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ABSTRACT: We provide a framework for numerically computing the effects of free-streaming
in scalar fields produced after inflation. First, we provide a detailed prescription for setting
up initial conditions in the field. This prescription allows us to specify the power spectra
of the fields (peaked on subhorizon length scales and without a homogeneous field mode),
and importantly, also correctly reproduces the behaviour of density perturbations on large
length scales consistent with superhorizon adiabatic perturbations. We then evolve the fields
using a spatially inhomogeneous Klein-Gordon equation, including the effects of expansion
and radiation-sourced metric perturbations. We show how gravity enhances, and how free
streaming erases the initially adiabatic density perturbations of the field, revealing more of the
underlying, non-evolving, white-noise isocurvature density contrast. Furthermore, we explore
the effect of non-gravitational self-interactions of the field, including oscillon formation, on
the suppression dynamics. As part of this paper, we make our code, Cosmic-Fields-Lite (CFL),
publicly available. For observationally accessible signatures, our work is particularly relevant
for structure formation in light /ultralight dark matter fields.
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1 Introduction

Dark matter (DM) makes up ~ 85% of the non-relativistic matter content in our cosmos [1].
However, the identity of dark matter particles/fields is unknown. Apart from the fact that
they must interact gravitationally, we do not know their mass, spin, and other potential
interactions [2]. Astrophysical observations allow for a broad range of masses for the dark
matter “particles”: 107eV < m < few x My [3-5].

For m < 100 eV, dark matter is necessarily bosonic [6, 7] because of phase space occupation
number considerations (see, however, [8]). For the m < eV regime in particular, the occupation
numbers of the bosonic field are sufficiently high that it is possible to describe dark matter
as a classical field with wave-dynamics (rather than as discrete point particles governed by
classical mechanics) [9]. Examples of such dark matter fields include the QCD axion, other
scalar fields, dark photon or vector dark matter, etc. For recent reviews, see for example [9-11]
for scalars, and [12] for ultralight vectors (and scalars). The production mechanisms for



wave-like fields is typically non-thermal and can be either inflationary or post-inflationary. A
canonical example is the QCD axion, with Peccei-Quinn (PQ) symmetry breaking happening
before or after inflation. If the PQ symmetry is broken before inflation, typically a field
with a dominant homogeneous mode is produced, whereas post-inflationary PQ symmetry
breaking leads to a field without a homogeneous mode and with topological defects [13-18].

More generally, if the fields are produced after inflation, causality considerations typically
lead to fields with a subhorizon correlation length at the time of production and significant
spatial variations around the correlation length. Such fields lack a dominant spatially
homogeneous component. The lack of a homogeneous mode and the presence of significant
small-scale variation in the field leads to two effects: (1) the free-streaming of the fields, which
leads to a suppression of the adiabatic density perturbations in the field, and (2) enhanced
isocurvature density perturbations on small scales, which do not evolve during radiation
domination. See our figure 1 for a heuristic overview of these effects. Note that such a field
can still have an almost spatially homogeneous density with approximately adiabatic density
perturbations on sufficiently large length scales (as required by observations).

In this paper, using 3+1 dimensional lattice simulations, we numerically explore the two
aforementioned effects during the radiation dominated era for wave-like dark matter. We pro-
vide a detailed framework to generate initial conditions for such fields, which lack a zero mode,
but are nevertheless consistent with adiabatic density perturbations on sufficiently large length
scales. Our code, Cosmic-Fields-Lite (CFL), for generating initial conditions, as well as carrying
out the time-evolution of the fields in the presence of expansion and metric perturbations
sourced by radiation, can be downloaded at https://github.com/hypermania/Cosmic-Fields-
Lite. We also provide a starting point for simulations in the late universe, where self-gravity
of the fields needs to be included.

For readers familiar with free-streaming and Poisson noise fluctuations of classical point
particles, the following connection from field to particle description might be useful. Our field
configuration (in figure 1) can be viewed as a collection of quasi-particles with comoving size
~ k7!, moving with typical comoving momenta k., or equivalently with physical velocities
v ~ ky/am, which is simply the group velocity of the waves. The free-streaming length is
the characteristic length over which these quasi-particles move (in random directions) within
some time ¢t. Below this length, pre-existing large-scale correlations in densities are erased.
However, the small-scale isocurvature density fluctuations arise from the spatial Poisson
distribution of these quasi-particles. This distribution cannot be changed by quasi-particle
motion with random velocities, hence the white noise remains even on length scales smaller
than free-streaming length. Finally, it might also be helpful to think of the field power
spectrum as the momentum distribution of the particles in phase-space.

Observations of structure on large length scales 2 Mpc (comoving) have confirmed
the existence of dark matter through its gravitational effects. Observational probes of
smaller scale structure now hold the potential for revealing its identity and its production
mechanism. Existing and upcoming measurements of the small-scale matter power spectrum
including Lya, galaxy satellite populations, gravitational lensing, stellar streams, 21 cm
intensity mapping [19-27], etc. provide a strong motivation for our work. We hope that future
calculations based on our numerical framework will be able to provide robust predictions for
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Figure 1. A schematic of our initial conditions, and how free-streaming removes pre-existing
correlations in the density perturbations. Top two panels: the field (light orange) at the initial time,
t;, is a Gaussian random field with most of its power on subhorizon scales k; ' < (a;H;)™!, with a
spatially-dependent variance: (¢?(x)) oc 1+ O[¥(¢,x)] (¥, in blue, is the gravitational potential).
This spatial dependence is due to long-wavelength adiabatic perturbations on superhorizon scales. The
fractional density perturbations ¢ (dark orange) at the initial time are dominated by (i) subhorizon
scale features, (ii) a Poisson like distribution of these density features on length-scales larger than
their separation, (iii) with even larger-scale density perturbations related to the spatial dependence
of the field variance (equivalently the gravitational potentials). Bottom Panels: at later times, the
field looks statistically similar (apart from red-shifting). However, in detail, free-streaming removes
existing correlations in the density fluctuations on length scales smaller than kg’ () < (aH)~'. That
is, the Poisson distribution of density perturbations now extends to larger length scales.

features in the small-scale power spectrum, encompassing free-streaming suppression and
isocurvature enhancement. With observations, these features can be used to constrain or
confirm the properties of dark matter and its production mechanism.



To put our work in context, we provide a brief (and incomplete) overview of the existing
literature related to free-streaming dynamics of fields in the early universe.

Our paper follows and builds on the analytic work of [5], where the expected effect on
the matter power spectrum due to free-streaming suppression and isocurvature enhancement
is explored. The lack of observation of these features for length scales larger than ~ Mpc was
then used to constrain the mass of dark matter particles to m > 10~!? eV. In [28], the authors
focused on an axion-like scenario, and explored the relative importance of the two effects for
constraining the mass (also see [29] for the isocurvature part). Here, we perform detailed
numerical simulations of the field dynamics to explore both effects, and do not rely on analytic
estimates. Our numerical results confirm the expected lack of evolution of isocurvature density
perturbations, and the free-streaming suppression of the adiabatic perturbations.

There is a large body of literature on the evolution of ultralight dark matter fields in the
early universe. However, contrary to the scenario considered in this work, the majority of the
literature deals with the case where the fields have a dominant homogeneous mode [30-35]. In
this case, the fields can be linearized with respect to the homogeneous mode, and the equations
for the linearized density perturbations can be solved mode by mode [36, 37]. Typically, these
equations are solved via software packages such as AxionCAMB or CLASS [38, 39]. This
approach had been exploited to determine the cosmological consequences in the case of single
and multiple scalar fields [40, 41]. Typically, free-streaming effects are negligible, and the
most remarkable effect on the density power spectrum comes from Jeans suppression [42-46]
(at kjy ~ avmH ). The implications of the Jeans suppression in the late, matter dominated
universe (starting with an almost homogeneous field) has been explored using Schrodinger
Poisson simulations [47-51]. In contrast, the lack of a zero mode in our scenario means that the
fields can be “warm”, and free-streaming will provide a stronger bound than Jeans suppression.

Another widely used approach for understanding the time evolution of dark matter
fields is numerical integration of the field equations on a lattice in the early universe. These
simulations have been performed for fields with and without a homogeneous mode, and with
self-interactions [18, 52-56]. However, typically such simulations do not include adiabatic
density perturbations, so the free-streaming effects of the light fields are not apparent. To
see substantial effects from free-streaming, one must include density perturbations beyond
isocurvature perturbations in the fields’ initial conditions.

There is a long history of studies related to free-streaming phenomenology in the context
of particle-like dark matter [22, 57-72]. Notable examples include the suppression of the
density spectrum due to free-streaming of massive neutrinos and warm dark matter (thermal
and non-thermal). In these studies, the matter content is typically coarse grained over a length
scale much larger than the deBroglie wavelength of the particles and particle separations,
and the linearized density perturbations evolve according to the fluid equations (or more
generally, Boltzmann equations). For our case, we also consider the density perturbations
on the deBroglie scale, which necessitates a treatment that includes the wave dynamics.
As we mentioned earlier, for length scales large compared to the deBroglie scale, there
is a useful map between the particle and wave dynamical picture using the dynamics of
deBroglie scale quasi-particles.



The rest of the paper is organized as follows. We introduce our model, and key equations
in section 2. In section 3 we provide a detailed discussion of the field initial conditions,
including a step-by-step numerical algorithm for generating such initial conditions. The
evolution of the field and its implication are discussed in section 4. We discuss the analytical
expectations of field evolution in section 4.1.1 and section 4.1.2, and the numerical results from
section 4.2.1 to section 4.2.3. Our simulations include cases with and without gravitational
perturbations, as well as with and without non-gravitational self-interactions. We discuss
immediate future directions in section 5, and summarize our key results in section 6. In a
series of appendices (A-E), we flesh out details of our analytic and numerical calculations, and
provide some heuristic insights to make our results easily reproducible and understandable.

Before moving on to the main section, we specify our notation and conventions below.

Notation and conventions. We set h = ¢ = 1 and use — + ++ metric signature. We
will use the following conventions for Fourier transform and spectrum for any function f(x)
(which might itself be a random variable),

fi= [ s, f@)= [ g, (1.1)

s [ |fw? op(K| — k) 2y _ K

Pr(k)= (2 = —
where V = (27)35p(0) is the formal spatial volume factor, and we defined [, = [d3z and
fi, = [ d®k/(2m)3 to reduce clutter. Also, f will denote spatial average of f:

- 1
F=5 1@, (13)

We have suppressed the time-dependence of the function f and related quantities. These
definitions are valid for each realization of f.!
We will also refer to ensemble averaged versions of the above quantities. Whenever we

use expectation value (...) or underline ..., we mean averaging over an ensemble, instead

of space. For example, (f(x)) or f(x) would mean the value of f at x averaged over the
ensemble, instead of the spatial avera@ . We also introduce symbols for ensemble averaged
power spectra: Py(k) = (Pr(k)) and Ay(k) = (Af(k)). For our purposes, it is important
to distinguish between ensemble averaged spectrum and realization spectrum. For example,
we typically specify an ensemble of homogeneous Gaussian random field with an ensemble
averaged spectrum P; if we draw realizations from that ensemble, each realization spectrum
Py can be different from P, but taking the average of Py over many realizations will lead
to a result converging to Pg.

Note that any given realization can have spatial inhomogeneities even if the ensemble
averaged quantities are spatially homogeneous. By statistical inhomogeneity, we mean that
the ensemble averaged quantities are also spatially inhomogeneous, (f(x)) # (f(y)) for

!While we define Fourier transforms and power spectra in the infinite spatial volume limit, when necessary,
we will restrict the field to a finite volume V = L?, so that k become discrete, the integral over k becomes
a sum, and Dirac Delta functions in Fourier space become Kronecker Delta functions. Specifically, we have
fo = VI3, [ = >, /L% and (2m)*6p(k — k') = L3640



x # y. Whenever we use the word “statistical”, we refer to a property of an underlying
field ensemble, instead of a single field realization.

Finally, we note that the ensembles under consideration are ensembles for field ¢ and
¢; these ensembles are such that in an ensemble-averaged sense, they reproduce the correct
density perturbations on long length scales. The long length scale density perturbations are
themselves part of a spatially homogeneous and isotropic ensemble. Unless stated otherwise,
the ensemble averages mean averages over the ¢ and ¢ ensemble.

2 Model

We are interested in studying the evolution of a light scalar field ¢ (dark matter) during
radiation domination. In this section, we introduce our model for the scalar field and the
equations that we will evolve numerically.

2.1 Geometry

We use Ma & Bertschinger’s convention for Newtonian gauge metric [73]:
ds? = —e*Vat? + a*e?*dx? (2.1)

where ¢ is cosmic time and |®|,|V| < 1. In radiation domination, the scale factor a(t) and
Hubble rate H = a/a are

a(t) = a;(t/t:)"?, H(t) = Hy(t/t;)"", H;=1/(2t;). (2.2)

In what follows, f = 8;f and ¢; represents an initial time during radiation domination.

