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Abstract

If a quantum field gets stuck in a meta-stable false vacua it can decay via a first order phase
transition to a lower energy vacuum, either by thermally jumping over the potential barrier
or tunnelling through it. Bubbles of true vacuum nucleate and if the nucleation rate is large
enough expand to engulf the universe. In this thesis we study the underlying tunnelling
process by which this can happen as well as the observational consequences of first order
transitions in the early universe.

With regard to the tunnelling process we numerically investigate false vacuum decay
to a non-adjacent minima of a potential with numerous meta-stable vacua, as motivated
by modern conceptions of the string theory landscape. Our code finds stable tunnelling
solutions to non-adjacent minima for certain single and two field toy-model landscapes.

With regard to observational consequences we study the characteristic frequency
spectrum of gravitational waves produced by a first order phase transition in a very cold
SU(2) hidden sector, polarisation of the stochastic gravitational wave background generated
by a period of helical MHD plasma turbulence that can follow a generic transition and
finally, primordial magnetic fields generated from a first order transition in two Standard
Model extensions (SM+H6 and SMB−L) which can evolve to intergalactic scales if helicity
is initially seeded in the gauge field or kinetically in the plasma.
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Chapter 1

Introduction

Phase changes are ubiquitous in nature. We observe them when boiling water in a kettle,
when spins align in a ferromagnet and also expect them to have taken place moments after
the Big Bang when fundamental quantum fields of the universe took on new values. It is
with the impact of the last of these scenarios that this thesis will be concerned.

Examples of phase changes in the early universe include the electroweak phase tran-
sition which endowed particles with mass via the Higgs mechanism and the QCD phase
transition which bound quarks into hadrons forming most of the matter we see today.
Under our current understanding of the universe, based on the Standard Model of particle
physics, it is thought both these phase change examples would have taken place via a
cross-over transition where the field rolled down its potential and the universe smoothly
transitioned from the high energy to low energy phase. However we know that our under-
standing of the universe is not complete and so, whilst the Standard Model is one of the
crowning achievements of physics in the 20th century, we know it needs modifications.
Many such modifications (Chapter 5) induce potential barriers between the high energy
and low energy phases of the fields that permeate the universe, such that the universe gets
trapped in the meta-stable ‘false vacuum’ phase. Similar to the analogous process in 1D
quantum mechanics (Chapter 2) these fields can then decay to a lower energy ‘true vacuum’
by tunnelling through the barrier whilst in thermal settings fluctuations can alternatively
jump over it.

A novel interpretation of false vacuum decay via tunnelling (Chapter 3) in terms of
a bubble nucleation process, similar to that seen in a super-heated fluid, was suggested
in 1977 by Sydney Coleman [1] and later adapted to thermal scenarios in [2]. Coleman’s
insight predicted that scalar field bubbles of the true vacuum would nucleate at a significant
rate in scenarios where tunnelling to the true vacuum was energetically favourable and that
these bubbles would subsequently expand and engulf the universe. It is generally expected
that a significant amount of energy was instantaneously released during such cosmological
phase transitions, creating violent events in the history of the early universe that could
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leave observational traces we can search for today such as a background of primordial
gravitational waves (GW).

Primordial gravitational waves propagate unimpeded until today, only being stretched
by the expansion of the universe and as such provide us with a natural means of observing
the universe mere moments after it was created. With the first detection of gravitational
waves from the collision of two binary black holes in 2015 [3] and the ambitious new
generation of detectors that are expected to soon come online, it is widely expected
gravitational waves will become the de-facto diagnostic tool with which we can further our
understanding of the universe. Indeed, in perhaps a teaser of the potential discoveries of
new physics to come, in [4] the NanoGrav collaboration made a detection of a gravitational
wave signal that could have cosmological origin, such as from a first order phase transition
in a hidden sector [5–7] as we consider in Chapter 7 or some other early universe source
[8–12].

In this thesis we investigate the production and detection of gravitational waves from
cold hidden sectors [13] (Chapters 6 & 7), polarisation of the stochastic gravitational wave
background [14] (Chapter 8) and primordial magnetic fields [15] (Chapter 9), all following
a cosmological phase transition. In addition we consider the possibility for tunnelling
events to occur in some single and multi-field potentials which contain numerous false
vacua (Chapter 4) as motivated by modern considerations of the ‘string theory landscape’.

1.1 Thesis Structure

The outline of this thesis is as follows.
In Chapter 2 we will both motivate and develop the mathematical formalism of Eu-

clidean tunnelling solutions in 1D quantum mechanics, culminating in the non-perturbative
solutions that describe decaying metastable states. We finish the chapter by discussing
characteristic properties of these solutions and their associated Euclidean action which
will prove crucial when we generalise them to quantum field theory (QFT).

In Chapter 3 we generalise the formalism of our 1D Euclidean tunnelling solutions to
bounce solutions in QFT, which will be the fundamental mathematical objects underpinning
the remainder of the thesis. We describe in detail the conceptual interpretation of false
vacuum decay via a bubble nucleation process, as pioneered by Coleman in the late 1970’s
[1]. We will then outline the ‘overshoot/undershoot’ algorithm which is the most commonly
used method of calculating bounce solutions and vacuum bubble nucleation rates, before
finally finishing the chapter by exploring the qualitatively different solutions one can obtain
by varying the shape of the potential.

In Chapter 4 we explore the possibility of tunnelling to non-adjacent minima in a
potential with many fields, as motivated by modern notions of a ‘landscape’ of metastable
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vacua in string theory. The extreme numerical sensitivities expected using traditional
shooting based methods lead us to search for a new numerical approach using ‘tunnelling
potentials’ [16, 17] to calculate false vacuum decay solutions. We provide a detailed
description of our numerical algorithm before applying it to some example potential
landscapes in both the single field and two field case. Rather than exclusively focusing on
potentials with a concrete physical interpretation, we will rather attempt to identify the
qualitative features of those potentials which succeed in finding a solution and those that
fail. This can form the basis of any further investigation into the characteristic features
of multi-minima potential landscapes which concretely don’t permit false vacuum decay
solutions and those that do.

In Chapter 5 we discuss how false vacuum decay can take place in the early universe in
the form of cosmological first order phase transitions. We outline the two main mechanisms
by which bubbles can nucleate and engulf the universe: quantum tunnelling through the
potential barrier or thermal fluctuations that jump over it. We go on to detail the dynamics
of bubble walls expanding in the early universe thermal plasma, a crucial area of current
research due to the role it has in dictating where most of the energy is stored after the
transition which directly affects the shape of any gravitational wave signal. Finally we
conclude the chapter by detailing three possible extensions to the Standard Model that
admit first order phase transitions, each of which we will use in our study of gravitational
wave emission and primordial magnetic field generation in later chapters.

In Chapter 6 we study phase transitions in cold hidden sectors and the qualitatively
different behavior they exhibit as compared to hidden sectors that are at the same tempera-
ture as the visible sector. Adopting an SU(2) hidden sector as our generic toy model we
discuss mechanisms by which a temperature hierarchy could be generated between the
hidden and visible sectors and summarise the cosmological bounds on hidden sectors when
they are colder than the visible sector. We discuss a possible phase transition evolution
unique to this situation whereby a sufficiently cold hidden sector could fail to undergo
a thermal transition and subsequently transition through the nucleation of bubbles by
quantum tunnelling. Finally we analyse the dynamics of the hidden scalar field bubble
walls expansion in the hidden plasma, which governs the form of the gravitational wave
signal, and see that in the case of the tunnelling transition the bubble walls might accelerate
with completely negligible friction. This chapter is based on the work done in [13] and
my personal contributions include: the cosmological constraints in Sec. 6.1 and parts
of Appendix B, my own independent numerical implementation to verify the results of
Fig. 6.1, and the design of the plot in Fig. 6.3.

In Chapter 7 we study the spectrum of gravitational waves produced by a first order
phase transition in a hidden sector that is colder than the visible sector. We show the
impact a cold hidden sector undergoing a thermally induced transition can have on the
gravitational wave signal compared to if the hidden sector was at the same temperature
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as the visible sector and use our results to show this could lead to signals in a frequency
range that would otherwise be ruled out by constraints from Big Bang nucleosynthesis.
Alternatively, we show that if the hidden sector is sufficiently cold so that it goes through
a tunnelling transition then the resulting gravitational wave spectrum has a characteristic
frequency dependence, which may allow such cold hidden sectors to be distinguished from
models in which the hidden and visible sector temperatures are similar. We compare our
results to the sensitivity of the future gravitational wave experimental programme. This
chapter is again based on the work done in [13] and my personal contributions include: the
review material in the early parts of the chapter, the design and creation of Figs. 7.1-7.3,
and parts of the analysis in the text.

In Chapter 8 we study how helical magnetohydrodynamic turbulence in the primordial
plasma after a phase transition may source polarisation in the stochastic gravitational wave
background (SGWB). We first consider how the presence of helical turbulence in the
primordial plasma can trigger an inverse cascade process that boosts the gravitational wave
signal. We then go on to explore whether any sign of this epoch could be found imprinted
on the SGWB via its intrinsic circular polarisation, presenting our results in terms of their
sensitivity to the LISA experiment. This chapter is based on the work done in [14] and my
personal contributions include the vast majority of the plots and text, apart from: Fig. 8.3,
the first part of Sec. 8.6.1, and Appendix D.

Finally, in Chapter 9 we study the possibility of generating a primordial magnetic field
from a first order phase transition which could seed the unexplained large scale magnetic
fields we currently observe in cosmic voids. We first discuss the generation and subsequent
evolution of the primordial field in a plasma background of helical turbulence and review
current experimental constraints on any intergalactic magnetic field (IGMF). Finally, we
present illustrative results in the two scenarios we study, SM+H6 and SMBL, correlating
the calculated IGMF in these models with their possible GW and collider signals. This
chapter is based on the work done in [15] and my personal contributions include everything
from Sec. 9.1-9.5.
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Chapter 2

Tunnelling in Quantum Mechanics

The traditional approach to solving tunnelling problems in 1D quantum mechanics involves
using a method called the WKB approximation [18]. The WKB method provides us with a
systematic way of estimating the probability that an incident quantum particle penetrates a
potential barrier, V (x), by approximating the potential V (x) in the classically disallowed
region E ≤ V as a series of rectangular barriers of width ε as seen in Fig. 2.1. Using
well known results for rectangular barrier penetration and enforcing continuity boundary
conditions on the solution at the classical turning points one can integrate over x to find
this barrier penetration probability.

V

𝝐 𝝐

Classical turning points

𝒊 𝒇

Fig. 2.1 The WKB Approach.

Although this approach is succesful in 1D quantum mechanics and can even be gen-
eralised to a case with many degrees of freedom [19], when we attempt to generalise
this method one step further to that of a quantum field with infinite degrees of freedom
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things become significantly more difficult [20]. In this Chapter we aim to develop an
alternative prescription of tunnelling in 1D quantum mechanics that can be more readily
applied to the false vacuum decay scenarios in QFT which we know could be so crucial to
our understanding of the universe. This new prescription will be based upon one of the
fundamental constructs of modern quantum field theory: the path integral.

2.1 Euclidean Tunnelling

In this section we will seek to develop a general description of tunnelling in quantum
mechanics in terms of path integrals. This will naturally lead us to consider tunnelling
as a process that takes place not in the usual Minkwoski space of Special Relativity
but in Euclidean space via a class of non-perturbative objects called instantons [21]. In
precise terms, these are solutions to the classical equations of motion that emerge when
approaching tunnelling problems in Euclidean space. The specific case that will ultimately
be of interest to us is their use when considering scenarios in 1D quantum mechanics with
a metastable state decaying via tunnelling through the potential barrier as discussed in
Sec 2.2. This will provide us with a means of tackling false vacuum decay in a QFT setting
in Chapter 3.

2.1.1 The sum over histories approach

A single quantum particle of unit mass moving in one spatial dimension in a potential
V (x), from time −T/2 to time +T/2, has action

S =
∫ T/2

−T/2
dtL(x, ẋ) =

∫ T/2

−T/2
dt
[

1
2

(
dx
dt

)2

−V (x)
]
, (2.1)

where L is the Lagrangian and ẋ = dx
dt . We can then express the probability amplitude for

such a particle to begin at (xi,−T/2) and evolve to (x f ,T/2) using Feymann’s sum over
histories approach [22] with the path integral

⟨x f |e−iHT/ℏ|xi⟩= N
∫

D[x(t)]eiS/ℏ, (2.2)

where H is the Hamiltonian and N is a normalisation constant. For clarity we review the
significance of each side of this equation. First examining the LHS of Eq. (2.2), |xi⟩ and
|x f ⟩ are the particle’s initial and final position eigenstates with e−iHT/ℏ the time evolution
operator. On the RHS we have a functional integral that serves to integrate over all
possible trajectories x(t) between (xi,−T/2) and (x f ,T/2). Each trajectory is weighted by
a phase factor, eiS/ℏ, which upon extremising the action gives us the dominating in-phase
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contribution to the quantum probability amplitude we seek. Solutions to Eq. (2.2) will be a
sum of oscillating exponentials [21].

2.1.2 Wick rotation and Euclidean space

A simple observation regarding the 1D tunnelling scenario in Fig. 2.1 will turn out to have
a profound influence on our treatment of tunnelling throughout the rest of this thesis. If we
were to interpret a particle with constant energy E tunnelling in the classically disallowed
region E <V as having a negative kinetic energy K =−k1 then we can write

1
2

(
dx
dt

)2

=−k1

=⇒ dx
dt

= i
√

2k1,

(2.3)

where the particle has an imaginary velocity. Alternatively, making the co-ordinate trans-
formation (termed Wick rotation) t =−iτ so that dτ

dt = i then we can write

1
2

(
dτ

dt
dx
dτ

)2

=−k1

=⇒ dx
dτ

=
√

2k1,

(2.4)

where dx
dτ

is real and is in some sense a particle ‘velocity’ within the barrier. This approach
allows us to parametrise the configuration space within the barrier and is crucial to our later
study of QFT tunnelling in Chapter 3. This imaginary time space is also termed Euclidean
space for reasons that will become clear as we proceed through this chapter.

We now employ this Euclidean approach to uncover the wealth of new and insightful
physics that instanton methods give us. Wick rotating Eq. (2.1) to Euclidean space by
making the transformation t =−iτ so that dτ

dt = i gives us that

S =
∫ T/2

−T/2
dt
[

1
2

(
dτ

dt
dx
dτ

)2

−V (x)
]

= i
∫

τ0/2

−τ0/2
dτ

[
1
2

(
dx
dτ

)2

+V (x)
]
.

(2.5)

So therefore we can write

iS →−SE =−
∫

τ0/2

−τ0/2
dτ

[
1
2

(
dx
dτ

)2

+V (x)
]
, (2.6)
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where SE = SE(x, ẋ) is the Euclidean action

SE(x, ẋ) =
∫

τ0/2

−τ0/2
dτ

[
1
2

(
dx
dτ

)2

+V (x)
]
. (2.7)

Therefore Wick rotating the LHS of Eq. (2.2) and making the replacement in Eq. (2.6)
to its RHS, we obtain the Euclidean (or imaginary time) version of Feynman’s sum over
histories

⟨x f |e−Hτ0/ℏ|xi⟩= N
∫

D[x(τ)]e−SE/ℏ. (2.8)

Expanding the LHS of Eq. (2.8) in terms of the complete set of energy Eigenstates of the
Hamiltonian (H is not a function of time and therefore is unchanged by a Wick rotation)

H|n⟩= En|n⟩ (2.9)

and by inserting a resolution of the identity, we then obtain

⟨x f |e−Hτ0/ℏ|xi⟩= ∑
n

e−Enτ0/ℏ⟨x f |n⟩⟨n|xi⟩. (2.10)

Solutions to Eq. (2.10) are clearly no longer oscillatory as in Eq. (2.2) but are exponentially
decaying.

Now, looking at the form of Eq. (2.10) we see that, when τ0 is large, the leading order
term of the sum, where n = 0, dominates all other terms with n > 0 due to the exponential
decay factor [21]. Therefore in the limit τ0 → ∞ we can write

⟨x f |e−Hτ0/ℏ|xi⟩ ≈ e−E0τ0/ℏ⟨x f |0⟩⟨0|xi⟩
= e−E0τ0/ℏψ0(x f )ψ

∗
0 (xi),

(2.11)

where E0 is the energy of the ground energy eigenstate and ψ0(x) is the wave function of
the ground energy eigenstate. Thus in the limit τ0 → ∞ equation Eq. (2.11) gives us both
the ground state energy E0 and the ground state wave function ψ0(x).

2.1.3 The classical Euclidean action

Having analysed the LHS of Eq. (2.8) we now turn to the task of evaluating the RHS.
Each of the paths this Euclidean functional integral describes are weighted by a factor
e−SE/ℏ. Now if SE is taken to be large then the quasi-classical approximation assumes
the path integral is dominated by those trajectories that are in the immediate vicinity of
the classical stationary path [21]. This can be seen by the fact that trajectories close to
the classical trajectory have comparable actions and thus similar weight factors whereas
the contribution from paths further away are exponentially suppressed the further you get
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from the minimum. This results in a strong contribution to the probability amplitude in the
region of the classical path. Those paths close to the classical path are known as ‘quantum
corrections’.

With this knowledge we can see that we can re-express Eq. (2.8) in the rather more
heuristic form

⟨x f |e−Hτ0/ℏ|xi⟩= e−Scl/ℏ× (quantum corrections), (2.12)

where Scl = Scl(x, ẋ) is the classical Euclidean action (i.e. the stationary action) and is
assumed to be large. For simplicity, we also assume Scl(x, ẋ) is the single stationary point
of the action. If there were more than one, we would have to sum over them [21].

2.1.4 The Euclidean equations of motion

We now look to explore the behaviour of our theory along its stationary path [21], which
we do by finding the extremal of the action. First we assume a small perturbation, δx(τ),
from the single stationary path, xcl(τ), that minimises the Euclidean action in Eq. (2.7).
Thus we can write

0 = δSE = SE [xcl(τ)+δx(τ)]−SE [xcl(τ)]

= δx
∂SE

∂x

∣∣∣∣
x=xcl

+δ ẋ
∂SE

∂ ẋ

∣∣∣∣
x=xcl

+ ...

= δx
∂SE

∂x

∣∣∣∣
x=xcl

+

[
d

dτ
δx
]

∂SE

∂ ẋ

∣∣∣∣
x=xcl

+ ...

= δx
∂SE

∂x

∣∣∣∣
x=xcl

+
d

dτ

[
δx

∂SE

∂ ẋ

∣∣∣∣
x=xcl

]
−δx

d
dτ

[
∂SE

∂ ẋ

∣∣∣∣
x=xcl

]
+ ...

(2.13)

Using Eq. (2.7) we can evaluate ∂SE
∂x |x=xcl and ∂SE

∂ ẋ |x=xcl in the last line of Eq. (2.13) to
obtain

0 = δSE =
∫

τ0/2

−τ0/2
dτ

[
V ′(xcl)−

d2xcl

dτ2

]
δx(τ), (2.14)

where V ′(x) is a spatial derivative and we have used integration by parts and have also
applied the boundary conditions

δ [x(±τ0/2)] = 0. (2.15)

Since the perturbation, δx(τ), in Eq. (2.14) is arbitrary, the Euclidean equations of motion
are

d2xcl

dτ2 =
dV (xcl)

dx
. (2.16)

Inspecting Eq. (2.16), we see it has the same form as as the usual classical equations of
motion apart from an additional minus sign and therefore we interpret it as describing
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motion of a particle moving in a negative potential −V (xcl) [1]. This particle-like solution
is often referred to as a ‘pseudoparticle’ in the literature [23]. This is a key analogy that
we will repeatedly make use of throughout the rest of this thesis. Under this analogy, the
energy, E, is therefore a constant of the motion that can be written

E =
1
2

(
dxcl

dτ

)2

−V (xcl) = Constant. (2.17)

The key take away from this section is that the classical Euclidean action describes the
motion of a particle that is moving in a negative potential −V (x) (see Eq. (2.16)), which
we can solve to find a set of solutions that can then be analytically continued back to
Minkowski space. In other words if we have a scenario in Minkowski space involving
particle motion in some potential V (x), then, by simply switching the sign of V (x) and
solving the resulting equations of motion in the ‘upside down’ potential, we can unearth
a wealth of new solutions to the motion of the particle that were previously hidden to us.
Such solutions go by the name of instantons and as we will see are extremely useful for
describing tunnelling effects.

2.1.5 The instanton solution to a double well potential

It it is possible to verify the validity of our Euclidean path integral method by deriving
known results for the quantum harmonic oscillator as done in [21], but we move directly
onto a scenario that is more relevant for our purposes.

