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This thesis discusses two separate questions within the field of gauge/gravity dualities.

The first is what is the gravity dual of a CFT state and it is based on work done in col-

laboration with my advisor, Prof. Skenderis, and which was presented in [1]. In particu-

lar, we develop a systematic perturbative construction of bulk solutions that are dual to

CFT excited states. The second question concerns four dimensional theories that admit

charged planar AdS black hole solutions carrying axionic charge and which can sup-

port additional scalar hair. More specifically, we discuss a number of analytic solutions

in which the axions have a linear profile in the boundary directions and the additional

scalar field satisfies mixed boundary conditions. We focus on the effect of these features

on the thermodynamics and dynamic stability of the solutions and we use our results to

study phase transitions between solutions with the same asymptotic charges and which

satisfy the same boundary conditions. These results are based on work done in collab-

oration with M. Caldarelli, I. Papadimitriou and K. Skenderis and which was presented

in [2].
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Chapter 1

Introduction

1.1 From the Holographic Principle to the AdS/CFT Correspon-

dence

The holographic principle states that the physics governing quantum gravity in a d + 1

dimensional volume of spacetime is encoded in a quantum field theory without gravity

defined on the d dimensional boundary. Each degree of freedom of the gravitational

theory can be holographic projected to a degree of freedom on the boundary in such a

way that the two theories are in fact describing the same physics.

The holographic principle is a deep and fundamental property of quantum gravity that

emerged from observations about black holes dating back to the early 70s. In 1972,

Bekenstein introduced the notion of black hole entropy [3] as a measure of inacces-

sibility of information about the interior of a black hole, in analogy to thermodynamic

entropy which is a measure of our ignorance about the microscopic configurations of a

system, when our knowledge is restricted to its macroscopic properties. Since the en-

tropy of any system must be non–decreasing, he asserted that the black hole entropy

is proportional to the area of its event horizon which had already been shown to be

non–decreasing by Christodoulou and Hawking [4, 5, 6].

About twenty years after Bekenstein’s area law for black hole entropy, ’t Hooft proposed

a radical interpretation for it. Combining black hole thermodynamics with ideas from

quantum mechanics he postulated that at Planckian length scales where quantum grav-

ity takes over, the world is not 3+1 dimensional but instead the observable degrees of

freedom live on a 2 dimensional surface that evolves in time [7]. Said differently, given

a closed surface in spacetime enclosing a quantum gravitational system, all information

contained in the interior of the surface can be holographically projected onto the sur-

face. Moreover, the theory of quantum gravity governing the interior or bulk physics

can be described by a gauge field theory on the boundary surface. This was not the

first time a gauge field theory description was proposed for a theory of quantum gravity

and vice versa. Klebanov and Susskind [8], and Thorn [9] discovered that string theory

1
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can be described by a 2+1 dimensional gauge theory. However, ’t Hooft’s result is much

stronger as it states that any theory of quantum gravity must be holographic.

This idea was further refined by Susskind [10] and many others (see for example [8, 9]),

especially in the context of string theory, and in 1997 the first concrete example of a

holographic theory of quantum gravity was proposed by Juan Maldacena [11]. By study-

ing the low energy limit of brane configurations in string theory and M–theory, Malda-

cena was led to the conjecture that string theory and M–theory on anti–de Sitter (AdS)

spacetimes times compact manifolds are dual to lower dimensional gauge field theories.

The gauge theories are defined on spacetimes conformal to the asymptotic boundary of

AdS and, for this reason, we say that they “live on the boundary” and refer to them as the

“boundary theory” and to string theory as the “bulk theory”. The duality between the two

theories implies that their degrees of freedom and dynamics are in one–to–one corre-

spondence. For each field on the gravity side of the duality there is a boundary operator

of the dual field theory and one can study the equations of motion of the bulk field to

learn about the boundary operator dynamics and vice versa.

The first and most famous example of the duality emerged from the study of N coin-

cident D3 branes in string theory and it states that type IIB string theory on AdS5 × S5

is dual to 4 dimensional N = 4 super–Yang–Mills (SYM) with gauge group SU(N) and

coupling constant gSYM. The SYM is a conformal field theory (CFT) which led to the term

AdS/CFT correspondence. This duality holds for all values of N , gSYM and gs, the string

coupling constant. As such, it provides a definition for the full quantum IIB string the-

ory as a lower dimensional non–gravitational theory. Although this is a very power-

ful result, its utilitarian power is limited because of our limited understanding of string

theory at strong coupling. More commonly, one studies the duality in its weak form,

obtained when N and g2SYMN are taken to infinity while gs is kept finite and small. In

this limit the gravity side reduces to classical type IIB supergravity which can be treated

perturbatively. On the other hand, the SYM becomes strongly coupled and can not be

studied using conventional methods such as perturbation theory. Hence, this form of

the AdS/CFT correspondence is a strong/weak coupling duality and it offers a powerful

tool for the study of strongly coupled field theories.

In the prototypical example of the correspondence the field theory is highly symmetric,

making it unrealistic for real world applications. This, however, is not an issue as the

duality can be extended to less symmetric more realistic setups such as field theories

with some or all supersymmetries and/or the conformal symmetry broken. For exam-

ple, perturbing the field theory Lagrangian by a relevant operator can cause the theory

flow to less symmetric theories. Moreover, the bulk spacetime need not be AdS but

only asymptotically (locally) AdS (AAdS or AlAdS). Such generalisations of AdS/CFT are

referred to as gauge/gravity dualities, although the term AdS/CFT is also used to refer to

them, and they allow for a wide range of applications of the duality.

There are two possible routes to obtaining the dual theories. The first is known as the top
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down approach and it involves starting from string theory and M–theory and studying

the low energy dynamics of brane configurations, in analogy to what Maldacena did.

This method is quite involved and in principle it provides the dual field theory but there

is no control over what this theory is. In other words, this method will provide the field

theory Lagrangian which is fixed by the string theory configuration one considers. The

alternative, known as the bottom up approach, bypasses the high energy physics and

it involves postulating a gravitational theory on an asymptotically AdS spacetime which

contains supergravity fields dual to a desire set of field theory operators. The choice of

“desired” operators depends on field theory system being modelled which could be for

example a strongly coupled condensed matter system. The field theory is not known

in this case and one only knows of the elements they placed in the theory by hand.

This approach makes use of the AdS/CFT dictionary, the map that relates objects and

features of the bulk theory to objects and features of the boundary field theory. For

example, the bulk theory necessarily contains the gravitational field which, according to

the AdS/CFT dictionary, sources the field theory stress energy tensor. In addition, one

may want to have symmetry currents and operators of various dimensions in the field

theory which requires turning on gauge fields and matter fields in the bulk. Moreover,

one may want to study the field theory at finite temperature. In the bulk this translates

to considering black hole solutions in AdS. Once the building blocks of the field theory

under consideration have been placed in the bulk, one can compute its observables and

study its properties by performing the corresponding bulk computations. In fact, in the

bottom up approach there is no specific Lagrangian for the field theory and the only way

to study it is through the bulk. The work presented in this thesis is an application of the

bottom–up method and we begin by presenting the elements of the AdS/CFT dictionary

needed to understand the main part of the thesis.

1.2 The AdS/CFT dictionary

According to the AdS/CFT correspondence, the two sides of the duality describe the

same physics. This implies that the symmetries, degrees of freedom and dynamics of

the two theories must be in one–to–one correspondence. In this section we will make

this statement explicit.

1.2.1 Matching Global Symmetries

We begin by considering the global symmetries of the two theories. According to the

AdS/CFT dictionary, gauge symmetries of the bulk theory are mapped to global sym-

metries of the boundary theory. In particular the isometries of the bulk are mapped

to the global symmetry group of the boundary theory. For example, in the example of

AdS5 × S5 the isometry group of AdS5 is SO(4,2) and of the S5 SO(6). In the N = 4 SYM

we encounter the same symmetry groups. The SO(4,2) is the conformal group in four di-

mensions and the SO(6)≃SU(4) is the group associated to theR–symmetry of the theory.

Moreover, the two theories have the same number of supersymmetry generators.
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Scale/Radius Correspondence

The identification of the diffeomorphisms of AdS with the conformal symmetry of the

boundary suggests that the extra dimension of the bulk, namely the holographic or ra-

dial direction, is related to the energy scale of the field theory. In particular, studying

the radial evolution of the bulk field equations tells us something about the renormali-

sation group (RG) flow of the dual operators in the field theory. To illustrate the relation

between the bulk holographic direction and the field theory energy scale we consider

AdSd+1 in Poincaré coordinates in which the metric takes the form

ds2 = ℓ2

z2
(
ηµνdxµdxν + dz2

)
. (1.2.1)

z is the holographic direction and ℓ is the AdS radius. Constant z hypersurfaces are

parametrised by xµ, µ = 0, . . . d, and their topology is R1,d−1. According to the AdS/CFT

dictionary, the field theory metric is given by the asymptotic limit of the bulk metric, up

to conformal transformations. Hence, in this case, it can be taken to be the Minkowski

metric parametrised by the same coordinates xµ.

The field theory is invariant under rigid scale transformations xµ → αxµ which rescale

the energies of particles according to E → E/α. In the bulk, this transformation corre-

sponds to the diffeomorphism xµ → αxµ, z → αz. This leads to the identifications of the

extra bulk dimension with the inverse energy scale of the gauge theory, z ∼ 1/E, giving

rise to a scale/radius or UV/IR duality. High energies or equivalently short distances on

the field theory side translate in the bulk to large radii, that is, to moving closer to the

boundary. Another way of understanding this duality is to say that, as we move a bulk

excitation closer to the boundary of AdS, it localises in the field theory, i.e. the wave-

length of the field theory excitation becomes smaller and its energy larger. Conversely,

moving the excitation towards the interior of AdS smears the boundary excitation over

a larger area.

Understanding the relation between the UV of the field theory and the bulk IR is very

important for the understanding and treatment of divergences. Quantum field theories

suffer from short distance UV divergences. In accordance with the UV/IR relation of

AdS/CFT these divergences correspond to infinite volume IR divergences of the bulk

gravitational theory that arise when one integrates over the holographic direction. In

section 1.2.4 we explain how to deal with such divergences in the bulk using holographic

renormalisation.

1.2.2 Matching Bulk Fields to Boundary Operators

One of the most important ingredients of the AdS/CFT dictionary is the map between

bulk fields and boundary operators. The map between the spectrum of type IIB super-

gravity on AdS5 × S5 and 4 dimensional, N = 4 super–Yang–Mills was derived shortly

after the publication of Maldacena’s paper in [12] and it provided an important check of
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the conjecture. We do not delve into the details of this specific mapping as it requires

knowledge of the two theories which is beyond the scope of this thesis. Instead, we

provide general rules for mapping supergravity fields to field theory operators. The re-

sults and relations we discuss here are employed in the main part of the thesis to build

bottom–up models.

In general, for every field Φ(x, z) that propagates in the bulk, there is a local, gauge in-

variant operatorO(x). The boundary operator couples to the restriction of the bulk field

on the boundary ϕ(0)(x) via a term of the form
∫
Bd
ϕ(0)O where Bd is the boundary man-

ifold. Subleading terms in the asymptotic expansion of the bulk field are related to the

expectation value of the field theory operator. Accordingly, the bulk field and opera-

tor must have the same Lorentz structure and quantum numbers. In particular, a scalar

boundary operator is dual to a bulk scalar field, a conserved current associated with a

boundary global symmetry couples to a bulk dynamical gauge field, the boundary stress

energy tensor couples to the bulk metric, a boundary p–form operator couples to a bulk

p–form and fermionic fields in the bulk are dual to fermionic operators on the bound-

ary. Moreover, the mass of the bulk fields is related to the conformal dimension of the

dual boundary operators. The relations between the masses of various bulk fields and

the conformal dimension of the dual operators are

scalar or massive spin 2 field : m2ℓ2=∆(∆− d).

massless spin 2 field: m2ℓ2=0, ∆ = d,

spin 1
2 or 3

2 field: |m|ℓ=∆− d
2 ,

p–form field: m2ℓ2=(∆− p)(∆ + p− d),

rank s symmetric traceless tensor: m2ℓ2=(∆+ s− 2) (∆− s+ 2− d) . (1.2.2)

Below we briefly explain how these relations arise by considering the simplest case of a

massive scalar field.

Mass/Conformal Dimension Relation

Consider a bulk free scalar field Φ(x, z) with mass m propagating in the Poincaré patch

of AdSd+1. The dynamics of the field is governed by the massive Klein–Gordon equa-

tion which admits two linearly independent solutions. Near the asymptotic bound-

ary (z → 0) the two solutions behave like zd−∆ and z∆ where ∆ is the largest root of

∆(∆− d) = m2ℓ2. Generically the mode that asymptotes to ϕ(0)(x)z
d−∆ for some func-

tion ϕ(0)(x) of the transverse coordinates, is non–normalisable whereas the mode that

asymptotes to ϕ(2∆−d)(x)z
∆ is always normalisable. ϕ(2∆−d)(x) is again some function

of the transverse coordinates which can be determined by solving the equations of mo-

tion in the bulk but not from the asymptotic analysis. We discuss the significance of

these two functions with regards to the dual theory in depth in section 1.2.4. For now

we simply state that the coefficient of the non–normalisable mode, namely ϕ(0)(x), is
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related to sources that couple to the field theory operator O(x) dual to Φ(x, z) whereas

the coefficient of the normalisable mode, namely ϕ(2∆−d)(x), is related to its expectation

value ⟨O(x)⟩. A generic solution to the field equation is a combination of the two modes

but for now we focus on a purely normalisable solution Φ(x, z) which asymptotes to

Φ(x, z) ∼ z∆ϕ(2∆−d)(x) + . . . (1.2.3)

In chapters 3 and 4 we demonstrate that such purely normalisable field configurations

in the bulk are dual to excited field theory states obtained by acting withO(x)on the field

theory vacuum. Moreover, they only exist in Lorentzian AdS; in Euclidean AdS they are

no normalisable modes.

Returning to our discussion about Φ(x, z), up to an overall factor, the expectation value

of the dual operator is related to the Φ(x, z) according to

⟨O(x)⟩ ∼ lim
z→0

z−∆Φ(x, z). (1.2.4)

Under the bulk diffeomorphism (x, z) → (µx, µz) the expectation value of the dual op-

erator transforms as follows

⟨O(x)⟩ → lim
z→0

z−∆Φ(µx, µz) = lim
z→0

(z/µ)−∆ Φ(µx, z) ∼ µ∆ ⟨O(µx)⟩ . (1.2.5)

Hence the conformal dimension of O(x) is ∆ where ∆ is given in (1.2.2). Although this

calculation relies on the behaviour of a bulk scalar field under diffeomorphisms, the

same method applies for tensor fields if we use tangent indices rather than coordinate

indices.

1.2.3 Matching Observables

One of the most important statements of the AdS/CFT correspondence is identification

of the partition functions of the two theories,

Zstring = ZCFT. (1.2.6)

For example, the partition function of type IIB string theory defined on AdS5 × S5 is

equivalent to the partition function of N = 4 SYM theory, defined on the conformal

boundary of AdS5 [13, 12]. This statement implies that one can compute field theory ob-

servables by performing string theory calculations and vice versa. Below we will review

how such calculations are performed. For this we must restrict to the weak form of the

correspondence in which string theory reduces to semiclassical supergravity. More-

over, at the present we will focus on the Euclidean case. The Lorentzian signature re-

quires additional care and it is treated in section 1.2.5.

For the gauge theory, the weak limit of the correspondence amounts to taking the large

N large g2YM limit. In this limit the n–point functions of the theory are dominated by the
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planar contributions. Equation (1.2.6) becomes

Zstring ≃ e−SSUGRA = ZCFT = eW (1.2.7)

whereW is the generating functional for connected Green’s functions in the gauge the-

ory and SSUGRA is the supergravity (SUGRA) on–shell action. This relation is a general

result that holds for all gauge/gravity dualities and it plays a central role in the compu-

tation of observables.

Equation (1.2.7) is only schematic and additional information is needed to make it mean-

ingful. Focusing first on the field theory side, the generating functional of connected

Green’s functions for a field theory is obtained by modifying the action to include source

terms f(0)(x) for the operators O(x),

S′
CFT[f(0);O] = SCFT[O]−

∫
ddx f(0)(x)O(x). (1.2.8)

Then,

ZCFT
[
O; f(0)

]
= eW [O;f(0)] =

⟨
exp

(∫
ddx f(0)(x)O(x)

)⟩
CFT

. (1.2.9)

On the gravity side both ⟨O(x)⟩ and f(0)(x) are related to the dual field F(x, z). In partic-

ular, the general solution to the bulk equations of motion for F(x, z) has the following

asymptotic form

F(x, z) ∼ zd−∆f(0)(x) + · · ·+ z∆f(2∆−d)(x) + . . . (1.2.10)

where the . . . represent subleading terms in the expansion that are determined in terms

of f(0) and f(2∆−d). f(0) and f(2∆−d) are the integration functions obtained when solving

the differential equations that govern the z–behaviour of F(x, z). In the simple case of

a free theory where the equations of motion are linear, these are the coefficients of the

two linearly independent modes in the asymptotic expansion of the general solution.

∆ is the conformal dimension of the field theory operator and it is related to the mass

of the bulk field according to equations (1.2.2). Usually one imposes Dirichlet boundary

conditions on the field which fix f(0),

lim
z→0

(
z−(d−∆)F(x, z)

)
= f(0)(x). (1.2.11)

The boundary condition f(0) is associated to the source that couples to O and the coef-

ficient of z∆ in expansion (1.2.10), i.e. f(2∆−d), is proportional to the expectation value of

the dual operator ⟨O⟩. Putting all these concepts together, the supergravity generating

function is related to the field theory generating function according to the relation

ZSUGRA[F(x, z); f(0)(x)] = exp
(
−Son–shell[F(z, x)]

∣∣∣
limz→0(z∆−dF(z,x))=f(0)(x)

)
(1.2.12)
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and the supergravity on–shell action and field theory generating function of connected

n–point functions according to

Son–shell[F(z, x) ∼ f(0)(x)] = −WQFT[f(0)] (1.2.13)

where the supergravity action is evaluated on the solutions to the bulk equations that

satisfy the Dirichlet boundary condition (1.2.11).

Equation (1.2.13) allows us to compute field theory correlation functions for O through

the functional differentiation of the on–shell supergravity action with respect to the

boundary condition f(0)(x),

⟨O(x1) . . .O(xn)⟩ = (−1)n+1 δn Son–shell

δ f(0)(x1) . . . δ f(0)(xn)

∣∣∣∣∣
f(0)=0

. (1.2.14)

There are however a number of issues with this prescription. The field theory side suf-

fers from UV divergences. In accordance with the UV/IR relation between the two the-

ories, these correspond to infinite volume IR divergences on the bulk side. Hence, the

quantities on either side of equation (1.2.13) are infinite and need to be renormalised.

Moreover, as was mentioned at the start of this section, this prescription applies to the

Euclidean version of the correspondence. For the Lorentzian case, the dictionary be-

tween the two theories needs to be modified. All these issues are addressed in the fol-

lowing sections by looking at a single massive scalar field propagating in empty AdSd+1

in Poincaré coordinates. We first study the Euclidean case and demonstrate the renor-

malisation prescription for the bulk theory. Once this is done, we study the Lorentzian

analogue, emphasising the differences between the Lorentzian and Euclidean cases and

providing a prescription for dealing with the issues that arise in Lorentzian signature.

1.2.4 Euclidean AdSd+1/CFTd: Computing Expectation Values

Consider a massive scalar fieldΦ(x, z)propagating in empty AdSd+1. Recall that in Poincaré

coordinates the metric for AdSd+1 is

ds2 = Gµνdxµdxν =
ℓ2

z2
(
dz2 + δijdxidxj

)
. (1.2.15)

The action for the scalar field is

S0 =
1

2

∫
AdS
dz ddx

√
G
(
Gµν∂µΦ∂νΦ+m2Φ2

)
(1.2.16)

and the corresponding bulk equation of motion is

(
−□G +m2

)
Φ = − 1√

G
∂µ

(√
GGµν∂νΦ

)
+m2Φ = 0. (1.2.17)
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We use latin indices i, j, · · · = 0, . . . d to label the transverse coordinates xi and they are

contracted using the Euclidean metric δij . Stability of AdS requires the mass of the field

is bounded from below by the Breitenlohner–Freedman bound, m2 ≥ −d2/4 [14, 15].

Here we are treating the scalar field as a perturbation on a fix AdS background.

The general solution to (1.2.17) is [12, 16]

Φ(x, z) =

∫
∂AdS

ddx′ α(x)z∆+(
z2 + |x− x′|2

)∆+
+

∫
∂AdS

ddx′ β(x)z∆−(
z2 + |x− x′|2

)∆−
(1.2.18)

where α and β are arbitrary functions of the boundary coordinates x. ∆± are the roots

of equation m2ℓ2 −∆(∆ − d) = 0 with ∆+ = d/2 +
√
d2/4 +m2ℓ2 the larger and ∆− =

d−∆+ = d/2−
√
d2/4 +m2ℓ2 the smaller. We only consider cases where∆± are equal to

d/2+n± with n± two positive integers. This choice is motivated by supergravity and the

spectrum of field theories that admit a holographic dual. Near the asymptotic boundary

at z = 0 the first term behaves as z∆+ and the second as z∆− . In particular, using the

relation

lim
z→0

z2∆+−d(
z2 + |x− x′|2

)∆+
= πd/2

Γ
(
∆+ − d

2

)
Γ (∆+)

δ(d)(x− x′) (1.2.19)

one finds that near the asymptotic boundary the bulk field Φ(x, z) has the form

Φ(x, z) = z∆−
(
ϕ(0)(x) + z2ϕ(2)(x) + . . .

)
+ z∆+

(
ϕ(2∆+−d)(x) + z2ϕ(2∆+−d+2)(x) + . . .

)
= z∆−

(
ϕ(0)(x) + z2ϕ(2)(x) + · · ·+ z2∆+−dϕ(2∆+−d)(x) + z2∆+−d+2ϕ(2∆+−d+2) + . . .

)
(1.2.20)

where ϕ(0)(x) and ϕ(2∆+−d)(x) are linear functionals of α(x) and β(x). All subleading

terms to order z∆+−1 can be determined in terms of ϕ(0)(x) alone and all terms of or-

der z∆++1 and higher can be determined in terms of ϕ(0)(x) and ϕ(2∆+−d), using the

equations of motion. In the special case ∆+ = ∆− = d
2 an additional logarithmic term

appears at order z2∆+−d.

Usually ϕ(0)(x) and ϕ(2∆+−d)(x) are interpreted as the source that couples to the dual

operator and its expectation value, respectively. In this case conformal dimension of

the dual operator is∆+. This configuration corresponds to imposing Dirichlet boundary

conditions at the asymptotic boundary. However, depending on the mass of the field,

this is not the only choice of bulk boundary conditions. In the next section we discuss

the different choices of boundary conditions and how these relate to the mass of the

scalar field and the conformal dimension of the dual operator. We then proceed to

renormalise the scalar on–shell action and compute the expectation value of the dual

operator which concludes our discussion of Euclidean AdS/CFT.
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Boundary Conditions

In this section we discuss the possible boundary conditions for the bulk field and their

field theory interpretation. According to the AdS/CFT correspondence the mass of the

bulk field is related to the conformal dimension of the dual operator, ∆, which is given

by the solution to the equation ∆(∆− d) = m2ℓ2. As we have seen already this equation

has two roots, namely ∆+ and ∆−. The choice of either root determines the asymptotic

behaviour of the bulk field, as well as the dimension of the dual operator. Modifying

equation (1.2.20) slightly to allow either choice for∆ one requires that near the boundary

Φ(x, z) → zd−∆
(
ϕ(0)(x) +O(z2)

)
+ z∆

(
ϕ(2∆−d)(x) +O(z2)

)
(1.2.21)

where ∆ can be either root. Usually one assumes that ∆ = ∆+ corresponding to impos-

ing Dirichlet boundary conditions on the bulk field. However, under certain conditions

∆ = ∆− is also allowed, corresponding to imposing Neumann boundary conditions on

the bulk field. The two different choices of boundary conditions give rise to two dis-

tinct AdS invariant quantisations each of which is dual to a distinct field theory, one

containing an operator of conformal dimension ∆+ and one containing an operator of

conformal dimension ∆−.

The conditions under which each boundary behaviour of the bulk field is allowed were

first studied by Breitenlohner and Freedman [15] who demonstrated that positivity of

the classical energy and the existence of a well–defined quantum field theory imply that

the mass of the scalar field must satisfy

− d2

4
≤ m2ℓ2 (1.2.22)

for Dirichlet boundary conditions to be admissible and

− d2

4
≤ m2ℓ2 ≤ −d

2

4
+ 1 (1.2.23)

for Neumann boundary conditions. Using the relations between ∆± and m2ℓ2 we see

that the dimension of the scalar operator in the field theory has to be greater than or

equal to d/2 when Dirichlet boundary conditions are imposed in the bulk and greater

than d/2 − 1 and less than d/2 in the case of Neumann. It follows that the minimum

dimension the dual operator can have is d/2− 1 which is the unitarity bound for scalar

operators in a d–dimensional field theory.

From the perspective of the dual field theory, the former choice corresponds to a the-

ory with a scalar operator of dimension ∆+ and the latter corresponds to a different

theory with a scalar operator of conformal dimension ∆−. We proceed to make these

statements explicit, starting with the case where ∆ = ∆+. Given a boundary condi-

tion ϕ(0)(x), the bulk field can be constructed using the bulk–to–boundary propagator
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K∆+(z, x, x
′) [16],

K∆+(z, x, x
′) = π−d/2

Γ(∆+)

Γ (∆+ − d/2)

z∆+(
z2 + |x− x′|2

)∆+
−−−→
z→0

zd−∆+δ(d)(x− x′) (1.2.24)

and

Φ(x, z) =

∫
ddx′K∆+(z, x, x

′)ϕ(0)(x
′). (1.2.25)

It follows that

ϕ(2∆+−d)(x) = π−d/2
Γ(∆+)

Γ (∆+ − d/2)

∫
ddx′ϕ(0)(x′)|x− x′|−2∆+ (1.2.26)

Modulo subtleties associated with divergences, this expression suggests thatϕ(2∆+−d)(x)

is the expectation value of an operator O(x) of conformal dimension ∆+ in the pres-

ence of another operator O located at x′. To demonstrate this we proceed to com-

pute the on–shell action which will also allow us to make a direct connection with the

discussion in section 1.2.3. Introducing for convenience a new field ϕ(x, z) through

Φ(x, z) = zd−∆+ϕ(x, z) and substituting into the action (1.2.16) we obtain

Son–shell = −1

2

∫
z=ϵ

ddx zd+1−2∆+ϕ(x, z)∂zϕ(x, z) + Sct (1.2.27)

where we have introduced a cut–off surface Bϵ = {z = ϵ} to regularise the integral over

z. In the limit ϵ→ 0 this surface is pushed to the AdS boundary, Bϵ → ∂AdS. Sct consists

of a set of counter–terms necessary to subtract divergences associated with infinite vol-

umes in the bulk and short distances from the field theory perspective. Here we bypass

these issues by restricting to d/2 < ∆+ < d/2 + 1 for which there are no such diver-

gences and we postpone talking about the treatment of divergences until section 1.2.4.

Using the expression for Φ(x, z) in terms of ϕ(0)(x) as well as the series expansion of

K∆+ around z = 0 one eventually finds

Son–shell[ϕ(0)] = −
(
∆+ − d

2

)
π−d/2

Γ (∆+)

Γ (∆+ − d/2)

∫
ddx′ddx

ϕ(0)(x)ϕ(0)(x
′)

|x− x′|2∆++
(1.2.28)

Then, according to the discussion in section 1.2.3 and, in particular, from equation (1.2.14),

it follows that the one–point function of the operator dual to Φ(x, z) in the CFT is

⟨O(x)⟩ = −δSon–shell

δϕ(0)(x)

∣∣∣
ϕ(0)=0

= (2∆+ − d)

[
π−d/2

Γ(∆+)

Γ(∆+ − d/2)

∫
ddx′

ϕ(0)(x
′)

|x− x′|2∆+

]
= (2∆+ − d)ϕ(2∆+−d)(x). (1.2.29)

Hence, we have proven that given a bulk theory with a scalar operator whose asymptotic
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behaviour is

Φ(x, z) = zd−∆+

(
ϕ(0)(x) + · · ·+ z2∆+−dϕ(2∆+−d)(x) + . . .

)
(1.2.30)

the dual field theory contains a scalar operator of conformal dimension ∆+ for which

there is a source deformation turned on given by
∫

ddxϕ(0)(x)O. Moreover, the expec-

tation value of O is proportional to ϕ(2∆+−d).

We now turn our attention to the case where the dual operator has dimension less than

d/2, i.e. where ∆ = ∆−. Although this is a different field theory, it is not independent

from the theory with ∆+. The two are related via a canonical transformation that in-

terchanged the roles of ϕ(0) and ϕ(2∆+−d) as the “source” and the “fluctuating field” [16].

In particular, from the point of view of the ∆− theory, ϕ(0) is the field whose conformal

dimension is ∆+ and the source that couples to it is −(2∆+ − d)ϕ(2∆+−d). Accordingly,

the generating functional for the ∆− theory is given by the Legendre transform of the

generating functional of the ∆+ theory,

ΓQFT[ϕ(2∆+−d)(x)] =WQFT[ϕ(0)]−
∫

ddxϕ(0)(x)
(
(2∆+ − d)ϕ(2∆+−d)(x)

)
(1.2.31)

and ϕ(0)(x) and (2∆+ − d)ϕ(2∆+−d)(x) are related to them via

ϕ(0)(x) = −
δΓ[ϕ(2∆+−d)]

δ
(
(2∆+ − d)ϕ(2∆+−d)

) , (2∆+ − d)ϕ(2∆+−d) =
δW [ϕ(0)]

δϕ(0)
. (1.2.32)

From the perspective of the bulk, the∆− theory corresponds to fixing ϕ(2∆−d)(x) instead

of ϕ(0). In particular, introducing a more general notation for the boundary deformation,

exp
(
−
∫
ddxJO

)
, where J is the source that couples to O, the usual Dirichlet boundary

conditions can be written as

JD = ϕ(0)(x) (1.2.33)

with the usual relation between the bulk on–shell action and the generating functional

of the dual theory

e−Son–shell[ϕ(0)∼JD] =

⟨
exp

∫
ddxJO

⟩
= eWQFT[J ]. (1.2.34)

For Neumann boundary conditions one fixes (2∆+ − d)ϕ(2∆+−d),

JN = −(2∆+ − d)ϕ(2∆+−d) (1.2.35)

which requires an additional boundary term to be added to the bulk action, in accor-

dance with equation (1.2.31),

Son–shell → Son–shell
[
ϕ(2∆+−d)

(
ϕ(0)

)
∼ JN

]
+

∫
ddxϕ(0)JN. (1.2.36)
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Boundary
condition

Mass range of bulk
field

Conformal
dimension of the

dual operator

Range of
conformal
dimension

Dirichlet m2ℓ2 ≥ −d
2

4

∆+ =

d

2
+

√
d2

4
+m2ℓ2

∆ ≥ d

2

Neumann/Mixed
−d

2

4
≤ m2ℓ2 ≤

−d
2

4
+ 1

∆− =

d
2 −

√
d2

4
+m2ℓ2

d

2
− 1 ≤ ∆ ≤ d

2

Table 1.2.1: Boundary conditions for a free scalar field of massm in AdS and correspond-
ing conformal dimensions for the dual operator.

Note that one must first solve ϕ(2∆+−d) in terms of ϕ(0) and then use the resulting ex-

pression to evaluate the on–shell action.

A final possibility not discussed thus far is to impose mixed boundary conditions on

bulk field in which case one fixes a particular combination of ϕ(0) and ϕ(2∆+−d). From

the perspective of the field theory this choice introduces a multi–trace deformation. In

particular, suppose we want to introduce a deformation
∫

ddx f(O) to the field theory

action Sf,QFT[O] = SQFT +
∫

ddx f(O) where f(0) = 0. This modifies the generating

functional according to

Wf,QFT =WQFT[J ] +

∫
ddx

(
f(σ)− σ f ′ (σ)

) ∣∣∣
σ=

δW [J]
δJ

(1.2.37)

where σ is the vev ofO. In theory the vev ofO can be chosen to be proportional to either

ϕ(0) or ϕ(2∆−d) and have dimension ∆− or ∆+ respectively. However, the deformation

is relevant only if we choose ϕ(0) and ∆−, i.e. if we are deforming the Neumann theory.

The boundary condition in this case reads

Jf = −(2∆+ − d)ϕ(2∆+−d) − f ′(ϕ(0)). (1.2.38)

and order to impose it we must modify the bulk action according to

Sbulk → Sbulk +

∫
ddx

[
−ϕ(0)(2∆+ − d)ϕ(2∆+−d) + f(ϕ(0))− ϕ(0)f

′(ϕ(0))
]
. (1.2.39)

The additional boundary terms in the bulk action lead to a modification of the field the-

ory stress–energy tensor. This topic is discussed further in chapter 6 as well as chapters 7

and 8.
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Boundary
condi-

tion
Source Vev W[J]

Dirich-
let

JD = ϕ(0)
(2∆+ −

d)ϕ(2∆+−d)
−Son–shell[JD]

Neumann
JN =

−(2∆+ − d)ϕ(2∆+−d)
ϕ(0) −Son–shell[JN]−

∫
ddxϕ(0)JN

Mixed Jf = JN − f ′(ϕ(0)) ϕ(0)
−Son–shell[JN]−

∫
ddxϕ(0)JN −∫

ddx f(ϕ(0)) + ϕ(0)f
′(ϕ(0))

Table 1.2.2: Source, vev and generating functionals for a field theory dual to AdSd+1 with
a single free scalar field.

Holographic Renormalisation

Next we shall compute the on–shell action and address the issue of divergences asso-

ciated with the infinite volume of AdS. To do this we must first solve the asymptotic

expansion of the field, given by equation (1.2.20),

Φ(x, z) = z∆−
(
ϕ(0)(x) + z2ϕ(2)(x) + · · ·+ z2∆+−dϕ(2∆+−d)(x) + z2∆+−d+2ϕ(2∆+−d+2) + . . .

)
and determine its coefficients. Plugging this expression into the equation of motion (1.2.17)

and solving order by order in z one finds that ϕ(k) = 0 for k odd and

ϕ(2n)(x) =
1

2n (2∆− d− 2n)
□0ϕ(2n−2)(x) (1.2.40)

where □0 = δij∂i∂j and n < ∆ − d/2. If 2∆ = 2m + d for some positive integer m then

there is an additional logarithmic term at order z∆,

Φ(x, z) = zd−∆
(
ϕ(0)(x) + z2ϕ(2)(x) + · · ·+ z2∆−d

(
ϕ(2∆−d)(x) + ϕ̃(2∆−d)(x) log z

)
+ . . .

)
(1.2.41)

with

ϕ̃(2∆−d)(x) = − 1

22mΓ (m) Γ (m+ 1)
(□0)

m ϕ(0)(x). (1.2.42)

All terms up to ϕ(2∆−d)(x), including ϕ̃(2∆−d)(x) are determined in terms of ϕ(0)(x) by

solving algebraic equations. ϕ(2∆−d)(x) appears at order z∆ which is the order of the

second linearly independent solution, explaining why it can not be determined in terms

of ϕ(0)(x). An attempt to apply the same procedure outlined above to this order leads to

a trivial equation1. In order to obtain ϕ(2∆−d)(x) one must solve the equation of motion

1In the cases where the bulk field is the metric of a bulk gauge field, the bulk equations of motion de-
termine the trace and divergence of the fields. These equations then lead to Ward identities for the dual
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in the bulk and not only asymptotically. Then, regularity in the interior combined with

the boundary condition ϕ(0)(x) uniquely determines ϕ(2∆−d)(x) as well.

We already saw that ϕ(0)(x) is the source term in the field theory and ϕ(2∆−d)(x) is pro-

portional to the vacuum expectation value of the dual operator. The new term, ϕ̃(2∆−d)(x),

has a field theory interpretation as well, it is related to conformal anomalies.

Having determined all possible coefficients in the asymptotic expansion of Φ(x, z), the

next step is to compute the on–shell action. The on–shell action suffers from infinite

volume IR divergences related to field theory UV divergences. To deal with them we in-

troduce a cut–off at z = ϵ and integrate over z ≥ ϵwhere ϵ is a small positive parameter.

The on–shell action will have a finite number of terms that diverge in the limit ϵ → 0.

These terms give the counter terms that have to be subtracted to remove the IR diver-

gences. This method of dealing with divergences in AdS/CFT is known as holographic

renormalisation. It was initiated in [17, 18] and developed in [19]. Detailed discussions can

be found in [20, 19, 21, 22]. A radial Hamiltonian version of the method was introduced

in [23, 24]. Here we follow the exposition in [25].

The determination of the divergent terms requires that, in addition to the asymptotic

expansion of the field, we also have an asymptotic expansion for the metric. The appro-

priate asymptotic form for the metric is given by the Fefferman–Graham gauge (FG),

ds2 = ℓ2

z2
(
dz2 + gij(x, z)dxidxj

)
(1.2.43)

with

gij(x, z) = g(0)ij(x) + zg(1)ij(x) + z2g(2)ij(x) + . . . (1.2.44)

In general, when studying as asymptotically AdS spacetime, one must also determine the

coefficients g(k)ij(x), either by computing the asymptotic expansion of the bulk metric

or, if the bulk metric is not known, by solving the corresponding equations of motion

order by order in z, as we did for Φ(x, z).

Using these results, the regularised action is

Sreg =
1

2

∫
z≥ϵ

dz ddx
√
G
(
Gµν∂µΦ∂νΦ+m2ϕ2

)
=

1

2

∫
z≥ϵ

dz ddx
√
GΦ

(
−□G +m2

)
Φ− 1

2

∫
z=ϵ

ddx
(√

GGzz Φ∂zΦ
)
z=ϵ

Evaluating Sreg on–shell eliminates the bulk term and we are left only with boundary

terms,

Sreg, on–shell = −ℓ
d−1

2

∫
z=ϵ

ddx ϵd−2∆
(
(d−∆)ϕ2(x, ϵ) + ϵϕ(x, ϵ)∂ϵϕ(x, ϵ)

)
= ℓd−1

∫
z=ϵ

ddx ϵd−2∆
(
a(0) + ϵ2a(2) + ϵ4a(4) + . . .+ log ϵ a(2∆−d)

)
(1.2.45)

operators.
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where the coefficients a(2k) are local functions of ϕ(0) that are determined using the se-

ries expansion of ϕ(x, ϵ). We present here four of them to demonstrate their structure.

a(0) = −1

2
(d−∆)ϕ2(0), a(2) = −(d−∆+ 1)ϕ(0)ϕ(2) = − d−∆+ 1

2 (2∆− d− 2)
ϕ(0)□0ϕ(0),

a(4) = −1

2

(
(d−∆)ϕ2(2) + ϕ(0)ϕ(4)

)
= −1

2

(
(d−∆)

(
□0ϕ(0)

)2
4 (2 + d− 2∆)2

+
ϕ(0) (□0)

2 ϕ(0)

8 (4 + d− 2∆) (2 + d− 2∆)

)
a(2∆−d) = − d

22m+1Γ(m)Γ(m+ 1)
ϕ(0) (□0)

m ϕ(0).

All terms in (1.2.45) that appear at negative order in ϵ diverge in the limit ϵ → 0 and we

need to add counter terms to the on–shell action to eliminate them. The counterterms

are obtained by re-expressing (1.2.45) in terms of bulk fields. In particular, the derived

expression for Sreg, on–shell is a function of ϕ(0)(x) and gij = δij . We need to expressed

these fields as functions of Φ(x, ϵ) and γij , the restrictions of the bulk field and metric

on the hypersurface z = ϵ. This ensures that the action transforms correctly under bulk

diffeomorphisms.

In general γij = gij ℓ
2/ϵ2 which, for empty AdS in Poincaré coordinates becomes γij =

δijℓ
2/ϵ2. To obtain an expression for ϕ(0)(x) in terms of Φ(x, ϵ) one must invert the ex-

pansion (1.2.41) evaluated at z = ϵ order by order in ϵ. One must perform the inversion

to high enough order in ϵ such that we are able to rewrite all divergent terms in Sreg in

terms of Φ(x, ϵ). The first terms of the covariant counterterm action are

Sct = −Sreg =
1

L

∫
z=ϵ

ddx√γ
(
1

2
(d−∆)Φ2(x, ϵ) +

ℓ2

2(2∆− d− 2)
Φ(x, ϵ)□γΦ(x, ϵ) + . . .

)
−L4 (d−∆+ 2)

8(2∆− 2− d)2
(
□γΦ(x, ϵ)

)2
+ . . .

)
.

The counterterm action computed this way contains the minimal set of terms necessary

for the theory to be renormalisable. We are free to add further finite terms which will

give rise to scheme dependence in the field theory. In either case, the renormalised on–

shell action is computed by adding the counterterm action to the regularised on–shell

action and taking the limit ϵ→ 0,

Ssub = Sreg + Sct =
1

2

∫
z≥ϵ

dz ddx
√
G
(
Gµν∂µΦ(x, z)∂νΦ(x, z) +m2Φ2(x, z)

)
+
1

ℓ

∫
z=ϵ

ddx√γ
(
1

2
(d−∆)Φ2(x, ϵ) +

ℓ2

2(2∆− d− 2)
Φ(x, ϵ)□γΦ(x, ϵ)

−ℓ4 (d−∆+ 2)

8(2∆− 2− d)2
(
□γΦ(x, ϵ)

)2
+ . . .

)
and

Sren = lim
ϵ→0

Ssub. (1.2.46)

The final part of our discussion is the computation of the vacuum expectation value for
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the dual operator. The expectation value is computed by varying the subtracted bulk

action, Ssub, with respect to Φ(x, ϵ) and then taking the limit ϵ→ 0,

⟨O⟩s = lim
ϵ→0

(
ℓd

ϵ∆
√
γ

δSsub

δΦ(x, ϵ)

)
− (2∆− d)ϕ(2∆−d)(x) + C(ϕ(0)). (1.2.47)

The subscript s is to stress that this is the one point function of O in the presence of a

source and C(ϕ(0)) is a scheme dependent local function of ϕ(0) [19].

This prescription is straight forwardly generalised to other fields. In section 1.3.2 we

apply it to Einstein–Maxwell theories and in chapter 6 to a class of theories containing,

in addition to the Maxwell field, massive and massless scalars.

Most of the prescription described in this section did not rely on the signature of the

spacetime and can therefore be applied to both Lorentzian and Euclidean AdS/CFT.

However, there is a crucial difference between the two signatures related to the de-

termination of ϕ(2∆−d). This is the subject of the next section in which we describe the

process for doing Lorentzian AdS/CFT.

1.2.5 Real Time Holography

In the previous section the field equation for Φ(x, z) was solved only asymptotically and

boundary conditions were imposed which fixed the leading coefficient in the asymp-

totic expansion, namely ϕ(0)(x). ϕ(2∆−d)(x), the coefficient of the normalisable mode,

appears at a subleading order in z and as we saw, it can not be determined from the

boundary conditions. Moreover, despite it being an integration function, we do not have

the freedom to select ϕ(2∆−d)(x), it has to be determined dynamically by the theory. This

is reflected in the fact that choosing a generic pair
(
ϕ(0)(x), ϕ(2∆−d)(x)

)
in general will re-

sult in singular fields. The analogue of this on the field theory side is that the vacuum

structure is a dynamical question and we can not tune ⟨O⟩. The first step towards ob-

taining a solution that is regular and unique is to solve the field equations in the interior

of AdS and impose regularity of the field. In Euclidean AdS this is sufficient; givenϕ(0)(x),

imposing bulk regularity uniquely selects ϕ(2∆−d), resulting in a unique, regular Φ(x, z).

However, in Lorentzian AdS there are normalisable modes which are regular at the in-

terior and decay at the boundary and hence they can be added to any regular solution,

modifying ϕ(2∆−d) but not ϕ(0). This issue is discussed further is chapter 2, section 2.1.

On the field theory side this issue is related to the existence of multiple types of cor-

relators in Lorentzian signature. Moreover, one can compute correlation functions in

non–trivial states, something which is not possible in Euclidean signature. One way to

deal with these issues in quantum field theory is to specify a time contour in the complex

time plane. Consider for example the time ordered vacuum correlator ⟨Ω| T (O(x1)O(x2)) |Ω⟩.
This can be obtained from ⟨ϕ−,−T | T (O(x1)O(x2)) |ϕ+, T ⟩by extending the timeT along

the imaginary axis. Here |ϕ−,−T ⟩ and |ϕ+, T ⟩ correspond to initial and final states |ϕ−⟩
and |ϕ+⟩ at times −T and +T respectively. These are time dependent states and they
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−T (1− iε)

T (1− iε)

t

ε deform the
contour

t

−T
T

Tε

−Tε

Figure 1.2.3: (Left) Complex time contour used in the example to obtain ⟨Ω| T (. . .) |Ω⟩
starting from ⟨Φ−,−T | T (. . .) |Φ+, T ⟩ and taking the limit T → ∞. The contour can be
deformed in the complex t plane, as long as it does not cross any poles.
(Right) Deformation of the original contour shown on the left. Here the contour runs
from −T (1 − iϵ) to −T to +T and finally to T (1 − iϵ). Both contours project onto the
vacuum in the limit T → ∞.

can be written in a time–independent form using the time–evolution operator U(t) =

exp (−iHt). Then |ϕ+, T ⟩ = e−iHT |ϕ+⟩, ⟨ϕ−,−T | = ⟨ϕ−| e−iHT and

⟨ϕ−,−T | T (O(x1)O(x2)) |ϕ+, T ⟩ = ⟨ϕ−| e−iHTT (O(x1)O(x2)) e−iHT |ϕ+⟩ . (1.2.48)

Complexifying time according to T → T (1− iϵ) and taking the limit T → ∞ projects the

desired vacuum correlator since

lim
T→∞

e−iHT (1−iϵ) |ϕ+⟩ = lim
T→∞

∫
Dψ e−iHT (1−iϵ) |ψ⟩ ⟨ψ|ϕ+⟩ = A |Ω⟩ (1.2.49)

whereA = limT→∞ e−iEvacT (1−iϵ) ⟨Ω|ϕ+⟩ is a constant. A similar expression holds for ⟨ϕ−|
which leads to

lim
T→∞

⟨ϕ−,−T (1− iϵ)| T (O(x1)O(x2)) |ϕ+, T ⟩ = C ⟨Ω| T (O(x1)O(x2)) |Ω⟩ (1.2.50)

whereC is another constant. The (1−iϵ) factor corresponds to tilting the time line in the

complex time plane as shown in the left panel of figure 1.2.3. The right panel of the figure

shows a deformed version of this path consisting of a real segment and two imaginary

ones. Such path deformations are allowed as long as they do not cross any singularities

and the end points remain fixed. Upon taking the limit T → ∞, the vertical segments

project the theory onto some initial and final states; in the example above the vacuum.

These states are evolved respectively forward and backwards in time and become the

initial and final states for the real field theory computations, associated with the real time

segment −T to T .

More generally, one may wish to compute ⟨Ψ| T (O(x1) . . .O(xn)) |Φ⟩ for initial and final

states |Φ⟩ and |Ψ⟩. In this case one can use time contour shown in figure 1.2.4, where the

vertical segments extend to complex infinity. The crosses along the contour represent

operator insertions at different times. The initial and final states |Φ⟩ and |Ψ⟩ are created
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×

−T
T

×

C−

CL C+

t

× × × × × ×
x1 x2 . . . xn

Figure 1.2.4: Complex time contour used to evaluate ⟨Ψ| T (O(x1) . . .O(xn)) |Φ⟩. The ini-
tial and final states |Φ⟩ and ⟨Ψ| are generated by operator insertions along the imaginary
segments of the contour. These insertions are indicated by the red crosses along C− and
C+. The operators O(x1), O(x2), . . ., O(xn) whose real–time expectation value is to be
computed are inserted along CL, the real segment of the time contour. These repre-
sented here by the blue crosses. The choice of contour automatically enforces the time
ordering.

by operator insertions along the semi–infinite vertical lines C− and C+, respectively. The

operators O(xi) whose correlator we wish to compute are inserted along the real time

segment CL. The path integral for this setup is given by

ZQFT
[
ϕ(0); C

]
=

∫
[DO] exp

(
−i
∫
C

dt
∫

dd−1x
√
g
(
LQFT[O] + ϕ(0)O

))
(1.2.51)

where O represents the collective set of operators in the theory and ϕ(0) are sources that

couple to these operators. The time integration of the Lagrangian is along the complex

time contour. More specifically, t is a complex variable which runs from −T − i∞ to −T
on C−, the from −T to T along CL and then from T to T + i∞ on C+. Alternatively, one

can parametrise the contour using real variables. For the vertical segments we can write

t = −T + iτ− with τ− ≤ 0 for C−, and t = −T + iτ+ with τ+ ≥ 0 for C+. For the horizontal,

real–time segment we can simply use t with −T ≤ t ≤ T . The time–ordered real time

correlator is computed simply by functional differentiation of ZQFT with respect to the

sources. The time ordering is naturally implemented by the choice of time contour.

Other types of correlators and different states can be computed by appropriate choices

of contours and operator insertions. The left panel of figure 1.2.5 shows examples of

some field theory complex time contours. Starting from the top, the first is the in–out

contour used to compute time order correlators, the second is the in–in time contour

used to compute path ordered correlators and the third is the thermal contour used to

compute thermal correlators. This formalism for specifying initial and final states and

computing correlators using the path integral is the Schwinger–Keldysh formalism [26,

27] and it has been extended to holography.