We assume that the field ¢ is a subdominant component of the total energy content
deep in the radiation era (but ¢ could be all of dark matter), so its contribution to the
gravitational potentials ® and ¥ are negligible. Consistent with this assumption, the Fourier
components of the gravitational potentials during this era are taken to be:

Sin(k‘n/\/g) — (kn/v/3) cos(kzn/\/g) . B (2H ;)12
(o V/3)3 where 7= Tl

where k is the comoving wavenumber, and R is the comoving curvature perturbation. We

Ty, = B = 2Ry (2.3)

ignore anisotropic stress, and set ® = W. This completely specifies the geometry of spacetime
for this work.

2.2 Field evolution

We take the scalar field action to be

S, = [dlev=g|-3V.ueTre - Vo) | (2.4

and include gravitational effects via the metric and covariant derivatives as usual. The scalar
field potential we use in most of the paper is that of a free field

V(p) = %m%z- (2.5)



Later in the paper, we also consider V(¢) = m2?M? [\/W - 1} when we briefly
discuss the effect of self-interactions on free-streaming. The equations below and our numerical
schemes are valid for a general V(p).

The equation of motion is

0=V"V,o—V'(p),

Ve

0=¢+ (3H —40)p — Y =+ eV (), (2.6)

The stress-energy tensor and its components are
T - -2 4S,
I \/TQ (59“” ’

1 1
p=-TY =e?V_¢*+ BZ\P@(VCP)Q +V(p),

2
1, gl 1
p= gTZi =e 2\Il§902 - equ@(V@Q —Vi(p),
Q._ETQ __6—2\11 H0; (2.7)
i= T, =———@0ip, '

where p, p and Q are the energy density, pressure and momentum density respectively. The

continuity equation is
v, Th, =0,

G BH —0) (o 4p) Q= (3-)Q . (2.8)

We will always work in the regime where |¥| < 1, so the above expressions are consistent
with the ones where the exponentials are expanded to linear order in W. To reduce clutter,
here the U’s are kept within the exponents.

3 Initial conditions

We consider field realizations generated by local processes after inflation, which lead to
isocurvature density perturbations on small subhorizon scales. Nevertheless, these field
realizations must also be consistent with the adiabatic density perturbations correlated to
curvature on larger superhorizon scales. We describe a novel way to generate such field
realizations as initial conditions for lattice simulations of the field in a spatially perturbed
cosmological background. The key feature we aim to capture is the adiabatic density
perturbations related to our field, which is crucial for simulating the free-streaming suppression
of the density perturbations. Section 3.1 contains the expected statistical properties of the
field, including field and energy overdensity power spectra, and spatially dependent variances
of the field. Section 3.2 contains the numerical procedure for generating field realizations
and detailed explanation for its validity.

3.1 Statistical properties of the scalar field

In this section we discuss the statistical properties of the field at the initial time ¢;, including
field and energy overdensity power spectra, and spatially dependent variances of the field.
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Figure 2. Initial conditions for the field spectrum AZ(q) and density spectrum A3 (k) for some
sample values of o, v and k./a;m in eq. (3.1). The A{(q) is peaked at k. by choice. The A2(k),
spectra, evaluated from the field variations, exhibit different shapes depending on the high-k tail and
k«/a;m. One can see that small length scale power in éi(k) leads to small length scale power in
A?(q). On large length scales with k < k., all spectra exhibit k3 power law, as expected for quantities
with finite correlation length. Furthermore, A3(k < k,) o< k3 even if the field spectra did not have &3
behavior for k < k.. The scale-invariant A§ o k9 low-k tail discussed in section 3.1.2 is also added
here with amplitude A% ~ 1072, For a = oo, if the field is non-relativistic, then the density power
spectrum is higher than the ultra-relativistic one around k..

3.1.1 No homogeneous mode and field power spectra

Our focus in this paper is on scalar fields without a zero mode, that is ¢(x) such that = 0 on
the largest scale of interest. Such fields arise naturally when they are produced post-inflation
via local production mechanisms. Example production mechanisms for ¢ include parametric
resonance from a misaligned parent scalar (for a review, see [74]), as well as a PQ phase
transition after inflation for an axion-like field (see [11] for a review).

Beyond (the lack of) a homogeneous mode, we wish to specify the statistical properties
of the inhomogeneous field. We assume that it is a Gaussian random field. The specific
form of the field power spectrum is model-dependent. A simple parametrization for the field
spectrum that captures qualitative features of a number of scenarios (with some inflationary
and most post-inflationary production mechanisms) was given by [5]:

A2(g) = A2 (k) [(,j)@(k o+ () e m] , (3.1)

where v, > 0, and O(x) is the Heaviside step function. In this work, we take v = 3,
a = oo and k, > a;H;. From the expectation of equipartition of energy between positive
and negative frequency modes, we use Aé(q) = wgéi(q) where w, = \/q2/a% + m2. The left
panel of figure 2 shows some example field spectra based on eq. (3.1).



To justify our choice v = 3, consider a scalar field ¢ that is produced in different
spatial locations (separated by r > r, ~ 1/k,) by independent physical processes. That is,
(p(®)p(x) = (p(x)) (p(x')) = 0 for |£ — x'| > r.. Such a field will exhibit a ¢> power law
for the low ¢ part of the spectrum, that is v = 3 for ¢ < k.. This fact can be checked by
directly evaluating the expectation for A?o(q) with (1.1):

3 /

820 = o5 [ [ [ [ tet@ieta + v dvate] U0 g (3
By assumption, the two-point correlation function in the integrand becomes 0 when |r| > r,, so
the integral tends to a constant for ¢ < 7!, and Ai(q) o« ¢3. Note that we have not assumed
statistical isotropy or homogeneity in the above argument; in fact, as we will show in the
next subsections, these assumptions are false in our case of interest. Relaxing the assumption

that the correlation strictly vanishes beyond r, will lead to a different power law v.2
The small-scale physics of the production mechanism determines the shape of the spectrum
at around k, = r;! and above, and the specific shape of Ai(q) is model dependent. For
instance, if ¢ is produced via parametric resonance from a field X with mass mx, the peak
ky/a would be determined by the particle mass mx [74, 75]. Typically k. is subhorizon,
or becomes subhorizon soon after initial production. For q > k., Ai(q) must decrease,
since the field has finite energy density, hence assuming « > 0 is sensible. For production
mechanisms that are fast compared to the Hubble time at the time of production, we expect
a to be large (sharp cutoff) [55, 70]. The normalization éi(k*) can be fixed by requiring

that the total density of p: (p) ~ (1/2) [dlng {A?p(q) + wgéi(q)} matches the necessary
dark matter density at t;.3

3.1.2 Density power spectra

In this subsection, we discuss features of the spectrum A%(k), where § = (p — p)/p is the
density contrast in the energy density of .

On sufficiently large length scales (superhorizon at t;, and eventually probed by CMB
and large-scale structure observations), we assume that § is consistent with adiabatic initial
conditions
w

1+ w

o) = —%(Hw)\yk, O = 3(1 +w) ¥y, + Sk » (3.3)
where w = p/p is the equation of state of the field in a given realization, and p and p are
averages over a scale much larger than the k=! (see appendix A). From observations we
know that A% (or equivalently A%, since ¥ = (2/3)R), A2 and A§ should be approximately
scale-invariant on these scales.

On sufficiently small length scales inside the horizon at t;, where the gravitational
potentials due to radiation are negligible, (isocurvature) density fluctuations are predominantly

2We note that even if we change v =3 to v = 2 (more generally, to any v > 3/2), the k3 behaviour of the
density perturbations, §, discussed in the next section would persist — that is, the k% in the density spectrum
is not determined by ¢* in the field spectrum.

3t’s also worth mentioning that since 2 = 0 +3° = 0 = [ dIngAZ(q) where 02 = (¢ — )2, we expect
field amplitudes to be of order \/AZ(kpeax)-



determined by small-scale field fluctuations. In other words, the density spectrum A%(k) is
dependent on the field spectra A% (¢) and A%(q). Since p(z) is a function of p(x) and ¢(x),
if a field has typical wavenumber k,, then its density fluctuations would have a typical length
scale of around 1/k,. For illustration, let us explicitly compute the A%(k) spectrum for an
ensemble, assuming ¥ = 0. Given a field realization, we have

2

I 1 1
l? = | [ e [36%(@) + 53(Vo@))? + mie?(@)] |
2
L1, m?+q-(q—k)/a’
:? / <290q90k—q+ (2 )/ PqPk—q (3'4)
q

Suppose ¢ is a homogeneous Gaussian random field specified by <go(’;<pq/> = (27)36p(q —

q)P,(q), <<,b;<,bq/> = (27)36p(q — q')P,(q) and <<,b;<pq/> = 0 at t;. Taking the ensemble
average of |5k|2 and putting it in eq. (1.1) gives:
2

Py(k) = 2; / [P¢<q>P¢<|k —q)+ <m2 4 ‘“q’“)) P(q)P, (k- q|>] . (35)
Note that 5 = (p) for fields in an infinite volume.* For q3£¥, and q3£¢, peaked at k., one
can check that A%(k,) = k3Ps(k,)/2n% ~ 1 and A3(k) ~ (k/k.)? for k < k.. The (k/k.)?
dependence can be seen by noting that the integral over g becomes a constant for k£ < ki,
(independent of k), and hence k3Ps(k) oc k®. As mentioned earlier, this k% power law does
not rely in detail on the power laws used in the field spectrum. On the other hand, for
k> ky, A?(k‘) decreases in a way that does depend on the shape of the field power spectra.
Some sample spectra are shown in the right panel of figure 2. Note the differences between
non-relativistic (k, < a;m) and relativistic (ks > a;m) fields.”

Combining our above discussions, we expect Aﬁ(k) to be approximately scale invariant
for very small k (due to the adiabatic initial conditions), for somewhat larger k it should
connect with the k% spectrum (resulting from small length scale isocurvature perturbations).
The scale where they connect can be obtained by solving (k/k.)? ~ (1 + w)?A% (k), which
yields k = kgey ~ (1 +w)?/31073k, (we used A% (k) ~ 1079 [76]). In summary, we have

AZ(E) {(1 +w)?A% (k) when k< kgey -

(k/ky)? when kdey < k < ks

These arguments provide a reasonable rough shape for A?(k) only if the kqe, above is
superhorizon at t;, since the adiabatic initial conditions we used for the low-k tail were

“The ensemble variance of 7 scales as 1/V if the two point correlation of p drops sufficiently
quickly with distance. =~ More specifically, the ensemble variance of p is <(% fz plx) — <ﬁ>)2> =
w2 [y, (@) = @) (p(y) = ) = 3= [, [[, ((p(x) = (P)(p(x +7) = (§)))], so as long as the integral
fr ((p(x) — (p))(p(x + ) — (p))) is finite, the variance is 1/V suppressed. This implies that, in the limit
Y — 0o, we have 5 = (p) for each field realization. In light of this, we will use 7 and (5) (2 and <E>, etc)
interchangeably.

5Here, the isocurvature density spectrum is derived assuming no phase correlation between field modes.
Introducing phase correlations can lead to both enhancement or suppression in the density spectrum. An
example of enhancement is in section 3.2.1, wherein we explicitly construct a phase correlated field ensemble
with enhanced density fluctuations.

,10,



derived from the superhorizon limit. A realistic spectrum will have deviations from this
simple shape that depend on the details of the actual production mechanism (especially if
the productions takes longer than Hi_l, or if the scale k. is not too far from the Horizon),
the impact of the gravitational dynamics around the horizon scale, etc.

3.1.3 Inhomogeneities of field variances

In this section, we argue that ¢ and ¢ must be statistically inhomogeneous, with spatially
changing variances given by eq. (3.9) and (3.14).

Suppose the gravitational potential ¥ is given. The adiabatic initial conditions in eq. (3.3)
then tell us what the large-scale density fluctuations should be. However, the adiabatic initial
conditions make no claim on what the small-scale density fluctuations are, and the value
of §(x) cannot be determined by eq. (3.3) alone. It is useful to consider an ensemble of
fields, such that the field has spectrum given by Ai, and also respects the adiabatic initial
conditions.® Given eq. (3.3), this ensemble must satisfy

(B(@) = —S(1+w¥(@), (5(2)) =30+ w)b(@) + —— (@) . (3.7)
2 14w
To see why this requires the ensemble averages of field variances to be statistically inhomoge-
neous, note that taking the ensemble average of p(x) = p(1 + d(x)) (using the expression
for p in eq. (2.7)) gives

0= 21P <<¢2(m)> _?) * <(v¢<$))j2> = (Ve)? +m? (<902(x)> - ?>
! fi\p(x) o (Vaf)z +o(v?) (3.8)

where we have assumed (p%(x)) /¢2 — 1 is at most O(¥), etc. One can check that the
above expression cannot be consistent with eq. (3.7) if (¢%(z)) = 2, (¢*(x)) = ¢? and
{(Vep(x))?) = (Vip)? for all z; for instance, in the ultra-relativistic limit where ¢2 = (V)2 /a?,
we would have (§(x)) = 0 # —3(1+w)¥(x). This argument tells us that the expectation values

(p?(x)) and (P*(z)) must vary with @, that is, ¢ and ¢ must be statistically inhomogeneous.

