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By solving exactly the Faddeev equations for the bound-state problem of three mesons, we demonstrate 
that current theoretical predictions pointing to the existence of a deeply-bound doubly bottom axial 
vector tetraquark lead to the existence of a unique bound state of three B mesons. We find that the 
B B∗ B∗ − B∗ B∗ B∗ state with quantum numbers (I) J P = (1/2)2−, Tbbb , is about 90 MeV below any possible 
three B-meson threshold for the reported binding of the doubly bottom axial vector tetraquark, Tbb .

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

There is a broad theoretical consensus about the existence of 
a deeply-bound doubly bottom tetraquark with quantum num-
bers (i) jp = (0)1+ strong- and electromagnetic-interaction sta-
ble [1–10]. In the pioneering work of Ref. [10] it was shown that 
Q Q q̄q̄ four-quark configurations become more and more bound 
when the mass ratio M Q /mq increases, the critical value for bind-
ing being somewhat model dependent.

Lattice QCD calculations find unambiguous signals for a stable 
jp = 1+ bottom-light tetraquark [1]. Based on a diquark hypothe-
sis, Ref. [2] uses the discovery of the �++

cc baryon [11] to calibrate
the binding energy in a Q Q diquark. Assuming that the same rela-
tion is true for the bb binding energy in a tetraquark, it concludes 
that the axial vector bbūd̄ state is stable. The Heavy-Quark Sym-
metry analysis of Ref. [3] predicts the existence of narrow doubly 
heavy tetraquarks. Using as input for the doubly bottom baryons, 
not yet experimentally measured, the diquark-model calculations 
of Ref. [2] also leads to a bound axial vector bbūd̄ tetraquark. Other 
approaches, using Wilson twisted mass lattice QCD [4], also find a 
bound state. Few-body calculations using quark–quark Cornell-like 
interactions [5,6], simple color magnetic models [7], QCD sum rule 
analysis [8], or phenomenological studies [9] come to similar con-
clusions.

The possible existence of deuteron-like hadronic molecular 
states made of vector–vector or pseudoscalar–vector two-meson 
systems was proposed in Ref. [12] in an exploratory study sug-
gesting the deusons, two-meson states bound by the one-pion 
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exchange potential. This scenario of meson–meson stable states 
bound by some interacting potential, has later on been fre-
quently used to draw conclusions about the existence of hadronic 
molecules [13–15] (see Refs. [16] for a recent compendium). The 
constituent quark and the meson–meson approaches to hadronic 
molecules must be equivalent [17], although, as will be discussed 
below, to get the results of the constituent quark approach would, 
in general, require a coupled-channel meson–meson study [18].

It is also worth to emphasize that when a two-body interac-
tion is attractive, if the two-body system is merged with nuclear 
matter and the Pauli principle does not impose severe restrictions, 
the attraction may be reinforced. We find the simplest example of 
the effect of additional particles in the two-nucleon system. The 
deuteron, (i) jp = (0)1+ , is bound by 2.225 MeV, while the triton, 
(I) J P = (1/2)1/2+ , is bound by 8.480 MeV, and the α particle, 
(I) J P = (0)0+ , is bound by 28.295 MeV. The binding per nucleon 
B/A increases as 1 : 3 : 7. Thus, a challenging question is if the ex-
istence if a deeply bound two B-meson system1 could give rise to 
bound states of a larger number of particles. As it was shown in 
Ref. [19] the answer is by no means trivial, because when the in-
ternal two-body thresholds of a three-body system are far away, 
they conspire against the stability of the three-body system.

2. Color dynamics

As it has been stated above, results based on meson–meson 
scattering or a constituent quark picture should be equivalent, 
provided that, in general, a coupled-channel meson–meson ap-

1 The binding energy for the axial vector doubly bottom tetraquark reported in 
Refs. [1–10] ranges between 90 and 214 MeV.
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Table 1
Different two-body channels (i, j) contributing to 
the (I) J P = (1/2)2− B B∗ B∗ − B∗ B∗ B∗ system.