V

−𝒂 +𝒂

(a) A double well potential

-V

−𝒂 +𝒂

(b) A double well potential after Wick rotation

Fig. 2.2 A symmetric double well potential with two degenerate minima.
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In Fig. 2.2a we consider an example with a particle in a 1D symmetric double well
potential, V (x), with 2 degenerate minima at x =±a. We assume the potential is symmetric
(i.e. V (−x) =V (x)) and put V ′′(±a) = ω2, as is defined in the single well case [21]. After
Wick rotating to imaginary time, we consider mechanical motion of our pseudoparticle in
the upside down potential −V (x) as seen in Fig. 2.2b. From Eq. (2.17) we require constant
‘energy’ solutions satisfying the Euclidean equations of motion in Eq. (2.16) and boundary
conditions x(−τ0/2) = xi and x(τ0/2) = x f . We also enforce the additional condition that
the particle is stationary at the boundaries i.e. dx(±τ0/2)

dτ
= 0. This additional constraint

means that we can take τ0 → ∞, as is required by Eq. (2.11), to generate solutions of finite
energy defined by the ground energy eigenstate with energy E0.

Appart from the trivial solutions describing a quantum harmonic oscillator [21] where
the particle begins and ends x = a and the other where it begins and ends at x =−a, there
is one additional class of constant energy solutions where the particle begins atop the hill
at x =−a, falls into the well, and comes to rest on the peak of the right-hand hill at x = a.

-V

−𝒂 +𝒂

Pseudoparticle 
finishes at restPseudoparticle

starts at rest

Pseudoparticle has 
energy E = 0
throughout motion

Fig. 2.3 Instanton mechanical motion analogy.

This trajectory is shown in Fig. 2.3 and solutions of this type are called instantons. If
we were to Wick rotate back to real time and view solutions of this type in the right-way
up potential V (x) then we would see that they describes motion in the classically forbidden
region E < V . In other words, the solution describes the barrier penetration path of a
particle that begins at rest from the minimum at x = −a, tunnels through the barrier in
V (φ), and emerges at the other minimum at x = a where it comes to rest. By a symmetry
argument we could also solve this problem for the particle beginning at x = a and ending
at x =−a and we call this object an anti-instanton.

Again returning to our mechanical motion analogy, with the knowledge that our
instanton solutions will be of constant energy we can see from Fig. 2.3 that we are free to
choose energy E = 0. Then from Eq. (2.17) we have

dxI

dτ
= (2V )

1
2 , (2.18)
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where xI(τ) is the path of the instanton.
Now for τ0 → ∞ we require that dxI

dτ
→ 0 as xI → a and so we can series expand V

around x = a in Eq. (2.18) so that to second order

dxI

dτ
=

[
2V (a)+2V ′(a)(x−a)+V ′′(a)(x−a)2

] 1
2

= ω(a− x),

(2.19)

where we have used that V (a) = 0, V ′(a) = 0 and V ′′(a) = ω2. Therefore for τ0 → +∞

we have from the result in Eq. (2.19)

(a− x) ∝ e−ωτ (2.20)

and can conclude from this that the instanton has a well defined size in imaginary time
τ ∼ 1

ω
[24].

+𝒂

−𝒂

𝝉𝒄

𝝉  ~  
𝟏

𝝎

Centre of Instanton

Extent of instanton 
in imaginary time 𝜏

Fig. 2.4 A 1D instanton solution.

This can be seen in Fig. 2.4 where we note that the centre of the instanton τc specifies
its temporal size. Their finite extent in τ is a key property of instantons that gives rise to
many of their unique characteristics, as we will soon see.

Substituting Eq. (2.18) into Eq. (2.7) we can express the Euclidean action SI for the
instanton solution xI(τ), starting from stationary at xI(−τ0/2) =−a and coming to rest at
xI(τ0/2) = a as

SI =
∫

τ0/2

−τ0/2
dτ(2V )

=
∫ a

−a
dx(2V )

1
2 .

(2.21)
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Making a transformation τ0 → τ +δτ to the result of Eq. (2.21) and we see that the action
SI remains unchanged.

+𝒂

−𝒂

Instantons 
translated in 𝜏

Fig. 2.5 A 1D instanton solution translated in imaginary time τ .

Intuitively, we can also see this from Fig. 2.5 where the instanton solution can be
translated in τ and will have exactly the same profile. As we are integrating over the
whole range of τ and the instanton is localised in extent, we can see that the action of the
instanton will be the same regardless of where its centre τc lies. Thus we can conclude
the instanton solution exhibits translational invariance in the imaginary time co-ordinate
τ . Indeed, in solving the Euclidean equations of motion, a family of instanton solutions
are mapped out that are well separated in τ . Such a set of solutions can be interpreted as
multiple tunnelling events as discussed in [25].

From Eq. (2.12), the probability amplitude for one such instanton tunnelling event is
expressed

⟨x = a|e−Hτ0/ℏ|x =−a⟩= e−E0τ0/ℏψ0(a)ψ∗
0 (−a)

= Ne−SI/ℏ× (quantum corrections),
(2.22)

where the instanton xI(τ) is a stationary path of the action and we have taken τ0 → ∞ so
that the position eigenstates |x =±a⟩ refer to particles in the ground state. The quantum
correction factor in Eq. (2.22) arises from isolating and integrating over [26] the zero
eigenmode that arises from the τ translational invariance of the the instanton as discussed
above.
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2.2 The Bounce Solution in 1D Quantum Mechanics

When we consider a scenario with a metastable state decaying due to barrier penetration
then we stumble upon perhaps the most useful instanton type solution that can be readily
generalised to QFT: the bounce solution.

𝒙𝒃

The bounce solution has turning 
point 𝑥 = 𝑥௕ equipotential to 𝑥 = 0
[i.e. 𝑉 0 = 𝑉(𝑥௕)]. It therefore 
describes a barrier penetration path.

This potential describes an 
unstable state centred at 𝑥 = 0

(a) Before Wick rotation

𝒙𝒃

Pseudoparticle starts 
and ends at x = 0

The mechanical motion of the 
instanton is centred on the 
stationary point 𝑥 = 𝑥௕

(b) After Wick rotation, showing the stationary
bounce path

Fig. 2.6 The potential for an unstable state before and after Wick rotation.

Let us consider the potential of Fig. 2.6a which we can invert by means of a Wick
rotation to obtain the potential in Fig. 2.6b. Considering mechanical motion of our
pseudoparticle in Fig. 2.6b we can see a non-trivial solution exists where the particle
begins and ends at rest at x = 0. Such motion involves the pseudoparticle dropping into
the well and travelling to the classical turning point at x = xb at which point it changes
direction and returns to x = 0. We call this motion the bounce [1] and enforce the following
boundary conditions on the motion

lim
τ→±∞

x(τ) = 0

dx(0)
dτ

= 0.
(2.23)
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𝒙𝒃

We can obtain the bounce solution by 
solving the Euclidean equations of 
motion as it is a stationary path of the 
Euclidean action

The bounce solution contains a 
maximum meaning that the zero 
eigenmode is not the eigenfunction of 
lowest energy

Fig. 2.7 The profile of the bounce solution.

In Fig. 2.7 we sketch out the profile of a typical bounce solution. In a similar manner
to the 1D instanton, we can heuristically write down the probability amplitude for such a
bounce solution as

⟨0|e−Hτ0/ℏ|0⟩=
∫
[dx(τ)]e−S[x(τ)] = exp[e−S(xb)]× (quantum corrections), (2.24)

Upon closer inspection of Fig. 2.7 we notice a peculiarity that points to a subtle
but critical general property of the bounce solution which will motivate us seeking an
alternative approach to calculating multi-minima tunnelling solutions in Chapter 4. In
particular we can clearly see from Fig. 2.7 that the bounce trajectory has a maximum, telling
us that the particle’s wavefunction has a node. However, we know that the wavefunction of
lowest energy strictly must be nodeless and so there must exist a wavefunction of lower
energy [27]. From Eq. (2.21) we know a zero eigenvalue mode exists due to translational
invariance of the bounce in τ and thus the lower energy wave function must have negative
energy eigenvalue.

It is instructive to explore the underlying source of this negative mode by qualitatively
comparing our double well instanton scenario (Sec. 2.1.5) to our bounce scenario. When
considering the double well instanton solutions we recall that the path was constrained to
tunnelling from an initial at rest starting position xi to an equipotential final rest position
x f (the instanton) and at some later τ back again (the anti-instanton). Therefore this
scenario, by definition, is restricted to only look at those paths that precisely describe
barrier penetration. The instanton path between these two position eigenstates dominates
the contribution to the barrier penetration integral over these boundary conditions as it has
minimum Euclidean action out of all the possible barrier penetration paths.

In contrast, when we are dealing with a bounce solution we calculate the Euclidean
action over all paths that begin and end at xi and have some turning point p upon which
each solution is centred. Therefore the Euclidean action is not restricted to only include
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those barrier penetration paths which tunnel to the bounce value p = xb, ‘bounce’ off it
and return to xi.

𝒙𝒃

The bounce - the path with 
minimum Euclidean action out 
of all the possible Barrier 
Penetration pathsTwo of the infinite 

possible barrier 
penetration paths

𝑥௕ is a spatial co-ordinate at which a 
tunnelling path is energetically allowed to 
emerge from the barrier as 𝑉 0 = 𝑉(𝑥௕)

Fig. 2.8 The bounce: the optimal barrier penetration path (solid line) through Euclidean
space.

As shown in Fig. 2.8, the bounce solution has minimal Euclidean action out of all the
paths that describe barrier penetration. However, the Euclidean action for this scenario
will also permit those paths where the trajectory both overshoots and undershoots p = xb

before returning back to xi. Paths that are centred at p > xb tunnel beyond the potential
barrier and into the classically allowed region, whereas paths centred at p < xb fall short
of the barrier boundary and remain inside the barrier for the entirety of the motion.

𝒙𝒃

𝒙(𝝉)

𝝉

Paths through Euclidean space that 
describe a tunnelling path which 
extends into the classically allowed 
region before turning back to 𝑥 = 0. 

Paths through Euclidean space that describe a 
tunnelling path whose turning point is within the 
barrier and thus never make it into the classically 
allowed region. 

Decreasing action

Increasing action

Maximum action

The action is zero for the path which never 
leaves 𝑥 = 0 and monotonically increases 
as we choose paths that make it 
progressively further through the barrier.

Fig. 2.9 The bounce has maximal Euclidean action out of all paths that undershoot and
overshoot x = xb and has minimal Euclidean action out of all barrier penetration paths.
The bounce is therefore a saddle point of the Euclidean action.

As shown in Fig. 2.9 the action is zero for the trivial x = 0 path and monotonically
increases as we choose paths that make it progressively further through the barrier. On
the other hand, the action monotonically decreases when we choose paths p > xb that
make it progressively further into the classically allowed region before reaching their
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turning point at p. This is because after the path emerges from the barrier with potential
energy V (xb) = 0 and zero kinetic energy, its potential becomes increasingly negative
as it propagates classically and rolls down the hill before reaching p and turning round
for its return leg. Therefore the bounce solution which is centred on x = xb has maximal
Euclidean action out of all those paths that undershoot and overshoot xb.

This local maximum is precisely where the negative eigenmode originates from as
perturbations to the classical path in the direction of this functional mode cause the action
to decrease. It then becomes clear that the bounce solution is in fact a saddle point of the
Euclidean action [26].

We can deal with this negative eigenmode via a process of analytic continuation [27]
which introduces an imaginary term into the expression for the ground state energy. We
can interpret this imaginary part of the energy as a decay rate Γ [28] of the false vacuum

Γ = Ke−Sb, (2.25)

where Sb is the action for the bounce solution and K is a factor containing a ratio of
functional determinants that accounts for the quantum corrections to the classical path with
both the zero and negative mode accounted for.

The fact that the bounce solution lies at a saddle point in the Euclidean action is one of
the primary reasons why finding bounce solutions for exotic potentials can be extremely
challenging. Numerical approaches like the usual ‘overshoot/undershoot’ method inspired
by Coleman and described in Sec. 3.1.2 can be too sensitive to the negative mode to find
a reliable solution. As such, in Chapter 4 we study an alternative approach to finding
tunnelling solutions that reformulates the Euclidean action in terms of a new action surface
which has the crucial property that the bounce solution lies at the minimum of this surface.
We go on to apply this approach to the numerically challenging scenario of tunnelling in
single and multi-field potentials with multiple minima.
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2.3 Zero-modes, Negative-modes and QFT

Before we move from the 1D analysis of this chapter to a system with infinitely many
degrees of freedom that a quantum field theory describes, a few brief comments are worth
making regarding the existence of negative-modes and zero-modes in QFT. It is clear that
in moving to an infinite number of degrees of freedom many further zero-modes may arise
from extra symmetries in the theory. These zero-modes can be isolated and integrated over
in a similar manner to how the zero-mode from translational invariance of the bounce is
dealt with [26].

However, extra negative modes may also appear in addition to the single negative
one already outlined. This is where we must enforce a hard constraint on the class of
permitted Euclidean tunnelling solutions. Euclidean solutions of field theories with more
than one negative eigenvalue do not describe tunnelling and thus for our purposes should
be discarded [29].
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Chapter 3

False Vacuum Decay in Quantum Field
Theory

3.1 The Bounce Solution in QFT

We are now in a position to generalise the formalism we have developed in the previous
chapter from the single degree of freedom seen in one dimension to the infinite number
of degrees of freedom that a quantum field theory describes1. As we will see this takes
place in a very natural fashion and immediately has direct applications to the phenomena
of quantum tunnelling in a field theory.

3.1.1 Wick rotation

We will begin by considering the theory of a single scalar field, φ , in four dimensional
Minkowski spacetime and thus make the following field theory replacements to the 1D
scenario of Eq. (2.1)

x(t)→ φ(x, t)

V (x)→V (φ(x, t)) =V (φ),
(3.1)

where the potential V (x) becomes a potential energy density V (φ). We then have the
following action

S(φ) =
∫

d4x
[

1
2
(∂µφ)(∂ µ

φ)−V (φ)

]
. (3.2)

1To avoid repetition, we chose not to take the additional intermediate step of first generalising to a
system with many degrees of freedom but see [19] for a detailed derivation of this
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We can express the probability amplitude for a field to start in initial field configuration
φi and after time t0 end up in final configuration φ f as a path integral

⟨φ f |e−iHt0/ℏ|φi⟩= N
∫

D[φ(t,x)]eiS/ℏ, (3.3)

where e−iHt0ℏ is the time evolution operator, H is the Hamiltonian and N is a normalisation
constant. Then following the general prescription from Sec. 2.1.2 and Wick rotating
Eq. (3.3) we obtain the Euclidean path integral

⟨φ f |e−Hτ0/ℏ|φi⟩= N
∫

D[φ(τ,x)]e−SE/ℏ, (3.4)

where SE is the Euclidean action obtained by Wick rotating Eq. (3.2) to give

SE =
∫

d4x
[

1
2
(∂µφ)(∂ µ

φ)+V (φ)

]
=
∫

dτd3x
[

1
2
(
∂φ

∂τ
)2 +(∇φ)2 +V (φ)

]
.

(3.5)

The potential energy of the Euclidean system is obtained by integration over all space. 2

U [φ(τ)] =
∫

d3x
[

1
2
(∇φ)2 +V (φ)

]
. (3.6)

Note that henceforth, for simplicity, we often refer to the potential energy density, V (φ),
as simply the potential. Its usage should be clear from the context. Furthermore, we
assume that τ0 → ∞ in Eq. (3.4) so that we only need to consider the lowest lying energy
eigenstates that will provide dominating contributions to our result (section 2.1.2). We
can then calculate the Euclidean equations of motion for this field theory by extremising
Eq. (3.5) to give

∂ 2φ

∂τ2 +∇
2
φ =

dV
dφ

. (3.7)

3.1.2 Bounces in scalar QFT

The primary goal of this section is to find a meaningful description of tunnelling phenomena
in quantum field theory. In Chapter 2 we considered a problem in 1D quantum mechanics
with an unstable minima (Sec. 2.2). We saw that by solving the equations of motion that
arose from the stationary Euclidean action with appropriate boundary conditions, we could
find the barrier penetration amplitude. This solution, known as the bounce, provided us
with a working description of barrier penetration effects in 1D quantum mechanics. With

2It is worth noting that the potential energy has picked up an additional gradient term arising from the
spatial part of the derivative term in the first line of Eq. (3.4).
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this in mind, our plan is to take this bounce formalism and directly generalise it to quantum
field theory.

𝒕𝒗

𝒇𝒗

Fig. 3.1 An offset double well potential.

We consider a theory with an offset double well potential V (φ) of the form seen in
Fig. 3.1. In an analogous manner to the 1D quantum mechanical case, this describes a
situation where the minimum of the potential at φ = φ f v is deemed unstable due to barrier
penetration effects. The minimum at φ f v is thus known as the false vacuum, whilst the
minimum at φ = φtv we call the true vacuum of the theory.

Wick rotating our theory we obtain the Euclidean action in Eq. (3.5) from which we
can compute the Euclidean equations of motion in Eq. (3.7). To have any hope of finding a
bounce solution, φ̄ , to Eq. (3.7) we also need to generalise the 1D boundary conditions in
Eq. (2.23) and in doing so obtain

lim
τ→±∞

x(τ) = x0

dx
dτ

∣∣∣∣
τ=0

= 0.
(3.8)

We achieve this by making the replacements for QFT

x(τ)→ φ(τ,x)

x0 → φ f v,
(3.9)

to obtain
lim

τ→±∞
φ̄(τ,x) = φ f v (3.10)
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and
∂ φ̄(τ,x)

∂τ

∣∣∣∣
τ=0

= 0, (3.11)

where φ̄(τ,x) is the required bounce solution. To ensure the action remains finite we also
enforce the condition

lim
|x|→∞

φ̄(τ,x) = φ f v. (3.12)

𝒕𝒗𝒇𝒗 𝒃

Fig. 3.2 The bounce solution paramterised by imaginary time τ .

Fig. 3.2 shows the potential barrier and the τ parameter that, for the bounce solution, is
a parametrisation along the optimal barrier penetration path through configuration space.
The diagram thus illustrates the requirement Eq. (3.10) that our solution, φ̄(τ,x), begins
from the false vacuum, φ = φ f v, at τ →−∞ and must return to φ f v as τ →+∞. Therefore,
from Eq. (3.11), there exists an intermediate stationary point that can be chosen with
field value φ(τ = 0,x = 0) = φb. Fig. 3.2 also shows that the potential energy density
V (φb) ̸= V (φ f v). However we still require that the solution conserves potential energy,
U(φ), and so must have that U(φb) =U(φ f v).

The false vacuum decay rate for quantum field theory can be directly generalised from
the decay rate in Eq. (2.25) for a unstable state in 1D quantum mechanics. For QFT we
pick up an extra spacetime volume factor V when we integrate over the whole of spacetime.
The decay rate is then expressed as a false vacuum decay rate per unit volume as

Γ/V = |K|e−Sb, (3.13)
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where ℏ is set to unity and Sb is the Euclidean action of the bounce solution. The pre-factor
K physically represents quantum corrections to the bounce solution and is expressed using
a ratio of functional determinants, similar to in the 1D QM case, which contain the single
negative eigenmode and the numerous zero eigenmodes as mentioned in Sec. 2.3.

It is generally a difficult task to exactly calculate such prefactors but fortunately we can
often suppress these factors on dimensional grounds when calculating false vacuum decay
rates [26]. Therefore in this thesis we shall not consider this prefactor term and unless
otherwise stated assume it is ∼ O(1). Having said this, the accurate computation of this
factor is crucial when one wants to to assess the effect of quantum corrections to the decay
rate and a strategy for calculating the functional determinant pre-factor is outlined in [30].

The homogeneity conditions Eq. (3.10) and Eq. (3.12) lead to a particularly enlighten-
ing interpretation of tunnelling in quantum field theories in terms of vacuum bubbles. We
expand on this in detail in Sec. 3.1.3 but for now I will simply describe the essence of this
interpretation.

We begin in a homogeneous false vacuum field configuration φ f v that extends over all
of spacetime. Now consider that a vanishingly small region of spacetime finds the true
vacuum due to quantum fluctuations. The required bounce solution, φ̄ , provides a means
of transitioning the false vacuum field configuration at the exterior of this region to the
true vacuum field configuration φtv. Heuristically, we can see that such a process will have
the shape of a bubble in Minkowksi space where the bubble wall drives the transition of
the scalar field value.

In an analogous manner to superheated fluids [1], in most cases the bubble will
immediately shrink to nothing instead of nucleating in Minkwoski space due to the energy
cost of the bubble wall being greater than the energy gain from the bubble volume. However,
there will be a critical bubble volume for which it is energetically favourable for the bubble
to physically nucleate in Minkowski space, after which point it will expand over the whole
of spacetime and convert the universe to the true vacuum phase.