We now give a systematic derivation of the statistical variance inhomogeneities, such
that the large-scale density and pressure fluctuations are consistent with eq. (3.7). We
parameterize the spatial perturbation of the field variances by

(@) =0+ A@), (@) =1+ f(=), (3.9)

where fi(x) = O(¥). The idea is to first express (J) and (J) appearing in (3.7) in terms of
f1 and fa, and solve for f; and fo from the two equations (3.7). This is done by replacing
the field variances (¢?(z)) and (@*(z)) appearing in the definitions (2.7) of (p), (p) with f;
and fa, and by using the expectation value of the continuity equation (2.8).

5We stress that large-scale quantities such as ¥ and § are fixed and are not treated as random variables here,
and ensemble averaging is only over ¢ and ¢, not over W. If we also take ¥ as random, then the expectation
here should be understood as conditional expectations with W fixed.

— 11 —



We work through these straighforward (but somewhat tedious) steps below. Using
eq. (3.8), we find that density perturbations are given by

H2 &2 m202 m2o2 2 m2o2 )
<5>:£f2+ (U ) | AR R DY L ) R
p 2p 2p 2p 2p p

+0(9?)

(3.10)

where we have used (V)2/(a?p) = 2(1 — ¢2/(2p) — m?p?/(2p)). Similarly, pressure per-
turbations (using eq. (2.7)) are given by

- ) 1 2 2.2 2.2 &2 9 2 2.2

IS R U0 O i P

p 2p 3 2p 2p 2p p 3 2p 2p
Lo(w?). (3.11)

The above equations are valid for general values of ¢2/(25) and m?¢2/(2p). In our case of

interest, the fact that Ps(q) = w?P,(q) and p = wp implies 02 = (V)2 /a? +m?p2, $2/(2p) =
1/2 and m?¢2/(2p) = (1 — 3w)/2. The perturbations then simplify to

_fit fo (p) =P  f[iRw—-1)+ fo
=" — (1 - 3w)7v, 5 = 5 -

(6) 1+w)¥.  (3.12)

The () equation in eq. (3.7) can be directly matched with the (4) in eq. (3.12). A
bit more work is needed for the left hand side of the <5> equation, which can be obtained
from the continuity equation (2.8):

<5> =30(1 +w) — 3H<mp_p + 3Hw (6) — /1) <Z : Q> 0(\112) , (3.13)

where we have used p = —3H(p + p). Combining with eq. (3.12), the adiabatic initial
conditions (3.7) can now be used to solve for fi; and fo:

3w? — 8w — 3 W 1 1/V
hi= 2(1— w) \I’_QH(lw)q’+3H(1w)p<a'Q>’
15w? — 8w + 1 W 1 1/V
J2= 2(1 — w) +2H(1—w)\P_3H(1—w)p<a’ > (3:-14)

We have thus derived the general form of the inhomogeneity of variances (¢?) and (¢?).

We will assume that the (V- Q) term in eq. (3.14) is zero for the rest of this work. This
term is divergence of momentum; upon ensemble averaging, the term signifies the large-scale
spreading or converging of energy. In the superhorizon case that we consider, (V- Q) =
—e 2Y (V- (¢V)) /a should be negligible compared to others, since it involves two spatial
gradients and is k2 suppressed. Statistically, this term reflects correlations between the random
fields ¢ and ¢. If ¢ and ¢ are statistically independent, then (Q) = —e=2¥ (¢) (V) /a = 0,
so (V - Q) # 0 necessitates statistical correlations between ¢ and ¢. In our case with (V - Q)
negligible, it suffices to treat ¢ and ¢ as independent random variables initially.

Finally, we evaluate (3.14) for some specific cases, including the one we use in our
work. Using the va parametrization of the initial field spectrum (with oz > 2) (see (3.1) and
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appendix A), we can obtain analytic expressions for w and w:

1 (ks /am)? o =2 (k/am)’(1 =207 ") (A + 20" H
U3 famZ (122 )T+ 20 ) T 3 ((kafam)2 + (1—2a-1)(1 + 20-1))
(3.15)

Note that w changes with time due to redshifting, and w is only roughly constant in the
ultra-relativisitic or non-relativistic limit. Eq. (3.14) now yields

— (o ((4(k./am)* +3) v + 6) — 6(v +2))”

N = S U Jam)2 v+ 2) = 20 + 2)) (o (2kefam)® + 3) 7 1 6) — 6w +2))
f2 — _(04 - 2)(” + 2) (Oé ((4(k*/am)2 — 3) V= 6) + 6(7/ + 2)) N (3 16)
2(a((ke/am)?v +v+2) —2(v+2)) (a((2(ks/am)2 +3)v +6) —6(v +2))

We find that f; — —4V, fo — 0 in the ultra-relativistic limit (k./am — o0), and f; —
—(3/2)¥, fo — (1/2)¥ in the non-relativistic limit (k./am — 0). Between the two limits,
we typically have |fa| < |fi]. In the simple case where the field power spectrum with
v = 3,a = 0o, we have:

B 25 — 20(k./am)?
~ 12(ky/am)* + 50(ky /am)? + 50

f— —3 (4(ky/am)? + 5)°

" 12(kyJam)* + 50(ky Jam)2 + 50 f2

. (3.17)

For the parameters we use in our simulation, we have k. /am = 1, w = 1/8, fi(x) = —2.17¥(x)
and fa(x) = 0.04¥(x).

3.2 Generating field realizations

In this subsection, we present a concrete procedure for generating field initial conditions
(p(x), ¢(x)) that enjoy the statistical properties described in previous sections. In section 3.2.1,
we define the procedure and discuss the statistical features of the generated field. In
section 3.2.2, we provide a numerical implementation of the procedure.

3.2.1 Generating field with given density perturbations

We first present the procedure for generating an inhomogeneous Gaussian random field ¢.
Suppose we are given power spectrum P,(q) with characteristic wavenumber k., and a
function f(a) such that f =0, |f| < 1, and |V f|/f < k.. We want to generate a Gaussian
random field ¢ with spectrum P_(¢), and that (p%(x)) = p2ef(@),

To achieve this, we introduce a new Gaussian field ¢ and define ¢ in Fourier space via:

g = \[Po(@)@q, where (p(2)p(a)) = e/ Pop(z —a'). (3.18)

Here, each ¢(z) is an independent Gaussian random variable with variance e/(®); in other
words, ¢ is a white noise field with spatially varying variance. We get ¢4 by taking a Fourier
transform of $(x), and we set o = /P, (q)pq. We claim that the ¢, defined above (and its
inverse Fourier transform ¢(x)) have the desired statistical properties.

To understand this procedure better, we introduce an equivalent definition of ¢ in terms
of a spatial convolution:

ola) = / K(z - y)p(y) where K(z)=K(|z]) = / 17 [P (q).  (3.19)
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For typical choices of P (g), the convolution kernel K (x) is peaked at = 0 and drops rapidly
for |¢| > k1.7 This means the integrand K(x — y)»(y) is mainly supported around x, and
the value of ¢(x) will inherit the variance of the underlying white noise field ¢(x). Moreover,
the spectral power in the kernel K (x) is given by the spectrum Bw(q), so convolving the
kernel with any function ¢ will pick out the corresponding Fourier modes in ¢. This explains
why the generated field ¢ should have spectrum P, (q).

We now confirm that ¢ has the desired properties by direct computation. The spatial
2-point function is given by

@) = [ K@ —2)K(z - y)el,

/@ [ K(x—2)? |z—y|l <k}
0 lz—y| >kt

%

(3.21)

In the |z — y| < k; ! case, the integrand is supported only around z =~ x, where ef(?) n of(@)
since |V f|/f < k.. In particular, taking = y tells us that (p?(z)) o< /™). In the
|z — y| > k! case, we recover the fact that the 2-point function should fall beyond the
correlation length k;'. Also, the Fourier space 2-point function is

(¢a0a) = Po(@)2m)*6p(a — @) +\/Po(@) Py(@) (fg—q + O(F2))

3.22
(leal*) = Po@v +O( ). (3.22)

We have thus checked that ¢ has the required spectrum and variance inhomogeneities.®

The above generic procedure can now be applied to generate a (i, ¢) pair that satisfies
the adiabatic initial conditions. One can first generate ¢ with spectrum P, and variance
inhomogeneity f1, and then generate ¢ with spectrum P, = WEB¢ and variance inhomogeneity
fo, where f; and fy are derived in section 3.1.3. The generated fields will lead to the large-
scale perturbations (4) and <5>, as required by adiabatic initial conditions. As discussed in
section 3.1.3, that ¢ and ¢ are generated independently is not an issue.

We now show that the (¢, @) pair generated by the above procedure recovers all features
of density spectrum Pj(k) discussed in section 3.1.2. More specifically, we show that Pj(k)
contains (large-scale) adiabatic fluctuations and (small-scale) isocurvature perturbations,
in direct parallel to the discussion in section 3.1.2. To begin, note from eq. (3.19) that
@(x) is an integral of Gaussian random variables ¢(x), so p(x) guaranteed to be Gaussian.

"For example, if P (k) = AO(k. — k), then the kernel is given by:

K(r) = gsin(k*r) —TIZ*T cos(k«r) . (3.20)

This function is concentrated at r = 0 and rapidly decreasing for r > k; ', as expected. Formally, this
computation is similar to evaluating the RMS overdensity within a spherical top hat, except that now the role
of k and « are interchanged, and P, (k) replaces the role of the spatial spherical top hat. For more general
expressions related to different field power spectra, see appendix A.

8The connection between the first and second line for ¢ = ¢’ is best understood by thinking of the field
being confined to a large but finite volume (L?) with periodic boundary conditions. Using pq — VL3pk (and
other changes mentioned in footnote 1), we have <<p5 (cpg/)*> =P _(9)0q,q + + /Bw(q)£¢(q’)flf,q//\/ﬁ, with
<|<p,§‘\2 =P, (¢)- We used the fact that f has a zero average, so that f(f_qzo =0.

— 14 —



This Gaussianity allows us to use Isserlis’ theorem to evaluate 4-point functions of ¢ and
¢ (P2 (2)0*(y)) = (@) (D*(y)) + 2 (p(@)e(¥)* , (P*(®)P*(y)) = (P () (P (y)) +
2(p(x)p(y))? , (P () p* () = ($3(x)) (p*(y)) . All terms in the density 2-point function
(p(x)p(y)) can be expanded into 4-point functions of ¢ and ¢, which can be evaluated in
this manner. We will distinguish terms of the form (¢?(z)) (p?(y)) as “long” length scale
terms, and terms of the form (p(x)p(y))? as “short” length scale terms. The “long” length
scale terms are responsible for perturbations from adiabatic initial condition, and the “short”
length scale terms are responsible for isocurvature perturbations.’

We now explicitly evaluate the 2-point correlation (p(x)p(y)):

(p(x)p(y)) = ,(;l,?ng)( y) + § (short) (1 4)  where
S (@, y) = (p(@)) (p(y)) = P* (1+ (5())) (1 + (5(y)))

2,y) = VOO () p(y)?

n ew(@wxﬁ@)ﬁ (Dip(x)0j0(y)) (Dip(x)0j0(y))

+ 2@ —m? (9,0(x)p(y)) (Dip()o(y))
£ YO L (o(2)dho(y) (@) ()

+om (p@)ey) (3.23)

shor
P

The “long” length scale term §,(,l,?ng) is simply the product of (p) at two spatial locations. Since
(0) is fixed by the adiabatic initial condition (3.7), &, (long /p? is determined without reference to

the field spectra P, and P. In other words, we can vary our choice of the field spectra while

keeping (0) fixed, and &, IOng /7% would remain unchanged. The £ (short)

beyond such large-scale fluctuations, including the small-scale isocurvature perturbations.

contains information

To find the density spectrum, we Fourier transform the correlation functions and expand
up to first order in W:

(piprr) = 5578 (K, k') + €52 (K, ) where
Some) (e, k') = p* (07,) (Ow)
(oo (e, k') = ;/q [(QW)S%("? —K)P,(q)Py(lq +K'|)
— 2V Py(q)Py(|lg+ K'|) — 2¥ Py (q)P (g + k)

+2(f) H@b \q+k|>f¢<rq+kf|>f¢<q>] + (P, terms)  (3.24)

where P, terms include f; in them entering via (¢(z)¢(y)), similar to how the terms
written above include fa from (p(x)p(y)). See appendix D for full details. Moreover, for
k = k', the terms involving ¥ and f; are zero, since ¥y, _p—g = ¥ = 0 and f;, c ¥ = 0

9Also see a related discussion in [28] on the different meanings of time averaged quantities <|E\2(sc)|E|2(:c' )>
and <|E|2(:c)> <|E|2(:B')>7 where E is an electric field.
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by choice. In summary:

, 2 o , 2 "o

o | e
, 2

- g [ |Petorsta ks (o2 + TEEDY p g k)] (14 0(7)

+(omy? [ LORIP (K k) (3.25)

eV 4Amk?