More precisely, to obtain unique fields in Lorentzian AdS, in addition to the boundary

conditions at the conformal boundary, one must provide initial and/or final data for the

fields. The initial and final data can be imposed by complexifying the AdS manifold to
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include both Euclidean and Lorentzian segments, in analogy to how the time contour in

quantum field theory is complexified. Then, the complex segments of the manifold, i.e.

the Euclidean ones, provide the initial and final data. In particular, they can be thought

of as providing a Hartle–Hawking wave function which is matched to the Lorentzian

theory on spacelike interfaces between Euclidean and Lorentzian segments.

The holographic analogue of the Schwinger–Keldysh formalism is known as real–time

gauge/gravity duality [28, 29] and it dictates that one should start with a complex field

theory time contour and “fill it in” with AdS spatial directions to obtain an AdS manifold

consisting of Euclidean and Lorentzian AdS segments, dual to the complex and real time

segments in the field theory. That is to say, given a field theory spacetime consisting

of a line in the complex time plane times a real space R × Σd−1, the bulk spacetime

should be an asymptotically AdS spacetime whose boundary is conformal to R× Σd−1.

Under this prescription, imaginary field theory time segments become Euclidean (A)AdS

manifolds and real time segments become Lorentzian (A)AdS manifolds. Figure 1.2.5

shows examples of field theory time contours C on the left and the corresponding bulk

manifolds MC on the right.

For the construction of unique bulk fields one begins by solving the field equations,

including the Einstein equations, for each segment of the manifold and for the metric

signature dictated by the field theory contour. The solutions are then glued together and

matching conditions are imposed at the spacelike hypersurfaces between the subman-

ifolds. For example, consider two adjacent manifolds M− and M+ and a spatial surface

∂tM connecting them. To obtain a field Φ in M− ∪M+ we first solve the field equations

for Φ in M− and M+ separately and then impose the following matching conditions on

the resulting solutions

Φ−
∣∣
∂tM

= Φ+

∣∣
∂tM

∂tΦ−
∣∣
∂tM

= ∂tΦ+

∣∣
∂tM

. (1.2.52)

The first condition implies that the field must be continuous on ∂tM and the second

that its conjugate momentum is also continuous. The derivative in the second line is

with respect to the complex time t introduced above in the context of the field theory.

Solving these matching conditions provides the initial and final data for the Lorentzian

fields.

Under this construction, the relation between the field theory partition function and the

supergravity action becomes

ZQFT[O;ϕ(0), C] = exp
(
i

∫
MC

dd+1x
√
−GLon–shell

AdS

[
Φ ∼ ϕ(0)

])
(1.2.53)

where MC is bulk manifold corresponding to C. For example, let C be the complex time

contour shown in figure 1.2.4 and discussed above. A version of this contour along with
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t1

t2

τ

E L1 L2

τ−

τ+

t1

t2

L1 L2 E+E−

× ×

operator insertions

OΦ(t1, ~x1) OΦ(t2, ~x2)

τ−

τ+t

L E+E−

×
φ(0)(t1, ~x1) φ(0)(t2, ~x2)

×

sources

Figure 1.2.5: Field theory complex time contours and corresponding AdS manifolds.
(Top) In–out time contour with two operator insertions along the real time segment used
to compute time ordered correlators (left) and corresponding AdS manifold (right). The
two field theory semi–infinite Euclidean time segments τ− and τ+ become the half Eu-
clidean AdS manifold E− and E+. These provide the initial and final conditions for all
the Lorentzian fields, including the metric. The insertion of operators in the field theory
corresponds to the boundary conditions ϕ(0).
(Middle) In–In time contour used to compute path ordered correlators (left) and corre-
sponding AdS manifold (right). Again, the semi–infinite Euclidean time segments of the
field theory contour become half Euclidean AdS manifolds, providing initial and final
data for Lorentzian fields. The field theory time contour consists of two real time seg-
ments with opposite time evolution directions. On the AdS side this translates to having
two Lorentzian AdS manifolds with the time also evolving in an analogous manner.
(Bottom) Complex time contour for a thermal field theory (left) and corresponding AdS
manifold (right). For both theories, the Euclidean time is periodically identified, as in-
dicated by the shaded circles/surfaces. In the field theory this results in a periodic Eu-
clidean time with the period identified with the inverse temperature β. On the AdS
side, this corresponds to imposing appropriate boundary conditions on the two shaded
spacelike surfaces which are identified.
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the corresponding AdS manifold MC are shown in the top panel of figure 1.2.5. In this

case, the right hand side of (1.2.53) is given schematically by

exp
(
−
∫
MC−

dτ−ddx
√
GE LEon–shell

[
Φ ∼ ϕ−(0)

]
+ i

∫
MCL

dtddx
√

−GL LLon–shell

[
Φ ∼ ϕL(0);ϕ

−
(0), ϕ

+
(0)

]
−
∫
MC+

dτ+ ddx
√
GE LEon–shell

[
Φ ∼ ϕ+(0)

])

where LLon–shell is the Lorentzian Lagrangian and LEon–shell is its Wick rotated version.

ϕ−(0), ϕ
L
(0) and ϕ+(0) are the boundary conditions imposed at the asymptotic boundaries of

MC− , MCL and MC+ respectively. Note that the Lorentzian action depends on both the

boundary condition ϕL(0) as well as ϕ±(0). From the perspective of the Lorentzian fields,

the latter are related to the initial and final conditions imposed.

The above expression suffers from IR divergences due to the non–compactness of the

radial direction, just as was the case for Euclidean AdS/CFT. Moreover, there are addi-

tional divergences associated with the non–compactness of the temporal direction of

Lorentzian AdS. However, these new divergences cancel out and, thus, one can apply

the holographic renormalisation prescription introduced in section 1.2.4 “piecewisely”

to each segment of the manifold, without any modifications.

For a more detailed discussion of real time holography and examples of applications can

be found in [28, 29]. In the first part of the thesis we study a scalar field in Lorentzian

AdS and we use the formalism of real time gauge/gravity to derive the bulk setup dual

to an excited field theory state. In particular, we confirm that turning on source in the

Euclidean submanifolds corresponds to having the field theory in an excited state.

1.3 Applied AdS/CFT: Statistical Field Theories

In this section we will apply many of the concepts introduced and extend what was

already said to study a gauge/gravity dual system where the field theory is at finite tem-

perature and chemical potential. Such a system can be thought of as a toy model for the

study of condensed matter phenomena. Conventionally, condensed matter systems are

studied using Landau’s theory and the Fermi liquid theory. The former relies on the sym-

metries of the system and the latter makes use of perturbation theory. However, many

interesting phenomena such as high critical temperature superconductivity, the frac-

tional quantum Hall effect, heavy fermion compounds and spin liquids, fall outside the

spectrum of applicability of either of these two theories. There is, thus, a need for new

theoretical tools for the study of systems that are beyond the scope of the traditional

tools.

Gauge/gravity dualities, being strong/weak coupling dualities, provide an excellent frame-

work for studying strongly correlated systems. By considering bulk theories with a U(1)

gauge field and by looking at asymptotically AdS (AAdS) solutions with black holes, we
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obtain gauge theories at finite chemical potential and temperature. It is then possible

to study the phase diagram and thermodynamics of the gauge theories by studying the

black hole thermodynamics and the asymptotic behaviour of bulk fields. Moreover, by

perturbing bulk fields and studying the response of the bulk system one can compute

the transport coefficients of the gauge theory such as the conductivity.

The construction of dual theories with the desired features often relies on the bottom–

up approach in which one chooses the bulk setup phenomenologically as opposed to

deriving it through a consistent truncation of supergravity. In this case the field theory

Lagrangian is not known. This, however, does not pose an issue since the properties of

the theory are inferred from gravity computations. Moreover, condensed matter sys-

tems often display universality, implying that one can obtain useful information even

when studying toy models whose microscopic feature are unknown or are not realised

in a physical system. Such considerations motivate the study of bulk setups with differ-

ent features.

In part II we study the thermodynamics of a three field theories which have special fea-

tures such scalar fields with multitrace deformations and topological axionic charges.

The bulk solutions dual to these theories are known analytically and they are all solu-

tions of the same class of theories whose action has the form

Sbulk =

∫
M

dd+1x
√
−G

(
R− 1

2
(∂ϕ)2 − V (ϕ)− 1

2
W (ϕ)

d−1∑
I=1

(∂ψI)
2 − 1

4
Z(ϕ)F 2

)
(1.3.1)

where we have setGN = 1/16π. The fieldsϕ andψ are a massive scalar and d−1massless

scalars respectively,W (ϕ) is the coupling between ϕ andψ,Fµν is the field strength asso-

ciated with a U(1) symmetry, Z(ϕ) is couplings between the corresponding gauge field

and the massive scalar and V (ϕ) is the potential for ϕ which, at zero order in ϕ, gives

the negative cosmological constant associated with asymptotically AdS spacetimes. A

full analysis of this action is given in chapter 6. This includes the asymptotic solution

of the action, the renormalisation, the computation of the one point functions and the

thermodynamic properties of the dual theory. However, before we study the theories

defined by (1.3.1) it is useful to look at the much simpler setup of Einstein–Maxwell the-

ories with a negative cosmological constant which provide the minimal setup for the

study of field theories at finite temperature and density.

1.3.1 Field Theories at Finite Temperature and Charge Density

In this section we review briefly the notions of the canonical and grand canonical en-

semble in statistical physics and demonstrate how the physical quantities of the system

in thermal equilibrium can be derived from a thermodynamic potential. This will mo-

tivate then next section in which we will discuss how the thermodynamic potential and

expectation values of various operators can be obtained holographically.

Consider a field theory with a time independent Hamiltonian Ĥ and a global U(1) sym-
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metry associated with a conserved current J i and a conserved charge Q̂. The expec-

tation value of this conserved charge is associated to the number of charged particles

N . At finite temperature the theory will experience thermal and quantum fluctuations

and to study it we need to use statistical physics. If the charge density or, equivalently,

the number of charged particles, is kept fixed the statistical ensemble representing the

possible configurations of the theory is the canonical ensemble in which, in addition to

the charge density, the temperature and volume are kept fixed. The expectation values

of operators are obtained as a statistical average over the ensemble. More precisely, one

defines the partition function Z and thermal density matrix ρ̂ of the theory,

Z = Tr
(

e−βĤ
)

(1.3.2)

and

ρ̂ =
e−βĤ
Z

(1.3.3)

where the trace is over the Hilbert space of the field theory and β = 1/T 2. Then, the

expectation values of various operators are given by

⟨Ô⟩ = Tr
(
Ôρ̂
)
. (1.3.4)

The partition function also provides a definition for the thermodynamic potential of the

theory which, for the canonical ensemble, is the Helmholtz free energy F ,

F = F(T,V, N) = −T lnZ. (1.3.5)

Moreover, defining the entropy of the system as

S = −⟨ln ρ̂⟩ (1.3.6)

and identifying E ≡ ⟨Ĥ⟩ as its energy, we can write

F(T,V, N) = E − TS. (1.3.7)

Partial variations of the free energy with respect to T , V andN give the entropy S, pres-

sure P and chemical potential µ of the theory,

S = −∂F
∂T

∣∣∣
V,N=const.

, P = −∂F
∂V

∣∣∣
T,N=const.

, µ =
∂F
∂N

∣∣∣
V,T=const.

. (1.3.8)

The exact differential of the free energy is thus given by

dF = −SdT − PdV + µdN. (1.3.9)

2We have set the Boltzmann constant equal to 1
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Alternatively one may wish to consider setups where the number of particles N in the

system is not fixed in which case the appropriate ensemble describing the Hilbert space

of the theory is the grand canonical ensemble where T and V are kept fixed but N can

fluctuate. The corresponding partition function and thermal density matrix are given by

Z = Tr
(

e−β(Ĥ−µQ̂)
)

and ρ̂ =
e−β(Ĥ−µQ̂)

Z
(1.3.10)

respectively. The thermodynamic potential associated with the grand canonical ensem-

ble is W = W(T,V, µ) given by

W = E − TS − µN = −T lnZ (1.3.11)

where E andN andS are obtained by averaging over the grand canonical ensemble. The

potential is related to the free energy of the system through a Legendre transform,

F(T,V, N) = W(T,V, µ) + µN. (1.3.12)

As can be seen from the above relations, knowing the thermodynamic potential of a sys-

tem allows us to compute its physical properties. However, within statistical physics and

thermal field theory, computing the potential is often a formidable task. The AdS/CFT

correspondence provides an alternative method for computing both the thermody-

namic potential and the expectation values of the operators of the field theory. In the

next section we introduce the necessary bulk ingredients to describe thermal field the-

ories with finite charge densities. Using these ingredients we build a toy model and use

it to develop the elements of the AdS/CFT dictionary that are used in the main part of

the thesis.

1.3.2 Gauge/Gravity Duality for Einstein–Maxwell Theories

We begin this section by examining the bulk ingredients that are needed to describe a

field theory at finite temperature and charge density. Any field theory has an energy mo-

mentum tensor which is sourced in the bulk by a metric, thus we must introduce gravity.

Moreover, the bulk spacetime must be asymptotically AdS and therefore we require a

negative cosmological constant. The finite temperature of the field theory is achieved

by considering black hole and black brane gravity solutions. Then the Hawking temper-

ature and entropy of the black hole or black brane are identified with the temperature

and entropy of the field theory. Finally, in the field theory the finite charge density is

realised by a conserved current J i. According to the AdS/CFT dictionary, such currents

are sourced by bulk gauge fields. It follows that the minimal bulk action which has so-

lutions dual to a thermal field theory with finite charge density is the Einstein–Maxwell

action with negative cosmological constant. The thermodynamic potential of the field

theory is associated with the renormalised on–shell action. The expectation values of
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the field theory operators such as the energy momentum tensor T ij , the current J i and

the charge Q are obtained by functional differentiation of the on–shell bulk action.

In addition to the above ingredients, one may wish to include other field theory op-

erators or symmetry currents by turning on the corresponding dual bulk fields. The

fields can be charged under the U(1) symmetry. For example, in applications of the

gauge/gravity duality for the study of superconductors one must introduce a charged

field in the bulk and search for solutions with both vanishing and non–vanishing val-

ues for the field. When the field vanishes the U(1) symmetry is present but for solutions

with non–vanishing field the symmetry is spontaneously broken. In the dual theory the

charged field corresponds to a charged operator that acquires a vacuum expectation

value and spontaneously breaks the U(1) symmetry, in analogy with what one observes

in superconductors.

Here we consider the simplest bulk setup dual to to a thermal field theory with finite

charge density, namely the Einstein–Maxwell theory with negative cosmological con-

stant. For concreteness we work in 4 dimensions. The action is given by

S =

∫
M

d4x
√
−G

(
R− 2Λ− 1

4
FµνFµν

)
(1.3.13)

where we use units in which 16πGN = 1. M is the bulk manifold and Λ = −6/ℓ2 is

the cosmological constant. The Greek indices µ, ν, . . . label bulk coordinates and range

from 0 to 4 and the Latin indices i, j, . . . label the transverse coordinates, including the

boundary coordinates, and range from 0 to 3.

Asymptotic Solutions to the Equations of Motion

The equations of motion are

Rµν −
R

2
Gµν −

6

ℓ2
Gµν = FµρF

ρ
ν −

1

4
GµνF

2

DµF
µν = 0 (1.3.14)

where Dµ is the covariant derivative with respect to Gµν . To solve the equations of mo-

tion we gauge fix both fields. The appropriate gauge for the metric is the Fefferman–

Graham gauge given by

ds2 = ℓ2

z2
(
dz2 + gij(x, z)dxidxj

)
gij(x, z) = g(0)ij(x) + zg(1)ij(x) + z2g(2)ij(x) + . . . (1.3.15)

For the gauge field we choose the radial gauge in which Az = 0. The remaining compo-

nents admit the following asymptotic expansion

Ai(x, z) = A
(0)
i (x) + zA

(1)
i (x) + z2A

(2)
i (x) + . . . (1.3.16)
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To facilitate our analysis we split the Einstein equations into three sets which we treat

separately. The first set consists of the transverse components, i.e. µ = i, ν = j and

we refer to these as the tensorial Einstein equations. The second, which we refer to as

the vector Einstein equations, corresponds to setting µ = z, ν = i. This leaves only the

µ = z, ν = z component of the equations and we refer to this as the scalar Einstein

equation.

In terms of g, the scalar Einstein equation is given by

− 1

2
Tr
(
g−1g′′

)
+

1

4
Tr
(
g−1g′g−1g′

)
+

1

2z
Tr
(
g−1g′

)
=

z2

4ℓ2

(
gijA′

iA
′
j −

1

2
F̃ 2

)
(1.3.17)

where ′ implies differentiation with respect to the holographic direction z and F̃ 2 =

gijgklFikFjl = 4gij(0)g
kl
(0)∂[iA

(0)
k] ∂[jA

(0)
l] + . . . . Similarly, the tensorial Einstein equations are

(g)Rij −
1

2
g′′ij +

1

2z
gij Tr

(
g−1g′

)
+

1

2

(
g′g−1g′

)
ij
+

1

z
g′ij −

1

4
g′ij Tr

(
g−1g′

)
=

=
z2

2ℓ2

(
A′
iA

′
j −

1

4
gij

(
2A′2 + F̃ 2

)
+ gklFikFjl

)
(1.3.18)

where the Ricci tensor admits the asymptotic expansion

(g)Rij =
(g)R

(0)
ij + z (g)R

(1)
ij + . . . (1.3.19)

Finally, the vector Einstein equations are

1

2
gjk
(
Dkg

′
ki −Dig

′
jk

)
=

z2

2ℓ2
gjkFijA

′
k. (1.3.20)

These equations give the Ward identities associated with the invariance up to anomalies

of the renormalised bulk action under boundary diffeomorphisms.

The equations of motion for the gauge field expressed in terms of g are

Di
(
A′
i

)
= 0, (1.3.21)

for the z component, and

A′′
i +

1

2
Tr
(
g−1g′

)
A′
i −
(
g−1g′

)j
i
A′
j +DjFji = 0 (1.3.22)

for the remaining components. Equation (1.3.21) gives the Ward identity associated with

the U(1) symmetry.

Solving the equations of motion for the components of the asymptotic expansions of
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the metric and gauge field, we find

g(1)ij = 0,

g(2)ij = −
(

(g)R
(0)
ij − 1

4
g(0)ij

(g)R(0)

)
Tr
(
g−1
(0)g(2)

)
= −1

4
(g)R(0)

Tr
(
g−1
(0)g(3)

)
= 0

A
(1)
i =

1

2
Dj

(0)F
(0)
ij

A
(2)
i =

1

6
Dj

(0)F
(1)
ij +

1

6

(
g−1
(0)g(2)

)j
i
A

(0)
j − 1

6
Tr
(
g−1
(0)g(2)

)
A

(0)
i

as well as the divergence identities,

Dj
(0)A

(0)
j = 0, Dj

(0)A
(1)
j = 0 (1.3.23)

and

Di
(0)

(
(g)R(0)ij −

1

2
g(0)ij

(g)R(0)

)
= 0, Dj

(0)g(3)ij = 0 (1.3.24)

Di
(0) is the covariant derivative associated with g(0)ij .

We have obtained the asymptotic solutions for the bulk fields which are needed to com-

pute the on–shell action. However, this is not sufficient. If one proceeds to compute the

on–shell action, performing first the necessary holographic regularisation, varying the

result with respect to the sources, as was described in the previous sections, the pro-

cess will not produce the correct stress–energy tensor. The reason for this is that we

must first add additional surface terms which impose the correct boundary conditions

for the metric. It is then this augmented version of the action that one renormalises and

subsequently perturbs to obtain the expectation values of the dual operators.

In particular, when we perform the functional differentiation with respect to the metric,

we obtain a surface term proportional to ∂zδGµν . Imposing Dirichlet boundary condi-

tions at fixed z is not sufficient to eliminate this term, one must add a boundary term

to the action. This is the well–known Gibbons–Hawking (or Gibbons–Hawking–York)

term. We proceed by reviewing this term and demonstrate why it is necessary.

Extrinsic curvature and Gibbons-Hawking term

Consider the timelike hypersurface Bϵ = {z = ϵ}. This will be the cutoff surface we

will use to regularise the action, and we will take the ϵ → 0 limit after adding the coun-

terterms needed to cancel the divergences. Let n be the unit normal to Bϵ, pointing

outwards. For the metric in the Fefferman–Graham gauge we have

nµ = −z
ℓ
(∂z)

µ, or equivalently nµ = − ℓ
z
(dz)µ. (1.3.25)
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The first fundamental form of the embedding of Bϵ in the spacetime is defined as the

projector hµν on Bϵ,

hµν = Gµν − nµnν , ⇒ hij =
ℓ2

ϵ2
gij , hzz = 0, hzi = 0, (1.3.26)

and the induced metric γij on Bϵ is3

γij =
ℓ2

ϵ2
gij . (1.3.27)

To avoid confusion, we will still use greek indices µ, ν,… for raising/lowering indices

using the induced metric γ, and reserve latin indices i, j,… for raising/lowering indices

using the metric gij . We define the extrinsic curvature of the embedding of Bϵ in the

spacetime as4

Kµν = −hµρhνσD(ρnσ). (1.3.28)

For our geometry, we find that Dznµ = Dµnz = 0, and the only non-vanishing terms of

the covariant derivative of the normal vector are

Dinj = − ℓ

2ϵ
g′ij +

ℓ

ϵ2
gij (1.3.29)

yielding the extrinsic curvature tensor

Kij =
ℓ

2ϵ
g′ij −

ℓ

ϵ2
gij . (1.3.30)

Its trace K = γijKij , or mean curvature, is then given by

K =
ϵ

2ℓ
Tr (g−1g′)− 3

ℓ
. (1.3.31)

Let us see now why we need the Gibbons-Hawking term. When varying the action with

respect to the metric, we can use the relation

GµνδGRµν = Dµ (GρσDρδGµσ −GρσDµδGρσ) . (1.3.32)

3Using the coordinates {xi} on Bϵ, the embedding Xµ(xi) of Bϵ in the spacetime is given by Xz = ϵ,
Xi = xi. Then the induced metric is given by γij = ∂iX

µ∂jX
νGµν , and the first fundamental form is

obtained as hµν = ∂iX
µ∂jX

νγij .
4Notice that we have conventionally a minus sign in our definition. Equivalently, it can be calculated as

Kµν = − 1
2
Lnhµν = ϵ

2ℓ
∂ϵhµν . For codimension higher than one, the extrinsic curvature tensor is defined

as Kµν
ρ = −hµ

Λhν
σDσhλ

ρ, and the mean curvature vector by Kρ = hµνKµν
ρ.
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This is a total derivative; after an integration by parts the variation of Sbulk gives,

δGSbulk =

∫
z>ϵ

dd+1x
√
−G [bulk e.o.m. ]µν δG

µν

+

∫
z=ϵ

ddx
√
−γ nµ (GρσDρδGµσ −GρσDµδGρσ) . (1.3.33)

Substituting Gρσ = hρσ + nρnσ , the boundary term becomes∫
z=ϵ

ddx
√
−γ nµ (hρσDρδGµσ − hρσDµδGρσ) . (1.3.34)

If we impose Dirichlet boundary conditions, δGµν |Bϵ = 0, the first term in the integrand

vanishes, since it is the derivative of δGµν , along some boundary direction. On the other

hand, the second term does not vanish, as it is the change of δGµν moving away from

the boundary. The variational principle with Dirichlet boundary conditions δGµν = 0

on Bϵ is thus not well-posed. To make the action functionally differentiable, we need to

add the Gibbons-Hawking term

SGH = −2

∫
z=ϵ

ddx
√
−γ K. (1.3.35)

Indeed, using the expression

δGΓ
ρ
µν =

1

2
Gρσ (DµδGσν +DνδGσµ −DσδGµν) , (1.3.36)

we find that

GµνδGKµν =
1

2
hρσnµ (DρδGµσ +DσδGµρ −DµδGρσ) (1.3.37)

and the variation of the Gibbons-Hawking term gives

δGSGH =

∫
z=ϵ

ddx
√
−γ

[
(Kγij − 2Kij) δG

ij − 2nµhρσ∇ρδGµσ + nµhρσ∇µδGρσ
]
. (1.3.38)

Combining all contributions

δG(Sbulk + SGH) =

∫
z=ϵ

ddx
√
−γ
[
(Kγij − 2Kij) δG

ij − nµhρσDρδGµσ
]
. (1.3.39)

To deal with the last term, we write it as

−nµhρσDρδGµσ = −hρσDρ (n
µδGµσ)− hρσDρn

µδµσ (1.3.40)

= Di

(
γijnµδGµj

)
− hρσGµν (Dρnν) δGµσ (1.3.41)

withDi the covariant derivative associated to the induced metric γij . The total derivative

yields zero when integrated, and the remaining term becomes KµνδG
µν . Finally, the
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metric variation of S0 is

δG(Sbulk + SGH) =

∫
z>ϵ

dd+1x
√
−GEµνδGµν −

∫
z=ϵ

ddx
√
−γ (Kij −Kγij) δγ

ij , (1.3.42)

where we took δγij = δGij . Hence, the addition of the Gibbons-Hawking term renders

the action functional differentiable when imposing Dirichlet boundary conditions on

Bϵ, leading to a well-defined variational problem. The resulting equations of motion are

Eµν = 0.

As a final remark we point out that the above discussion is not quite correct since the

bulk fields, including the metric, do not induce boundary fields on the conformal bound-

ary but instead a conformal class of boundary fields. As a consequence, although one

can impose Dirichlet boundary conditions on the cut–off surface Bϵ, in the limit where

Bϵ → ∂ such boundary conditions need to be replaced by a weaker set of boundary con-

ditions where the boundary fields are kept fixed up to Weyl transformations [30]. For

the metric this implies the relationship

δγij = 2γijδσ(x) (1.3.43)

where δσ(x) an arbitrary infinitesimal function of the boundary coordinates. Once the

covariant counterterm necessary for the finiteness of the on–shell action are also taken

into account, the variational problem of the resulting action is well–posed. However,

there is an important subtlety associated with a non–zero conformal anomaly, since one

can no longer impose (1.3.43). In this case one has to choose a specific representative

of the boundary conformal structure to impose the boundary conditions which means

that the bulk diffeomorphisms are partly broken. However, when both the Gibbons–

Hawking and the counterterms are added, the on–shell action has a well defined trans-

formation under the broken diffeomorphisms. In particular, in this case the violation

of the variational problem depends on the conformal class γij only and therefore, im-

posing Dirichlet boundary conditions leads to a well–posed variational problem. For

a detailed discussion of boundary terms, counterterms and the well–posedness of the

variational problem in the presence of conformal anomalies see [30].

Holographic Renormalisation

The next step in our analysis is the computation of the regularised on–shell action. Start-

ing with the action (1.3.13) and using the equations of motion we find

Son–shell =

∫
M

d4x
√
−G

(
2Λ− 1

4
F 2

)
+ SGH (1.3.44)

where we have included the Gibbons–Hawking term,

SGH = −2

∫
z=ϵ

d3x
√
−γ K. (1.3.45)
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The on–shell action suffers from infinite volume IR divergences and has to be renor-

malised. As we saw in section 1.2.4, we must first regulate the action by introducing a

cut–off at z = ϵ,

Sreg =

∫
z>ϵ

d4x
√
−G

(
2Λ− 1

4
F 2

)
− 2

∫
z=ϵ

d3x
√
−γ K. (1.3.46)

We wish to identify terms which, after we integrate the on–shell action with respect

to z for z > ϵ, are divergent in the limit ϵ → 0. These will provide the counter–term

action necessary to make the on–shell action finite. Using the asymptotic form of the

fields, (1.3.15) and (1.3.16), and the corresponding solutions, we find that the divergent

terms are

Sreg =

∫
z=ϵ

d3x
√

−g(0)
(
4ℓ2

ϵ3
+
ℓ2

2ϵ
(g)R(0)

)
+O

(
ϵ0
)
. (1.3.47)

More details on the derivation of this result can be extracted from the discussion in

section 6.3.4 by turning off any fields that are not present here. The expression (1.3.47)

provides the counterterm action that one must add to (1.3.44) to render the on–shell

action finite. However, the above expression is not covariant so it does not respect bulk

diffeomorphisms. To obtain a covariant expression we must invert the field expansions

to obtain the expressions for the boundary values of the fields in terms of covariant

bulk fields that live on the cut–off surface Bϵ. In terms of these fields, the covariant

counterterm action is

Sct = −
∫
z=ϵ

d3x
√
−γ
(

4

ℓ2
+ ℓ (γ)R

)
, (1.3.48)

and the renormalised on–shell action is

Sren = lim
ϵ→0

(
Sreg + Sct

)
. (1.3.49)

Varying this expression with respect to the sources of the fields, i.e. g(0)ij and A(0)
i , we

obtain the one point functions of the dual operators,

δSren =

∫
d3x
√

−g(0)
(
1

2

⟨
T ij
⟩
δg(0)ij +

⟨
J i
⟩
δA

(0)
i

)
(1.3.50)

where ⟨
T ij
⟩
= 3ℓ2gij(3),

⟨
J i
⟩
= Ai(1). (1.3.51)

Moreover, using the divergence equations (1.3.23) and (1.3.24) we obtain the Ward iden-

tities associated with boundary Weyl and U(1) transformations

−Dj
(0) ⟨Tij⟩+

⟨
J i
⟩
F

(0)
ij = 0,

D(0)i

⟨
J i
⟩
= 0. (1.3.52)
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So far we have only studied the asymptotic behaviour of the bulk fields but the vacuum

expectation values of the operators remain undetermined. In order to find the explicit

expressions for the vevs we must solve the field equations everywhere in the bulk, pro-

viding initial and final data for the fields to obtain unique solutions. We do not carry out

this analysis here and instead we study a known solutions of the action (1.3.13), namely

the 4 dimensional AdS Reissner–Nordström black hole or black brane.

1.3.3 AdS Reissner–Nordström Black Brane

The simplest solution to the equations of motion (1.3.14) is obtained by setting the gauge

field equal to zero. In this case the spacetime is empty AdS and its metric is

ds2 = ℓ2

z2
(
−dt2 + dz2 + dx⃗2

)
. (1.3.53)

This is already in the Fefferman–Graham gauge with gij(x, z) = ηij . Moreover,Ai(x, z) =

0. It follows that the dual field theory has vanishing stress–energy tensor and U(1) cur-

rent, as one would expect.

A more interesting solution is the static planar AdS Reissner–Nordström black hole or

black brane for which the metric and gauge field are given by

ds2 = ℓ2

z2

(
−f(z)dt2 + dz2

f(z)
+ dx⃗2

)
f(z) = 1−M

z3

z3h
+Q2 z

4

z4h
, M = 1 +Q2, Q2 =

z2hµ
2

4ℓ2
,

At(z) = µ

(
1− z

zh

)
. (1.3.54)

The parametersM andQ are related to the ADM mass and the charge of the black brane

and zh is the position of the horizon. For the dual field theory to be at finite charge

density, the time component of the gauge field must have a non–trivial profile. Here we

are interested in dual theories that preserve rotational symmetry in the spatial directions

and therefore Ax = Ay = 0 and At = At(z). Moreover, At vanishes at the horizon in

order forAtdt to have finite norm. As we will see below, the parameter µ corresponds to

the chemical potential of the dual theory and µ/zh, the coefficient of term proportional

to z, to its density.

We proceed with the computation of the temperature and entropy density of the black

brane which are identified with the corresponding quantities of the field theory. We

then study the asymptotic behaviour of the bulk solution by expressing the fields in the

Fefferman–Graham gauge and identify the one point functions of the dual operators.

Finally, we review the thermodynamics of the dual field theory.
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Temperature and Entropy

The temperature of the black brane can be computed by Wick rotating the metric and

then studying the near horizon limit of the resulting Euclidean metric. The Euclidean

metric has a conical singularity at the horizon unless the Euclidean metric is period. Its

period is identified with the inverse temperature.

The four dimensional Euclidean AdS Reissner–Nordström black brane, obtained by Wick

rotating the metric (1.3.54), is

ds2 = f(z)dτ2 + dz2
f(z)

+ z2dx⃗2. (1.3.55)

To study the near horizon region we introduce the radial coordinate ρ given by

z = zh

(
1− ρ2

4ℓ2
(3−Q2)

)
, ρ(zh) = ρh = 0. (1.3.56)

To lowest order in ρ the metric is given by

ds2 = (3−Q2)2

4z2h
ρ2dτ2 + dρ2 + ℓ2

z2h
dx⃗2. (1.3.57)

This has a conical singularity at ρ = 0 unless τ is periodic. Its period is identified with

the inverse temperature β = 1/T . To find the period we rescale τ to ϕ = τ(3−Q2)/2zh.

Then the (τ, ρ) surface becomes

ds2 = dρ2 + ρ2dϕ2. (1.3.58)

Upon imposing periodicity, ϕ ∼ ϕ + 2π, this is a plane in polar coordinates. In terms of

τ this implies that ∆τ = 2π
(
2zh/(3−Q2)

)
= β and hence

T =
1

4πzh

(
3−Q2

)
. (1.3.59)

Having found the temperature of the black brane we proceed with the calculation of its

entropy which is given by the Bekenstein–Hawking formula,

S = 4πAh (1.3.60)

where Ah is the area of the horizon. Recall that we are using units in which 16πG = 1.

For a planar black holes the area of the horizon is infinite and therefore we compute the

entropy density instead, given by S/Vd−1, where Vd−1 is the area of the transverse space.

Then, from (1.3.54) it follows that

s = 4π
ℓ2

z2h
. (1.3.61)

According to the AdS/CFT dictionary the temperature (1.3.59) and entropy density (1.3.61)
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are identified with the temperature and entropy density of the dual field theory.

Field Theory Expectation Values

Next we holographically compute the expectation values of the stress–energy tensor and

U(1) current of the dual field theory. We do this by making use of the general expres-

sions derived previously relating the one point functions of the field theory operators

to asymptotic expansions of the bulk fields. In particular, we found that

⟨
T ij
⟩
= 3ℓ2gij(3),

⟨
J i
⟩
= Ai(1) (1.3.62)

where gij(3) andAi(1) are obtained from the asymptotic expansion of the bulk fields written

in the Fefferman–Graham gauge. To express the metric in the Fefferman–Graham gauge

we need to perform a coordinate transformation z = z(r) satisfying

gzzdz2 =
ℓ2

r2
dr2 (1.3.63)

under which the original metric takes the form

ds2 = ℓ2

r2
(
dr2 + gij(x, r)dxidxj

)
. (1.3.64)

To derive this transformation we consider a series expansion for z(r)5,

z(r) = r
(
1 + a1r + a2r

2 + a3r
3 + a4r

4 +O(r5)
)
, (1.3.65)

and solve order by order in r. Note that the boundary is located at r = 0. From the z(r)

expansion we compute dz2 and gzzdz2 in terms of r and dr,

dz2 =
(
1 + 4ra1 + 2r2

(
2a21 + 3a2

)
+ 4r3 (3a1a2 + 2a3) +O(r4)

)
dr2, (1.3.66)

gzzdz2 =
ℓ2

r2

(
1 + 2ra1 + r2

(
−a21 + 4a2

)
+ r3

(
M

z3h
− 2a1a2 + 6a3

)
+O(r4)

)
. (1.3.67)

Requiring that the right hand side of this expression agrees with the grr component of

the Fefferman–Graham metric (1.3.64) a1 = 0, a2 = 0 and a3 = −M/6z3h. To determine

more coefficients in the z(r) expansion we need to go to higher orders in r. In particular,

to order O(r5) we obtain

z(r) = r

(
1− r3

M

6z3h
+ r4

Q2

8z4h
+O(r5)

)
, (1.3.68)

5z(r) is independent of the transverse coordinates x since the original metric has no x dependence.
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gij =

 −1 0 0

0 1 0

0 0 1

+ r3


2M
3z3h

0 0

0 M
3z3h

0

0 0 M
3z3h

+ r4


−3Q2

4z4h
0 0

0 − Q2

4z4h
0

0 0 − Q2

4z4h

+O(r5),

(1.3.69)

and

At = µ

(
1− r

zh
+
r4

z4h

M

6
+O(r5)

)
. (1.3.70)

Comparing these expressions to the definitions of the one point functions of the dual

operators (1.3.62) we obtain
⟨
T ij
⟩

and
⟨
J i
⟩
,

⟨
T ij
⟩
= 3ℓ2


2M
3z3h

0 0

0 M
3z3h

0

0 0 M
3z3h


⟨
J i
⟩
=

(
µ

zh
, 0, 0, 0

)
. (1.3.71)

The
⟨
T 00
⟩

component of the stress–energy tensor is related to the energy density of the

field theory,

ε = 2ℓ2
M

z3h
(1.3.72)

and the time component of the U(1) current is the charge density of the field theory,

ρ =
µ

zh
. (1.3.73)

From the discussion of the grand canonical ensemble and in particular from equa-

tion (1.3.10) we know that in the field theory Lagrangian the charge operator is coupled

with the chemical potential. Moreover, from the AdS/CFT dictionary we know that the

source that couples to J i and ρ is given by the leading asymptotic term of the gauge field,

namely A(0)
i . Hence, we conclude that A(0)

t is indeed the chemical potential of the dual

field theory.

Another way of computing the charge density is to vary the thermodynamic potential

of the theory with respect to µ. In terms of bulk quantities, the potential is given by the

Euclidean renormalised on–shell action. Using the general results obtain above for the

counterterms and including the Gibbons–Hawking term, the thermodynamic potential

of the dual theory is

W = −Sren = −
(
ℓ2

z3h
+

µ2

4zh

)
V2 (1.3.74)

where the inverse temperature β comes from integrating over one Euclidean time cycle

and V2 =
∫

dxdy which is formally divergent. This can be resolved by compactifying
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these directions or by working with local densities obtained by dividing by V2. Accord-

ingly, the corresponding density w is defined as W/V2 and the charge density is

ρ = −∂w
∂µ

∣∣∣
T=const.

=
µ

zh
(1.3.75)

in agreement with our previous result. Similarly, the entropy density can be computed

by varyingwwith respect to the temperature while keeping the chemical potential fixed.

The result obtained using this method is identical to the expression for the Bekenstein–

Hawking entropy computed in the previous section. Using all the above expressions it

is easy to verify that

w = ε− Ts− µρ. (1.3.76)

Moreover, we can compute the pressure of the system by varying the total energy E =

εV2 with respect to the volume V2, keeping the total entropy S = sV2 and total charge

Q = ρV2 fixed. From the expression from ε we have

E =
1

4ℓ

S3/2

π3/2
√
V2

+
ℓQ2√π√
S
√
V2

(1.3.77)

where we inverted the expressions for S andQ to obtain µ(S,Q) and zh(S,Q). Then the

pressure is

P = − ∂E
∂V2

∣∣∣
S,Q

=
1

8ℓ

S3/2

π3/2V2

√
V2

+
ℓQ2√π

2
√
SV2

√
V2

=
ℓ2

z3h
+

µ2

4zh
. (1.3.78)

Note that w = −P and, furthermore,

ε+ P = Ts+ µρ. (1.3.79)

This last expression is the Gibbs–Duhem relation.

This concludes our introduction of the AdS/condensed matter theory (CMT) dictionary.

To summarise, we studied the Einstein–Maxwell action with negative cosmological con-

stant which provides the necessary building blocks for the dual field theory to be at finite

temperature and charge density. In terms of statistical field theory, this dual theory can

be studied using the grand–canonical potential. We demonstrated how this can be ob-

tained from a bulk calculation; it is simply the renormalised Euclidean on–shell action.

Moreover, we computed the expectations values of the stress–energy tensor and U(1)

current of the quantum field theory and deduced the charge and energy densities of the

theory. Finally, we studied some of the thermodynamic properties and relations of the

dual theory by combining all the results from the bulk calculations.

This example is a warm–up exercise for chapter 6 where we repeat this analysis for a

more complicated setup that includes, in addition to gravity and the gauge field, massive

and massless scalar fields with non–trivial couplings to the gauge field. In analogy to
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what was done here, we first study the theory in full generality by expressing the fields

as asymptotic expansions with undetermined coefficients. The results obtained are then

applicable to any specific solution. In chapters 7 and 8 we apply the general results to

three analytic solutions of the general theory.

1.4 Concluding Remarks

In this chapter we reviewed the basic elements of the AdS/CFT dictionary and then ap-

plied them to the holographic study of a simple condensed matter system. More specif-

ically, in section 1.2 we established the relation between fields in AdS and operators in

the dual field theory and demonstrated how one finds the expectation values of the field

theory operators from semiclassical supergravity calculations in the bulk (1.2.3). This in-

volves holographically renormalising the bulk on–shell action in order to treat infinite

volume IR divergences which are related to UV divergences of the field theory (1.2.4). The

one–point functions of the dual operators are then obtained through functional differ-

entiation of the renormalised on–shell action with respect the respective sources. This

calculation was carried out explicitly for a scalar field in the Poincaré patch of AdSd+1

which is dual to a scalar operator in a flat background. Although the calculation did not

rely explicitly on the signature of the metric, we saw that Lorentzian AdS requires spe-

cial treatment due to its causal structure. In particular, the unique determination of bulk

fields requires that, in addition to the usual boundary conditions, we specify initial and

/or final conditions for the Lorentzian fields. The procedure for obtaining these initial

and final conditions was the subject of section 1.2.5 which concluded our introduction

to the AdS/CFT dictionary.

The remaining of the chapter was dedicated to the application of AdS/CFT to condensed

matter systems with particular focus on the derivation of the thermodynamics of the

field theory from bulk calculations. In section 1.3.1 we briefly reviewed the thermody-

namics of field theories at finite temperature and charge density. This review revealed

the power of the thermodynamic potential and motivated the use of gauge/gravity du-

alities for the study thermal field theories since they provide a straightforward way to

compute the thermodynamic potential. In section 1.3.2 we studied the Einstein–Maxwell

theory in 3+1 dimensions which admits solutions dual to field theories at finite charge

density and temperature. We first solve the equations of motion for the gauge field and

metric near the conformal boundary and computed the renormalised on–shell action

and one–point functions of the dual operators, namely the stress energy tensor and the

conserved U(1) current. This calculation was performed in full generality. In particu-

lar, we did not specify the boundary and initial and final conditions for the fields and

therefore the solutions obtained were in terms of arbitrary coefficients that appear in

the asymptotic expansion of the fields. These coefficients are determined in the next

section, 1.3.3, where we considered a known solution to this theory, namely the AdS

Reissner–Nordström black brane. Having an analytic solution allowed us to compute
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the temperature, entropy density, energy density and charge density of the dual theory

as well as the expectation values of its stress energy tensor and conserved U(1) current.

Moreover, the renormalised on–shell action evaluated on this solution provided us with

the grand canonical potential for the field theory. As a final exercise we used all the field

theory quantities we computed to study the thermodynamics of the dual field theory.

The rest of the thesis is dedicated to the further development and application these con-

cepts. It consists of two distinct parts. The first part addresses the question of how one

can holographically construct excited field theory states and it follows [1]. The construc-

tion of such states is only possible in Lorentzian AdS/CFT and it requires the use of the

real time gauge/gravity dictionary introduced in section 1.2.5. In this thesis we focus on

a simple example: a field theory state that to leading order in the large N limit can be

described by a scalar field in a fixed AdS background. For our construction we make use

of the in–in field theory contour which corresponds to an AdS manifold consisting of

two half Euclidean balls and two Lorentzian cylinders sandwiched between them. Our

analysis demonstrates that the excited field theory state O |0⟩, where O is the scalar op-

erator dual to the bulk scalar field, is created by turning on sources for the bulk scalar in

the two Euclidean caps. We show this explicitly for global AdS3 in chapter 3 and for the

Poincaré patch of AdS3 in chapter 4.

The second part of the thesis is an application of the correspondence to a class of the-

ories that admit planar black brane solutions that can carry electric and/or magnetic

charges and can be supported by two types of scalar fields. The scalars are a set of axion

fields and a scalar with a running profile. Both types of scalars are neutral in the theories

we study. The axion fields admit a linear profile in the spatial boundary directions and

are constant along the radial direction. As we will see in chapter 6 these are 0–forms

that carry magnetic–like charges. As such, they are primary hair and their charge enters

in the first law of the dual field theory. Moreover, it was shown in [31, 32] that fields

with this profile break translation invariance in the dual theory and lead to momentum

dissipation and finite DC conductivity when the scalar fields are charged. In contrast,

the scalar with the running profile corresponds to secondary hair and there are no con-

served charges associated with it. However, as we will see, its mass is in the window

that allows for mixed and Neumann boundary conditions (see section 1.2.4). In chap-

ters 7 and 8 we study solutions for which the scalar satisfies mixed boundary conditions

and we find that they modify bulk the on–shell action and therefore the holographic

stress tensor, conserved charges and free energy of the field theory. By correctly im-

plementing these modifications in the first law we confirm that there are no charges

associated to this scalar field, as should be the case for secondary hair. From the field

theory perspective, mixed boundary conditions are associate to multi–trace deforma-

tions. This type of deformations introduce a new parameter in the field theory that can

be tuned to control the condensate of the corresponding scalar operator. We will see

that the phases of the theory are governed by this operator and therefore, this new tun-
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ing parameter can be dialled to move across different phases and change the theory.

For this reason we will refer to this field as the dialton. The main objective and outcome

of this part of the thesis is the development of the holographic dictionary for this class

of theories and the correct identification and derivation of the conserved charges and

thermodynamic properties and it follows [2]. The theory is first solved in full generality

in chapter 6 and the results are then applied to specific solutions whose analytic form

is known in chapters 7 and 8.

The remaining of the thesis is organised as follows. We begin by discussing the holo-

graphic construction of excited field theory states in part I. In chapter 2 we formally

introduce the question that we set out to answer, namely how can we holographically

construct CFT states of the form O |0⟩ where O is a scalar operator. We then proceed

to answer this question for global AdS3 in chapter 3 and for the Poincaré patch of AdS3

in chapter 4. We conclude this part of the thesis with the summary of the results in

chapter 5. The second part of the thesis focuses on the a class of four dimensional

Einstein–Maxwell theories which carry axionic and magnetic charges and can support

an additional running scalar field satisfying mixed boundary conditions. In chapter 6

we introduce this class of theories and discuss the features of the solutions we are in-

terested in. We then proceed to perform the holographic analysis of a generic solution

possessing these features and develop the holographic dictionary as well as the ther-

modynamic properties of the dual theory. These results are used to study solutions to

two theories that explicit realisations of the class of theories we are interested in. In

particular, we discuss the thermodynamics properties and dynamical stability of both

bold and hairy solutions to these theories, as well as phase transitions between them.

This is done is chapters 7 and 8.



Part I

Holographic Construction of Excited

CFT States
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Chapter 2

General Discussion

2.1 Real time holography

A central question in holography is how the bulk is reconstructed from QFT data. The

first part of this thesis will address a simpler question:“what is the bulk dual of a CFT

state?” While it has been clear since the early days of AdS/CFT that normalisable bulk

solutions are related to states [33], a precise construction of a bulk solution given a state

has not been available prior to [1] on which this part of the thesis is based1.

The construction is an application of the real-time gauge/gravity dictionary [28, 29] dis-

cussed in section 1.2.5 and it can be applied to any state that has a (super)gravity descrip-

tion. We will however focus on a simple example: a state that to leading order in a large

N limit can be described by a scalar field in a fixed AdS background. An additional mo-

tivation for studying this example is that the bulk solution appeared also in related work

[40]. That paper was part of a bigger program where an attempt is made to reconstruct

bulk operators from boundary data [41, 42, 43, 44, 45, 46] (see also related work [47, 48, 49]).

We will return to this in the next section where we give a brief overview the general for-

malism used in these works. Once we have performed the reconstruction for specific

cases, we shall return again to this matter and discuss similarities and differences with

that work.

In chapter 1 section 1.2.4 we studied the asymptotic behaviour of a massive scalar in

AdS. Let us briefly revisit the subject and use it as a stepping stone to review what is

known about bulk reconstruction starting with a scalar field in a fixed background and

in Euclidean signature. It is well known that a field Φ of mass m2 = ∆(∆− d) in AdSd+1

is dual to an operator O∆ of dimension ∆. The bulk field has an asymptotic expansion

1 A related question that received more attention over the years is the converse: given a bulk solution
with normalisable asymptotics what is the dual state? For such solutions, the leading order asymptotic be-
haviour of the solution is related with the 1-point function of the gauge invariant operators in a state and
from the 1-point functions one may extract information about the dual states. Examples of such computa-
tions include the computation of 1-point functions for the solutions corresponding to the Coulomb branch
of N = 4 SYM [34], the 1-point functions for the LLM solutions [35] in [36] and 1-point functions for fuzzball
solutions [37, 38, 39].
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of the form [19]

Φ(r, x) = rd−∆ϕ(0)(x) + · · ·+ r∆ log r2ψ(2∆−d)(x) + r∆ϕ(2∆−d)(x) + . . . (2.1.1)

where r is the holographic (radial) direction and x denotes the collective set of boundary

coordinates. ϕ(0)(x) is the source for the dual operator and ϕ(2∆−d)(x) is related to the

1-point function,

⟨O∆⟩ = (2∆− d)ϕ(2∆−d)(x) +X(ϕ(0)), (2.1.2)

where X(ϕ(0)) is a local function of the source ϕ(0) (whose exact form depends on the

bulk theory under discussion). ϕ(0)(x) and ϕ(2∆−d)(x) are the only two arbitrary coef-

ficient functions in the above expansion. All subleading terms down to r∆ (including

ψ(2∆−d) but not ϕ(2∆−d)(x)) are locally related to ϕ(0)(x) and similarly all terms that ap-

pear at higher orders can be determined in terms of ϕ(0) and ϕ(2∆−d)(x). Thus, given the

pair (ϕ(0)(x), ϕ(2∆−d)(x)) one can iteratively construct a unique bulk solution. A differ-

ent (non-perturbative) argument for uniqueness is to note that the 1-point function is

the canonical momentum π∆ in a radial Hamiltonian formalism [23] and by a standard

Hamiltonian argument, specifying a conjugate pair (ϕ(0), π∆) uniquely picks a solution

of the theory. This argument however does not tell us whether the solution is regular in

the interior. Indeed in quantum field theory, the vacuum structure is a dynamical ques-

tion: in general one cannot tune the value of ⟨O∆⟩. The counterpart of this statement is

that a generic pair (ϕ(0), π∆) leads to a singular solution2 and it is regularity in the interior

that selects ⟨O∆⟩.

