region, the following |t| ratio was calculated

bin by bin with propagation errors defined as follows:

Background |t| in control region
Background |t| in signal region

(7.1)

In this case, “background |t| in the background control region” was taken from Figure

7.4 and the “background |t| in the signal region” was taken from Figure 6.24. The

motivation to calculate the |t| ratio in this way is due to the fact that there are

higher statistics in the background control region compared to the signal region, so

the prediction calculation will be relatively accurate. Another reason is that the

|t| ratio as shown in Figure 7.5 will be very robust with the presence of extreme

variations applied to our simulation model. In order to check the robustness of the

reconstructed |t| ratio, extreme variations were applied to the GENIE knobs available

for the dominant background (i.e. CCRES).
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Figure 7.5 Plot of |t| ratio made with failed events (PionID Score < 0.05 or Hit
Score < 0.05) and (Kinematic Score > 0.84).

7.1.3 Tests applied for |t| ratio

In order to demonstrate that the |t| ratio is immune to extreme simulation changes,

the following GENIE shifts were introduced:

• CCRESMa σ = −3,−2,−1,+1,+2,+3 (as shown in Figure 7.6)

• CCRESMv σ = −3,−2,−1,+1,+2,+3 (as shown in Figure 7.7)

Here, CCRESMa is the axial mass of the CCRES interactions and CCRESMv is

the vector mass.
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Figure 7.6 Plot of |t| ratio by applying shifts for GENIE
Knob: CCRESMa
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Figure 7.7 Plot of |t| ratio by applying shifts for GENIE
Knob: CCRESMv

In conclusion, the |t| ratio is very stable with the presence of extreme changes

applied to the simulation model (the shifts are within the error bars).
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The reconstructed |t| histograms were made for the background control region

(Figure 7.8) and signal region (Figure 7.9) using background events. The dominating

background in both regions is Charged-Current Resonant.
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Figure 7.8 Plot of Background |t| split into different inter-
action types in background control region
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Figure 7.9 Plot of Background |t| split into different inter-
action types in signal region
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7.1.4 Background Predictions for Signal Region

In order to calculate a data-based prediction for the background |t| for the bin by

bin of the signal region, the |t| ratio and the reconstructed |t| made using data in

the background region were used. The ith bin of the prediction is calculated by using

equation 7.2:

ith bin of Data−based prediction = ith bin of Data background |t| in control region
SFi

(7.2)

In this case, scaling factor of ith bin (SFi) is given by the ratio histogram denoted in

Figure 7.5

SFi = ith bin of Background |t| in control region
ith bin of Background |t| in signal region

(7.3)
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Figure 7.10 Plot of |t| predictions made for signal region
using data

The data-based background prediction was compared with the MC background

in Figure 7.10.
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7.2 Extraction of the number of Signal Events

After selecting data-based prediction, the predicted total reconstructed |t| was calcu-

lated. Here:

Predicted Total |t| (FakeData) = Monte Carlo Signal + Data− based prediction

(7.4)
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Figure 7.11 Plot of total |t| Data-based prediction using Signal MC

The error of each bin of the predicted total |t| is calculated by accounting for the

statistical error of each bin. All histograms are normalized to data POT.

The predicted signal is calculated as follows:

Signal |t| Prediction = Predicted |t| from Fake Data− Data−based Background

(7.5)
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Table 7.3 Integrals of the histograms with errors (signal extractions done
using Figure 7.12)

Signal Background Total
Data-Based Prediction 1900.9±87.7 1590.0±64.8 3490.9.3±59.1
MC-Based Prediction 1900.9±76.4 1593.8±48.4 3494.7±59.1

The integral of the data-based background prediction is 1590.0 ± 64.8 and the

Monte Carlo prediction is 1593.8 ± 48.4.