Note that the third line above is in fact Py (k), and that P (k) # Ps(k). The density
spectrum is now clearly separated into “long” (third line) and “short” (second line) contribu-
tions. The “long” contribution P<5>(k:) is solely determined by adiabatic initial conditions, as
previously discussed. The “short” contribution is solely determined by the field spectra P,
and P, as is manifest from the above integral expression. Note that the “short” contribution
is the same as eq. (3.5), which was derived for homogeneous Gaussian random fields. We see
that this procedure of adding inhomogeneity in variances leads to additional power P (k)
in the density spectrum, and nothing more.

3.2.2 Numerical implementation

Suppose our 3D lattice has N3 grid points and volume L3. To generate an inhomogeneous
Gaussian random field ¢ on the lattice, we essentially discretize the formulas in (3.18). More
specifically, we do the following:

0. Before we can apply the procedure, we must specify f(x). The perturbation f(x)
can be any function of choice as long as f = 0. To obtain the adiabatic initial
conditions described in section 3.1.3, we first generate the gravitational potential ¥ as
a homogeneous Gaussian random field, and use f(x) oc ¥(x).!0

1. At each lattice point x, generate a value for ¢(x) from Gaussian distribution @(x) ~
N(0,e/®)). The random variables ¢(z) and ¢(y) are independent as long as x # y.

2. Take the discrete Fourier transform on ¢(x) to get ¢q. The discrete Fourier transform
N-1

11

is given by @q, , . = N—3/2%
lattice sites in position space and momentum space.

3. Compute g = |/ P,(q)$q, where P ,(q) is the spectrum that we want for ¢. Note that
q = 2EVa? + b2 + 2, where (a,b,c) is the index of g on the reciprocal lattice.

4. Take the inverse discrete Fourier transform on ¢4 to get ¢(x):

_ N—-—1 ] .
Sp(xr,s,t) - N 3/2 Za,b,c:(] 627r7,(a,b,c) (r,s,t)/Nqumbyc

The procedure for ¢ is similar.

10We omit the well-known procedures for generating homogeneous Gaussian random fields. See, for example,
Garrett Goon’s tutorial at https://garrettgoon.com/gaussian-fields/.
"Tn the continuous (N — 0o) limit, we can recover @ via g = vV (Az)3pq, , ., where g = 27"((1, b,c).
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4 Evolution

In section 4.1, we first discuss the main features we expect to see in our simulations based
on analytic understanding of density spectrum evolution. We then discuss the results of our
numerical simulations in section 4.2 and compare them with the analytic expectations.

4.1 Analytical results

Our discussion in this section summarizes and builds upon the results in ref. [5]. A discussion
of the evolution of isocurvature density perturbations as well as free-streaming for free fields
can also be found in [28].

Before diving into the technical details, for a heuristic understanding of the main results:
(i) a lack of evolution of the isocurvature white-noise spectrum, and (ii) the free-streaming
suppression of the adiabatic spectrum, it might be useful to think in terms of the quasi-particle
picture discussed in the introduction. The random velocities of the quasi-particles leads to
their re-arrangement; they cannot change the statistics of the initial Poisson distribution of
their locations. Hence the white noise density spectrum does not evolve. However, existing
correlations (adiabatic density perturbations) can be erased by these random motions of the
quasi-particles. This leads to the free-streaming suppression of the adiabatic density spectrum.

4.1.1 Evolution of isocurvature

In this section, we discuss how the isocurvature density fluctuations evolves over time.
As a matter of semantics, when we refer to isocurvature on subhorizon scales, we simply
mean perturbations that are not necessarily correlated with the curvature perturbations. In
section 3.1.2 we argued that the initial isocurvature spectrum is given by (3.5). We now show
that, after the field has become nonrelativistic, the spectrum converges to (4.8). Moreover,
the late time isocurvature spectrum can be calculated using the initial isocurvature spectrum
formula (3.5), but with k./am < 1.

We consider a simple scenario, in which field evolution is given by the Klein Gordon
equation in an FRW spacetime (see appendix section B for inclusion of long-wavelength
metric perturbations). The mode equation and the general solution are given by

Pq+3Hoq +wivg =0, 9q(t) = fo(t)pq(ti) + gq(t)q(ti) , (4.1)
where f,(t) and g4(t) are defined by
fq+ 3H fg +wify =0, fa(t:) =1, folt:) =0
g +3Hgq +wlge =0, gq(ti) =0, gg(ti) =1 (4.2)

We are interested in the isocurvature spectrum when H(t) < m and k. < a(t)m. In general,
for w, > H, the above equations have WKB solutions:

t
sin/ wg, where Dg(t) = \/a;?’wq(ti)/ai”wq(t).
t;
(4.3)
We have assumed D, ~ HD, < w,D,, and with that we also have f, ~ —[w,wq(t;)]g, and
Gq = [wg/wg(ti)] fg which will be useful in the following.

fq(t) = Dy(t) cos /tt wg,  Gq(t) = o)
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As in section 3.1.2, we take the initial conditions of ¢ from an ensemble of homo-
geneous Gaussian random field, specified by <cp:;(ti)<pqr (tl)> = (2n)%6p(q — q')P(ti,q),

<<pf1(ti)¢q/ (tz)> = (2m)0p(q — q')Py(ti,q) and (pg(ti)pq (ti)) = 0. These assumptions are
the same as that used to derive eq. (3.5). Then, at later times ¢,

(at)pg (1)) = @m)%6p(a — @) [Pyt ) f2(1) + Py(ti, 0)g2(1)]
(¢a(t)pq () = (27)*0p(q — @') [Py £) + Pyl(ti, a) g7 (t)] (4.4)
(23(0pg (1)) = (27)*dp(a — @) [Py (L, )fq( >fq<t>+£¢<ti,q>gq<t>gq<t>],

where the square brackets in the first, second and third line are P (¢, q), P4(t, q) and P_;(t, q)

respectively. Note that Klein-Gordon time evolution of an initially statistically homogeneous

Gaussian random field yields another statistically homogeneous Gaussian random field at
a later time, fully specified by the 2-point correlation functions.'?
We can then compute the (ensemble averaged) density spectrum by plugging the solution

eq. (4.1) into eq. (2.7) with ¥ = 0. The density spectrum at time ¢ is

Bé(t7 k) =

2;)2 / [(Guda + (2 + @+ (q— k)/0?)9090a1) Posltis e — a P (ti,0)
- (Fufia + (@ (@ k) fofpaq)) Poltis Ik — aDPo(tiq)
)2 (ts |k — al) P (t:,0)

2
ti, |k — a))Py(tia)|,  (45)

(fqg|k q|+ m® +q- (q k /a fqg|k q

+ (qu|qu| +(m*+q-(q—k)/a*)gqfik—q

where p(t) is given by
p(t) = % / (92 + w2g2)Po(tin ) + (7 + w2 FP(tirq)| - (4.6)
q

Using the WKB solutions, and assuming P (i, q) = w,%(ti)B¢(ti, q), the two—point correlation
functions simplify to <<pq( Joq (t )> ~ (277)35D(q - q’)Dg(t)Pw(ti, q) = wy (t) (Qq(t)pq(t)),
and <gbj‘1(t)goq/(t)> ~ 0. That is, P,(t,q) ~ Dg(t)ﬂw(ti,q) and the properties of the field
ensemble at later times is the same as at t;. We will return to this shortly. Moving on to
the density power spectrum, a significant simplification arises to yield:

(oe®)?) 1 q-(g—k)\?
A 0 / lw‘?(t)w'z""“'(t) ! <m2 i a2) ] (4.7)
x D3 (t) D}, ()P (ti; |k — a)Py(ti,q)

and p(t) ~ [, DZ(t)w? (t:)Py(ti, q)-

12We sketch a proof of this point. If ¢(t;, ) and ¢(t;, z) are Gaussian random fields, then ¢(¢,x) and

(t, ) are also Gaussian random fields; this is because ¢(t, x) and (¢, x) are integrals of the initial conditions
in terms of Green’s function, and an integral over Gaussian random variables is Gaussian. Moreover, if ¢ and
¢ are initially statistically homogeneous, then they are also statistically homogeneous at t, since the Klein
Gordon system has translation symmetry. Statistical homogeneity and Gaussianity implies that the ensemble
of p(t,x) and ¢(t, ) are determined by their 2-point correlation functions.
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In the late time limit ¢ > ¢; when all modes contributing to the integral are non-
relativistic, we have wy(t) = wjq_g|(t) = m and D|2q_k|(t)/Dg(t) = Wig—k| (ti)/wq(ti). Further
more, Dy(t) — (a;/a)>?(wy(t;)/m)"/?. Then, the late time density power spectrum

4

{9k (®)I) m
P t,k = ~ W)g— t; Wy t; P ti, k— P ti, s
ia( ) v [qug(ti) w(ti’q)}z/q | k|( ) ( ) <p( ‘ q‘) <p( Q)

(4.8)

which is time-independent, and depends only on the field power spectrum at t;. Note
that no assumptions were made about whether the field configuration is relativistic or
non-relativistic initially.

If the initial field configuration is non-relativistic to begin with, then all the w,(t;) = m,
and we immediately have Pj(t,k) ~ Pg(t;,k). That is, the power spectrum of density
perturbations does not evolve at late times. Whether we initialize the field at ¢;, evolve and
then calculate the density spectrum at ¢ or initialize the fields at ¢ with P (¢, ) ~ Dg (t)P(ti, q)
and use it in (3.5), the fractional density spectrum is the same.'?

Finally, we discuss the evolution of A3 (k) for some concrete examples of field spectra.
We refer to the right panel of figure 2. While this plot is for the initial ég(k‘) spectrum, we
know from the above discussion that it also reveals the evolution of the spectrum. Suppose
the field has field spectra parameterized by v = 3 and o = oco. Initially, when the field is
ultra-relativistic (ks/am > 1), its isocurvature spectrum would resemble the dashed orange
curve (for k > kgev). After the field becomes nonrelativistic (k./am < 1), its isocurvature
spectrum would become the solid orange curve (for k > k4ey). We can see in figure 2 that
there tend to be a slight growth at the peak around k, when the field transitions from
relativistic to nonrelativistic. The case is similar for other choices of field spectra, with the
o = 3 exhibiting the most significant change in A%(k).

4.1.2 Free streaming physics

The prototypical scenario that we consider is as follows. At ¢t = ¢;, the field power spectra A?D
and A?-O are peaked around comoving wavenumber k., which is deep inside the horizon. The
field configuration is dominated by spatio-temporal variations on characteristic length scales
1/k, and time scales 1/wy,, where wy, = v/k2/a? + m2. One can think of this system as a
collection of particles with different comoving momenta ¢ and energies wy, = Va2 /a2 +m?2,
moving at physical speeds vy = dw,/(adq) = (q/a)/wy in random directions. Given the
peaked spectra, the energy density is dominated by particles with momenta k.. The comoving

BFurthermore, for such nonrelativistic fields, it is particularly straightforward to evaluate the isocurvature
spectrum in the limit k¥ < k. limit using (3.1) — the power spectrum becomes P(t, k) becomes independent

of k:
3 1/3
i ) with  fn = ke [<1+ i) (1 - 3) (l + 1)} (4.9)
kwn 2 2v o v

Note that for v > 3/2, and not too extreme a, v > 0, kwn ~ ksx.

3

k
AX(t k< k) = ﬁﬂé(t,k < ki) = (
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distance that a particle with momentum ¢ moves is

R /t dt'  gfa(t)  rdimb gfb
Qfs(t) - a(t/) \/W - o bH(b) ma
— a?.Fq[im [ln {(am/q) +4/(am/q)? + 1} —In{a — ai}] ) (4.10)

where the final equality assumes radiation dominated expansion history.!* This is the free
streaming length for a particle with momentum ¢. Since the energy density configuration
is dominated by particles of momentum k., the characteristic distance for a large fraction
of the particles will be

1 1

k() ass(t)

(4.12)

q=k«

This “free-streaming” tends to wipe out existing adiabatic density perturbations (but not
the small-scale white-noise part, or the peak on small-scales).