In Lorentzian signature new complications arise as we discussed in section 1.2.5. As

we saw, in the bulk boundary conditions alone do not determine a unique solution:

Lorentzian AdS is a non–hyperbolic manifold. Indeed, there exist normalisable modes

which are regular in the interior and vanish at the boundary, leaving the boundary data

unaffected.

On the QFT side, there are related issues. While in Euclidean signature there is only one

type of correlator, in Lorentzian signature, there are multiple types of correlators (time-

ordered, Wightman functions, advanced, retarded, etc.). In addition, one may wish to

consider these correlators on non–trivial states (such as thermal states, states that spon-

taneously break some symmetries, general non-equilibrium states). All of this data may

be nicely encoded by providing a contour in the complex time plane and considering

the path integral defined along this contour. Different types of correlators and different

initial/final states are encoded by operator insertions along this contour. This is known

as the Schwinger-Keldysh formalism [26, 50, 51, 27].

In section 1.2.5 we saw how this formalism can be extended to AdS/CFT. In particular,

the bulk version of this formalism dictates the gauge/gravity duality acts in a piece-wise

2Some of these pairs do not correspond to QFT data at all while others are singular in supergravity but
they would be regular in string theory. It is not currently known how to distinguish between the two cases.
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Figure 2.1.1: In–in time contour (left) and corresponding AdS manifold (right). The man-
ifolds labelled by L are empty Lorentzian AdS and those labelled by E are empty, Eu-
clidean AdS.

fashion on the various parts of the time contour and appropriate matching condition are

imposed at the corners. More specifically, real time pieces of the contour are associated

with Lorentzian AdS manifolds, imaginary time pieces with Euclidean AdS manifolds

and the matching conditions require that the fields and their conjugate momenta are

continuous across the different manifolds. In this way, the initial conditions are traded

for boundary condition in the Euclidean parts of the spacetime. In this formalism, im-

posing boundary conditions on the entire bulk manifold, uniquely specifies the bulk

solution, as in the Euclidean case.

This is a general method that may be used to study correlation functions in general non-

equilibrium states. In this paper we will use it to construct a bulk solution that corre-

sponds to an excited CFT state. By the operator-state correspondence any such state

may be obtained by acting with scalar primary operators O∆ on the CFT vacuum,

|∆⟩ = O∆|0⟩. (2.1.3)

In the Schwinger-Keldysh formalism, in–in correlators in this state may be obtained by

considering the in-in contour C on the left panel of Fig. 2.1.1. On the gravity side we

consider the manifold corresponding to the in–in field theory time contour shown in

the right panel of figure 2.1.1. The operator O∆ corresponds to a massive bulk scalar

field and we will solve the scalar field equation in all four parts of the bulk spacetime.

The boundary conditions we use are sources turned on in the two Euclidean manifolds

, i.e. ϕ(0)(x) ̸= 0 for x ∈ ∂E where ∂E the boundary of the Euclidean manifolds. In

the Lorentzian manifolds we want purely normalisable solutions so we set the sources

equal to zero, i.e. ϕ(0)(x) = 0 for x ∈ ∂L where ∂L is the boundary of the Lorentzian

manifolds.
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Figure 2.2.1: In–in complex time contour with operator insertions at t = 0± iϵ.

2.2 Quantum field theory considerations

In this section we setup the problem using the Schwinger-Keldysh formalism. Let us

denote by ϕ(0) the source that couples to O∆. We would like to compute expectation

values in the state |∆⟩ = O∆|0⟩, inserted at x⃗ = t = 0. To realise this set up we consider

the contour shown in Fig. 2.2.1. We insert the operator O∆ at small imaginary distance

τ0 = −ϵ at t = 0 and at τ3 = ϵ at t2 = 2T , where τ0, t1, t2 and τ3 are contour times

in the four segments. In complexified time the insertions are at t = 0 + iϵ and t =

0 − iϵ. Performing the Euclidean path integral over the imaginary part of the contour

provides the initial and final conditions for the Lorentzian path integral. Altogether the

path integral under consideration is

Z
[
ϕ(0); C

]
=

∫
[Dϕ] exp

[
−i
∫
C

dtdd−1x
√

−g(0)
(
LQFT + ϕ(0)(x)O∆(x)

)]
(2.2.1)

If we compute this path integral for general ϕ(0)(x) and then differentiate w.r.t. ϕ+(0) and

ϕ−(0), where ϕ±(0) = ϕ(0)(0±, 0⃗) and 0± = 0 ± iϵ, and then set to zero the sources in the

imaginary part of the contour, the resulting expression will be the desired generating

functional of in-in correlators in the state |∆⟩.

In later sections we will construct the gauge/gravity analogue of (2.2.1). Corresponding

to ϕ(0) there is bulk scalar field Φ and the best we can currently do holographically is

to construct (2.2.1) perturbatively in the bulk fields (or perturbatively in a large N limit,

see below). Correspondingly we will consider the source ϕ(0)(x) in the imaginary part

as being infinitesimal, with the product of the two sources at the same point set to zero,

(ϕ(0)(x))
2 = 0, so that we generate a single insertion. If we relax this condition we will

generate states that are superpositions of the states associated with “single trace” and

“multi-trace” operators. The path integral (2.2.1) with ϕ(0)(x) infinitesimal also contains

terms linear in the sources which would not contribute if we were to differentiate w.r.t.

both ϕ+(0) and ϕ−(0). However, these linear terms still provide a non-trivial check that we

are constructing holographically the correct path integral and as such we will consider

them in detail.
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Let Oi be gauge invariant operators. Their 1-point function is given by

⟨Oi(t, x⃗)⟩ =
∫

[Dϕ]Oi(t, x⃗) exp
[
− i

∫
C

dt′dd−1x⃗′
√

−g(0) (LQFT

+ ϕ(0)(x
′)O∆(x

′)

)]
. (2.2.2)

Expanding in the sources we obtain

⟨Oi(t, x⃗)⟩ =ϕ+(0)⟨0|O∆(0+, 0⃗)Oi(t, x⃗)|0⟩+ ϕ−(0)⟨0|Oi(t, x⃗)O∆(0−, 0⃗)|0⟩

+ ϕ+(0)ϕ
−
(0)⟨0|O∆(0+, 0⃗)Oi(t, x⃗)O∆(0−, 0⃗)|0⟩. (2.2.3)

=ϕ+(0)⟨∆|Oi(t, x⃗)|0⟩+ ϕ−(0)⟨0|Oi(t, x⃗)|∆⟩+ ϕ+(0)ϕ
−
(0)⟨∆|Oi(t, x⃗)|∆⟩

Note that the correlators that appear here are all Wightman functions, as can be seen

from the time contour. The expectation value of Oi in the state |∆⟩ appears in the terms

quadratic in the sources. As mentioned above, we kept the terms linear in the sources

because these terms may be used as a non-trivial check that we construct the correct

path integral.

If we linearise in the sources then only the contribution of the first line of (2.2.3) survives.

This corresponds in gauge/gravity duality to linearising the bulk field equations. In this

case the 1-point function is related to the 2-point function at the conformal point. Since

2-point functions in CFT are diagonal then the only operator that has a non-zero 1-point

function is precisely the operator associated with the excited state

⟨O∆⟩ ̸= 0, ⟨Oi⟩ = 0 (linear approximation). (2.2.4)

This implies that if we want to work out the linearised bulk solution dual to the state |∆⟩,
it suffices to only consider the bulk field that is dual to the operator O∆ in a fixed AdS

background.3

This is no longer the case if we consider the full field equations, as now the second line

in (2.2.3) is also relevant and

⟨O∆⟩ ̸= 0, ⟨Oi⟩ ̸= 0, (2.2.5)

for all operators Oi that appear in the OPE of O∆ with itself (so that the 3-point function

in (2.2.3) is non-zero). This implies that the bulk solution will now include all bulk fields

that are dual to these operators. In particular, the energy momentum tensor Tij appears

3Note that if we set ϕ+
(0) = ϕ−

(0) ≡ ϕ(0) (with ϕ(0) infinitesimal) and the bulk action is quadratic in Φ so
that the linear approximation is exact, the bulk solution would have the interpretation as being dual to the
state |0⟩+ ϕ(0)|∆⟩. In this paper we are taking the view that the bulk action contains interaction terms and
the linear approximation is the first step towards constructing the full solution perturbatively. From the
full solution one may extract the in-in correlators in the state |∆⟩ by computing the renormalised on-shell
action and keeping the terms proportional to ϕ+

(0)ϕ
−
(0).
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in the OPE so one can no longer ignore the back-reaction to the metric.

The CFTs that appear in gauge/gravity duality admit a ’t Hooft largeN limit and one may

also use the large N limit to organise the bulk reconstruction. In particular, if we nor-

malise the operators such that their 2-point function is independent of N , then 3- and

higher-point functions go to zero as N → ∞. With this normalisation, the first line in

(2.2.3) is the leading order term in the largeN limit. We would like to emphasise however

that with this normalisation not all 1/N2 terms correspond to non-planar corrections

(quantum corrections in the bulk).

An alternative normalisation is to normalise the operators such that all connected n-

point functions scale asN2 to leading order (i.e. computed using planar diagrams). With

this normalisation all 1/N2 corrections are associated with non-planar diagrams. In

AdS/CFT this normalisation is known as the “supergravity normalisation”: all leading or-

der factors ofN come from Newton’s constant and 1/N2 corrections are due to quantum

corrections (loop diagrams).

Either way the leading order construction of the bulk solution dual to a state is universal

while the higher order terms depend on the CFT under consideration. In this paper we

will discuss in detail the universal part of the construction. The method can be readily

extended to higher order once the CFT input is given.

To keep the technicalities at the minimum we will discuss the case of 2d CFT either on

R× S1 (with coordinates (t, ϕ)) or onR1,1 (with coordinates (t, x)) and we set the source

equal to one, ϕ±(0) = 1. For a CFT on R× S1 the 1-point function in the first line in (2.2.3)

then gives,

⟨O∆(t, ϕ)⟩exc =
C

(cos(t− iϵ)− cosϕ)∆ +
C

(cos(t+ iϵ)− cosϕ)∆ , (2.2.6)

while for a CFT on R1,1 we obtain

⟨O∆(t, ϕ)⟩exc =
C̃

(−(t− iϵ)2 + x2)∆
+

C̃

(−(t+ iϵ)2 + x2)∆
, (2.2.7)

where we have used the subscript “exc” to emphasise that these are the 1–point functions

in the excited state. C and C̃ are the normalisations of the 2-point functions in the two

cases4. The bulk solution dual to this state in global AdS should reproduce (2.2.6) while

the bulk solution in Poincaré AdS should yield (2.2.7).

2.3 Bulk Reconstruction from Boundary Data: A Brief Overview

of the Existing Work

As was mentioned already, there exists a series of papers on the reconstruction of bulk

fields in Lorentzian AdS from their boundary values. These papers have a different fo-

4 Actually, since R × S1 and R1,1 are conformally related one may relate (2.2.6) and (2.2.7) and then
C̃ = 2∆C [29].
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cus from the work presented here. Their results and claims are, however, tangentially

related to our work, and therefore, we dedicate this section to reviewing the formalism

and language used there. Once again we will consider the simplest case of the free mas-

sive scalar field Φ(r, x), propagating in AdSd+1 without backreaction. The field is now

in Lorentzian AdS and there are no Euclidean segments in the manifold. Immediately

one should worry that this does not lead to a well posed problem since, as we have

mentioned, Lorentzian AdS is a non–hyperbolic manifold and one needs to provide ad-

ditional boundary conditions to uniquely determine any field.

Near the asymptotic boundary the field admits the series expansion given in equation (2.1.1)

Φ(r, x) = rd−∆ϕ(0)(x) + · · ·+ r∆ log r2ψ(2∆−d)(x) + r∆ϕ(2∆−d)(x) + . . . (2.3.1)

We already mentioned that ϕ(0)(x), the coefficient of rd−∆, is the source for the dual

operator O∆. If it is non–zero, the bulk field has a non–normalisable drop–off near the

boundary. However, the authors of the bulk reconstruction papers want to interpret the

bulk field as a bulk excitation. As such, it must be normalisable and, therefore, ϕ(0) is set

to zero. Then, the reconstruction camp postulates a relation between the operator in

the field theory and a local bulk operator Φ̂(r, x) in the bulk,

Φ̂(r, x) ∼ r∆Ô∆ + . . . (2.3.2)

This resembles the relation (2.1.2) which relates the bulk field with the same boundary

conditions imposed to the one point function of the dual operator. However, this is a

fundamentally very different statement. Note that the proportionality coefficient here

is not necessarily the one given in equation (2.1.2) as now we are not imposing the stan-

dard normalisation used when deriving it. Equation (2.3.2) can be inverted to get an

expression for Ô∆(x) in terms of Φ̂(r, x),

Ô∆ = lim
r→0

r−∆Φ̂(r, x). (2.3.3)

The main objective of the bulk reconstruction papers is to obtain an expression for

Φ̂(r, x) in terms of Ô∆(x), of the form

Φ̂(r, x) =

∫
dx′ K(r, x|x′)Ô∆(x

′). (2.3.4)

K(r, x|x′) is referred to as the smearing function. According to their claim this is to be

interpreted as a one–to–one correspondence between local bulk operators, encoded

in Φ̂(r, x), and non–local boundary operators, obtained by smearing the dual operators,

here Ô∆, over a subregion of the boundary. We postpone discussing this claim and

focus for now on the procedure by which one obtains a relation of the form of (2.3.4).

The first step is to solve the equation of motion for the bulk field. For a free scalar field
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the relevant equation is the massive Klein–Gordon equation,

(
□(r,x) −m2

)
Φ(r, x) =

1√
|G|

∂µ

(√
|G|Gµν∂νΦ(r, x)

)
−m2Φ(r, x) = 0, (2.3.5)

where Gµν the AdSd+1 metric, G = det(Gµν). This can be solved in terms of a complete

set of orthonormal modes Fk(r, x), each of which satisfies equation (2.3.5),

Φ̂(r, x) =

∫
dk âkFk(r, x) + c.c. (2.3.6)

k is the set of eigenvalues labelling each mode and âk are constant coefficients5. Equa-

tion (2.3.3) implies a corresponding expansion for Ô∆,

Ô∆ =

∫
dk âkfk(x) + c.c. (2.3.7)

where fk(x) = limr→∞ r∆Fk(r, x). If the boundary modes fk(x) are orthogonal, it is

possible to extract the coefficients ak from expansion for Ô∆(x),

âkg(k) =

∫
dxf∗k (x)Ô∆(x), (2.3.8)

where g(k) accounts for the fact that the boundary modes are not, in general, nor-

malised. Substituting this expression for ak into the Φ̂(r, x) expansion one finds,

Φ̂(r, x) =

∫
dk
[∫

dx′ f
∗
k (x

′)

g(k)
⟨O∆(x

′)⟩
]
Fk(r, x)

=

∫
dx′
[∫

dk f
∗
k (x

′)Fk(r, x)

g(k)

]
Ô∆(x

′). (2.3.9)

The first line implies the second only if the integral over x′ is convergent and one must

be careful in swapping the order of integration. Assuming the exchange is allowed and,

by comparing with equation (2.3.4), we read off the smearing function,

K(r, x|x′) =
∫

dk 1

g(k)
f∗k (x

′)Fk(r, x). (2.3.10)

The integral in equation (2.3.10) is not always convergent and it requires appropriate iϵ

insertions or an analytic continuation in the boundary coordinates in order to converge.

In the first part of this thesis we shall perform a similar construction of bulk fields. Our

main objective in doing this is to find the bulk dual to an excited field theory state. How-

ever, as a bi–product, we obtain a method for performing the reconstruction outlined

here. The main difference is that, in addition to the boundary data encoded in the one

point function of the dual operator, namely ⟨O∆⟩, we also provide initial and final con-

ditions, as was explained above. The latter are necessary for the uniqueness of the bulk

5If the eigenvalues k are discrete, as is the case for global AdS, the integral is replaced by a sum.
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solutions, something that is not addressed in by the bulk reconstruction camp. Further-

more, since the initial and final conditions are imposed by complexifying the manifold,

one expects that the iϵ insertions and the analytic continuations necessary to make the

integral in equation (2.3.10) convergent, should arise in a natural way, rather than being

added by hand. We return to this when we perform explicit reconstructions for global

AdS2+1 in chapter 3, and for the Poincaré patch of AdS2+1 in chapter 4.

This first part of the thesis is organised as follows. We begin by solving the bulk equa-

tions of motion for the scalar field in AdS, both for the Lorentzian and Euclidean sig-

nature, and impose the boundary conditions discussed above. We then use the result

to confirm that the bulk solution obtained represents the field theory state discussed in

section 2.2. In particular, the asymptotic behaviour of the bulk field is related to the one–

point function of the dual operator, as we discussed above. By obtaining this expression

and comparing it with the expected field theory expression, we conclude that the bulk

solution indeed represents the state it should. In chapter 3 we discuss the construction

of the solution dual to a state of a two dimensional CFT on R × S1, while in chapter 4

we solve the same problem for a CFT on R1,1. We conclude in chapter 5, where we also

discuss further the relation with the work of the bulk reconstruction camp.
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Chapter 3

Global AdS

This chapter is dedicated to the construction of bulk scalar field solutions that are dual

to the state |∆⟩ = O∆|0⟩ of a CFT on R × S1 (see chapter 2). In order to perform the

construction to linear order in the sources, it suffices to consider a free scalar Φ of mass

m2 = ∆(∆−2) in global AdS – this field is dual to the operatorO∆. We will take∆ = 1+l

with l = 0, 1, 2, . . ., as this is the case in most models embedded in string theory, though

the results hold for any ∆ ≥ 1 with minimal changes. We will also set 1/16πGN = 1, ℓ =

1, where GN is the three dimensional Newton constant and ℓ is the AdS radius.

The appropriate spacetime shown in the right panel of Fig. 3.0.1, with the Lorentzian

pieces, labelled by L, being global Lorenzian AdS spacetimes and the Euclidean ones,

labelled byE, their Wick rotated version. The left panel shows the corresponding quan-

tum field theory time contour. It is an in–in time contour with operator insertions along

the imaginary time axis.

The real-time gauge/gravity prescription instructs us to solve the field equations of the

scalar Φ in the four different parts of the spacetime and then match them. Since we are

only aiming at constructing the leading order universal part, it suffices to solve the free

field equations.

3.1 Lorentzian Solution

The metric for global AdS2+1 and for Lorentzian signature can be written as

ds2 = −(1 + r2)dt2 + dr2
1 + r2

+ r2dϕ2. (3.1.1)

In these coordinates the conformal boundary of AdS is at r → ∞. The field equation

describing a massive scalar field propagating in this background without back–reaction

is given by (
(1 + r2)∂2r +

1 + 3r2

r
∂r −

1

1 + r2
∂2t +

1

r2
∂2ϕ −m2

)
Φ(t, r, ϕ) = 0. (3.1.2)

53
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Figure 3.0.1: In–in time contour (left) and corresponding AdS manifold (right). The man-
ifolds labelled by L are empty Lorentzian AdS and those labelled by E are empty, Eu-
clidean AdS.

Substituting the solution ansatz

e−iωt+ikϕf(ω, k, r) (3.1.3)

one finds that f(ω, k, r) satisfies

0 = (1 + r2)f ′′ +
3r2 + 1

r
f ′ −

(
k2

r2
− ω2

r2 + 1
+m2

)
f. (3.1.4)

where the prime denotes a derivative w.r.t. r. The solution of this ODE is given in terms

of a hypergeometric function,

f(ω, k, r) = Cωkl(1 + r2)ω/2r|k| 2F1(ω̂kl, ω̂kl − l; |k|+ 1;−r2) (3.1.5)

where l = ∆ − 1 = {0, 1, 2, . . . }, ∆ = 1 +
√
1 +m2, ω̂kl = (ω + |k| + l + 1)/2, k ∈

Z, ω ∈ R and Cωkl = (Γ(ω̂kl)Γ(ω̂kl − ω))/((l − 1)! |k|!). The normalisation constant has

been chosen to make the coefficient of the leading order term in the near boundary

expansion of f(ω, k, r) equal to 1. Note that f(ω, k, r) = f(ω,−k, r) = f(ω, |k|r) and

f(ω, k, r) = f(−ω, k, r).

Near the conformal boundary the solution admits the following series expansion in r,

f(ω, |k|, r) = rl−1 + · · ·+ r−l−1α(ω, |k|, l)
[
ln(r2) + β(ω, |k|, l)

]
+ . . . (3.1.6)

where

α(ω, |k|, l) = (ω̂kl − l)l(ω̂kl − |k| − l)l
l! (l − 1)!

(3.1.7a)

β(ω, |k|, l) = −ψ(ω̂kl)− ψ(ω̂kl − l − ω). (3.1.7b)

From this expression we see that the modes have simple poles in the ω plane which
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appear at normalisable order, i.e. at r−l−1 = r−∆. Thus, by integrating over ω, in the

absence of sources, we obtain the normalisable modes.

The poles of f(ω, k, r) are at ω = ω±
nk = ±(2n+ |k|+ l+1), n ∈ N. This is not immediately

obvious. Based on the digamma functions alone one expects the poles to occur at ω =

−(2n+ |k|+ l+1) (poles of ψ(ω̂kl)) and ω = 2n+ |k|+1− l (poles of ψ(ω̂kl− l−ω)) for n =

0, 1, 2, . . . . However, α(ω, |k|, l) has simple zeros at ω = 2n+ |k|+1− l, n = 0, 1, . . . , l− 1

which cancel some of the simple poles of ψ(ω̂kl − l − ω) leaving only the ones at ω±
nk . It

follows that near the conformal boundary the normalisable modes are given by

g(ωnk, |k|, r) =
1

4π2i

∮
ωnk

dω f(ω, |k|, r)

=
r−l−1

4π2i

∮
ωnk

dω

[
non-norm. term +

(ω̂kl − l)l (ω̂kl − |k| − l)l
l!(l − 1)!

(
ln(r2)

− ψ(ω̂kl)− ψ(ω̂kl − ω − l)
)
+ . . .

]
=
1

π
r−l−1 (n+ |k|+ 1)l(n+ l)!

n!l!(l − 1)!
+ . . . (3.1.8)

where the contours are defined clockwise for the poles at ω+
nk and counterclockwise for

poles at ω−
nk such that g(ω+

nk, |k|, r) = g(ω−
nk, |k|, r). Combining this result with equation

(3.1.5) allows us to extend the normalisable modes to finite r,

g(ωnk, |k|, r) =
1

π
r|k|(1 + r2)−

|k|+l+1
2

(n+ 1)l(n+ |k|+ 1)l
l!(l − 1)!

2F1

(
n+ |k|+ l + 1,−n; l + 1;

1

1 + r2

)
. (3.1.9)

Details of how this result is obtained are presented in appendix 3.A

Then, a normalisable Lorentzian solution has the form

ΦL(t, r, ϕ) =
∑
k∈Z

∞∑
n=0

(
bnk e−iω

+
nkt+ikϕ + b†nk e−iω

−
nkt−ikϕ

)
g(ωnk, |k|, r), (3.1.10)

where bnk and b†nk are arbitrary coefficients, to be determined from the matching con-

ditions.

3.1.1 Euclidean Solution

The metric for global AdS2+1 and for Euclidean signature can be obtained from the

Lorentzian one, (3.1.1), by Wick rotation, t = −iτ . Similarly, one may obtain the Eu-

clidean solutions by analytically continuing the Lorentzian modes,

e−ωτ+ikϕf(ω, k, r) =Cωkl e−ωτ+ikϕ(1 + r2)ω/2r|k|

2F1(ω̂kl, ω̂kl − l; |k|+ 1;−r2). (3.1.11)
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In accordance with our choice of boundary conditions, the general solution in the Eu-

clidean caps requires that we turn on a source ϕ(0)(τ, ϕ) on the boundary. Since we are

working with momentum modes, we need to express the source in momentum space.

For a general source ϕ−(0)(τ, ϕ) with support on the boundary of the past Euclidean cap

and away from the matching surface at τ = 0 we have

ϕ−(0)(ω, k) =

∫ 2π

0
dϕ
∫ 0

−∞
dτ eωτ−ikϕϕ−(0)(τ, ϕ) (3.1.12)

Since the range of τ is over the half real line only, it is natural to use Laplace rather than

Fourier transforms. For the past Euclidean cap, τ runs from −∞ to zero. When we treat

the future Euclidean cap, the range of integration for τ is over the positive half line, from

zero to +∞.

Using the momentum space expression for the source, the most general solution in the

past Euclidean cap is

Φ−
E(τ, r, ϕ) =

1

4π2i

∑
k∈Z

∫ i∞

−i∞
dω e−ωτ+ikϕϕ−(0)(ω, k)f(ω, |k|, r)

+
∑
k∈Z

∞∑
n=0

d−nke
−ω−

nkτ+ikϕg(ωnk, k, r) (3.1.13)

where g(ωnk, |k|, r) is defined in (3.1.9). Notice that integration over ω is along the imagi-

nary axis, as it should be for the inverse Laplace transform. The 1/4π2i factor is required

for agreement with the definition of g(ωnk, |k| , r).

The second term in equation (3.1.13) is included to make the solution as general as pos-

sible. It behaves as r−l−1 near the boundary and it decays exponentially as τ → −∞ so

it does not affect the asymptotic behaviour of the solution and, therefore, it can not be

excluded.

To explicitly see that the solution has a source term, recall that for large r, f has the

expansion in (3.1.6) and thus the Euclidean solution asymptotes to1

Φ−
E(τ, r, ϕ) =r

l−1 1

4π2i

∑
k∈Z

∫ i∞

−i∞
dω e−ωτ+ikϕϕ−(0)(ω, k) +O(rl−2)

=rl−1ϕ(0)(τ, ϕ) +O(rl−2) (3.1.14)

In our analysis we choose the source profile to be a δ–function localised at (τ, ϕ) =

(−ϵ, 0), ϵ > 0, i.e.

ϕ−(0) (τ, ϕ) = δ(τ + ϵ)δ(x), (3.1.15)

which implies ϕ−(0)(ω, k) = exp(−ωϵ).
1Here we assume that the source admits a Laplace transform. This is true in particular if ϕ(0)(ω, k) can

be extended to a meromorphic function with no singularities for Re(ω) > c, for some finite c. Here for
simplicity we take c = 0.
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× × × × × × × × × ×

ω

Figure 3.1.1: The integration contour for ω for the past Euclidean cap.

The integral over ω can be done explicitly close to the matching surface using contour

integration. Let the time in the past Euclidean cap be denoted by τ0 and let −ϵ < τ0 ≤ 0.

The latter ensures that we are close to the matching surface, located at τ0 = 0. The

integrant contains the exponential factor e−ω(τ0+ϵ). Since τ0 + ϵ < 0, we close the ω–

contour to the right, as shown in figure 3.1.1, such that Re(ω) > 0. This ensures that the

integral around the semi–circular part of the contour vanishes when its radius is send

to infinity. According to the Cauchy residue theorem, we then pick up the contributions

from the poles at ω = ω+
nk of the subleading terms of the expansion of f , obtaining

Φ−
E(τ0, r, ϕ) =

∑
k∈Z

∞∑
n=0

(
ϕ−(0)(ω

+
nk, k)e

−ω+
nkτ0+ikϕ

+d−nke
−ω−

nkτ0+ikϕ
)
g(ωnk, |k|, r), (3.1.16)

where recall that the contour of integration around the ω+
nk poles was defined clockwise

which explains the sign of ΦE .

The analysis for the future Euclidean cap follows along the same lines. In particular,

denoting Euclidean time in the future Euclidean cap by τ3, 0 ≤ τ3 < ∞, and using a δ–

function source localised at (τ3, ϕ) = (ϵ, 0) where ϵ is the same as for the past Euclidean

cap, ϕ+(0)(τ3, ϕ) = δ(τ3 − ϵ)δ(ϕ), ϕ+(0)(ω, k) = exp(ωϵ) and considering the solution close

to the matching surface, 0 ≤ τ3 < ϵ, we obtain

Φ+
E(τ3, r, ϕ) =

∑
k∈Z

∞∑
n=0

(
ϕ+(0)(ω

−
nk, k)e

−ω−
nkτ3+ikϕ

+d̃+nke
−ω+

nkτ3+ikϕ
)
g(ωnk, |k|, r). (3.1.17)

3.1.2 Matching Conditions

The time contour considered here is the in–in contour shown on the left of figure 3.1.2,

with the corresponding AdS manifold shown on the right. It runs from i∞ to 0, then to
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×

×
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Figure 3.1.2: In–in time contour (left) and corresponding AdS manifold (right).

T , then back to 0 and then to −i∞. Accordingly, the contour–integrated action is

S =−
∫ 0

−∞
dτ0 LE(Φ−

E) + i

∫ T

0
dt1 LL(Φ1

L)− i

∫ 2T

T
dt2 LL(Φ2

L)

−
∫ ∞

0
dτ3 LE(Φ+

E). (3.1.18)

where

LE = 1
2

∫
d3x

√
g
(
gµν∂µΦE∂νΦE +m2Φ2

E

)
(3.1.19)

and

LL = −1
2

∫
d3x

√
−g
(
gµν∂µΦL∂νΦL −m2Φ2

L

)
. (3.1.20)

The matching conditions are

Φ−
E

∣∣
τ0=0

= Φ1
L

∣∣
t1=0

, ∂τ0Φ
−
E

∣∣
τ0=0

= −i∂t1Φ1
L

∣∣
t1=0

Φ1
L

∣∣
t1=T

= Φ2
L

∣∣
t2=T

, ∂t1Φ
1
L

∣∣
t1=T

= −∂t2Φ2
L

∣∣
t2=T

(3.1.21)

Φ2
L

∣∣
t2=2T

= Φ+
E

∣∣
τ3=0

, ∂t2Φ
2
L

∣∣
t2=2T

= −i∂τ3Φ+
E

∣∣
τ3=0

.
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From the previous section we have that the solutions in the four manifolds are

− ϵ < τ0 ≤ 0 :

Φ−
E(τ0, r, ϕ) =

∑
k∈Z

∞∑
n=0

(
ϕ−(0)(ω

+
nk, k)e

−ω+
nkτ0+ikϕ + d−nke

−ω−
nkτ0+ikϕ

)
g(ωnk, |k|, r)

(3.1.22a)

0 ≤ τ3 < ϵ :

Φ+
E(τ3, r, ϕ) =

∑
k∈Z

∞∑
n=0

(
ϕ+(0)(ω

−
nk, k)e

−ω−
nkτ3+ikϕ + d̃+nke

−ω+
nkτ3+ikϕ

)
g(ωnk, |k|, r)

(3.1.22b)

0 ≤ t1 ≤ T :

Φ1
L(t1, r, ϕ) =

∑
k∈Z

∞∑
n=0

(
bnk e−iω

+
nkt1+ikϕ + b†nk e−iω

−
nkt1−ikϕ

)
g(ωnk, |k|, r),

(3.1.22c)

T ≤ t2 ≤ 2T :

Φ2
L(t2, r, ϕ) =

∑
k∈Z

∞∑
n=0

(
b̃nk e−iω

+
nkt2+ikϕ + b̃†nk e−iω

−
nkt2−ikϕ

)
g(ωnk, |k|, r).

(3.1.22d)

Applying to these the matching conditions we obtain the following relations: from the

matching conditions at τ0 = 0, t1 = 0

bnk =ϕ
−
(0)(ω

+
nk, k) = e−ω

+
nkϵ, (3.1.23a)

b†nk =d
−
nk. (3.1.23b)

From the matching conditions at t1 = T, t2 = T

b†nk =b̃nke
−2iω+

nkT , (3.1.24a)

bnk =b̃
†
nke

−2iω−
nkT . (3.1.24b)

Finally, from the matching conditions at t2 = 2T, τ3 = 0

b̃nk =ϕ
+
(0)(ω

−
nk, k)e

−2iω−
nkT = e−iω

−
nk(2T+iϵ), (3.1.25a)

b̃†nk =d̃
+
nke

−2iω+
nkT . (3.1.25b)

Note that had we chosen the position in complex time where we insert the sources to

be different for the two caps, say τ0,source = −ϵ and τ3,source = ϵ̃, where ϵ̃ > 0, then the

relationships bnk =
(
b†nk

)∗
and b̃nk =

(
b̃†nk

)∗
would have implied that ϵ = ϵ̃.
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In what follows we refer to terms proportional to e−iω+
nkt (eω+

nkτ for Euclidean) as the

positive frequency modes and e−iω−
nkt (e−ω−

nkτ for Euclidean) as the negative frequency

modes. From the matching conditions we observe that the positive frequency exponen-

tial source modes from the past Euclidean cap source the positive frequency oscillatory

normalisable modes in the first Lorentzian manifold. As these modes evolve into the

second Lorentzian manifold they give rise to the negative frequency oscillatory normal-

isable modes. Finally, they become positive frequency normalisable modes in the future

Euclidean cap. The negative frequency source modes from the past Euclidean manifold

decay and do not enter the Lorentzian manifolds. In addition to source modes, there are

negative frequency normalisable modes in the past Euclidean manifold. These modes

come from negative frequency source modes in the future Euclidean cap which become

positive frequency normalisable modes in the second Lorentzian manifold, then evolve

into negative frequency normalisable modes in the first Lorentzian manifold and finally

they give rise to negative normalisable modes in the past Euclidean cap. The absence of

positive frequency normalisable modes in the past Euclidean manifold is due to the fact

that these grow exponentially as τ0 → −∞. Schematically, the different modes evolved

as shown below: Starting from the past Euclidean modes,

ϕ−0 (ω
+
nk, k) −→ bnk −→ b̃†nke

−2iω−
nkT −→ d̃+nk

ϕ−(0)(ω
−
nk, k) −→ decay (3.1.26)

d−nk −→ b†nk −→ b̃nke−2iω+
nkT −→ ϕ+(0)(ω

−
nk, k),

and, similarly, starting from the future Euclidean cap,

ϕ+(0)(ω
−
nk, k) −→ b̃nke−2iω+

nkT −→ b†nk −→ d−nk

ϕ+(0)(ω
+
nk, k) −→ decay (3.1.27)

d̃+nk −→ b̃†nke
−2iω−

nkT −→ bnk −→ ϕ−(0)(ω
+
nk, k).

Figure 3.1.3 shows plots of the time evolution of individual modes from exponentially

decaying source modes in the Euclidean manifolds to oscillatory, normalisable modes

in the Lorentzian manifolds. These plots were obtained by fixing r and ϕ to be 1 and

0 respectively, and with the source insertions located at ϵ = 0.1. The vertical axis cor-

responds to the amplitude of the scalar mode and the horizontal axis to contour time.

Then these plots show two individual modes as they evolve from imaginary time in the

past Euclidean manifold, to real time in the two Lorentzian manifolds and then back to

imaginary time in the future Euclidean manifolds.

Combining all three sets of relationships between the coefficients of the different modes
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ε−ε

τ0
0

Past Euclidean

t1

T

Lorentzian

t2

2T

Lorentzian

τ3

Future Euclidean

(a) Mode parameters: n = 2, k = 1, l = 1, r = 1, ϕ = 0, ϵ = 0.1

ε
−ετ0

0

Past Euclidean

t1

T

Lorentzian

t2

2T

Lorentzian

τ3

Future Euclidean

(b) Mode parameters: n = 4, k = 2, l = 3, r = 1, ϕ = 0, ϵ = 0.1

Figure 3.1.3: Tracing individual modes through the four segments of the manifold.

we find

b†nk =ϕ
+
(0)(ω

−
nk, k), (3.1.28a)

b̃†nk =ϕ
−
(0)(ω

+
nk, k)e

−2iω+
nkT . (3.1.28b)

Returning to the Lorentzian fields, we can now replace the original, arbitrary coefficients

b±nk and b̃±nk with the above results to obtain expressions in terms of the Euclidean source
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modes.

Φ1
L(t, r, ϕ)=

∞∑
n=0

∑
k∈Z

[
ϕ−(0)(ω

+
nk, k)e

−iω+
nkt+ikϕ

+ϕ+(0)(ω
−
nk, k)e

−iω−
nkt−ikϕ

]
g(ωnk, |k|, r) (3.1.29a)

Φ2
L(t, r, ϕ)=

∞∑
n=0

∑
k∈Z

[
ϕ+(0)(ω

−
nk, k)e

iω+
nkt+ikϕ

+ϕ−(0)(ω
+
nk, k)e

iω−
nkt−ikϕ

]
g(ωnk, |k|, r). (3.1.29b)

where we used the relation between physical and contour time, t1 = t and 2T − t2 = t.

3.1.3 1-point function

Having constructed normalisable Lorentzian solutions, we will now extract the 1-point

function to verify that this solution is indeed dual to the state |∆⟩. For this we need to

obtain the asymptotic expansion of the bulk field near the conformal infinity as in (2.1.1),

Φ(r, x) = rd−∆ϕ(0)(x) + · · ·+ r∆ log r2ψ(2∆−d)(x) + r∆ϕ(2∆−d)(x) + . . . (3.1.30)

and use [19],

⟨O∆(t, ϕ)⟩ = −(2∆− 2)ϕ(2∆−d)(t, ϕ). (3.1.31)

We can choose to consider the insertion either in the upper part of the contour or in

the lower. In the former case the 1-point function can be extracted from the asymptotic

expansion of Φ1
L while in the latter case from the asymptotic expansion of Φ2

L. In both

cases, the answer should be the same.

For concreteness, we consider the case the operator is in the upper part of the contour

so the relevant field is Φ1
L. Since this a normalisable mode, ϕ(2∆−2) is the coefficient of

the leading order term as r → ∞,

ϕ(2∆−2) =
1

π

∞∑
n=0

∑
k∈Z

e−ω
+
nkϵ
(

e−iω
+
nkt+ikϕ + e−iω

−
nkt−ikϕ

)
α(ωnk, |k|, l), (3.1.32)

where we have used

g(ωnk, |k|, r) =
1

π
r−∆α(ωnk, |k|, l) + O

(
r−∆−1

)
(3.1.33)

Performing the sums over n and k and inserting in (3.1.31) we finally get

⟨O∆(t, ϕ)⟩exc =
l2

2lπ

(
1

(cos(t− iϵ)− cosϕ)∆ +
1

(cos(t+ iϵ)− cosϕ)∆

)
(3.1.34)

where we have used the subscript “exc” to emphasise that this is the 1–point function of

O∆ in the excited state. This is indeed equal to value we got via a QFT computation in
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(2.2.6). In our case,C = l2/(2lπ), which is the standard supergravity normalisation of the

2-point function.

3.2 Reconstruction of bulk fields from boundary data

In this section we demonstrate how one can reconstruct the Lorentzian fields from their

asymptotic value which is given by

Ψ(t, ϕ) = lim
r→∞

rl+1Φ(t, r, ϕ). (3.2.1)

The motivation for this construction comes from the work of several groups which try

to extend the holographic dictionary to the interior of AdS (see for example [40, 41, 42,

43, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 59]), a work motivated by the “extrapolate”

dictionary of Banks, Douglas, Horowitz and Martinec [60]. Here we follow the formalism

of Hamilton et. al. and express the normalisable, Lorentzian solutions, in terms of their

asymptotic value,

Φ(t, r, ϕ) =

∫
∂AdS

dt̂ dϕ̂ K(t, r, ϕ|t̂, ϕ̂)Ψ(t̂, ϕ̂). (3.2.2)

K(t, r, ϕ|t′, ϕ′) which we refer to as the smearing function, is a type of Green’s function

satisfying special boundary conditions. When such an expression exists the claim is that

one can use the standard AdS/CFT dictionary (often referred to as the “differentiate”

dictionary), which relates the boundary field, Ψ(t, ϕ), to the one point function of the

dual operator,

Ψ(t, ϕ) ∝ ⟨O∆(t, ϕ)⟩, (3.2.3)

to write a relation between local bulk operators and field theory operators. This requires

quantisation of Φ(t, r, ϕ) and the replacement of the expectation value in (3.2.3) by the

operator itself. Then, the claim is that equation (3.2.2) gives a representation of a bulk

operator Φ̂(t, r, ϕ) in terms of a field theory operatorO∆(t, ϕ), smeared over some region

of spacetime. However, there are some subtleties and issues that arise in doing this

which will be address in chapter 5.

Here we construct the smearing function and obtain relation (3.2.2) for the bulk Lorentzian

fields for global AdS.

We begin by extending the past and future Euclidean fields to the past and future of

the source insertions, respectively. Recall that when the integral over ω was perform in

section 3.1.1, we restricted to a neighbourhood near the matching surface, in the future

of the past Euclidean source and in the past of the future one. The solutions can be ex-

tended to any point in Euclidean time, except the exact location of the source insertion,
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as follows,

Φ−
E(τ0,r, ϕ) =

∑
k∈Z

∞∑
n=0

(
θ(−τ0 − ϵ)ϕ−(0)(ω

−
nk, k)e

−ω−
nkτ0+i kϕ

+ θ(τ0 + ϵ)ϕ−(0)(ω
+
nk, k)e

−ω+
nkτ0+ikϕ + d−nke

−ω−
nkτ0+ikϕ

)
g(ωnk, |k|, r) (3.2.4a)

Φ+
E(τ3,r, ϕ) =

∑
k∈Z

∞∑
n=0

(
θ(τ3 − ϵ)ϕ+(0)(ω

−
nk, k)e

−ω−
nkτ3+ikϕ

+ θ(−τ3 + ϵ)ϕ+(0)(ω
−
nk, k)e

−ω−
nkτ3+ikϕ + d̃+nke

−ω+
nkτ3+ikϕ

)
g(ωnk, |k|, r)

(3.2.4b)

Combining these expressions, as well as the corresponding ones for the bulk Lorentzian

fields given by equations (3.1.29a) and (3.1.29b), with the definition of the boundary field,

(3.2.1), we find the expressions for the boundary fields,

Ψ−
E(τ0, ϕ) =

∑
k∈Z

∞∑
n=0

Ankl

(
θ(−τ0 − ϵ)ϕ−(0)(ω

−
nk, k)e

−ω−
nkτ0+i kϕ

+ θ(τ0 + ϵ)ϕ−(0)(ω
+
nk, k)e

−ω+
nkτ0+ikϕ + d−nke

−ω−
nkτ0+ikϕ

)
(3.2.5a)

Ψ+
E(τ3, ϕ) =

∑
k∈Z

∞∑
n=0

Ankl

(
θ(τ3 − ϵ)ϕ+(0)(ω

−
nk, k)e

−ω−
nkτ3+ikϕ

+ θ(−τ3 + ϵ)ϕ+(0)(ω
−
nk, k)e

−ω−
nkτ3+ikϕ + d̃+nke

−ω+
nkτ3+ikϕ

)
(3.2.5b)

Ψ1
L(t1, ϕ) =

∞∑
n=0

∑
k∈Z

Ankl

(
ϕ−(0)(ω

+
nk, k)e

−iω+
nkt1+ikϕ

+ ϕ+(0)(ω
−
nk, k)e

−iω−
nkt1−ikϕ

)
(3.2.5c)

Ψ2
L(t2, ϕ) =

∞∑
n=0

∑
k∈Z

Ankl

(
ϕ+(0)(ω

−
nk, k)e

iω+
nk(t2−2T )+ikϕ

+ ϕ−(0)(ω
+
nk, k)e

iω−
nk(t2−2T )−ikϕ

)
. (3.2.5d)

where we have defined for compactness

Ankl =
1

π

(n+ 1)l(n+ |k|+ 1)l
l!(l − 1)!

. (3.2.6)

We proceed by using the expressions for the Euclidean boundary fields to obtain ex-
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pressions for ϕ−(0)(ω
+
nk, k) and ϕ+(0)(ω

−
nk, k),

Anklϕ
−
(0)(ω

+
nk, k) =

1

4π2i

∫ 2π

0
dϕ
∫ −δ+i∞

−δ−i∞
dτ0 eω

+
nkτ0−ikϕΨ−

E(τ0, ϕ) (3.2.7a)

Anklϕ
+
(0)(ω

−
nk, k) =

1

4π2i

∫ 2π

0
dϕ
∫ δ̃+i∞

δ̃−i∞
dτ3 eω

−
nkτ3−ikϕΨ+

E(τ3, ϕ) (3.2.7b)

where δ, δ̃ > 0, are needed to make the step functions appearing in the expressions for

the Euclidean fields well defined.

By comparing the expressions for the Lorentzian and Euclidean boundary fields and

performing the appropriate coordinate transformations we obtain expressions for the

source modes in terms of the Lorentzian boundary fields,

Anklϕ
−
(0)(ω

+
nk, k) =

1

4π2

∫ 2π

0
dϕ

∫ +∞

−∞
dt eiω

+
nk(t+iδ)−ikϕΨ1

L(t+ iδ, ϕ) (3.2.8a)

Anklϕ
+
(0)(ω

−
nk, k) =

1

4π2

∫ 2π

0
dϕ

∫ +∞

−∞
dt eiω

−
nk(t−iδ̃)−ikϕΨ1

L(t− iδ̃, ϕ). (3.2.8b)

The final step is to substitute these expressions for the source modes in the expres-

sions for bulk Lorentzian fields, (3.1.29a) and (3.1.29b), combined with the expression

for g̃(ωnk, |k|, r) which can be found in appendix 3.A, and perform the summation over

modes.

For Φ1
L(t1, r, ϕ) we find

Φ1
L(t1, r, ϕ)=

∞∑
n=0

∑
k∈Z

Ankl(1 + r2)−
|k|+l+1

2

[
ϕ−(0)(ω

+
nk, k)e

−iω+
nkt1+ikϕ

+ϕ+(0)(ω
−
nk, k)e

−iω−
nkt1−ikϕ

]
2F1

(
n+ |k|+ l + 1,−n; l + 1;

1

1 + r2

)
.

(3.2.9)

Substituting the expressions for the source modes, (3.2.8a) and (3.2.8b),

Φ1
L(t1, r, ϕ) =

∫ 2π

0
dϕ̂
∫ +∞

−∞
dt̂
[

1

4π2
lim
δ,δ̃→0

∞∑
n=0

∑
k∈Z

(
e−iω

+
nk(t1−t̂−iδ)

+e−iω
−
nk(t1−t̂+iδ̃)

)
eik(ϕ−ϕ̂) r|k|(1 + r2)−

|k|+l+1
2

2F1

(
n+ |k|+ l + 1,−n; l + 1;

1

1 + r2

)]
Ψ1
L(t̂, ϕ̂) (3.2.10)

where we set δ, δ̃ = 0 in Ψ1
L. The expression in the square brackets is the smearing
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function, as defined by equation (3.2.2),

K(t1, r, ϕ|t̂, ϕ̂) =
1

4π2
lim
δ,δ̃→0

∞∑
n=0

∑
k∈Z

[(
e−iω

+
nk(t1−t̂−iδ) + e−iω

−
nk(t1−t̂+iδ̃)

)
eik(ϕ−ϕ̂)

r|k|(1 + r2)−
|k|+l+1

2 2F1

(
n+ |k|+ l + 1,−n; l + 1;

1

1 + r2

)]
(3.2.11)

The isometries of AdS enable us to compute the smearing function at r = 0 since we

can always translate any point in the bulk to the origin, perform the reconstruction, and

then map back to the original point. By setting r = 0 only the s–wave remains non zero,

eliminating the sum over k. Thus, (using the ω±
nk = ±(2n+ |k|+ l + 1))

K(t1, 0, ϕ|t̂, ϕ̂) =
1

4π2
lim

δ,δ̃→0+

∞∑
n=0

[(
e−i(2n+l+1)(t1−t̂−iδ) + ei(2n+l+1)(t1−t̂+iδ̃)

)
2F1(n+ l + 1,−n; l + 1; 1)

]
=

1

4π2
lim

δ,δ̃→0+

∞∑
n=0

[(
e−i(2n+l+1)(t1−t̂−iδ) + ei(2n+l+1)(t1−t̂+iδ̃)

)
Γ(0)Γ(l + 1)

Γ(−n)Γ(n+ l + 1)

]
(3.2.12)

Using the properties of the gamma function and writing l as ∆− 1 we find

K(t1, 0, ϕ|t̂, ϕ̂) =
1

2π2
lim
δ→0+

Re
[
ei∆(t̂−t1)

2F1

(
1, 1;∆;−e2i(t̂−t1+iδ)

)]
(3.2.13)

In [40] the authors give the following expression for the positive frequency part of K ,

for t1 = r = 0 and for AdSd,

K+ =
1

π vol (Sd−1)
ei∆τ 2F1

(
1,
d

2
;∆− d

2
+ 1;−e2iτ

)
. (3.2.14)

To make the connection with our result we use d = 2 and identify τ with t̂ in our ex-

pression. This gives

K+ =
1

2π2
ei∆t̂ 2F1

(
1, 1;∆;−e2it̂

)
(3.2.15)

in agreement with our expression, up to a factor of 2. This factor comes about because

the above authors are working with a compact time direction, −π/2 ≤ τ ≤ π/2. Conse-

quently, there is a factor of two difference in the orthogonality relations of our frequency

modes. We have ∫ ∞

−∞
dt e−i(ωnk−ωmk)t = 2πδn,m (3.2.16)
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whereas, in the aforementioned paper they have∫ π/2

−π/2
dτ e−i(ωnk−ωmk)τ = πδn,m (3.2.17)

which explains why our result is twice theirs.