Such an interpretation is attractive as it avoids any inconsistencies with energy conser-
vation where one needs to simultaneously convert the whole universe from false vacuum
configuration to true. This of course would require overcoming an infinite potential well.

Equipped with this intuitive picture in our head, along with the fact that Eqs. (3.7),
(3.10) and (3.12) are O(4) invariant, it seems a natural step to make the conjecture that the
bounce solution itself is also invariant under 4D Euclidean rotations. Indeed the conjecture
that there always exists an O(4) invariant bounce solution is proved in [31]. With this
knowledge we define χ to be a radial co-ordinate in four-dimensional Euclidean space,
with center of symmetry at the origin, where

χ =
√

τ2 +x2, (3.14)
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so that the bounce φ̄ is a function of χ . Making this substitution into Eq. (3.7) the Euclidean
equation of motion for the bounce become

d2φ̄

dχ2 +
3
χ

dφ̄

dχ
=

dV
dφ

, (3.15)

where the boundary conditions in Eq. (3.10) and Eq. (3.12) become

lim
χ→∞

φ̄(χ) = φ f v (3.16)

and we require
dφ̄

dχ

∣∣∣∣
χ=0

= 0, (3.17)

so that φ̄ is non-singular at the origin. We can also rewrite the Euclidean action from
Eq. (3.5) in terms of χ by noting that the surface area of a 4D hyper-surface of radius χ is
2π2χ3 to give

SE = 2π
2
∫

∞

0
χ

3dχ

[
1
2

(
dφ̄

dχ

)2

+V (φ̄)

]
. (3.18)

At this point, following [1], we gain some insight with far-reaching consequences if we
now interpret φ as a position and χ as a time in solving Eq. (3.15). Under this analogy the
Euclidean equations of motion in Eq. (3.15) then describe particle motion in a negative
potential, −V (φ), where the particle is being exposed to an additional viscous drag force,
− 3

χ

dφ̄

dχ
, that decreases in magnitude with increasing ‘time’ χ .

𝝓𝒕𝒗
𝝓

−𝑽 𝝓

𝝓𝒇𝒗

𝝓𝒃

𝝌 = 𝟎 

𝝌 = +∞ 

Fig. 3.3 A mechanical analogy of the bounce solution.
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As shown in Fig. 3.3 the bounce solution to Eq. (3.15) then describes mechanical motion
of a particle beginning at rest at some initial position φb at χ = 0 and subject to this time
dependent drag force while moving in the potential −V (φ). The starting position φb has to
be carefully chosen such that the particle can overcome the drag force and successfully
traverse the potential valley, −V (φ), before coming to rest at φ = φ f v in the limit χ → ∞.
This mechanical analogy will prove to be an extremely useful interpretation when we look
to solve the Euclidean equations of motion for the bounce solution throughout the rest of
this thesis.

Remaining with our mechanical analogy we aim to show that there always exists an
initial field value φb that can be chosen such that the particle will come to rest at φ f v in the
limit χ → ∞. We will show this via an ‘overshoot/undershoot’ argument following [1].

𝝓𝒕𝒗
𝝓

−𝑽 𝝓

𝝓𝒇𝒗 𝝓𝒖

𝝌 = 𝟎 

(a) Under Shoot

𝝓𝒕𝒗
𝝓

−𝑽 𝝓

𝝓𝒇𝒗

𝝌 = 𝟎 

𝝓𝒖

(b) Over Shoot

Fig. 3.4 Showing a bounce solution exists by mechanical analogy.

First, in Fig. 3.4a we consider releasing the particle from rest on the right hand hill at
some field value φ < φu where V (φ f v) =V (φu). In this case the particle will clearly not
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have enough kinetic energy to climb the left-hand hill to finish at φ = φ f v and so we have
demonstrated the existence of paths that undershoot φ = φ f v.

On the other hand if we release the particle arbitrarily close to the maximum at φ = φtv

as shown in Fig. 3.4b then it can be shown [1] that the particle can stay there for arbitrarily
large ‘time’ χ . However, once enough time has passed and χ is large enough, the drag
term will become negligible as it is inversely proportional to χ . Thus at late times, the
particle is located at φ > φu and has no drag term acting which means that it drops into
the valley and has sufficient energy that it overshoots the peak at φ f v. Therefore if the
particle has a starting position for which it overshoots and a starting position for which it
undershoots, by continuity it must have an intermediate starting point in which it comes to
rest at φ = φ f v in the limit χ → ∞.

3.1.3 Constructing a bubble model

At this point we are in a good position to build a detailed conceptual model for the
phenomena of vacuum decay in a quantum field theory. This will provide us with a strong
foundation to build our theory around and maintain an intuitive picture of what is taking
place when we look to develop the theory further.

In his seminal paper on the subject in [1], Sidney Coleman offered a compelling
interpretation of vacuum decay in a quantum field theory in terms of vacuum bubbles,
drawing an analogy to the boiling of a superheated fluid.

Briefly recapping this well known theory, bubbles of vapour can nucleate in a homo-
geneous superheated liquid due to thermodynamical fluctuations. If the energy given off
in creating the vacuum bubble is outweighed by the energy required to counteract the
surface tension at the wall then the bubble will immediately shrink to nothing. If however
the energy given off by the bubble’s volume outweighs the surface tension, then it is
energetically favourable for the bubble to grow, rapidly converting all the liquid to the
vapour phase.

Coleman’s insight was borne out of identifying a superheated liquid’s fluid phase with
the homogeneous false vacuum field configuration and its vapour phase with the true
vacuum. He additionally identified the thermodynamic fluctuations causing the bubbles to
nucleate with quantum mechanical fluctuations. Thus he suggested that if a bubble of true
vacuum of a certain radius were to nucleate in Minkowski space such that it is energetically
favourable for it to expand then, by energy arguments, it would do so over all of spacetime.
Thus the expanding bubble would cause the decay of the false vacuum and convert the
homogeneous false vacuum to true vacuum phase.

To see how this true vacuum bubble analogy arises we must return to the concept of
imaginary time that engendered the rise of the bounce solutions that make up the core
theme of this thesis. As we will see, the introduction of an imaginary component to the real
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time axis has exceptionally rich implications to our conceptual interpretation of tunnelling
in a quantum field theory.

It is important to underline at the outset, that imaginary time, τ , is not a time at all in
the conventional sense, but rather a parameter along a given path in the configuration space
of the field. In the special case of the bounce solution of Sec. 3.1.2, τ then parameterises
the optimal barrier penetration path through configuration space.

𝝓𝒇𝒗

𝝓𝒃

V

𝝓𝒕𝒗

Bounce solution emerges at field 
value 𝜙 =  𝜙௕ ≈ 𝜙௧௩ after barrier 
penetration and then tunnels back 
through the barrier to 𝜙 = 𝜙௙௩

Outward: Increasing −𝐯𝐞 𝝉 through barrier

Return: Increasing +ve 𝝉 through barrier

Fig. 3.5 The bounce solution parameterised by imaginary time τ through the barrier.

As shown pictorially in Fig. 3.5, the bounce enforces a solution that begins in a
homogeneous false vacuum field configuration φ = φ f v at τ →−∞. It then tunnels to a
field value φ = φb, close to the true vacuum φ = φtv, which it arrives at τ = 0. The solution
then ‘bounces’ off φb and returns again to φ f v at τ →+∞.

Before proceeding, it is critical that we clearly distinguish between a Euclidean space
bubble that exists in the (imaginary time,real space) plane and a Minkowski bubble that
exists in the (real time,real space) plane of Minkowski space. The nucleation of the
physical bubble that we actually see therefore takes place in Minkowski space and evolves
in real time which we look at in more detail in Sec. 3.1.4.
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𝑟
𝑟 𝑟 𝑟 = 𝑅௕

Outward: Increasing −𝐯𝐞 𝝉 through barrier

Return: Increasing +ve 𝝉 through barrier

𝜏௜௡௜௧௜௔௟ → −∞

𝜏௙௜௡௔௟ → +∞

𝜏 = 0

𝜏 = 0

Minkowski Bubble of 
approximate True 
Vacuum 𝜙 = 𝜙௕ ≈ 𝜙௧௩

that nucleates with 
radius r = 𝑅௕ and then  
evolves in real time 𝑡

Homogenous  
False Vacuum 
𝜙 = 𝜙௙௩

Euclidean Bubble of approximate 
True Vacuum 𝜙 = 𝜙௕ ≈ 𝜙௧௩ that 
‘evolves’ in imaginary time 𝜏

Fig. 3.6 A view of the bounce path through configuration space in terms of vacuum bubbles
inspired by Fig. 12.2 of [26].

In Fig. 3.6 we show a schematic diagram of the process that envisages a Euclidean
bubble of true vacuum with radius defined by the spatial value r = |x|, at each subsequent
snapshot of imaginary time −∞ < τ < 0 that parameterises the outward tunnelling path
through the barrier from φ f v. At imaginary time τ = 0 the bubble has its maximum spatial
radius of Rb that it obtains upon the bounce solution reaching the field value φb ≈ φtv. At
this point the bubble physically nucleates in Minkowksi space and then evolves in real
time t.

The bounce solution itself then bounces off φb at zero imaginary time (see Fig. 3.3) and
comes back through the barrier (see Fig. 3.2) to return to the false vacuum configuration
φ f v. This second half of the solution mirrors the first half except we are now moving
through positive imaginary time. Thus at each snapshot of positive imaginary time τ that
parametrises our return journey through the barrier, we have a Euclidean space bubble
of decreasing radius. The vacuum bubble radius, r = |x|, continues to decrease until we
finally return to φ f v and the Euclidean bubble vanishes completely.

A particularly interesting representation of this bounce solution arises when we plot
it in 4D spherical polar co-ordinates with χ =

√
τ2 + r2. The bounce solution then maps

out a static 4-sphere of approximate true vacuum in Euclidean space, centred at radial
co-ordinate χ = 0. This true vacuum 4-sphere has radius χ = Rb and resides in the t = 0
(i.e. vanishing real time) plane.
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𝝌
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𝒃
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Euclidean 4-sphere 
domain wall 
transitions scalar field 
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true vacuum 
configuration within 
to false vacuum 
without

Minkowski bubble of radius 𝑅௕Euclidean Bubble of radius r

Surface of true vacuum 
Euclidean 4-sphere of 
radius 𝜒 = 𝑅௕

Fig. 3.7 A thin walled bounce solution in Euclidean space inspired by Fig. 12.3 of [26].

In Fig. 3.7 we represent this as a circle of radius χ = Rb in the t = 0 plane. This circle
is simply a projection of the static Euclidean 4-sphere onto our co-ordinates. At each
snapshot of imaginary time τ we have a 1D line of length 2r on our diagram. Each of these
1D lines in fact represent a Euclidean bubble of spatial radius r. The Minkowski bubble of
radius Rb that physically nucleates in Minkowski space, ready to evolve in real time, is
also represented on the diagram by a 1D line of length χ = r = Rb at τ = 0.

With this picture it becomes clear how we can interpret bounce profiles such as those
seen in Sec. 3.1.2 in terms of our bubble model. As we move out radially from the centre of
co-ordinates of our Euclidean 4-sphere we remain in the approximate true vacuum φb ≈ φtv.
At some radius χ = Rb we reach the domain wall of the 4-sphere and the solution smoothly
transitions us from true vacuum value to false vacuum value. Thus we can interpret the
part of the bounce solution that transitions our scalar field value as forming the wall of our
Euclidean 4-sphere of approximate true vacuum.
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𝝌 =  𝑹𝒃

Euclidean 4-sphere 
domain wall 
transitions scalar field 
from approximate true 
vacuum configuration 
within to false vacuum 
without

𝝓𝒇𝒗

𝝓𝒃𝒐𝒖𝒏𝒄𝒆 ≈ 𝝓𝒕𝒗

𝝓𝒇𝒗

Fig. 3.8 The Euclidean 4-sphere bounce solution.

In Fig. 3.8 we show a schematic diagram of this interpretation. In this case we have
modelled the domain wall as thin, reflecting a transition of the scalar field value that
takes place over a negligible distance compared to the radius of the 4-sphere. As we will
see in Sec. 3.1.6, if such an approximation is valid then we can clearly identify the wall
region with a 1D instanton (Sec. 2.1.5) transitioning the scalar field value from true to
homogeneous false vacuum.

As previously touched upon, our bubble in fact does not physically nucleate in
Minkowski space until it has zero imaginary time component. This makes sense from an
intuitive perspective as real world objects only propagate in time that is purely real and has
no imaginary component.
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𝟒

Domain wall of 
Euclidean 4-Sphere 
transitions scalar field 
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within to false vacuum 
without

Fig. 3.9 The bounce solution projected into real time at t = 0.

In Fig. 3.9 we graphically demonstrate a key result that the spacetime radius of the
bubble when it nucleates at real time t = 0 is precisely dictated by the radius of the
Euclidean 4-sphere, χ = Rb. From this perspective, the Euclidean bounce 4-sphere sets
the initial conditions of the Minkwoski bubble at its point of nucleation, namely, its
spacetime radius Rb and also its shape as we will see in a moment. After nucleation, the
Minkowski bubble’s future evolution is then governed by its propagation through real time
with spacetime radius Rb as one might expect.

3.1.4 Bubble evolution in spacetime

This brings us back to something we touched upon previously: the evolution of the bubble
in Minkowski space. Based on pictorial arguments that we have discussed thus far, it
is easy to see that it should be possible to analytically continue our bounce solution to
Minkowski space by taking the intersection of Euclidean space with Minkowski space,
t = iτ = 0.

The O(4) invariance of the bounce solution in Euclidean space

φE = φ̄(
√

x2 + τ2), (3.19)

then becomes O(3,1) invariance in Minkowski space [1]

φM = φ̄(
√

x2 − t2), (3.20)
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meaning the bubble maintains its spherical shape to all Lorentz observers.
The wall of the bubble expands according to

|x|2 − (t2) = R2
b, (3.21)

which maps out hyperbolas in spacetime that reflect the expansion of the bubble over the
whole universe, converting the homogeneous false vacuum to the true vacuum configuration.
This can be seen in Fig. 3.10, where we show the bubble’s ‘evolution’ from early imaginary
‘time’ τ →−∞ to τ = 0 through to its evolution in real time t > 0.

r

r

r

r

𝝌 = 𝒓 = 𝑹𝒃

Euclidean Bubble of 
interior field 
configuration 𝜙௕ ≈ 𝜙௧௩

‘evolving’ in imaginary 
time 𝜏

Minkwoski Bubble of 
approximate True 
Vacuum evolving in 
real time t

Minkowski bubble of 
finite radius 𝑅௕ that 
nucleates at 𝑡 = 0 with 
interior field 
configuration 𝜙௕ ≈ 𝜙௧௩

Hyperbolic expansion of 
bubble wall in Minkowski
space

Fig. 3.10 The bounce solution matched to the Minkowski bubble’s real time evolution.

In Fig. 3.10 we put together our previous analysis, showing the −∞ < τ < 0 region of
the bounce representing a half-sphere projection of the true vacuum Euclidean 4-sphere
and join to this the t > 0 real time evolution of the bubble as it expands in Minkowski
space.
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𝑟

𝑟

Hyperbolic expansion of 
bubble wall in Minkowski
space as bubble evolves 
in real time 𝑡

𝟒

Fig. 3.11 The bounce solution anlaytically continued into real time.

In 3.11 we weave the different threads of the above model into one consistent diagram.
The circle in the (imaginary time,real space) plane centred at χ = 0 is a projection of the
static Euclidean 4-sphere of approximate true vacuum. The radius of the 4-sphere, χ = Rb,
sets the spacetime radius of the nucleated Minkowski bubble. This is exactly the same as in
Fig. 3.9 and by similar arguments the bubble only nucleates in the (real time,real space)
plane we know as Minkowski space. In Fig. 3.11 the initially nucleated bubble of radius Rb

is again represented as a 1D projection of length 2Rb at t = iτ = 0. The evolution of this
(3+1) dimensional bubble of radius r in real time is then represented on our digram by
subsequent 1D dashed line projections of increasing length 2r as t increases. This sequence
of projections in the (real time,real space) plane reflect the hyperbolic expansion of the
(3+1) dimensional Minkowski bubble over all of spacetime, converting the homogeneous
false vacuum configuration to true vacuum.

3.1.5 An energy argument for bubble nucleation in Minkowski space

To conclude this section and complete our model of false vacuum decay via bubble
nucleation, we consider the process in terms of energy arguments. We again assume the
transition of the scalar field value happens over a negligible distance compared to the
radius of the bubble so that the bubble wall is thin. The surface tension in the Euclidean
bubble has an energy cost per unit volume arising from the transition of the scalar field
value at its wall. The interior of the bubble, on the other hand, supplies energy per unit
volume from its scalar field value being at a lower potential value V (φb)<V (φ f v).
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As τ < 0 increases through the first part of the bounce solution, the surface tension
cost at the wall of each successive Euclidean bubble outweighs the energy released from
its interior volume; such a bubble cannot physically nucleate by energy arguments. As τ

further increases, each subsequent Euclidean bubble has a larger radius and thus larger
energy available to counteract the surface tension cost of the wall. Finally when the solution
reaches τ = 0 the energy acquired from the bubble interior precisely counteracts the surface
tension cost at the bubble wall, and as a result the bubble nucleates in Minkowski space.

3.1.6 The thin wall approximation

Looking at the form of the bounce equations of motion in Eq. (3.15), we can see that the
primary object that is going to affect the bounce solution profile obtained is going to be the
form of the potential V (φ).

In the following sections we will thus begin exploring the different types of bounce
solutions that can be obtained through varying the form of the potential V (φ). From this
we can calculate the critical radius for the bubble to nucleate in Minkowski space, Rb,
as well as the decay rate of the false vacuum. These are physical results that one can in
principle use to compare the vacuum decay properties of different quantum field theories.
The first shape of potential we will explore is that for which the bubble wall is vanishingly
thin and as such this is called the thin wall approximation.

Lets assume we have a symmetric double well function V (φ) where one of the de-
generate minima has been been offset a small distance ε in the V (φ) axis. We have now
generated a theory with a false vacuum potential.

Following Coleman [1], we describe this scenario with the toy model potential

V (φ) =V0 +
ε

2a
(φ −a), (3.22)

where V0 is a symmetric double well potential with two degenerate minima at φ =±a and
the second term is an epsilon offset in the potential of the left-hand minima φ =−a.
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𝝓𝒕𝒗
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(b) Inverted offset double well

Fig. 3.12 A thin wall potential.

We then obtain a potential of the form shown in Fig. 3.12a where the minimum at
φ f v describes a false vacuum mode unstable due to barrier penetration, with φtv the true
vacuum. To find the form of the bounce solution for this theory we need to solve the
Euclidean ODE in Eq. (3.15) which corresponds to particle motion in an upside down
potential −V (φ) as shown in Fig. 3.12b. We would do well to keep in mind that even
though it is helpful to interpret χ as a time co-ordinate due to the strong resemblance
Eq. (3.15) has with standard mechanical equations of motion, in reality it is simply a 4D
radial co-ordinate.

Given our set up, there are two main simplifications we can make to the problem.
Firstly, we approximate ε to be vanishingly small. Secondly, for χ ≈ Rb and χ > Rb we
approximate the drag term in Eq. (3.15) to be negligible by making Rb large (see Sec. 3.2.3
for scenarios where this approximation is not valid).

These two approximations have the following effect on the bounce solution. For very
small ε we must have a starting point of the bounce, φ̄(0) = φb, that is arbitrarily close to
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the true vacuum peak φ = φtv. In regions very close to the maximum value the gradient is
very small, meaning the particle will not move far from its starting value for early times χ .
This effect is amplified further by the fact that at early times the drag term is large.

Once we reach some late time χ ≈ Rb where Rb is large, then the drag term will have
become negligible at which point the particle quickly drops into the valley and and comes
to rest at φ = φ f v at time χ → ∞.

𝝓(𝝌)

𝝌
𝑹𝒃

𝝓𝒃

𝝓𝒇𝒗

Fig. 3.13 A thin wall bounce profile.

In Fig. 3.13 we show the form of the bounce profile describing this scenario.
Now if we translate this mechanical interpretation of the bounce motion back into

our vacuum bubble description (Sec. 3.1.3), our bounce solution describes a 4-sphere
of approximate true vacuum embedded in a Euclidean space with a homogeneous false
vacuum background. This 4-sphere has a vanishingly thin wall at radius r ≈ Rb. We can
think of the 4-sphere domain wall itself as being made up of the instanton part of our
bounce solution, with the job of transitioning the field value from true vacuum within to
false vacuum outside (Fig. 3.8).