The impact of this free-streaming of particles on the density power spectrum during
radiation domination can be captured via the free-streaming transfer function T2(t, k) such
that density power spectrum takes the form [5]

AZ(t k)~ A1) (4 VT2, (¢, B)TE(t ) + A2 ¢ ) | (4.13)

where

G ’
k/Qfs( )

which is expected to be valid after the fields are non-relativistic (k. < am). For a simple

T2(t, k) ~ l / din gA2 (1, (4.14)

understanding of this transfer function as a Fourier transform of the field power spectrum
with respect to the displacement of the particles, see appendix E.'®

During radiation domination, T%(t, k) contains information about density perturbations
getting a boost when entering the horizon [78], and locking into a logarithmic growth (up to
the Jeans scale). The free streaming aspects are captured by sz (t, k). Note that we expect
Aj 2(short) (t,k) = Ay 2(short) (ti, k) (see [5], and section 4.1.1) during radiation domination, i.e., it
does not evolve Slgmﬁcantly beyond some initial transients as the field becomes non-relativistic.

We note that for v = 3, @ = oo, and for non-relativistic fields at ¢;, we can evaluate the
transfer function analytically.' An excellent approximation to the free-streaming transfer

14 An approximate, yet revealing way to write the free-streaming length is as follows:

_1 ﬂaq nr a; a
N — 1—- — 1 . 4.11
i ) = 2 e [( ) i ()} (111)

where aqnr = q/m is the scalefactor at which the particle with momentum ¢/a and mass m becomes non-

relativistic. The above expression is valid for agnr < a < @eq. The first contribution is from the time interval
when the particle is relativistic, the logarithm is after the particle has become non-relativistic.
'5We thank Sten Delos for the discussion which lead to this appendix. Also see the appendix of [77].
16The transfer function in the case v = 3, = oo is given by

Tr(t, k) = 3(ki,/k)® [sin(k/ki.) — (k/ ki) cos(k/kE) (4.15)
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Figure 3. Free-Streaming transfer function. The dotted blue curve is almost indistinguishable from
the complete transfer function (4.13) (solid orange curve).
function (for k < kf,) is provided by:

TE(t, k) ~ e K /3RE()

1 m?2
where

a(t)m
= dlngA?(t,
Rl OF S

~

. (4.16)
q(t)
The motivation for this form can be understood by Taylor expanding TZ(t, k) around k = 0,
and defining kg via the coefficient of the k? term.!” We caution that while this works

well for the case of interest, and for a > 2, it fails when a < 2 as pointed out by [28].

In those cases it is best to use the full transfer function. A crude, but easy to use, and

general approximation that works for most cases is to replace kg(t) by ki (t). That is,
TE(t, k) ~ exp [—k?/3{kf(t)}?]. See dashed curve in figure 3.

In the coming sections we will verify the expected behavior encoded in the adiabatic
transfer function, the free streaming transfer function, and the lack of evolution of the k3
part of Ag(Short) (t,k) from numerical simulations.

Before moving on to the comparison, however, we wish to discuss a couple of technical
points relevant for comparison with numerical simulations which will include finite box size,

and resolution related effects. For the field spectrum, we plot [Ai(t, q) + AL(t, q)/wg(t)} /2
instead of Ai(t, q). This approach of plotting has the advantage of eliminating oscillations of

the spectrum over time (particularly relevant at small wavenumbers because of the smaller

Y"Expanding TZ(t, k) around k = 0, we have

WL a2 g oy S0k ()]
[p(t)/dl 4By (t:q)

Y
Tk /are(0)] ] ‘[1 7 /

1
dIn A2 t
3 (t) q AP( 7q) 2

ik
A =[o -

(4.17)
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number of modes available to average over in a simulation). To see this, note that:

2 L2
v_or? A2(q)+A¢7(Q) :/ |(p,|2+|90q’| 5D(\q/’—Q):/ [ |2M
(2m)3 ¢ |7 W2 o \[7e ) Arg? PO e
where g4+ = pq + “a (4.18)
iwg

where we suppressed the dependence on ¢ to reduce clutter. If w, is slowly varying, we have
lpgl? ~ a3 cos?(wyt + 0) and |pq1|* ~ a3, which does not oscillate.
As a mild generalization, we use mQA?O(t, q) — [A?b(t, q) + ng?O(t, q)} /2 in (4.16) for

calculating the effective free streaming length from simulations.

4.2 Simulation results

In the three upcoming sections, we show the results for three simulations: one for a free scalar
field without gravity, one for a free scalar field in the presence of gravitational perturbations,
and one for a scalar field with strong self-interactions. The most important features of these
simulations are captured by the evolution of their density spectra in figure 5, figure 9 and
figure 13. We also provide video versions of these figures here.

4.2.1 Without gravitational perturbations in the evolution

In this subsection, we demonstrate free streaming suppression of the density power spectrum in
the absence of gravitational perturbations (¥ = 0) in the evolution equations for the field. We
show that the large-scale inhomogeneities in the density fluctuations (resulting from spatially
dependent variances in the field), gets suppressed as the free-streaming scale moves to larger
and larger distance (smaller wavenumbers), revealing more and more of the white noise tail.

To achieve this, we initialize ¢ as a Gaussian random field, with significant large length-
scale density perturbations (a non-white noise part). The field ¢ is evolved numerically
via a free Klein Gordon equation in a radiation dominated background.!® We found from
the overdensity power spectra that free streaming suppression occurs as expected. Figure 5
and 6 contains the main results of this subsection.

Initialization. In order to impose large-scale density perturbations on the field ¢, we
generate a spatially varying field f by realizing it as a homogeneous Gaussian random field
with a scale invariant spectrum (we will relate this to the gravitational potential in the
upcoming section) Afc(k‘) = AO(ks — k), where kf/(a;m) = 0.3, and A is an amplitude

chosen to satisfy \/ f2 = 0.3. The spectrum A?(k) is chosen to be large compared to realistic
expectations; see footnote 21.

18We acknowledge that a Klein Gordon field in a radiation dominated universe, without gravitational
potentials, admits mode-by-mode exact solutions in terms of special functions. We choose to do numerical
integration here in order to provide a more direct comparison to the case where gravitational perturbations
are included. The analytic solution is given by ¢ (t) = C1e™ "™ U(n, 2, 2imt) + Cge_ithgT/f)(%mt), where
n = (ik® + 3a$Him)/(4a3Hym), U is the Tricomi’s function, and L is the generalized Laguerre polynomial.
For the equations in section 4.2.2 and section 4.2.3, such an exact solution is not available.
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Figure 4. Initial power spectrum for the field ¢ is shown on the left (in units of m?), the density
perturbation ¢, and the field variance inhomogeneity f (a proxy for gravitational potential) for a
given realization on the right. The field spectrum (left panel) has a ¢® power law below k., = a;m,
and has a sharp cutoff at k.. The density spectrum Ag (orange curve of right panel) peaks at around
k«, and is cutoff at around 2k.. Below k., the density spectrum exhibits a k3 power law before
connecting to a k° plateau below ks. The field variance inhomogeneity A?c (blue curve of right panel)
is approximately scale-invariant (K power law) and has a sharp cutoff at k¢ = 0.3a;m. Note that
the low-k plateau of A§ tracks the variance inhomogeneity A?, as explained in section 3.2.1. See
section 4.2.1 for details of A?.

The field p(x) and its time derivative ¢(x) are then initialized via the procedure described
in section 3, as an inhomogeneous Gaussian random field with density perturbation f. More
specifically, the field is generated from an ensemble specified by the following spectras:

3
q
A9 = a3k () Olh —0). A3@) =A@, k/@m)=1  (119)
We decide on ¢? which then determines Ai(k*).lg The spatially dependent variances of
@ and ¢ are chosen to satisfy

<g02(:13)> ~ el @) <(p2(93)> ~ plel @), (4.20)

As discussed in eq. (3.25) of section 3.2.1, the density spectrum A%(k) for ¢ contains a

(short) (k‘)

small-scale component A? , which peaks at around k., and a large-scale component,

which is approximately A%(k):
2(short
A2 (k) ~ AT (k) + A%(R) . (4.21)
Figure 4 shows the initial power spectrum for ¢, § and f.

Evolution. We evolve scalar field ¢ satisfying eq. (2.6) (with ® = ¥ = 0), using the fourth-
order Runge-Kutta (RK4) method from time mt¢ = 10 to mt = 36000. The initial Hubble
parameter was set to H; = 0.05m. We also use the WKB method to extend the numerical solu-
tion to much later times. Figure 5 provide the density power spectra over time and snapshots of

19We choose /@2 to be unity. Its actual value is irrelevant since the equation we solve is linear in ¢.
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Figure 5. The left panels are the overdensity spectra A2(k) over time, and the right panels are the
corresponding snapshots of §. The panels are ordered vertically by time. The snapshots on the right
panel are the §’s averaged over one axis of the lattice. One can see from the left panels that the initial
kY plateau at low-k (scale-invariant) of the spectra are suppressed over time as the free-streaming
length increases, and only a k3 white noise remains in the end. The free-streaming scale, kg (not
shown here, but see figure 6) would indicate where suppression is just starting to take place, not the
location of the mimimum of the orange curve. Note that only the first and second rows were from
outputs of our numerical integration; the third row was produced using the WKB solution. In this
entire simulation, gravitational perturbations are ignored in the evolution equations, but qualitatively
included in the initial conditions. The spectra were produced using the binning scheme described in
appendix C. Also note that the colorbar scaling for the snapshots on the right has different scaling for
positive and negative values, chosen because of the skewness of the § distribution.

the overdensity profile. The snapshots are overdensities averaged over one spatial direction, so
as to suppress the large amplitude small-scale density perturbations, and highlight the smaller
amplitude large length scale perturbations. Note that the shortest length scale fluctuations
have comoving size ~ k!, whereas the longest length scale perturbation is ~ 100k, .
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From figure 5, it is easy to see that the peak and white noise of the density power
spectrum around k, is largely fixed over time, except for a slight initial growth. These
behaviors are consistent with the analytical prediction in section 4.1.1. The initial growth
in power is apparent when one compares the first and second row of figure 5. This growth
happens predominantly before mt < 100, when the field is transitioning from relativistic to
nonrelativistic, and is negligible for the rest of the evolution. As discussed in section 4.1.1,
this growth is expected, and it reflects the transition from the dashed orange curve to solid
orange curve in figure 2. After the field turns nonrelativistic, the shape and amplitude
of the peak become fixed, as given by (4.8). This can be seen by comparing the second
and third row of figure 5.

It is also evident from figure 5 that free streaming wipes out (non-white noise) density
perturbations over time. In the second row of the figure, one can see a sharp dip in the
spectrum at around k/a;m = 0.07. Initial scale-invariant density perturbations with a shorter
length scale than the dip are wiped out by free streaming, hence on the right of the dip one
can see a k? spectrum, as expected for random fluctuations satisfying uncorrelated white
noise statistics. On the other hand, larger length scale density perturbations remain on
the left of the dip, since the free streaming length is not large enough to wipe out initial
perturbations on those scales. The third row of the figure is a snapshot taken at a much later
time, at which the free streaming length is so large that almost all the initial scale-invariant
density perturbations are wiped out.

We determine the free streaming scale kg by fitting the density power spectrum to
the ansatz

A2 (¢ k) = Age TR 4 Aggo (k/kn)?, (4.22)

where Ag, Aiso and kg are fitting parameters. This ansatz is inspired from eq. (6) of [5]; also
see the discussion in our section 4.1.2. A sample fit at @ = 60a; is shown in the left panel of
figure 6. The fitting parameters are given by Ag ~ 0.06, kgs/a;m ~ 0.01, Ao ~ 2.

In the right hand panel of figure 6, we plot the fitted value of kg as a function of time,
along with the analytic prediction (see eq. (4.16)). One can see from figure 6 that the fitted
1/kgs matches well with the analytic prediction, with deviations restricted to less than 30%.%°

4.2.2 With gravitational perturbations

In this subsection, we discuss our simulation of a cosmological scalar field ¢ during radiation
domination, including the effect of gravitational perturbations. We initialize ¢ with density
perturbations consistent with adiabatic initial conditions, and evolve the field in a time-
dependent gravitational potential. We have chosen the field initial conditions and the
gravitational potentials in a way that ensures they are consistent with a single set of comoving
curvature perturbations, as prescribed by standard cosmological perturbation theory. In the
simulation, we find both initial growth of large-scale density perturbations and subsequent

20We only perform the fit for a/a; < 60, since the free streaming scale was approaching kir (the smallest
wavenumber of the simulated box) at later times, and the fits were become unreliable due to the lack of points
on the spectrum. All fits were performed by restricting to the spectral data to the range k € [kir, 0.5a;m], so
that the peak of A3(t, k) around k. do not affect the fit.
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Figure 6. The left panel shows the fit of the density spectrum at a/a; = 60 using the ansatz (4.22).
The right panel shows the free streaming length kg, ! versus scale factor a, obtained by fitting the
density spectra from the simulation (orange curve) and by the analytic prediction (4.16). One can
see that the free streaming length kg 1 is growing roughly linearly with respect to In(a), as expected.
Moreover, the orange and black curves are close to each other, with the fitted free streaming length
slightly larger (less than 20%) than the predicted one.

free streaming suppression, as expected. We re-iterate that we do not include self-gravity of
the scalar field, since it is assumed to be a subdominant component of the universe during
radiation domination.