3.A Global AdS: Full Bulk Solutions

In section 3.1 we saw that the equation of motion that governs the radial behaviour of a

massive scalar field in AdS is solved in terms of a hypergeometric function,

f(ω, |k| , r) = Cωkl(1 + r2)ω/2r|k|2F1(ω̂kl, ω̂kl − l; |k|+ 1;−r2). (3.A.1)

The bulk scalar field is then the Fourier transform in ω and k of this function. In sec-

tion 3.1 we performed the ω integral near the asymptotic boundary, by first obtaining

the series expansion of f(ω, |k| , r) for large r, and then performing a contour integra-

tion. The result obtained,

g(ωnk, |k| , r) =
1

π
r−ℓ−1 (n+ |k|+ 1)l(n+ l)!

n!l!(l − 1)!
+ . . . , (3.A.2)

holds only for r > 1. To obtain an expression that holds for r < 0 one must determine

the subleading terms in this expression. The final answer is once this is done is

g(ωnk, |k|, r) =
1

π
r|k|(1 + r2)−

|k|+l+1
2

(n+ 1)l(n+ |k|+ 1)l
l!(l − 1)!

2F1

(
n+ |k|+ l + 1,−n; l + 1;

1

1 + r2

)
. (3.A.3)

Here, we will derive this expression using two independent methods.

Extending to the Bulk: Method A

We begin by transforming the original modes, given by equation (3.A.1), to obtain an

expression for f(ω, |k|, r)which is valid for 0 ≤ r <∞. This requires using the properties

of the hypergeometric function [61]. Then, since we know from the asymptotic analysis

that the frequency of the modes in the final result is quantised, we set ω = ω±
nk. Finally,

we determine the normalisation of f(ωnk, |k|, r) by requiring that its asymptotic value

agrees with (3.A.2).

Using the transformation properties of the hypergeometric function, the radial modes
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of the scalar field (3.A.1) can be rewritten as

f̃(ω, |k|, r) = C̃ωklr
|k|

[
(−1)n

(1 + r2)−
|k|+l+1

2 k!Γ(−l)
Γ(ω̂kl − l)Γ(ω̂kl − ω − l)

2F1

(
ω̂kl, ω̂kl − ω; l + 1;

1

1 + r2

)
+

(1 + r2)−
|k|−l+1

2 k!Γ(l)

Γ(ω̂kl)Γ(ω̂kl − ω)

2F1

(
ω̂kl − l, ω̂kl − ω − l; 1− l;

1

1 + r2

)]
, (3.A.4)

where the normalisation constant Cωkl has been replaced by C̃ωkl, allowing for the pos-

sibility of a different value than the one found through the asymptotic analysis. Setting

ω = ω±
nk gives

f̃(ω+
nk, |k|, r) = C̃ωklr

|k|

[
(−1)n(1 + r2)−

|k|+1+l
2 k!(l + n)!

Γ(n+ |k|+ 1)l!

2F1

(
n+ |k|+ l + 1,−n; l + 1;

1

1 + r2

)
+

(1 + r2)−
|k|−l+1

2 k!Γ(l)

Γ(n+ |k|+ l + 1)Γ(−n)
Unless C̃ωkl introduces infinities

this is zero due to Γ(−n)

2F1

(
−n− l, n+ |k|+ 1; 1− l;

1

1 + r2

)]
= f̃(ω−

nk, |k|, r). (3.A.5)

In the limit r → ∞ this reduces to

f̃(ωnk, |k|, r) → C̃ωkl

[
r−l−1 (−1)n(l + n)!k!

l!Γ(n+ |k|+ 1)
+ rl−1 k! Γ(l)

Γ(n+ |k|+ l + 1)Γ(−n)

]
. (3.A.6)

Comparing to the asymptotic expression for g(ωnk, |k|, r), we obtain C̃ωkl, and, thus,

f̃(ωnk, |k| , r),

f̃(ωnk, |k|, r) =
1

π
r|k|

[
(1 + r2)−

|k|+l+1
2 (l + n)!(n+ |k|+ l)l
n!l!(l − 1)!

2F1

(
n+ |k|+ l + 1,−n; l + 1;

1

1 + r2

)
+ (−1)n

(1 + r2)−
|k|−l+1

2 Γ(l)

Γ(−n)n!(l − 1)!

=0 due to Γ(−n)

2F1

(
n+ |k|+ 1,−n− l; 1− l;

1

1 + r2

)]
. (3.A.7)
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Finally, this yields the desired expression for g(ωnk, |k|, r), valid in the bulk,

f̃(ωnk, |k|, r) =g(ωnk, |k|, r)

=
1

π
r|k|(1 + r2)−

|k|+l+1
2

(n+ 1)l(n+ |k|+ 1)l
l!(l − 1)!

2F1

(
n+ |k|+ l + 1,−n; l + 1;

1

1 + r2

)
(3.A.8)

Extending to the Bulk: Method B

The second method for deriving the full bulk solution involves starting with the same

expression for f(ω, |k|, r) as the one used in method A, namely (3.A.4). This is normalised

such that the leading term as r → ∞ is 1 · rl−1. The new solution, labelled by f̂(ω, |k|, r),
is integrated over ω, to yield the full bulk solution.

As r → ∞, the transformed solution, given by equation (3.A.1), behaves like

f̂(ω, |k|, r) r→∞−−−→ Ĉωklr
−l−1 k!Γ(−l)

Γ(ω̂kl − l)Γ(ω̂kl − ω − l)

+Ĉωklr
l−1 k!Γ(l)

Γ(ω̂kl)Γ(ω̂kl − ω)
. (3.A.9)

Requiring that, in this limit, f̂(ω, |k|, r) ∼ 1·rl−1, allows us to determine the normalisation

constant Ĉωkl,

Ĉωkl =
Γ(ω̂kl − l)Γ(ω̂kl − ω − l)

k!Γ(−l)
.

Substituting into f̂(ω, |k| , r), we find

f̂(ω, |k|, l) =

=

Normalisable fall–off

r|k|(1 + r2)−
|k|+l+1

2
Γ(−l)Γ(ω̂kl)Γ(ω̂kl − ω)

Γ(l)Γ(ω̂kl − l)Γ(ω̂kl − ω − l)
2F1

(
ω̂kl, ω̂kl − ω; l + 1;

1

1 + r2

)
+ r|k|(1 + r2)−

|k|+1−l
2 2F1

(
ω̂kl − l, ω̂kl − ω − l; 1− l;

1

1 + r2

)
Non–normalisable fall–off

. (3.A.10)

These modes, once integrated over ω, yield g(ωnk, |k| , r) (see also (3.1.8),

g(ωnk, |k|, r) =
1

4π2i

∮
ωnk

dω f̂(ω, |k|, r). (3.A.11)

To perform the integral we must identify the singularities of this function in the ω plane

and use Cauchy’s residue theorem. The term which has normalisable fall–off has simple

poles at ω̂kl = −n and at ω̂kl−ω = −n, n ∈ N0. Notice that the poles of this term coincide

with the poles of the asymptotic expansion of the solution. Furthermore, notice that

after setting ω̂kl = −n or ω̂kl −ω = −n, the singular term Γ(−l) cancels with the zeros in

the denominator coming from Γ(ω̂kl − l) or Γ(ω̂kl − ω − l), respectively.
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The term with non–normalisable fall–off is analytic in ω and by Cauchy’s integral theo-

rem, it vanishes when integrated in the complex ω plane.

Performing the integration, we find

f̃(ωnk, |k|, r) = g(ωnk, |k|, r)

=
1

π
r|k|(1 + r2)−

|k|+l+1
2

(n+ 1)l(n+ |k|+ 1)l
l!(l − 1)!

2F1

(
n+ |k|+ l + 1,−n; l + 1;

1

1 + r2

)
, (3.A.12)

where we used that Res {Γ(z); z = −n} = (−1)n

n! . This is precisely the answer obtained

using method A, (3.A.8), as expected.
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Poincaré AdS

In this chapter we will address the same problem, namely the construction of bulk scalar

field solutions that are dual to the state |∆⟩ = O∆|0⟩, but for a CFT on R1,1. Then the

relevant bulk problem is to solve the free field equation for a massive scalar field in

Poincaré AdS.

4.1 Lorentzian Solutions

The metric for the Poincaré patch of Lorentzian AdS2+1 is given by

ds2 = 1

z2
(
−dt2 + dz2 + dx2

)
(4.1.1)

with the asymptotic boundary at z = 0. In this background the Klein-Gordon equation

is given by (
∂2z −

1

z
∂z − ∂2t + ∂2x −

m2

z2

)
Φ(t, z, x) = 0. (4.1.2)

Substituting the ansatz

Φ (t, z, x) = e−iωt+ikxfωk(z) (4.1.3)

we get

f ′′ωk(z)−
1

z
f ′ωk(z) +

(
ω2 − k2 − m2

z2

)
fωk(z) = 0. (4.1.4)

To solve this ODE we need to consider the cases −ω2 + k2 > 0 (spacelike modes) and

−ω2 + k2 ≤ 0 (timelike modes).

4.1.1 Timelike Modes

For timelike modes

− ω2 + k2 = −q2 ≤ 0. (4.1.5)

71
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The two linearly independent solutions to the z–ODE are

f1(z) = zJl(qz) (4.1.6a)

f2(z) = zYl(qz) (4.1.6b)

where l =
√
1 +m2 ∈ {0, 1, 2, . . . }, q2 = ω2 − k2. The boundary behaviour of these

solutions is

zJl(qz) −−−→
z→0

z1+l
(

ql

2lΓ(l)
− . . .

)
normalisable (4.1.7a)

zYl(qz) −−−→
z→0

z1−l
(
−2lΓ(l)

qlπ
+ ...

+ z2l
(−1)lqlΓ(−l)

2lπ
+ ...

)
non–normalisable. (4.1.7b)

As z → ∞,

zJl(qz) −−−→
z→∞

z1/2 sin
(
π

4
− lπ

2
+ qz

)√
2

πq

+z−1/2 sin
(
π

4
+

lπ
2

− qz

) (
4l2 − 1

)
4
√

2πq3
+ ... (4.1.8a)

zYl(qz) −−−→
z→∞

−z1/2 sin
(
π

4
+

lπ
2

− qz

)√
2

πq

−z−1/2 cos
(
π

4
+

lπ
2

− qz

) (
4l2 − 1

)
4
√

2πq3
+ ... (4.1.8b)

From these expressions we observe that there are no individual timelike modes that

remain finite in the bulk. Therefore, any solution that is finite must be constructed by

integrating over infinitely many such modes.

4.1.2 Spacelike Modes

For spacelike modes

− ω2 + k2 = q2 ≥ 0. (4.1.9)

The two linearly independent solutions to the z–ODE become

f1(z) = zIl (qδz) (4.1.10a)

f2(z) = zKl (qδz) (4.1.10b)

where l is as defined above and qδ =
(
−ω2 + k2 − iδ

)1/2
, with δ > 0 an infinitesimal

parameter. Looking again at the near boundary behaviour of the solutions we find

zIl(qz) −−−→
z→0

z1+l
(

ql

2lΓ(l)
+

q2+lz2

22+l(1 + l)Γ(1 + l)
+O

(
z3
))

normalisable (4.1.11a)
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zKl(qz) −−−→
z→0

z1−l
(
2l−1Γ(l)

ql
− 2l−3Γ(l)z2

ql−2(l − 1)
+O

(
z3
))

+z1+l
(
qlΓ(−l)
2l+1

+
ql+2z2Γ(−l)
2l+3(1 + l)

+O
(
z3
))

non–normalisable. (4.1.12a)

As z → ∞,

zIl(qz)−−−→
z→∞

z1/2√
2πq

[
eqz
(
1 + O

(
z−1
))

+ e−qz
(
i(−1)l + O

(
z−1
))]

(4.1.13)

zKl(qz)−−−→
z→∞

z1/2e−qz
[√

π

2q
+

4l2 − 1

8z

√
π

2q3
+O

(
z−2
)]
. (4.1.14)

Here one set of modes, namely the non-normalisable zKl(q z) modes, remain finite at

the interior whereas the normalisable ones diverge. Consequently, the only physical

spacelike modes are the non-normalisable ones.

We are now in position to construct the Lorentzian solutions using the physical modes

we have found. Our choice of boundary conditions for the Lorentzian manifolds dictates

that there are no sources present. Accordingly, we construct Lorentzian solutions using

only normalisable modes,

ΦL (t, z, x) =

∫ ∞

−∞

dk
2π

∫ ∞

−∞

dω
2π

[
aωk e−iωt+ikxz θ

(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)
+ c.c.

]
.

(4.1.15)

4.2 Euclidean Solutions

The metric for Euclidean Poincaré patch of AdS2+1 can be obtained from the Lorentzian

one, (4.1.1), by Wick rotating t = −iτ ,

ds2 = 1

z2
(
dτ2 + dz2 + dx2

)
. (4.2.1)

The massive Klein-Gordon in this background is given by(
∂2z −

1

z
∂z + ∂2τ + ∂2x −

m2

z2

)
Φ(τ, z, x) = 0 (4.2.2)

Since we are solving this on half Euclidean manifolds for which τ ≥ 0 or τ ≤ 0, it is

possible to have both oscillatory and exponentially decaying modes in our solutions.

We consider both cases separately.
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4.2.1 Exponentially Decaying Modes

Substituting the ansatz1

Φ(τ, z, x) = e±|ω|τ+ikxfωk(z) (4.2.3)

into equation (4.2.2), we obtain the radial ODE,

f ′′ωk(z)−
1

z
f ′ωk(z)−

(
m2

z2
− ω2 + k2

)
fωk(z) = 0. (4.2.4)

As was the case in Lorentzian signature, we can have both timelike, ω2 − k2 ≥ 0, and

spacelike, ω2 − k2 ≤ 0, modes. The analysis of the Euclidean case follows along the

same lines of the Lorentzian and therefore we will directly state and use the results from

above.

In particular, from the Lorentzian case we have that the only physical, exponentially

decaying modes are the timelike normalisable modes. These are used to construct the

Euclidean normalisable solution. For τ ≤ 0 this has the general form

Φ−
E (τ, z, x) =

∫ ∞

−∞

dk
2π

∫ ∞

0

dω
2πi

[
dωk eωτ+ikxz θ

(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
,

(4.2.5a)

and for τ ≥ 0

Φ+
E (τ, z, x) =

∫ ∞

−∞

dk
2π

∫ ∞

0

dω
2πi

[
d̃ωk e−ωτ+ikxz θ

(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
.

(4.2.5b)

No physical solutions can be constructed using exponentially decaying non–normalisable

modes.

4.2.2 Oscillatory Modes

To study the oscillatory modes of the Euclidean fields we substitute the ansatz

Φ(τ, z, x) = eiωτ+ikxfωk(z) (4.2.6)

into equation (4.2.2). The resulting radial ODE is

f ′′ωk(z)−
1

z
f ′ωk(z)−

(
m2

z2
+ ω2 + k2

)
fωk(z) = 0. (4.2.7)

1The choice of sign of the exponential modes depends on whether τ is positive or negative, i.e. whether
we are considering the solution in the past or future Euclidean cap.
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Defining p2 = ω2 + k2 ≥ 0, the solutions to this ODE are

f1(z) = zIl(p z) (4.2.8a)

f2(z) = zKl(p z) (4.2.8b)

where p =
(
ω2 + k2

)1/2
.

Kl(z) has a branch cut along the negative real axis. However, by restricting to p ≥ 0 we

need not worry about this, although there might be subtleties due to p = 0. From the

asymptotic analysis of Il(pz)and Kl(pz) discussed in the previous section we have that

the only physical solution in this case is the one constructed by integrating the modes

proportional to zKl(p z). These are non–normalisable, source modes which we nor-

malise such that, as z → 0,

CωkzKl(p z) = 1 · z1−l + . . . (4.2.9)

The resulting modes are convoluted with the modes of a source with a δ–function pro-

file, localised in spacetime on the boundary. We consider a delta function source lo-

calised at τ = −ϵ, x = 0, where ϵ > 0. Then the corresponding bulk solution is given

by

Φ−
E (τ, z, x) =

z

Γ(l)2l−1

∫ ∞

−∞

dk
2π

∫ ∞

−∞

dω
2π

[
eiωτ+ikxϕ−(0)(ω, k)

(
ω2 + k2

)l/2
Kl

(√
ω2 + k2 z

)]
ϕ−(0)(ω, k) = eiωϵ. (4.2.10)

Indeed, it is easy to see that in the limit z → 0 this is δ–function source localised at

(τ, x) = (−ϵ, 0). Similarly, for τ ≥ 0 and for a source localised at (τ, x) = (ϵ, 0), the

solution takes the form

Φ+
E (τ, z, x) =

z

Γ(l)2l−1

∫ ∞

−∞

dk
2π

∫ ∞

−∞

dω
2π

[
ϕ+(0)(ω, k) eiωτ+ikx

(
ω2 + k2

)l/2
Kl

(√
ω2 + k2 z

)]
ϕ+(0)(ω, k) = e−iωϵ. (4.2.11)

The final solutions for the two Euclidean caps are linear combinations of normalisable

and non–normalisable pieces.

4.3 Matching Conditions

The field theory time contour and bulk manifold that we will considered here are the

in–in contour and the corresponding manifold used in the case of global AdS, discussed

in the previous chapter and shown in figure 4.3.1. For the sake of completeness we re-

peat the results for the matching conditions but, for more details, we refer the reader to
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τ0

τ3

t1

t2

T

×

×

ε

−ε

τ3

t1

Lt2

L

T

2T

τ0

E

E

ε

−ε

×

×

Figure 4.3.1: In–in time contour (left) and corresponding AdS manifold (right).

section 3.1.2. The matching conditions are

Φ−
E

∣∣
τ0=0

= Φ1
L

∣∣
t1=0

, ∂τ0Φ
−
E

∣∣
τ0=0

= −i∂t1Φ1
L

∣∣
t1=0

Φ1
L

∣∣
t1=T

= Φ2
L

∣∣
t2=T

, ∂t1Φ
1
L

∣∣
t1=T

= −∂t2Φ2
L

∣∣
t2=T

(4.3.1)

Φ2
L

∣∣
t2=2T

= Φ+
E

∣∣
τ3=0

, ∂t2Φ
2
L

∣∣
t2=2T

= −i∂τ3Φ+
E

∣∣
τ3=0

.

The solutions in each manifold, which are constructed by appropriate modifications of

the general solutions obtained above, are

0 ≤ t1 ≤ T :

Φ1
L(t1, z, x) =

∫ ∞

−∞

dk
2π

∫ ∞

−∞

dω
2π

[
aωk e−iωt1+ikxz θ

(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)
+c.c.

]
, (4.3.2a)

T ≤ t2 ≤ 2T :

Φ2
L (t2, z, x) =

∫ ∞

−∞

dk
2π

∫ ∞

−∞

dω
2π

[
ãωk e−iωt2+ikxz θ

(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)
+c.c.

]
, (4.3.2b)

for the two Lorentzian segments, and

−∞ < τ0 ≤ 0 :

Φ−
E (τ0, z, x) =

=
z

Γ(l)2l−1

∫ ∞

−∞

dk
2π

∫ ∞

−∞

dω
2π

[
eiω(τ0+ϵ)+ikx

(
ω2 + k2

)l/2
Kl

(√
ω2 + k2 z

)
+

∫ ∞

−∞

dk
2π

∫ ∞

0

dω
2πi

dωk eωτ0+ikxz θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
, (4.3.3a)
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0 ≤ τ3 <∞ :

Φ+
E (τ3, z, x) =

=
z

Γ(l)2l−1

∫ ∞

−∞

dk
2π

∫ ∞

−∞

dω
2π

[
eiω(τ3−ϵ)+ikx

(
ω2 + k2

)l/2
Kl

(√
ω2 + k2 z

)
+

∫ ∞

−∞

dk

2π

∫ ∞

0

dω

2πi
d̃ωk e−ωτ3+ikxz θ

(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
, (4.3.3b)

for the two Euclidean segments. The Lorentzian solutions are purely normalisable whereas

the Euclidean solutions are linear combinations of a non–normalisable piece and a nor-

malisable piece. In momentum space we saw that the individual modes are either Bessel

functions of the first kind, Jl, or modified Bessel functions of the second kind,Kl. These

functions are not orthogonal to each other. We circumvent this complication by making

use of the following two integrals of Bessel functions [62]∫ ∞

0
dz zJn(za)Jn(zb) =

1

a
δ(b− a), a, b ∈ R (4.3.4a)∫ ∞

0
dz zKν(za)Jν(zb) =

bν

aν(a2 + b2)
, Re(a) > 0, b > 0. (4.3.4b)

To extract individual modes from our solutions we perform the following steps. Given a

field Φ(t, z, x) or its time derivative ∂tΦ(t, z, x), where t here can be either real or imag-

inary time, we multiply by θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)
e−ikx and integrate first over x

from −∞ to +∞ and then over z from zero to +∞,∫ ∞

0
dz θ(ω2 − k2)Jl

(√
ω2 − k2 z

)∫ ∞

−∞
dx e−ikxΦ(t, z, x)

∣∣
on matching surface. (4.3.5)

To perform the z integral one needs to use either equation (4.3.4a) or (4.3.4b). The Heav-

iside step function is to ensure that the conditions associated with these two equations

are satisfied. Some of the details of this calculation are given in appendix 4.A.

Applying the matching conditions to these solutions and using the above prescription

to extract individual modes we finally obtain the following relations which hold for

ω2 > k2. Note that normalisable modes exist only for ω2 > k2 so the above matching

conditions are sufficient for our purposes.

From the matching conditions at τ0 = 0, t1 = 0, between the past Euclidean cap and the

first Lorentzian manifold, we obtain

a|ω|k + a†−|ω| −k =

(
ω2 − k2

)l/2
π

Γ(l)2l−1
e−|ω|ϵ

=

(
ω2 − k2

)l/2
π

Γ(l)2l−1
ϕ−(0)(i|ω|, k) (4.3.6a)

a−|ω|k + a†|ω| −k = −id|ω|k. (4.3.6b)
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From the matching conditions at t1 = T, t2 = T , between the two Lorentzian manifolds,

a|ω|k + a†−|ω| −k =
(
ã−|ω|k + ã†|ω|−k

)
e2i|ω|T (4.3.7a)

a−|ω|k + a†|ω|−k =
(
ã|ω|k + ã†−|ω|−k

)
e−2i|ω|T (4.3.7b)

Finally, the matching conditions at t2 = 2T, τ3 = 0, between the second Lorentzian

manifold and the future Euclidean cap give

ã|ω|k + ã†−|ω| −k =

(
ω2 − k2

)l/2
π

Γ(l)2l−1
e−|ω|(ϵ−2iT )

=

(
ω2 − k2

)l/2
π

Γ(l)2l−1
e2i|ω|Tϕ+(0)(−i|ω|, k) (4.3.8a)

ã−|ω|k + ã†|ω| −k = −id̃|ω|ke−2i|ω|T . (4.3.8b)

Given the matching relations it is easier to redefine the Lorentzian coefficients by intro-

ducing bωk = a|ω|k + a†−|ω|−k and b†ω−k = a−|ω|k + a†|ω|−k for the first Lorentzian manifold

and b̃ωk = ã|ω|k + ã†−|ω|−k and b̃†ω−k = ã−|ω|k + ã†|ω|−k for the second Lorentzian manifold.

In terms of these new coefficients the solutions become

Φ1
L(t1, z, x) =

∫ ∞

−∞

dk
2π

∫ ∞

0

dω
2π

[(
bωk e−iωt1+ikx + b†ω−ke

iωt1+ikx
)

z θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
, (4.3.9)

with an analogous expression for Φ2
L(t2, z, x).

Re–expressing the matching conditions in terms of b’s and b̃’s,

bωk =

(
ω2 − k2

)l/2
π

Γ(l)2l−1
ϕ−(0)(iω, k) = b̃†ω−ke

2iωT = −id̃ωk (4.3.10a)

b†ω−k = −idωk = b̃ωke−2iωT =

(
ω2 − k2

)l/2
π

Γ(l)2l−1
ϕ+(0)(−iω, k) (4.3.10b)

where the frequency ω is greater or equal to zero. Note that had we not chosen the

source insertion points in the past and future Euclidean caps to be the same, reality

conditions for the Lorentzian solutions would dictate that they have to be the same.

Identifying the coefficients of e−iωt (e−ωτ ) as the positive frequency oscillatory (expo-

nential) modes and the coefficients of e+iωt as the negative ones, we see that our modes

evolve in an analogous way as we saw in the global case. In particular, the positive fre-

quency normalisable modes in the first Lorentzian manifold are sourced by exponen-

tially decaying positive frequency source modes in the past Euclidean manifold whereas

the positive frequency source modes decay. The positive frequency Lorentzian modes

from the first manifold then evolve across the matching surface at t1 = T = t2 to become

negative frequency modes in the second Lorentzian manifold and finally they become
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negative frequency normalisable modes in the future Euclidean manifold. There are no

positive frequency normalisable modes in the future manifold as these grow exponen-

tially as τ3 → ∞.

The negative frequency normalisable modes in the first Lorentzian manifold are the evo-

lution of positive frequency normalisable modes which we have included in the past Eu-

clidean manifold. As they evolve across the matching surface into the second Lorentzian

manifold they become the positive frequency normalisable modes which are associated

to negative frequency source modes turned on in the future Euclidean manifold.

Returning to the Lorentzian fields, we can now replace the arbitrary coefficients bωk and

b̃ωk with the above results to obtain

Φ1
L(t1, z, x) =

z

Γ(l)2l

∫ ∞

−∞

dk
2π

∫ ∞

0
dω
[(
ϕ−(0)(iω, k)e

−iωt1 + ϕ+(0)(−iω, k)e
iωt1
)

eikx
(
ω2 − k2

)l/2
θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
, (4.3.11a)

Φ2
L(t2, z, x) =

z

Γ(l)2l

∫ ∞

−∞

dk
2π

∫ ∞

0
dω
[(
ϕ+(0)(−iω, k)e

−iωt2 + ϕ−(0)(iω, k)e
iωt2
)

eikx
(
ω2 − k2

)l/2
θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
. (4.3.11b)

Equations (4.3.11a) and (4.3.11b) demonstrate explicitly how the Euclidean source modes

generate the purely normalisable solutions in the Lorentzian bulk.

4.3.1 1-point function

We will now extract the 1-point function to verify that the solution indeed describes an

excited state. For this we need to extract the coefficient ϕ(2∆−2), which in our case is the

leading order coefficient of the bulk solution. As in the case of global AdS, we consider

the case where the operator is in the upper part of the contour so the relevant field is

Φ1
L. Then

ϕ(2∆−2)(t, x) = lim
z→0

z∆Φ1
L(z, t, x) =

1

22l−1Γ(l)Γ(l + 1)
(4.3.12)∫ ∞

−∞

dk
2π

∫ ∞

0
dω
[
θ
(
ω2 − k2

) (
ω2 − k2

)l e−ωϵ+ikx cos(ωt)
]

Eliminating first the Heaviside step function and setting ω = rk, we obtain

ϕ(2∆−2)(t, x) =
1

22l−1Γ(l)Γ(l + 1)

∫ ∞

0

dk
2π

∫ ∞

1
dr
[
k2l+1

(
r2 − 1

)l e−krϵ (4.3.13)(
cos
(
k(rt+ x)

)
+ cos

(
k(rt− x)

)) ]
.
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Then we perform the k integral,

ϕ(2∆−2)(t, x) =
(−1)∆Γ(2∆)

22∆−1πΓ(∆− 1)Γ(∆)

∫ ∞

1
dr
[
(r(t+ iϵ)− x)−2∆+ (4.3.14)

(r(t+ iϵ) + x)−2∆ + (r(t1 − iϵ) + x)−2∆ + (r(t− iϵ)− x)−2∆

] (
r2 − 1

)∆−1
,

and finally, we compute the r integral,

ϕ(2∆−2)(t, x) = − l

π

(
1

(−(t− iϵ)2 + x2)∆
+

1

(−(t+ iϵ)2 + x2)∆

)
(4.3.15)

and thus,

⟨O∆(t, x)⟩exc =
2l2

π

(
1

(−(t− iϵ)2 + x2)∆
+

1

(−(t+ iϵ)2 + x2)∆

)
(4.3.16)

where we used the subscript “exc” to emphasise that this is the 1–point function in the

excited state. This is indeed equal to value we got via a QFT computation in (2.2.7). In

our case, C̃ = 2l2/π, which is the standard supergravity normalisation of the 2-point

function. Note also that the normalisations in (3.1.34) and (4.3.16) are related as in the

footnote 4, as they should.

4.3.2 Reconstruction of Bulk Fields From Boundary Data

In this section we perform the reconstruction of the Lorentzian bulk fields living in the

Poincaré patch of AdS, from their asymptotic value. The procedure follows closely what

was done for global AdS in section 3.2. However, there are some additional complica-

tions and subtleties related to the Poincaré patch which are addressed below.

We begin by extracting the source modes from the boundary Euclidean fields. For

Poincaré coordinates, the definition of the boundary fields used for global AdS in section

3.2, becomes

Ψ(t, x) = lim
z→0

z−l−1Φ(t, z, x). (4.3.17)

However, this definition can not be used for the Euclidean fields in the Poincaré patch

because the z dependence of the source term is z1−l and, hence, with this definition

it would blow up. To avoid this complication we focus only on the normalisable part

of the Euclidean solution, ignoring the source piece. This is justified by the fact that,

near the boundary, the source term is a delta function, localised in time. Thus, τ0 ̸= −ϵ
and τ3 ̸= ϵ, the source terms are zero. Applying this to the Euclidean fields, given by
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equations (4.3.3a) and (4.3.3b) we find,

Ψ−
E (τ0, x) =

1

22lΓ(l)Γ(l + 1)

∫ ∞

−∞

dk
2π

∫ ∞

0
dω
[
eωτ0+ikxϕ+(0)(−iω, k)(

ω2 − k2
)l
θ
(
ω2 − k2

) ]
, (4.3.18a)

Ψ+
E(τ3, x) =

1

22lΓ(l)Γ(l + 1)

∫ ∞

−∞

dk
2π

∫ ∞

0
dω
[
e−ωτ3+ikxϕ−(0)(iω, k)(

ω2 − k2
)l
θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

) ]
(4.3.18b)

where ϕ+(0)(−iω, k) = e−ωϵ = ϕ−(0)(iω, k). In deriving these we have used that

Jl(qz) −−−→
z→0

zl
ql

2lΓ(l + 1)
. (4.3.19)

Similarly, the boundary Lorentzian fields are

Ψ1
L(t1, x) =

1

22lΓ(l)Γ(l + 1)

∫ ∞

−∞

dk
2π

∫ ∞

0
dω
[(
ϕ−(0)(iω, k)e

−iωt1

+ϕ+(0)(−iω, k)e
iωt1
)

eikx
(
ω2 − k2

)l
θ
(
ω2 − k2

)]
,

Ψ2
L(t2, x) =

1

22lΓ(l)Γ(l + 1)

∫ ∞

−∞

dk
2π

∫ ∞

0
dω
[(
ϕ+(0)(−iω, k)e

−iωt2

+ϕ−(0)(iω, k)e
iωt2
)

eikx
(
ω2 − k2

)l
θ
(
ω2 − k2

)]
. (4.3.20a)

where 0 ≤ t1 ≤ T and T ≤ t2 ≤ 2T .

Next we extract the source modes, ϕ±(0)(ω, k), from the Euclidean boundary fields. We

will demonstrate in detail how to extract ϕ+(0) from Ψ−
E(τ0, x). This is sufficient for the

reconstruction as ϕ−(0)(ω, k) = ϕ+(0)(−ω, k). The first step is to multiply the expression for

Ψ−
E(τ0, x) by e−ikx and integrate over x, from −∞ to +∞. This yields,∫ ∞

−∞
dx e−ikxΨ−

E(τ0, x) =

=
1

22lΓ(l)Γ(l + 1)

∫ ∞

0
dω
(
ω2 − k2

)l
ϕ+(0)(−iω, k) eωτ0 θ

(
ω2 − k2

)
.

This expression is multiplied by e−ωτ0 and integrated over τ0, from −δ − i∞ to −δ + i∞,

where 0 ≤ δ < ϵ. Some explanation is needed with regards to the range of integra-

tion of τ0. This comes from the theory of Laplace transforms. In particular, the Laplace

transform, F (τ), of a function f(ω) is defined by the integral

F (τ) =

∫ ∞

0
dω f(ω)eωτ , Re(τ) < 0
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If f is summable over all finite intervals, and there is a constant c for which∫ ∞

0
dω |f(ω)|e−cω <∞, (4.3.21)

then the Laplace transform exists when τ = σ + it is such that σ ≥ c. For the inversion,

F (τ) must be of O(τ−k), k > 1. Then

f(ω) =
1

2πi

∫ γ+i∞

γ−i∞
dτ F (τ)e−ωτ (4.3.21)

where γ must be to the right of the singularities of F (τ).

Returning to the case we are considering,

f(ω) =

(
ω2 − k2

)l
θ
(
ω2 − k2

)
22lΓ(l)Γ(l + 1)

ϕ+(0)(−iω, k) (4.3.22)

and

F (τ0) =

∫ ∞

0
dω

{(
ω2 − k2

)l
θ
(
ω2 − k2

)
22lΓ(l)Γ(l + 1)

ϕ+(0)(−iω, k)

}
eωτ0 (4.3.22)

which is well defined for Re(τ0) < 0.

Accordingly,∫ −δ+i∞

−δ−i∞
dτ0

∫ ∞

−∞
dx e−ωτ0−ikxΨ−

E(τ0, x) =
1

22lΓ(l)Γ(l + 1)

∫ −δ+i∞

−δ−i∞
dτ0

∫ ∞

0
dω′

(
ω′2 − k2

)l
ϕ+(0)(−iω

′, k) e(ω′−ω)τ0 θ
(
ω′2 − k2

)
=
iπ
(
ω2 − k2

)l
ϕ+(0)(−iω, k) θ

(
ω2 − k2

)
22l−1Γ(l)Γ(l + 1)

.

(4.3.23)

This is relation gives ϕ+(0)(−iω, k) in terms of the past Euclidean boundary field Ψ−
E(τ0, x).

Similarly, we can extract ϕ−(0)(iω, k) from Ψ+
E(τ3, x). The final expressions are

(
ω2 − k2

)l
θ
(
ω2 − k2

)
22lΓ(l)Γ(l + 1)

ϕ+(0)(−iω, k) =

=
1

2πi

∫ −δ+i∞

−δ−i∞
dτ0

∫ ∞

−∞
dx e−ωτ0−ikxΨ−

E(τ0, x),

(4.3.24a)(
ω2 − k2

)l
θ
(
ω2 − k2

)
22lΓ(l)Γ(l + 1)

ϕ−(0)(iω, k) =

=
1

2πi

∫ δ+i∞

δ−i∞
dτ3

∫ ∞

−∞
dx eωτ3−ikxΨ+

E(τ3, x).

(4.3.24b)
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The above equations give the source modes in terms of the Euclidean boundary fields.

The matching conditions derived in section 4.3, allow us to re–write these relations in

terms of Lorentzian boundary fields. More specifically, starting from equation (4.3.24a)

we can write(
ω2 − k2

)l
θ
(
ω2 − k2

)
22lΓ(l)Γ(l + 1)

ϕ+(0)(−iω, k) =
1

22lΓ(l)Γ(l + 1)

∫ −δ+i∞

−δ−i∞
dτ0∫ ∞

−∞
dx e−ωτ0−ikx

∫ ∞

−∞

dk′

2π

∫ ∞

0

dω′

2πi

(
ω′2 − k′2

)l
θ
(
ω′2 − k′2

)
[
ϕ+(0)(−iω

′, k′)eω′τ0+ik′x +ϕ−(0)(iω
′, k′)e−ω′τ0+ik′x

integrating this over τ0
gives δ(ω′+ω) which vanishes

for ω′,ω>0⇒ can add them freely

]

Next perform the following changes of variables:

1. τ0 → s = −iτ0

2. s→ t = s− iϵ.

This give, (
ω2 − k2

)l
θ
(
ω2 − k2

)
22lΓ(l)Γ(l + 1)

ϕ+(0)(−iω, k) =
∫ +∞

−∞
dt
∫ ∞

−∞
dx e−iω(t+iδ)−ikx{

1

22lΓ(l)Γ(l + 1)

∫ ∞

−∞

dk′

2π

∫ ∞

0

dω′

2π

(
ω′2 − k′2

)l
θ
(
ω′2 − k′2

)
eik′x

[
ϕ+(0)(−iω

′, k′)eiω′(t+iδ) + ϕ−(0)(iω
′, k′)e−iω′(t+iδ)

]}

=
1

2π

∫ +∞

−∞
dt

∫ ∞

−∞
dx e−iω(t+iδ)−ikxΨ1

L(t+ iδ, x)

Hence, the final result is(
ω2 − k2

)l
θ
(
ω2 − k2

)
22lΓ(l)Γ(l + 1)

ϕ+(0)(−iω, k) =

=
1

2π

∫ +∞

−∞
dt

∫ ∞

−∞
dx e−iω(t+iδ)−ikxΨ1

L(t+ iδ, x). (4.3.25)

Similarly, one finds that(
ω2 − k2

)l
θ
(
ω2 − k2

)
22lΓ(l)Γ(l + 1)

ϕ−(0)(iω, k) =

=
1

2π

∫ +∞

−∞
dt

∫ ∞

−∞
dx eiω(t−iδ)−ikxΨ1

L(t− iδ, x). (4.3.26)

Having obtained these expressions, we now have all the necessary tools to express the

bulk Lorentzian fields in terms of their boundary values. Starting from equation (4.3.11a)



84 Chapter 4. Poincaré AdS

for the Lorentzian bulk field and using the above results, we have

Φ1
L(t1, z, x)= 2lzΓ(l + 1)

∫ ∞

−∞

dk

2π

∫ ∞

0

dω

2π

(
ω2 − k2

)−l/2
θ
(
ω2 − k2

)
eikx

Jl

(√
ω2 − k2 z

){
e−iωt1

∫ +∞

−∞
dt

∫ ∞

−∞
dye−iω(t+iδ)−ikyΨ1

L(t+ iδ, y)

+eiωt1
∫ +∞

−∞
dt

∫ ∞

−∞
dy eiω(t−iδ)−ikyΨ1

L(t− iδ, y)

}
=

∫ +∞

−∞
dt

∫ ∞

−∞
dy

{
2lzΓ(l + 1)

∫ ∞

−∞

dk

2π

∫ ∞

0

dω

2π
θ
(
ω2 − k2

)
(
ω2 − k2

)−l/2
Jl

(√
ω2 − k2 z

)(
e−iω(t+t1+iδ)+ik(x−y)Ψ1

L(t+ iδ, y)

+eiω(t−t1−iδ)+ik(x−y)Ψ1
L(t− iδ, y)

)}
.

Assuming now that we can take the limit δ and δ goes to zero in Ψ1
L without any com-

plications2, we can write

Φ1
L(t1, z, x) =

∫ +∞

−∞
dt

∫ ∞

−∞
dy

{
2lzΓ(l + 1)

∫ ∞

−∞

dk

2π

∫ ∞

0

dω

2π
θ
(
ω2 − k2

)
(
ω2 − k2

)−l/2
Jl

(√
ω2 − k2 z

)
(

e−iω(t+t1+iϵ)+ik(x−y) + eiω(t−t1−iϵ)+ik(x−y)
)}

Ψ1
L(t, y).

Then, using the fact that Ψ1
L(t, y) = Ψ1

L(−t, y),

Φ1
L(t1, z, x) =

∫ +∞

−∞
dt

∫ ∞

−∞
dy

{
2l+1zΓ(l + 1)

∫ ∞

−∞

dk

2π

∫ ∞

0

dω

2π
θ
(
ω2 − k2

)
(
ω2 − k2

)−l/2
Jl

(√
ω2 − k2 z

)
e−iω(t1−t+iϵ)+ik(x−y)

}
Ψ1
L(t, y).

Comparing this expression to equation (3.2.2) which defines the smearing function we

have

K(t1, z, x|t, y) =
2l−1Γ(l + 1)z

π2

∫ ∞

−∞
dk

∫ ∞

0
dω θ

(
ω2 − k2

)(
ω2 − k2

)−l/2
Jl

(√
ω2 − k2 z

)
×

×e−iω(t1−t+iϵ)−ik(y−x).(4.3.27)

To perform the integration we follow [40] and set t1 = x = y = 0 and define ω+ =
1
2(ω + k) = reξ and ω− = 1

2(ω − k) = re−ξ .
2The iδ insertions are needed for convergence of the integral over frequency. Ψ1

L is a position space
expression which is indeed finite.
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K(0, 0, z|t, 0) = 2l+1Γ(l + 1)z

π2

∫ ∞

0
rdr

∫ ∞

−∞
dξ (2r)−lJl(2rz) e2ir cosh ξ (t−iϵ)

=
2l−1Γ(l + 1)z

π2

∫ ∞

0
dr r1−lK0

(
− ir(t− iϵ)

)
Jl(rz)

= − zl+1

π2(t− iϵ)2
2F1

(
1, 1; l + 1;

z2

(t− iϵ)2

)
where we used the definition of the modified Bessel function of the second kind,

Kν(z) =
zνΓ

(
1
2

)
Γ
(
ν + 1

2

) ∫ ∞

0
dξ e−z cosh ξ sinh2ν ξ (4.3.28)

and the identity

∫ ∞

0
dxx−λKµ(ax)Jν(bx)=

bνΓ
(
ν−λ+µ+1

2

)
Γ
(
ν−λ−µ+1

2

)
2λ+1aν−λ+1Γ (1 + ν)

×

×2F1

(
ν − λ+ µ+ 1

2
,
ν − λ− µ+ 1

2
; ν + 1;− b

2

a2

)
.

Using the isometries of the boundary, the Lorentz invariant generalisation ofK(0, 0, z|t, 0)
is

K(0, 0, z|t, y) = − 1

π2
zl+1

(t− iϵ)2 − y2
2F1

(
1, 1; l + 1;

z2

(t− iϵ)2 − y2

)
(4.3.29)

which is in perfect agreement with the result obtained in [40], including the iϵ insertions.

4.A Matching conditions for the Poincaré AdS

Here we demonstrate how individual modes can be extracted from the solutions ob-

tained for the Poincaré patch of AdS. We only present the calculations for the matching

surface at τ0 = 0, t1 = 0 but the same method can be applied straightforwardly to the

other matching surfaces.

Our analysis makes use of the following two identities of the Bessel functions∫ ∞

0
dz zJn(za)Jn(zb) =

1

a
δ(b− a) (4.A.1)

∫ ∞

0
dz zKν(za)Jν(zb) =

bν

aν(a2 + b2)
. (4.A.2)

Focusing first on the Lorentzian solution, on the hypersurface located at t1 = 0 the field
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and its derivative are given by

Φ1
L (t1, z, x)

∣∣
t1=0

=

∫ ∞

−∞

dk
2π

∫ ∞

−∞

dω
2π

[(
aωkeikx + a∗ωke−ikx

)
z

θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
(4.A.3a)

−i∂t1Φ1
L (t1, z, x)

∣∣
t1=0

=

∫ ∞

−∞

dk
2π

∫ ∞

−∞

dω
2π

[(
−aωkeikx + a∗ωke−ikx

)
ωz

θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
. (4.A.3b)

Multiplying the above expressions by θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)
e−ikx and integrating

first over x from −∞ to +∞ and then over z from zero to +∞, we find∫ ∞

0
dz θ

(
ω2 − k2

)
Jl(
√
ω2 − k2 z)

∫ ∞

−∞
dx e−ikxΦ1

L (t1, z, x)
∣∣
t1=0

=

=
θ(ω2 − k2)

2π|ω|

(
a|ω|k + a−|ω|,k + a∗|ω| −k + a∗−|ω| −k

)
(4.A.4a)∫ ∞

0
dz θ

(
ω2 − k2

)
Jl(
√
ω2 − k2 z)

∫ ∞

−∞
dx e−ikx

(
−i∂t1Φ1

L (t1, z, x)
∣∣
t1=0

)
=

=
θ(ω2 − k2)

2π

(
−a|ω|k + a−|ω|k − a∗−|ω| −k + a∗|ω| −k

)
(4.A.4b)

In more details:∫ ∞

0
dz θ

(
ω2 − k2

)
Jl(
√
ω2 − k2 z)

∫ ∞

−∞
dx e−ikxΦ1

L (t1, z, x)
∣∣
t1=0

=

=

∫ ∞

0
dz
∫ ∞

−∞
dx
∫ ∞

−∞

dk′
2π

∫ ∞

−∞

dω′

2π
θ
(
ω2 − k2

)
θ
(
ω′2 − k′2

) [
aω′k′ei(k

′−k)x

+a∗ω′k′e−i(k
′+k)x

]
z Jl

(√
ω2 − k2 z

)
Jl

(√
ω′2 − k′2 z

)
=

∫ ∞

−∞

dω′

2π

∫ ∞

0
dz θ

(
ω′2 − k2

)
θ
(
ω2 − k2

) (
aω′k + a∗ω′ −k

)
z

Jl

(√
ω2 − k2 z

)
Jl

(√
ω′2 − k2 z

)
=

∫ ∞

−∞

dω′

2π
θ
(
ω′2 − k2

)
θ
(
ω2 − k2

)(
aω′k + a∗ω′ −k

) δ (√ω′2 − k2 −
√
ω2 − k2

)
√
ω2 − k2

(4.A.5)

where in the last line we used (4.A.1) to perform the z integral.

To proceed we make use of the relation

δ
(√

ω′2 − k2 −
√
ω2 − k2

)
=

√
ω2 − k2

|ω|
[
δ
(
ω′ + |ω|

)
+ δ

(
ω′ − |ω|

) ]
(4.A.6)
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to obtain ∫ ∞

0
dz θ

(
ω2 − k2

)
Jl(
√
ω2 − k2 z)

∫ ∞

−∞
dx e−ikxΦ1

L (t1, z, x)
∣∣
t1=0

=

=

∫ ∞

−∞

dω′

2π|ω|
(
aω′k + a∗ω′ −k

)
θ
(
ω2 − k2

)
θ
(
ω′2 − k2

) [
δ
(
ω′ + |ω|

)
+ δ

(
ω′ − |ω|

) ]
=
θ(ω2 − k2)

2π|ω|

(
a|ω|k + a−|ω|k + a∗|ω| −k + a∗−|ω| −k

)
. □ (4.A.7)

The computation for the derivative is very similar.