In this figure, the shaded region in each bin denotes statistical uncertainty. The

error bars in each bin were calculated by accounting for the propagation error. The

integral of the signal prediction is 1900.9 ± 87.7 compared to the Monte Carlo-based

signal prediction, 1900.9 ± 76.4.
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Figure 7.12 Plot of subtracted Signal |t| from total |t| prediction with errors
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7.3 Determination of the flux averaged cross-section

The remaining unknowns to finalize the flux-averaged cross section are the diffractive

corrected number of nuclei and the neutrino flux.

7.3.1 Number of targets in fiducial volume

We use standard NOvA tools to calculate the number of nuclei. The only input is

the fiducial volume.

Table 7.4 Target Composition

Z A Mass (kg) Fraction of Total Uncertainty (kg) 
1 1 12475.5 0.107 97.4
6 12 77449.9 0.664 638.0
7 14 29.6 <<0.001 0.2
8 15 3548.7 0.030 64.1

11 22 3.1 <<0.001 0.0
16 32 113.7 0.001 1.9
17 35 19063.5 0.163 306.5
20 40 31.1 <<0.001 0.5
22 47 3818.3 0.033 61.1
50 118 141.1 0.001 2.3

Total Number of Target nucleons = 7.03 × 1031 (7.6)

Total Number of Target nuclei = 1.19 × 1031 (7.7)

Total Number of H nuclei = 7.51 × 1030 (7.8)

∴ Diffraction Corrected Total Number of nuclei = 4.40 × 1030 (7.9)

Total mass (kg) = 116669 ± 719.96 (0.62%) (7.10)
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7.3.2 Neutrino flux

We used the standard NOvA tool “DeriveFlux” function to determine the flux his-

togram. The input for this function is the fiducial volume.
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Figure 7.13 Plot of NOvA flux seen by Near Detector (Normalized to Data POT)

Total Neutrino F lux = 1.58 × 1017Neutrinos/m2/GeV/1.36 × 1021 POT (7.11)

Relative Error of F lux = 8.3% (7.12)

This 8.3% flux uncertainity is [78]

7.3.3 Cross-section from observed signal events

After substituting all calculations into Equation 7.13 the flux-averaged total cross

section averaged by flux was calculated.

σ = NData −NBkgd

εCoh Φ NA

(7.13)
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∴ σ = 1900.9 ± 87.7(Stat.)
1.42 × 10−2 × 1.15114 × 1.58 × 1013 × 4.4 × 1030 (7.14)

∴ σ = 1.64 ± 0.08(stat.) × 10−39cm2/nucleus (7.15)

The effective mass <A> was calculated by using Table 7.4:

⟨A⟩ = 15.9 (7.16)

σscaled = (15.9/12)2/3 × (1.64 × 10−39) (7.17)

∴ σscaled = 1.98 × 10−39cm2/C12 (7.18)
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Chapter 8

Systematic Uncertainties

8.1 Systematic uncertainties on the measured cross-section

The analysis evaluates systematic uncertainties by utilizing simulation samples that

have been systematically altered, when possible, and by re-weighting events in other

situations. For each systematic effect, the cross-section is recalculated entirely, which

includes reestimating the background, unfolding, correcting for efficiency, and nor-

malizing the flux. The analysis addresses various sources of systematic uncertainties,

which will be explained in the following discussion. We assessed systematics for both

the signal event samples (pure sample of charged current coherent events) and the

background-dominated sample. In order to calculate Calibration, Light Level, and

Coherent modeling systematics, we had to create a pure sample of charged-current

Coherent signal events to conduct systematic studies due to technical constraints such

as pre-staging PID (Particle Identification Files).

