

Systematic Dependence of R_4 on N_pN_n Product for Light and Medium Mass Nuclei

Satendra Sharma and Rajesh Kumar*

Panchwati Institute of Engineering & Technology (U. P. Technical University), Meerut- 250 005, INDIA

**Noida Institute of Engineering & Technology (U. P. Technical University), Gr. NOIDA- 201306, INDIA*

email: ssharma_phy@yahoo.co.uk, rajeshkr0673@yahoo.co.in

Introduction

The study of nuclear structure with N , Z , N_B and N_pN_n provide a deep understanding of nuclear interactions involved. Various studies had been carried to study the systematic dependence of various nuclear properties on N_pN_n . Casten et al [1] presented a review on the evaluation of nuclear structure on the bases of N_pN_n ; this phenomenon has been called the N_pN_n scheme. Gupta et al [2] presented a systematic dependence of the $\gamma - g$ $B(E2)$ ratios on the N_pN_n in different parts of the major shell space $Z = 50 - 82$, $N < 82$ and $N = 82 - 126$ and demonstrated that the interband $B(E2)$ ratios were smooth functions of N_pN_n . Further, Gupta et al [3] pointed out the limitations of the F -spin and N_pN_n scheme in reproducing the overall E_{2g}^+ systematic in the major shell space $Z = 50 - 82$, $N = 82 - 126$ into four quadrants and predicted the position of the β -stability line on the N - Z chart to explains the existence of isotonic (isotopic) multiplets.

Recently, most work related to the N_pN_n scheme mainly concentrate on P - factor [$=N_pN_n/(N_p + N_n)$] [ref. 1], and β_2 [ref. 4, 5, 6], systematic law of E_{2g}^+ for heavy nuclei[7], excitation energy of first 2^+ state of all even-even nuclei [8, 9] and odd-even staggering [10]. The systematic dependence of R_4 on N_pN_n in major shell- space has not been studied sufficiently. The present study of dependence of R_4 on N_pN_n is interesting to investigate new insight. Recent experimental data have been taken ref. [11]. In the present work, we focus on the systematic dependence of R_4 on N_pN_n in even - even nuclei for $Z = 50 - 82$, $N = 82 - 126$ region, by dividing the whole space into four quadrants.

Result and Discussion

In this work, we adopt a grouping based on the valance particle and hole pairs consideration [12]. Thus the $Z = 50 - 82$, $N = 82 - 126$, major shell space is partitioned into four quadrants. The quadrant- I has $Z = 50 - 66$, $N = 82 - 104$ (p-p), in quadrant- II, $Z = 66 - 82$, $N = 82 - 104$ (p-h), quadrant – III, $Z = 66 - 82$, $N = 104 - 126$ (h-h), and quadrant- IV, $Z = 50 - 66$, $N = 104 - 126$, (p-h), where, p = valence particle, proton or neutron and h = hole. The quadrant-IV does not has any data point, thus it is empty.

Dependence of R_4

In the IBM-1[13], a useful measure of collectivity is R_4 for rotational nuclei this ratio $R_4 = 3.33$ and the region $3 \leq R_4 \leq 3.33$ is called the rotational region and for the vibrational nuclei $R_4 = 2$ and the region $2 \leq R_4 \leq 2.4$ is called the vibrational region while the region $2.4 \leq R_4 \leq 3$ is called the transition region. The transition region contains nuclei with structure intermediate between vibration and rotational. For simplicity, we divide the whole data of ratio R_4 of as function of N_pN_n into four quadrants as above. First we consider quadrant-I, Fig. 1 shows the ratio R_4 for even-even nuclei as function of N_pN_n . In this fig. for Xe -Dy nuclei with $N=82-104$ (p-p region).The $R_4 < 1.5$ for $N_pN_n = 0$ (i.e. magic nuclei) and R_4 varies smoothly with $N_pN_n \leq 30$. These nuclei have a shape change vibrational to transitional because $1.9 \leq R_4 \leq 3$ and finally R_4 remains unchanged when $N_pN_n \geq 30$ these nuclei are called rational nuclei because $R_4 = 3.33$.