Interacting pair (i, j) Spectator

B B∗ (0,1) B∗
(1,1)

B∗ B∗ (0,1) B∗
(1,2)

B∗ B∗ (1,2) B

proach would be necessary to reproduce the constituent quark pic-
ture [17,18]. To be a little more specific, let us note that four-quark 
systems present a richer color structure than standard baryons or 
mesons. Although the color wave function for standard mesons and 
baryons leads to a single vector, working with four-quark states 
there are different vectors driving to a singlet color state out of 
colorless meson–meson (11) or colored two-body (88, 3̄3, or 66̄) 
components. Thus, dealing with four-quark states an important 
question is whether one is in front of a colorless meson–meson 
molecule or a compact state (i.e., a system with two-body colored 
components). Note, however, that any hidden color vector can be 
expanded as an infinite sum of colorless singlet–singlet states [17]. 
This has been explicitly done for compact Q Q q̄q̄ states in Ref. [18].

In the heavy-quark limit, the lowest lying tetraquark configu-
ration resembles the helium atom [3], a factorized system with 
separate dynamics for the compact color 3̄ Q Q nucleus and for the 
light quarks bound to the stationary color 3 state, to construct a 
Q Q q̄q̄ color singlet. The validity of this argument has been math-
ematically proved and numerically checked in Ref. [18], see the 
probabilities shown in Table II for the axial vector bbūd̄ tetraquark. 
It has been recently revised in Ref. [6], showing in Fig. 8 how the 
probability of the 66̄ component in a compact Q Q q̄q̄ tetraquark 
tends to zero for M Q → ∞. Therefore, heavy–light compact bound 
states would be almost a pure 3̄3 singlet color state and not a sin-
gle colorless meson–meson 11 molecule. Such compact states with 
two-body colored components can be expanded as the mixture of 
several physical meson–meson channels [17], B B∗ and B∗B∗ for 
the axial vector bbūd̄ tetraquark (see Table II of Ref. [18]) and, thus, 
they can be also studied as an involved coupled-channel problem 
of physical meson–meson states [20,21].

Our aim in this work is to solve exactly the Faddeev equations 
for the three-meson bound state problem using as input the two-
body t-matrices of Refs. [5,18–20], driving to the axial vector bbūd̄
bound state, Tbb , as an involved coupled-channel system made of 
pseudoscalar–vector and vector–vector two B-meson components. 
We show that for any of the recently reported values of the Tbb
binding energy [1–10], the three-body system B B∗B∗ − B∗B∗B∗
with quantum numbers (I) J P = (1/2)2− , Tbbb , is between 43 to 
90 MeV below the lowest three B-meson threshold.

3. The three-body system

Out of the possible spin–isospin three-body channels (I) J P

made of B and B∗ mesons, we select those where, firstly, two-body 
subsystems containing two B-mesons are not allowed, because the 
B B interaction does not show an attractive character; and, sec-
ondly, they contain the axial vector (i) jp = (0)1+ doubly bottom 
tetraquark, Tbb . The three-body channel (I) J P = (1/2)2− is the 
only one bringing together all these conditions to maximize the 
possible binding of the three-body system.2 We indicate in Table 1

2 Note that the three-body channels with J = 0 or 1 would couple to two 
B-meson subsystems where no attraction has been reported [1–10], whereas the 
J = 3 would not contain a two-body subsystem with j = 1, the quantum numbers 
Fig. 1. Diagramatic Faddeev equations for the three B-meson system.

the two-body channels contributing to this state that we examine 
in the following.