Next we want to actually calculate the radius, Rb, of the thin walled bubble that
nucleates in Minkowski space and the decay rate of the false vacuum for our potential,
under this approximation. To do this we will need to solve the Euclidean equations of
motion in Eq. (3.15) under the bounce boundary conditions in Eqs. (3.16) & (3.17). We
can then compute the bounce action SB which is specified in the exponent of the false
vacuum decay rate Γ/V as seen in Eq. (3.13).

In the thin wall approximation we make ε so small that the ε term in V (φ) can be
neglected due to its relative size compared to the other terms. On grounds discussed
previously, we also can neglect the viscous drag term in the Euclidean equations of motion
(Eq. (3.15)) as in the thin wall approximation Rb is large and so for χ ≈ Rb the damping
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term is negligible. We therefore have the bounce ODE

d2φ̄

dχ2 =V ′
0(φ), (3.23)

where V ′
0(φ) is a derivative with respect to φ . This is analogous to our equations of motion

for a 1D instanton in Eq. (2.16). Thus the solution has the profile seen in Fig. 3.13 of a
localised 1D insanton (Sec. 2.1.5), centred at χ = Rb, transitioning from true vacuum value
φtv to false vacuum value φ f v

To calculate the Euclidean bounce action using Eq. (3.18), we split the problem into
three regions in Euclidean space and compute the contribution of each to the action. First
let us consider the region outside the domain wall of the bounce solution where χ > Rb

and the field value is φ = φ f v. The solution has dφ̄(χ)
dχ

= 0 in this region and so, in our
mechanical analogy, has zero kinetic energy here (Sec. 3.1.2). We also have that V (φ f v) = 0
so that the value of the Euclidean action (Eq. (3.18)) in this region is then

Sexterior = 0. (3.24)

Next we look to compute the value of the Euclidean action in the interior region of the
bounce 4-sphere, χ ≈ Rb. Taking the difference in energy density ε between true and false
vacua as negligible, we only consider the symmetric part of the potential V0. We thus see
that in this approximation the thin wall region will describe a 1D instanton solution to a
symmetric double well potential (Sec. 2.1.5). The Euclidean action for the thin wall region
is then

Swall = 2π
2R3

b

∫
dχ

[
1
2

(
dφ̄

dχ

)2

+V (φ̄)

]
= 2π

2R3
b

∫
dχ

[
2V (φ̄)

]
,

(3.25)

where we have used energy conservation and that E = 0 for our 1D instanton solution.
Thus, we can also write

1
2

(
dφ̄(χ)

dχ

)2

=V0

=⇒ dχ =
1√
2V0

dφ̄ .

(3.26)

Substituting this change of variables into the result from Eq. (3.25) and changing the limits
of integration accordingly, we can compute the Euclidean action for the bounce wall region
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as

Swall = 2π
2R3

b

∫ a

−a
dφ̄
√

2V0

= 2π
2R3

bSI,

(3.27)

where SI is the action for a 1D instanton that we calculated in Eq. (2.21). This result is
dimensionally consistent with what we would expect for an action evaluated across the 3D
surface of our 4-sphere.

Finally we calculate the action of the bounce solution in the region χ < Rb which is
on the interior of the Euclidean 4-sphere. In this region φ = φtv =−a, V (−a) =−ε and
dφ̄(χ)

dχ
= 0 so that, again using Eq. (3.18), the Euclidean action reads

Sinterior =−2π
2
ε

∫ Rb

0
χ

3dχ

=−1
2

π
2R4

bε.

(3.28)

This result is dimensionally consistent with what we would expect for an expression
evaluating the action for converting a 4D volume of false vacuum to true vacuum.

Now adding our contributions from each of the three regions together we get the total
action for our thin wall bounce solution

Sb =−1
2

π
2R4

bε +2π
2R3

bSI. (3.29)

We can then find the radius of our Euclidean 4-sphere bounce solution and thus the
critical radius at which our bubble nucleates in Minkowski space by extremising the action
(Eq. (3.29))

dSb

dRb
=−2π

2R3
ε +6π

2R2SI = 0

=⇒ Rb =
3SI

ε
,

(3.30)

where we have used that the bounce solution is a stationary point of the Euclidean action.
This result is consistent with our intuitive picture where the bounce radius approaches
infinity in the limit where the energy density difference between true and false vacua tends
to zero.

The meaning of this critical bubble radius for the thin wall approximation can be
understood from a few different perspectives when put in the context of our conceptual
model set out in Sec. 3.1.3. Fundamentally it is the radius at which the Euclidean action is
stationary. Therefore it directly describes the radius of the Euclidean bounce 4-sphere and
thus the optimal tunnelling path through configuration space that penetrates the potential
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barrier V (φ). Assuming the thin wall approximation, if a false vacuum decay event were
to occur in this theory then Eq. (3.30) specifies the radius in Minkowski space that the
nucleated thin wall bubble of true vacuum would have.

Furthermore, Eq. (3.30) specifies the spacelike spacetime separation, 2Rb, of antipodal
points on the nucleated bubble and thus provides us with a complete description of its
evolution in Minkwoski space as outlined in Sec. 3.1.4. Aligning these two perspectives
with each other, for the thin wall approximation, we can think of Eq. (3.30) as both setting
the initial conditions for the bubble at its point of nucleation as well as describing its future
expansion in vacuum3 over all spacetime, as it converts false vacuum to true.

Substituting the critical bubble radius (Eq. (3.30)) back into the thin wall bounce action
(Eq. (3.29)) we obtain

Sb =−1
2

π
2
(

3SI

ε

)4

ε +2π
2
(

3SI

ε

)3

SI

=
27π2S4

I
2ε3 .

(3.31)

Of course this approximation to the Euclidean action is only valid when the radius of
the bubble is much larger than the bubble wall. Now we can substitute Eq. (3.31) into
Eq. (3.13) to obtain an expression for the decay rate per unit volume of the false vacuum

Γ/V = Ae−
27π2S4

1
2ε3 . (3.32)

3.2 Examples of Bounce Solutions

At this point it is instructive to look at a concrete example that we can then use to compute
some exact bounce solutions and put our intuitive understanding to the test. With this
grounding it will then be easier to bring together the different threads of the conceptual
understanding we have developed thus far into a fully functional model of what is taking
place when the false vacuum decays.

In previous sections we have taken care to make the distinction between the initially nu-
cleated bubble in Minkowski space and the bounce solution that is a 4-sphere in Euclidean
space. For the remainder of this thesis, for convenience, we use the blanket term ‘bubble’
to cover both the 4-sphere Euclidean bounce solution and the nucleated Minkowski bubble.
This works because the bounce solution φ̄(χ) is also the Minkowski bubble solution, φ̄(r),
where r is the spacetime separation (Sec. 3.1.4).

3In Sec. 5.3 we discuss the dynamics of the bubble wall’s expansion in non vacuum scenarios, such as in
the presence of a plasma.
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3.2.1 A numerical approach: shooting

First we will detail the most common numerical approach typically used to find a bounce
solution from any given potential, which can subsequently be used to compute the nucle-
ation rate of bubbles of true vacuum via quantum tunnelling using Eq. (3.13). Indeed, this
approach is directly used to obtain our results in Chapters 6 and 9. The numerical scheme
is based on Coleman’s ‘overshoot/undershoot’ argument outlined in Sec. 3.1.2 and is best
demonstrated by example.
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Fig. 3.14 A range of false vacuum potentials in the thin wall regime.

In Fig. 3.14 we plot an offset double well potential of the form [26]

V (φ) =
1
4
(φ 2 −1)2 +

4α

3
(φ 3 −3φ −2), (3.33)

with false vacuum at φ f v = −1 and true vacuum at φtv = 1. We can clearly see that the
difference in energy density V (φ) between true and false vacua increases with increasing
α . When α = 0, we have a symmetric double well potential with 2 degenerate minima.
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Fig. 3.15 A range of inverted false vacuum potentials in the thin wall regime.

We obtain Fig. 3.15 after rotating to Euclidean space and thus flipping the sign of the
potential in Eq. (3.33). We then need to solve the Euclidean equation of motion (Eq. (3.15))
with the boundary conditions (Eqs. (3.16) & (3.17)) for our potential to find the bounce
solution. To do this we use the overshoot/undershoot method (Sec. 3.1.2) to vary the initial
position of φb to numerically solve the ODE for different values of α .

We will quickly recap this method employing our mechanical particle analogy to help
us. Our aim is to find the stationary field value φb, close to φ = φtv = 1, that will map out a
solution for which the particle begins at φ(χ = 0) = φb and comes to rest at φ = φ f v =−1
in the limit χ → ∞.
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Fig. 3.16 φb chosen such that solution overshoots.

As seen in Fig. 3.16 for α = 0.2, if we choose values of φb too close to φ = 1 then the
particle will have too much kinetic energy upon reaching φ =−1 so that it will overshoot
this value and the solution will be divergent.
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Fig. 3.17 φb chosen such that solution undershoots.

Conversely, as seen for α = 0.2 in Fig. 3.17, if we choose values for φb too far down
the hill from φ = 1 the particle will be heavily influenced by the drag term and will not
have enough kinetic energy to make it up the right hand hill. Thus the solution will be
oscillatory.

By continuity there will always be a solution (Sec. 3.1.2) that stops at φ =−1 in the
limit τ → ∞ and this is the solution we wish to determine numerically by iterating the φb

initial condition to the desired degree of accuracy, φ(χ = 0)≈ φb.
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Fig. 3.18 φb chosen to give correct solution (the bounce).

An example of the instanton profile for α = 0.2 obtained by this numerical method
is shown in Fig. 3.18. Interpreting the solution in Fig. 3.18 in terms of a vacuum bubble,
we start in the centre of our bubble of approximate true vacuum φ = 1 and move out
radially. At radius χ ≈ 9 we reach the thin wall of the bubble and as we move through
it with increasing χ the field is smoothly transitioned from true vacuum value within to
false vacuum value without. Thus, we exit the bubble wall into a homogeneous false
vacuum field configuration that extends over the whole of Euclidean space. In this case
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the transition from true to false vacuum takes place at a radius large compared to the wall
width. Therefore the vacuum bubble is said to have a thin wall.

3.2.2 Thin walls
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Fig. 3.19 A range of approximate true vacuum bounce solutions in the thin wall regime.

In Fig. 3.19 we show our results after repeating the above numerical method for
each value of α in Fig. 3.14. As the difference in energy density between true and false
vacuum ε increases (i.e. with increasing α), the spacetime radius r = Rb of the nucleated
Minkowksi bubble decreases. Furthermore, the field value of the interior region of the
bubble, φb, remains approximately at the true vacuum φ = 1. This can be explained by the
fact that as the difference in energy density ε = |V (φ f v)−V (φtv)| increases, more energy
per unit volume is available to the bubble in transitioning from φb ≈ 1 to the false vacuum
φ f v =−1. Thus less volume of bubble is required to counteract the surface tension cost at
the bubble wall and so the radius of the Minkowski bubble decreases.

We can also see from Fig. 3.19 that as the bubble radius decreases, the profile of the
wall region remains similar. Therefore the bubble wall has an increasingly significant
contribution to the total bubble volume. It is clear that we have then moved out of the realms
of the thin wall approximation into false vacuum decay scenarios with an increasingly
thick wall profile.

To calculate the decay rate for this theory we need to evaluate the Euclidean action
for each of our given bounce solutions using Eq. (3.18) which we can then substitute into
Eq. (3.13) to obtain the false vacuum decay rates per unit volume for each value α . When
we do this we find that as expected, the closer to the thin wall limit our theory is (i.e. the
smaller the α value) the smaller the false vacuum decay rate per unit volume is. Or perhaps
more succinctly, taller and wider barriers make tunnelling more difficult which results in
less bubbles nucleated per unit volume.
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3.2.3 Thick walls

Thus far, we have only assumed the difference in energy density between the false vacuum,
φ f v, and true vacuum, φtv, to be negligible compared to the height of the barrier in V (φ).
The resulting bounce solution specified that the initially nucleated bubble in Minkowski
space would have a thin wall. We argued this by interpreting the bubble wall as a 1D
instanton and noted that, under our approximation, this was negligible in extent compared
to the radius of the bubble.

A natural development to this model arises when we consider vacuum decay for
potentials where the difference in energy density between φ f v and φtv is much larger than
the height of the barrier in V (φ) as is the case when we consider the potential in Eq. (3.33)
for 0.6 ≤ α ≤ 1.0. For |α| ≤ −1 the barrier disappears completely and we move into a
qualitatively different scenario.

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

α=0.9

α=0.7

α=0.5

α=0.3

α=0.1

Fig. 3.20 A full range of false vacuum potentials in the thick and thin wall regime.



3.2 Examples of Bounce Solutions 57

In our analysis in the previous section we saw that bounce solutions for potentials
having α ≈ 0 described thin walled bubbles with interior field value φb. As we moved
away from the thin wall approximation we saw that the radius of the bounce and thus
also the radius of the nucleated Minkwoski bubble decreased. This reflected the fact
that a smaller volume of φb was required for the bubble to nucleate in Minkowski space
due to the increase in energy density between true and false vacuum |V (φtv)−V (φ f v)|.
As the bubble decreased in radius the volume contribution from its wall region became
increasingly significant and it moved out of the thin wall realm into a class of false vacuum
decay bubbles with increasingly thick walls.

2 4 6 8
χ

-1.0

-0.5

0.5

ϕ

α=0.6

α=0.7

α=0.8

α=0.9

α=0.95

Fig. 3.21 A range of thick wall bounce solutions.

Inspecting Fig. 3.21 we see how the profile of the bounce solution varies with increasing
α in the region 0.6 ≤ α < 1 and get a flavour of its behaviour in the limit α → 1 where the
barrier disappears entirely. Fig. 3.21 shows that with increasing α the field gradient in the
thick walled bubble decreases. This is to be expected as the field value at the center of the
bubble is becoming closer to the false vacuum. Indeed in the limit α → 1, the difference in
energy density, |V (φb)−V (φ f v)|, becomes vanishingly small and the ‘bubble’ approaches
homogeneity.

From a conceptual standpoint we can see that the notion of a bubble wall becomes
increasingly diffuse compared to its well localised thin walled counterpart. Indeed in the
thick wall limit α → 1 where the barrier in V (φ) disappears, ‘bubbles’ can form of radius
r → ∞ with interior field value φb → φ f v [32].

In this thick wall limit, vacuum decay may well be inclined to take place via a homoge-
neous rolling process rather than a process of bubble nucleation. This makes sense from
an intuitive perspective as if no barrier in V (φ) is present then rolling solutions will exist
where the field homogeneously transitions from false vacuum configuration to true vacuum
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at the minimum of V (φ). Thus, in this case, the solution has evolved classically and no
tunnelling event has taken place.4

To find the decay rate of the false vacuum per unit volume in each of these thick wall
scenarios we need to calculate the Euclidean action for each using Eq. (3.18) and substitute
the result into Eq. (3.13). After doing this we find that the decay rate increases with
decreasing barrier height and width and so more bubbles are nucleated per unit volume for
barriers that are smaller in size.

4In the case where no barrier exists in V (φ), there still may exist tunnelling solutions that directly
compete against these rolling solutions if there still exists a barrier in the full potential function U(φ) in
Eq. (3.6) which includes both V (φ) and the spatial gradient term (∇φ)2 [33].
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Chapter 4

False Vacuum Decay with Multiple
Minima

Having developed the formalism for calculating false vacuum decay rates in theories with
a single scalar field which decays to an adjacent lower energy ‘true’ vacuum, a natural
further avenue to consider is the possibility of tunnelling to a far away minimum in a
potential landscape with multiple vacua. Such a problem would require a tunnelling path
that traverses the numerous intermediate minima in the landscape before it reaches its
destination. This can make finding a solution extremely challenging [34] and in some
cases can even result in no solution existing at all [35].

Whilst studies have been performed to explore how the tunnelling probability scales
with the number of fields in a potential landscape [34, 36], to our knowledge little progress
has been made towards solving problems that involve tunnelling to far away vacua. This can
perhaps be attributed to the extreme numerical sensitivities of the solution space often seen
when adopting traditional ‘overshoot/undershoot’ approaches [34], as we discuss further
in Sec. 4.2. In light of this, in this Chapter we seek to perform a preliminary investigation
into this problem. We we will attempt to identify and, where possible, categorise potentials
for which we are able to find a tunnelling solution to a non-adjacent true minimum.

To do this we employ a novel approach first outlined in [16] and later generalised to
multi-field scenarios in [17] which sought to reformulate the problem in terms of a new
action, St , defined using objects called ‘tunnelling potentials’. This new action quantity
has the crucial property that it can be minimised to find the bounce solution, which puts
it in stark contrast to the Euclidean action for which the bounce lies at a saddle point.
This means that in more complex false vacuum configurations, the St action can be less
sensitive to numerical instabilities when employing it to compute false vacuum decay rates
compared to its Euclidean counterpart. We use a numerical algorithm to calculate the
minimum of St that is inspired by the work in [17], as it allows us to tackle this problem in
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both single-field (see Sec. 4.5) and multi-field (see Sec. 4.6) scenarios. We describe our
numerical algorithm in detail in Sec. 4.4.

In Sec. 4.5 we show that it is possible for a single field trapped in a meta-stable vacuum
to tunnel to non-adjacent minima in its potential. However, we find that the detailed shape
of the potential and the relationship between the energy density of successive minima can
determine whether a solution can be found with our approach. This could be due to either
numerical issues or the possibility that tunnelling directly to non-adjacent minima is not
possible for these potentials and so would have to take place via successive tunnelling
events between neighbouring minima.

In Sec. 4.6 we show that tunnelling from a metastable vacuum to a non-adjacent minima
is also possible in scenarios with two coupled fields. However, constructing a potential for
which our code finds a solution is far more challenging than the single field case, primarily
attributed to the extra degrees of freedom available to the solution space. Improvements to
our numerical algorithm, such as adopting regularisation schemes similar to that used in
[37], would make it possible to conduct a more systematic investigation into the qualitative
properties of coupled multi-field potential landscapes that admit tunnelling solutions to
non-adjacent minima.

4.1 Motivation: the String Theory Landscape

String theory generically admits a myraid number of different vacuum solutions arising
from flux compactifications, [38] estimates as high as 2500. Taken together, these vacuum
states can collectively be interpreted as forming a wider construction known as ‘the string
theory landscape’ [39] where each of the vacua are meta-stable [40] and thus permit barrier
penetration via quantum tunnelling with some finite probability.

In this landscape the vacuum energy of each of the different minima can typically take
on a range of different values [41] which has motivated many anthropic arguments to solve
the cosmological constant problem.1 Such arguments are broadly based on the assumption
that our universe resides in a vacuum of the landscape where the cosmological constant
takes on the tiny value we measure and that tunnelling from this minimum is exponentially
suppressed. However, attempts to provide a more satisfying solution to the puzzle have
motivated some to consider mechanisms by which the universe came to reside in such a
minimum.

One idea envisages a dynamical mechanism [43] where the universe starts out in a
minimum of the potential landscape where the vaccum energy is comparatively large.
The universe then subsequently undergoes a series of rapid tunnelling events, traversing
the landscape until it reaches a vacuum where the cosmological constant takes on the

1See [42] for a discussion of these approaches and a broader historical summary of the subject in general.
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vanishingly small value seen today. Similar mechanisms are discussed in the context of
chain inflation scenarios in [44–46].

For a dynamical mechanism taking place in such a vast potential landscape, it is not
difficult to imagine scenarios where the universe decays directly to far away minima during
its early evolution and, in doing so, skips out the neighbouring minima where the tunnelling
rate may be exponentially suppressed in comparison [43]. Unfortunately, little is known
about the shape of the string landscape’s potential between well separated minima and this
makes a concrete phenomenological study into this mechanism challenging.

Given the many unknowns related to the form of the potential, as well as the numerical
challenges faced with tunnelling to far away minima, our study simply focuses on a
preliminary analysis into classifying the types of potential landscapes that admit tunnelling
solutions directly to non-adjacent minima. As further discoveries related to the shape of
the potential are made, along with certain improvements to our numerical algorithm (see
Sec. 4.7), we expect our results can be refined and the scope of our investigation more
focused.

4.2 Difficulties with Shooting in Multi-minima Potentials

Before going any further we should asses the suitability of using a standard numerical
approach based on the ‘undershoot/overshoot’ method (see Sec. 3.2.1) to solve our problem
of calculating tunnelling paths in scenarios with a potential landscape that has many minima.
Several efficient public numerical packages exist that employ approaches broadly based on
shooting or some hybrid of it [34, 35, 47] and thus understanding some of the core issues
with vanilla shooting methods will help us asses to what degree they might be of use for
our purposes.