Focusing now on the Euclidean solution, on the hypersurface located at τ0 = 0, the field

and its derivative are given by

Φ−
E (τ0, z, x)

∣∣
τ0=0

=
z

Γ(l)2l−1

∫ ∞

−∞

dk
2π

∫ ∞

−∞

dω
2π

[
eiωϵ+ikx

(
ω2 + k2

)l/2
Kl

(√
ω2 + k2 z

) ]
+

∫ ∞

−∞

dk
2π

∫ ∞

0

dω
2πi

[
bωk eikxz

θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

) ]
(4.A.8a)

∂τ0Φ
−
E (t0, z, x)

∣∣
τ0=0

=
z

Γ(l)2l−1

∫ ∞

−∞

dk
2π

∫ ∞

−∞

dω
2π

[
i ωeiωϵ+ikx

(
ω2 + k2

)l/2
Kl

(√
ω2 + k2 z

) ]
+

∫ ∞

−∞

dk
2π

∫ ∞

0

dω
2πi

[
ω bωk eikxz

θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

) ]
(4.A.8b)

By using the same method we find∫ ∞

0
dz θ

(
ω2 − k2

)
Jl(
√
ω2 − k2 z)

∫ ∞

−∞
dx e−ikxΦ−

E (τ0, z, x)
∣∣
τ0=0

=

= θ
(
ω2 − k2

)((ω2 − k2
)l/2

2lΓ(l)|ω|
e−|ω|ϵ +

d|ω|k

2πi|ω|

)
(4.A.9a)

∫ ∞

0
dz θ

(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)∫ ∞

−∞
dx e−ikx

(
∂τ0Φ

−
E (τ0, z, x)

∣∣
τ0=0

)
=

= θ
(
ω2 − k2

)(
−
(
ω2 − k2

)l/2
2lΓ(l)

e−|ω|ϵ +
d|ω|k

2πi

)
. (4.A.9b)

Obtaining these results requires a bit of extra work because our Euclidean solutions

consists of two terms, one of which is in terms of the modified Bessel function of the

second kind and therefore we need to use (4.A.2) and perform a contour integration in

the ω plane.
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In more detail, this is done as follows,∫ ∞

0
dz θ

(
ω2 − k2

)
Jl(
√
ω2 − k2 z)

∫ ∞

−∞
dx e−ikxΦ−

E (τ0, z, x)
∣∣
τ0=0

=

=

∫ ∞

0
dz
∫ ∞

−∞
dx
∫ ∞

−∞

dk′
2π

∫ ∞

−∞

dω′

2π

[
z θ
(
ω2 − k2

) (
ω′2 + k′2

)l/2 eiω′ϵ−i(k−k′)x

2l−1Γ(l)

Jl

(√
ω2 − k2 z

)
Kl

(√
ω′2 + k′2 z

)]
+

∫ ∞

0
dz
∫ ∞

−∞
dx
∫ ∞

−∞

dk′
2π

∫ ∞

0

dω′

2πi

[

dω′k′ei(k−k
′)xθ
(
ω2 − k2

)
θ
(
ω′2 − k′2

)
zJl

(√
ω2 − k2 z

)
Jl

(√
ω′2 − k′2 z

)]
= I1 + I2 (4.A.10)

where

I1 =

∫ ∞

0
dz
∫ ∞

−∞
dx
∫ ∞

−∞

dk′
2π

∫ ∞

−∞

dω′

2π

[
z θ
(
ω2 − k2

) (
ω′2 + k′2

)l/2 eiω′ϵ−i(k−k′)x

2l−1Γ(l)

Jl

(√
ω2 − k2 z

)
Kl

(√
ω′2 + k′2 z

)]
, (4.A.11a)

I2 =

∫ ∞

0
dz
∫ ∞

−∞
dx
∫ ∞

−∞

dk′
2π

∫ ∞

0

dω′

2πi

[
dω′k′ei(k−k

′)xθ
(
ω2 − k2

)
θ
(
ω′2 − k′2

)
zJl

(√
ω2 − k2 z

)
Jl

(√
ω′2 − k′2 z

)]
. (4.A.11b)

The computation of I2 is identical to what we did for the Lorentzian field above,

I2 =

∫ ∞

0
dz
∫ ∞

−∞
dx
∫ ∞

−∞

dk′
2π

∫ ∞

0

dω′

2πi

[
z dω′k′ei(k−k

′)xθ
(
ω2 − k2

)
θ
(
ω′2 − k′2

)
Jl

(√
ω2 − k2 z

)
Jl

(√
ω′2 − k′2 z

)]

=

∫ ∞

0
dz
∫ ∞

0

dω′

2πi

[
zdω′kθ

(
ω2 − k2

)
θ
(
ω′2 − k2

)
Jl

(√
ω2 − k2 z

)
Jl

(√
ω′2 − k2 z

)]

=

∫ ∞

0

dω′

2πi
dω′kθ

(
ω2 − k2

)
θ
(
ω′2 − k2

) δ(√ω′2 − k2 −
√
ω2 − k2

)
√
ω2 − k2

=

∫ ∞

0

dω′

2π|ω|i
dω′kθ

(
ω2 − k2

)
θ
(
ω′2 − k2

) (
δ
(
ω − |ω′|

)
+ δ(ω + |ω|)

)
= θ
(
ω2 − k2

) d|ω|k

2πi|ω|
(4.A.12)

where we used equations (4.A.1) and (4.A.6).
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The computation of I1 goes as follows,

I1 =

∫ ∞

0
dz
∫ ∞

−∞
dx
∫ ∞

−∞

dk′
2π

∫ ∞

−∞

dω′

2π

[
z θ
(
ω2 − k2

) (ω′2 + k′2
)l/2

2l−1Γ(l)
eiω′ϵ−i(k−k′)x

Jl

(√
ω2 − k2 z

)
Kl

(√
ω′2 + k′2 z

)]

=

∫ ∞

0
dz
∫ ∞

−∞

dω′

2π

[
z θ
(
ω2 − k2

) (ω′2 + k2
)l/2

2l−1Γ(l)
eiω′ϵJl

(√
ω2 − k2 z

)
Kl

(√
ω′2 + k2 z

)]

=

∫ ∞

−∞

dω′

2π

θ
(
ω2 − k2

)
2l−1Γ(l)

eiω′ϵ

(
ω2 − k2

)l/2
ω′2 + ω2

(4.A.13)

where for the last line we used equation (4.A.2). The integral over ω′ is performed using

contour integration. Closing the contour in the upper half plane and picking up the

contribution from the pole at i|ω| we obtain,

I1 =
θ
(
ω2 − k2

) (
ω2 − k2

)l/2
2lπΓ(l)

2πiRes

[
eiω′ϵ

ω′2 + ω2
;ω′ = i|ω|

]

=i
θ
(
ω2 − k2

) (
ω2 − k2

)l/2
2l−1Γ(l)

[
e−|ω|ϵ

2i|ω|

]
=
θ
(
ω2 − k2

) (
ω2 − k2

)l/2
2lΓ(l)|ω|

e−|ω|ϵ. (4.A.14)

Combining the results for I1 and I2,∫ ∞

0
dz θ

(
ω2 − k2

)
Jl(
√
ω2 − k2 z)

∫ ∞

−∞
dx e−ikx

(
∂τ0Φ

−
E (τ0, z, x)

∣∣
τ0=0

)
=

= θ
(
ω2 − k2

)(
−
(
ω2 − k2

)l/2
2lΓ(l)

e−|ω|ϵ +
d|ω|k

2πi

)
. (4.A.15)

The computations for the derivative follow along the same lines.
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Chapter 5

Discussion

In this first part of this thesis we presented the construction of a bulk solution dual to a

general excited CFT state, |∆⟩, where ∆ is the scaling dimension. By the operator-state

correspondence, the state is generated by an operator O∆ acting on the vacuum. The

corresponding bulk solution at linearised level involves only the bulk scalar Φ which is

dual to the operatorO∆. This part is universal: it is the same for all CFTs whose spectrum

contains an operator with such dimension. To construct the full bulk solution we need

more information about the CFT. In particular, we need to know the OPE of O∆ with

itself. All bulk fields that are dual to operators that appear in this OPE are necessarily

turned on in the bulk.

In this thesis we presented in detail the construction of the universal part, for states of

two dimensional CFTs either onR×S1 orR1,1. From the bulk perspective this leads to the

construction of solutions of free scalar field equations either in globalAdS3 or Poincaré

AdS3. The solutions describe normalisable modes and their coefficients are directly re-

lated to the dual state. In more detail, the CFT state is generated by a Euclidean path

integral which contains a source for O∆ and the coefficients of the bulk normalisable

modes are given in terms of the source. Normalisable modes describe bulk local excita-

tions and thus our results give a direct relation between CFT states and bulk excitations.

To substantiate the claim that these solutions are dual to the state |∆⟩, we computed the

1-point function of local operators both in the CFT and in the bulk and found perfect

agreement1. Our discussion generalizes straightforwardly to higher dimensions.

To go beyond this leading order computation, one needs to be more specific about the

CFT (as mentioned above). In particular, one would need to take into account the back-

reaction to the metric. Given appropriate CFT data (for a CFT with a known bulk dual),

the construction of the bulk solution dual to any given state can proceed along the same

lines. It would be interesting to explicitly carry this out in detail in concrete examples.

1As emphasised in section 2.2, this agreement is a non-trivial check that we are constructing the correct
path integral. To holographically compute expectation values in the state |∆⟩ we would need the solution
to quadratic order in the bulk fields.
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In our discussion we explicitly demonstrated how a solution of the bulk field equations

is reconstructed from QFT data: given a Schwinger-Keldysh contour and insertions we

constructed a unique bulk solution. We also demonstrated how one can rewrite the bulk

solution in the Lorentzian part in terms of its boundary value, resulting in expressions

of the following form,

Φ(t, r, ϕ) =

∫
∂AdS

dt′ dϕ′ K(t, r, ϕ|t′, ϕ′)⟨O(t′, ϕ′)⟩ (5.0.1)

where K(t, r, ϕ|t̂, ϕ̂), is the smearing function. One must use caution when write such

an expression. For us (5.0.1) is a map between expectation values of the boundary theory

and classical fields in the bulk. In [40] the idea was different. The main point was to look

for CFT operators that behave like bulk local operators. The initial ansatz in [40] was

Φ̂(t, r, ϕ) =

∫
∂AdS

dt′ dϕ′ K(t, r, ϕ|t′, ϕ′)Ô(t′, ϕ′), (5.0.2)

and the smearing function K(t, r, ϕ|t′, ϕ′) was fixed by rewriting the bulk normalisable

modes in this form. The hat on the left hand side indicates that this is a quantum oper-

ator. If we quantize canonically the bulk scalar field then the coefficients bnk and b†nk of

the normalisable modes (see (3.1.10)) are promoted to creation and annihilation opera-

tors. However, the matching condition relates these coefficients to a CFT source and the

latter is not a quantum operator. One may still reconcile the two pictures if one consid-

ers the bulk solutions as being associated with a coherent state, as was recently argued

in [63]. Then the eigenvalue of the annihilation operator acting on the coherent state

would be equal to the value of the source. This would give a map from states |∆⟩ of the

CFT to coherent states in the bulk and it would be interesting to understand this map in

more detail.

As emphasised, (5.0.1) and (5.0.2) hold at the linearised level in the bulk (free fields)2.

While (5.0.1) and (5.0.2) may be related at this order, it is not clear this will continue to be

the case at non-linear level. There has been work in extending (5.0.2) to higher orders,

see for example [43, 44, 45, 46, 64]. In these papers, the map is modified by including

additional terms on the RHS of (5.0.2), which are double-trace operators. The coeffi-

cients are then fixed by requiring bulk locality. In our case, the full bulk solution will

instead involve many additional bulk fields, which are dual to single-trace operators. It

would be interesting to clarify the relation between the two reconstruction formulae at

non-linear order.

Another application of our construction is in the context of the fuzzball program [65, 66,

67, 68]. As was argued in [69, 37, 38, 67], the fuzzball solutions for black holes with AdS

2This is also the leading term in the ’t Hooft large N limit, if we normalise the CFT operators such that
their 2-point function has coefficient 1 in the large N limit. One should keep in mind however that with
this normalisation the subleading terms in N do not necessarily correspond to quantum loops, see the
discussion in section 2.2.
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throats are the bulk solutions dual to the states that account for black hole entropy. In

all previous works, fuzzball solutions were constructed by solving supergravity equa-

tions and the relation to CFT states was only studied afterwards (for a class of fuzzballs).

The construction here allows one to pursue a direct (iterative) construction of bulk so-

lutions dual to individual states. It would be interesting to carry out such computations.

One may also use the results here to sharpen an old argument [70] that the number of

supergravity solutions dual to the 3-charge BPS black holes cannot exceed that of the

2-charge ones.
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Part II

Einstein–Maxwell–Dialton–Axion

Theories

95





Chapter 6

The Model:
Asymptotic Analysis, Thermodynamics and Stability

6.1 Introduction

A big challenge of modern theoretical physics is the demystification of the underlying

physics governing strongly coupled systems such as the quark gluon plasma (QGP) cre-

ated during heavy ion collisions, cold atom systems and strongly correlated electrons.

The reason why these systems remained for a long time a mystery is because they lie

outside the regime of validity of the conventional tools usually employed by theoretical

physicists. In particular, since they are strongly coupled, perturbation theory does not

apply and, although lattice regularisation of quantum chromodynamics (QCD) is suf-

ficient for the study of static observables, using it for time dependent problems such

as the thermalisation of the QGP poses great difficulties. Gauge/gravity dualities, being

strong/weak coupling dualities, offer a promising candidate for a new framework that

will ultimately fill the gap in the toolset of theoretical physics. Through the AdS/CFT

dictionary one can map questions about the macroscopic properties of strongly cou-

pled gauge theories to tractable problems in supergravity on asymptotically AdS back-

grounds. For example, by performing supergravity calculations, string theorists can de-

rive real–time correlation functions of field theory operators and study them to learn

about non–equilibrium processes such as diffusion and sound wave propagation in

strongly coupled non–conformal plasmas. A notable result obtained through this pro-

gram and relating primarily to the QGP is the calculation of the ratio of the shear viscosity

to entropy density in strongly coupled plasmas [71, 72]. Equally interesting are the results

relating to the phase structure of strongly coupled condensed matter systems which

emerged from the study of the of supergravity solutions with charged asymptotically

AdS black holes supporting additional matter fields. For example, it was shown in [73]

that charged black holes in AdS can develop charged scalar hair which spontaneously

breaks the gauge symmetry, thus providing a holographic description of superconduc-

tivity. Moreover, probing further the phase space of such bulk theories revealed that, in

addition to superconducting phase transitions, the dual theories have phases exhibiting
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emergent quantum criticality, non–relativistic scaling properties as well as hyperscaling

violation.

The second part of this thesis is based on [2] and it focuses on the study of a class of

3+1 dimensional planar AdS black holes that carry electric and/or magnetic charges,

axionic hair and can support additional scalar hair associated with a running scalar.

There are many motivations for studying supergravity solutions with these character-

istics. Firstly, running scalar fields in planar asymptotically AdS backgrounds describe

holographic Renormalisation Group (RG) flows between conformal fixed points and be-

tween UV fixed points and IR theories exhibiting more interesting scaling behaviours

such as hyperscale violation and/or Lifshitz scaling [74, 75, 76, 77, 78, 79]. These RG flows

play a key role in understanding the physics of the QGP in heavy ion collisions and of

condensed matter system which have been observed to display hyperscaling violation.

Secondly, as mentioned above, when coupled to the U(1) gauge field, the scalar field

provides a mechanism for the spontaneous breaking of the U(1) symmetry giving rise

to holographic description of superconductors [73, 80]. In the theories we study the

scalar field is not charged under the U(1) gauge symmetry and therefore the ordered

phase of these theories is not superconducting. Nonetheless, we find that they do ex-

hibit phase transitions which are controlled by the condensate of the operator dual to

the scalar. Inspired by this connection of the scalar to the tuning or dialling of the the-

ory between different phases we have dubbed it the dialton. Another appealing feature

of the theories we study is that the mass of the dialton lies in the range which allows

for mixed and Neumann boundary conditions, in addition to the conventional Dirich-

let. By choosing to impose mixed boundary conditions we introduce in the theory an

additional tuning parameter that can be used tuned to control the condensation of the

operator dual to the scalar and induce new phase transitions in the dual theory. In par-

ticular, from the perspective of the field theory, imposing mixed boundary conditions

corresponds to turning on a multitrace deformation which introduces a new coupling

ϑ and which can be tuned to destabilise the theory [81]. However, this is not the only

significance of the mixed boundary conditions. As we will see in section 6.2.2, in or-

der to impose mixed boundary conditions on the dialton one must add extra boundary

terms to the bulk action. These terms ultimately modify the holographic stress tensor

and the on—shell action [82], and, hence, the associated conserved charges and free en-

ergy [30] but they leave the thermodynamic relations unaffected. In particular, we will

see that by correctly accounting for the modifications of the charges we arrive at the

standard thermodynamics relations, including the first law, without any new “charges”

associated with the dialton. This is exactly what one expects since running scalars in

AdS black holes are secondary hair and not primary [83].

Returning to discussion of the motivation for studying this class of theories, the sec-

ond set of scalar hair, namely the axion fields, provide a mechanism for momentum

relaxation in the dual theory, a highly desired featured for holographic condensed mat-
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ter systems. More specifically, the axions admit solutions with a linear profile in the

boundary spatial directions. From the field theory perspective, such bulk solutions cor-

respond to turning on spatially dependent sources for the dual operators which break

translation invariance and lead to the momentum relaxation. Linear axion backgrounds

were first considered in [84] where the authors obtained supergravity solutions that are

dual to theories exhibiting Lifshitz–like fixed points in the IR with anisotropic scale in-

variance. Their results were later generalised to finite temperatures [85, 86] providing

a description for strongly coupled homogeneous and anisotropic plasmas which can

play a key role in understanding the physics of the QGP. More generally, linear axion

backgrounds are a special case of the holographic Q–lattices first discovered in [31] as

solutions to 3+1 dimensional Einstein–Maxwell theory coupled to a gauge neutral com-

plex massive scalar that enjoys a global U(1) symmetry. This global symmetry combined

with a spatially periodic ansatz for the scalar field lead to dual systems that explicitly

break translational invariance leading to states with finite DC conductivity. In a similar

spirit, the authors of [32] studied supergravity solutions with scalar fields that have linear

profiles along the boundary directions which explicitly break translational invariance

but preserve isotropy and they obtained a dual metallic system exhibiting momentum

dissipation and finite DC conductivity.

As was mentioned above, the dialton is secondary hair and therefore there are no con-

served charges associated with it. The axionic hair is fundamentally different in this

sense; the axions with a linear profile along the spatial boundary directions are pri-

mary hair, carrying magnetic–like charges and satisfying global Ward identities. On the

boundary, they correspond to deforming the QFT action by terms of the form
∫
∂M xIOψI

where OψI
are the operators dual to the axions. As we will see, the global Ward identi-

ties imply that OψI
are locally exact and thus, one might be tempted to integrate by parts

the deformation term and eliminate explicit x dependence of the field theory action.

However, there is an important subtlety preventing us from doing so. The boundary

terms associated with the integration by parts diverge as xI → ±∞ and can not be ig-

nored. It follows that solutions with linear axion profiles in boundary spatial directions

correspond to turning on topological axion charges analogous to turning on magnetic

charges. These charges modify the first law of thermodynamics and they should be

treated on the same footing as conventional magnetic fields turned on on the bound-

ary.

The main focus of this work is the analysis of the thermodynamic properties and phase

structure of theories dual to the bulk configurations described above, namely electric

and/or magnetically charged planar black branes carrying primary axionic charges and

which can support additional secondary scalar hair satisfying mixed boundary condi-

tions. In this chapter we introduce the model and perform the general analysis of the

action. We begin in section 6.2 where we present the action and revisit the properties of

the axions and the dialton in more detail. In section 6.3 we derive the equations which
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we solve asymptotically in section 6.3.2. We then proceed to compute the boundary

terms necessary to impose our choice of boundary conditions and for the variation of

the on–shell action with respect to the sources to be well defined 6.3.3. These terms,

combined with the asymptotic solutions of the equations of motion, allow us to derive

the renormalised on-shell action, 6.3.4, and the one–point functions of the dual oper-

ators 6.3.5. We also obtain the local Ward identities associated with diffeomorphism

invariance and the U(1) gauge symmetry, 6.3.6, as well as global Ward identities for the

axions, 6.3.7. We then go on to derive the field theory thermodynamics in section 6.4 and

discuss the results obtained in [2] for dynamical stability of hairy solutions in section 6.5.

In chapters 7 and 8 we apply the general results of the current chapter to certain analytic

solutions of the theory. In particular we will revisit the exact axionic black holes found in

[87], which do not have a running profile for the dialton, as well as those obtained in [88]

and have a running dialton in addition to the non trivial axion background. A running

dialton is also a feature present in the electrically charged black brane solutions found

analytically in [89], which we also discuss. Finally, in chapter 8, we obtain a new family of

exact magnetically charged axionic black holes, which may be viewed as the magnetic

version of those presented in [89]. Using the results we obtain in this chapter, we derive

the thermodynamic properties of the dual theories and study their phase structure and

dynamical stability.

6.2 The Action

The theories we are interested in are d+ 1 dimensional Einstein–Maxwell theories with

d−1 massless scalar fields ψI and a single massive scalar field ϕ, described by the action

Sbulk =

∫
M

dd+1x
√
−G

(
R− 1

2
(∂ϕ)2 − V (ϕ)− 1

2
W (ϕ)

d−1∑
I=1

(∂ψI)
2 − 1

4
Z(ϕ)F 2

)
,(6.2.1)

where we are using units in which 16πGN = 1. The d − 1 massless scalar fields ψI are

the axions, the field ϕ is the dialton, F is the field strength associated to the Maxwell

field A, F = dA and Gµν is the spacetime metric used to raise and lower Greek indices

µ, ν, . . .. The capital indices I, J, . . . denote the flavour of the axions and they run from

1 to d− 1. The functions V (ϕ), W (ϕ) and Z(ϕ) define the dialton potential, the coupling

of the dialton to the scalar fields ψI and the coupling of the dialton to the Maxwell field,

respectively. The dialton potential is chosen such that it generates an effective cosmo-

logical constant Λ when the dialton vanishes, V (0) = 2Λ. Expressed in terms of the

radius of AdS ℓ, the cosmological constant is defined by

Λ = −d(d− 1)

2ℓ2
(6.2.2)

The coupling of the dialton to the axions has been included for generality but for the

theories we will study W (ϕ) = 1. Finally, the coupling between the dialton field and the
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Maxwell field is normalised such that, for vanishing dialton, Z(0) = 1.

Before proceeding with the study of the equations of motion it is instructive to examine

more closely the properties of the (d− 1) axions and of the dialton.

6.2.1 The (d− 1) Axions

The (d− 1) scalar fields ψI are massless and only enter the action through their deriva-

tives. This implies that they enjoy a global shift symmetry,

ψI 7→ ψI + cI , (6.2.3)

where cI is a constant translation vector, as well as a global SO(d − 1) flavour rotation

symmetry,

ψI 7→ ΛJI ψJ , (6.2.4)

where ΛJI is an SO(d− 1) constant rotation. These scalars are in fact 0–form fields with

field strength F I[1] = dψI , which, as can be seen from (6.2.1) with W (ϕ) = 1, only enter

the action through their field strength. Consequently, it is possible to construct homo-

geneous solutions whose stress–energy tensor does not depend on the boundary coor-

dinates. These solutions correspond to turning on sources for ψI which are linear in the

boundary coordinates. Furthermore, by having d − 1 axions, i.e. the same number as

the number of the boundary spatial directions, allows for the possibility to arrange their

sources is such a way so as to preserve the SO(d − 1) rotational symmetry. This means

that their contribution to the stress–energy tensor does not break isotropy. The axion

fields associated with such homogeneous and isotropic bulk solutions have the form

ψI = pxI (6.2.5)

where p is a constant.

Solutions of the form of (6.2.5) have a number of important features. Firstly, they act

as vacuum energy for the horizon giving rise to topological AdS black holes with a flat

horizon but with a lapse function that resembles the one usually associated with hyper-

bolic AdS black holes [88]. This means that they enjoy both a flat boundary as well as the

additional length scale associated to the hyperbolic radius.

Secondly, they break translation invariance in the transverse xI directions, providing a

mechanism for momentum dissipation in the dual field theory. This can be seen from

the Ward identity associated with boundary diffeomorphisms, namely

Dj
(0) ⟨Tij⟩+ ⟨Oϕ⟩ ∂iφ(0) +

d−1∑
I=1

⟨OψI
⟩ ∂iψ(0)

I +
⟨
J j
⟩
F

(0)
ij = 0 (6.2.6)

where i, j label boundary coordinates xi = (t, xa), ⟨Oϕ⟩ and ⟨Oψ⟩ are the vacuum expec-

tation values (vevs) of the operators dual to ϕ and ψI ,
⟨
J i
⟩

is the U(1) conserved current
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dual to the bulk gauge field and Jf , ψ(0)
I and F

(0)
ij are the sources for Oϕ, OψI

and Ji

respectively. A version of this identity is derived in section 6.3.6. Note that this expres-

sion assumes Dirichlet boundary conditions for the dialton although in our subsequent

analysis this will not be the case. This does not affect the current analysis. This Ward

identity demonstrates that turning on spatially dependent sources for the axions gives

rise to the non–conservation of
⟨
P i
⟩
=
⟨
T 0i
⟩

in the presence of non–zero axion vevs.

This mechanism for momentum dissipation was first introduced in [32].

Finally, solutions of the form (6.2.5) have non–zero flux, i.e. FI = p ̸= 0, and they cor-

respond to turning on topological “magnetic” axion charge densities in the background

dual field theory. The effect of these charges with respect to the thermodynamics of

the dual field theory are completely analogous to that of conventional magnetic back-

grounds. In particular, these charges contribute to the free energy of the theory and

enter the first law, just as a magnetic field. We derive these expressions, including the

axionic “magnetisation” conjugate to the axionic charges in section 6.4 were we discuss

the thermodynamic properties of the theory.

6.2.2 The Dialton Field

In this section we focus on some of the features of the dialton field. Our choice of po-

tential V (ϕ) allows us to impose mixed boundary conditions for the dialton where we

keep fixed a particular combination of the two modes of the dialton. The combination

we will choose to keep fixed is motivated by string theory and has the interpretation of a

triple trace deformation of the dual field theory. This in turn has important implications

for the phase diagram of the theories.

To understand the properties of the dialton we first need to study more closely its po-

tential. For our theories it possesses a negative extremum at ϕ = 0. More precisely, near

ϕ = 0 our potentials have the form

V (ϕ) = −d(d− 1)

ℓ2
+

1

2

(
− d2

4ℓ2
+

1

4ℓ2

)
ϕ2 + O(ϕ4). (6.2.7)

Note that V (ϕ) is manifestly an even function and therefore are no odd powers of ϕ (to

all orders). The first term in this expansion corresponds to an effective cosmological

constant whereas the second generates a mass for the dialton,

m2
ϕ =

1

2
V

′′
(0) = − d2

4ℓ2
+

1

4ℓ2
. (6.2.8)

This mass lies in the window

− d2

4
≤ m2

ϕℓ
2 ≤ − d2

4
+

1

4
, (6.2.9)

which, as we saw in section 1.2.4 implies that in addition to Dirichlet boundary condition

the scalar can admit Neumann and mixed boundary conditions as well. In particular,
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recall that near the asymptotic boundary, located at z = 0, the scalar field admits an

asymptotic expansion of the form

ϕ(x, z) → zd−∆
(
φ(0)(x) +O(z2)

)
+ z∆

(
φ(2∆−d)(x) +O(z2)

)
(6.2.10)

where for the mass range (6.2.8) ∆ can be either root of ∆(∆ − d) = m2ℓ2, the equa-

tion that defines the relation between the conformal dimension of the dual operator

and the mass of the scalar field. If one chooses to fix φ(0) on the bound at the bound-

ary1, i.e. impose Dirichlet boundary conditions, then φ(0) is interpreted in the field the-

ory as the source that couples to the dual operator via a term in the QFT action of the

form
∫

ddxJDO. In this case φ(2∆−d) becomes the “fluctuating field” and it is found to

be proportional to the vev of O in the presence of the source. Moreover, the conformal

dimension of O is given by the larger root of the mass–conformal dimension equation,

namely ∆+ = d/2 +
√
d2/4 +m2ℓ2.

Alternative, for fields satisfying (6.2.9), one may choose to keepφ(2∆−d) fixed at the bound-

ary and allowφ(0) to fluctuate. In this case the source that couples to the dual operator is

JN = −ℓ2(2∆− d)ϕ(2∆−d) and φ(0) is its vev. This choice corresponds to imposing Neu-

mann boundary conditions and it requires that one adds an additional boundary term

to the bulk action to ensure that the source is indeed kept fixed under variations,

Sbulk → Sbulk +

∫
ddxJNφ(0). (6.2.11)

With this choice of boundary conditions the conformal dimension of the dual operator

is given by ∆− = d/2−
√
d2/4 +m2ℓ2. Note that the constraint on the mass of the bulk

field implies that ∆− satisfies the unitarity bound for a scalar operator, ∆− ≥ d/2− 1.

The final choice, which is the one of interest to us, is to impose mixed boundary condi-

tions on the bulk field in which case the source kept fixed at the boundary is a function

of both φ(0) and φ(2∆−d) of the form

JF = −ℓ2(2∆+ − d)φ(2∆+−d) −F ′(φ(0)) (6.2.12)

F(φ(0)) is a polynomial of degree n with 2 ≤ n ≤ d/∆− satisfying F(0) = 0. From

the perspective of the field theory this choice introduces a multi–trace deformation,∫
ddxF(O). For the deformation to be relevant or marginal, the conformal dimension

of O must be chosen to be ∆− and its vev φ(0), i.e. we deform the Neumann theory [90,

91, 92, 82]. Moreover, to ensure that the source kept fixed under variations with respect

to the scalar field is indeed JF , we must once again add boundary terms to the bulk

1Strictly speaking, since the boundary is actually a conformal boundary, one can only keep φ(0) fixed up
to conformal transformation. That is to say we can demand that δφ(0) = −(d−∆+)δσ(x)φ(0), where δσ(x)
is an arbitrary infinitesimal scalar function on the boundary. The variation of the action will still vanish
under these generalised Dirichlet boundary conditions by virtue of the trace Ward identity, as long as there
is no conformal anomaly.
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action. These are now given by

Sbulk → Sbulk +

∫
ddx

(
JFφ(0) + F(φ(0))

)
(6.2.13)

The theories we will be studying have a triple trace deformation. The function f(φ(0))

in this case is

f
(
φ(0)

)
=

1

3
ϑφ3

(0) (6.2.14)

where ϑ is a coupling that depends on the particular solution we are considering. This

is discussed in section 6.3.3.

In [81] the authors studied the effect of multitrace deformations in the context of holo-

graphic superconductors and found that they destabilise the vacuum, giving rise to a

new mechanism for constructing holographic superconductors. This new source of in-

stability is present even if the scalar field is neutral under the U(1) gauge field, as is the

case with our theories. However, in this case the ordered phase is no longer super-

conducting since it does not break the U(1) symmetry but instead a Z2 symmetry. In

chapter 8 we study a family of solutions in which ϑ is a parameter that we can tune.

In this case we also find that varying ϑ allows us to tune the theory between different

phases.

6.3 Asymptotic Analysis of the Bulk

In this section we compute the bulk renormalised on–shell action by performing a full

asymptotic analysis of the bulk fields. The analysis is done in full generality, i.e. without

specifying the form of the dialton potential and of the coupling between the dialton and

the gauge field. This allows us to apply our results immediately to the specific theories

we will study without needing to do any additional calculations. The theories we will

study are four dimensional and therefore, to simplify the analysis, we set d = 3 from

now on.

The first step in our analysis is to derive the equations of motion from the action (6.2.1)

and solve them near the asymptotic boundary, subject to appropriate boundary condi-

tions. We begin by expanding the bulk fields in the holographic direction. In accordance

with the AdS/CFT dictionary, we write the bulk metric in the Fefferman–Graham gauge

which allows us to directly relate the coefficients in the boundary expansion of the fields

to field theory observables. The equations of motion are solved order by order in the

holographic direction and the result is then substituted back into the bulk action, aug-

mented by boundary terms necessary to enforce our choice of boundary conditions.

The resulting on–shell action is divergent and we need to perform holographic renor-

malisation. Once this is done, the renormalised on–shell action can varied with respect

to the sources to obtain the expectations values of the dual operators.
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6.3.1 The Equations of Motion

Variation of the action (6.2.1) leads to the following equations of motion

∇µ (Z(ϕ)Fµν) = 0

□ψI = 0 I = 1, 2

□ϕ− V ′(ϕ) =
1

4
Z ′(ϕ)F 2

Rµν =
1

2
GµνR+

1

2
Z(ϕ)

(
Fµ

λFνλ −
1

4
F 2Gµν

)
+

1

2

2∑
i=1

(
∂µψI∂νψI −

1

2
(∂ψI)

2

)
+

1

2

(
∂µϕ∂νϕ− 1

2
Gµν (∂ϕ)

2 −GµνV (ϕ)

)
(6.3.1)

Tracing the Einstein equation we obtain an expression for the Ricci scalar in terms of

the other fields,

R[G] =
1

2

2∑
i=1

(∂ψI)
2 +

1

2
(∂ϕ)2 + 2V (ϕ) (6.3.2)

which we use to simplify the Einstein equation,

Rµν−
1

2
Z(ϕ)

(
Fµ

λFνλ −
1

4
F 2Gµν

)
−1

2

2∑
i=1

∂µψI∂νψI−
1

2
(∂µϕ∂νϕ+ V (ϕ)Gµν) = 0 (6.3.3)

We now proceed to solve these equations asymptotically, in the vicinity of the conformal

boundary.

6.3.2 Asymptotic Solutions

Asymptotic Expansions of the Fields

In this section we obtain an asymptotic solution to the equations of motion. We begin

by considering the following expansions for our fields,

ds2=Gµνdxµdxν =
ℓ2

z2
dz2 + ℓ2

z2
gij(x, z)dxidxj

gij(x, z)=g(0)ij(x) + zg(1)ij(x) + z2g(2)ij(x) + . . . (6.3.4)

where the boundary is located at z = 0 and gij is a 3 dimensional metric thus i, j = 1, 2, 3.

This is the Fefferman–Graham gauge for the metric. From the point of view of gij , z is just

a parameter. The coefficients in the expansion, g(0)ij , g(1)ij , . . . , are to be determined, or

at least constrained, using the equations of motion.
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For the other fields the asymptotic expansion has the form

Ai(x, z) = A
(0)
i (x) + zA

(1)
i (x) + z2A

(2)
i (x) + . . . (6.3.5)

ψI(x, z) = ψ
(0)
I (x) + zψ

(1)
I (x) + z2ψ

(2)
I (x) + . . . (6.3.6)

ϕ(x, z) = z∆−
(
φ(0)(x) + zφ(1)(x) + z2φ(2)(x) + . . .

)
, (6.3.7)

We are interested in theories for which the potential satisfies

1

2

d2V (ϕ)

dϕ2
∣∣∣
ϕ=0

= − 2

ℓ2
= m2

ϕ. (6.3.8)

Consequently, ∆− = 1 and

ϕ(x, z) = z
(
φ(0)(x) + zφ(1)(x) + z2φ(2)(x) + . . .

)
. (6.3.9)

Next we have to substitute these expressions in the equations on motion, (6.3.1) and

(6.3.3), and solve order by order in z. To facilitate this process we rewrite the equations

of motion in terms of gij and Ai. Some useful results associated with the metric and

Christoffel symbols that have been used in the analysis of the equations of motion are

given in appendix 6.A. In what follows we useD to refer to the covariant derivative with

respect to the 3–dimensional metric g and ′ ≡ d/dz.

Axion

In terms of g, the axion equations of motion are

ψ′′
I +g

ij∂i∂jψI +

(
1

2
Tr
(
g−1g′

)
− 2

z

)
ψ′
I +

(
∂ig

ij +
1

2
gij Tr

(
g−1∂ig

))
∂jψI = 0. (6.3.10)

Solving these order by order in z we obtain the following results,

ψ
(1)
I (x) = 0 (6.3.11)

ψ
(2)
I (x) =

1

2
(g)□(0)ψ

(0)
I (x) =

1

2
√

−g(0)
∂i

(√
−g(0)g

ij
(0)∂jψ

(0)
I (x)

)
(6.3.12)

where (g)□(0) the D’Alembertian with respect to g(0)ij and g(0) the determinant of g(0)ij .

As we shall see, the next order term in the expansion, ψ(3)
I , is the vev of the axion. This

term is unconstrained by the asymptotic equations of motion and thus our analysis of

the axion terminates here.
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Dialton

In terms of g, the dialton equation of motion are

ϕ′′ + gij∂i∂jϕ+

(
1

2
Tr
(
g−1g′

)
− 2

z

)
ϕ′ +

(
∂ig

ij +
1

2
gij Tr

(
g−1∂ig

))
∂jϕ =

=
ℓ2

z2
dV (ϕ)

dϕ +
z2

4ℓ2
dZ(ϕ)

dϕ

(
2Ã′2 + F̃ 2

)
(6.3.13)

where

Ã′2 = gijA′
iA

′
j = gij(0)A

(1)
i A

(1)
j + . . . (6.3.14)

F̃ 2 = gijgklFikFjl = 4gij(0)g
kl
(0)∂[iA

(0)
k] ∂[jA

(0)
l] + . . . (6.3.15)

We also need the expansions for dZ(ϕ)/dϕ and dV (ϕ)/dϕ. First we define

Zn = lim
z→0

d(n)Z(ϕ)

dϕ(n)
(6.3.16)

and

Vn = lim
z→0

d(n)V (ϕ)

dϕ(n)
. (6.3.17)

Using these we obtain the desired expansions,

dZ(ϕ)
dϕ = = Z1 + zφ(0)Z2 + z2

(
Z3φ

2
(0) + 2Z2φ(1)

)
+ . . . (6.3.18)

dV (ϕ)

dϕ = V1 + zφ(0)V2 +
z2

2

(
V3φ

2
(0) + 2V2φ(1)

)
+
z3

6

(
V4φ

3
(0) + 6V3φ(0)φ(1) + 6V2φ(2)

)
+ . . . (6.3.19)

Turning back to the dialton equation of motion and making use of these expansions we

find the following results,

V1 = 0 (6.3.20)

V2 = − 2

l2
(6.3.21)

V3φ(0) =
1

ℓ2
Tr
(
g−1
(0)g(1)

)
(6.3.22)

φ(2) = −1

2
(g)□(0)φ(0) −

1

2

(
1

2
Tr
(
g−1
(1) g(1)

)
+ Tr

(
g−1
(0)g(2)

)
− ℓ2

6
V4φ

2
(0)

)
φ(0).(6.3.23)

Note that the asymptotic analysis did not constraint φ(1). This reflects the fact that φ(1)

is the vev of the dual operator when the theory is subject to Dirichlet boundary condi-

tions in which case φ(0) is the corresponding source, or, if Neumann or mixed boundary

conditions are imposed, it is related to the source for the dual operator and φ(0) is the

vev.
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Scalar Einstein Equation

The rr component of the Einstein equations or scalar Einstein equation as we refer to it,

given in terms of g is

−1

2
Tr
(
g−1g′′

)
+

1

4
Tr
(
g−1g′g−1g′

)
+

1

2z
Tr
(
g−1g′

)
=

z2

2ℓ2
Z(ϕ)

2

(
gijA′

iA
′
j −

1

2
F̃ 2

)
+

+
1

2

2∑
I=1

ψ′2
I +

1

2

(
ϕ′2 +

ℓ2

z2
V (ϕ)− 2Λ

)
(6.3.24)

where F̃ 2 is given by equation (6.3.15). The expansions of Z(ϕ) and V (ϕ) are given by

Z(ϕ) = Z0 + zφ(0)Z1 + . . . (6.3.25)

V (ϕ) = V0 + zφ(0)V1 +
z2

2

(
V2φ

2
(0) + 2V1φ(1)

)
+
z3

6

(
V3φ

3
(0) + 6V2φ(0)φ(1) + 6V1φ(2)

)
+ . . .

= V0 −
z2

ℓ2
φ2
(0) +

z3

6

(
V3φ

3
(0) −

12

ℓ2
φ(0)φ(1)

)
+ . . . (6.3.26)

where we have used the results obtained previously for V1 and V2. By solving the scalar

Einstein equation order by order in z we obtain the following results.

V0 = 2Λ (6.3.27)

Tr
(
g−1
(0)g(1)

)
= 0 (6.3.28)

Tr
(
g−1
(0)g(1)g

−1
(0)g(1)

)
= 0 (6.3.29)

Tr
(
g−1
(0)g(1)g

−1
(0)g(2)

)
− 3Tr

(
g−1
(0)g(3)

)
= 2ϕ(0)φ(1) +

1

6
Tr
(
g−1
(0)g(1)

)
φ2
(0) (6.3.30)

where we have used that ψ(1)
I = 0 to get the last two relations.

At this point one may be tempted to combine relations (6.3.28) and (6.3.22) and erro-

neously conclude that V3 is zero. The reason this would be wrong is that the asymptotic

expansions, and in particular the expansion for ϕ (6.3.7), is not the most general allowed

and one should in general include a logarithmic term z2 log z φ̃(1), where we have set

∆− = 1. Then, one find that V3 is not zero but related to φ̃(1) (see e.g. equations (2.18) and

(2.19) in [93]). A logarithmic term in the ϕ expansion or, equivalently, a non–vanishing

V3, signal the presence of a conformal anomaly. However, for both of the theories we

study in the next two chapters, the potential is such that V3 = 0. As a consequence,

in these cases, the coefficient of the logarithmic term vanishes and it is in anticipation

of this result that we have omitted it, and the additional complications arising from it.

Thus, although this analysis is valid and sufficient for the theories we are interested in,

it should not be applied to V3 since the result we find in this case, namely V3 = 0, has,

essentially, been put in as an assumption when choosing the ϕ expansion.
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Tensorial Einstein Equations

In terms of g the ij components of the Einstein equations or, as we will refer to them,

the tensorial Einstein equations, read

(g)Rij −
1

2
gij +

1

2z
gij Tr

(
g−1g′

)
+

1

2

(
g′g−1g′

)
ij
+

1

z
g′ij =

1

2

2∑
I=1

∂iψI∂jψI +
1

2
∂iϕ∂jϕ+

+
ℓ2

2z2
(V − 2Λ) +

z2

ℓ2
Z(ϕ)

2

(
A′
iA

′
j −

1

4
gij

(
2
(
A′)2 + F̃ 2

)
+ gklFikFjl

)
(6.3.31)

where the Ricci tensor admits the asymptotic expansion

(g)Rij =
(g)R

(0)
ij + z (g)R

(1)
ij + . . . (6.3.32)

Using the asymptotic expansions and solving order by order in z we find the following

results,

g(1)ij = 0 (6.3.33)

(g)R
(0)
ij + g(2)ij + g(0)ij Tr

(
g−1
(0)g(2)

)
=

1

2

(
2∑
I=1

∂iψ
(0)
I ∂jψ

(0)
I − φ2

(0)g(0)ij

)
(6.3.34)

Tr
(
g−1
(0)g(3)

)
= −2

3
φ(0)φ(1). (6.3.35)

Furthermore, by tracing equation (6.3.34) we obtain

4Tr
(
g−1
(0)g(2)

)
= − (g)R(0) +

1

2
gij(0)

2∑
I=1

∂iψ
(0)
I ∂jψ

(0)
I − 3φ2

(0). (6.3.36)

Finally, substituting this expression back into equation (6.3.34) we obtain an expression

for g(2)ij ,

g(2)ij = −
(

(g)R
(0)
ij − 1

4
g(0)ij

(g)R(0)

)
+

1

2

2∑
I=1

(
∂iψ

(0)
I ∂jψ

(0)
I − 1

4
g(0)ijg

kl
(0)∂kψ

(0)
I ∂lψ

(0)
I

)
−1

8
g(0)ijφ

2
(0) (6.3.37)

Maxwell Equations

The equations of motion for the gauge field expressed in terms of g are

Di
(
Z(ϕ)A′

i

)
= 0, (6.3.38)

for the r component, and

(
Z(ϕ)A′

i

)′
+

1

2
Tr
(
g−1g′

)
Z(ϕ)A′

i −
(
g−1g′

)j
i
Z(ϕ)A′

j +Dj (Z(ϕ)Fji) = 0 (6.3.39)
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for the remaining components. (g)Di is the covariant derivative associated with gij .

Focusing first on (6.3.38) we find the following result,

Di
(0)A

(1)
i = 0 (6.3.40)

Di
(0)A

(2)
i = −1

2
gij(0)

Z1

Z0
∂iφ(0)A

(1)
j . (6.3.41)

Note that the vev of the dual field theory current that couples to the gauge field is pro-

portional to A
(1)
i and hence, the coefficients A(n)

i for n ≥ 2 do not contain additional

information and it should be possible to obtain expressions for them in terms of the

source coefficient A(0)
i , and the vev coefficient A(1)

i . We have included the expression

for A(2)
i as a confirmation.

Repeating for equation (6.3.39) we find the following result,

Dj
(0)F

(0)
ji = −

(
Z1

Z0
φ(0)A

(1)
i + 2A

(2)
i

)
. (6.3.42)

Vector Einstein Equations

The ri components of the Einstein equations, or vector Einstein equations, are con-

straints which give the Ward identities associated with diffeomorphism. In terms of g

these equations are given by

1

2
gjk
(
Djg

′
ik − Dig

′
jk

)
=

z2

2ℓ2
Z(ϕ)gjkA′

jFik +
1

2

2∑
I=1

ψ′
I∂iψI +

1

2
ϕ′∂iϕ. (6.3.43)

Solving again order by order in z we obtain the following relation,

Dj
(0)g(3)ij =

2

3ℓ2
Z0g

jk
(0)A

(1)
j ∂[iA

(0)
k] +

2∑
I=1

ψ
(3)
I ∂iψ

(0)
I − 1

3
φ(0)∂iφ(1) (6.3.44)

Once we derive the one point functions for the dual operators, we will return to this

expression and re–express it in terms of field theory quantities.

This concludes the asymptotic construction of solutions to the equations of motion.

Below we provide a summary of the results, keeping mostly terms up to the vev.

Metric:

g(1)ij = 0,

g(2)ij = −
(

(g)R
(0)
ij − 1

4
g(0)ij

(g)R(0)

)
− 1

8
g(0)ijφ

2
(0)

+
1

2

2∑
I=1

(
∂iψ

(0)
I ∂jψ

(0)
I − 1

4
g(0)ijg

kl
(0)∂kψ

(0)
I ∂lψ

(0)
I

)
(6.3.45)
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Tr
(
g−1
(0)g(2)

)
= −1

4
(g)R(0) +

1

8

2∑
I=1

(
∂ψ

(0)
I

)2
− 3

8
φ2
(0),

Tr
(
g−1
(0)g(3)

)
= −2

3
φ(0)φ(1) (6.3.46)

Dialton potential:

V0 = 2Λ = − 6

ℓ2
, V1 = 0, V2 = − 2

ℓ2
. (6.3.47)

Dialton:

φ(2) = −1

2
(g)□(0)φ(0) −

1

2
Tr
(
g−1
(0)g(2)

)
+
ℓ2

12
V4φ

3
(0) (6.3.48)

Note that φ(2) appears at higher order than the source and vev of the dual operator and,

therefore, it does not contain any useful information for our analysis. We have never-

theless included it as a confirmation that it can be determined in terms of
(
φ(0), φ(1)

)
.

Axions: The coefficients associated with the source and vev of the operator dual to

the axions are ψ(0)
I and ψ

(3)
I , respectively, and hence they are not determined by the

asymptotic analysis. Here, we present the results for ψ(1)
I and ψ(2)

I but in fact only ψ(1)
I

would be needed in our subsequent calculation of the renormalised on–shell action.

ψ
(1)
I (x) = 0, ψ

(2)
I (x) =

1

2
(g)□(0)ψ

(0)
I (x) (6.3.49)

Divergence identities - Gauge field: The coefficients associated with the source and

the vev of the current dual to the gauge field are A(0)
i and A

(1)
i , respectively. Hence,

the only useful relation we obtain for the gauge field from the asymptotic analysis is

the divergence identity for A(1)
j which gives the Ward identity associated with the U(1)

symmetry.

Dj
(0)A

(1)
j = 0. (6.3.50)

Divergence identities - Metric: For the metric we find the following two divergence

identities

Di
(0)

(
(g)R(0)ij −

1

2
g(0)ij

(g)R(0)

)
= −φ(0)∂iφ(0)

Dj
(0)g(3)ij =

2

3ℓ2
Z0g

jk
(0)A

(1)
j ∂[iA

(0)
k] +

2∑
I=1

ψ
(3)
I ∂iψ

(0)
i − 1

3
φ(0)∂iφ(1). (6.3.51)

The first one is trivially satisfied and it can be used to confirm that our results are cor-

rect. The second one gives rise to the Ward identity associated with diffeomorphism

invariance.
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6.3.3 Boundary Terms

In the previous section we derived the asymptotic solutions to the bulk equations of

motions. In this section we discuss the boundary terms needed to impose our choice

of boundary conditions and to make the variational problem well defined. In particular,

if one proceeds to compute the renormalised on–shell action and attempts to vary the

result with respect to the restrictions of the bulk fields on the conformal boundary, the

process will not produce the correct stress tensor or 1–point function for the dialton.

This is because varying the on–shell action with respect to the metric on the confor-

mal boundary gives rise to a surface term proportional to ∂zδGµν that does not vanish

when imposing Dirichlet boundary conditions at fixed z. The boundary term neces-

sary to remedy this issue is the well–known Gibbons–Hawking–York term discussed in

section 1.3.2.

In the case of the dialton, the issue arises because we are imposing mixed boundary

conditions as opposed to the standard Dirichlet conditions. As we briefly mentioned

above, in order to keep an arbitrary function of JF of φ(0) and φ(2∆−d) = φ(1) we need

to augment the bulk action by boundary terms that ensure that, upon varying the on–

shell action with respect to the boundary value of the scalar, the resulting integrant is

proportional δJF ⟨Oϕ⟩.

Before we proceed to compute the on–shell action we discuss these two sets of bound-

ary terms in more detail and derive the terms that we must add to the bulk action in

order for obtain the correct one–point functions for the dual operators.

Extrinsic curvature and Gibbons-Hawking term

As we have already mentioned, the term needed to render the variation of the bulk

action with respect to the bulk metric Gµν , subject to Dirichlet boundary conditions

δGµν = 0 well–posed is the Gibbons-Hawking term,

SGH = −2

∫
z=ϵ

ddx√γK (6.3.52)

where we have re–instated d for this discussion. z = ϵ defines the timelike cutoff surface

Bϵ used to regularise the action, γij is the induced metric on Bϵ,

γij = Gij
∣∣
z=ϵ

=
ℓ2

ϵ2
gij , (6.3.53)

and K is the trace of the extrinsic curvature tensor, Kµν , of the embedding of Bϵ in the

spacetime. In particular, let n be the outward–pointing, unit normal to Bϵ which, for the

metric (6.3.4), reads nµ = − z
ℓ (∂z)

µ. Using this we define the first fundamental form of

the embedding as

hµν = Gµν − nµnν . (6.3.54)
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Then, the extrinsic curvature tensor is

Kµν = −hµρhνσ∇(ρnσ) (6.3.55)

and the mean curvature, K is

K = GµνKµν . (6.3.56)

The only non–vanishing components of hµν and Kµν are

hij = γij =
ℓ2

ϵ2
gij and Kij =

ϵ

2ℓ
∂ϵγij =

ℓ

2ϵ
g′ij −

ℓ

ϵ2
gij . (6.3.57)

Using these expressions we finally obtain the expression for the Gibbons–Hawking term,

both in terms of γij and gij . The latter will be useful when we calculate the counter–

terms needed to remove divergences of the on–shell action.

SGH = −2

∫
z=ϵ

ddx
√
−γ
( ϵ
2ℓ
γij∂ϵγij

)
= −2

∫
z=ϵ

ddx ℓ
d

ϵd
√
−g
(
ϵ

2ℓ
Tr
(
g−1g′

)
− d

ℓ

)
(6.3.58)

Let us see now why we need the Gibbons-Hawking term. Varying the bulk action with

respect to the metric, ignoring the Gibbons–Hawking term for now, we find upon inte-

grating by parts

δGSbulk =

∫
z>ϵ

dd+1x
√
−G [bulk e.o.m. ]µν δG

µν

+

∫
z=ϵ

ddx
√
−γ nµ (Gρσ∇ρδGµσ −Gρσ∇µδGρσ) . (6.3.59)

Substituting Gρσ = hρσ + nρnσ , the boundary term becomes∫
z=ϵ

ddx
√
−γ nµ (hρσ∇ρδGµσ − hρσ∇µδGρσ) . (6.3.60)

If we impose Dirichlet boundary conditions, δGµν |Bϵ = 0, the first term in the integrant

vanishes, since it is the derivative of δGµν , along some boundary direction. On the other

hand, the second term does not vanish, as it is the change of δGµν moving away from

the boundary. The variational principle with Dirichlet boundary conditions δGµν = 0

on Bϵ is thus not well-posed.