8.2 Target normalization

In order to calculate the systematic due to target normalization, the fiducial volume

was changed by 30%, and the percentage uncertainty of the Data/MC ratio was

calculated (i.e. 1.04%). Then the quadrature sum was calculated considering POT

uncertainty: 0.5% (from [78]) and the percentage error of the target mass: 0.62%

(from Section 7.3.1)
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8.3 Neutrino flux

The PPFX multi-universe approach [94] is utilized to evaluate the uncertainty in

flux caused by the mis-modeling of hadron production in the beamline. Each data

point, whether it is the total cross section for an interaction or the production of

a particle with varying characteristics, is considered a parameter. In each universe,

these parameters are assigned values by sampling from a multidimensional Gaussian

distribution centered around the default parameter values, incorporating covariances

that account for uncertainties and correlations from the data. PPFX calculates the

correction for the default Monte Carlo (MC) model in each universe and provides the

corresponding values (weights) per neutrino, which are then stored and associated

with the corresponding neutrino interaction. These resulting weights are used to

calculate the variance of any kinematic variable, thereby correcting for the expected

neutrino yield.

The total uncertainty is computed using the CAFAna tools. Contributions from

different categories are also presented but are calculated directly using PPFX on

the G4NuMI ntuples without being propagated through CAFAna. The overall un-

certainty around the focusing peak is approximately 8%, arising predominantly from

pions generated during interactions between the primary proton beam and the target,

nucleon interactions occurring outside the target, and interactions involving incident

mesons. A detailed description of each category can be found in [94].

The uncertainty in flux resulting from the mismodeling of the beamline geometry

is obtained from the work described in [95]. While oscillation analyses take this

uncertainty into account as a function of neutrino energy, this analysis is calculated

based on the neutrino’s 3-momentum to capture the resultant uncertainty in the

beam’s angular distribution.

Since we are using the same neutrino flux used in νµ Charged-Current Inclusive

π0 analysis, the percentage uncertainty of neutrino flux is taken from [78].
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8.4 Background Estimate

In Section 7.1.2 we have already demonstrated that the dominant background is

Charged Current Resonant. Therefore, it makes sense to apply ±1σ to the CCRESMa

and CCRESMv knobs and assess the implications for the background prediction made

for the signal region. The background prediction (in subsection 7.1.4) was varied by

applying the ±1σ change to CCRESMa when calculating the |t| ratio (in subsection

7.1.3. After the integral was calculated for each prediction, the fractional error was

calculated.
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Figure 8.1 Plot of Background Prediction for different MaCCRES shifts
{Nominal,+1σ,−1σ}

Fractional Error = 0.014 (8.1)

The background prediction (in subsection 7.1.4) was varied by applying the ±1σ shift

to CCRESMv when calculating the |t| ratio (in subsection 7.1.3). After calculating
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the integral for each prediction, the fractional error was calculated.
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Figure 8.2 Plot of Background Prediction for different MvCCRES shifts
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Fractional Error = 0.009 (8.2)

Finally, the quadrature sum was calculated using the results 8.1 and 8.2. The sys-

tematic due to background estimation is 1.7%.

8.5 Coherent modeling

Unfortunately, the official GENIE re-weight knob made to change the axial mass of

the coherent interactions was broken, we were advised to use the re-weight kCO-

HCCScaleSyst2018 to apply the change 20%.
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Since this change only applies a 20% change to normalization (not to the shape),

we have decided to create the GENIE spline for νµ charged current coherent interac-

tions as a function of neutrino energy only by applying the 20% shift to the axial mass

defined in the Berger-Sehgal model. Then the cross-section ratio (i.e. shifted spline

to the nominal spline) as a function of neutrino energy was calculated (as shown in

Figure 8.3). Our strategy was to use the cross-section ratio as a reweight to calculate

the efficiency shifted and then to calculate the percentage error of efficiency due to

the shift 20% in the axial mass. The calculated percentage error in efficiency is 0.08%.

Therefore, we have decided to use the result published in [79] and the change 50%

scaled for 20% to match kCOHCCScaleSyst2018. The systematic due to coherent

modeling is 1.5%.