Whilst shooting methods are largely accurate when tunnelling to neighbouring minima,
the situation becomes much more complicated when tunnelling to non-adjacent vacua as
the bounce solution we are trying to calculate can be extremely sensitive to other unwanted
growing bounce modes. In some cases this can make it very difficult or impossible to
isolate and accurately find the solution of interest, whilst in other cases a solution may not
even exist at all [35].
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(a) Example potentials.

(b) Wick rotated example potentials for visualising rolling
analogy of solution spaces.

Fig. 4.1 Two example potentials with qualitatively different tunnelling solution spaces as
inspired by Fig. 3 of [35] and Fig. 3 of [34].

In Fig. 4.1 we identify two heuristic examples of multi-minima potentials that exhibit
different qualitative behaviour in relation to the existence of tunnelling solutions between
the false vacuum at φA and the minimum at φC. Using Fig. 4.1b, we will now discuss both
of these cases under the usual analogy of a pseudo-particle rolling in the upside down
potential, −V , as described in Sec. 3.1.2.

Finding a bounce solution between φA and φC for the top potential in Fig. 4.1 should be
relatively straight forward using a shooting method. This is clear after inspecting its Wick
rotated form in the top curve of Fig. 4.1b, where if we release the pseudo-particle from
near the bottom of the hill whose summit is φC it will clearly undershoot the false vacuum
at φA. As we increase the release point, φ0, up the hill it will continue to undershoot but
will get increasingly closer to φA before dropping back into the valley. This will continue
to be the case until we reach a critical φ0 release value after which the particle has too
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much energy and will always overshoot φA. Thus, as is the case for the usual false vacuum
decay scenarios discussed in Sec. 3.2, there exists a single bounce solution for this problem
and it lies at the single critical φ0 value at which the particle goes from undershooting
the true vacuum (green region) to overshooting it (red region), which means finding the
solution using a shooting method should not prove too difficult.

Finding a tunnelling solution between φA and φC for the bottom potential of Fig. 4.1
can prove to be significantly more challenging or impossible using a shooting method
[34, 35]. This is due to the fact that in this scenario we either expect more than one bounce
solution to exist in the vicinity of φA and φC, or no bounce solution to exist at all.

We demonstrate the case of more than once bounce solution existing in the bottom
curve of Fig. 4.1b, where a bounce solution is premised to exist between φA and φC shown
by the point at which the undershoot region (green) transitions to the overshoot region (red)
on the right most φC hill. However, from Coleman’s ‘overshoot/undershoot’ argument
detailed at the end of Sec. 3.1.2 we know a second bounce solution must also exist that
asymptotically approaches φA but starts close to the intermediate minima at φB. We have
no interest in this second bounce solution and it only serves to cause significant numerical
instability when using a numerical shooting method. The instability arises because the
solution we are interested in must compete against the growing mode from the unwanted
solution in this region. This can make finding the bounce solution between φA and φC an
extremely difficult or impossible task [34].

Adding to the complexity of this scenario, it is also possible that the bottom curve
of Fig. 4.1b could exhibit no bounce solutions at all. In this case it could be that if the
pseudo-particle starting near φC has enough energy to pass φB, then it always overshoots
the false vacuum at φA [35]. As no direct tunnelling solution exists from φA to φC the field
would first have to tunnel to φB and then to φC in independent tunnelling events.

This problem of multiple bounce solutions causing instability in our numerical scheme
can in some cases be avoided by employing more sophisticated shooting techniques such
as multiple shooting schemes [48] that seek to iteratively partition the solution into a fixed
number of regions that provide a means to isolate the bounce solution of interest. One can
then demand that each region of the solution must match at its boundaries before going
on to iterate the entire solution numerically. Whilst such numerical schemes can in some
cases work reasonably well, one would expect them to be cumbersome when there are
numerous intermediate minima as the number of intermediate solution regions must also
increase. One would expect the efficiency of the numerical scheme to be impacted even
further when many fields are present.

An intimately related issue with traditional shooting schemes that are trying to estimate
false vacuum decay rates in exotic potential landscapes is that the bounce lies at a saddle
point of the Euclidean action, as discussed in Sec. 2.2. This means that any numerical
approaches, like shooting to stationary points, can be highly susceptible to suffering from
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stability issues as small pertubations of the bounce in the direction of the negative mode
can cause the action to diverge. These sensitivity issues that are so ingrained in approaches
that involve using the Euclidean action to calculate false vacuum decay rates can only be
compounded when they are applied to scenarios with multiple minima and multiple fields.
This motivates us to search for a new more robust approach that we can employ to solve
such a problem.

4.3 A Multi-field Shooting Alternative: Tunnelling Poten-
tials

One promising alternative approach, recently suggested in [16] and generalised to situations
with many fields in [17], involves re-formulating the problem in terms of a ‘tunnelling
potential’. This quantity is defined as

Vt(ϕ)≡V (
˜
φ)−

˙
˜
φ

2

2
, (4.1)

where
˜
φ is the solution to the Euclidean multi-field equations of motion (EoM) and is

itself a function of the canonical scalar field, ϕ , that parameterises the field space distance
travelled along the generally curved solution path. Note that along the path ϕ , Vt(ϕ)≤V (

˜
φ)

as ˙
˜
φ

2 ≥ 0.
Although at first sight the benefit of defining such a quantity is not immediately clear,

we will later see that it allows us to eliminate all references to
˜
φ in our equations and

proceed with this tunnelling potential object as our fundamental quantity. We will see
later that these objects possess some useful properties as we discuss in Sec. 4.3.3. After
making this switch it will then allow us to define a new action quantity which we call the
tunnelling potential action, St , which enjoys some significant advantages over the usual
Euclidean action used to find false vacuum decay rates. Chief of these is the property
that the bounce solution describing false vacuum decay lies at the minimum of this St

action and not at a saddle point as is the case for the Euclidean action. As we will see, this
crucial property of the St action applies in both the single field [16] and multi-field [17]
applications of this approach and is attractive as it allows us to build a numerical algorithm
purely geared around finding the minimum of a function, which is a very well studied
problem. In Sections 4.5 and 4.6 we will show that this approach enables solutions to be
found for tunnelling between non-adjacent minima in both single and multi-field scenarios.
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4.3.1 Tunnelling potentials from first principles

In Sec. 4.2 we outlined the numerical shortcomings of accurately solving the multi-field
Euclidean EoM 2,

˜
φ̈ +

3
r ˜

φ̇ =
˜
∇V, (4.2)

with boundary conditions

˜
φ̇b(r = 0) =

˜
0,

˜
φb(r → ∞) =

˜
φ f v (4.3)

for the bounce solution,
˜
φb(r), in scenarios with multiple minima and multiple fields. Here

˜
φ̇ and

˜
φ̈ denote first and second derivatives with respect to the Euclidean radial co-ordinate

r and
˜
φfv is the false vacuum. In this section we will seek to eliminate any reference to

the Euclidean solution,
˜
φ , in Eq. (4.2) and in doing so will derive the tunnelling potential

quantity in Eq. (4.1) from first principles.
First we note that if we take the dot product of Eq. (4.2) with ˙

˜
φ and rearrange we can

express the Euclidean radial co-ordinate r as,

r =
3(

˜
φ̇ ·

˜
φ̇)

(
˜
∇V −

˜
φ̈) ·

˜
φ̇
=

3(
˜
φ̇ ·

˜
φ̇)

˜
∇V ·

˜
φ̇ −

˜
φ̈ ·

˜
φ̇
. (4.4)

A natural way to paramterise the path
˜
φ is in terms of its path length in field space ϕ ,

˜
φ(ϕ). So expressing the denominator of Eq. (4.4) in terms of ϕ we obtain

˜
∇V ·

˜
φ̇ =

dV
dϕ

· dϕ

dr
=

dV
dr

(4.5)

where we have used that the gradient of the potential along the tangent to the path is

˜
∇V ·d(

˜
φ̇(ϕ)) =

dV
dϕ

dϕ. (4.6)

Then, given that we can write

d
dr

(
1
2 ˜

φ̇ ·
˜
φ̇) =

d
dr

(
1
2
|
˜
φ̇ |2)

=
˜
φ̈ ·

˜
φ̇

(4.7)

we can express the denominator of Eq. (4.4) as

˜
∇V ·

˜
φ̇ −

˜
φ̈ ·

˜
φ̇ =

d
dr

(
V − 1

2 ˜
φ̇ ·

˜
φ̇

)
. (4.8)

2For the remainder of the thesis we take r to be the Euclidean radial co-ordinate appearing in the
Euclidean EoM instead of χ , used in Chapter 3. This is to make clear the direct interpretation this co-ordinate
has for the bounce solution, in terms of bubble radius in Minkowski space
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We can see that the ‘tunnelling potential’ quantity defined in Eq. 4.1 appears in Eq. 4.8,

Vt(ϕ) =V (ϕ)− 1
2 ˜

φ̇(ϕ) ·
˜
φ̇(ϕ)

=V (ϕ)− 1
2

ϕ̇
2,

(4.9)

where we have used that |
˜
φ̇ |= ϕ̇ because dϕ2 = d

˜
φ(ϕ) ·d

˜
φ(ϕ). Then we can write

ϕ̇
2 = 2[V (ϕ)−Vt(ϕ)], (4.10)

Finally, using Eq. (4.10) we can eliminate any reference to the bounce in Eq. (4.4) to
obtain

r =
3(

˜
φ̇ ·

˜
φ̇)

dVt(ϕ)
dr

=
3ϕ̇2

dVt(ϕ)
dϕ

dϕ

dr

=
3ϕ̇

V ′
t

= 3

√
2(V −Vt)

(V ′
t )

2

(4.11)

where V ′
t ≡ dVt

dϕ
and we have used Eq. (4.10) in the last line.

Taking the derivative of Eq. (4.11) with respect to r we then obtain a differential
equation that replaces the Euclidean EoM in Eq. (4.2),

(4V ′
t −3V ′)V ′

t = 6(Vt −V )V ′′
t (4.12)

with boundary conditions,

Vt(
˜
φ f v) =V (

˜
φ f v), Vt(

˜
φ0) =V (

˜
φ0) (4.13)

which replace the usual boundary conditions for the bounce shown in Eq. (4.3). We call
˜
φ0

the release point of the field in reference to the pseudo-particle rolling analogy, under the
understanding that in Eq. (4.13) this release point coincides with the release point of the
bounce solution i.e.

˜
φ0 =

˜
φb(r = 0).

The only thing that remains for us to do is to is to eliminate any reference of the
Euclidean solution

˜
φ from the Euclidean action. To do this we first write the Euclidean

action in terms of the path length parameter ϕ ,

SE = 2π
2
∫

ϕ0

ϕ f v

drr3
[

1
2

(∣∣∣∣d˜
φ(ϕ)

dr

∣∣∣∣)2

+V (
˜
φ(ϕ))

]
(4.14)
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Using Derrick’s theorem [49], which allows us to equate the potential energy contribution
to the action with the kinetic energy contribution, we then have

SE =
π2

2

∫
ϕ0

ϕ f v

drr3
(∣∣∣∣d˜

φ(ϕ)

dr

∣∣∣∣)2

=
π2

2

∫
ϕ0

ϕ f v

r3 dr
dϕ

dϕ

(
dϕ

dr

)2

.

(4.15)

Substituting Eq. (4.10) and Eq. (4.11) into Eq. (4.15) we obtain a new action in terms of
tunnelling potentials

St [Vt ] = 54π
2
∫

ϕ0

ϕ f v

(V −Vt)
2

(−V ′
t )

3 dϕ (4.16)

where we have used that
r3 dr

dϕ
dϕ = 54

(V −Vt)

(−V ′
t )

3 dϕ (4.17)

Note that the ‘release point’ ϕ0 ≡
˜
φ0 in Eq. (4.16) can, in general, describe any chosen

release point of the field between the true vacuum,
˜
φtv, and the false vacuum

˜
φ f v. However,

at the global minimum of St , this
˜
φ0 release value exactly coincides with the release value

of the bounce solution as we discuss next.

4.3.2 Finding tunnelling solutions with the St action

In [17] they prove that requiring the St action in Eq. (4.16) to be stationary, δSt = 0, under
variations of the path

˜
φ or tunnelling potential Vt returns the EoM in Eq. (4.12). This

amounts to one crucial benefit of this new ‘Tunnelling Potential action’, in that the bounce
solution describing tunnelling lies at its minimum [17].

This key result means that when we look to cook up a numerical algorithm to find false
vacuum decay solutions using a tunnelling potentials based approach in Sec. 4.4, we will
be less interested in the differential formulation of the problem from Eq. (4.12). Instead,
we will base our numerical approach around finding the minimum value of the integral
description in Eq. (4.16) as finding the minimum of a function is a very well understood
numerical problem.

This is, of course, in contrast to using a shooting method where one must employ
the Euclidean action in Eq. (3.18) for which the bounce solution only resides at a saddle
point of this quantity as discussed in Sec. 2.2. Whilst the presence of a saddle point in the
Euclidean action at the bounce is not such a problem when using a shooting method in
single field scenarios and can even be dealt with in certain two field scenarios via methods
like multi-shooting, when more scalar fields or more intermediate minima are introduced
then finding the bounce via shooting becomes no longer a feasible strategy as discussed in
Sec. 4.2.
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4.3.3 Properties of Vt

Tunnelling potentials possess some particularly useful attributes, which will be important
later when building our numerical algorithm to efficiently compute false vacuum decay
solutions.

One of the most important properties of Vt(ϕ) that we will use later is that it is a
monotonic function with Vt(ϕ)≤V (

˜
φ(ϕ)). This becomes clear when we think about the

problem in terms of a particle moving in an inverted potential analogy from Sec. 3.1.2,
where we can add kinetic and potential energy contributions to obtain the total ‘Euclidean’

energy of the system E = ˜
φ̇ 2

2 −V (
˜
φ). This Euclidean energy is monotonically dissipated

by the effective friction term in Eq. (4.2) as the pseudo-particle travels, with increasing r,
from

˜
φ0 and through the inverted potential to

˜
φ f v. This can be seen by using Eq. (4.8) to

integrate the ODE in Eq. (4.2) for the bounce,
˜
φb, to obtain

d
dr

(
1
2
| ˙
˜
φb|2 −V (

˜
φb)) =−3

r
| ˙
˜
φb|2 ≤ 0. (4.18)

In terms of the tunnelling potential defined in Eq. (4.1) we then have

d
dr

(Vt(
˜
φb)) =

3
r
| ˙
˜
φb|2 ≥ 0 (4.19)

which demonstrates that Vt increases monotonically with r as we move from
˜
φ0 to

˜
φ f v.

As
˜
φb is monotonically decreasing between

˜
φ0 and

˜
φ f v it means r must be monotonically

increasing. But as we have just shown, r also increases monotonically with Vt between
˜
φ0

and
˜
φ f v and therefore the function Vt(

˜
φ) is monotonically increasing between

˜
φ0 and

˜
φ f v.

The second property of Vt(
˜
φ) is that it is a function that is only defined between

˜
φ0 and

˜
φ f v. This is clear when we consider that the bounce solution,

˜
φb, is defined in the domain

r ∈ (0,∞) whose end points take the values
˜
φb(r = 0) =

˜
φ0 and

˜
φb(r → ∞) =

˜
φ f v.

A further property of Vt(
˜
φ) is that Vt =V at the

˜
φ0 and

˜
φ f v boundaries. This follows

directly from the definition of the tunnelling potential in Eq. (4.1) when we note that the
bounce solution at the domain boundaries must also satisfy ˙

˜
φ

b
(r = 0) = ˙

˜
φ

b
(r → ∞) =

0. Furthermore, using that the gradient of the potential vanishes at the false vacuum,
V ′(

˜
φ f v) = 0, one can show that V ′

t (
˜
φ f v) = 0 and V ′

t (
˜
φ0) = 3V ′(

˜
φ0)/4.

In the remainder of this chapter we seek to utilise the attractive properties of the
tunnelling potential listed above to construct an algorithm that minimises the tunnelling
potential action, St . We will then use this algorithm to solve the otherwise challenging task
of finding tunnelling solutions in a potential landscape with both many vacua and many
fields.
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4.4 A Numerical Approach using Tunnelling Potentials

In this section we describe in detail our numerical algorithm to locate the minimum value
of our tunnelling potential action, St , for the destination true vacuum,

˜
φtv, we choose to

tunnel to. Given that the action value at this minimum coincides with the Euclidean action
value of the bounce we can conclude that finding this minimum will amount to finding a
solution that describes tunnelling. Broadly speaking, we tackle this minimisation problem
by splitting up the procedure into two independent steps: a Newton step to find the path
that optimises Vt(

˜
φ) between

˜
φ f v and the chosen

˜
φ0 release point [17]; and a gradient

descent step to iterate
˜
φ0 in a direction where the Newton optimised Vt(

˜
φ) has a smaller

action.
In the first step we find the tunnelling potential function, Vt(

˜
φ), that has minimum St

action for a fixed
˜
φ0 release point. We tackle this problem by using an approach broadly

based on Newton’s method where we use information about the first and second derivative
of the St [Vt ] action surface to inform us how to arrange our

˜
φ points to best approximate

the Vt(
˜
φ) curve with minimum action for the

˜
φ0 release point considered. If we were to

repeat this Newton’s method step for a range of different
˜
φ0 release input values it would

map out a St [
˜
φ0] function that defines the minimum St action values as a function of the

˜
φ0

release value of the path.
The second step of our numerical scheme involves implementing a gradient descent

algorithm that uses information regarding the first derivative of St [
˜
φ0] to find the

˜
φ0 release

point that minimises this action surface in the vicinity of the true minimum we want to
tunnel to.

Before moving on, we need to make sure we are able to calculate the St action values
of our discretised Vt(

˜
φ) approximations. This requires us to introduce a new variable, α ,

parameterising the field space path so that we can discretise our expression for the St action
in Eq. (4.16). Following [17],

St = 54π
2
∫

α f v

α0

(V −Vt)
2(dVt

dα

)3

(d
˜
φ

dα
·

d
˜
φ

dα

)2

dα

= 54π
2
∫ Vt f v

Vt 0

(V −Vt)
2(dVt

dVt

)3

( d
˜
φ

dVt
·

d
˜
φ

dVt

)2

dVt

=
27π2

2

n

∑
i=0

[
V (

˜
φi)+V (

˜
φi+1)−Vt,i −Vt,i+1

]2 [(
˜
φi+1 −

˜
φi) · (

˜
φi+1 −

˜
φi)]

2

(Vt,i+1 −Vt,i)3

(4.20)

where i’s represent specific points along the field space path,
˜
φ , of n+1 points and we

have set the variable α that parameterises the path to be the tunnelling potential Vt . This is
something we are entitled to do due to the properties of Vt outlined in Sec. 4.3.3, namely,
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that it is monotonic and only is defined between the false vacuum
˜
φ f v and the release point

˜
φ0.

In Sec. 4.4.1 and Sec. 4.4.2 we outline the respective Newton’s method and gradient
descent components of the overall iteration scheme to minimise the functional St [φ0], in a
single field scenario.

4.4.1 Newton’s method step for a single field

As discussed above, using Newton’s optimization method we can find the Vt(φ) configu-
ration with minimum action for a fixed φ0 release point of the path. Newton’s method is
conceptually the same as applying the Newton-Raphson method which we use to find the
root of a function. But instead of trying to find the root of a function we want to find the
root of the function’s derivative thus giving us its extremum.

Taking the single field case as an example, we first fix an initial guess for the release
point φ0 and choose our naive initial path through field space to this location using a fixed
number of equidistant points that make a straight line between the chosen φ0 and the fixed
false vacuum φ f v = φn. Thus we discretise φ as a 1-dimensional column array,

φ =

φ0
...

φn

 (4.21)

The end points are fixed throughout the Newton’s method part of the numerical procedure,
whilst all the remaining φ grid points that reside between these two values are free to vary
according to the Newton numerical scheme.

Our next task is to construct a Vt grid that satisfies the boundary conditions in Eq. (4.13)
and remains fixed throughout this Newton’s method step of our numerical scheme. Follow-
ing [17], we define

Vt,i =V (φ f v)+ x2
i (3−2xi)(V (φ0)−V (φ f v)) (4.22)

where i represents the chosen point along the path and the xi are equidistant points in the
range [0,1] that are distributed non-linearly using x2

i (3−2xi) and then scaled up to reside
in the interval [V (φ0), V (φ f v)], so that they satisfy the boundary conditions in Eq. (4.13).
We have chosen the function Eq. (4.22) as it distributes most of the points at the beginning
and ends of the path where resolution of its trajectory will be important for the solution’s
overall accuracy.
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Fig. 4.2 Setting up the Newton’s method step for a single field.