Turning our attention now to the Gibbons–Hawking term, varying it with respect to the

metric we find

δGSGH =

∫
z=ϵ

ddx
√
−γ

[
(Kγij − 2Kij) δG

ij − 2nµhρσ∇ρδGµσ + nµhρσ∇µδGρσ
]
. (6.3.61)
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Combining all contributions

δG(Sbulk + SGH) =

∫
z=ϵ

ddx
√
−γ
[
(Kγij − 2Kij) δG

ij − nµhρσ∇ρδGµσ
]
. (6.3.62)

To deal with the last term, we write it as

−nµhρσ∇ρδGµσ = −hρσ∇ρ (n
µδGµσ)− hρσ∇ρn

µδµσ (6.3.63)

= Di

(
γijnµδGµj

)
− hρσGµν (∇ρnν) δGµσ (6.3.64)

withDi the covariant derivative associated to the induced metric γij . The total derivative

yields zero when integrated, and the remaining term becomes KµνδG
µν . Finally, the

metric variation of S0 is

δG(Sbulk + SGH) =

∫
z>ϵ

dd+1x
√
−GEµνδGµν −

∫
z=ϵ

ddx
√
−γ (Kij −Kγij) δγ

ij , (6.3.65)

where we took δγij = δGij . Hence, the addition of the Gibbons-Hawking term renders

the action functional differentiable when imposing Dirichlet boundary conditions on

Bϵ, leading to a well-defined variational problem. The resulting equations of motion are

Eµν = 0.

Mixed Boundary Conditions for the Dialton

As we have already mentioned, we are interested in theories where the dual field theory

contains a triple trace deformation of the operator dual to the dialton. In the bulk, a

deformation of this form is related to mixed boundary conditions for the dialton. More

precisely, near the asymptotic boundary at z = 0 we saw that the dialton admits the

series expansion

ϕ(x, z) = z∆−φ(0)(x) + z∆+φ(1)(x) + . . . (6.3.66)

where ∆− = 1 and ∆+ = 2 and the ellipses correspond to higher order terms in z. Im-

posing Dirichlet boundary conditions corresponds to fixing φ(0) at the boundary which

is then interpreted as the source that couples to the dual operator. The expectation value

of the dual operator is then proportional to φ(1) and its conformal dimension is ∆+ = 2.

Alternatively, when the mass of the dialton lies in the range −d/4 ≤ m2ℓ2 ≤ −d2/4 + 1
4

one can consider a setup where φ(0) is the expectation value of the operator whose di-

mension is now ∆− and φ(1), or more precisely a term proportional to φ(1), is the source

that couples to it. This of course corresponds to imposing Neumann boundary condi-

tions on the bulk field, as we have already discussed. On the field theory side, the ∆−

theory is obtained from the ∆+ theory via a Legendre transform of its generating func-

tional that exchanges the roles of the source and expectation value of the operator.

Finally, the last option which is the one relevant to our analysis, is to impose mixed

boundary conditions in the bulk, thus introducing a multitrace deformation in the dual

theory of the form
∫

ddxF (O) where F is a polynomial of degree n, 2 ≤ n ≤ d/∆− = 3.
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The source we keep fix in this case is given by

JF = −ℓ2φ(1) −F ′ (φ(0)

)
. (6.3.67)

In order to ensure that the variation with respect to the dialton of the regularised on–

shell bulk action (plus boundary terms) is proportional to δJF , i.e.

δϕ
(
Sreg + Sct + Sboundary

)
=

∫
z=ϵ

ddx
√

−g(0) ⟨Oϕ⟩ δJF , (6.3.68)

we have to augment the action by adding a boundary term, Sf , given by

Sf =

∫
z=ϵ

ddx
√

−g(0)
(
JFφ(0) + F

(
φ(0)

))
. (6.3.69)

Sreg is the regulated on–shell action and Sct is the counter–term action necessary to can-

cel the divergences of the on–shell action. For the derivation and complete expressions

of both these terms we refer the reader to section 6.3.4. For now it is sufficient to note

that

δϕ
(
Sreg + Sct

)
= ℓ2φ(1)δφ(0) +O(ϵ). (6.3.70)

Using this result and combining it with the expression for Sf we confirm (6.3.68) and

find the expectation value of Oϕ,

δϕ
(
Sreg + Sct + Sf

)
=

∫
z=ϵ

ddx
√

−g(0)
(
ℓ2φ(1)δφ(0) + (δJf )φ(0)

+ Jfδφ(0) + F ′ (φ(0)

)
δφ(0) +O(ϵ)

)
=

∫
z=ϵ

ddx
√

−g(0)
(
φ(0)δJf +O(ϵ)

)
.

Hence, we have confirmed that the addition of Sf to the bulk action ensures we obtain

the correct variational problem, subject to the desired boundary condition δJf = 0.

Furthermore, the 1–point function of the dual operator is

⟨Oϕ⟩ = φ(0). (6.3.71)

This is the 1–point function one obtains when imposing Neumann boundary condition

and, hence, the mixed boundary conditions lead to a deformation of the Neumann the-

ory. The dimension of the dual operator in this case is ∆−.

Next we turn our attention to the function F
(
φ(0)

)
. We are interested in triple trace

deformations of the boundary theory and therefore we choose F to be of the form

F
(
φ(0)

)
=

1

3
ϑφ3

(0) (6.3.72)

where the coupling constant ϑ can be a free parameter or it could be constrained by the
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theory we are considering. The boundary term we must add to the bulk action is given

by

Sf =

∫
z=ϵ

d3x
√

−g(0)
(
−ℓ2φ(0)φ(1) −

2

3
ϑφ3

(0)

)
. (6.3.73)

Finally, note that since d = 3 and ∆− = 1 we have d/∆− = 3 and thus this is a marginal

deformation.

6.3.4 Renormalised On–Shell Action

Holographic Renormalisation: A Brief Introduction

We have now identified two surface terms that need to be added to the bulk action to

make the theory described by (6.2.1) a well defined variational problem. Hence, the full

action is

S = Sbulk + SGH + Sf . (6.3.74)

Next we shall compute the renormalised on–shell action. Let us begin by briefly review-

ing the program of holographic renormalisation [17, 19, 22, 25].

According to the AdS/CFT correspondence, the on–shell bulk action evaluated as a func-

tion of the boundary values of fields, collectively denoted by f(0) here, is identified with

the generating functional of the field theory correlation functions,

−WQFT[f(0)] = Son–shell[f(0)]. (6.3.75)

However, both objects suffer from divergences; for the field theory these are short dis-

tance UV divergences which are identified as IR divergences in the bulk. Furthermore,

the IR in the bulk corresponds to the near boundary region. Since in quantum field the-

ory UV divergences do not depend on the IR physics, it follows that dealing with the cor-

responding bulk divergences requires only the near boundary behaviour of the fields.

Therefore, we only need the asymptotic solutions of the fields in order to renormalise

the on–shell bulk action.

The program of holographic renormalisation involves first regularising the on–shell ac-

tion by introducing a cutoff spacetime surface Bϵ near the asymptotic boundary. This

allows us to integrate over the holographic direction and find the terms which diverge

whenBϵ is send to the boundary. There will be a finite number of divergent terms and to

deal with them we introduce counterterms on Bϵ. The counterterms must be covariant

and this entails inverting the asymptotic expansions of the fields to the appropriate or-

der in ϵ. More specifically, let F(x, z) be a bulk field. On Bϵ is admits a series expansion

of the form

F(x, ϵ) = ϵmf(0)(x) + ϵm+1f(1)(x) + . . .+ ϵn
(
f(n)(x) + log(ϵ)f̃(n)(x)

)
+ . . . (6.3.76)

where the logarithmic term is only present if d is even. The on–shell action and countert-

erms are evaluated as a function of the “source” f(0) which is not covariant in the bulk.
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To make the expressions covariant we must invert this expansion to obtain f(0)(x) =

f(0) (F(x, ϵ), ϵ) and this is done order by order in ϵ as we will see later.

Once we have obtained the subtracted on-shell action, Ssub [F(x, ϵ); ϵ], the 1–point func-

tion of the dual, field theory operator is given by

⟨OF ⟩ = lim
ϵ→0

(
1

ϵd−m
1
√
γ

δSsub

δF(x, ϵ)

)
. (6.3.77)

We proceed with the renormalisation of the action (6.2.1) using the asymptotic solutions

obtained in section 6.3.2. This will allow us to compute the 1–point functions of the

operators in the dual field theory.

Regularised On–Shell Action

We start with the action (6.2.1) and use the equations of motion to obtain

Son–shell =

∫
M

d4x
√
−G

(
V (ϕ)− 1

4
Z(ϕ)F 2

)
+ SGH + Sf (6.3.78)

where

SGH = −2

∫
z=ϵ

d3x
√
−γ K (6.3.79)

and

Sf =

∫
z=ϵ

d3x
√

−g(0)
(
−ℓ2φ(0)φ(1) −

2

3
ϑφ3

(0)

)
(6.3.80)

Using the asymptotic form of the fields, (6.3.4) – (6.3.7), and the corresponding solu-

tions (6.3.45)–(6.3.49), we rewrite the fields as

ds2 = Gµνdxµdxν =
ℓ2

z2
dz2 + ℓ2

z2
gij(x, z)dxidxj (6.3.81)

where

gij(x, z) = g(0)ij(x) + z2g(2)ij + z3g(3)ij +O(z4), (6.3.82)

gij(x, z) = gij(0)(x)− z2
(
g−1
(0)g(2)g

−1
(0)

)ij
+O(z3), (6.3.83)

g(2)ij = −
(

(g)R
(0)
ij − 1

4
g(0)ij

(g)R(0)

)
+

1

2

2∑
I=1

(
∂iψ

(0)
I ∂jψ

(0)
I − 1

4
g(0)ijg

kl
(0)∂kψ

(0)
I ∂lψ

(0)
I

)
−1

8
g(0)ijφ

2
(0), (6.3.84)

and

Ai(x, z) = A
(0)
i (x) + zA

(1)
i (x) +

z2

2

(
(g)Dj

(0)F
(0)
ij − Z1

Z0
φ(0)A

(1)
i

)
+O(z3) (6.3.85)

ψI(x, z) = ψ
(0)
I (x) +

z2

2
(g)□(0)ψ

(0)
I (x) +O(z3) (6.3.86)

ϕ(x, z) = zφ(0)(x) + z2φ(1)(x) +O(z3) (6.3.87)
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g(3)ij , φ(1)(x) and A(1)
i (x) are related to the vevs of the dual operators and to determine

them we need the full bulk solutions.

In addition to these expansions we have that

V (ϕ) = − 6

ℓ2
− z2

ℓ2
φ(0) −

2z3

ℓ2
φ(0)φ(1) +O(z4) (6.3.88)

Z(ϕ) = Z0 +O(z) (6.3.89)

√
−G =

ℓ4

z4
√

−g(0)

[
1− z2

8

(
(g)R(0) −

1

2

2∑
I=1

(
∂ψ

(0)
I

)2
+

3

2
φ2
(0)

)
− z3

3
φ(0)φ(1)

]
.(6.3.90)

Focusing first on the bulk action given by the first term in (6.3.78), we are interested in

terms which, after we integrate the on–shell action with respect to z for z > ϵ, are diver-

gent in the limit ϵ→ 0. To obtain these, we only need to keep terms in the integrant that

are of order O(z−1).
√
−GZ(ϕ)F 2 is of order O(z0) and it does not lead to divergences.

Hence, we only need to worry about the contribution due to∫
z>ϵ

d4x
√
−GV (ϕ).

Using the above expressions,

Sbulk =

∫
z>ϵ

d4x
ℓ4

z4
√

−g(0)

[
1− z2

8

(
(g)R(0) −

1

2

2∑
I=1

(
∂ψ

(0)
I

)2
+

3

2
φ2
(0)

)

−z
3

3
φ(0)φ(1) +O(z4)

][
− 6

ℓ2
− z2

ℓ2
φ2
(0) − 2z3

1

ℓ2
φ(0)φ(1) +O(z4)

]

=

∫
z>ϵ

d4x
√

−g(0)
ℓ4

z4

[
− 6

ℓ2
+

3z2

4ℓ2

(
(g)R(0) −

1

2

2∑
I=1

(
∂ψ

(0)
I

)2
+

1

6
φ2
(0)

)
+O(z4)

]

=

∫
z=ϵ

d3x
√

−g(0)

[
−2ℓ2

ϵ3
+

3ℓ2

4ϵ

(
(g)R(0) −

1

2

2∑
I=1

(
∂ψ

(0)
I

)2
+

1

6
φ2
(0)

)]
+ O(ϵ).(6.3.91)

To this we must add the contribution from SGH and Sf . To compute SGH we need to

compute the trace of the extrinsic curvature of the embedding of Bϵ in the spacetime.

From equation (6.3.58) we have

K =
ϵ

2ℓ
Tr
(
g−1g′

)∣∣∣
z=ϵ

− 3

ℓ
. (6.3.92)

Using the expansions for g−1 and g, as well as the expressions for the traces Tr
(
g−1
(0)g(2)

)
and Tr

(
g−1
(0)g(3)

)
from (6.3.46),

K = −3

ℓ
− ϵ2

4ℓ

(
(g)R(0) −

1

2

2∑
I=1

(
∂ψ

(0)
I

)2
+

3

2
φ2
(0)

)
− ϵ3

ℓ
φ(0)φ(1) +O(ϵ4) (6.3.93)
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Furthermore, using the relation γij = ℓ2

ϵ2
gij

∣∣∣
z=ϵ

, the determinant of γij is

√
−γ =

ℓ3

ϵ3
√

−g(0)

[
1− ϵ2

8

(
(g)R(0) −

1

2

2∑
I=1

(
∂ψ

(0)
I

)2
+

3

2
φ2
(0)

)
− ϵ3

3
φ(0)φ(1) +O(ϵ4)

]
.

(6.3.94)

Combining these expressions and keeping only terms that do not vanish in the limit

ϵ→ 0, we find the following Gibbons–Hawkings term,

SGH =

∫
z=ϵ

d3x
√

−g(0)

[
6ℓ2

ϵ3
− ℓ2

4ϵ

(
(g)R(0) −

1

2

2∑
I=1

(
∂ψ

(0)
I

)2
+

3

2
φ2
(0)

)
+O(ϵ)

]
.

(6.3.95)

The final term we need to evaluate is the boundary term associated with the dialton, Sf .

Using equations (6.3.67) and (6.3.69) with d = 3 we have

Sf =

∫
z=ϵ

d3x
√

−g(0)
(
−ℓ2φ(0)φ(1) −

2

3
ϑφ3

(0)

)
. (6.3.96)

Combining all three terms, Sbulk, SGH and Sf , we find the regularised on–shell action,

Sreg =SBulk + SGH + Sf

=

∫
z=ϵ

d3x
√

−g(0)

[
4ℓ2

ϵ3
+
ℓ2

2ϵ

(
(g)R(0) −

1

2

2∑
I=1

(
∂ψ

(0)
I

)2
− 1

2
φ2
(0)

)

−ℓ2φ(0)φ(1) −
2

3
ϑφ3

(0)

]
(6.3.97)

Counterterm Action

From (6.3.97) one immediately identifies the divergent terms which need to be sub-

tracted to render the action finite,

Sct = −
∫
z=ϵ

d3x
√

−g(0)

[
4ℓ2

ϵ3
+
ℓ2

2ϵ

(
(g)R(0) −

1

2

2∑
I=1

gij(0)∂iψ
(0)
I ∂jψ

(0)
I − 1

2
φ2
(0)

)]
. (6.3.98)

This action is not covariant so it does not respect the symmetries of the bulk. To obtain

a covariant expression we must invert the expressions for the boundary values of the

fields and expressed them in terms of the covariant fields that live on the the cutoff

surface Bϵ.

We begin with the “forward” expansions for the fields, given by equations (6.3.82)–(6.3.87).

We will also need to invert
√

−g(0). This admits the expansion

√
−g(0) =

ϵ3

ℓ3
√
−γ =

√
−g(0)

(
1 +

ϵ2

2
Tr
(
g−1
(0)g(2)

)
+O

(
ϵ3
))

. (6.3.99)
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These expressions can be inverted order by order in ϵ to obtain expressions for g(0)ij(x),

φ(0)(x), ψ
(0)
I (x), A(0)

i (x) and
√

−g(0).

Leading order in ϵ:

To lowest order, the inverted expressions for the fields are simply

g(0)ij(x) =
ϵ2

ℓ2
γij(x, ϵ), φ(0)(x) =

1

ϵ
ϕ(x, ϵ), ψ

(0)
I (x) = ψI(x, ϵ), A

(0)
i (x) = Ai(x, ϵ).

(6.3.100)

Furthermore, it is easy to see that (g)□(0) ≡ 1√
−g(0)

∂i

(√
−g(0)g

ij
(0)∂j

)
can be rewritten in

terms of (γ)□ as
(g)□(0) =

ℓ2

ϵ2
(γ)□ (6.3.101)

and similarly for all contracted quantities. For example (g)R(0) =
ℓ2

ϵ2
(γ)R.

Finally, inverting the expression for
√

−g(0) to leading order we find

√
−g(0) =

ϵ3

ℓ3
√
−γ. (6.3.102)

Next to leading order in ϵ

To obtain the inversions to the next order we substitute the leading order expressions (6.3.100)

into the forward expansions keeping the next order terms. That is to say, we substitute

the expressions (6.3.100) into the expressions for g(2)ij and ψ(2)
I . φ(0)(x) and A(0)

i (x) can

not be computed to higher order in ϵ since the next order terms correspond to the vevs

of the dual operators and these can not be determined from the asymptotics of the fields.

Starting from the expression for ψ(2)
I (x), ψ(2)

I (x) = 1
2
(g)□(0)ψ

(0)
I (x), we obtain

ψ
(2)
I (x) =

ℓ2

2ϵ2
(γ)□ψI(x, ϵ), (6.3.103)

and,

ψ
(0)
I (x) = ψI(x, ϵ)−

ℓ2

2
(γ)□ψI(x, ϵ) +O(ϵ3). (6.3.104)

Rewriting g(2)ij in terms of the inverted expressions is straightforward, albeit more te-

dious. Using equations (6.3.100) and the fact that (g)R(0)ij =
(γ)Rij +O(ϵ2) we obtain

g(2)ij = −
(

(γ)Rij −
1

4
γij

(γ)R

)
+

1

2

2∑
I=1

(
∂iψI∂jψI −

1

4
γijγ

kl∂kψI∂lψI

)
− 1

8ℓ2
γijϕ

2

(6.3.105)
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and

g(0)ij = ϵ2

[
1

ℓ2
γij +

(
(γ)Rij −

1

4
γij

(γ)R

)
− 1

2

2∑
I=1

(
∂iψI∂jψI −

1

4
γij (∂ψI)

2

)

+
1

8ℓ2
γijϕ

2

]
+O

(
ϵ4
)
. (6.3.106)

To compute
√

−g(0) to the next order in ϵ we make use of the relation

Tr
(
g−1
(0)g(2)

)
= −1

4
(g)R(0) +

1

8

2∑
I=1

(
∂ψ

(0)
I

)2
− 3

8
φ2
(0). (6.3.107)

In terms of the covariant fields,

Tr
(
g−1
(0)g(2)

)
= − ℓ2

4ϵ2
(γ)R+

ℓ2

8ϵ2

2∑
I=1

(∂ψI)
2 − 3

8ϵ2
ϕ2 (6.3.108)

and √
−g(0) =

ϵ3

ℓ3

[
1 +

ℓ2

8

(
(γ)R− 1

2

2∑
I=1

(∂ψI)
2 − 3

2ℓ2
ϕ2

)]
(6.3.109)

It is not possible to compute the boundary fields to higher order as the next terms in both

the metric and axion expansions correspond to vevs of their respective dual operators.

However, the expressions obtained are sufficient to rewrite all terms in the counterterm

action in a covariant form.

Summarising, we have the following covariant expressions

g(0)ij(x) = ϵ2

[
1

ℓ2
γij +

(
(γ)Rij −

1

4
γij

(γ)R

)
− 1

2

2∑
I=1

(
∂iψI∂jψI −

1

4
γij (∂ψI)

2

)

+
1

8ℓ2
γijϕ

2

]
+O

(
ϵ4
)
. (6.3.110)

φ(0)(x) =
1

ϵ
ϕ(x, ϵ) +O(ϵ) (6.3.111)

ψ
(0)
I (x) = ψI(x, ϵ)−

ℓ2

2
(γ)□ψI(x, ϵ) +O(ϵ3) (6.3.112)

A
(0)
i (x) = Ai(x, ϵ) +O(ϵ) (6.3.113)√
−g(0) =

ϵ3

ℓ3
√
−γ

[
1 +

ℓ2

8

(
(γ)R− 1

2

2∑
I=1

(∂ψI)
2 − 3

2ℓ2
ϕ2

)]
(6.3.114)

The final step is to substitute these expressions in the counterterm action (6.3.98), en-

suring that we keep all terms that do not vanish in the limit ϵ → 0. After some algebra
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we obtain

Sct = −
∫
z=ϵ

d3x
√
−γ
(

4

ℓ2
+ ℓ(γ)R+

1

2ℓ
ϕ2 − ℓ2

2
γij∂iψI∂jψI

)
, (6.3.115)

and,

Sren = lim
ϵ→0

(
Sreg ++Sct

)
, (6.3.116)

where Sreg = (SBulk + SGH + Sf )z=ϵ

6.3.5 1–Point Functions of the Dual Operators

In this section we proceed to compute the 1–point functions of the operators dual to the

bulk fields. This involved varying the renormalised action with respect to the boundary

values of the bulk fields, i.e. with respect to g(0)ij , A
(0)
i , ψ(0)

I and φ(0). When Dirichlet

boundary conditions are imposed, these are identified as the sources that couple to the

dual operator. For the theory at hand, this is still true for all fields except the dialton. As

we have already explained, we are imposing mixed boundary fields on the dialton and

φ(0) is no longer the source. This is taken care of by the boundary term we have added

to the action Sf . Thus, varying the renormalised action–including Sf–with respect to

the boundary values of the fields, we obtain

δSren = [bulk e.o.m] +

∫
d3x
√

−g(0)

(
− 1

2

⟨
T ij
⟩
δg(0)ij +

⟨
J i
⟩
δA

(0)
i +

2∑
I=1

⟨OψI
⟩ δψ(0)

I

+ ⟨Oϕ⟩ δJf

)
(6.3.117)

Here T ij is the energy–momentum tensor of the dual field theory, Ji is a conservedU(1)

current associated to a global U(1) symmetry on the boundary and OψI
and Oϕ are field

theory scalar operators dual to the axions and dialton, respectively. Clearly the boundary

term vanishes when g(0)ij , A
(0)
i , ψ(0)

I and Jf are kept fixed on the boundary and so, the

variation of the total action implies the bulk equations of motion. Next we will perform

the variation of the renormalised action and from the result we will read off the 1–point

functions, according to equation (6.3.117).

Using the unintegrated form of the bulk action, the renormalised action can be written

as

Sren = lim
ϵ→0

[∫
z≥ϵ

d4x
√
−G
(
R− Z(ϕ)

4
F 2 − 1

2

2∑
I=1

(∂ψI)
2 − 1

2
(∂ϕ)2 − V (ϕ)

)
−2

∫
z=ϵ

d3x
√
−γ K +

∫
z=ϵ

d3x
√

−g(0)
(
−ℓ2φ(0)φ(1) −

2

3
ϑφ3

(0)

)
−
∫
z=ϵ

d3x
√
−γ

(
4

ℓ
+ ℓ (γ)R+

1

2ℓ
ϕ2 − ℓ

2

2∑
I=1

(∂ψI)
2

)]
(6.3.118)
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where the first term is the bulk action, Sbulk, the second is the Gibbons–Hawking term

SGH, the third is the boundary term necessary for the dialton boundary condition, Sf ,

and the fourth is the counterterm action, Sct. Note that all terms in the action have been

expressed in terms of covariant fields except for Sf .

Perturbing each term in Sren we obtain the following results,

δSbulk =

∫
z≥ϵ

d4x EµνδG
µν −

∫
z≥ϵ

d4x
√
−G GµνGρσFνσδ (∂µAρ)

−
∫
z≥ϵ

d4x
√
−G Gµν∂νψI∂µ (δψI)−

∫
z≥ϵ

d4x
√
−G

(
Gµν∂µϕ∂ν (δϕ)

+

(
dV
dϕ +

F 2

4

dZ
dϕ

)
δϕ

)

=

∫
z=ϵ

d3x
√
−γ
(
γijFziδAj +

ℓ2

ϵ2
∂ϵϕI(x, ϵ) δϕI(x, ϵ) +

ℓ2

ϵ2
∂ϵϕ(x, ϵ) δϕ(x, ϵ)

)
,

(6.3.119)

δSGH = −
∫
z=ϵ

d3x
√
−γ (Kij −Kγij) , (6.3.120)

δSf =

∫
z=ϵ

d3x
√

−g(0)

((
ℓ2

2
φ(0)φ(1) +

1

3
ϑφ3

(0)

)
g(0)ijδg

ij
(0)

−
(
ℓ2φ(1)δφ(0) − φ(0)δJf

)
(6.3.121)

δSct = −
∫
z=ϵ

d3x
√
−γ
(
ℓ (γ)Rij −

ℓ

2
∂iψI∂jψI − γij

(
2

ℓ
+
ℓ

2
(γ)R+

1

4ℓ
ϕ2 − ℓ

4
(∂ψI)

2

))
δγij

−
∫
z=ϵ

d3x
√
−γ ϕ

ℓ
δϕ+

∫
z=ϵ

d3x
√
−γ ℓ γij ∂iψI ∂jδψI (6.3.122)

where δJf = −ℓ2δφ(1) − 2ϑφ(0)δφ(0). Combining all terms and using the expansions for

the fields, the renormalised action is

δSren= lim
ϵ→0

∫
z=ϵ

d3x
√
−γ

[
ϵ

ℓ
γijZ ∂ϵAi δAj +

(ϵ
ℓ
∂ϵψI − ℓ□γψI

)
δψI +

(
ϵ

ℓ
∂ϵϕ− ϕ

ℓ

)
δϕ

−
(
Kij −Kγij + ℓ (γ)Rij −

ℓ

2
∂iψI∂jψI − γij

(2
ℓ
+
ℓ

2
(γ)R+

1

4ℓ
ϕ2 − ℓ

4
(∂ψI)

2
))

δγij

]
+ δSf . (6.3.123)

As was already explained above, comparing this expression with equation (6.3.117) allows

us to read off the expectations values of the dual operators. In particular, let F(x, z) one

of the bulk fields and let its near boundary behaviour be F(x, z) ∼ zmf(0)(x)+ . . .. Then,

the 1–point function of the operator dual to F(x, z) is given by

⟨OF ⟩ = lim
ϵ→0

[(
ℓ

ϵ

)d−m 1√
−γ

δSren[F(x, ϵ); ϵ]

δF(x, ϵ)

]
(6.3.124)
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or, in terms of the sources,

⟨OF ⟩ =
1√
−g(0)

δSren
[
f(0)(x)

]
δf(0)(x)

. (6.3.125)

Upon applying this prescription we obtain the following results,

⟨Oϕ⟩ = φ(0), ⟨OψI
⟩ = 3ℓ2ψ

(3)
I⟨

J i
⟩
= Z0A

i
(1),

⟨
T ij
⟩
= 3ℓ2gij(3) −

2

3
ϑφ3

(0) g
ij
(0). (6.3.126)

6.3.6 Local Ward Identities

The 1–point functions combined with the divergence relations for g(3)ij and A(1)
i , given

by equations (6.3.50) and (6.3.51) respectively, give the local Ward identities,

Dj
(0) ⟨Tij⟩ = ⟨Oϕ⟩ ∂iJf +

2∑
I=1

⟨OψI
⟩ ∂iψ(0)

I +
⟨
J j
⟩
F

(0)
ij , (6.3.127)

D(0)i

⟨
J i
⟩
= 0. (6.3.128)

The former is the result of diffeomorphism invariance and the latter of gauge invariance

of the theory. Moreover, starting from (6.3.46) and using the expression for
⟨
T ij
⟩

we find

⟨
T ii
⟩
− (d−∆−)φ(0)Jf − dF(φ(0)) + ∆−φ(0)F ′(φ(0)) = 0. (6.3.129)

This is the trace Ward identity associated with the invariance of the theory under Weyl

transformations. One immediately notices that, in addition to the usual (d−∆−)φ(0)Jf

term one expects in the presence of a scalar field, there are two extra terms. These are

associated with the multi–trace deformation F(Oϕ). Another important feature of the

trace Ward identity is the vanishing of the right hand side. If this symmetry is broken

then the trace is no longer equal to zero but instead it is equal to the conformal anomaly

A(φ(0)). In d = 3 the only source for the conformal anomally is the scalar operator dual

to the dialton. From the prespective of the bulk there are two possibilities that can give

rise to a non–zero conformal anomaly. The first, which was already mentioned in sec-

tion 6.3.2 on page 108, is the presence of an effective ϕ3 term in the bulk action due

to a non–zero V3 in the expansion for the dialton potential [93]. In this case the dial-

ton expansion has an additional logarithmic term whose coefficient contributes to the

conformal anomaly. However, for the theories we are interested in, the potentials have

V3 = 0 and therefore there is no such logarithmic term for the dialton. The second pos-

sibility has to do with the mixed boundary conditions or, equivalently, the multi-trace

deformation of the field theory action. This deformation introduces additional terms in⟨
T ij
⟩

which may still break scale invariance, even in the absence of the cubic term in the

bulk action. However, if the multi–trace deformation is marginal i.e. if F(Oϕ) ∝ Od/∆−
ϕ ,

as is the case here, then it does not break conformal invariance.
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Although these relations have been derived using the explicit expressions for the 1–point

functions, it is also possible to derive them using a Noether procedure, using the invari-

ance of the renormalised bulk action under boundary boundary diffeorphisms and U(1)

gauge transformations.

6.3.7 Global Ward Identities

In addition to the local Ward identities derived above, there are global Ward identites

associated with the invariance of the bulk action, including the counterterms, under

the global ISO(d − 1) symmetry of the axions, ψI → ΛJI ψJ + cI , and hence, so is the

renormalised action Sren. In particular, substituting the infinitesimal form of this trans-

formation in equation (6.3.117), we obtain the integral constraints,∫
∂M

ddx
√
−g(0) ⟨OψI

⟩ = 0,∫
∂M

ddx
√
−g(0) ψ

(0)
[I

⟨
OψJ ]

⟩
= 0 (6.3.130)

where the axion indices are antisymmetrised in the second identity. The first identity

is derived using the invariance of the theory under global shifts of the axions. From

the perspective of 0–forms, global shifts correspond to gauge transformations and this

identity is thus the analogue of the local current conservation for 0–forms. The second

identity is a special feature of the theories we are studying and it associated with the

flavour rotation symmetry of axions.

6.4 Field Theory Thermodynamics

We now have the tools needed to study the thermodynamic properties of our model.

In particular, the renormalised Euclidean on–shell action gives the Gibbs free energy, or

grand canonical potential, of the field theory [94],

βW(T,V, µ,B,Π) = SE
ren = −Sren. (6.4.1)

Since we are interested in solutions satisfying mixed boundary conditions, the appro-

priate action to use in the above expression is the one augmented by the appropriate

boundary actions, Sren = Sbulk + SGH + Sf given in equation (6.3.118). In the grand

canonical ensemble, described by the Gibbs free energy, the control variables are the

temperature T = 1/β, the spatial volume V , the chemical potential µ, the magnetic field

B (if present) and the axionic strength Π which, for the isotropic configuration of axionic

fields that we are interested is defined as

Π =
1

ℓ

√√√√ 1

(d− 1)

d−1∑
I=1

(∂ψI)
2 =

1

ℓ

√√√√1

2

2∑
I=1

(∂ψI)
2. (6.4.2)
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Varying the free energy with respect to these control variables provides the expres-

sions for their conjugate variables, namely the entropy S , the pressure of the system

P , the electric charge Qe, the magnetisation M and the axionic magnetisation ϖ which

are conjugate to the temperature, volume, chemical potential, magnetic field and axion

strength respectively. These calculations simplify significantly by noting that for spa-

tially homogeneous systems, such as the solutions we are interested in, the volume V
factorises in the expression for the on–shell action allowing us to define the free energy

density w which is independent of the volume

w(T, µ,B,Π) = W(T,V, µ,B,Π)/V. (6.4.3)

Using this we obtain the following expressions(
∂w

∂T

)
µ,B,Π

= −s,
(
∂w

∂µ

)
T,B,Π

= −ρ,
(
∂w

∂B

)
T,µ,Π

= −M,

(
∂w

∂Π

)
T,µ,B

= −ϖ.

(6.4.4)

where s = S/V is the entropy density of the system and ρ = Qe its charge density. Note

that the spatial volume of the system is formally infinite and therefore it is more ap-

propriate to talk densities. The above quantities can be independently derived from the

holographic analysis of the conserved black hole charges. This is a straight forward task

when it comes to the chemical potential, charge density, temperature, entropy density

and magnetic and axionic charge densities for which we have, in addition to the defini-

tion (6.4.2),

T = TBH, s = sBH, µ = lim
z→0

At, ρ = ℓ2
⟨
J t
⟩
, B =

1

ℓ3
lim
z→0

Fxy, (6.4.5)

where we have assumed that the gauge potential vanishes at the horizon. However, this

task is a lot more involve when it comes to the thermodynamic potentials conjugate

to the magnetic and axionic charges, i.e. the magnetization and axionic magnetization.

We circumvent this complication by using general thermodynamic relations such as

the ones given in equation (6.4.4) to define these quantities. This however, implies that

our analysis does not provide an independent confirmation of thermodynamic relations

such as the first law. A first principles definition of all thermodynamic variables for

planar black holes with axionic charge, and correspondingly a general derivation of the

first law, will appear in [95].

Returning to the discussion of the free energy, we see from the above expressions that

the exact differential of the free energy density is

dw = −sdT − ρ dµ−M dB −ϖ dΠ, (6.4.6)

Another important quantities characterising a system is its internal energy–or in this

case energy density ε. It can be derived from the free energy density by performing a
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Legendre transformation with respect to the temperature and the chemical potential,

ε(s, ρ,B,Π) = w + Ts+ µρ. (6.4.7)

Alternatively, it can be read off from the holographic stress energy tensor,

ε = ℓ2
⟨
T 00
⟩
. (6.4.8)

The exact differential of the internal energy density gives the first law of thermodynam-

ics for an infinitesimal volume,

dε = T ds+ µ dρ−ϖ dΠ−M dB. (6.4.9)

Moreover, re-instating the volume dependence, one obtains the total energy E which

depends on the total entropy S = sV , charge Qe = ρV , and volume V of the system,

E(S,V, Qe,B,Π) = V ε
(
S

V
,
Qe
V
,B,Π

)
. (6.4.10)

The exact differential of this expression gives the first law of thermodynamics in its usual

form, i.e.

dE = T dS − P dV + µdQe − (ϖV)dΠ− (MV)dB, (6.4.11)

where the pressure of the system is given by

P = −
(
∂E
∂V

)
S,Qe,B,Π

. (6.4.12)

Combining (6.4.11) with (6.4.6) and (6.4.7), we find that the pressure is related to the free

energy as

w = −P, (6.4.13)

and satisfies the Gibbs-Duhem relation

ε+ P = Ts+ µρ. (6.4.14)

Finally, since the Gibbs free energy density w is a function of the variable T , µ, B and

Π, in order to compare solutions with the same charge densities we need to use the

Helmholtz free energy density f, which is a function of T, ρ,B,Π. This is related to the

Gibbs free energy via a Legendre transform with respect to the chemical potential µ,

f = w + µρ = ε− Ts. (6.4.15)

The thermodynamic identity (6.4.6) implies that

df = −sdT + µdρ−M dB −ϖ dΠ, (6.4.16)
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and so f is indeed a function of the variables T, ρ,B,Π, as desired.

The analysis up to now has been independent of any particular features of the theory

under consideration and it is therefore valid for any black hole. To apply it to specific

systems one needs in addition an equation of state, relating the thermodynamic vari-

ables. This is strongly constrained by symmetries, such as conformal invariance. For

the theories we are interested in, we saw in section 6.3.6 that the dialton does not ex-

plicitly break conformal invariance which is only broken explicitly by the background

magnetic field and axion charge. A simple scaling argument allows us to generalise the

equation of state for conformal theories to theories where conformal symmetry is ex-

plicitly broken by magnetic and axionic charges.

6.4.1 Equation of State in the Presence of Magnetic and Axionic Charges

In a d-dimensional theory with no explicit breaking of conformal symmetry, the trace-

lessness of the stress tensor the vacuum implies that in a state of thermal equilibrium

the system is governed by the equation of state P = ε/(d − 1). To see how this relation

is modified for the theories we are interested in, which (can) have a magnetic field, a

chemical potential and an isotropic distribution of axionic charges, we first notice that

the Gibbs free energy W can be re–written as

W(T,V, µ,B,Π) = (ε− Ts− µρ)V. (6.4.17)

where we have used (6.4.7). Conformal invariance and extensivity restrict thus the form

of the state function W to

W(T,V, µ,B,Π) = −VT d h
(
µ

T
,
B
T 2
,
Π

T

)
, (6.4.18)

where the function h depends only on the dimensionless ratios µ/T , B/T 2 and Π/T . We

should stress that in writing this relation we assume that there are no dimensionfull cou-

plings, either single- or multi-trace, for the scalar operator dual to ϕ. This assumption is

justified for the planar black holes we consider here, but in general dimensionfull scalar

couplings must be included in the scaling argument (see e.g. [96]). As a consequence of

(6.4.18), W possesses the scaling property

W(λT, λ1−dV, λµ, λ2B, λΠ) = λW(T,V, µ,B,Π). (6.4.19)

Differentiating this relation with respect to λ and setting λ = 1 we obtain

− sT − (1− d)P − ρµ− 2MB −ϖΠ = W/V, (6.4.20)
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where we have used the conjugate variables introduced in (6.4.4) and (6.4.12). Equiva-

lently,

∂W
∂T

= −sV, ∂W
∂V

= −P, ∂W
∂µ

= −ρV, ∂W
∂B

= −MV, ∂W
∂Π

= −ϖV. (6.4.21)

Combining equation (6.4.20) with the defining relation (6.4.17) finally gives the equation

of state

ε = (d− 1)P − 2MB −ϖΠ. (6.4.22)

In chapters 7 and 8 we explicitly confirm this relation for the explicit solutions we study.

6.5 Dynamical Stability and the Energy Density

In this section we discuss the holographic effective potential for the vev of the scalar

operator dual to the dialton, which tell us whether a particular solution corresponds to

stable (thermal) vacuum of the dual theory. The quantum effective action for the scalar

vev σ = φ(0) is given by the Legendre transform of the generating function of the theory,

given by the renormalised on–shell action Sren (6.3.116), with respect to the scalar source,

keeping all other sources to their values in the solutions,

Γ[σ] = Sren − ℓ2
∫

d3xσJf = ℓ2
∫

d3x
(
VQFT(σ) + derivatives

)
, (6.5.1)

where we used the fact that the QFT is on Minkowski (with metric g(0) = diag(−1, ℓ2, ℓ2))

and VQFT(σ) is the quantum effective potential for σ. Since we are only interested in

homogeneous solutions, we can neglect the derivative terms. From (6.3.117) and (6.5.1) it

follows that the source of O∆− is then given by

Jf = −δΓ[σ]
δσ

, (6.5.2)

and, hence, vacua of the theory are extrema of the effective action:

δΓ[σ]

δσ

∣∣∣∣
σ=σ∗

= 0. (6.5.3)

To compute the effective action we observe that from (6.3.69) and (6.3.116) it follows that

[82]

Γ[σ] = SD,ren + ℓ2
∫
d3xF(σ), (6.5.4)

where SD,ren is the generating function of the Dirichlet theory or equivalently the effec-

tive action of the Neumann theory, given by

SD,ren = lim
ϵ→0

(SBulk + SGH + Sct) , (6.5.5)

where SBulk is the regularised on–shell bulk action. As for Poincaré domain walls [97, 21,
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98, 24], for the homogeneous solutions we are interested in here S′
ren can be expressed

in terms of a fake superpotential that governs non-relativistic flows [99].

We do not present the details of the calculation here and we refer the reader to appendix

B of [2]. We would like to mention however, that the result of this calculation was shown

to take a rather universal form, that applies to all hairy black holes solutions we will be

studying. In particular, the effective potential for the scalar vev σ in all cases takes the

form

VQFT(σ)= V0 +
µqe

ℓ2
+

ε

2ℓ2σ3∗

(
σ3 − 3σ2∗σ

)
= V0 +

µqe

ℓ2
+

ε

2ℓ2σ3∗

(
−2σ3∗ + 3σ∗(σ − σ∗)

2 + (σ − σ∗)
3
)
, (6.5.6)

where V0 is a constant and σ∗ is the value of the vev at the extremum, i.e. the value

corresponding to the specific background solution, and ε is the corresponding energy

density. Dynamical stability is now determined by the sign of the effective mass term,

i.e. the coefficient of the quadratic term, and we see that it is equivalent to the positivity

of the energy density, as one may have expected. This result also provides an alternative

method for computing the energy density. Using the specific expressions for the energy

density in each of the solutions, therefore, determines the range of parameters for which

they are dynamically stable.

6.6 Concluding Remarks

In this chapter we performed a detailed analysis of a class of supergravity theories that

admit planar black brane solutions carrying electromagnetic and axionic charges and

can support an additional running scalar which we named the dialton. We focused on

solutions satisfying mixed boundary conditions for the dialton field and which have ax-

ions that are linear in the boundary spatial directions. We discussed the implications of

these features in length, stressing their implications for the dual field theory. We then

went on to solve the bulk equations of motion near the conformal boundary and used

the results to compute the renormalised on–shell action and, subsequently, the one–

point functions of the dual operators. Combining our results of the holographic analysis

with general thermodynamic relations, we then derived the thermodynamic properties

of the dual theory. Finally, we briefly discussed the results obtained in [2] regarding

the dynamic stability of the solutions which have non–trivial dialtons by deriving holo-

graphic effective potential for the vev of the scalar operator dual to the dialton.

In the next two chapters we will employ the results of this chapter to analyse two the-

ories that are explicit realisations of the model discussed here. The first theory, studied

in chapter 7, corresponds to the choice Z(ϕ) = 1 and

V (ϕ) = 2Λ

[
cosh4

(
ϕ

2
√
3

)
− α sinh4

(
ϕ

2
√
3

)]
, 0 ≤ α ≤ 1. (6.6.1)
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This theory was discussed in [87] where the authors found exact axionic black hole so-

lutions which do not have a running profile for the dialton, as well as in [88] where they

found solutions that have both a non trivial axion background and also a running dialton.

The second theory we will analyse is defined by

V (ϕ) = σ1e
(d−2)(d−1)δ2−2

2(d−1)δ
ϕ
+ σ2e

2ϕ
δ(1−d) + σ3e

(d−2)δϕ, Z(ϕ) = e−(d−2)δϕ, (6.6.2)

where

σ0 = −d(d− 1)

ℓ2
= 2Λ, σ1 = σ0

8(d− 2)(d− 1)2δ2

d(2 + (d− 2)(d− 1)δ2)2
,

σ2 = σ0
(d− 2)2(d− 1)δ2(d(d− 1)δ2 − 2)

d(2 + (d− 2)(d− 1)δ2)2
, σ3 = −2σ0

(d− 2)2(d− 1)δ2 − 2d

d(2 + (d− 2)(d− 1)δ2)2
, (6.6.3)

and δ is a free parameter in the potential. This action, and a corresponding family of

analytic electrically charged black brane solutions with axion charges and a running di-

alton, were presented in appendix C of [89]. In chapter 8 we examine this family of

solutions and we also derive and study a new family of exact magnetically charged ax-

ionic black holes. Finally, using our results for the thermodynamics of these exact black

branes, we study their thermodynamic and dynamic stability, and the corresponding

phase structure. Moreover, since we have analytical expressions for our solutions, we

are also able to compute analytically the off-shell holographic quantum effective poten-

tial of the scalar operator dual to the dialton field by employing the formalism developed

in section 6.5. This computation allows us to show that dynamical stability of hairy pla-

nar AdS black holes with respect to scalar fluctuations is equivalent to positivity of the

energy density.

6.A Fefferman–Graham Gauge: Useful Identities

In the Fefferman–Graham gauge the metric has the form

ds2=Gµνdxµdxν =
ℓ2

z2
dz2 + ℓ2

z2
gij(x, z)dxidxj

gij(x, z)=g(0)ij(x) + zg(1)ij(x) + z2g(2)ij(x) + . . . (6.A.1)

where the boundary is located at z = 0. We consider a 4 dimensional spacetime thus gij
is a 3 dimensional and i, j = 1, 2, 3.

Below we give expressions for the coefficients of the inverse metric asymptotic expan-

sion and for the Christoffel symbols.

1. Inverse metric:

Using the relationship

gij(x, z)gjk(x, z) = δik (6.A.2)



132 Chapter 6. The Model: Asymptotic Analysis, Thermodynamics and Stability

where,

gij(x, z) = gij(0)(x) + zgij(1)(x) + z2gij(2)(x) + . . . (6.A.3)

we find

gij(1)(x) = −
(
g−1
(0)g(1)g

−1
(0)

)ij
(6.A.4)

gij(2)(x) =
(
g−1
(0)g(1)g

−1
(0)g(1)g

−1
(0)

)ij
−
(
g−1
(0)g(2)g

−1
(0)

)ij
. (6.A.5)

2. Christoffel Symbols:

Γzzz = −1

z
Γijz = Γizj =

1

2

(
g−1g′

)i
j
− 1

z
δij

Γzij =
1

z
gij −

1

2
g′ij Γiij =

(g)Γijk

Γzzi = Γziz = 0 Γizz = 0 (6.A.6)

Useful identities for the Christoffel symbols:

Γµµz = −4

z
+

1

2
Tr
(
g−1g′

)
Γµµi =

1

2
Tr
(
g−1∂ig

)
GµνΓzµν =

2

ℓ2
z − z2

2ℓ2
Tr
(
g−1g′

)
GµνΓiµν = −∂jgij −

1

2
gij Tr

(
g−1∂jg

)
(6.A.7)



Chapter 7

Theory I

The first model we study is obtained from the general action (6.2.1) by setting Z(ϕ) = 1

and choosing V (ϕ) to be

V (ϕ) = 2Λ

[
cosh4

(
ϕ

2
√
3

)
− α sinh4

(
ϕ

2
√
3

)]
, 0 ≤ α ≤ 1. (7.0.1)

This model was originally studied in [87] where the authors found analytic expessions for

bald charged black branes carrying axionic charges but which did not have without the

additional dialton scalar and subsequently in [88] where they obtained hairy solutions

which have a running scalar field in addition to the axions.

The above potential can be obtained through field redefinition from AdS gravity with

cosmological constantΛ = −3/ℓ2, conformally coupled to a scalar field with a conformal

self interaction couplingα [100, 82]. Forα = 1 this potential was discussed earlier in [101],

where a black hole solution with a horizon of constant negative curvature was obtained,

and in [102], where this potential was embedded in the U(1)4 truncation of maximally

supersymmetric gauge supergravity in four dimensions. In fact, for α = 1, taking Z(ϕ)

to be a specific exponential function of the scalar ϕ and setting the axions ψI to zero,

the full action (6.2.1) can be embedded in the U(1)4 truncation of gauged supergravity.

No embedding is known for α ̸= 1, or for Z(ϕ) = 1. Our analysis will focus on solutions

with non-trivial axion profiles, and so the corresponding action should be treated as a

bottom up model.

In this chapter we revisit the above solutions in light of the analysis performed in the pre-

vious chapter. We begin with the study of the bald solutions in section 7.1. We review

the properties of these black branes in section 7.1.3. In particularly we find the location

of their horizon and compute their temperature and their entropy density. These solu-

tions admit an extremal limit which we obtain in section 7.1.4. We obtain these extremal

solutions and derive their near horizon geometry. Next, by rewriting the metric in the

Fefferman–Graham gauge and using the results of the previous chapter we obtain the

one–point functions of the dual operators, 7.1.5. Finally, we conclude our discussion of

133
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the bald solutions with the discussion of their thermodynamic properties in section 7.1.6,

which also relies on the results of the previous chapter. In section 7.2 we turn our atten-

tion to the hairy solutions of the theory and repeat the analysis. In particular, we discuss

their horizon properties, temperature and entropy density is section 7.2.1. Unlike their

bald version, these solutions do not have a regular extremal limit. The one–point func-

tions of the dual operators are discussed in section 7.2.2 and the thermodynamic prop-

erties in section 7.2.3. We conclude the chapter in section 7.3 were we discuss phase

transitions of the theory between the bald and hairy phases, as well as the stability of

these phases.

7.1 Bald Solution

7.1.1 Electric Solution

When the dialton field vanishes the potential (7.0.1) reduces to a constantV (0) = −6/ℓ2 =

2Λ, and the theory to AdS gravity coupled to a gauge field and two free scalars ψI . The

bald solutions to this theory, endowed with the properties discussed in the previous

chapter, namely, electrically charged planar black holes solutions with axions that are

linear in the boundary directions are given by

ds2 = −f(r)dt2 + dr2
f(r)

+ r2
(
dx2 + dy2

)
f(r) = −p

2

2
− m

r
+

q2

4r2
+
r2

ℓ2

ψ1 = px, ψ2 = py

A = µ
(
1− r0

r

)
dt, F = dA = − q

r2
dt ∧ dr, (7.1.1)

where r0 is the position of the horizon and m, p and q are related to the mass, axion

charge and U(1) charge densities respectively. Since the gauge potential A vanishes at

the horizon it follows that µ is the chemical potential in the dual field theory and q = µr0

is the U(1) charge density.

We would like to draw the reader’s attention to the form of the metric. In particular, note

that the form of f(r) is the one commonly associated with a hyperbolic black hole. Nev-

ertheless, this black hole has a flat horizon. As was explained in chapter 6, section 6.2.1,

this particular feature of the metric is attributed to the axions which modify the vacuum

energy at the horizon, making it flat.