The Lippmann–Schwinger equation for the bound-state three-
body problem is

T = (V 1 + V 2 + V 3)G0T , (1)

where V i is the potential between particles j and k and G0 is the 
propagator of three free particles. The Faddeev decomposition of 
Eq. (1),

T = T1 + T2 + T3 , (2)

leads to the set of coupled equations,

Ti = V i G0T . (3)

The Faddeev decomposition guarantees the uniqueness of the so-
lution [22]. Eqs. (3) can be rewritten in the Faddeev form

Ti = ti G0(T j + Tk) , (4)

with

ti = V i + V i G0ti , (5)

where ti are the two-body t-matrices that already contain the cou-
pling among all two-body channels contributing to a given three-
body state, see Table 1. The two sets of equations (3) and (4)
are completely equivalent for the bound-state problem. In the 
case of two three-body systems that are coupled together, like 
B B∗B∗ − B∗B∗B∗ , the amplitudes Ti become two-component vec-
tors and the operators V i , ti , and G0 become 2 × 2 matrices and 
lead to the equations depicted in Fig. 1. The solid lines represent 
the B∗ mesons and the dashed lines the B meson. If in the second 
equation depicted in Fig. 1 one drops the last term in the r.h.s. 
then the first and second equations become the Faddeev equations 
of two identical bosons plus a third one that is different [19]. Sim-
ilarly, if in the third equation depicted in Fig. 1 one drops the last 
two terms this equation becomes the Faddeev equation of a sys-
tem of three identical bosons since in this case the three coupled 
Faddeev equations are all identical [19]. The additional terms in 
Fig. 1 are, of course, those responsible for the coupling between 
the B B∗B∗ and B∗B∗B∗ components of the system.

of the deeply bound doubly-bottom tetraquark. The same reasoning excludes the 
I = 3/2 channels.
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Fig. 2. Mass of the three-body B B∗ B∗ − B∗ B∗ B∗ bound-state (I) J P = (1/2)2− Tbbb

(purple thick line), compared to the different three B-meson strong (blue solid 
lines) and electromagnetic decay thresholds (green dashed lines). (For interpreta-
tion of the colors in the figure(s), the reader is referred to the web version of this 
article.)

4. Results

We show in Fig. 2 the results of our calculation. The blue 
solid lines stand for the different three B-meson strong decay 
thresholds of the B B∗ B∗ − B∗B∗B∗ system with quantum numbers 
(I) J P = (1/2)2− , that we have denoted by Tbbb . These thresh-
olds are B∗B∗B∗ , B B∗B∗ and Tbb B∗ , where Tbb represents the 
axial vector (i) jp = (0)1+ doubly bottom tetraquark. The green 
dashed lines stand for the possible three-B meson electromag-
netic decay thresholds, B B B∗ and B B B with quantum number 
(I) J P = (1/2)1− and (I) J P = (1/2)0− , respectively. Finally, the 
purple thick line indicates the energy of the Tbbb state, that ap-
pears 90 MeV below the lowest threshold. The results shown in 
Fig. 2 correspond to the binding energy of the Tbb axial vector 
tetraquark obtained in Ref. [1].

There is also a baryon–antibaryon threshold �bbb − p̄ clearly 
decoupled from the Tbbb , with a tetraquark–meson dominant com-
ponent driving to the three B-meson bound state, due to the 
orthogonality of the color wave function. The decay of the Tbbb
multiquark state 

∣∣�Tbbb

〉
, with a dominant tetraquark–meson color 

component,3 into a baryon (B1) plus and antibaryon (B̄2) is forbid-
den if the transition amplitude 

〈
B1 B̄2|T |�Tbbb

〉
vanishes. In princi-

ple T is the transition matrix (or S matrix) which is roughly eiH , 
but since 

∣∣�Tbbb

〉
is a true eigenstate of H , the transition ampli-

tude vanishes if the overlap 
〈
B1 B̄2|�Tbbb

〉
vanishes itself [24]. Since 

there are no experimental data for the �bbb mass and there is a 
wide variety of theoretical estimations (see Table 1 of Ref. [25]) 
it has to be calculated within the same scheme. For the binding 
energy of the Tbb axial vector tetraquark obtained in Ref. [1], the 
�bbb has a mass of 14.84 GeV. Thus, the �bbb − p̄ threshold would 
lie at 15.78 GeV, above the Tbbb state. Let us note that even if the 
�bbb − p̄ threshold would lie below the three B-meson energy, 
the Tbbb state will show up as a narrow resonance as recently 
discussed in Ref. [26], due to the negligible interaction between 
the �bbb and the p̄. The dynamics of this type of states would 
come controlled by the attraction in the three-body system and the 
channel made of almost non-interacting hadrons is mainly a tool 
for the detection. This is exactly the same situation observed in the 
case of the lower LHCb pentaquark P+