Initialization. The initial Hubble parameter is set to H; = 0.05m, with radiation domination
H = H;(t/t;)'/? (see eq. (2.2)); a space-time dependent gravitational potential sourced
by radiation is also included (see eq. (2.3)). We first generate the comoving curvature
perturbations R by realizing it as a homogeneous Gaussian random field with a scale invariant
spectrum: A% (k) = As. We choose the amplitude A, such that \/¥2(t;) = 0.04, where the
gravitational potential W is given by eq. (2.3).2!

We choose spatially dependent variances (?(z)) = ©2[1 + f1(z)] = ¢2[1 — 2.17¥(z)] and
(P*(x)) = P21 + fa(x)] = $2[1 + 0.04¥(z)]; the initial field configuration is generated using
these variances and the procedure in section 3.2. The variance inhomogeneities f; = —2.17¥
and fo = 0.04¥ are given by our choice of k. = a;m and eq. (3.17), which was derived
with the assumption of adiabatic initial conditions. Similar to section 4.2.1, the field power
spectrum is taken to be eq. (4.19), from which the density power spectrum follows using
eq. (3.25). Note that the density power spectrum includes power on large length scales
because of the spatially dependent field variances, as well as the gravitational potential
appearing in the definition of energy density (2.7).

2'Measurements from Planck in fact require As &~ 2 x 1077 [76]. We choose a much larger value for A; so
that we can see within our simulation the initial condition, the growth and the subsequent suppression of the
large-scale density perturbations. Recall that for A ~ 1072, the wavenumber where the flat spectrum meets
the k> is kdev ~ 10™%k. (see discussion near eq. (3.6)). This requires a rather large dynamical range for the
simulation, without much benefit in terms of understanding of the relevant physics.
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Figure 7. A realization of the initial power spectrum for ¢, 6 and gravitational potential ¥ for our
simulation which will include time-dependent, radiation driven gravitational potentials, eq. (2.3), in
the evolution.

In figure 7, we show the initial power spectra for the field ¢, the energy overdensity 9,
and the potential W. With our choice of parameters, the 6 power spectrum (right panel)
includes a scale invariant piece for k < a;H; (a consequence of spatially dependent variances
of the field proportional to the gravitational potential), and a white noise component for
a;H; < k < k.. The curvature independent white noise component dominates over this

curvature dependent part on subhorizon scales. The field power spectrum (left panel) is not
visibly affected by the spatially dependent variances.

Evolution. The field ¢ evolves in a radiation dominated background according to eq. (2.6),
with the gravitational potential ¥ given by eq. (2.3). This choice of gravitational potential is
sensible as long as the field ¢ is a subdominant component of the matter composition. Like
in the last subsection, we use RK4 for numerical integration, starting at mt = 10 and ending
at mt = 36000. We also use WKB solution to extend the solution up to mt = 3.9 x 101

Field evolution. Figure 8 shows the evolution of the field spectrum, scaled by a redshift factor
(a/a;)®. For q < ki, the field spectrum simply redshifts without changing shape. This is
to be expected for a free field evolving in an expanding universe (apart from gravitational
effects). However, one can see that while the ¢ > k. portion of the field spectrum has no
initial support, it quickly gets populated within the time span a/a; € [1,10], and thereafter
it remains largely unchanged. The evolution of the field spectrum differs from that in the
case without gravity, wherein all modes ¢4 are decoupled, and initially absent modes stay
absent throughout evolution. The presence of a spatially dependent gravitational potential
allows for mode-mode coupling in the ¢ field even though self-gravity of the field is ignored.
To understand this intuitively, one can think of ¢ wave packets as gaining kinetic energy as
they fall into potential well, corresponding to an enhancement in the high-¢ modes. That
this enhancement occurs predominantly during the early simulation period (a/a; € [1,10])
could be due to two reasons: firstly, the gravitational potential Wy decreases in amplitude
over time (on subhorizon scales); secondly, horizon entry induces a large “kick” on the modes,
which can only happen when the horizon is smaller than the size of the simulated box.
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Figure 8. Evolution of the field spectrum in the case where gravitational potentials are included in
the time evolution. At k < k., we essentially see redshifting of the field (not visible since we multiply
the power spectrum by (a/a;)?). However, for k > k., the gravitational potentials do induce some
additional power, likely due to gravitational infall of wavepackets. The enhancement at the highest
k-modes (plateau) is due to an approximate treatment of the gravitational potential. It doesn’t appear
in the simulation without this approximation. See appendix on details.

Density perturbation evolution. In figure 9, we show the evolution of the density power
spectrum alongside spatial projection of the overdensity field (averaged over one axis). As
discussed earlier, the averaging allows us to visually show the initial gravitational enhancement
and the eventual free-streaming suppression of the small-amplitude long-wavelength density
perturbations. The first three rows are based on simulations, and the fourth row is from
WKB extrapolation of the simulation results.

Before turning to these effects, first note that the shape of the spectrum around k,
changes over time. By the end of simulation at mt = 36000, the high-k part of Ag(t, k) is no
longer cut-off at k/a;m = 2, but exhibits modes as high as k/a;m = 3 (though still heavily
suppressed compared to the peak). This phenomenon can be explained by eq. (3.5): as the
q 2 k« modes in the ¢ and ¢ spectra are populated over time, the § spectrum should also see
its ¢ 2 k« modes populated. Intuitively, the creation of smaller wavelength ¢ modes naturally
leads to smaller scale fluctuations in p. At late times, the peak of the density spectrum again
stabilizes, since the ¢ and ¢ spectra have stabilized.

We now turn to the two main effects that we had hoped to capture: (1) a growth in the
density perturbations at horizon entry, and (2) a suppression of the curvature induced density
perturbations due to free-streaming. The results below confirm the key expectations of [5].

1. Growth at horizon entry: in figure 9 one can see a significant growth in density
perturbations for k/a;m < 0.1. In the mt = 36000 snapshot, one can see a growth of
roughly 10% in the largest mode. This is to be expected based on seminal results from [78]

— linearized cosmological perturbation theory yield significant growth of (adiababtic)
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Figure 9. Left panel: overdensity spectrum AZ%(t, k), initial spectrum is in gray. There is an
enhancement of § at horizon entry accounting for the initial growth for k& < 0.la;m. The free-
streaming suppression then start to erase this growth, revealing more of the white noise spectrum. We
only show the spectrum up to k/a;m = 2.48, so that a negligible numerical artifact at the high-% tail
does not appear in the plot. Right panel: snapshots of the ¢ averaged over one axis to enhance the
appearance of long wavelength growth from horizon entry, and eventual free streaming suppression.
The fluctuations on the scale of k' remain visible throughout. Note the bottom panel is a WKB
extrapolation of the simulations.

dark matter density perturbations at horizon entry during radiation domination. This
is a well known “textbook” result; see for example figure 6.6 of [79], where modes
with k > keq receive a boost at horizon crossing. In our simulation, the horizon scale

— 929 —



kg = aH becomes smaller than the IR scale of the simulated box kg = 27/L at
mt = 60, so for the majority of the simulation all relevant modes are deep inside the
horizon. Since our simulation is done during radiation domination, all relevant modes
in our simulation satisfy k > keq. We have thus confirmed a result from linearized
cosmological perturbation theory via full nonlinear field theory simulation instead of
linearized equations for fluid density perturbations.

2. Free streaming suppression: similar to the gravity-free simulation in section 4.2.1,
free streaming wipes out density perturbations, including those perturbations induced
by gravity at horizon entry. In figure 9, one can see that density perturbations within
scale k/a;m € [0.07,0.1] are initially sourced by gravity, and are subsequently wiped
out by free streaming. Again note that free-streaming leaves the white noise k% part
unchanged in amplitude, and more of the & tail is revealed as free-streaming eats away
the curvature induced perturbations on large length scales.

We numerically fit the overdensity power spectrum with an ansatz (see eq. (4.22)), and
fit for a free-streaming scale kg. We then compare it with theoretical expectations (see
eq. (4.16)). The left panel of figure 10 shows the fit compared to the data at a fixed time
a = 60a;. The fitting parameters are given by Ag ~ 0.2, kgs/a;m =~ 0.02, Ajso =~ 2. The
analytic and numerical fits for kg as a function of time are shown in the right panel of
figure 10. The analytic and fitted kg agree in their In(a) time-dependence; however, they
differ by a constant time delay, with the free streaming length from simulations being smaller
(black solid curve). The difference can be eliminated by delaying a; in the analytic calculation
for kg, so as to allow for growth of structure before it gets erased (black dashed curve). A
more careful calculation would evaluate free-streaming effects by taking into account time
of horizon entry for density perturbations.

4.2.3 Oscillon formation and free streaming

In this subsection, we demonstrate that free streaming can be effective in suppressing
large-scale density perturbations even if the scalar field has strong self-interactions, and is
forming solitons (oscillons).?? Unlike previous subsections, here we do not include expansion
or spacetime dependent gravitational potentials in the evolution equations (though we do
include density perturbations in the field initial conditions). That is, the evolution is in
Minkowski space and we set a = a; = 1.

Initialization. As in section 4.2.1, we use the procedure described in section 3.2 to generate
a field ¢ with approximately scale-invariant large length scale initial density perturbations
as well as large amplitude small-scale perturbations. For this simulation, we let the initial
field be nonrelativistic, with spectrum P,(q) = AO(k« — q), k« = 0.1m and \/ﬁ =m. The
perturbation in field variances is given by (¢?(z)) = p2e/® and (p%(x)) = P2/ (@), with
\/ﬁ = 0.4 and ky = 0.03m. See figure 11 for the initial spectra. The shape of the initial field
and density spectrum here are similar to that of earlier sections (especially section 4.2.1), but

220scillons are spatially localized, exceptionally long-lived, time-periodic configurations of the field, held
together by attractive self-interactions countering gradient related dispersion of the field [80-86].
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Figure 10. Same as figure 6, but now field evolution includes time-dependent gravitational potentials
in the simulation. The left panel shows the fit of the density spectrum at a/a; = 60 using the
ansatz (4.22). The right panel shows the comoving free-streaming length kg ! versus scale factor
a, obtained by fitting the density spectra from the simulation (orange curve) and by the analytic
prediction (solid and dotted black curve) (4.16). The dotted black curve gives the free-streaming
length calculated after the density perturbations have grown initially; more specifically, the lower
boundary of integration in (4.16) is set to am when a = 3.3a;, just after horizon crossing for all
relevant modes. The solid black curve is the case where free-streaming length is calculated from the
initial time a = a;.

now the field is nonrelativistic from the beginning. Nevertheless, the initial conditions here

allow for qualitative comparison between cases with and without strong self-interaction.??

Evolution. We use the monodromy potential given by V() = m?M? [W — 1} to
evolve a field with initial large length-scale density perturbations in a Minkowski background.
We take M = 30m. The size of the box is L = 768/m. The simulation runs from mt = 0 to
mt = 12500. We found that oscillons form, and free streaming suppression occurs.

See figure 12 for evolution of the field spectrum. Although there is no gravitational
interaction, the presence of terms beyond (? in the potential V() ensures coupling of
modes. This coupling leads to an extra growth of field power at around g = few x 0.1m,
which is roughly linked to the inverse scale of the oscillons. In an expanding universe, the
oscillons would maintain a fixed physical size (i.e. their spatial extent does not expand
with the universe), and as a result the oscillon related peak would move rightwards (in
terms of comoving momenta) as the universe expands. Furthermore, the amplitude of initial

ZNote that these initial conditions are not identical to those in [87] or [88], where oscillon formation proceeds
via parametric resonance from an approximately homogeneous field (or [89, 90], where multiple fields are
involved). Nevertheless, we expect similar features to arise in both simulations, including a peak, a white noise
tail, and a scale invariant adiabatic part soon after formation of oscillons. A detailed comparison between
these initial conditions and subsequent evolution is beyond the scope of this work.
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Figure 11. Initial power spectrum for the field ¢, density contrast § and f (a proxy for the initial

gravitational potential). The field has significant self-interactions, and will lead to the formation of
oscillons.
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Figure 12. Evolution of the field spectrum when the field has attractive self-interactions. This
simulation does not include expansion or time evolving gravitational potentials. The enhancement at
the highest k-modes is due to formation of oscillons driven by self-interactions in the field.

conditions peak (at k.) would redshift downwards with time, leaving the oscillon related
peak gose/a ~ (oscillon size) ™ to dominate the spectrum.