Having chosen an initial φ guess grid and also defined a fixed Vt grid with the same
dimensions, we point-wise associate the two grids to define an initial guess for the function
Vt(φ) as is shown heuristically for the 1D case in Fig. 4.2. We can then plug our Vt(φ)

guess into Eq. (4.20) to obtain an approximation for its St [φ0] action value.
Next, we calculate the gradient and Hessian of the St tunnelling action for our initial

Vt(φ) guess for the φ0 release value concerned. Both the gradient vector and Hessian
matrix will consist of an array of partial derivatives with respect to each non-boundary
point φi ∈ [φ1,φn−1] along the initial guess curve. This will provide us with slope and
curvature information of St that will inform us in which direction we should move each
non-boundary φ point to get a new Vt(φ) curve that has largest decrease in St .

In the single field example the gradient column array is

∇St =


∂St
∂φ1
...

∂St
∂φn−1

 , (4.23)



72 False Vacuum Decay with Multiple Minima

whilst the Hessian takes the form

H =
∂ 2St

∂φi∂ jφ
=



∂ 2St
∂φ1∂φ1

∂ 2St
∂φ2∂φ1

· · ·
∂ 2St

∂φ1∂φn−1
∂ 2St

∂φ2∂φn−1
... . . . ...

∂ 2St
∂φn−2∂φ1

∂ 2St
∂φn−1∂φ1

· · ·
∂ 2St

∂φn−2∂φn−1
∂ 2St

∂φn−1∂φn−1


(4.24)

The Hessian matrix physically describes local curvature information of the St action at
each φ point along the Vt(φ) guess curve. From Eq. (4.20), the curvature at a given point
φi can only be affected by changes of the point itself or its neighbouring points; changes
in far away points on the other hand can have no effect. Therefore the second partial
derivatives of the action that make up the Hessian are only non-zero for entries where
derivatives are with respect to the same or neighbouring points. For this reason the Hessian
is a tri-diagonal matrix as follows

H =



∂ 2St
∂φ1∂φ1

∂ 2St
∂φ1∂φ2

0
∂ 2St

∂φ2∂φ1

∂ 2St
∂φ2∂φ2

∂ 2St
∂φ2∂φ3

0 ∂ 2St
∂φ3∂φ2

∂ 2St
∂φ3∂φ3

0 0 ∂ 2St
∂φ4∂φ3

· · ·

0 0 0
0 0 0
0 0 0
0 0 0

... . . . ...

0 0 0
0 0 0

· · ·
∂ 2St

∂φn−2∂φn−3

∂ 2St
∂φn−2∂φn−2

∂ 2St
∂φn−2∂φn−1

0 ∂ 2St
∂φn−1∂φn−2

∂ 2St
∂φn−1∂φn−1


(4.25)

After computing 3 H and ∇St [φ ] for our initial φ grid we can feed this into the Newton’s
update rule to get a new φ grid

φnew = φold −υH−1[φold]∇St [φold] (4.26)

where 0 < υ ≤ 1 is the variable step size and H−1∇St is a column array detailing the
co-ordinate updates in path required from one iteration to the next. As φ0 and thus the
Vt grid remains fixed throughout this Newton’s method portion of the algorithm, φnew

amounts to a new and improved guess for the Vt curve that has minimum St action for the
input φ0 release value.

3In our code we compute all partial derivatives used in our algorithm using analytic expressions we
calculated by hand as outlined in Appendix A.1. We initially tried to calculate them via numerical differencing
schemes but found issues with accuracy in certain scenarios that motivated us to compute them precisely.
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We can calculate the action value of this Vt(φnew) guess using Eq. (4.20) and compare
it to the previous action value by computing the ‘error’,

Error =
St,old −St,new

0.5(St,old +St,new)
(4.27)

If we get a positive error, corresponding to a decrease in the action, we complete the first
iteration of our Newton’s method and repeat the process with the new set of points, φnew,
first calculating its Hessian and gradient following the variational rules outlined above and
again feeding it into the update rule Eq. (4.26) to iterate the Vt(φ) approximation once
again. We continue this procedure until the absolute action error from one iteration to the
next changes by less than 1% in which case we can be confident we have converged to the
minimum action for the chosen φ0 release point.

However, if at the end of any given iteration we get a negative error, corresponding to
an increase of St , we know we have overshot the minimum action and so opt to go back
two steps in our iteration scheme and repeat the Newton method from that point but with a
reduced step size, υ , to avoid overshooting the minimum again. 4

4.4.2 Gradient descent step for a single field

Performing the above Newton’s method based algorithm independently for a grid of φ0

release values would allow us to map out the minimum St [φ0] surface. However, as
discussed in Sec. 4.3.2, only at the minimum of this surface does the St action value
coincide with the Euclidean bounce action value that describes tunnelling. Thus accurately
finding the minimum of the St [φ0] surface without having to map out the whole action
space is a critical task if we want to efficiently find the solution that has an interpretation
in terms of false vacuum decay.

We implement a simple gradient descent algorithm to find this minimum. This involves
computation of the gradient of the St [φ0] action with respect to the φ0 release point to
inform us in which φ0 direction we need to step to get closer to the minimum. In the single
field case we simply need to calculate the derivative dSt

dφ0
, giving an iterative update scheme

as follows,

φ0,new = φ0,old −δ
dSt [φ0]

dφ0
. (4.28)

Here δ ∈ [0,1] is a scalar quantity that controls the size of the step we take towards the
minimum. In a similar manner to that outlined in our Newton’s method scheme, we

4Technically the Newton method should be able to over-shoot the minimum and still converge due to
the structure of the algorithm but we found this was not always the case and so found our code to be more
reliable when enforcing this condition on the code implementation.
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implement our gradient descent algorithm with a variable step size that starts off large but
we reduce δ and go back two iterations each time we overshoot the minimum.

Fig. 4.3 Summary of numerical algorithm for a single field.

In Fig. 4.3 we show a heuristic box diagram of the overall numerical routine. From this
it is clear that the gradient descent algorithm described above sits on top of the Newton
method based algorithm (Sec. 4.4.1) that seeks to the find minimum action for a fixed φ0.

4.4.3 Generalising to multi-field scenarios

Our numerical scheme is sufficiently flexible that it can be easily generalised from the single
field scenario described above to a potential landscape with many fields. To demonstrate
how this is done we will go through a concrete two field example, in the knowledge that one
can generalise in a similar way to any number of fields providing one has the computing
resources required.

Whilst in the single field scenario our φ points are constrained to live in only one
dimension, in scenarios with more than one field the arrangement of our

˜
φ points map out a

path in our multi-dimensional field space. The aim of our numerical scheme then becomes
trying to find the path through field space that has Vt(ϕ) with minimum action, where ϕ is
the distanced travelled along the path. This again requires us to split our numerical scheme
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into a Newton’s method part and a gradient descent path in a similar way to as was done in
the single field case.

Fig. 4.4 Summary of numerical algorithm for two fields.

In Fig. 4.4 we show a summary of the multi-field numerical algorithm where we have
taken the two field case as a demonstrative example. In the Newton’s method portion of
the algorithm this means again using Eq. (4.22) to fix a Vt grid based on the boundary
conditions in Eq. (4.13) for a particular

˜
φ0 release point. We then pick an initial guess path

of equidistant φ points between
˜
φ0 and

˜
φ f v which we point-wise associate to our Vt grid to

obtain an initial guess for Vt .
Generalising the Newton’s method update scheme in Eq. (4.26) to its multi-dimensional

form

˜
φnew =

˜
φold −υH−1[

˜
φold] ˜

∇St [
˜
φold] (4.29)

We must iterate this to find the optimum configuration of φ points which map to the fixed
Vt grid values to define a Vt(ϕ) curve with minimum action for the chosen φ0 release value.
In general the path through field space is not straight and so we parameterise our Vt curve
as a function of its distance travelled in field space, ϕ .
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Taking the two field case as an example, this path can be described using a 1D column
vector as follows

˜
φ =


φ x

0

φ x
1

φ
y
0

φ
y
1

...
...

φ x
n−1

φ x
n

φ
y
n−1

φ
y
n

=



φ x
0
...

φ x
n

φ
y
0
...

φ
y
n


. (4.30)

The overall Hessian matrix is a symmetric matrix of second partial derivatives, which in
this scenario describes changes in the action when different pairs of points are perturbed in
different pairs of field space directions. For us it is constructed using individual Hessian
matrices, Hi j, arranged into a block super matrix where each Hi j block represents changes
in the action when points along the path are perturbed in a fixed pair of field space
directions. Using the 2D case as an illustrative example we have,

H =

[
Hxx Hxy

Hyx Hyy

]
=

[
∂ 2St

∂φ x∂φ x
∂ 2St

∂φ x∂φ y

∂ 2St
∂φ y∂φ x

∂ 2St
∂φ y∂φ y

]
(4.31)

where

Hxy =
∂ 2St

∂φ x∂φ y =



∂ 2St
∂φ x

1 ∂φ
y
1

∂ 2St
∂φ x

2 ∂φ
y
1

· · ·
∂ 2St

∂φ x
1 ∂φ

y
n−1

∂ 2St
∂φ x

2 ∂φ
y
n−1

... . . . ...
∂ 2St

∂φ x
n−2∂φ

y
1

∂ 2St
∂φ x

n−1∂φ
y
1

· · ·
∂ 2St

∂φ x
n−2∂φ

y
n−1

∂ 2St
∂φ x

n−1∂φ
y
n−1


(4.32)



4.4 A Numerical Approach using Tunnelling Potentials 77

The overall Hessian Eq. (4.31) is symmetric so that in the 2-field case for example
Hxy = Hyx, whilst each individual Hessian block should be a tri-diaganol matrix as follows

Hxy =
∂ 2St

∂φ x∂φ y =



∂ 2St
∂φ x

1 ∂φ
y
1

∂ 2St
∂φ x

1 ∂φ
y
2

0
∂ 2St

∂φ x
2 ∂φ

y
1

∂ 2St
∂φ x

2 ∂φ
y
2

∂ 2St
∂φ x

2 ∂φ
y
3

0 ∂ 2St
∂φ x

3 ∂φ
y
2

∂ 2St
∂φ x

3 ∂φ
y
3

0 0 ∂ 2St
∂φ x

4 ∂φ
y
3

· · ·

0 0 0
0 0 0
0 0 0
0 0 0

... . . . ...

0 0 0
0 0 0

· · ·
∂ 2St

∂φ x
n−2∂φ

y
n−3

∂ 2St
∂φ x

n−2∂φ
y
n−2

∂ 2S
∂φ x

n−2∂φ
y
n−1

0 ∂ 2St
∂φ x

n−1∂φ
y
n−2

∂ 2St
∂φ x

n−1∂φ
y
n−1


(4.33)

We also express the gradient of the action as a column vector, so that in the two field
case we would have,

˜
∇St =

[
∇xSt

∇ySt

]
=



∂St
∂φ x

1...
∂St

∂φ x
n−1

∂St
∂φ

y
1...

∂St
∂φ

y
n−1


. (4.34)

We compute the above quantities at each new step of the Newton’s method to iterate
Eq. (4.29), until the St action error in Eq. (4.27) converges to within 1%.

In a similar manner to the single field case we implement a gradient descent algorithm
that sits on top of our Newton’s Method algorithm and seeks to find the minimum of the
St [φ0] surface without having to map out the whole multi-dimensional action space. This
involves computation of the the gradient of the action with respect to the

˜
φ0 release point

at which the algorithm resides. 5 In the 2D case this would look like

˜
∇St =

 ∂St
∂φ x

0
∂St
∂φ

y
0

 (4.35)

This quantity specifies the field space direction in which a change in
˜
φ0 provides the

steepest increase in action. Thus by stepping in the opposite direction to this we step down
the slope towards the minimum always in the steepest direction, using an iterative update

5We calculate this quantity analytically in our code, see Appendix A.1 & A.2.
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scheme

˜
φ0,new =

˜
φ0,old −δ

˜
∇St [

˜
φ0]. (4.36)

where δ ∈ [0,1] is again a scalar quantity that controls the size of the step we take towards
the minimum and St [

˜
φ0] is a functional that takes as input a path between

˜
φ f v and

˜
φ0.

4.5 Single Field Examples: False Vacuum Decay to Non-
adjacent Minima

In this section we look to use our code to investigate false vacuum decay in single field
potential scenarios with multiple true minima as is expected to be present in the string
landscape and where, in some regions, comparatively large decay rates could occur for
tunnelling routes to far away vacua [43]. One could then compare the false vacuum decay
rates to far away minima in the landscape to those of adjacent minima and explore the
relationship between the ‘distance’ (in quantum number) of the destination minima from
the false vacuum and the false vacuum decay rate to it.

Rather than exclusively focusing on potentials that have a direct physical interpretation,
we will rather look to categorise the types of potentials for which our code succeeds in
finding multi-minima false vacuum decay solutions and those for which it fails. These
findings could form the initial basis of future investigations seeking to definitively identify
specific potential landscapes that admit multi-minima tunnelling solutions.

4.5.1 Potential landscapes with equal vacuum energy difference

Considerations of the string landscape in the context of cosmology in Sec. 4.1, as well as
some chain inflation scenarios [50], motivate us to first study tunnelling for a single field
sine wave potential with a linear shift of the form

V (φ) =−cosφ − γφ (4.37)

where γ ∈ [0,1] is a parameter that controls the barrier height and the difference in vacuum
energy between the true and false vacua. We implement our tunnelling potential numer-
ical algorithm to find the tunnelling action to the first minimum of Eq. (4.37) in both a
thin and thick wall situation. We then compare it to the solution found using the usual
‘overshoot/undershoot’ approach (Sec. 3.2.1) to verify our numerical algorithm works.
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(a) Destination vacuum for tunnelling.

(b) Minimum values of functional St [φ0]. (c) Tunnelling solution at φ0 ≈ 6.47.

Fig. 4.5 Large barrier tunnelling to 1st minimum of potential in Eq. (4.37), γ = 0.2, 80 pts.

Fig. 4.5a shows the potential from Eq. (4.37) with γ = 0.2. The false vaccuum is
marked with a red cross and the destination ‘true vacuum’ marked with a grey cross.
Fig. 4.5b shows the minimum tunnelling potential action, St , as a function of the φ0 release
point. The destination true vacuum we want to tunnel to is marked with a grey dashed line.

We know from Sec. 4.3.2 that the solution that lies at the minimum of the St [φ0] curve
should coincide with the bounce solution that describes tunnelling between our false
vacuum and the destination minimum. Thus in Fig. 4.5c we plot the tunnelling potential
(blue curve) as it journeys through the potential barrier V (φ) (green curve) for the solution
associated with the release point φ0 = 6.47 which has minimum St [φ0] action of all the
release points in Fig. 4.5b. We can see that this Vt solution possess the properties defined
in Sec. 4.3.3, namely that between the boundary points φ f v and φ0 at which Vt =V , the
solution must be monotonic and satisfy Vt <V . On the same graph we plot the initial Vt(φ)

guess (orange) that we fed into our algorithm for this φ0, and also the the contribution to
the tunnelling potential action St (red) as a function of its journey through the potential φ ,
which we can see is a smooth and well-behaved curve.

We can also see that the minimum of the St surface in Fig. 4.5b lies very close to
the true minimum of the potential that we want to tunnel to and thus our solution should
correspond to a bubble profile with a relatively thin wall. We show that this is indeed the
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Fig. 4.6 Bounce profile to first minimum of potential in Eq. (4.37) for γ = 0.2 found using
‘overshoot-undershoot’ method.

case in Fig. 4.6 by plotting the profile of the bounce solution obtained using a shooting
method.

(a) Tunneling action convergence (b) Bounce action convergence

Fig. 4.7 Convergence plots to first minimum of potential in Eq. (4.37) for γ = 0.2.

In Fig. 4.7 we compare convergence of the Euclidean bounce action for this scenario
found using a ‘overshoot/undershoot’ method to convergence of the minimum of the St

action found using the tunnelling potential algorithm. We can see from Fig. 4.7a that the
minimum value of St converges with increasing number of path points to a figure that is
approximately the same as the value the Euclidean action converges to (see Fig. 4.7b) using
a shooting method, SE ≈ 264580.23. Therefore we can be confident our code implementing
the tunnelling potential algorithm works as expected.
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(a) Destination vacuum for tunnelling.

(b) Minimum values of functional St [φ0]. (c) Tunnelling solution at φ0 ≈ 5.92.

Fig. 4.8 Small barrier tunnelling to 1st minimum of potential in Eq. (4.37), γ = 0.8, 80 pts.

In Fig. 4.8 we show similar plots obtained from using the tunnelling potential algorithm
again for the case of tunnelling to the first true minimum of the potential (grey cross in
Fig. 4.8a), but this time when γ = 0.8. Contrary to the previous case with γ = 0.2, we
can see that the difference in vacuum energy between true and false minima is large when
compared to the size of the barrier. Using our intuition of a pseudo-particle rolling down
an inverted potential from φ0 to φ f v, one would expect such a potential to result in a bounce
solution with a thick wall profile where the release point is far from the destination true
minima. Fig. 4.8b suggests that this is indeed the case given that the minimum of the St [φ0]

curve with which the bounce solution should coincide is at φ0 ≈ 6.05 which is far from
the destination true minimum (grey dashed line) which lies at φ0 ≈ 7.2. In Fig. 4.8c we
plot the form of the Vt(φ) solution (blue) at the minimum of the St [φ0] curve in Fig. 4.8b,
as well as its contribution to the St action (red) as a function of φ , noting that Vt has the
desired properties and both curves are smooth and well behaved.
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(a) Tunneling action convergence (b) Bounce action convergence

Fig. 4.9 Convergence plots to first minimum of potential in Eq. (4.37) for γ = 0.8.

In Fig. 4.9 we compare convergence of the minimum of St using the tunnelling potential
algorithm to convergence of the bounce action using the ‘undershoot/overshoot’ method,
when γ = 0.8. Fig. 4.9a shows increasing the number of path points results in St converging
to the same value as the Euclidean bounce action, SE ≈ 1713.81, seen in Fig. 4.9b. In

Fig. 4.10 Bounce profile for tunnelling to first minimum of potential in Eq. (4.37) for
γ = 0.8 found using ‘overshoot-undershoot’ method.

Fig. 4.10 we show the thick wall bounce profile found using a shooting method.
Safe in the knowledge that our numerical tunnelling potential algorithm works as

expected, we now explore the possibility of tunnelling to the second true minimum of our
potential, as shown in Fig. 4.11a where we set γ = 0.8. However, when we map out the
St [φ0] curve on a fixed φ0 we find that we get a jagged and non-smooth function with no
clear minimum as shown in Fig. 4.11b. When we plot the form of Vt as a function of φ

for an example φ0 release point as done in Fig. 4.11c we see the source of the problem,
in that the Vt(φ) curve (blue) briefly goes above the V (φ) (green) curve in the vicinity
of the intermediate minima of the potential. This invalidates the whole solution as we
know Vt cannot be greater than V in any of the solution’s domain, also explaining the
non-continuous change in the St action (red curve in Fig. 4.11c) around this intermediate
minimum.
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(a) Destination vacuum for tunnelling.

(b) Minimum values of functional St [φ0]. (c) Tunnelling solution at φ0 ≈ 12.11.

Fig. 4.11 Small barrier tunnelling to 2nd minima of potential in Eq. (4.37), γ = 0.8, 80 pts.

We found a similar issue when trying to compute a tunnelling solution using our code to
any of the further away true minima across the whole range of values, γ ∈ [0,1], that control
the barrier height. We found that in each case, the Vt curve clips the potential curve in the
vicinity of the intermediate minima of the potential as shown in Fig. 4.11c, so that Vt >V
and the solution is not a valid tunelling solution. This suggests that no direct tunnelling
solutions exist to minima that are further on than the first true minima for this type of
linearly shifted sin wave potential. Instead the field would have to tunnel to the far away
minima indirectly, via a series of separate tunnelling events to each intermediate minima
in turn. However, the source of the issue could also simply be due to numerical instability
of the solution space that makes finding a solution extremely challenging and so a claim
that no solution exists would require further investigation to be substantiated. There may
be some formal analytical argument one could construct, perhaps using the mechanical
rolling analogy, to demonstrate whether a bounce solution exists in this scenario and we
leave this task for further work.
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4.5.2 Potential landscapes with decreasing vacuum energy difference

Having considered single field, multi-vacua potential landscapes with equal vacuum energy
difference between neighbouring minima, we now study situations where the energy
difference decreases. Such potentials are often seen in chain inflation scenarios [44, 45]
where the universe starts in a high energy false vacuum and rapidly tunnels through a series
of sequentially lower minima until it reaches the vacuum we reside in today where the
cosmological constant takes on the small value we measure. During the time spent in each
intermediate minimum the universe inflates by some fraction of an e-fold and when all
these contributions are summed they should equal the ≈ 60 e-folds required to solve the
cosmological constant problem. Following [44] we use a toy model potential to describe
this situation

V (φ) =−cosφ + γφ
2 (4.38)

(a) Destination vacuum for tunnelling.