Figure 8.3 Plot of νµ CC Coherent cross-section ratio after applying 20% shift to
CCCOH_Ma knob as a function of neutrino energy
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8.6 Muon energy scale

The Muon energy errors at the Near Detector are computed, and the Muon Catcher is

analyzed independently, with the primary influence arising from Geant4’s handling of

the Bethe density effect. In this context, the most substantial uncertainty at the Near

Detector is caused by stray hits resulting from neutron capture pile-up. Other con-

tributing factors have a comparatively minor impact, with the most notable sources,

listed in descending order, being external measurements of the mean excitation en-

ergies of elements, accounting for detector mass, and adjustments to energy loss due

to chemical binding. The systematic uncertainty due to the muon energy scale was

calculated using Monte Carlo studies. We evaluated the muon energy scale consid-

ering the maximum error, from the density effect and Geant4 validation, of 0.8% for

the main detector and 1.2% for the muon catcher. Therefore, a constant shift (∆E)

for the muon energy scale is shown in Equation 8.3.

Eshifted
µ = Eµ(1 + ∆E) (8.3)

The choice for ∆E = 1.2% was selected by using the highest energy loss of muons

in the detector. A detailed analysis of muon energy loss can be found in [80]. The

systematic result of the muon energy scale was calculated, that is, 0.7%.

8.7 Pion energy scale

The systematic uncertainty due to the pion energy scale was calculated using Monte

Carlo studies. The systematic pion energy scale was evaluated by introducing a

constant shift that is similar to the typical hadron energy scale in the NOvA analysis,

and we selected the offset of the fractional resolution of the pion energy in Figure

6.13. (∆E) for the pion energy scale was introduced as shown in Equation 8.4.

Eshifted
π = Eπ(1 + ∆E) (8.4)
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The choice for ∆E = 4% was selected by rounding off the offset in the mean of Figure

6.13. The systematic calculated due to the Pion Energy scale is 1.1%.

8.8 Light level

In the 2017 simulation, the scintillator response model incorporates the generation of

Cherenkov light. The variability in the light model is a result of uncertainties in both

the scintillator’s overall light yield and its efficiency in absorbing Cherenkov photons

and re-emitting them at detectable wavelengths. To address these uncertainties,

systematically altered Monte Carlo (MC) samples are created by adding hit variables

to evaluate the effects of these factors. We have created a pure sample of CC coherent

events. By running ART producer modules to apply standard NOvA shifts to light

levels, systematic effects for PionID, HitID, and Kinematic ID were studied. We made
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Figure 8.4 Plots of Cumulative Ratios made for PionID by
introducing light level shifts

histograms for Nominal, light level shift up and down samples by plotting PionID.

Then we calculated the cumulative histogram for each case and finally divided all three

histograms by nominal cumulative histograms to compare the variations in Figure
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8.4. To calculate the systematic uncertainty due to light-level shifts, the efficiency

was calculated at the cut value (i.e. PionID = 0.3). The calculated efficiencies can

be found in Table 8.5.

Figure 8.5 Efficiency calculations for each light level shift for PionID cut

Cut Name Light Up Nominal Light Down
PionID > 0.3 Cut 76.576 ± 0.001 75.914 ± 0.001 74.516 ± 0.001

Fractional Error = 1.36% (8.5)

We followed the same procedure to calculate light-level systematics for the HitID
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Figure 8.6 Plots of Cumulative Ratios made for HitID by
introducing light level shifts

variable. Figure 8.6 includes the cumulative ratios made for the nominal, light-level-

up, and light-level-down samples. At the cut value (i.e.HitID = 0.46), efficiencies

were calculated for each sample and recorded in Table 8.1

Fractional Error = 3.83% (8.6)
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Table 8.1 Efficiency calculations for each light level shift for HitID cut

Cut Name Light Up Nominal Light Down
HitID > 0.46 Cut 83.489 ± 0.001 80.724 ± 0.001 77.299 ± 0.001

8.9 Detector calibration
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Figure 8.7 Plots of Cumulative Ratios made for PionID by
introducing calibration shifts