From Fig 2 for Dy -Pt nuclei with $N = 82-104$ (h-p boson), i.e. quadrant-II here most of the data

points lie on a smooth curve that rises with increasing $NpNn$ product. In this region most of nuclei have rotational nature because $3 \leq R_4 \leq 3.33$ except few data points of Er, Dy and Pt.

From fig. 3, for Yb - Hg nuclei with $N = 104$ -126 (h-h boson region) i.e. quadrant III, in this region the dependence of R_4 on $NpNn$ is again smooth for Yb - Os these nuclei are in rotational region because $3 \leq R_4 \leq 3.33$ and the data point of Pt and Hg indicates a new signature of vibrational nature because $R_4 = 2.5$.

This systematic dependence of R_4 for ground state in all three regions on the $NpNn$ indicates its close relationship to the shape deformation of the nuclear core.

Conclusions

The present study reflects that the ratio R_4 depends upon $NpNn$. The variation of R_4 shows the average dependence on $NpNn$ for shape deformation in all three quadrants except Pt and Hg isotopes in quadrant-III. Here a complexity of nuclear structure is exhibited between $NpNn$ and R_4 .

References

- [1] R. F. Casten, and N. V. Zamfir, J. Phys. G Nucl. Part. Phys. **22** (1996) 1521.
- [2] J. B. Gupta, J. H. Hamilton and A.V. Ramayya, Phy. Rev. **C42** (1990) 1373.
- [3] J. B. Gupta, H. M. Mittal, J. H. Hamilton, and A. V. Ramayya, Int. J. Mod. Phys. **5** (1990) 1155.
- [4] Y. M Zhao, R. F. Casten and A. Arima, Phys. Rev. Lett. **85** (2000) 720.
- [5] Zhao, Y. M, Arima, A. and Casten, R. F., Phys. Rev. **C63** (2001) 067302.
- [6] S. Q. Zhang, S. G. Zhou and F. R. Xu, High Energy Phys. Nucl. Phys. **28** (2004) 516.
- [7] FAN Zhe-Yong, REN Zhong- Zhou and XU Chang, Chin. Phys. Lett. **24** (2007) 2555.
- [8] Jin-Hee Yoon, Eunja Ha and Dangwoo Cha, J. Phys. G: Nucl. Part. Phys. **34** (2007) 2545.
- [9] Guanghao Jin, Jin-Hee Yoon and Dangwoo Cha, J. Phys. G: Nucl. Part. Phys. **35** (2007) 035105.
- [10] H.M. Mittal and V. Devi, Int. J. Theo. Appl. Sc. **1(1)** (2009) 96.
- [11] Recent data for energies have been taken from <http://www.nndc.bnl.gov> in the month of July 2009.
- [12] J. H. Hamilton, A.V. Ramayya and J. B. Gupta, Bull. Am. Phys. Soc. **32** (1987) 2130.
- [13] F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987).

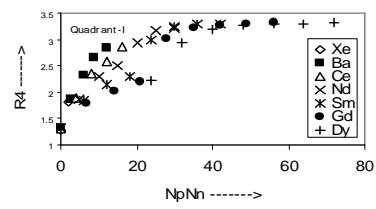


Fig. 1. Experimental data for R_4 for even – even nuclei as a function of $NpNn$ product for $Z = 50$ - 66, $N = 82$ - 104 i.e., quadrant – I.

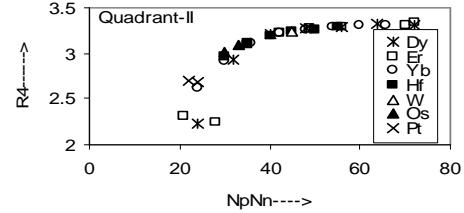


Fig.2. Same as fig.1 for $Z=66$ - 82, $N = 82$ - 104, i.e, quadrant – II.

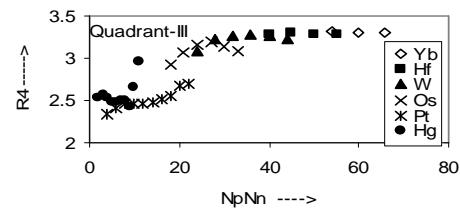


Fig. 3. Same as fig. 1 for $Z = 66$ - 82, $N = 104$ - 126, i.e., quadrant – III.