c (4380) [27] with a mass of 

3 This is in contrast to the analysis of Ref. [23] where baryon–antibaryon annihi-
lation into three-mesons is studied by simple quark rearrangement.
Table 2
Binding energy, in MeV, of the Tbbb (I) J P =
(1/2)2− B B∗ B∗ − B∗ B∗ B∗ three-body sys-
tem as a function of the binding energy, in 
MeV, of the axial vector tetraquark Tbb . The 
Tbbb binding energy is calculated with re-
spect to the lowest strong decay threshold: 
mB + 2 mB∗ − B(Tbb).

B(Tbb) B(Tbbb)

180 90
144 77
117 57
87 43

4380 ± 8 ± 29 MeV, that it is seen to decay to the J/� − p chan-
nel with a width � = 205 ± 18 ± 86 MeV, while the phase space 
is of the order of 345 MeV.

We have checked that the Tbbb exotic state remains stable for 
the whole range of binding energies of the axial vector tetraquark 
Tbb reported in the different theoretical studies [1–10]. Thus, we 
have repeated the coupled-channel three-body calculation for dif-
ferent binding energies of the axial vector tetraquark Tbb , start-
ing from the smallest binding of the order of 90 MeV obtained 
in Ref. [4]. The results are given in Table 2. It can be seen that 
the three-meson bound state Tbbb is comfortably stable for any of 
the binding energies of the axial vector tetraquark Tbb reported 
in the literature. If the binding energy of the Tbb state is reduced 
up to 50 MeV, the three-body system would have a binding of 
the order of 23 MeV that would lie already 19 MeV above the 
lowest B B B threshold, so that one does not expect any kind of Bor-
romean binding in this system. The situation is even worse in the 
charm sector, because the vector–pseudoscalar meson mass differ-
ence changes from 45 MeV in the bottom sector to 141 MeV in 
the charm sector, so that the D D D and D D D∗ thresholds would 
lie 282 MeV and 141 MeV below the D D∗ D∗ energy, respectively.

5. Summary

By solving exactly the Faddeev equations for the bound-state 
problem of three mesons, we demonstrate that the current the-
oretical predictions pointing to the existence of a deeply-bound 
doubly bottom axial vector tetraquark lead to the likelihood of a 
bound state of three B mesons. We find that the B B∗ B∗ − B∗B∗B∗
state with (I) J P = (1/2)2− , Tbbb , is about 90 MeV below any pos-
sible three B-meson threshold for the standard binding of the 
recently reported axial vector doubly bottom tetraquark, Tbb . It is 
important to note, as we have explained above, that this is the 
only three-body channel bringing together all necessary conditions 
about the two-body subsystems that allow to maximize the bind-
ing of the three-body system. In other words, this unconventional 
form of a three-body hadron is unique. The experimental search of 
these tetraquark, Tbb , and hexaquark, Tbbb , structures is a challenge 
well worth pursuing, because they are the first manifestly exotic 
hadrons stable under strong and electromagnetic interaction.

It is appealing that the stability of such hexaquark state with 
respect the lowest tetraquark–meson threshold was already antici-
pated in the exploratory study of Ref. [28] within a quark string 
model. Let us finally note that our discussion above could be 
extended to the charm sector, where the two-body bound state 
would lie close to threshold [21,29]. However, as we have noted 
above, going from the bottom to the charm sector there is a factor 
3 in the mass difference between pseudoscalar and vector mesons, 
what makes the coupled-channel effect much less important in the 
charm case than in the bottom one. Thus, one does not expect 
binding in the three-meson charm sector.
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