In order to address uncertainties due to calibration effects, systematically altered

Monte Carlo (MC) samples are created by adding hit variables to evaluate the ef-

fects of these factors. We have created a pure sample of CC coherent events. ART

producer modules were run to apply standard NOvA shifts of calibration systematic

effects to study PionID, HitID, and Kinematic ID. We made histograms for nominal,

calibration shifts up-and-down samples by plotting PionID. Then we calculate the

cumulative histogram for each case and finally divide the three histograms by the

nominal cumulative histograms to compare the variations in Figure 8.7. To calculate

the systematic uncertainty due to calibration shifts, the efficiency was calculated at

the cut value (i.e. PionID = 0.3). The calculated efficiencies can be found in Table
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Table 8.2 Efficiency calculations for each calibration shift for PionID cut

Cut Name Calib Up Nominal Calib Down
PionID > 0.3 Cut 74.613 ± 0.001 75.907 ± 0.001 76.581 ± 0.001

8.2.

Fractional Error = 1.3% (8.7)

We followed the same procedure to calculate calibration systematics for the HitID
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Figure 8.8 Plots of Cumulative Ratios made for HitID by
introducing calibration shifts

variable. Figure 8.8 includes the cumulative ratios made for the nominal, calibration

up and calibration down samples. At the cut value (i.e.HitID = 0.46), efficiencies

Table 8.3 Efficiency calculations for each calibration shift for HitID cut

Cut Name Calib Up Nominal Calib Down
HitID > 0.46 Cut 77.462 ± 0.001 80.735 ± 0.001 83.619 ± 0.001
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were calculated for each sample and recorded in Table 8.3

Fractional Error = 3.81% (8.8)

After calculating fractional errors for absolute efficiency in each systematic variation,

all results were summarized in Table 8.4 below. Systematic uncertainty at the light

level: 4.1% was calculated taking the quadrature sum of the results 8.5 and 8.6. Sim-

ilarly, systematic uncertainty due to calibration effects: 4.0% was calculated taking

the quadrature sum of the results 8.7, 8.8.

Table 8.4 List of systematic and statistical
uncertainties.

Source δ(%)
Statistical Uncertainty 4.6
Target Normalization 1.3
Neutrino Flux 8.3
Background Estimate 1.7
Coherent Modeling 1.5
Muon Energy Scale 0.7
Pion Energy Scale 1.1
Light Level 4.1
Detector Calibration 4.0
Systematic Uncertainty 10.4
Total Uncertainty 11.5

Therefore, the total uncertainty of our total cross-section measurement is 11.5%.

8.10 Background systematics

We are largely insensitive to the details of the background model, since we extract

our background prediction directly from the data (see Sect. 7.1.3. It is also important

to study systematic uncertainties using background-dominated samples. Due to pre-

staging limitations, we granted permission only to pre-stage about 2000 PID files in

each variation (official light level and calibration samples made by the NOvA produc-
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tion group) to add hit variables and to study systematics. The neutrino interactions

are heavily dominated by backgrounds such as CCRES.

8.10.1 Variations of detected light

We created Monte-Samples by adding hit variables to light-level samples, and cu-

mulative ratios were graphed in Figure 8.9. At the cut value (i.e. PionID=0.3) we
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Figure 8.9 Plots of PionID with the presence of Light Level Up, Down and No Shifts

calculated efficiencies. The calculated efficiencies can be found in Table 8.5.

Table 8.5 PionID Cut Efficiency comparison Light Level Up, Down and No Shifts

Cut Name LightUp Nominal LightDown
PionID > 0.3 Cut 33.67 ± 0.04 35.96 ± 0.04 37.24 ± 0.04

Similar to plotting cumulative ratio histograms for the PionID variable, cumulative

ratio histograms for hitID graphs were made in Figure 8.10.
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Figure 8.10 Plots of HitID with the presence of Light Level Up, Down, and No
Shifts

At the cut value (i.e. HitID > 0.46) the efficiencies for Nominal, light level up

and down samples were calculated and recorded in Table 8.6.