See figure 13 for evolution of the density spectrum. Again, notice the generation of a new
peak at k ~ 0.5m (initial peak is closer to 0.1m). This peak is due to the large over-densities
§ > 1 resulting from oscillon formation.? In an expanding universe, this peak will move to
the right (if plotted in terms of comoving k), because the oscillons maintain a fixed physical
size. The low-k part (k < few x 1072m) of the density spectrum changes slowly, with free
streaming suppression visible towards the end of the simulation. Once again, free-streaming
reveals more of the white-noise density power spectrum over time.

24These are, however, subhorizon objects and not close to black hole formation [88, 91].
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Figure 13. Like in figure 5 and figure 9, the left panels are the overdensity spectra A%(k) over
time, and the right panels are the corresponding snapshots of §. Oscillon formation and persistence
is responsible for the large peak around k£ = 0.7m in the density spectrum, and are easily seen in
the 0 snapshots from the circular orange objects. One can see from the left panels that the initial
scale-invariant (low-k) part of the spectra are suppressed over time, and only a k% part remains in the
end. Unlike earlier figures in this paper, expansion and local gravitational potentials are not included
in the evolution equations for these simulations, but strong non-gravitational self-interactions are
included.

The snapshots in figure 13 provide further insights on the oscillons. In the snapshots,
one can see oscillons (seen as quasi-circular orange regions after the first snapshot) forming
and moving rapidly through the box. Moreover, in the second and third snapshots, the
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formed oscillons are clearly aligned with the initial high density regions, whereas in the
fourth snapshot they are randomly distributed in space. This change is due to the motion
of the oscillons. Using the quasi-particle picture in the introduction (with oscillons being
the quasi-particles here), we intuitively expect that the random velocities of the oscillons
contribute to the free streaming suppression at low k also. Using the animation of the slices,
we found that the solitons typically have speeds O(0.1) x k./m. For some solitons, the
velocity could be as high as O(k./m). In an expanding universe, these velocities would of
course redshift as the universe expands.

Qualitatively similar motion of oscillons/solitons was also seen in [53], where the formation
of solitons (starting with an almost homogeneous condensate) was driven by non-gravitational
self-interactions of the field; however, the evolution also included expansion and self-gravity
of the field — we leave a detailed investigation of soliton velocity distribution and comparison
to [53] to later work. A comparison is also warranted in the cases discussed by [92-95] that
consider the impact of self-interactions on structure formation in axions. Also note that
free-streaming effects from the decay of oscillons was considered in [96], which is an additional
effect (at late times) not analysed in the present work.

5 Future directions

There are a number of avenues to pursue which go beyond the present work. The three
key directions we have in mind include:

Including self-gravity. In the present work we have ignored the self-gravity of the ¢
field. While this is reasonable deep within radiation domination, as we get closer to matter
radiation equality, self-gravity becomes increasingly more important. Crudely speaking,
one can estimate that once p(a)\/A3(k,a) > p,(a), /A%W(k, a), ignoring self-gravity is no
longer a reasonable assumption. Note that this is a scale-dependent statement, and will
likely be satisfied first near the peak of the density spectrum. This can lead to formation of
gravitationally supported solitons and miniclusters [15, 52, 97-99]. Moreover, the oscillatory
nature of the gravitational potentials due to radiation likely makes self-gravity important at
an even earlier scale factor. Of course, for detailed understanding of the growth in the density
contrast, care is needed in taking into account the Jeans scale, bulk velocities associated
with the field, and effective velocity dispersion in the system.

Including self-gravity is conceptually straightforward. One simply has to solve a Poisson
equation to calculate the effect of the scalar field and radiation components on ¥. A lattice
code such as the one used in [100] can be used here so as to include perturbations in both
radiation and in the field itself. The added computational cost include additional Fourier
transforms and energy density computations for the r.h.s. of the Poisson equation.

Computational cost can be reduced by employing the non-relativistic approximation. In
the above approach we still solve the full Klein-Gordon equation in a perturbed spacetime,
so the evolution keeps track of oscillations on timescales of 27/m. By the time self-gravity
is relevant, the field is typically highly non-relativistic, hence keeping track of these fast
oscillations is not completely necessary. Instead, we can adopt the non-relativistic Schrodinger-
Poisson approach, where we keep track of the slowly varying dynamics only.
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Explicitly, writing ¢(t,x) = (2m) ™2 [1(t,£)e ™™ + c.c] and assuming |9y)| < |maf|,

|0: V| < |m¥|, and H/m, |aH/V| < 1, we obtain the Schrodinger-Poisson system
2 2
i [aﬁ?’ﬂ P = —%erw, % = 47G [m (¢*¢—W> +ﬁ,y(5,y—i—...} . (5.1)

where 3H? = 87G ([¢|2 + P+ ...) and where ... can include baryons, neutrinos, etc. These
equations will have to be supplemented by equations for the perturbations in radiation,
baryons, neutrinos, etc. The relevance of the matter content will depend on the era under
consideration. Note that 92 # 0 even though v has no homogeneous mode. That is, there
is a homogeneous mode for mass density even though there is no homogeneous field. In
upcoming work this is the approach we intend to take for including self-gravity of the field
at sufficiently late times during radiation domination, all the way into and through matter
domination.?® It is possible to include non-gravitational /non-minimal self-interactions in
this picture as well (e.g. [53, 103-107]).

The initial conditions for this non-relativistic treatment can be taken as the final result
of our present work. The results for ¢(¢,x) and $(t, ) obtained here (after k,/am < 1),
can be translated to ¢ (which is a complex field) as follows:

Ot @) ~ \/f [cp(t,:c) + %@(t, ). (5.2)

One can also start with the non-relativistic field and set the initial conditions using a
modified version of the procedure outlined in section 3.2.1, so that appropriate density and
velocity perturbations on sufficiently large (but not necessarily superhorizon) length scales
are included. We will present details in an upcoming work.

Vector, Tensor fields and multiple scalar fields. For multiple scalar fields ¢;(t,x)
(1t = 1,2...N), the energy density in each field as well as the mass m for each field can
be different. This allows much richer possibilities for the isocurvature peak and the effect
of free-streaming. There is a significant amount of literature motivating the existence of
dark matter being made up of multiple fields, and an exploration of their phenomenology.
For example, see [108-110].

Similarly, instead of multiple scalars, we can also consider vector field (s = 1) or tensor
field (s = 2) dark matter, which has N = 2s+1 components. Production mechanisms and self-
interactions can potentially favor an initial condition with asymmetry between different field
polarizations or helicities, which would then likely be erased by gravitational clustering [111].
The effects of both the initial isocurvature peak as well as free-streaming suppression would
again be worth investigating for s > 0 fields. For existing work on small-scale structure in
such dark matter, see [111-118]. Also see [119] for the cases with non-minimal coupling to
gravity, and [120-123] for including non-gravitational self-interactions.

Detailed models. In this work, we have used some toy spectra of fields and their derivatives
at time t; for initial conditions. Realistic models will give different spectra depending on

25A careful derivation, including all the leading order corrections (in the small quantities) is provided
in [101, 102].
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the underlying dynamics. For example, the spectra can arise from parametric resonance
transferring energy from a parent field to a daughter dark matter field (e.g. [74, 75, 124-128],
from gravitational production [129, 130], or from topological defects. Production of axions
and dark photons from defects can have particularly rich phenomenology [16, 18, 131-134].
While these avenues have been pursued before for understanding the nonlinear dynamics
on subhorizon scales, the impact of free-streaming on large length scale structure has rarely
been addressed. It would be useful to revisit these topics, in particular by employing our
algorithm for initializing the adiabatic density perturbations on large length scales.

6 Summary

Light dark matter fields produced after inflation can have observationally accessible con-
sequences due to a free-streaming suppression and/or a white noise enhancement of the
density fluctuations in the field.

Using lattice simulations of dark matter fields, we numerically investigated the impact of
free streaming of dark matter fields on the dark matter density power spectrum, as well as
the general evolution of the adiabatic and isocurvature density perturbations (in the radiation
dominated era). To this end, we developed a framework for generating appropriate initial
conditions for the DM field in the early universe, and evolved the field numerically including
the impact of expansion and gravitational potentials on the field.

Motivated by post-inflationary production mechanisms, we considered an initial field
configuration without a spatially homogeneous mode. The field configuration is dominated
by small-scale, subhorizon field variations. The small-scale field variations result in a white
noise isocurvature spectrum in the density perturbations. However, we also need to make
the field configurations consistent with large length scale, roughly scale-invariant adiabatic
density perturbations.

For a general initial field power spectrum which peaks on subhorizon scales, we provide
a systematic algorithm to achieve consistency with adiabatic density perturbations
on large length scales. We achieve this by initializing the field as a Gaussian random
field albeit with spatially-dependent variances. Our scheme works for relativistic and
non-relativistic fields.

This initialized field includes both the small-scale isocurvature density perturbations,
and large length scale adiabatic ones. To the best of our knowledge, a systematic numerical
framework for initial conditions for such DM fields has not been discussed before in the
literature.

In section 4.2.2, we used a lattice simulation to evolve the scalar field in an expanding
universe with spacetime dependent metric perturbations. The lack of a homogeneous field
mode and presence of gravitational potentials, complicates the analytic treatment of the
evolution. Our lattice simulation results in section 4.2.2 are consistent with approximate
analytic predictions in [5]. Specifically, we observed the following:
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Adiabatic density perturbations see initial growth after horizon entry, followed by
free-streaming suppression. This free-streaming suppression reveals more of the white
noise isocurvature perturbations at progressively larger length scales. We also confirmed
the lack of evolution of the white noise isocurvature density spectrum during radiation
domination.

One can derive mode-by-mode WKB solutions when the modes are deep within the
horizon and the gravitational potential can be neglected. We use this approach to extrapolate
our simulation results to significantly later times.

In section 4.2.3, we also used lattice simulations to study the impact of strong self-
interactions on free-streaming. We found oscillon formation and motion, and verified similar
free-streaming effects in the density spectrum: suppression of the initial adiabatic spectrum
and non-evolution of the white noise isocurvature spectrum.

Finally, we described how our results can be used as initial conditions for late time
simulations when the self-gravity of the field is important and the fields have become sufficiently
non-relativistic. We intend to pursue the growth of structure around and after matter-radiation
equality using a Schrodinger-Poisson system. The evolution of the isocurvature part, as well
as the impact of free-streaming will be the key novelty — eventually providing more accurate
modelling of such warm, wavelike dark matter in the late universe.
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A Energy density, pressure and equation of state

Let us assume that the density and pressure are dominated by subhorizon scalar field modes.
Then using p and p defined in eq. (2.7), the spatial averages (ignoring metric potentials),
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are given by

[;PW (t> Q) -

- [[fmo-

If P, = wgﬂgo where wg = ¢*/a® + m?, then
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_ q — q
p0) = [ sraPoltia), mozl( +m>mwm. (A-3)
If the density is dominated by relativistic modes so that m? can be ignored, we get p/p — 1/3,

whereas if it is dominated by non-relativistic modes, we get p/p — 0, as expected. It is
also worth noting that

2
p®+ﬂﬂj/@;+m>RN&) (A.4)

Using the form of the initial field spectrum Ai(ti, q) = ¢/ (27*)P,(ti, q), in (3.1), we have

11 k./a;m)?
plti) = m*Ag(h.) (a + 1/) e 2(a—{)(1 J)r 21/—1)] ’
_ k2 1 1 1
plti) = 3a2 3a220(k) (a + u) (1—2a"1)(1+20°1) (A5)
wiey =20 _ 1 (ke fasm)” |
Yp(t) 3 (kkJaym)? 4 (1 — 2a71) (1 + 2071
o(t) = g (ks /a;m)?(1 — 2o~ 1 (1 + 207 1) H;

3 ((ke/aim)? + (1 — 207 1) (1 + 2v71))*
The kernel. It is possible to evaluate the Kernel function in section 3.2.1 analytically for

the initial field spectrum given by eq. (3.1):

K\ /Po(k) [ 2 V43 3 v+T  (ke)?
)1 2

[P} s — V= -«
212 (V+3 4 2 4 4 ) ( ) (A.ﬁ)

+ cos (éllw(a + 1)) r (1 ; a) (k*r)a;&} .