7.1.2 Dyonic Solution

The electric solution presented above can easily be extended to include the presence of

a magnetic field by letting q2 = q2e + q2m in the expression for the metric. The gauge field

is also modified to

A = µe

(
1− r0

r

)
dt+ qmxdy, F = dA = −qe

r2
dt ∧ dr + qmdx ∧ dy, (7.1.2)
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where the previous relation q = µr0 is replaced by qe = µer0.

7.1.3 Black Brane Properties: Horizon and Extremality

In this section we investigate the properties associated with the horizon of these bald

solutions. We focus on the dyonic solution only. The corresponding results for the

purely electric solution can be retrieved by taking the qm → 0 limit.

The horizon, r0, of the black brane is located at the largest root of f(r). By solving the

equation f(r0) = 0 for m, we obtain an expressions for the mass parameter in terms of

the horizon r0, axion charge p and chemical potential µe,

m =
r30
ℓ2

(
1 +

ℓ2

4r20

(
µ2e − 2p2

)
+

ℓ2

4r40
q2m

)
. (7.1.3)

This expression will be used to eliminate m in subsequent results.

Temperature

The temperature of the black branes can derived by requiring that the Euclidean metric

does not have a conical singularity,

T =
f ′(r0)

4π
=

3r0
4πℓ2

(
1− ℓ2

12r20

(
µ2e + 2p2

)
− ℓ2

12r40
q2m

)
. (7.1.4)

Entropy

The entropy density of the black hole is

s =
ah

4GN
= 4πr20 (7.1.5)

where ah is the area of the horizon and we have used our convention, 16πGN = 1.

Symmetry enhancement

As shown by Davison and Goutéraux [103], the bald solution becomes conformal to

AdS2 × R2 for particular values of the parameters, and enjoys in that case an enhanced

SL(2,R) × SL(2,R) symmetry. In this case, one can solve the linearized perturbation

equations exactly in terms of hypergeometric functions.1 This happens precisely when

the form of the lapse function simplifies to

f(r) = −p
2

2
+
r2

ℓ2
, (7.1.6)

1 Notice that such a symmetry is also enjoyed by the scalar wave equation in the nonextremal Kerr
black hole background, in the low frequency limit [104] (see [105] for the Schwarschild black hole case).
This hidden conformal symmetry is not derived from an underlying symmetry of the spacetime itself, but
is rather related to the fact that black hole scattering amplitudes are given in terms of hypergeometric
functions, which are well-known to form representations of the conformal groupSL(2,R). What is notable
in the bald black hole case is that this symmetry becomes an exact symmetry of the linearized gravitational
perturbation equations for those values of the parameters.
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i.e. when m and q both vanish. The crucial point is that the metric becomes conformal

to a patch of AdS2×R2. In section 7.2 we study the hairy solutions of these theory where

we find that, for a particular range of the parameters, these solutions exhibit the same

symmetry enchancement. It is however unlikely that the coupled linearised perturba-

tion equations for the fields gµν ,Aµ, ϕ, and ψI remain exactly solvable as a consequence

of the enhanced symmetry. This is left for further exploration.

7.1.4 Extremal Black Branes

The solution becomes extremal when r0 is a double root of f(r) or equivalently when

its temperature vanishes. Setting T , given in equation (7.1.4), equal to zero, and solving

for r0 we find

r20,ext =
ℓ2

24

(
2p2 + µ2e

) [
1 +

√
1 +

48q2m

ℓ2 (2p2 + µ2e)
2

]
. (7.1.7)

The entropy of these black holes is

s =
ℓ2

96GN

(
2p2 + µ2e

) [
1 +

√
1 +

48 q2m

ℓ2 (2p2 + µ2e)
2

]
. (7.1.8)

As is usually the case with charged AdS black holes, the entropy does not vanish at T = 0,

signalling that the ground state of the dual theory is degenerate.

Note that for black holes which carry only electric charge,

r20,ext =
ℓ2

12

(
2p2 + µ2e

)
, (7.1.9)

m = ℓ3
(
µ2 + 2p2

12

)3/2(
1 + 3

µ2 − 2p2

µ2 + 2p2

)
, (7.1.10)

and

s =
r20
4GN

=
ℓ2

48GN

(
µ2 + 2p2

)
. (7.1.11)

Near Horizon Geometry

Next we look at the near horizon geometry of the extremal black branes which teaches

us about the IR of the dual theory. We begin by expanding the lapse function given

in (7.1.1) near r = r0,ext given by equation (7.1.7). Using the fact that f(r0,ext) = f ′(r0,ext)

we find

f(r) =
1

2r40,ext

( (
µ2e + p2

)
r20,ext + q2m

)
(r − r0,ext)

2 + O
(
(r − r0,ext)

3
)
. (7.1.12)
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Substituting this result into the metric and performing the following change of coordi-

nates r = r0,ext + ϵρ, t = τ/ϵ we find

ds2 = −
(
µ2e + p2

)
r20,ext + q2m

2r40,ext
ρ2dτ2+ 2r20

(µ2e + p2) r20,ext + q2m

dρ2
ρ2

+r20,ext

(
dx2 + dy2

)
. (7.1.13)

This metric describes an AdS2 ×R2 geometry in the IR with the radius of AdS2 given by

ℓ2IR =
2r40,ext

(µ2e + p2) r20,ext + q2m
. (7.1.14)

For purely electric black branes with qm = 0 this expression reduces to

ℓ2IR =
ℓ2

6

µ2 + 2π2

µ2 + p2
. (7.1.15)

Thus, we find that the full geometry interpolates between AdS4 in Poincaré coordinates

in the UV and a near horizon AdS2 × R2 geometry in the IR.

This near horizon geometry introduces a source of instability for massive fields. In par-

ticular, consider a scalar field in an extremal (or near extremal) charged AdS black hole

background whose mass is above the BF bound for the 4 dimensional spacetime but

below the bound for the 2 dimensional space, i.e. −9/4ℓ2 ≤ m2 < −1/ℓ2. Although this

scalar does not introduce an instability far from the near horizon region, in the vicinity

of the horizon where the geometry is AdS2 ×R2, its mass violates the corresponding BF

bound, making it unstable. Note that this instability is not associated with superconduc-

tivity or superfluidity a priori since it does not rely on the field being charged under a

U(1) symmetry.

7.1.5 Fefferman–Graham Gauge and 1–point functions

Fefferman–Graham Expansion

In chapter 6 we derived the 1–point functions for any theory whose action has the form (6.2.1).

This was done by rewriting the metric in the Fefferman–Graham gauge and expressing

all the fields in this gauge (see section 6.3.5). We will now use those results to read off

the 1–point functions for the bald solution 7.1.1 by first obtain the asymptotic expansion

for the metric in the Fefferman–Graham gauge. In particular, we want to find the trans-

formation r = r(z) such that
dr2
f(r)

=
ℓ2

z2
dz2 (7.1.16)

where r and f(r) are the holographic coordinate and lapse function in (7.1.1) and z is the

Fefferman–Graham holographic coordinate.

To derive this transformation we consider a series expansion for r(z) and solve order by
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order in z,

r(z) =
ℓ2

z

(
1 + a0z + a1z

2 + a2z
3 +O(z4)

)
. (7.1.17)

The largest power of z in the expansion is found by considering the largest power of r

in f(r), i.e. r2/ℓ2. If f(r) = r2/ℓ2 then

ℓ2

r2
dr2 = ℓ2

z2
dz2 ⇒ ln r = ln z−1 ⇒ r =

ℓ2

z
, (7.1.18)

where we used the fact that r = ∞ corresponds to z = 0. From the r(z) expansion we

compute dr2,

dr2 = ℓ4
(
− 1

z2
+ a1 + 2a2z + 3a3z

2 + . . .

)2

dz2

=
ℓ4

z4
(
1− 2a1z

2 − 4a2z
3 + . . .

)
dz2. (7.1.19)

We also need the series expansion for dr2/f(r) in terms of z. First we compute 1/f(r)

by substituting r(z) in f(r),

1

f(r)
=
z2

ℓ2

(
1− 2a0z − 2a1z

2 +
p2

2ℓ2
z2 + . . .

)
(7.1.20)

Combining this result with the expression for dr2, (7.1.19), and after some algebra, we find

dr2
f(r)

=
ℓ2

z2
dz2 + ℓ2

z2

(
−2a0z −

(
4a1 −

p2

2ℓ2

)
z2 + . . .

)
dz2. (7.1.21)

Comparing this to equation (7.1.16) we see that for (7.1.16) to hold we need the second

term on the right hand side of (7.1.21) to be identically zero, i.e.

− 2a0z −
(
4a1 −

p2

2ℓ2

)
z2 + · · · = 0. (7.1.22)

This is solved order by order in z to obtain the expansion coefficients ai. We immedi-

ately observe that

a0 = 0 and a1 =
p2

8ℓ2
, (7.1.23)

implying that to O
(
z2
)

the coordinate transformation is

r(z) =
ℓ2

z

(
1 +

p2

8ℓ2
z2 + . . .

)
. (7.1.24)

Repeating the procedure, one can obtain the transformation to any order. However,

as we go to higher orders, the calculations are much longer and tedious and it is best

to be done using a computer program. Once this relationship has been obtained to the

desired order we find the asymptotic form of the fields by simply substituting r = r(z) in
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our solutions. This was also done using a computer program. The resulting expressions

are

r(z) =
ℓ2

z

(
1 +

p2

8ℓ2
z2 +

m

6ℓ4
z3 − q2e + q2m

32ℓ6
z4 + . . .

)
(7.1.25)

for the holographic coordinate,

gtt = −1 + z2
p2

4ℓ2
+ z3

2m

3ℓ4
− z4

(
p4

64ℓ4
+

3
(
q2e + q2m

)
16ℓ6

)
+ O(z5) (7.1.26)

gzz = 1 (7.1.27)

gxx = gyy = ℓ2 + z2
p2

4
+ z3

m

3ℓ2
+ z4

(
p4

64ℓ2
− q2e + q2m

16ℓ4

)
+ O(z5), (7.1.28)

for the metric components and

A =

(
qe

r0
− qe

ℓ2
z +

p2qe

8ℓ4
z3 +

mqe

6ℓ6
z4 + O(z5)

)
dt+ qmxdx (7.1.29)

for the gauge field. The axions are unchanged since they depend only on the boundary

spatial directions. Moreover, Z0 = 1 and V0 = −6/ℓ2 with all other coefficients for Z(ϕ)

and V (ϕ) vanishing.

1–point functions

To compute the 1–point functions for the dual theory, we simply substitute the expres-

sions for the coefficients of the asymptotic expansions obtained here in the general ex-

pressions in chapter 6, section 6.3.5, equation (6.3.126). In particular, we find

⟨Oϕ⟩ = 0, ⟨OψI
⟩ = 0,

⟨
J i
⟩
=
(r0µe

ℓ2
, 0, 0

)
=
(qe

ℓ2
, 0, 0

)
,

⟨
T ij
⟩
=

 2m/ℓ2 0 0

0 m/ℓ4 0

0 0 m/ℓ4

 (7.1.30)

7.1.6 Thermodynamics

The final step of the analysis for the bald solution is to study the thermodynamics of the

dual field theory using the definitions and relations discussed in chapter 6, section 6.4.

The temperature and entropy density are equal to the corresponding quantities for the

black hole, given by equations (7.1.4) and (7.1.5), respectively. Namely,

T =
3r0
4πℓ2

− 1

16πr0

(
2p2 +

q2e + q2m
r20

)
and s = 4πr20. (7.1.31)

The energy density, ε, chemical potential µ, charge density ρ, magnetic charge density B
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and axionic charge density Π are

ε = ℓ2
⟨
T tt
⟩
= 2m, µ = lim

r→∞
At =

qe

r0
, ρ = ℓ2

⟨
J t
⟩
= qe,

B =
1

ℓ3
F(0)xy =

qm

ℓ3
, Π =

|p|
ℓ

(7.1.32)

where we have used the relations between bulk fields and boundary charges and poten-

tials, discussed in section 6.4. We have not derived the magnetisation M conjugate to

the magnatic charge B and the axionic magnetisationϖ conjugate to the axionic charge

Π holographically. Instead we will obtain these quantities through the standard ther-

modynamic relations, from the Gibbs free energy or grand canonical potential. As we

saw in section 6.4, this is equal to the renormalised Euclidean on–shell action. To com-

pute this we must Wick rotate the Lorentzian renormalised on–shell action given by

equation (6.3.118). Note that this action takes into account the contribution from the

boundary action associated with the dialton, despite the fact that it vanishes in this case.

The reason we must include it is because we want to consider the bald black branes as

solutions to the same theory that admits the hairy solutions and hence we should im-

pose the same boundary conditions on ϕ as those satisfied by the hairy solutions. These

boundary conditions are trivially satisfied for a vanishing dialton.

Returning to the calculation of the renormalised on–shell action, we must first evaluate

Sbulk by integrating over the radial coordinate r, from the horizon r0, to a UV cutoff r̃ =

r̃(ϵ) in the r coordinate. At the end of this calculation we express r̃(ϵ) in terms of the

cutoff ϵ in the z coordinate using the r(z) expansion (7.1.25). The resulting expression is

Sbulk =

∫ r(ϵ)

r0

d4x
√
−G

(
R− 1

4
F 2

)
=

∫
z=ϵ

d3x

[
−2ℓ4

ϵ3
− 3ℓ2p2

4ϵ
+

(
2r30
ℓ2

−m+
q2e − q2m
2r0

)
+ O (ϵ)

]
.

(7.1.33)

To this we must add the Gibbons–Hawking term SGH, the boundary action associated

with the dialton Sf and the counterterm action, evaluated on the bald solution. Using

the expressions derived in section 6.3.4 we have

SGH =

∫
z=ϵ

d3x

[
6ℓ4

ϵ3
+
ℓ2p2

4ϵ
+ O(ϵ)

]
,

Sct = −
∫
z=ϵ

d3x

[
4ℓ4

ϵ3
− ℓ2p2

2ϵ
+ O(ϵ)

]
,

Sf = 0, (7.1.34)

and

Sren = lim
ϵ→0

(SBulk + SGH + Sct + Sf ) =

∫
dt
(
−m+

2r30
ℓ2

+
q2e − q2m
2r0

)
V2 (7.1.35)

where V2 = Vol(R2). This is of course infinite but we circumvent this issue by using

densities. Finally, by Wick rotating we can perform the integral over Euclidean time
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to obtain the Gibbs free energy, W(T, µ), and the corresponding free energy density

w(T, µ),

W(T, µ) = −Sren/β = wV2 =

(
m− 2r30

ℓ2
+
q2m − q2e
2r0

)
V2. (7.1.36)

Using the expressions for ε, T , s, µ and ρ one can verify the relation

w = ε− sT − µρ, (7.1.37)

as required. As a consistency check, one can also check that

s = −
(
∂w

∂T

)
µ,B,Π

, ρ = −
(
∂w

∂µ

)
T,B,Π

. (7.1.38)

This is done by parametrising w = w(r0, qe, T ), T = T (r0, qe, p), and µ = µ(r0, qe, p), in

terms of r0, qe and p, and using the implicit function theorem, leading for example to

(
∂w

∂T

)
µ,π,B

=

∂w
∂r0

∣∣∣
qe,p,qm

− ∂w
∂qe

∣∣∣
r0,p,qm

∂µ
/
∂r0

∣∣∣
qe,p,qm

∂µ
/
∂qe

∣∣∣
r0,p,qm

∂T
∂r0

∣∣∣
qe,p,qm

− ∂T
∂qe

∣∣∣
r0,p,qm

∂µ
/
∂r0

∣∣∣
qe,p,qm

∂µ
/
∂qe

∣∣∣
r0,p,qm

. (7.1.39)

Moreover, given that the total energy, electric charge and entropy are obtained from the

corresponding densities by multiplying by the spatial volume V2, i.e. E = εV2, Qe = ρV2,

and S = sV2, the thermodynamic identity (6.4.12) determines the pressure to be

P = −
(
∂E
∂V2

)
S,Qe,B,Π

= ⟨Txx⟩ −
q2m
r0

+ p2r0. (7.1.40)

From (7.1.36) and the one point functions (7.1.30) then follows that P = −w, in agreement

with the general result (6.4.13). Finally, (7.1.36) and (7.1.37) give the Gibbs-Duhem relation

(6.4.14),

ε+ P = Ts+ µρ. (7.1.41)

Next we use the definitions (6.4.4) to compute the conjugate potentials to the magnetic

and axionic charge densities,

M = −
(
∂w

∂B

)
T,µ,Π

= −ℓ3 qm

r0
, ϖ = −

(
∂w

∂Π

)
T,µ,B

= 2ℓπr0. (7.1.42)

Using these results it is straightforward to confirm that both the equation of state (6.4.22),

ε = (d− 1)P − 2MB −ϖΠ, (7.1.43)
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and the first law (6.4.9),

dε = T ds+ µdρ−ϖ dΠ−M dB, (7.1.44)

are satisfied. The extra contribution to the pressure (7.1.40) is thus due to the pressure

BM + 1
2Πϖ exerted by the magnetisation. Finally, in order to compare this solution to

the hairy solution with the same charge densities, we need to use the Helmholtz free

energy density f, which is a function of T, ρ,B,Π. This is obtained from the Gibbs free

energy by Legendre transforming with respect to the chemical potential µ,

f = w + µρ = ε− Ts = m− 2r30
ℓ2

+
q2e + q2m
2r0

(7.1.45)

This concludes our current discussion of the bald solution of the theory. We return to

it in section 7.3 were we discuss phase transitions of the theory between the bald and

hairy phases, as well as the stability of these phases.

7.2 Hairy Solution

In addition to the bald solution, we have an analytical electrically charged hairy black

brane solution with a non–trivial dialton. This solution is given by

ds2 = Ω(r)

[
−f(r)dt2 + dr2

f(r)
+ r2

(
dx2 + dy2

)]

f(r) =
r2

ℓ2
− p2

2

(
1 +

√
αv

r

)2

, Ω(r) = 1− v2

(r +
√
α v)

2

ψ1 = px, ψ2 = py

ϕ(r) = 2
√
3 tanh−1

(
v

r +
√
αv

)
A = µ

(
1− r0

r

)
dt, F = dA = − q

r2
dt ∧ dr, (7.2.1)

where again r0 is the position of the horizon and p and q are related to the axion and

U(1) charge densities respectively. The parameter v is related to the vacuum expectation

value (vev) of the scalar operator dual to ϕ, as we shall see later. Furthermore, the gauge

potential vanishes at the horizon and thus µ is the chemical potential in the dual field

theory and q = µr0. This solution can be obtained from the corresponding solution

found in [88], by rewriting it in the Einstein frame. An important point to note is that for

these fields to be solutions to the equations of motion, given by (6.3.1) with V (ϕ) given

by (7.0.1) and Z(ϕ) = 1, we need to impose the constraint

q2 = 2p2v2(1− α). (7.2.2)

This constraint requires we restrict the range of α to 0 ≤ α ≤ 1.
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Dyonic Solution

In analogy to the bald solution, the hairy solution (7.2.1) can be easily extended to include

a magnetic field strength, that is constant everywhere since we are in four dimensions.

The main difference lies in the fact that the constraint relating the parameters now fixes

the electromagnetic duality invariant quantity q2e+q
2
m instead of the electric charge alone,

q2e + q2m = 2p2v2(1− α). (7.2.3)

The metric, dialton, and axion fields are the same as in the purely electric solution (7.2.1),

but the electromagnetic field picks up an extra magnetic contribution, as given in equa-

tion (7.1.2),

A = µe

(
1− r0

r

)
dt+ qmxdy, F = dA = −qe

r2
dt ∧ dr + qm dx ∧ dy, (7.2.4)

with qe = µer0. The resulting planar black hole is dyonic, and carries both an elec-

tric charge density qe and a magnetic charge density qm. When the magnetic field is

turned on, the parameter space changes slightly, however the blackening function f(r),

the conformal factor Ω(r), and the dialton profile remain unchanged and, therefore, the

geometric and thermodynamic properties of these dyonic branes can be related in a

straightforward way to those of the electrically charged branes. The analysis here will

be performed for the dyonic case. By setting qm equal to zero, one retrieves the electric

case.

7.2.1 Black Brane Properties: Horizon and Extremality

Horizon analysis

As usual, the event horizon of the black hole is located at the largest root of the lapse

function, f(r0) = 0. However, the presence of the conformal factor Ω(r) in our metric

introduces an additional constraint on our solutions. For a regular geometry, free of

naked singularities, we require that Ω(r) does not vanish outside the horizon. Solving

Ω(rΩ) = 0 for rΩ we find

rΩ = |v| −
√
αv. (7.2.5)

For any genuine black hole solutions, r0 > rΩ. Without loss of generality let p ≥ 0. Then

the largest root of f(r0) = 0 is

r0 =


ℓp

2
√
2

(
1 +

√
1 + 4

√
2α

v

ℓp

)
for v ≥ − ℓp

4
√
2α

(Case A)

− ℓp

2
√
2

(
1−

√
1− 4

√
2α

v

ℓp

)
for v < − ℓp

4
√
2α

(Case B).
(7.2.6)

Imposing the constraint r0 > rΩ, we see that all Case B geometries suffer from naked sin-

gularities and are therefore rejected. The only regular solutions correspond to a subset



144 Chapter 7. Theory I

of Case A for which the mass parameter satisfies

− ℓp
√
2 (1 +

√
α)

2 < v <
ℓp

√
2 (1−

√
α)

2 . (7.2.7)

From this we can obtain the condition for r0 by first solving f(r0) = 0 for v,

v =

√
2

α

r20
ℓp

− r0√
α
, (7.2.8)

and substituting into equation (7.2.7),

ℓp√
2 (1 +

√
α)

< r0 <
ℓp√

2 (1−
√
α)
. (7.2.9)

The lower bound is in fact more restricted. We will see in section 7.3 that, for stability,

v > 0 and hence
ℓp√
2
< r0 <

ℓp√
2(1−

√
α)
. (7.2.10)

Temperature and absence of extremal solutions

The temperature of the black brane is

T =
f ′(r0)

4π
=

1

πℓ2

(
r0 −

pℓ

2
√
2

)
. (7.2.11)

Solving for r0 and substituting in (7.2.10) we find that the temperature of the hairy black

brane solutions is bounded by

p

2
√
2πℓ

< T <
1 +

√
α

1−
√
α

p

2
√
2πℓ

. (7.2.12)

An important thing to observe is that the temperature can never vanish for regular hairy

solutions, implying there are no regular extremal hairy black brane solutions for this

theory. In particular, the largest zero of f(r) becomes a double zero located at r0 =

ℓp/2
√
2 when v = −ℓp/4

√
2α, and so extremal solutions would be dynamically unstable,

if they existed. However, when v = −ℓp/4
√
2α the conformal factor Ω(r) vanishes at

rΩ =
1 +

√
α

4
√
2α

ℓp > r0, (7.2.13)

and, hence, extremal solutions are singular.2

2When α = 1 we have rΩ = r0 and so Ω vanishes on the horizon. However, the entropy vanishes too in
that case.
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Entropy density

The entropy density of these solutions is given by

s = 4πΩ(r0)r
2
0 = 4π

(
(1 + α)− ℓp

r0
√
2

)
r20
α

(7.2.14)

where we made use of the fact that we are using units in which 16πGN = 1.

Symmetry enhancement

We saw in the previous section that the bald solution to this theory becomes conformal

to AdS2 ×R2 and its symmetry is enhanced to SL(2,R)× SL(2,R). Furthermore, we said

that this symmetry enhancement should also be a feature of the hairy solution. Indeed,

when its lapse function takes the form shown in equation (7.1.6), namely,

f(r) = −p
2

2
+
r2

ℓ2
, (7.2.15)

the hairy solution enjoys the same symmetry enhancement, irrespective of the presence

of the conformal factor Ω(r). There are two instances where this occurs,

1. α = 0 and q2e + q2m = 2p2v2,

2. v = 0 and qe = qm = 0.

The second case coincides with the bald solution since ϕ = 0 when v = 0 and therefore

only the first is of relevance here. However, it is unlikely that the enhanced symmetry

will lead to exactly solvable coupled linearised perturbation equations for the fields gµν ,

Aµ, ϕ, and ψI , as is the case for the bald solutions. This is left for further exploration.

7.2.2 Fefferman–Graham gauge and 1–point functions

Fefferman–Graham Expansion

In this section we give the asymptotic expansions of the fields. These are obtained by

applying the procedure outlined in section 7.1.5 to the hairy solution (7.2.1). The trans-

formation of the holographic coordinate is,

r(z) =
ℓ2

z
+

1

8

(
p2 − 2v2

ℓ2

)
z +

v
√
α

6ℓ2

(
p2 +

2v2

ℓ2

)
z2

+
v2

16ℓ4
(1 + α)

(
p2 − 1 + 3α

1 + α

2v2

ℓ2

)
z3 + O

(
z4
)
. (7.2.16)
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Using this, the metric components are

gtt = −1 + z2
1

ℓ2

(
p2

4
+

3v2

2ℓ2

)
+ z3

8v
√
α

3ℓ4

(
p2

4
− v2

ℓ2

)
+O

(
z4
)
, (7.2.17)

gzz = 1 (7.2.18)

gxx = gyy = ℓ2 + z2
(
p2

4
− 3v2

2ℓ2

)
+ z3

4v
√
α

3ℓ2

(
2v2

ℓ2
+
p2

4

)
+O

(
z4
)

(7.2.19)

the gauge field is

A(z) =

(
qe

r0
− qe

ℓ2
z +

p2qe

8ℓ4
z3 +

vqe

6ℓ6
z4 + O

(
z5
))

dt+ qmxdx, (7.2.20)

the dialton is

ϕ(z) = z
2v

√
3

ℓ2
− z2

2v2
√
3α

ℓ4
+ O

(
z3
)
, (7.2.21)

and the dialton potential is,

V (ϕ) = − 6

ℓ2
− z2

12v2

ℓ6
+ z3

24v3
√
α

ℓ8
+ O

(
z4
)
. (7.2.22)

The axion solutions remain unchanged since they do not depend on the holographic

direction and, similarly, Z0 = 1 with all other coefficients for Z(ϕ) vanishing.

Dialton boundary conditions

As we discussed in 6, section 6.2.2, the theories we study satisfy mixed boundary con-

ditions for the dialton, imposed by requiring that the function

Jf = −ℓ2φ(1) − f ′
(
φ(0)

)
= −ℓ2φ(1) − ϑφ2

(0) (7.2.23)

is kept fixed. Accordingly, δJf = −ℓ2δφ(1) − 2ϑφ(0)δφ(0) = 0. Here we confirm that the

dialton field for this solution satisfy a boundary condition of this form and we derive the

coupling ϑ.

From equation (7.2.21) we have

φ(0) =
2
√
3v

ℓ2
and φ(1) = −2

√
3α v2

ℓ4
, (7.2.24)

from which it follows that φ(1) = −
(√
α/2

√
3
)
φ2
(0). Hence, δφ(1) = −

√
α/3φ(0)δφ(0)

and

δJf =
(
ℓ2
√
α/3− 2ϑ

)
φ(0)δφ(0). It follows that the solution (7.2.1) satisfies mixed bound-

ary conditions for the dialton field with

ϑI =
ℓ2
√
3α

6
. (7.2.25)
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Note that when α = 0, ϑ = 0 and we have Neumann boundary conditions. In all other

cases however, ϑ ̸= 0 and we are in the presence of a triple–trace deformation of the

Neumann theory. Moreover, we have already seen that the vev of the dual operator is

⟨Oϕ⟩ = φ(0) and its conformal dimension is 1.

1–point functions

The 1–point functions for the dual theory can be read–off from the asymptotic expan-

sions of the bulk fields, using the holographic relations in equation (6.3.126). In particular,

we find

⟨Oϕ⟩ = 2
√
3
v

ℓ2
, ⟨OψI

⟩ = 0,
⟨
J i
⟩
=
(r0µe

ℓ2
, 0, 0

)
=
(qe

ℓ2
, 0, 0

)
,

⟨
T ij
⟩
=

 2p2v
√
α/ℓ2 0 0

0 p2v
√
α/ℓ4 0

0 0 p2v
√
α/ℓ4


7.2.3 Thermodynamics

In this section we use the definitions and relations discussed in section 6.4 to study the

thermodynamic properties of the field theory dual to the hairy solution (7.2.1) of theory

I (7.0.1). The analysis is identical to the analysis performed for the bald solutions in 7.1.6

and therefore we omit some of the details and refer the reader to the afformationed

section if additional information is required.

The temperature and entropy density are equal to the corresponding quantities for the

black hole, given by equations (7.2.11) and (7.2.14), respectively.

T =
1

πℓ2

(
r0 −

pℓ

2
√
2

)
, s = 4π

(
(1 + α)− ℓp

r0
√
2

)
r20
α
. (7.2.26)

The energy density, ε, chemical potential µ, charge density ρ, magnetic charge density B
and axionic charge density Π are

ε = ℓ2
⟨
T tt
⟩
= 2p2v

√
α, µ = lim

r→∞
At =

qe

r0
, ρ = ℓ2

⟨
J t
⟩
= qe,

B =
1

ℓ3
F(0)xy =

qm

ℓ3
, Π =

|p|
ℓ
. (7.2.27)

An important property of the hairy solutions of Theory I is that, as a direct consequence

of the condition (7.2.3), the variables (T, µ,B,Π) arenot independent and satisfy the con-

straint

B2 +

(
πT +

Π

2
√
2

)2
[
µ2

ℓ2
− 4

α
(1− α)

(
πT − Π

2
√
2

)2
]
= 0. (7.2.28)

Since all the variables T, µ,B,Π are a priori external tunable parameters, we conclude

that these black holes exist only when these external parameters lie on the constraint

submanifold defined by (7.2.28).
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Next we compute the Gibbs free energy and free energy density of the field theory. For

this we need the Euclidean renormalised on–shell action which is computed by follow-

ing the same steps as those performed for the bald solutions in section 7.1.6. After some

algebra, the Euclidean renormalised on–shell action for these black branes is

SE
ren = −β

(
2r30
ℓ2

+
q2e − q2m
2r0

− p2v
√
α− 2v3

ℓ2
r30
√
α

(r0 + v
√
α)3

)
V2. (7.2.29)

Note that the integral over the holographic direction has a contribution both from the

asymptotic boundary and also from the horizon. This expression is in terms of the pa-

rameters of the solution whereas the Gibbs free energy is a function of (T, µ,B,Π). Thus,

to obtain the Gibbs free energy, one must first invert the expressions 7.2.27 and then sub-

stitute the result in the expression for SE
ren (7.2.29). This gives the following expression

for the Gibbs free energy and free energy density,

w(T, µ,B,Π) = −
√
2 ℓ4Π

[(
πT +

Π

2
√
2

)2

+
µ2

4ℓ2(1− α)

]
+ ℓ4B2

πT − α
(
πT + Π

2
√
2

)
(1− α)

(
πT + Π

2
√
2

)2 ,
(7.2.30)

where again all the variables T, µ,B,Π lie on the constraint submanifold (7.2.28). Us-

ing the above expressions for the energy density, temperature, entropy, electric charge

density and chemical potential, one can verify that the free energy density satisfies the

thermodynamic relation (7.1.37), provided the constraint (7.2.28) is taken into account.

For zero magnetic field (7.2.30) simplifies to

w = − ℓ
2

[
(Ξ + 1)2 +

1

α
(Ξ− 1)2

](
p√
2

)3

, (7.2.31)

whereΞ = 2
√
2 πℓT/p, in complete agreement with the free energy obtained in eqn. (5.6)

of [88] using a (real time) Hamiltonian approach to the thermodynamics. This means

that we can use the thermodynamic analysis of [88] and, in particular, the results on the

phase structure of the system obtained there.

If the variables T, µ,B,Π were all independent, the expression (7.2.30) for the free en-

ergy density could be used to determine the thermodynamic potentials conjugate to the

magnetic and axion charge densities through the relations (6.4.4). However, these vari-

ables are not independent, due to the constraint (7.2.28). Nevertheless, since we know

already the values for the entropy and electric charge densities, we can use a Lagrange

multiplier for the constraint (7.2.28) to obtain the potentials conjugate to the magnetic

and axion charge densities. Considering the variation of w + λC, where λ is a Lagrange

multiplier and C is the constraint (7.2.28), and identifying the coefficient of dT with −s
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fixes the value of the Lagrange multiplier to

λ =
4ℓ2(

√
2 ℓ2µΠ− 2(1− α)qe)

(1− α)µ(4πT +
√
2 Π)2

. (7.2.32)

This allows us to read off the potentials

M = −ℓ3 qm

r0
, ϖ = 2pℓ

(
r0 +

v2

r0 + v
√
α

)
. (7.2.33)

Using these results one can verify that the first law (6.4.9) and the equation of state (6.4.22)

hold.

Finally, in preparation for the discussion of the phase structure of the theory, we com-

pute the Helmholz free energy density by Legendre transforming the Gibbs free energy

with respect to the chemical potential µ,

f = w + µρ = p2v
√
α+

2v3

ℓ2
r30
√
α

(r0 + v
√
α)

3 − 2r30
ℓ2

+
q2e + q2m
2r0

. (7.2.34)

The Helmholz free energy density is a function of T, ρ,B and Π which means that it

allows us to compare solutions with the same charge densities.

BPS-like structure

Intriguingly, all thermodynamic variables of these solutions, including the temperature,

are completely fixed by the charges. In particular, the energy density is given by

ε(ρ,B,Π) =
(

2α

1− α

) 1
2

ℓΠ
√
ρ2 + B2ℓ6 , (7.2.35)

Similarly the entropy density is also completely determined in terms of ρ,B and Π, but

the corresponding expression is too complicated to usefully reproduce it here.

This evokes the analogous property of extremal black holes, and despite having a non-

vanishing temperature, the hairy black holes of Theory I behave along the constraint

(7.2.3) as extremal black holes. The energy density itself is linear in the charges, and

we can think of the black hole as composed of elementary blocks carrying unit axionic

and electric charges, (Π, ρ,B) = (1, 1, 0), and magnetic elementary blocks with charges

(1, 0, 1) (in suitable units). We can thus investigate the stability of such black holes to-

wards fragmentation of the charges by comparing the entropies of the system before

and after fragmentation. We find

s(Π, ρ1, 0) + s(Π, ρ2, 0) ≥ s(Π, ρ1 + ρ2, 0),

s(Π, 0,B1) + s(Π, 0,B2) ≥ s(Π, 0,B1 + B2),

s(Π1, ρ, 0) + s(Π2, ρ, 0) ≤ s(Π1 +Π2, ρ, 0),

s(Π1, 0,B) + s(Π2, 0,B) ≤ s(Π1 +Π2, 0,B). (7.2.36)
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It is thus entropically favorable for these black holes to decay to a bound state of smaller

black holes carrying a smaller electric charge/magnetic field. On the other hand, the

axionic charge is stable against fragmentation.

Quantum Effective Potential

In this section we present the quantum effective potential for these solutions, derived

in [2],

VQFT(σ)= V0 +
µqe

ℓ2
+

ε

2ℓ2σ3∗

(
−2σ3∗ + 3σ∗(σ − σ∗)

2 + (σ − σ∗)
3
)
, (7.2.37)

where V0 is a constant, ε is the energy density given in (7.2.27), σ is the vev and σ∗ is its

value at the extrema of the effective action of the theory, i.e. at the vacua. It follows that

σ = σ∗ is a stable local extremum of the effective potential provided ε > 0, i.e. v > 0.

7.3 Phase Transitions and Dynamical Stability

The final part of our analysis focuses on the phase structure of the theory. For the so-

lutions discussed in this chapter, this analysis was already performed in previous pub-

lications. We therefore do not go into great detail and instead summarise and restate

the existing results, putting more focus on the elements that we consider more rele-

vant and important for our analysis. In particular, we need to compare solutions that

have the same asymptotic charges and satisfy the same boundary conditions, includ-

ing the boundary conditions of the dialton ϕ. Since bald solutions are compatible with

any boundary condition for the scalar ϕ, they can potentially compete with any hairy

solutions with the same asymptotic charges.

As was stressed when discussing the thermodynamic properties of each solutions, the

appropriate thermodynamic potential to use when comparing competing solutions with

the same asymptotic charges is the Helmholtz free energy density. For the bald solution

this is given by equation (7.1.45)

f = m− 2r30
ℓ2

+
q2e + q2m
2r0

. (7.3.1)

Notice that the magnetic and electric charges enter the same way in the Helmholtz free

energy and so the thermodynamic stability properties of the dyonic solutions are quali-

tatively equivalent to those of the corresponding purely electric solutions. Moreover, as

it was pointed out in [88], planar black holes with axion charge are equivalent to black

holes with horizons of constant negative curvature and no axion charge. As a result,

the stability properties of the planar bald solutions of this theory are analogous to those

of bald black holes with hyperbolic horizons, which have been studied for example in

[106, 107, 108, 109] and we refer the interested reader to these publications for more

details.
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For the hairy solutions, the Helmholtz free energy density is given in equations 7.2.34,

f = p2v
√
α+

2v3

ℓ2
r30
√
α

(r0 + v
√
α)3

− 2r30
ℓ2

+
q2e + q2m
2r0

. (7.3.2)

As for the bald solutions, the dependence of the Helmholtz free energy on the magnetic

and electric charges is identical and so the thermodynamic stability properties of the

hairy dyonic solutions of this theory are identical to those of the purely electric solutions

studied in [88]. However, the constraint (7.2.3) implies that the temperature is not an

independent thermodynamic variable for the hairy solutions, but rather a fixed function

of the charge densities, namely

T (ρ,B,Π) = Π

2π
√
2

√
1 + 4

√
α

1− α

√
ρ2 + B2ℓ6

Π2ℓ3
. (7.3.3)

This means that, for given charge densities, one can only compare the free energy of

the hairy solutions with that of the bald ones at a fixed temperature, which considerably

restricts the useful information one can extract from such an analysis. Nevertheless,

this analysis was performed in [88] and reveals that at large temperatures the unbroken

phase of bald black holes dominates, and as we lower the temperature (togetherwith the

charge densities according to (7.3.3)), the system undergoes a second order phase transi-

tion towards a phase of hairy black holes. As the temperature is lowered further, below

the lower bound in (7.2.12), the hairy solution becomes dynamically unstable, while at

an even lower temperature it ceases to exist.

The constraint (7.2.3) does not have a physical significance which makes us believe that

there exist more general hairy solutions of this theory whose temperature is not deter-

mined by the charge densities. Such solutions would allow one to explore the full phase

diagram of the theory. However, we have been unable to find this more general class

analytically. It would be interesting to see if this more general class of hairy solutions

can be found numerically.
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Chapter 8

Theory II

The second theory we will study is described by the action (6.2.1) with the dialton po-

tential and dialton–gauge field coupling given, respectively, by

V (ϕ) = σ1e
(d−2)(d−1)δ2−2

2(d−1)δ
ϕ
+ σ2e

2ϕ
δ(1−d) + σ3e(d−2)δϕ,

Z(ϕ) = e−(d−2)δϕ, W (ϕ) = 1, (8.0.1)

where,

σ1 = σ0
8(d− 2)(d− 1)2δ2

d(2 + (d− 2)(d− 1)δ2)2
, σ2 = σ0

(d− 2)2(d− 1)δ2(d(d− 1)δ2 − 2)

d(2 + (d− 2)(d− 1)δ2)2

σ3 = −2σ0
(d− 2)2(d− 1)δ2 − 2d

d(2 + (d− 2)(d− 1)δ2)2
, σ0 = −d(d− 1)

ℓ2
= 2Λ. (8.0.2)

and δ is a free parameter. This action, and an analytic family of electrically charged black

brane solutions were presented in appendix C of [89]. The expressions for the poten-

tial and dialton–gauge field coupling simplify if one restricts to d = 3 and trades the

parameter δ for a new parameter ξ defined by

δ =

√
2− ξ

ξ
, 0 < ξ < 2. (8.0.3)

In this case, the expressions for the potential and couplings become

V (ϕ) = − 1

ℓ2
e−

√
ξ

2−ξ
ϕ
(
(2− ξ)(3− 2ξ) + 4ξ(2− ξ)e

ϕ√
ξ(2−ξ) + ξ(2ξ − 1)e

2ϕ√
ξ(2−ξ)

)
,

Z(ϕ) = e−
√

2−ξ
ξ
ϕ
, W (ϕ) = 1, (8.0.4)

Comparing the above potential, (8.0.4), to the potential of theory I, (7.0.1), we observe that

the two coincide when ξ = 1/2 (or equivalently ξ = 3/2) and α = 1. In all other cases

they do not match. However, using the language defined in section 6.3.2 and, in par-

ticular, in equation (6.3.17), the V2 coefficient which gives the mass of the dialton, is the

153
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same for both potentials, irrespective of the values of ξ and α. Thus, the AdS masses of

the scalar and conformal dimensions of the dual operators, are the same for the two the-

ories. Moreover, the discussion in chapter 6, section 6.2.2, about the dialton boundary

conditions, applies to this theory as well.

An interesting feature of the potential (8.0.4) is that it can be written globally in terms of

a superpotential as

U ′2(ϕ)− 3

4
U2(ϕ) = 2V (ϕ), (8.0.5)

where

U(ϕ) = −2

ℓ

(
(2− ξ)e

− ξ/2√
ξ(2−ξ)

ϕ
+ ξe

(1−ξ/2)√
ξ(2−ξ)

ϕ
)
. (8.0.6)

Moreover, for ξ = 1/2 (or equivalently with ξ = 3/2) and ξ = 1, this potential can be

embedded in the U(1)4 truncation of maximally supersymmetric gauge supergravity,

including the gauge field with Z(ϕ) as given in (8.0.4).

8.1.1 The ξ → 0 and ξ → 2 limits

The limits ξ → 0 and ξ → 2 require separate treatment and correspond to special cases

of Theory I. In order to consider these limiting cases one must first rescale the fields

appropriately to ensure that the potential and couplings remain finite. In particular, to

study the ξ → 0 limit we set ξ = ϵ and redefine the dialton and the gauge field as

ϕ→ ϕ̃ =
ϕ√
ϵ
, A→ Ã =

A√
ϵ
. (8.1.7)

In the limit ϵ → 0, the potential V (ϕ) becomes −6/ℓ2 = 2Λ and the coupling of the

dialton to the Maxwell field Z(ϕ) → e−2ϕ̃. Rewriting the action (6.2.1) in terms of the

rescaled fields and noting that the kinetic terms for the dialton and gauge field acquire

a factor of ϵ, in the limit ϵ→ 0 , we obtain

Sbulk =

∫
M

d4x
√
−G

(
R− 2Λ− 1

2

2∑
I=1

(∂ψI)
2

)
. (8.1.8)

This is a consistent truncation of Theory I, obtained by setting the dialton, ϕ, and the

gauge field, A, to zero.

Similarly, the limit ξ → 2 is obtained by setting ξ = 2 − ϵ and redefining the dialton as

above. In this case one need not rescale the gauge field, which therefore survives the

limit. Letting ϵ→ 0 we have V (ϕ) → 2Λ and Z(ϕ) → 1 and the action becomes

Sbulk =

∫
M

d4x
√
−G

(
R− 2Λ− 1

2

2∑
I=1

(∂ψI)
2 − 1

4
F 2

)
. (8.1.9)

Once again, this is a consistent truncation of Theory I corresponding to setting ϕ = 0,

but keeping the gauge field. Since both limits ξ → 0 and ξ → 2 result in truncations
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of Theory I, we will not consider these cases further, except in a brief discussion about

the bald solutions of theory II. Most of our subsequent analysis will instead focus on the

cases 0 < ξ < 2.

8.2 Bald Solutions

We begin our analysis of theory II with the discussion of bald solutions, i.e. solutions for

which the dialton vanishes. The Z(ϕ)F 2 term in the action means that the gauge field

sources the dialton, as can be seen from the equation of motion for the dialton 6.3.1,

□ϕ− V ′(ϕ) =
1

4
Z ′(ϕ)F 2. (8.2.1)

It follows that there are two possible ways to turn off the dialton. Since the gauge field

sources the dialton, one possibility is for neutral bald solutions, i.e. A = 0. In this case

the solution is

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dx⃗2 , ψI = pxI ,

f(r) =
r2

ℓ2
− r30
rℓ2

− p2

2

(
1− r0

r

)
, ϕ = 0, A = 0. (8.2.2)

This solution is the same as the bald solution of Theory I, (7.1.1), with appropriate identifi-

cations of the parameters. Moreover, we will see later that it corresponds to the ve , ξ → 0

limit of the hairy solution of theory II.

In addition to the neutral bald solutions, it is possible to have charged ones as well, pro-

vided that the dialton and gauge field decouple. This means that Z(ϕ) must be constant.

The only was this can be achieved is if ξ = 2. As we saw in the previous section, in this

the theory is described by the action (8.1.9) and it is the consistent truncation of The-

ory I corresponding to setting ϕ = 0. As such, it shares its bald solutions which were

presented in chapter 7, section 7.1.

Thus, we find that the bald solutions of theory II are special cases of the bald solutions

of theory I and, for this reason, we do not repeat the analysis and refer the reader to the

relevant sections of the previous chapter.

8.3 Hairy Solution

8.3.1 Electric Solutions

In [89] the author obtained an analytic expression for a family of electrically charged

hairy black hole solutions for theory II, generalised to any dimension d. In terms of the
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original parameter δ these are given by1

ds2 = −f(r)h(r)
−4

2+(d−2)(d−1)δ2 dt2 + h(r)
4

(d−2)(2+(d−2)(d−1)δ2)

(
dr2

f(r)
+ r2dx⃗2d−1

)
,

f(r) =
r2

ℓ2

(
h(r)

4(d−1)

(d−2)(2+(d−2)(d−1)δ2) − rd0
rd
h(r0)

4(d−1)

(d−2)(2+(d−2)(d−1)δ2)

)
− p2

2(d− 2)

(
1− rd−2

0

rd−2

)
,

ϕ(r) =
−2(d− 1)δ

2 + (d− 2)(d− 1)δ2
logh(r), h(r) = 1 +

ve

rd−2
,

A(r) = 2
√

(d− 1)ve

√
(d− 2)

rd+2
0
ℓ2
h(r0)

2(2−(d−2)2(d−1)δ2)

(d−2)(2+(d−1)(d−2)δ2) − p2rd0
2h(r0)

(d− 2)rd−1
0 h(r)

√
2 + (d− 2)(d− 1)δ2

(
1− rd−2

0

rd−2

)
dt,

ψI = pxI , (8.3.1)

where the parameter ve is identified withQ in [89]. This solution has a twofold advantage

over the hairy solution of theory I: it is a solution for any dimension d, and there is no

constraint among its parameters, i.e. it solves the equations of motion for any values of

the parameters r0, p and ve. However, this parameterisation of the solution treats the

electric charge density as a dependent parameter, expressed in terms of the radius of

the horizon, r0, the axion charge density p and the parameter ve which, as we will see

later, is proportional to the vev of the scalar operator dual to the dialton. This not only

obscures the limiting process of taking the charge density to zero, but also it does not

reflect the change of the sign of the gauge potential when the charge density changes

sign.

Focusing on the four-dimensional case, i.e. d = 3, from now on, we will therefore in-

troduce an alternative parameterisation of the solution (8.3.1), by introducing explicitly

the charge density qe as an independent parameter, in addition to replacing δ with ξ as

in (8.0.3). With these modifications the solution takes the form

ds2= −f(r)h−ξ(r)dt2 + hξ(r)
(
f−1(r)dr2 + r2dx⃗2

)
,

f(r)=
r2

ℓ2
h2ξ(r)− p2

2
h(r)− q2e

2ξver
=
r2

ℓ2
h2ξ(r)− r30

rℓ2
h2ξ(r0)−

p2

2

(
1− r0

r

)
,

ϕ= −
√
ξ(2− ξ) logh(r) , h(r) = 1 +

ve

r
,

A= qe

(
1

r0h(r0)
− 1

rh(r)

)
dt , ψI = pxI , (8.3.2)

where ve can be expressed in terms of qe, p and r0 through the relation

ve =
ℓ2q2e

ξr0h(r0)
(
2r20h(r0)

2ξ−1 − ℓ2p2
) . (8.3.3)

This identity should be viewed as an expression for ve(r0, qe, p)or conversely r0(ve, qe, p),

but not qe(r0, ve, p), as in the original parameterisation (8.3.1). Note, in particular, that it

1This fixes a typo in equation C.5 of [89].
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is clear from the form (8.3.2) of the solution that we can set qe = 0, while keeping ve ̸= 0.

In the parameterization in terms of r0 this corresponds to a non-trivial scaling limit.

Moreover, notice that the first expression for the blackening factor f(r) in (8.3.2) implies

that as long as qe ̸= 0 we must necessarily have ve ̸= 0, and hence the scalar field must

have a non-trivial profile. In summary, qe ̸= 0 implies that ve ̸= 0, but the converse is

not true.

8.3.2 Magnetic Solutions

We have been able to find in addition an analytical black brane solution that is purely

magnetically charged and takes the form

ds2 = −f(r)h−(2−ξ)(r)dt2 + h2−ξ(r)

(
dr2
f(r)

+ r2dx⃗2
)
,

ϕ(r) = −
√
ξ(2− ξ) logh(r), h(r) = 1 +

vm

r
,

f(r) = h(r)

(
r2

ℓ2
+

(3− 2ξ)vmr

ℓ2

(
1 +

(1− ξ)vm

r

)
− p2

2
+

q2m
2ξvmr

)
,

A = qm xdy, ψI = pxI . (8.3.4)

In addition to the axion charge density p, this solution is parameterised by the magnetic

charge density qm as well as the independent parameter vm, which as we will see later,

is again related to the vev of the scalar operator dual to ϕ.