Table 8.6 HitID Cut Efficiency comparison Light Level Up, Down and No Shifts

Cut Name LightUp Nominal LightDown
HitID > 0.46 Cut 56.63 ± 0.05 59.01 ± 0.05 60.66 ± 0.05

8.10.2 Variations of detector calibration

Like we investigate light level shifts, Monte-Carlo samples were made to study vari-

ations due to calibration shifts by adding Hit variables. The histograms were made

for PionID and HitID variables. Then the cumulative histograms were created and
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Figure 8.11 Plots of PionID with the presence of Calibration Up, Down, and No
Shifts

Table 8.7 Background Predictions made by using Nominal

Cut Name CalibUp Nominal CalibDown CalibShape
PionID > 0.3 Cut 32.21 ± 0.01 34.06 ± 0.01 35.64 ± 0.01 33.78 ± 0.01

finally cumulative ratios were made. In Figure 8.11 cumulative ratios were made for

nominal, calibration up and down samples divided by nominal cumulative histogram.

At the cut value (i.e. PionID = 0.3) the efficiencies were calculated and recorded

in Table 8.7.

By following the same procedure, cumulative histograms were made for nominal,

calibration up and down. After dividing each histogram by nominal histogram, cu-

mulative ratios for nominal, calibration up and down samples were graphed in Figure
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Figure 8.12 Plots of HitID with the presence of Calibration Up, Down and No Shifts

8.12.

The efficiencies at the cut value (i.e. HitID=0.46) were calculated and recorded

in Table 8.8

Table 8.8 PionID Cut Efficiency comparison Calibration Up, Down and No Shifts

Cut Name CalibUp Nominal CalibDown CalibShape
HitID > 0.46 Cut 51.99 ± 0.01 53.92 ± 0.01 55.57 ± 0.01 53.48 ± 0.01
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Chapter 9

Results and Summary

9.1 Comparing Data to Total MC in Signal Region

After granting permission to look at the data in the signal region, the histogram of

reconstructed |t| was made for the data and compared to the total MC histogram

shown in Figure 9.1. In order to study data/MC agreement, we also calculated

Data/MC ratio.
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9.2 Extraction of the Number of Signal Events

In order to extract candidates for the charged current coherent signal, the recon-

structed |t| using the data histogram (as explained in Section 9.1) was subtracted

by the predicted background based on the data |t| calculated in Section 7.1.4. This

is the same procedure as that followed in section 7.2 by replacing the reconstructed

|t| total Monte Carlo histogram with the reconstructed |t| histogram made using the

data in the signal region.
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Figure 9.2 Plot of total |t| Data-based prediction using Signal MC

Then the integrals of the following histograms were calculated with errors bin by

bin (the final error was calculated by summing the quadrature of errors bin by bin):

• Reconstructed |t| using data

• Data-based prediction

• Extracted Signal |t|
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Table 9.1 contains integrals of the histograms with errors.

Table 9.1 Integrals of the histograms with errors
(signal events extracted by using Figure 9.2)

Signal Background Total
Data 1922.0±87.8 1590.0±64.8 3512.0±59.3
Data/Prediction 1.01±0.07

9.3 Comparing Signal histograms (Data Vs MC) in Signal Region

The reconstructed |t| histograms for the signal was made using data (already ex-

plained in Section 9.2) and compared with the signal histogram calculated in Section

7.2. The data / MC signal ratio is also plotted in Figure 9.3.
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9.4 Cross-Section from extracted Signal Events from Data

By using the number of signal events in Table 9.1 and the details used to calcu-

late the flux average cross-section using fake data in section 7.3.3, the cross-section

measurement was calculated and marked in Figure 9.4.
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Figure 9.4 Plot of total cross-section as a function of Neutrino Energy

The flux averaged cross-section we obtained is:

σ = 1.66 ± 0.08(stat.) ± 0.17(syst.) × 10−39cm2/nucleus (9.1)

After scaling to C12 target by multiplying (A/12) 2
3 :

σ = 2.00 ± 0.08(stat.) ± 0.17(syst.) × 10−39cm2/C12 (9.2)
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9.5 Comparison with world data

After calculating the flux-averaged total cross-section measurement, it was scaled to

the C12 target. For the final result obtained for the NOvA experiment, a comparison

was made with existing results. Figure 9.5 contains the coherent cross-section mea-

surement of NOvA NuMu CC π+ (in red) compared to existing measurements as a

function of neutrino energy. The dashed line represents the theoretical prediction as

a function of neutrino energy, and it was drawn by using the Berger-Sehgal model.

Table 8.2 contains details of the existing measurements.
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Table 9.2 Table of existing cross-section measurements

Experiment Target
(
Aeff

) Eν

[GeV] Reac. Cross-Section
[10−40 cm2/ nucleus ] Ref

Aachen-
Padova

Aluminium
(27) 2 NCνµ 29 ± 10 [81]

Aachen-
Padova

Aluminium
(27) 2 NCν̄µ 25 ± 7 [81]

Gargamelle Freon (30) 3.5 NCνµ 31 ± 20 [82]
Gargamelle Freon (30) 3.5 NCν̄µ 45 ± 24 [82]
CHARM Marble (20) 31 NCνµ 96 ± 42 [83]
CHARM Marble (20) 24 NCν̄µ 79 ± 26 [83]

SKAT Freon (30) 7 NCνµ 52 ± 19 [84]
SKAT Freon (30) 7 CCνµ 106 ± 16 [84]
SKAT Freon (30) 7 CCν̄µ 113 ± 35 [84]
BEBC Neon (20) 27 CCν̄µ 175 ± 25 [85]
BEBC Neon (20) 27 CC νµ 250 ± 49 [86]

FNAL E632 Neon (20) 91.1 CCµ 350 ± 80 [87]
FNAL E632 Neon (20) 74.5 CC ν̄µ 270 ± 110 [87]
CHARM II Glass (20.7) 23.7 CCνµ 168 ± 41 [88]
CHARM II Glass (20.7) 19.1 CC ν̄µ 161 ± 40 [88]

K2K Carbon (12) 1.3 CCµ < 0.077(90%CL) [89]

MiniBooNE CH2(12) 0.7 NCνµ
(0.195 ± 0.075)×

σNCπ0
[90]

SciBooNE Carbon (12) 1.1 CCνµ < 0.0844(90%CL) [91]
SciBooNE Carbon (12) 2.2 CCνµ < 0.287(90%CL) [91]
NOMAD Carbon (12.8) 25 NCνµ 72.6 ± 10.6 [92]
SciBooNE Carbon (12) 0.8 NCνµ (0.012 ± 0.002) × σCC [93]
MINERvA CH(12) 2.5 CCνµ 23.7 ± 6 [94]
MINERvA CH(12) 3.5 CCνµ 33 ± 5 [94]
MINERvA CH(12) 4.5 CCνµ 41.7 ± 5 [94]
MINERvA CH(12) 5.5 CCνµ 46.5 ± 5 [94]
MINERvA CH(12) 6.5 CCνµ 48.8 ± 4.4 [94]
MINERvA CH(12) 7.5 CCνµ 55 ± 5.2 [94]
MINERvA CH(12) 9.0 CCνµ 68.2 ± 7.8 [94]
MINERvA CH(12) 12.0 CCνµ 100.8 ± 11.8 [94]
MINERvA CH(12) 17.0 CCνµ 121.4 ± 18.3 [94]

NOvA (15.9) 2.3 CCνµ 16.6 ± 2.0

In conclusion, we have measured the most precise νµ Charged Current Coherent

π+ total cross-section below 5GeV.!
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