(b) Minimum values of functional St [φ0]. (c) Tunnelling solution at φ0 ≈−31.53.

Fig. 4.12 Large barrier tunnelling to 2nd minima of potential in Eq. (4.38), γ = 0.004, 80
pts.

In Fig. 4.12 we use our code to try and calculate tunnelling solutions for this potential
when γ = 0.004 (see Fig. 4.12a) and we are tunnelling from the false vacuum shown with
a red cross in Fig. 4.12a to the second true minima marked with a grey cross. In Fig. 4.12b
we show the St action curve as a function of the φ0 release point which demonstrates some
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suspicious jagged behaviour near its minimum. In Fig. 4.12c we plot both the final Vt(φ)

solution (blue) and St(φ) action curve (red) for the minimum φ0 ≈ 31.53 release value
shown in Fig. 4.12b, with the expectation that if tunnelling is possible the solution here
should coincide with the bounce solution. We can see, infact, that Vt > V in the region
of the intermediate minima and thus the solution is not a valid one. The discontinuous
behaviour of the St action curve around the intermediate minima reinforces this view.

(a) Destination for tunnelling.

(b) Minimum values of functional St [φ0]. (c) Tunnelling solution at φ0 ≈−25.13.

Fig. 4.13 Large barrier tunnelling to 3rd minima of potential in Eq. (4.38), γ = 0.004, 80
pts.

In Fig. 4.13 we compute tunnelling solutions for the same potential (γ = 0.004) but
this time tunnell to the third true minimum. In Fig. 4.13c we again plot the Vt(φ) and St(φ)

curves corresponding to the φ0 with minimum St [φ0] value shown in Fig. 4.13b and can see
that Vt >V in the vicinity of both intermediate minima so the Vt solution is not valid. We
continued to look at tunnelling to increasingly further away minima and found the same
issue persisting with the Vt(φ) solution going above V (φ) around each of the intermediate
minima.

To see if this behaviour of not finding a valid solution changes when we adjust the
size of the barrier, we also ran our code for a range of γ values which control the height
of the barrier and still found no valid Vt solutions due to the aforementioned issues at the
intermediate minima.
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(a) Destination vacuum for tunnelling.

(b) Minimum values of functional St [φ0]. (c) Tunnelling solution at φ0 ≈−32.03.

Fig. 4.14 Small barrier tunnelling to 2nd minima of potential in Eq. (4.38), γ = 0.01, 80
pts.

In Fig. 4.14 we show another concrete example for tunnelling to the second true
minimum but this time with a small barrier height (γ = 0.01) and find similar difficulties
with obtaining a well behaved solution. The fact that our code fails to find a tunnelling
solution at all for the potential in Eq. (4.38) warrants further investigation as to whether
this is due to some numerical shortcomings with our approach that can possibly be
resolved or whether it points to something more fundamental. Indeed, in the latter scenario
this solution may suggest that tunnelling must proceed in a step-wise fashion between
successive adjacent minima for this potential shape.
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4.5.3 Potential landscapes with increasing vacuum energy

To conclude our categorisation of tunnelling in single field potential landscapes with
multiple minima, we finally consider a potential where the vacuum energy difference
between neighbouring minima increases as you move away from the false vacuum. Such
scenarios are considered in [43] and a toy model potential we suggest that could perhaps
model such a situation is

V (φ) =−cosφ − γφ
2 (4.39)

Investigating this case will also gives us a handle on whether our code can find any potential
shapes in a single field setting, that permit false vacuum decay solutions to non-adjacent
minima.

(a) Destination vacuum for tunnelling.

(b) Minimum values of functional St [φ0]. (c) Tunnelling solution at φ0 ≈ 6.53.

Fig. 4.15 Tunnelling to 1st minima of potential in Eq. (4.39), γ = 0.017, 80 pts.

In Figs. 4.15-4.18 we successfully use our code to calculate false vacuum decay
solutions to successive true minima when γ = 0.017, where the potential is shown in the
sub figures labelled with an (a). In the (b) sub figures we show how the St [φ0] action curve
varies with the φ0 release value and see that it behaves relatively smoothly up to tunnelling
to the third true minima and even the curve describing tunnelling to the fourth true minima
has consistent behaviour after ruling out the clearly problematic φ0 release values.

This smooth behaviour of the S[φ0] curve already gives us some indication that our
code is not struggling to find false vacuum decay solutions to non-adjacent minima for
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this potential. Choosing the φ0 release values with minimum St [φ0], we can see that
sensible tunnelling solutions are indeed found for all four scenarios, as shown in Fig. 4.15c-
4.18c where we plot smooth final Vt(φ) solutions (blue) with its smooth accompanying
contributions to the St(φ) action integrand (red). In Fig. 4.19 we plot the action value of
the true tunnelling solution against the destination vacuum being tunnelled to and can see
that the probability of vacuum decay to far away minima is larger than to the adjacent
minima for potentials of this shape.

This concludes our investigation into false vacuum tunnelling to far away minima in
the single field case. In the next section we will apply our code to the more challenging
case of finding false vacuum tunnelling solutions to far away minima in a specific coupled
two-field potential landscape example.

(a) Destination vacuum for tunnelling.

(b) Minimum values of functional St [φ0]. (c) Tunnelling solution at φ0 ≈ 12.97.

Fig. 4.16 Tunnelling to 2nd minima of potential in Eq. (4.39), γ = 0.017, 80 pts.
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(a) Destination vacuum for tunnelling.

(b) Minimum values of functional St [φ0]. (c) Tunnelling solution at φ0 ≈ 19.21.

Fig. 4.17 Tunnelling to 3rd minima of potential in Eq. (4.39), γ = 0.017, 80 pts.
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(a) Destination vacuum for tunnelling.

(b) Minimum values of functional St [φ0]. (c) Tunnelling solution at φ0 ≈ 25.82.

Fig. 4.18 Tunnelling to 4th minima of potential in Eq. (4.39), γ = 0.017, 80 pts.

Fig. 4.19 Tunnelling action to increasingly far minima of potential in Eq. (4.39), γ = 0.017,
80 pts. See Figs. 4.15 - 4.18 for individual solutions.
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4.6 Multi-field Example: False Vacuum Decay to Non-
adjacent Minima

We know that the string landscape not only consists of many minima but also many moduli
fields. In this section we seek to demonstrate that our code can also be used to find false
vacuum decay solutions to non-adjacent minima in multi-field scenarios by applying it to a
coupled two field example potential with multiple minima. We only explore the two field
case in this thesis as it is easiest to depict graphically and we seek to only give a flavour
of the sorts of multi-field potentials that could be studied. However, our code is written
so that it is easily generalised to cases with > 2 fields by simply adding additional block
matrices to the Hessian in Eq. (4.31) associated with all possible new field combinations
and also additional rows to the St gradient column vector in Eq. (4.34).

(a) 3D view. (b) 2D projection.

Fig. 4.20 The two field potential of Eq. (4.40) with γxy = 1.5 and a=5.

In Fig. 4.20 we plot the potential we will study for two scalar fields φ x and φ y which
takes the analytical form

V (φ x,φ y) =−cos2(aφ
x)− cos2(aφ

y)− γxyφ
x
φ

y, (4.40)

for γxy = 1.5 and a=5. We label each vacua with integer numbers representing their
horizontal and vertical position relative to the false vacuum which we label as minimum
(0,0). For example the successive minima in the diagonal direction would be labelled (1,1),
(2,2) etc. whilst the minima in the φ x direction would be labelled (1,0), (2,0) etc.
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4.6.1 False vacuum decay solutions

(a) Contour plot of potential landscape. (b) Zoomed version of tunnelling paths in (a).

(c) Tunnelling solution, St ≈ 1245, 400 pts. (d) Convergence of minimum St value.

Fig. 4.21 Tunnelling to the (1,1) minimum of Eq. (4.40) with γxy = 1.5 and a=5.

In Fig. 4.21 we show the false vacuum decay solution for tunnelling to minimum
(1,1). As shown in Fig. 4.21a we choose an initial tunnelling path (black line) and run our
algorithm described in Sec. 4.4 to find the path (red line) with minimum St [

˜
φ0] action. In

this case the minimum path is simply a straight line going through φ x = φ y in field space
which can be explained by the symmetry of the potential surface in this direction.

In Fig. 4.21c we show the Vt curve (blue) associated with the path of minimum action,
where we have taken 560 points along the path and ϕ is a parameter describing the distance
travelled along the path, which in general takes a curved trajectory through field space.
We also show the value of the potential V (green) and the contributions to the total St

action (red) as a function of the path parameter ϕ . All these curves seem well behaved
and we also note that Vt <V at all ϕ values along the path which gives us some level of
confidence that our numerical algorithm has indeed found the solution with minimum St

action for the (1,1) minimum. Given this coincides with the bounce, we can conclude
that it describes the false vacuum decay tunnelling solution to this minimum. This view is
further reinforced by Fig. 4.21d which shows that the St action converges as we increase
the number of points along the path.
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(a) Contour plot of potential landscape. (b) Zoomed version of tunnelling paths in (a).

(c) Tunnelling solution, St ≈ 582, 800 pts. (d) Convergence of minimum St value.

Fig. 4.22 Tunnelling to the (2,2) minimum of Eq. (4.40) with γxy = 1.5 and a=5.

In Fig. 4.22 we show the solution we obtain when running our code to find the tunnelling
solution to the (2,2) minimum. Similar to the (1,1) solution we find that the path with
minimum St [

˜
φ0] is along the φ x = φ y symmetry axis as shown in Fig. 4.22a. The associated

Vt(ϕ), V (ϕ) and St(ϕ) curves are smooth with Vt(ϕ)<V (ϕ) for all ϕ along our 800 point
path as seen in Fig. 4.22c. Furthermore, the St action value converges with the number of
points along the path, as seen in Fig. 4.24d, which if you take with the aforementioned
sanity checks allows us to be confident that the approximate minimum St value has been
found and we can interpret this solution as one that coincides with the bounce and thus
describes false vacuum decay to this minimum.
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(a) Contour plot of potential landscape. (b) Zoomed version of tunnelling paths in (a).

(c) Tunnelling solution, St ≈ 551, 960 pts. (d) Convergence of minimum St value.

Fig. 4.23 Tunnelling to the (3,3) minimum of Eq. (4.40) with γxy = 1.5 and a=5.

In Fig. 4.23 we show the false vacuum decay solution to the (3,3) diagonal minimum,
finding that the Vt(ϕ) and St(ϕ) profiles (shown in Fig. 4.23c for 960 path points) are
consistent with the expected behaviour discussed above when enough points are taken
along the path. In Fig. 4.23d we see that the St action broadly converges with the number of
points, though we do see some numerical instability creeping into the solution for n ≈ 500
path points that subsequently disappears when n > 700.

In Figs. 4.24, 4.25 & 4.26 we show the false vacuum decay tunnelling solutions to
the (2,1), (3,1) and (3,2) off-diagonal minima respectively. These will perhaps provide a
sterner test that our code works as expected in multi-field scenarios because these minima
lie off the φ x = φ y symmetry axis and so in general we would expect the paths to follow
curved paths through field space. We can see this is indeed the case from the solution paths
in field space shown in Fig. 4.24a, Fig. 4.25a & Fig. 4.26a for each of the minima.



4.6 Multi-field Example: False Vacuum Decay to Non-adjacent Minima 95

(a) Contour plot of potential landscape. (b) Zoomed version of tunnelling paths in (a).

(c) Tunnelling solution, St ≈ 1322, 1040 pts. (d) Convergence of minimum St value.

Fig. 4.24 Tunnelling to the (2,1) minimum of Eq. (4.40) with γxy = 1.5 and a=5.

In Fig. 4.24 we show the tunnelling solution to the (2,1) minimum. It exhibits the
desired properties for n ≥ 800 points as can be seen in Fig. 4.24c where we plot the
minimised Vt solution for 1040 points along the path. Looking at the plot of path points
against St value in Fig. 4.24d we can see that, in a similar but more pronounced manner to
the (3,3) tunnelling solution, numerical instability in our algorithm is introduced when the
number of path points is below 800 which causes it to find the wrong solution. However,
when n ≥ 800 the sensitive regions of the path are sufficiently resolved that the correct
solution is found and this solution converges with the number of points hereafter.
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(a) Contour plot of potential landscape. (b) Zoomed version of tunnelling paths in (a).

(c) Tunnelling solution, St ≈ 1631, 960 pts. (d) Convergence of minimum St value.

Fig. 4.25 Tunnelling to the (3,1) minimum of Eq. (4.40) with γxy = 1.5 and a=5.

In Fig. 4.25 we show the solution found with minimum St [
˜
φ0] action in the vicinity

of the (3,1) vacuum. From Fig. 4.25c we can see this has some non-smooth behaviour in
its associated St(ϕ) action curve. Despite the fact that the St value of the minimum Vt [

˜
φ0]

solution seems to converge up to the number of points we tested it with, the presence of
the non-smooth behaviour makes us less confident in the accuracy of our solution. Further
investigation of the source of this instability is required and with more time it is likely one
could identify the cause and remedy the numerical algorithm to deal with it. Given what
happened in the case of the (2,2) minimum perhaps we might expect that if we increase
the number of points further the correct solution would eventually be found. However,
computing resources and time would eventually limit how many points we could check
for and so it would be better to try and fix the source of the instability in our algorithm to
improve its overall efficiency.
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(a) Contour plot of potential landscape. (b) Zoomed version of tunnelling paths in (a).

(c) Tunnelling solution, St ≈ 1095, 560 pts. (d) Convergence of minimum St value.

Fig. 4.26 Tunnelling to the (3,2) minimum of Eq. (4.40) with γxy = 1.5 and a=5.

Finally, in Fig. 4.26 we show the tunnelling solution to the (3,2) off-diagonal minimum.
Fig. 4.26c demonstrates the required properties of the Vt(ϕ) curve for the case of 560
path points, whilst Fig. 4.26d shows convergence of the action with increasing number of
points. Thus we can confidently conclude that the minimum Vt solution has been found
that describes tunnelling from the false vacuum at (0,0) to the minimum at (3,2).
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4.7 Areas of Further Work

We have verified that our tunnelling potential algorithm can successfully calculate false
vacuum decay tunnelling solutions to non-adjacent minima in some specific single field
and multi-field potential landscape examples. However there are many potential avenues
for further work. One immediately obvious task is to track down and remedy the source
of numerical instabilities in specific solutions, such as the (2,1) and (3,1) minima results
in Fig. 4.24 and Fig. 4.25 respectively. Such issues are probably due to singularities in
the computation of the Hessian entries close to the boundary points, where the discretised
St action in Eq. (4.20) becomes particularly sensitive. Such singularities can possibly be
remedied by some form of numerical regularisation method [37], that once implemented
should allow the algorithm to more efficiently compute false vacuum decay solutions to
increasingly far away minima.

If such improvements to our numerical algorithm were made, one could start to tackle
areas of further work with wider implications. For example, a study that sought to
definitively categorise the types of potential landscapes that permit tunnelling solutions
to far away minima and those that do not. For the landscapes where solutions do exist
one could then use the improved algorithm to confidently calculate how the false vacuum
decay rate varies with the quantum number of the destination vacuum being considered.
Such analysis could then be used to better understand various string theory landscape
models where the cosmological constant becomes a dynamical variable e.g. chain inflation
scenarios [44].



99

Chapter 5

First Order Phase Transitions in
Cosmology

Moments after the Big Bang we expect the universe to have undergone a series of phase
changes as it cooled due to the breaking of various high energy symmetries in the un-
derlying particle physics Lagrangian as fundamental fields of the universe took on new
values. One commonly referenced example is the electroweak phase transition where the
electromagnetic and weak nuclear force become differentiated but other examples include
the QCD phase transition and any phase transition arising from symmetry breaking in a
Grand Unified Theory (GUT).

In this chapter we will first discuss the different mechanisms by which a phase transition
could have taken place in the early universe (see Sections 5.1 and 5.2 ) whether it be via
quantum tunnelling through the potential barrier or thermal fluctuations over it. We will
then go on to discuss the dynamics of the bubble wall as it expands in the primordial plasma
(see Sections 5.3 and 5.4) which ultimately governs the form of any ensuing gravitational
wave or magnetic field signal produced. We will conclude the chapter in Sec. 5.5 by
outlining some specific particle physics models that admit first order phase transitions
which we will come back to later in our analysis of cold hidden sector phase transitions
(Chapter 6) and the gravitational waves they can produce (Chapter 7), and primordial
magnetic field generation (Chapter 9).

5.1 Tunnelling at Finite Temperature

The formalism developed in the previous chapters concern how one can calculate the rate
that bubbles of a new phase (φ ̸= 0) of a quantum field can nucleate purely via the process
of quantum tunnelling through a potential barrier when the system is at zero temperature.
However, when temperature is turned on it becomes possible for the field to make use of
thermal fluctuations to jump over the barrier and into the true minima. This process would
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again ultimately manifest itself via bubbles of the broken phase nucleating in the symmetric
phase but these bubbles would have been nucleated by a purely thermal mechanism. After
recognising that false vaccum decay can take place via either a purely quantum tunnelling
process or a purely thermal process one is naturally led to a third mechanism that is a
mixture of both: false vacuum decay via thermally assisted tunnelling. In this scenario
thermal fluctuations allow the field to get into an excited state where the barrier penetration
action integral is smaller and thus the field can tunnel more easily [26]. Fig. 5.1 summarises

Fig. 5.1 Three different false vacuum decay mechanisms in yellow, orange and red as
based on Fig. 2.19 of [36]. The classically allowed region where the field can roll down
the potential is shown with a blue dashed line. Here U [φ ] is the total potential of the
Euclidean system as defined in Eq. (3.6).

the different mechanisms available for false vacuum decay of a quantum field.
A nucleation rate of bubbles from quantum tunnelling, Γ4(T ), can in principle be

calculated at any given temperature, T , using Eq. (3.13) as it purely depends on the size of
the barrier at the time of the transition. However, one can also independently calculate a
nucleation rate of bubbles from thermal fluctuations,

Γ3 ≃ T 4
(

S3

2πT

)3/2

e−S3/T (5.1)

where S3 is the action value of an O(3) symmetric bounce solution. Whilst we expect the
Γ4(T ) tunnelling rate to be a maximum at T = 0 when the size of the barrier is minimised
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and exponentially suppressed at high temperatures when the barrier is large, we expect the
converse of the Γ3(T ) thermally induced nucleation rate.

At finite temperature, the bounce solution is deformed in the τ direction from its O(4)
symmetric form to a solution that is periodic in τ with period β = T−1. This follows from
the fact that the quantum statistics of bosons at finite temperature is formally equivalent to
QFT in Euclidean space-time where the time direction is periodic [2, 51].

(a) (b) (c)

Fig. 5.2 Thermal bounce solutions with increasing temperature from left to right as based
on Fig. 12.10 of [26]

.

Fig. 5.2 illustrates how the bounce deformation takes place with increasing temperature,
from the nearly O(4) symmetric bounce solution in Fig. 5.2a describing thermally assisted
tunnelling at low temperatures, to the τ deformed O(3) symmetric bounce solution in
Fig. 5.2b describing thermally assisted tunnelling at higher temperatures. Finally, in
Fig. 5.2c we show the form of the high temperature, τ independent, O(3) symmetric
bounce solution that describes a fully thermal transition. Each horizontal slice of this
cylindrical bounce is made up of a 3-dimensional bubble of true vacuum separated from
the false vacuum exterior with a wall, represented by the vertical boundary lines of the box,
that connects these two vacuum field values.

The S3 thermal tunnelling action is calculated by solving

d2φ

dr2 +
2
r

dφ

dr
=

dV (φ ,T )
dφ

(5.2)

for the O(3) symmetric bounce solution, with boundary conditions φ → 0 at r → ∞,
dφ/dr = 0 at r = 0 and substituting this into the three dimensional version of the Euclidean
action in Eq. (3.2).
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5.2 False Vacuum Decay and First Order Phase Transi-
tions

After accepting that it is highly probable that at least one phase transitions took place in
the early universe, it is natural to next explore the mechanism by which such a transition
happens. Fortunately phase transitions are a phenomenon that pervade physics and their
study in thermodynamics helps us classify them into two broad categories.