For a < 3, the kernel function diverges as » — 0. Even for a > 3, the function falls

K(r)=

rapidly beyond k,r = 1.

B WKB solutions, with long wavelength metric perturbations

At linear order in the metric perturbations, the evolution of the field is governed by (¥ = ®)

1 L1
gat[ai”u —40)¢] — ?v%p +m?(1 —2¥)p = 0. (B.1)
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First, we will assume that the gradients in the metric potentials are negligible. We will
also assume that the metric potentials are varying slowly in time. In “Fourier” space,
p(t,x) = [, ¢q(t; U)eid® the equations of motion become

2
la,f[Agbq] + LA +49) +m2(1+20)| o =0  A=dd(1—4V), (B.2)

A a2
We can eliminate the first time-derivative in this equation by defining x4 = \/Zcpq. Then,
finding the leading order WKB solution for the x4 equation and then converting back to
g, at leading order in the WKB approximation, the solutions are

—i [fw(t) o [farw()
) = e (U)o 4 () —— (B.3)
3011( ) q( ) \/m q( 2 Aw
where ) ) )
9 q 9 1d 1 (d )
== 40 U) — —— — == ) B4
w a2(1+ ) +m~(1+207) 2dt21nA 1 dtlnA (B.4)

The factor of v/2 in the denominator of the WKB solutions is an arbitrary choice at this
point. The reality of ¢ implies that py = ¢_g, which in turn implies that (cj;)* = c_4 and
(cq)" = cqu. In what follows, we drop the log derivative terms which are of order H2. This
means that either we are operating in the subhorizon or in m > H regime.

The solution can be written in terms of sines and cosines as follows:26

Pq(t; V) = Fq(¥) fy(t; ¥) + Gq(V)gq(t; V) , (B.5)

where

Fo(0) =g (0) + ¢4 (0),  Gq(¥) =i(cg (¥) — ¢ (V)
1 t ot
fo(t; W) = mcos/ w(t; V), gqt; V) = \/msm/ w(t'; ).

We will assume the following for the random variables Fy; and Gg:

(B.6)

(Fy(0)Ey (0))
(GaFy) =

(2m)%0p(q — @) Pr(q; V), (Gq(V)Gy (V) = (27)6p(q — q')Pg(q; ¥),
. (B.7)

Note that this assumption needs to be revisited because we are assuming spatial homogeneity
here apart from the ¥ dependence. In what follows we will assume that Pp = Pg = 2P.27
The correlation function for the time-dependent field is then given by

(gt U)gtu (6 1) = (27)%0p(q — @) P, (tq: ) where P (t,q; ¥) = iﬂ(q; v). (B.S)

Similarly

(Bqlt W)y (5:0)) = (27)*0p(a = 4Pt ;W) where  Py(t,q; %) &~ SP(g;9). (BY)

26Note that the g, here is different from the one in the main text, it differs by a factor of w.
*"Note that these conditions imply: ((cf + cg)(cj + cp)*) = ((cg — cd)(cp — b)) = (27)°P(q)dp(q — p)
and ((cg — cg)(ch + ¢ )*) = 0. These can be satisfied if (cf (c;)*) = (2)°P(q)dp(q — p) and (cjct,) = 0.
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In the last line we assumed that w™' is the fastest time-scale, so that f, ~ —wg, and
gq = wfy. We can now use this in the energy density expression and take the expectation
value of the field to get

(p) =

(B.10)

The expectation values

2 2 2
.2 w (V(p) > 1 q 9, 9 / 1 9
~ —P(qg: ¥ — — X Pl(g:T _ Pla- U
<SO > /q Awi(q, >7 < a2 q Aw a27(q7 )’ m <90 > q Awm 7((], )7
which yields (to leading order in metric potentials)
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a3 ; q/a f(Q7 )

Note that we have not made any assumptions about radiation or matter domination here.

2
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1
* q?/a? + m?

4¢*/a® + 3m? ]

We only assumed that gradients in the metric potentials can be neglected and that they are
slowly varying in time (appropriate for superhorizon scales).

C Numerical details

In section 4, we provided the results for three lattice simulations, addressing the free streaming
for a Klein Gordon field, a scalar field in external gravitational potential, and a scalar field
that forms oscillons due to self-interactions. We describe the details of our numerical method
in this appendix.

We first describe our scheme for spatial discretization. The simulations are all carried
out on a 3D lattice with N3 grid points, where N = 384. For the free field simulation and the
external gravity simulation (section 4.2.1 and 4.2.2), we set the box volume to be L3, where
mL = 307.2, and the resolution is mAz = mL/N = 0.8. To validate our numerical scheme,
we also ran two extra external gravity simulations, one with N = 256, mAx = 0.8, and
another with N = 256, mAx = 1.2, and found no qualitative difference in the power spectra
compared to the N = 384, mAxz = 0.8 one. For the oscillon simulation, we take N = 384,
mL = 768, or mAxz = 2. Given that the typical size of the oscillons in our simulations is
M Logcillon = 19, each oscillon is resolved by around 8 lattice points. Laplacians are evaluated
using finite difference on the standard 7-point stencil.

For time evolution, we use Runge-Kutta 4 for all simulations. For the free field simulation
and the external gravity simulation, we use time step At = 0.1m™! to evolve from mt = 10
to mt = 36000. For the oscillon simulation, we use At = 0.05m ™! to evolve from mt = 0
to mt = 12500. We found that the total energy is well-preserved for our given time steps.
For the free field simulation and the external gravity simulation, the total energy a®p fell by
around 25% from mt = 10 to mt = 1510, and fell less than 1% from mt = 1510 to mt = 36000.
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This behavior is expected, since the energy density should fall as a=30*%) with w > 0 when
the field is still relativistic, and fall as a=3 after the field becomes nonrelativistic. Note that
for the simulation with gravity, the time-varying gravitational potential ¥ should also affect
energy conservation, though the effect is not discernible. Finally, for the self-interaction
simulation, the total energy dropped by around 0.5% throughout the simulation.

In order to speed up the simulation with external gravity, we apply two approximations
on eq. (2.6). The first approximation is linearization of the exponentials, e.g. etV ~ 1420,
The other approximation is to use a coarse grid to store the gravitational potential ¥. This is
a valid approximation since ¥ has a spectrum cut off at around k = aH < kyy (see eq. (2.3)),
and contains negligible small length scale modes throughout the simulation. More specifically,
we use a coarse grid with grid size M3 and M = 128 = N/3. Lattice site (a, b, c) on the coarse
grid corresponds to site (3a, 3b,3c) on the full grid. When evaluating ¥ on the full grid, we
use nearest neighbor interpolation, such that the values of ¥ at site (3a +=1,3b+1,3c+ 1)
on the full grid are taken to be the value at site (a,b,c) on the coarse grid. The difference
in norm between the interpolated ¥ and the actual ¥ is ||[Wiperpolated — ¥||5/[|¥]l, = 0.05
at t = t;. This approximation significantly reduces the time spent on the computation
Ry +— Vi — ¥(x), which is done at each RK4 stage. We checked the validity of the above
approximations by comparing the simulation against a shorter one without approximations.
We found that the evolution of field and density spectra in the two simulations are almost
identical, except for a high-k tail in the field spectrum at around k/a;m = 2. See figure 8.
This tail only appears when we use the coarse grid approximation on ¥, and is likely an
artifact of the interpolation scheme.

We use binning to produce the power spectrum plots (e.g. figure 5 and 9) from simulation
outputs. More specifically, we bin spectral power into fixed logarithmic intervals of size
Alnk = 0.12, with the bins given by In(k/kir) € [nAlnk, (n + 1)Alnk) for n > 0. For
each bin, we sum the Fourier powers | fk]2 and divide by the mode counting factor to get
the average power Y ey | fx]?/(number of k’s in bin). We also associate with each bin a
wavenumber kpi,, which is simply the lowest-k in the bin. The points on the spectra are
then given by Pr(knin) = (average power of bin). The spectra are usually jagged at low-k
and smooth at high-k, since bins at low-k contain only a small number of modes and thus
have large ensemble variances. Some low-k bins are in fact empty; those bins are dropped.

Finally, we comment on our numerical implementation. We wrote CUDA code and ran our
simulations on a RTX 3060 Ti graphics card. The use of GPU led to more than 10 times speed-
up compared to our CPU implementations. Specifically, the free field simulation took 6 hours,
averaging to 0.06s per RK4 time step. The external gravity simulation took 8.7 hours, aver-
aging to 0.087s per RK4 time step. The self interaction simulation took 6.8 hours, averaging
to 0.1s per RK4 time step. The link to our code is https://github.com/hypermania/Cosmic-
Fields-Lite.
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D  Full expression for the density 2-point function

The “short” contribution to the density 2-point function (p(x)p(y)) is:
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In Fourier space, the above terms are given (to first order in V) by
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(D.2)

o(a)
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1

[ e imt (plaey))’

)

:;m4/(1 [(@m)%n(k — k)P, (a) P, (K + q])

+2(f)r s/ Po(la + KI)Py(lg + K/ )Py(q)] - (D.6)

For k = k', the first order terms in ¥ are all zero since f; = 0 and ¥ = 0. In this case
the sum can be collected as

short
S (k)

_ / eik~x—z‘k’~y§/()s/‘)hort) (w7 y)
m?y

— (27)350(k — k’)% /

[P¢<q>P¢<|k+q|> + (w4 2D
q

a?

X (1+0(x1/2)) . (D.7)

Note that the higher order W correction is given as a 1+ O(¥?) factor instead of a O(¥?)
term. This factor arises since the ¥ dependence in 5,(;2hort)(a:,y) comes in the form (1 +

a1¥)(1 4+ V). .., and we know that the first order terms in ¥ vanish here.

E Free-streaming transfer function

To get a more concrete understanding of free-streaming transfer function, let us consider
a simple scenario.

Let us begin with a phase space distribution function f(¢;,«,q). In absence of any
interactions, for non-relativistic particles in Minkowski Space, we have:

d
Vos+ L vr=0=jt.eq) =tz L0—t)q. (E1)

where A (t) = (g/m)(t —t;) and we used & = g/m. If free-streaming is the only dy-
namics, then f(¢,x,q) = f(0,2 — Agx(t),q). A second assumption is that f(t;,x,q) =
n(ti, x)F(ti, q)/n(t;). Note that n(t;) = [, F(ti,q). The connection to the field picture is
simply via the recognition that for the nonrelativistic particles, the field power spectrum
P,(ti,q) < F(t;,q).*® In what follows, we evaluate the time-evolution of the spatial number
density perturbations in presence of free-streaming. Recall that:

n(t,@) = / f(t.@,q). (B.2)

28T a different context, for a detailed exploration of connection between phase space evolution in the particle
picture and non-relativistic field picture, see [135, 136].
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In Fourier space:

n(tk) = [ e st ),

q,x
= e*ik'wf(O, x— N ts(t),q) where Xgg(t) = (g/m)(t —t;),

q,r
:/ e kvemik X f(t; y q) where y =z — Agg(t),
q,Y
= / e WY MnD f(t y q) because k-As(t) =q-Apss(t),  (E.3)
q,Y
= [ fti k).
q

= / e*i‘I'Ak,fs(t)f(t“ q),
] q

i k)T(t, k) where Ti(t,k) =7 (t:) / e MO F(t, q).
q

Thus, we have a simple to understand result:
n(ta k) = n(ti; k)Tfs(t7 k)v (E4)

where the transfer function Ti(t, k) is simply the Fourier transform of the initial phase space

distribution function provided in (4.13), with the free streaming displacement (for ¢ = k) being

the conjugate variable to q. The angular integration can be carried out if F(t;,q) = F(t;,q).

This would yield the sin(k/qss)/(k/qss) factor in the transfer function, where g = )\;fls(t).

Note that we assumed that the particles were already all non-relativistic at t = ¢;.
Returning back to position space

n@@:/amm%m%@mz/ﬁmmmﬂ@—m, (E.5)
k T
where in position space, free-streaming is captured by the smoothing kernel:
A@@my:/ahwgum. (E.6)
k

For the simple case that ¢2/(272)F(t;, q) = A(q/k«)3O (ks — q), we can evaluate this explicitly
to gain some intuition:

Kau@_rpzmafpau—kyw@—my (E.7)

This smoothing function is a top hat function with a width [k (¢)]7!, where [k} ()] =
ko/m(t — ;).

Including expansion. Now, for an expanding universe g/m — q/a(t)m, and x is comoving,
and the comoving free-streaming length A, g(t) = (q/m) fttl dt' /a®('). With the interpretation
that number densities are comoving as well, everything else carries through. Again, we have
assumed that all particles are non-relativistic at t;.

More generally, by using the Boltzmann equation, one can include the effects of bulk
velocities, as well as growth of density perturbations due to gravitational clustering into
account.
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