8.3.3 Black Brane Properties: Horizon and Extremality

Electric Solutions

Starting with the electric solution (8.3.2), we first need to know the range of parameters

for which these solutions describe regular black branes, and to find the location of their

event horizon. The solution has singularities at both r = 0 and r = −ve (where h(r)

vanishes). To be regular, the solution must thus have an event horizon at a location r0

such that r0 > 0 and r0 > −ve. Horizons correspond to the zeros of the function f(r)

and can be determined in terms of the electric and axion charge densities, respectively

p and qe, as well as the parameter ve, by solving the (generically transcendental) equation

r20
ℓ2
h2ξ(r0)−

p2

2
h(r0)−

q2e
2ξver0

= 0, h(r0) = 1 +
ve

r0
. (8.3.5)

For ξ = 1, 1/2, 3/2, this equation is cubic in r0 and the roots can be found explicitly,

although they are still highly involved expressions.

The temperature of these black branes can be computed as usual by requiring that there
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is no conical singularity in the Euclidean section of the metric, giving

T =
1

4π

d
dr

(
f(r; qe, ve, p)

hξ(r)

)∣∣∣∣
r=r0

=
1

4πℓ2hξ(r0)

(
2r0h

2ξ(r0)− veξh
2ξ−1(r0) +

p2ℓ2ve(1− ξ)

2r20
+
q2eℓ

2(r + (1− ξ)ve)

2ξver3h(r0)

)
,(8.3.6)

Moreover, the entropy density is given by the area density of the event horizon,

s =
r20 h

ξ(r0)

4GN
= 4πr20 h

ξ(r0). (8.3.7)

In contrast to the hairy solutions of Theory I, these solutions admit extremal limits, cor-

responding to the cases where the temperature (8.3.6) vanishes. Combining this condi-

tion with the defining equation f(r0) = 0 for the horizon determines the location of the

extremal horizon to be

rex
0 =

ξ(2ξ − 5)p2v2e − 3q2e + sgn(ve)
√

9q4e + ξ2(2ξ − 1)2p4v4e + 2ξ(2ξ + 3)p2q2ev
2
e

4ξp2ve
. (8.3.8)

Requiring in addition that f(rex
0 ) = 0 gives the extremality condition, which can be ex-

pressed in the form vex
e (qe, p). It is not possible to obtain this extremality condition an-

alytically for generic ξ, but it can be done for specific values.2 The simplest case is

ξ = 1, ve = −

√
ℓ
(
9ℓp2q2e − ℓ3p6 + (ℓ2p4 − 6q2e)

3/2
)

ℓ2p4 − 8q2e
, (8.3.9)

ve =
ℓ2q2e

ξr0h(r0)
(
2r20h(r0)

2ξ−1 − ℓ2p2
) . (8.3.10)

in which case the extremal horizon simplifies to (see (8.5.5))

rex
0 = −ve +

(6q2e − ℓ2p4)ve

9q2e + p2v2e
. (8.3.11)

However, as we shall see, the energy density for this solution, given in equation (8.4.2),

is negative which implies that it is dynamically unstable (see section 8.5).

Magnetic Solutions

The magnetically charged solutions (8.3.4) can be studied similarly. The location r0 of

the horizon is determined by the equation

r20
ℓ2

+
(3− 2ξ)vmr0

ℓ2

(
1 +

(1− ξ)vm

r0

)
− p2

2
+

q2m
2ξvmr0

= 0, (8.3.12)

2The extremality condition can also be determined by requiring that the discriminant of the polynomial
f(r) vanishes, in which case the horizon becomes a multiple root.
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which in this case is cubic for arbitrary ξ. The generic expression for r0, however, is

still too lengthy to usefully reproduce here. The same applies to the temperature and

entropy density, which are given by

T =
1

4π

d
dr

(
f(r; qm, vm, p)

h2−ξ(r)

)∣∣∣∣
r=r0

=
hξ−1(r0)

8πℓ2r0

(
−ℓ2p2 + 6r20h

2(r0)− 8vmr0ξ + 2v2mξ(2ξ − 5)
)
,

s =
r20 h

2−ξ(r0)

4GN
= 4πr20 h

2−ξ(r0). (8.3.13)

As for the electrically charged solutions, extremal solutions can be found, even analyti-

cally for specific values of the parameters. The simplest case is again

ξ = 1, vm =

√
ℓ
(
9ℓp2q2m − ℓ3p6 + (ℓ2p4 − 6q2m)

3/2
)

ℓ2p4 − 8q2m
, (8.3.14)

with the extremal horizon given by (see (8.5.13))

rex
0 =

9ℓ2q2m + ℓ2p2v2m
2vm (3ℓ2p2 + 2v2m)

. (8.3.15)

Again, the energy density (8.4.17) is negative for this solution, and so it is also dynamically

unstable.

Scaling symmetry Finally, all the families of solutions presented above enjoy a scaling

symmetry: they are left invariant by the scaling (t, x⃗, r) → (λt, λx⃗, λ−1r) of the coor-

dinates, when accompanied by the rescaling (p, ve/m, qe/m) → (λ−1p, λ−1ve/m, λ
−2qe/m)

of the parameters. Under such a rescaling, the temperature and entropy transform ac-

cording to T → λ−1T and s→ λ−2s. This invariance will simplify the study of the phases

of these black branes, since it allows us to scale away one of the parameters such as the

axion charge density p, as long as it is non vanishing.

8.3.4 Fefferman–Graham Gauge and One–Point Functions

In this section we give the asymptotic expansions of the fields and use them to read

off the one–point functions of the dual operators. These are obtained by repeating the

procedure outlined in section 7.2.2 (see also 6.3 for the complete discussion) to the hairy

solutions (8.3.2) and (8.3.4).
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Electric Solutions

Fefferman–Graham expansion For the electrically charged black branes of equation (8.3.2)

the transformation of the holographic coordinate is,

r(z) =
ℓ2

z
− ξve

2
+

1

8

(
p2 +

v2e
2ℓ2

ξ(2− ξ)

)
z

+
1

12ℓ4

(
2r30h(r0)

2ξ − ℓ2p2(r0 + ξve)−
1

3
ξ(1− ξ)(2− ξ)v3e

)
z2

− ξve

16ℓ6

(
r30h(r0)

2ξ − 1

2
ℓ2p2r0h(r0)−

1

4
(1− ξ)2(2− ξ)v3e

)
z3 +O(z4). (8.3.16)

Using this, the metric components are

gtt = −1 + z2
(
p2

4ℓ2
+
ξ(2− ξ)v2e

8ℓ4

)
+z3

(
2r30
3ℓ6

h2ξ(r0)−
p2

3ℓ4
(r0 + ξve)−

ξ(1− ξ)(2− ξ)v3e
9ℓ6

)
+O

(
z4
)
, (8.3.17)

gzz = 1, (8.3.18)

gxx = gyy = ℓ2 + z2
(
p2

4
− ξ(2− ξ)v2e

8ℓ2

)
+ z3

(
r30
3ℓ4

h2ξ(r0)−
p2

6ℓ2
(r0 + ξve) +

ξ(1− ξ)(2− ξ)v3e
9ℓ4

)
+O

(
z4
)
,(8.3.19)

and the remaining fields,

ϕ = −
√
ξ(2− ξ)

ve

ℓ2
z + (1− ξ)

√
ξ(2− ξ)

v2e
2ℓ4

z2 +O(z3), (8.3.20)

At =
qe

r0h(r0)
− qe

ℓ2
z +O(z2), (8.3.21)

with the axions the same as in the original coordinate system.

The dialton potential is,

V (ϕ) = − 6

ℓ2
− z2

v2eξ (2− ξ)

ℓ6
+ z3

v3eξ (2− ξ) (1− ξ)

ℓ8
+O

(
z4
)
. (8.3.22)

and the dialton–gauge field coupling is

Z(ϕ) = 1 + z
ve (2− ξ)

ℓ2
+ z2

v2e (2− ξ)

2ℓ4
− z3

ve(2− ξ)
(
6ℓ2p2 − v2eξ (10− ξ)

)
48ℓ6

+O
(
z4
)
.

(8.3.23)

Dilaton boundary conditions As we discussed in section 6.3.3, the theories we study

satisfy mixed boundary conditions for the dialton. These are given by the function Jf =

−ℓ2φ(1) − f ′
(
φ(0)

)
= −ℓ2φ(1) − ϑφ2

(0) which is kept fixed. Accordingly, δJf = −ℓ2δφ(1) −
2ϑφ(0)δφ(0) = 0.

Here we confirm that the dialton field of the electrically charged black branes satisfies a
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boundary condition of this form and we derive the coupling ϑ.

From equation (8.3.20) we haveφ(0) = −
√
ξ(2− ξ)ve/ℓ

2 andφ(1) = (1−ξ)
√
ξ(2− ξ)v2e/2ℓ

4

and, thus,

φ(1) =
1− ξ

2
√
ξ (2− ξ)

φ2
(0). (8.3.24)

Varying this expression we find

δφ(1) =
(1− ξ)√
ξ(2− ξ)

φ(0)δφ(0), δJf =

(
−ℓ2 (1− ξ)√

ξ(2− ξ)
− 2ϑe

II

)
φ(0)δφ(0). (8.3.25)

It follows that the solution (8.3.2) satisfies mixed boundary conditions for the dialton

field with

ϑe
II = − (1− ξ) ℓ2

2
√
ξ (2− ξ)

. (8.3.26)

Moreover, we have already seen that the vev of the dual operator is ⟨Oϕ⟩ = φ(0) and its

conformal dimension is 1.

One–point functions The one–point functions for the field theory dual to the electri-

cally charged black branes can be read off from the asymptotic expansions of the bulk

fields, using the holographic relations in equation (6.3.126). In particular, we find

⟨Oϕ⟩ = −
√
ξ(2− ξ)

ve

ℓ2
, ⟨OψI

⟩ = 0,⟨
J i
⟩
=
(qe

ℓ2
, 0, 0

)
,

⟨Tij⟩ =


1

ℓ4
2r30h

2ξ(r0)−
1

ℓ2
p2(r0 + ξve) 0 0

0
1

ℓ2
r30h

2ξ(r0)−
1

2
p2(r0 + ξve) 0

0 0
1

ℓ2
r30h

2ξ(r0)−
1

2
p2(r0 + ξve)

 . (8.3.27)

Notice that, in the limit ve, qe → 0, the above stress energy tensor coincides with the

stress energy tensor of the bald solution of theory I, given in equation (7.1.30), with the

identification m = r30/ℓ
2 − p2r0/2 of their parameters. This is in perfect agreement with

the discussion in section 8.2 of bald black branes of theory II.

Magnetic Solutions

Fefferman–Graham expansion For the magnetic solutions (8.3.4) the transformation

of the holographic coordinate is,

r =
ℓ2

z
− 2− ξ

2
vm +

1

8

(
p2 +

v2m
2ℓ2

ξ(2− ξ)

)
z

− 1

12ℓ2ξvm

(
q2m + p2v2mξ(1− ξ)− v4m

3L2
ξ(1− ξ)(6− 14ξ + 7ξ2)

)
z2

− 1

32ℓ4

(
q2m − v4m

2ℓ2
ξ(1− ξ)2(2− ξ)

)
z3 +O(z4). (8.3.28)
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Using this, the metric components are

gtt = −1 + z2
(
p2

4ℓ2
+
ξ(2− ξ)v2m

8ℓ4

)
+z3

(
(1− ξ)(6− 14ξ + 7ξ2)v3m

9ℓ6
− q2m

3ℓ4ξvm
− (1− ξ)p2vm

3ℓ4

)
+O(z4), (8.3.29)

gzz = 1, (8.3.30)

gxx = gyy = ℓ2 + z2
(
p2

4
− ξ(2− ξ)v2m

8ℓ2

)
+ z3

(1− ξ)(3− 10ξ + 5ξ2)v3m
9ℓ4

− q2m
6ℓ2ξvm

− (1− ξ)p2vm

6ℓ2
+O(z4),(8.3.31)

and the remaining fields,

ϕ = −
√
ξ(2− ξ)

vm

ℓ2
z + (1− ξ)

√
ξ(2− ξ)

v2m
2ℓ4

z2 +O(z3), (8.3.32)

Ai = (0, 0, qmx), (8.3.33)

with the axions the same as in the original coordinate system.

The dialton potential is,

V (ϕ) = − 6

ℓ2
− z2

v2mξ (2− ξ)

ℓ6
− z3

v3mξ (2− ξ) (1− ξ)

ℓ8
+O

(
z4
)
. (8.3.34)

and the dialton–gauge field coupling is

Z(ϕ) = 1 + z
vm (2− ξ)

ℓ2
+ z2

v2m (2− ξ) (3− 2ξ)

2ℓ4
+O(z3). (8.3.35)

Dilaton boundary conditions Once more, the asymptotic expansion for the scalar ϕ

determines the boundary conditions these black holes are compatible with. Compar-

ing the relation φ(1) = 1−ξ
2
√
ξ(2−ξ)

φ2
(0) between the two scalar modes with the condition

that the single trace source for the dual scalar operator vanishes, i.e. Jf = −ℓ2φ(1) −
F ′(φ(0)) = 0, determines that the multitrace deformation function F(φ(0)) is of the form

(6.3.72) with

ϑm
II =

(1− ξ)ℓ2

2
√
ξ(2− ξ)

. (8.3.36)

Notice that this is the same as the boundary condition (8.3.26) for the electrically charged

solutions, except for the sign.

One–point functions Once again, the one–point functions of the operators dual to the

bulk fields of the magnetic solution, can be read off from the asymptotic expansions of

the bulk fields, using the holographic relations given in equation 6.3.126. In particular,
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we find

⟨O∆−⟩ = φ(0) = −
√
ξ(2− ξ) vm/ℓ

2, ⟨J i⟩ = (0, 0, 0) , ⟨OψI
⟩ = 0,

⟨Tij⟩ =


2

3ℓ4
(1− ξ)(1− 2ξ)(3− 2ξ)v3m − q2m

ℓ2ξvm
− 1

ℓ2
(1− ξ)p2vm 0 0

0
2

6ℓ2
(1− ξ)(1− 2ξ)(3− 2ξ)v3m − q2m

2ξvm
− 1

2
(1− ξ)p2vm 0

0 0
2

6ℓ2
(1− ξ)(1− 2ξ)(3− 2ξ)v3m − q2m

2ξvm
− 1

2
(1− ξ)p2vm

 .

(8.3.37)

8.4 Thermodynamics

In this section we use the definitions and relations discussed in section 6.4 to study the

thermodynamic properties of the field theory dual to the hairy solutions (8.3.2) and (8.3.4),

of theory II.

8.4.1 Electric Solutions

We begin with the discussion of the electrically charged black brane solutions given in

equation (8.3.2). The temperature and entropy density of the field theory are equal to

the corresponding quantities for the black hole, given by equations (8.3.6) and (8.3.7),

respectively. Namely,

T =
1

4πℓ2hξ(r0)

(
2r0h

2ξ(r0)− veξh
2ξ−1(r0) +

p2ℓ2ve(1− ξ)

2r20
+
q2eℓ

2(r + (1− ξ)ve)

2ξver3h(r0)

)
,

s =
r20 h

ξ(r0)

4GN
= 4πr20 h

ξ(r0). (8.4.1)

The energy density, ε, chemical potential µ, charge density ρ and axionic charge density

Π are

ε= ℓ2
⟨
T tt
⟩
= (1− ξ)p2ve +

q2e
ξve

,

µ= lim
r→∞

At =
ρ

r0h(r0)
, ρ = ℓ2

⟨
J t
⟩
= qe, Π =

|p|
ℓ

(8.4.2)

where we have used the relations between bulk fields and boundary charges and poten-

tials, discussed in section 6.4. We have not derived the axionic magnetisation ϖ conju-

gate to the axionic chargeΠholographically. Instead we will derive it from the Gibbs free

energy or grand canonical potential, through the standard thermodynamic relations. To

obtain the Gibbs free energy we must compute the renormalised Euclidean on–shell

action. The general expression for the Lorentzian on–shell action for the class of theo-

ries we are studying was derived in chapter 6 (equation (6.3.118)). In particular, there are

four terms to consider, SBulk obtained by integrating the on–shell bulk action between

the horizon and the UV cutoff r̄(ϵ) (corresponding to z = ϵ), the Gibbons–Hawking term
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SGH, the boundary action associated with the dialton boundary conditions Sf and the

counterterm actionSct. The expressions for all these terms can be found in section 6.3.4.

The only thing left for us to do is evaluate them for the electrically charged solution

studied. This is a trivial exercise for all but SBulk which we must still integrate along the

holographic direction, from the horizon r0, to a UV cutoff r̄ = r̄(ϵ). At the end of this

calculation we express r̄(ϵ) in terms of the cutoff ϵ in the z coordinate using the r(z)

expansion (7.1.25) The resulting expression is

Sbulk =

∫ r̄(e)

r0

dr
∫

d3x
√
−G

(
V − 1

4
F 2

)
=

∫
d3x

[
−2ℓ4

ϵ3
− 6ℓ2p2 − ξ(2− ξ)v2e

8ϵ
+ r0

(
p2

2
+
r20
ℓ2
h2ξ(r0)

)
+O(ϵ).

]
(8.4.3)

Combining this result with the Sf , SGH and Sct we finally obtain

SEren = −Sren = −βV2

(
r30h

2ξ(r0)

ℓ2
+
r0p

2

2

)
. (8.4.4)

where V2 = Vol(R2). This is of course infinite but we circumvent this issue by using

densities. Finally, by Wick rotating we can perform the integral over Euclidean time

to obtain the Gibbs free energy, W(T, µ), and the corresponding free energy density

w(T, µ),

W(T, µ) = −Sren/β = wV2 =

(
r30h

2ξ(r0)

ℓ2
+
r0p

2

2

)
V2. (8.4.5)

Using the expressions for ε, T , s, µ and ρ one can verify the relation

w = ε− sT − µρ, (8.4.6)

as required. As a consistency check, one can also check that

s = −
(
∂w

∂T

)
µ,Π

, ρ = −
(
∂w

∂µ

)
T,Π

. (8.4.7)

Moreover, by varying the free energy density with respect to axion charge density Π,

keeping T and µ fixed, we obtain the thermodynamic potential conjugate to the axion

charge density,

ϖ = −
(
∂w

∂Π

)
T,µ

= 2pℓ

(
r0 +

veξ

2

)
. (8.4.8)

Combining this with our previous results allows us to confirm the density first law (6.4.9),

dε = T ds+ µdρ−ϖ dΠ. (8.4.9)
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The pressure of the system, defined in equation (6.4.12), is given by

P = −
(
∂E
∂V2

)
S,Qe,Π

= ⟨Txx⟩+ p2
(
r0 +

veξ

2

)
= ⟨Txx⟩+

1

2
Πϖ, (8.4.10)

where we have introduced the total energy E = εV2, electric charge Qe = ρV2, entropy

S = sV2. It is easy to verify that this is equal to −w, as required. Furthermore, combining

the above result, one can check that they satisfy both the Gibbs–Duhem relation,

ε+ P = Ts+ µρ (8.4.11)

and the first law (6.4.11)

dE = T dS − P dV2 + µdQe − (ϖV)dΠ− (MV2)dB, (8.4.12)

As an additional check, one can verify that the equation of state derived in section 6.4.1

holds, provided we set B = 0 in equation (6.4.22). In particular, for the current solutions,

one finds

ε = 2P −ϖΠ. (8.4.13)

Finally, in order to be able to compare solutions with the same charge densities, we need

to derive an expression for the Helmholtz free energy density f, which is a function of

T, ρ,Π. This is related to the Gibbs free energy by a Legendre transform with respect to

the chemical potential µ,

f = w + µρ =
q2e

r0h(r0)
− r30h

2(r0)

ℓ2
− r0p

2

2
. (8.4.14)

This concludes our current discussion of the electrically charged black branes of theory

II. We will return to them in section 8.5 where we discuss the phase structure of the

theory.

8.4.2 Magnetic Solutions

We now turn to the magnetically charged black brane solutions, given by equation (8.3.4),

and repeat the analysis performed above. The temperature and entropy density of the

field theory are equal to the corresponding quantities for the black hole, given in equa-

tion (8.3.13),

T =
hξ−1(r0)

8πℓ2r0

(
−ℓ2p2 + 6r20h

2(r0)− 8vmr0ξ + 2v2mξ(2ξ − 5)
)
, (8.4.15)

s =
r20 h

2−ξ(r0)

4GN
= 4πr20 h

2−ξ(r0). (8.4.16)
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Moreover, the energy density, ε, axionic charge density Π and magnetic charge density

B are

ε =
2

3
(1− ξ)(2ξ − 3)(2ξ − 1)

v3m
ℓ2

− (1− ξ)p2vm − q2m
ξvm

, (8.4.17)

B =
1

ℓ3
F(0)xy =

qm

ℓ3
, Π =

|p|
ℓ
, (8.4.18)

where we have used the relations between bulk fields and boundary charges and po-

tentials, discussed in section 6.4. Once more, the axionic magnetisation ϖ conjugate to

the axionic charge Π, as well as the magnetisation M conjugate to the magnetic charge,

will be derived from the Gibbs free energy through the standard thermodynamic rela-

tions. We therefore proceed to compute the Gibbs free energy by computing the renor-

malised on–shell action, as we did for the electrically charged black branes. Using equa-

tion (6.3.118) as our reference, we begin by integrating the bulk on–shell action,

Sbulk =

∫ r̄(ϵ)

r0

dr
∫

d3x
√
−G

(
V − 1

4
F 2

)
=

∫
d3x

[
− 2ℓ4

ϵ3
− 6ℓ2p2 − ξ(2− ξ)v2m

8ϵ

+
1

6ℓ2ξvmr0

(
3ℓ2(p2v2mr0ξ(1− ξ) + q2m(r0 − vmξ)) + 2vmr0ξ(6r

3
0 + 9vmr

2
0(2− ξ)

+3v2mr0(6− 7ξ + 2ξ2) + v3m(3− 2ξ − 3ξ2 + 2ξ3))
)
+O(ϵ)

]
, (8.4.19)

where we have used the UV cutoff r̄(ϵ) to regularise the integral, as explained above. Add

to SBulk Sf , SGH and Sct and performing the remaining integrations, we finally obtain

SEren = −Sren =− βV2

[
1

ℓ2

(
2r30 + 3vmr

2
0(2− ξ) + 3v2mr0(2− ξ)(1− 2

3
ξ) + v3m(1− ξ2)(1− 2

3
ξ)

)
+

q2m
2ξvm

(
1− ξvm

r0

)
+

1

2
(1− ξ)p2vm

]
.

(8.4.20)

Hence, the Gibbs free energy,W(T, µ), and the corresponding free energy densityw(T, µ),

are

W(T, µ) = −Sren/β = wV2

= V2

[
1

ℓ2

(
2r30 + 3vmr

2
0(2− ξ) + 3v2mr0(2− ξ)(1− 2

3
ξ) + v3m(1− ξ2)(1− 2

3
ξ)

)
+

q2m
2ξvm

(
1− ξvm

r0

)
+

1

2
(1− ξ)p2vm

]
. (8.4.21)

Now that we have derivedw, the magnetisationM and axionic magnetisationϖ can also

be computed,

M = −
(
∂w

∂B

)
T,Π

= −qmℓ
3

r0
, ϖ = −

(
∂w

∂Π

)
T,µ

= 2pℓ

(
r0 +

(2− ξ)vm

2

)
. (8.4.22)
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Combining these results with the expressions for ε, T , s, B and w, it is straight forward

to confirm that the energy density is equal to the Legendre transform of the free energy

density with respect to T (the chemical potential is zero in this case),

ε(s,B,Π) = w + Ts, (8.4.23)

as well as the density first law (6.4.9),

dε = Tds−ϖdΠ−MdB. (8.4.24)

The pressure in this case is

P = −
(
∂E
∂V2

)
S,B,Π

= ⟨Txx⟩+
1

2
Πϖ +MB, (8.4.25)

where E and S are defined as in the discussion of the electically charged branes. Once

more it is related to the transverse components of the stress tensor. Using this result one

can check that the Gibbs-Duhem relation (6.4.14), and the first law (6.4.11) both hold, and

that the equation of state of the system is of the form discussed in 6.4.1, as anticipated.

Finally, we note that the Helmholtz free energy coincides with the Gibbs free energy in

this case since there is no chemical potential.

8.5 Thermodynamic Stability and Phase Transitions

In this section we address the question of the phase structure of the theory. We want to

compare solutions with the same charge densities and which satisfy the same bound-

ary conditions. The first requirement implies that if we want to compare bald and hairy

solutions, we must restrict to neutral solutions only since, as we saw in section 8.2, in or-

der to set the dialton equal to zero consistently, we must also have vanishing gauge field.

However, for a given temperature and finite charge density, there are up to three hairy

solutions with different radii and scalar vevs, which compete thermodynamically, giv-

ing rise to an intricate phase diagram. We will focus on these solutions and, moreover,

we will restrict our analysis to ξ = 1 for which we are able to obtain analytic solutions.

The discussion is straightforwardly applicable to ξ ̸= 1 but in those case one has to solve

transcedental equations numerically. An important thing to note regarding the ξ = 1 so-

lutions is that the multitrace deformation coupling ϑe/m
II vanishes and thus, the resulting

theory satisfies Neumann boundary conditions.

We begin our analysis by deriving analytic expressions that will help us understand the

phase structure of the theory. We then proceed to study the scalar vev, energy den-

sity, radius and Helmholtz free energy of the solutions as functions of the temperature,

at fixed charge densities. The Helmholtz free energy tells us which solution is ther-

modynamically preferred whereas the energy density determines whether a solution is

dynamically stable; it was shown in [2] that, for these solutions, dynamical stability is
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equivalent to positivity of the energy density.

We begin by looking at the electric solutions. The analysis of the magnetic solutions

follows after.

8.5.1 Phases of Electric Solutions

For the hairy solutions of our theory, the temperature is an independent variable and

it can be used to explore the full phase diagram. To do this, we begin by deriving an

analytic expression that can be used to determine the solutions of the theory in terms of

physical parameters. In particular, using the defining equation for the horizon, f(r0) = 0,

r20
ℓ2
h2(r0)−

p2

2
h(r0)−

q2e
2ver0

= 0, (8.5.1)

we obtain two different expressions for the temperature. The two different expressions

for T correspond to using the equation f(r0) = 0 in two different ways. The first expres-

sion is obtained by solving (8.5.1) for q2e
2ver0

and substituting the result in the expression

for the temperature (8.3.6), with ξ = 1,

T =
1

4πℓ2

(
2r0 + ve +

q2eℓ
2

2ver20h
2(r0)

)
, (8.5.2)

This yields

τ = 3r0 + ve −
p2ℓ2

2(r0 + ve)
, (8.5.3)

where we have defined τ ≡ 4πℓ2T . Alternatively, we can solve (8.5.1) for r20
ℓ2
h2(r0) and

substitute in (8.5.2), finding

τ = 2r0 + ve +
q2er0

q2e + p2ve(r0 + ve)
. (8.5.4)

Eliminating the quadratic terms in r0 we obtain an explicit formula for the radius of

the horizon as a function of the charge densities, the temperature and the scalar vev

parameter ve, namely

r0 = −ve +
(6q2e − ℓ2p4)ve + 3q2eτ

9q2e + p2ve(ve − τ)
. (8.5.5)

Finally, inserting this result in either (8.5.3) or (8.5.4) we obtain the characteristic curve

(ℓ2p4 − 8q2e)v
4
e + (2ℓ4p6 − ℓ2p4τ2 − 18ℓ2p2q2e + 6q2eτ

2)v2e + 2q2eτ
3ve − 27ℓ2q4e = 0, (8.5.6)

which is an equation relating physical observables only.

The expression (8.5.5) for the horizon radius and the characteristic curve are valid every-

where except in the regime where qe → 0 and ve → 0 simultaneously, in which case the

manipulations that lead to (8.5.5) and (8.5.6) starting from (8.5.3) and (8.5.4) break down.

This limit must be taken so that ve/q
2
e is kept fixed and corresponds to the bald solutions
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that only exist at zero charge density. Being a quartic equation in ve, the characteristic

equation admits four roots at fixed temperature and fixed electric and axionic charge

densities. At most three of these roots are real and have r0 ≥ 0: we checked numerically

that there is always either a root corresponding to a singular metric with r0 < 0, or at

least two complex conjugate roots.

Restricting for now our analysis to small charges and using equations (8.5.3) and (8.5.4),

we find that, in this limit, there are three physical black brane solutions whose scalar vev

parameter and horizon radius are given by

Red: ve = −
√
τ2 − τ2c +O(q2e), r0 =

1

2

(
τ +

√
τ2 − τ2c

)
+O(q2e), τ > τc,

(8.5.7a)

Blue: ve =
−q2eℓ2

r0(2r20 − p2ℓ2)
+O(q4e), r0 =

1

6

(
τ +

√
τ2 + 3τ2c

)
+O(q2e), τ > τc,

(8.5.7b)

Orange: ve =

{ −q2e ℓ2
r0(2r20−p2ℓ2)

+O(q4e),√
τ2 − τ2c +O(q2e),

r0 =


1
6

(
τ +

√
τ2 + 3τ2c

)
+O(q2e),

1
2

(
τ −

√
τ2 − τ2c

)
+O(q2e),

τ < τc,

τ > τc,

(8.5.7c)

where we have colour coded each solution. Here

τc = 4πℓ2Tc =
√
2pℓ, (8.5.8)

denotes the critical temperature at zero charge density. As we will see below, the true

critical temperature increases slightly with increasing charge density. Nonetheless, we

find it convenient to use τc as a reference temperature at arbitrary charge density. An

important observation regarding the above perturbative solutions, (8.5.7), is that, near

the critical temperature τc, both the blue and orange solutions have a pole in ve. To see

this note that as τ → τ+c , rblue
0 → τc/2 = pℓ/

√
2 and hence vblue

e → ∞. The same is ob-

served for the orange solution for τ → τ−c . Moreover, the orange solution is discontinu-

ous at τc. These, however, are not true features of the solutions but consequences of the

break down of perturbation theory. If one uses instead the characteristic curve (8.5.6) to

find the analytic solutions then he finds that all curves are in fact smooth and the cor-

ners only exist in the strict qe limit. This is demonstrated in figure 8.5.2, which shows

that all curves are in fact smooth.

In order to understand the behaviour of these solutions, we fix ρ and plot, as a function of

temperature, the energy density and the Helmholtz free energy, given in equations (8.4.2)

and (8.4.14), respectively, by setting ξ = 1. We also plot the radius and scalar vev of each

solution. The first two plots allow us to determine the dynamical and thermodynami-

cal stability of the solutions whereas the latter two provide an insight into the physical

characteristics of the dominating solution. Figures 8.5.1, 8.5.3 and 8.5.4 show plots of
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Figure 8.5.1: Plot of the perturbative solutions (8.5.7) for ρ = 0.003ρc, together with the
corresponding energy ε and Helmholtz free energy f densities.

these quantities for the three solutions for increasing–but small–charge densities and

figure 8.5.5 shows a plot for large ρ. Note that the plots in 8.5.1 and 8.5.1 correspond to

the same value of ρ. Studying these plots, we observe that several features of these so-

lutions persist at higher charge densities, but, there are also qualitative changes as the

charge density is increased. In particular, studying these plots, we observe that below

the critical charge density

|ρ| < ρc =
ℓ3

2
√
2
Π2 =

p2ℓ

2
√
2
, (8.5.9)

there always exists one solution for all temperatures (orange), while two additional so-

lutions appear above a (charge density dependent) critical temperature that equals τc at

zero charge density. For |ρ| > ρc the orange solution disappears, leaving only the other

two branches above the critical temperature. There are no solutions above the critical

charge density and below the critical temperature. This is depicted in the left plot in

figure 8.5.6. The right plot in figure 8.5.6 shows the number of solutions as a function of

temperature and electric chemical potential, instead of charge density. Notice that there

is no critical value for the chemical potential, which reflects the fact that |qe(µ, p, T )| for

the orange solution is bounded by ρc.

The dynamic and thermodynamic stability properties of the solutions can be read off

respectively the energy density and Helmholtz free energy density plots in figures 8.5.1,

8.5.3, 8.5.4 and 8.5.5. From the energy density plots we deduce that the orange solution

is always dynamically unstable, while the blue and red solutions are always dynamically
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stable. Above Tc, however, in the limit of vanishing charge density the red solution be-

comes marginally stable while the orange one becomes marginally unstable. Moreover,

from the free energy plots follows that when they coexist, the blue solution is thermo-

dynamically stable, while both the red and the orange solutions are thermodynamically

unstable. Nevertheless, the orange solution has the largest radius, while the red solu-

tion has the smallest radius. We will see below that this last property is reversed in the

magnetically charged solutions.

Putting everything together, we conclude that the electric solutions describe in general

two distinct phases, as shown in figure 8.5.7. Phase I corresponds to the orange solutions

and is the only possible phase below the critical temperature and critical charge density.

Phase II corresponds to the blue solutions and it dominates above the critical tempera-

ture, for any value of the charge density. There is no regime of parameters where the red

solutions are thermodynamically dominant. At non zero charge density the Helmholtz

free energy jumps at the critical temperature and so this is a zeroth order phase transi-

tion. Zeroth order phase transitions have been predicted in the context of superfluidity

and superconductivity and are related to the presence of metastable states [110, 111], as

well as in higher dimensional black holes [112]. As the charge density approaches zero,

however, the jump of the free energy across the critical temperature goes to zero, but at

the same time its derivative is continuous across Tc and, hence, the transition becomes

second order. However, since the solutions of phase I are dynamically unstable, this

phase diagram is presumably not the complete picture. There are probably other solu-

tions that are thermodynamically and dynamically stable below the critical temperature,

that also continue to exist above the critical charge density. It would be interesting to

identify these solutions. The general structure of the physical solutions that emerges

from the plots in figures 8.5.1, 8.5.3, 8.5.4 and 8.5.5 is as follows. Below the critical charge

density

|ρ| < ρc =
ℓ3

2
√
2
Π2 =

p2ℓ

2
√
2
, (8.5.10)

there always exists one solution for all temperatures (orange), while two additional so-

lutions appear above a (charge density dependent) critical temperature that equals Tc at

zero charge density. For |ρ| > ρc the orange solution disappears, leaving only the other

two branches above the critical temperature. There are no solutions above the critical

charge density and below the critical temperature. This is depicted in the left plot in

figure 8.5.6. The right plot in figure 8.5.6 shows the number of solutions as a function of

temperature and electric chemical potential, instead of charge density. Notice that there

is no critical value for the chemical potential, which reflects the fact that |qe(µ, p, T )| for

the orange solution is bounded by ρc.

The dynamic and thermodynamic stability properties of the solutions can be read off

respectively the energy density and Helmholtz free energy density plots in figures 8.5.1,

8.5.3, 8.5.4 and 8.5.5. From the energy density plots we deduce that the orange solution
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Figure 8.5.2: Plot of the solutions of (8.5.6) for ρ = 0.003ρc, together with the correspond-
ing energy ε and Helmholtz free energy f densities. Notice that the solutions look iden-
tical to the perturbative ones in figure 8.5.2 for the same charge density, but zooming in
near the critical temperature shows that the exact solutions are in fact smooth.
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Figure 8.5.3: Plot of the solutions of (8.5.14) for ρ = 0.314ρc, together with the corre-
sponding energy ε and Helmholtz free energy f densities.
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Figure 8.5.4: Plot of the solutions of (8.5.14) for ρ = 0.786ρc, together with the corre-
sponding energy ε and Helmholtz free energy f densities.
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Figure 8.5.5: Plot of the solutions of (8.5.14) for ρ = 1.1ρc, together with the corresponding
energy ε and Helmholtz free energy f densities.
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is always dynamically unstable, while the blue and red solutions are always dynamically

stable. Above Tc, however, in the limit of vanishing charge density the red solution be-

comes marginally stable while the orange one becomes marginally unstable. Moreover,

from the free energy plots follows that when they coexist, the blue solution is thermo-

dynamically stable, while both the red and the orange solutions are thermodynamically

unstable. Nevertheless, the orange solution has the largest radius, while the red solu-

tion has the smallest radius. We will see below that this last property is reversed in the

magnetically charged solutions.

Putting everything together, we conclude that the electric solutions of theory II describe

in general two distinct phases, as shown in figure 8.5.7. Phase I corresponds to the or-

ange solutions and is the only possible phase below the critical temperature and critical

charge density. Phase II corresponds to the blue solutions and it dominates above the

critical temperature, for any value of the charge density. There is no regime of parame-

ters where the red solutions are thermodynamically dominant. At non zero charge den-

sity the Helmholtz free energy jumps at the critical temperature and so this is a zeroth

order phase transition. Zeroth order phase transitions have been predicted in the con-

text of superfluidity and superconductivity and are related to the presence of metastable

states [110, 111], as well as in higher dimensional black holes [112]. As the charge den-

sity approaches zero, however, the jump of the free energy across the critical tempera-

ture goes to zero, but at the same time its derivative is continuous across Tc and, hence,

the transition becomes second order. However, since the solutions of phase I are dy-

namically unstable, this phase diagram is presumably not the complete picture. There

are probably other solutions that are thermodynamically and dynamically stable below

the critical temperature, that also continue to exist above the critical charge density. It

would be interesting to identify these solutions.

8.5.2 Phases of Magnetic Solutions

The structure of the magnetic solutions is very similar to that of the electric ones, except

for a few minor features that we are going to highlight. As for the electric solutions, we

can process the temperature in two different ways leading to

τ = 3r0 + 2vm − ℓ2p2

2r0
, (8.5.11)

and

τ = 2vm − 3ℓ2q2m + ℓ2p2vm(vm − 2r0)

2r0vm(vm + r0)
, (8.5.12)

for the rescaled temperature τ = 4πℓ2T . At generic values of the parameters these again

correspond to two quadratic equations for r0. Eliminating the quadratic term in r0 by a

suitable linear combination of these expressions, we obtain the general expression for

the horizon radius

r0 =
9ℓ2q2m + ℓ2p2vm(vm + τ)

2vm (3ℓ2p2 + (2vm − τ)(vm + τ))
. (8.5.13)
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Figure 8.5.6: Number of electric solutions with ξ = 1 as a function of charge density
ρ and temperature T (left plot), or chemical potential µ and temperature T (right plot).
The plots apply to any fixed |p| > 0. There are three distinct solutions, indicated respec-
tively by horizontal orange lines, red vertical lines, and blue diagonal lines. We refer to
these solutions as ‘orange’, ‘red’ and ‘blue’, respectively. The orange solution exists for
all temperatures provided the (absolute value of the) charge density is below the critical
value ρc = ℓp2/2

√
2. However, this solution is dynamically unstable since it always has

negative energy density. Moreover, where it coexists with the red and blue solutions it
has the largest radius, but it is thermodynamically unstable. The red and blue solutions
appear simultaneously above a critical temperature Tc ≥ |p|/2

√
2πℓ and are always dy-

namically stable, since they have positive energy density. The blue solutions have larger
radius than the red ones and are thermodynamically preferred.

Inserting this back in either (8.5.11) or (8.5.12) gives the characteristic curve

(ℓ2p4−8q2m)v
4
m+(2ℓ4p6−ℓ2p4τ2−18ℓ2p2q2m+6q2mτ

2)v2m−2q2mτ
3vm−27ℓ2q4m = 0. (8.5.14)

Notice that although the expression for the horizon (8.5.13) is different from the cor-

responding expression for the electric solutions in (8.5.5), the characteristic curves are

identical under the map qe → qm, ve → −vm. It follows that the solutions for the scalar

vev are identical to those for the electric solutions, except for an overall sign change.
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Figure 8.5.7: Phase diagram for the electric solutions with ξ = 1 as a function of charge
density ρ and temperature T . Below a critical charge density ρc and a critical tempera-
ture Tc there is only one, dynamically unstable, black hole solution. This solution exists
for arbitrary temperature, but it disappears above ρc. Above the critical temperature Tc
there are either two or three solutions depending on whether |ρ| > ρc or |ρ| < ρc re-
spectively. The two solutions that exist only above Tc are both dynamically stable and
the one with larger radius is thermodynamically preferred. At the critical temperature
Tc, therefore, there is a phase transition from a dynamically stable black hole with neg-
ative scalar vev above Tc, to a dynamically unstable solution with positive scalar vev. At
non-zero charge density the Helmholtz free energy jumps at Tc and so this is a zeroth
order transition. At zero charge density the free energy is continuous across Tc, as is its
first derivative, and so the phase transition becomes second order at ρ = 0.

In particular, for small qm the perturbative solutions take the form

Red: vm = −
√
τ2 − τ2c +O(q2m), r0 =

1

2

(
τ +

√
τ2 − τ2c

)
+O(q2m), τ > τc,

(8.5.15a)

Blue: vm =
−q2mℓ2

r0(2r20 − p2ℓ2)
+O(q4m), r0 =

1

6

(
τ +

√
τ2 + 3τ2c

)
+O(q2m), τ > τc,

(8.5.15b)

Orange: vm =

{ −q2mℓ2
r0(2r20−p2ℓ2)

+O(q4m),√
τ2 − τ2c +O(q2m),

r0 =


1
6

(
τ +

√
τ2 + 3τ2c

)
+O(q2m),

1
2

(
τ −

√
τ2 − τ2c

)
+O(q2m),

τ < τc,

τ > τc,

(8.5.15c)

where again τc = 4πℓ2Tc =
√
2pℓ. As for the electric solutions, perturbation theory

breaks down near τc, as can be seen from the plots in figure 8.5.8. Comparing with the

corresponding plots for the electric solutions in figure 8.5.1 we see that at small charge

densities the electric and magnetic solutions look identical, except that the orange and

red branches of the solution are switched above the critical temperature. At higher
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Figure 8.5.8: Plot of the perturbative solutions (8.5.15) for B = 0.003Bc, together with the
corresponding energy ε and Helmholtz free energy f densities.

charge densities the corners are again smoothened out as is shown in figures 8.5.9, 8.5.10

and 8.5.11.

As for the electric solutions, the orange branch exists for all temperatures but disappears

above the critical magnetic field

|B| < Bc =
Π2

2
√
2
=

p2

2
√
2ℓ2

. (8.5.16)

Above the critical temperature again there are two additional branches for any value of

the magnetic field, while above the critical magnetic field and below the critical temper-

ature there are no solutions. The number of solutions as a function of the temperature

and the magnetic charge density matches the number of electric solutions as a function

of of the temperature and the electric charge density depicted in figure 8.5.6. Moreover,

the dynamic and thermodynamic stability properties of the three branches of solutions

are identical to those of the electric solutions and hence the phase diagram in figure

8.5.7 applies equally well to the magnetic solutions upon replacing the charge density

ρ with the magnetic field B. As can be seen from the plots of the solutions, the only

difference between the electric and magnetic ones is that the value of the scalar vev is

opposite, while above the critical temperature the red branch of the electric solutions

has the smallest radius and the orange has the largest, while the reverse holds for the

magnetic solutions.
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Figure 8.5.9: Plot of the solutions of (8.5.14) for B = 0.314Bc, together with the corre-
sponding energy ε and Helmholtz free energy f densities.
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Figure 8.5.10: Plot of the solutions of (8.5.14) for B = 0.786Bc, together with the corre-
sponding energy ε and Helmholtz free energy f densities.
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Chapter 9

Discussion

The second part of this thesis was dedicated to the study of a family of theories which

admit electrically and/or magnetically charged black brane solutions with additional ax-

ionic charges and a running scalar that we called the dialton.

We focused on particular solutions for which the axions admit a linear profile in the

boundary directions and, consequently, they explicitly break scale invariance. More-

over, they act as vacuum energy for the horizon, giving rise to topological black holes

with a flat horizon but which also possess the additional length scale usually associated

with the radius of hyperbolic black holes. In the context of black hole charges, the ax-

ions constitute primary hair [83]. In particular, they are zero forms with the operators

dual to them satisfying global Ward identities, and they carry topological charges. These

charges enter the thermodynamic relations and they modify the first law.

The other scalar field supported by the black branes we studied, namely the dialton,

constitutes secondary hair of the branes. As such, contrary to the axions, it does not en-

ter the thermodynamic relations as an independent charge. However, for the solutions

we studied, the dialton satisfies mixed boundary conditions and, consequently, it modi-

fies the bulk on–shell action that one would obtain had the more conventional Dirichlet

boundary conditions been imposed [82]. This modification leads, in turn, to a corre-

sponding modification of the holographic stress tensor and of the associated conserved

charges and free energy [30]. In this part of the thesis we performed the full asymptotic

analysis and derived the holographic dictionary in the presence of such mixed boundary

conditions for the running scalar. In doing so we demonstrated that, when the modifi-

cations associated with the mixed boundary conditions are correctly accounted for, the

theories satisfy the standard thermodynamic relations and, in particular, the first law,

without having to add new charges associated with the scalar.

The holographic dictionary and and thermodynamic relations were first derived for a

general class of solutions for the family of theories under investigation, subject to mixed

boundary conditions for the dialton and axions with linear profiles along the boundary

directions but otherwise unrestricted. In chapter 7 we revisited the exact black holes
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found in [87], which do not have a running profile for the dialton, as well as those ob-

tained in [88] which have a running dialton. We use the general results obtained to de-

rive the thermodynamic properties of the dyonic version of these black holes and verify

that they satisfy the expected relations. A natural next step would have been to study

the thermodynamic stability and dynamic stability of these solutions which do compete.

However, this had already been done in [87, 88] and was therefore not repeated.

In chapter 8 we applied our general results to another family of known analytic solu-

tions, found in [89], as well as a their magnetic analogue which first appeared in [2]. Us-

ing the derived thermodynamic relations we studied the thermodynamic stability and

phase structure of a subfamily of these solution for which the coupling for the mul-

titrace deformation vanishes and the dialton satisfies Neumann boundary conditions.

The reason for focusing on these solutions is the fact that in this case the analysis of

the phase structure can be done analytically. Furthermore, for this theory, the dialton

and the gauge field are coupled, meaning that bald solutions are necessarily electrically

and magnetically neutral. Consequently they do not compete with the hairy solutions at

non zero charge density. Nevertheless, for a given non zero charge density and temper-

ature, there are up to three hairy solutions with different horizon radii and scalar vevs

that compete thermodynamically, giving rise to an intricate phase structure.

Firstly, we observed that at non–zero charge density there exist a critical temperature,

that depends on the charge density, above which there are three hairy black holes, two

with positive energy density–a large and a small black hole–and one with negative. This

result is identical for both the electrically charged black holes as well as their magnetic

analogue, with the only difference being that for the electric solutions the black hole with

negative energy density is the largest of the three, while for magnetically charged solu-

tions it is the smallest. As was demonstrated in [2], where the authors derived the quan-

tum effective potential for the dialton, dynamical stability of the solutions against quan-

tum fluctuations of the dialton is equivalent to having positive energy density. Hence,

the negative energy density solution is not dynamically stable. Returning to the phase

diagram, lowering the temperature such that Tc is approached from above, the two pos-

itive energy black holes converge and cease to exist below Tc. However, at non-zero

charge density the negative energy solution at the critical temperature has a lower en-

ergy density than the other two solutions, which are therefore metastable. Moreover,

the larger of the two black holes with positive energy density has the smallest free en-

ergy and is therefore thermodynamically favored above Tc. Accordingly, the free energy

is discontinuous at Tc, leading to a zeroth order phase transition. As the charge density is

tuned to zero the negative and positive energy solutions all converge as Tc is approached

from above, with their energy density approaching zero from below and above respec-

tively, which leads to a regular second order phase transition at Tc.

Putting everything together, we found that both the electric and magnetic solutions of

this theory describe in general two distinct phases. Below a charge density dependent
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Figure 9.0.1: Number of solutions with ξ = 1 as a function of charge density ρ and tem-
perature T (left) and corresponding phase diagram (right). These figures are the same
for both the electric and magnetic solutions of the theory for ξ = 1.

critical temperature and a critical charge density there is only one black hole. This cor-

responds to phase I which has negative energy density, indicating that this phase is dy-

namically unstable with regards to dialton fluctuations. However, this phase has positive

specific heat in this region of the phase space. Above the critical temperature and below

the critical charge density there are three black holes. As the charge density increases,

the negative energy density black hole of phase I disappears and we are left with only

two solutions. In this region of the phase space we found that there are no phase transi-

tions and one solution always dominates. This solution has positive energy density and

specific heat. At non zero charge density the Helmholtz free energy jumps at the critical

temperature and so this is a zeroth order phase transition. Zeroth order phase transi-

tions have been predicted in the context of superfluidity and superconductivity and are

related to the presence of metastable states [110, 111], as well as in higher dimensional

black holes [112]. As the charge density approaches zero, however, the jump of the free

energy across the critical temperature goes to zero, but at the same time its derivative

is continuous across Tc and, hence, the transition becomes second order. Figure 9.0.1

show the number of solutions and phase space of the theory with ξ = 1 as a function

of the charge density ρ and temperature T . These figures apply for both the electic and

magnetic solutions.

A number of open questions and future directions remain. Firstly, since the solutions of

phase I have negative energy density, we conclude that they are dynamically unstable

and hence this phase diagram is presumably not the complete picture. However, we

also noted that these solutions have positive heat capacity, something that poses an in-

teresting puzzle. Most likely, there are other solutions that are thermodynamically and

dynamically stable below the critical temperature, that also continue to exist above the

critical charge density. It would be interesting to identify these solutions.

Secondly, another potential next step is to seek exact dyonic solutions of this theory.

However, it seems likely that such solutions can only exist for the special case ξ = 1,
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since only in that case the scalar boundary conditions for the electric and magnetic so-

lutions coincide. Moreover, we found that the relative size of the radii of two of the three

solutions–when these coexist–are opposite for the electric and magnetic solutions, sug-

gesting that, for a dyonic black brane solution, there will only exist one solution in the

corresponding region of the phase space. Below the critical temperature, however, the

single, negative energy solution should continue to exist even for a dyonic black brane.

For p = 0 dyonic solutions of Theory II have been found in [113]. It would be interesting

to generalise these solutions to non-zero axion charge.

Finally, we have focused only on properties of the background solutions, without dis-

cussing fluctuations around them. It would be very interesting, for example, to compute

the thermoelectric and Hall conductivities for these black branes.
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