(a) Admits a cross-over transition (b) Admits a first order transition

Fig. 5.3 Two example thermal effective potentials with different phase transitions as taken
from Fig. 47 and Fig. 48 of [52].

In Fig. 5.3 we illustrate these two mechanisms in terms of a thermal effective potential
V (φ ,T ) which describes our particle physics model at any given temperature T . The shape
of the potential and position of the true vacuum vary depending on the value of T but
we enforce that V (φ ,T = 0) must coincide with the zero temperature particle physics
potential, V0(φ) from QFT i.e. V (φ ,T = 0) =V0(φ).

First and perhaps more commonly one can have a cross-over (or second order transition)
as shown in Fig. 5.3a where the universe transitions smoothly in time from one phase to
the next as the relevant field smoothly transitions from the value of the symmetric phase to
the value of the broken phase. At sufficiently large temperatures, nominally much larger
than any of the mass parameters of the underlying theory, the potential has a single stable
minimum that is symmetric around φ = 0. As the temperature of the universe drops to a
value that is close to the mass scale of the theory, the shape of the potential changes and the
minimum becomes increasingly flat until the universe reaches a critical temperature T = Tc

where a minimum develops at φ ̸= 0 and the original symmetric minimum of V (φ ,T )
becomes a maximum. The field value of the universe, currently at φ = 0, is now unstable
and thus different casual patches of the universe can spontaneously roll down the potential
into the new vacuum at φ ̸= 0. The crucial thing to note about such a cross-over transition
is that a given causal patch of the universe smoothly transitions from φ = 0 to φ ̸= 0 as it
rolls down the potential to the broken minimum.
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The other mechanism by which a phase transition can take place and that which we
will be exclusively interested in for the rest of this thesis is known as a first order phase
transition and is illustrated using the V (φ ,T ) effective potential shown in Fig. 5.3b. At
large temperatures the potential again has a single stable minimum at φ = 0. However,
when the temperature drops in this scenario a second minimum develops in the potential at
φ ̸= 0. This second minimum will initially be at a potential value that is higher than the
symmetric minimum i.e. V (φ ̸= 0,T )≥V (φ ,T ), but after some time the temperature will
drop to a critical value, Tc, such that the second minimum and the symmetric minimum
become degenerate V (φ ̸= 0,Tc) = V (0,Tc). Below Tc the minimum at φ ̸= 0 becomes
the true minimum of the potential, V (φ ̸=,T )<V (0,T ) when T < Tc, and the symmetric
minimum becomes meta-stable. This means the false vacuum at φ = 0 can begin to
decay via the appearance of bubbles nucleated via either a thermal or quantum tunnelling
mechanism as outlined in the previous section.

There is one additional essential condition that needs to be met before a first order
phase transition can complete and the universe can fully transition into the broken phase:
the bubbles need to percolate. Whilst after nucleation a given bubble will expand up to very
large speeds, sometimes close to the speed of light (see Sec. 5.3 & Sec. 5.4), percolation
of the bubbles is impossible if the universe is expanding at a faster rate than the bubbles
are being produced. Thus for a first order transition to complete we need the nucleation
rate of bubbles at a given temperature, whether they be nucleated via a thermal or quantum
tunnelling mechanism, to be greater than the rate of Hubble expansion of the universe at
that temperature. Whilst the tunnelling rate is exponentially suppressed when the barrier
is large, as the barrier becomes smaller one would expect the nucleation rate to increase.
Eventually the universe will reach a temperature Tn < Tc, as shown in Fig. 5.3b, where
the rate of bubble nucleation is equal to the Hubble rate of expansion of the universe i.e.
Γ(Tn)≈ H(Tn)

4. We call this temperature the ‘nucleation temperature’ and take it to be the
time at which the first order phase transition completes. Tn is often referred to as simply
the temperature of the first order phase transition because the duration of a typical PT is
expected to be negligible compared to the age of the universe at the time it occurs.

Note that whilst both effective potentials shown in Fig. 5.3a and Fig. 5.3b end up
at exactly the same T = 0 shape, the sequence of intermediate forms of the potential
through which they arrive here are vastly different and control whether the phase transition
takes place via a cross-over or whether it can be first order. Mathematically speaking,
one models such behaviour by adding a thermal correction term VT (φ ,T ) to the zero
temperature potential V0(φ) so that the full temperature dependent effective potential can
be written as V (φ ,T ) =V0(φ)+VT (φ ,T ). Later on in Sec. 5.5.3 we will study a potential
where the zero temperature form of the effective potential still has a barrier present and we
will find this has interesting consequences in terms of our ability to detect such scenarios.
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5.3 Bubble Wall Dynamics in the Primordial Plasma

After nucleation it is energetically favourable for the bubble walls to expand as discussed
in Sec. 3.1.5. In the early universe we typically expect there to be some coupling between
the wall and the primordial plasma which manifests itself as a frictional effect on the wall,
impeding its expansion and transferring energy to the plasma.

In all of the models that we consider in this thesis the phase transition is relatively
strong, so the bubble walls expand faster than the speed of sound. As we will see later, this
is a typical feature of theories that produce observable gravitational wave (or magnetic
field) signals, since a fairly strong transition is required for significant gravitational wave
emission (or magnetic field production). Consequently, the number density of states nh

in front of the bubble wall is determined by the temperature of the plasma immediately
prior to the transition (the situation is more complicated in subsonic transitions where
information can travel ahead of the wall into the plasma).

The dynamics of bubble walls can be described in terms of a driving pressure, sourced
by the difference in energy densities between the meta-stable and true vacua, and a frictional
pressure Pfr acting against the expansion of the bubble walls. The velocity of a given
bubble wall, vw, changes with time as

dvw

dt
=

1
σγ3

w
(ρvac −Pfr) , (5.3)

where γw is the relativistic Lorentz factor of the bubble walls, and σ is their energy per unit
area (i.e. their tension). After series expanding the friction in terms of its leading-order
(LO) and next-to-leading order (NLO) contributions to the gauge coupling we obtain the
equation of motion for the wall

p = ∆V −∆PLO − γw∆PNLO (5.4)

At leading order the friction on the bubble walls is [53]

∆PLO ∼ ∆m2T 2

24
(5.5)

and so arises due to states having different masses in the two phases. This means there is
a mismatch between the thermal distribution of states crossing the bubble walls and the
equilibrium configuration in the true vacuum, and evolving to the equilibrium distribution
transfers energy into the plasma. This friction is independent of γw when γw ≫ 1 and so is
a constant value. If, in the limit γw → ∞, the friction from this source is greater than the
driving force then the right hand side of Eq. (5.3) becomes zero and the bubble walls reach
a finite terminal velocity.
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On the other hand, if the friction is smaller than the driving force then this source of
friction will not prevent the bubble walls accelerating indefinitely and they are said to
‘runaway’ where they accelerate without bound right up until the point they collide with
each other. Although our discussion so far would seem to permit runaway bubble walls in
thermal transitions in some parts of parameter space, there can be other sources of friction
that do not lead to a constant pressure in the limit γw → ∞. In particular, if a gauge boson
changes mass across the wall, splitting radiation leads to a next-to-leading order friction
term that grows ∝ γw [54]. Consequently, the bubble walls generally have a maximum
velocity if there is a thermal bath of particles present.

There is still uncertainty on the exact parametric dependence of the friction from
splitting radiation. [54] proposes that it scales as

γw∆PNLO ∼ γwg3wT 3 , (5.6)

where w is the scale of symmetry breaking, although they also discuss a possible weaker
dependence on γw. The exact scaling of this friction deserves further study, and will affect
our quantitative determination of the boundaries between regimes, but it does not affect
the qualitative possibilities that we identify.

It is currently unknown whether models which have no gauge boson masses change
across the phase transition can have runaway bubbles, or if there is another source of
friction that scales as γn

w with n > 0. Given that γw reaches extremely large values in
runaway transitions, ∼ 1014, such a contribution could prevent runaway walls even if it
has an extremely suppressed coefficient, e.g. from multiple loop factors. 1 This is a major
source of uncertainty on the dynamics of the bubble walls in such models, and it is an
important topic to resolve in the future.

5.4 Runaway Walls

In thermal transitions with finite bubble wall speeds, the terminal values of γw are not too
far from O (1) regardless of which source of friction dominates. 2 The bubble walls reach
such speeds very quickly after nucleating, long before they typically collide. The energy
density in bubble walls is ≃ γwσR2

∗, where R∗ is the average bubble size at collision, and
the energy released by the region of space now inside the bubble is ∼ ρvacR3

∗. Therefore,
since the average bubble size when they collide is ∼ H−1

∗ , the energy in the bubble walls is
negligible compared to that in the plasma when the bubbles percolate. 3 We will study one

1A ∝ logγw dependence might not be enough to stop the bubble walls accelerating before the transition
completes.

2This is why we do not study the boundary between these two regimes in detail.
3This assumes that ε is not tiny. If ε is extremely small a thermal transition is less likely, and even if one

occurs the gravitational wave signal will be unobservable.
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such model that resides in this regime, described in Sec. 5.5.1, in the context of Intergalatic
Magnetic field generation (see Sec. 9.6.2).

Even if models without gauge bosons can have thermal transitions with runaway
bubbles, part of the energy released by such phase transitions will be transferred to the
plasma in this case, through the leading order friction Eq. (6.22). For an explicit model,
assuming that only the γw independent friction is present, the proportion of the released
energy transferred to the plasma can be found by considering the hydrodynamic solutions
of the bubble wall [55]. Apart from extremely strong thermal transitions with significant
supercooling as we study in Sec. 5.5.2, or tunnelling transitions that take place in cold
hidden sectors as studied in Chapter 6, at least ∼ 10% of the energy goes into the plasma,
with the remainder localised in the bubble walls.

5.5 Particle Physics Models with First Order Phase Tran-
sitions

Classifying which particle physics models admit a first order phase transition is a partic-
ularly interesting task due to the possibility that GWs can be emitted from these early
universe events and propagate freely until today. Thus if a transition were to take place
that was sufficiently violent, the signal could potentially be observed today with upcom-
ing GW detectors giving us an unprecedented means to probe the high energy particle
physics models that were so crucial to the early stages of the universe. We study GW
detection scenarios from first order phase transitions in a cold hidden sector in Chap-
ter 7. Additionally, first order phase transitions could also be the origin of magnetic fields
that are currently measured on galactic scales and are proving difficult to explain using
astrophysical mechanisms. We study this possibility in detail in Chapter 9.

Whilst detecting a first order phase transition in the early universe is a viable prospect,
detecting a smooth cross-over transition would be impossible as no GW emission is
expected from such an event. Unfortunately, calculations have been done that find the
electroweak phase transition in the SM to have taken place via a crossover [56, 57].
However, we know that the SM needs modifications if it is to explain many crucial
observed quantities such as dark matter, neutrino masses and the baryon asymmetry of
the universe. Encouragingly, many of the models that have been proposed, such as the
Two-Higgs-Doublet Model [58] and various other BSM (beyond the Standard Model)
theories, could provide scenarios where the electroweak phase transition could be first
order and thus potentially detectable. In the remainder of this section we detail three
specific BSM models that admit first order phase transitions which we will be selectively
utilising as toy model examples in our study of cold hidden sector phase transitions in
Chapter 6 and intergalactic magnetic fields from phase transitions in Chapter 9.
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5.5.1 Standard Model with |H|6 term

Perhaps the simplest possible extension to the Standard Model one might envisage is the
SM (Standard Model) supplemented by a non-renormalisable dimension 6 self interacting
Higgs operator |H|6/Λ2 [59]. We use this model in Chapter 5.5.1 in the context of
primordial magnetic field generation. The scalar potential for this theory is

V (H) =−m2H + |H|4 + 1
Λ2 |H|6 (5.7)

where H is the single electroweak Higgs doublet of the Standard Model HT = (χ1 +

iχ2,+iχ3)/
√
(2). Only the real part of the neutral component obtains a vacuum expecta-

tion value (VEV) leading to a tree level potential after symmetry breaking

V (h)tree =−m2

2
h2 +

λ

4
h4 +

1
8

h6

Λ2 (5.8)

Using the observed Higgs Boson mass of mh = 125GeV with the observed Higgs VEV of
v = 246GeV in the renormalisation conditions,

V ′(h = v) = 0, V ′′(h = v) = m2
h (5.9)

we can write the mass and coupling parameters seen in the potential in Eq. (5.8) as

m2 =
m2

h
2

3v4

4Λ2
, λ = m2

h2v2 − 3v2

2Λ2 (5.10)

Zero temperature one-loop corrections and thermal corrections must also be added to this
potential as outlined in the appendix of [59]. Further details studying the viable parameter
space that allows a strongly first order phase transition for this theory are also found in
[59].

5.5.2 Standard Model with U(1)B−L hidden sector

A new hidden sector is a well motivated extension of the Standard Model (SM), both from
top down considerations of string theory [60] and from a phenomenological perspective
e.g. because it could contain the dark matter (DM) [61]. However, any hidden sector
present might be extremely weakly coupled to the visible sector, in which case it would be
challenging or even impossible to directly probe [62]. One signal that could be observed
even in the limit of a vanishing coupling to the SM is a background of gravitational waves
left over from a first order phase transition in the hidden sector which occurred early in the
universe’s cosmological history.
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One simple hidden sector extension to the SM is called the U(1)B−L model [63] and
involves the addition of a single hidden scalar field ϕ that couples to the Higgs field via
a ‘portal’ interaction, λph2ϕ2/4. We will consider this SM extension in the context of
primordial magnetic field generation in Sec. 9.6.3. The tree level potential is

V = λH(H†H)2 +λφ (φ
†
φ)2 −λp(H†H)(φ †

φ) (5.11)

where φ is a complex scalar carrying U(1)B−L charge and quarks and leptons have a B–L
charge of +1/3 and 1 respectively. H is the SM Higgs doublet that transforms as a singlet
under U(1)B−L.

In this theory, radiative corrections to the tree level potential result in an effective
minimum of the potential developing in the ϕ direction which means the U(1)B−L sym-
metry can be spontaneously broken when the ϕ develops a non-zero vacuum expectation
value vϕ . The VEV of ϕ subsequently becomes manifest in the Higgs sector via the
portal coupling by inducing a negative mass term for the Higgs field which results in the
EW symmetry being broken and the Higgs field obtaining a VEV vh. Thus the primary
symmetry breaking pattern of this theory in most of the parameter space consists of first
(0,0)→ (vϕ ,0), followed by (vϕ ,0)→ (vϕ ,vh).

It is the first step of this symmetry breaking process that is of particular interest for
our purposes as when thermal corrections to the potential are accounted for, a barrier is
generated between the B−L symmetric and B−L broken minima through which a first
order phase transition could have taken place. The size of the barrier is controlled by the
relative size of the gB−L gauge coupling and the B−L guage boson mass mZ′ as it is this
gauge boson that dominates the thermal loop corrections. The full thermal effective scalar
potential in the ϕ direction for this scenario can be approximately expressed as

V (ϕ,T )≈
3g4

B−Lϕ4

4π2

[
log
(ϕ2

v2
ϕ

)
− 1

2

]
+g2

B−LT 2 (5.12)

where vϕ is the VEV of ϕ .
In some regions of the parameter space the symmetry breaking pattern of the theory

can be different to that described above. For example if the hidden ϕ phase transition
happens at sufficiently low temperatures, T∗ ≲ 140 GeV, then the Higgs field and the
hidden ϕ field obtain a VEV simultaneously in which case the symmetry breaking pattern
is (0,0)→ (vϕ ,vh). In this scenario there is a single scalar field wall localised in space but
it is made up of two components: a hidden ϕ part and a Higgs h part. As the VEV of the
Higgs is typically much smaller than the VEV of the hidden scalar, vh ≪ vϕ , we typically
expect the ratio, κh of energy going into the Higgs component of the bubble wall compared
to the hidden ϕ component to be small i.e. κh =

∆h
∆ϕ

≪ 1 where ∆h
∆ϕ

=
V (vϕ ,0)−V (vϕ ,vh)
V (0,0)−V (vϕ ,0)

.
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Provided kinetic mixing between the U(1)Y and U(1)B−L gauge fields is present, some
fraction of the energy deposited into the hidden plasma could be transferred back into the
SM fields which could be used for subsequent GW generation as considered in [59, 63, 64]
or magnetic field generation as we consider in Sec. 9.6.3. However, one has to be very
careful when making such an assumption as in Ref. [65] it was shown that the magnetic
field transfer from a dark U(1) to the visible U(1) through kinetic mixing is not efficient.

A further symmetry breaking pattern, first pointed out in [66], can take place if the ϕ PT
percolates after the QCD phase transition i.e. T∗ ≤ TQCD. In this scenario the Higgs field
obtains a small VEV, vh,QCD, prior to the transition so that the first order phase transition is
from (0,vQCD)→ (vϕ ,vh) where vQCD ∼ TQCD ≪ vh. Upon the Higgs taking on this small

vQCD VEV prior to the transition, this induces a negative mass term for ϕ ,
λp(t)v2

QCDϕ2

4 ,
which makes the potential barrier between ϕ = 0 and ϕ = vϕ smaller which subsequently
reduces the overall strength of the first order phase transition.

For further details on this model and in depth study into the viable parameter space
that admits a strongly first order phase transition see [63, 64].

5.5.3 SU(2) hidden sector

The other example hidden sector we consider in this thesis, consists of an SU(2) gauge
group with coupling constant g and a dark scalar field Φ, the “hidden sector Higgs”, which
is in the fundamental of the gauge group and has a tree level potential

V =−m2 |Φ|2 +λ |Φ|4 . (5.13)

We will consider this model when discussing cold hidden sectors in Chapter 6 and the GW
signals that can arise from them in Chapter 7.

A similar hidden sector, albeit with large couplings to the visible sector, has been
studied in the context of baryogenesis [67]. As we discuss in Sec. 6.1 such a sector also
leads to a viable DM candidate in parts of parameter space, and related models have been
considered in [68–73]. The gravitational wave signals from classically scale invariant
hidden sectors (at the same temperature as the visible sector) have also been studied in
[74]. We consider models that are close to the scale invariant limit and share some features
with those in [74] and also that seen in Sec. 5.5.2.

In some parts of parameter space Φ gets a vacuum expectation value (VEV). We
parameterise Φ =

(
0, 1√

2
φ

)
, where φ is the hidden sector field that gets a VEV ⟨φ⟩, so

the resulting hidden sector gauge boson masses are mA = 1
2g⟨φ⟩.

We consider theories with g2 ≫ λ and further assume that the tree level mass squared
in Eq. (5.13) satisfies

∣∣m2
∣∣≪ ⟨φ⟩2. In this part of parameter space the 1-loop Coleman-

Weinberg potential is comparable to the tree level potential [75]. We make this choice
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because the combination of the tree and 1-loop potentials can lead to a first order phase
transition but also to induce a barrier in the potential at zero temperature between a meta-
stable vacuum and the true vacuum. Neither of these features are possible if the tree level
potential Eq. (5.13) dominates. In the regime we consider, it is convenient to write the
mass squared parameter in Eq. (5.13) in terms of a dimensionless parameter m̃2 and a
renormalisation group (RG) scale w

m2 ≡ m̃2 9g4

1024π2 w2 . (5.14)

We choose the RG scale to coincide with the VEV ⟨φ⟩= w (in parts of parameter space in
which a symmetry breaking vacuum exists).

It is straightforward to evaluate the 1-loop correction to the potential in Eq. 5.13. Given
the assumption of a small quartic coupling we can neglect loops of φ itself, and the result
comes only from the hidden sector gauge bosons. After adding appropriate counterterms,
the total zero temperature potential is

V0 (φ) =
9g4

1024π2

[
1
2

m̃2w2
φ

2 +φ
4

(
log
(

φ 2

w2

)
−
(
2+ m̃2)

4

)]
. (5.15)

As usual the quartic coupling has been replaced with the renormalisation scale w and
renormalisation conditions by dimensional transmutation. 4

If m̃2 ≤ 0 the point ⟨φ⟩ = 0 is unstable at zero temperature, if 0 < m̃2 < 2 it is a
metastable minimum, and if m̃2 > 2 this is the true vacuum. If 0 < m̃2 < 2 the difference in
energy density between the true vacuum at ⟨φ⟩ ̸= 0 and the metastable vacuum at ⟨φ⟩= 0
at zero temperature is

ρvac =
9g4

1024π2

(
2− m̃2)

4
w4 , (5.16)

and the mass of φ in the symmetry breaking vacuum is

m2
φ =

9
512π2

(
4− m̃2)g4w2 . (5.17)

Phase transitions in the early universe depend on φ ’s potential at finite temperature.
The simplest estimate of this is obtained by combining the zero temperature potential,
Eq. (5.15), with the naive one loop finite temperature correction VT [76]

V (φ) =V0 (φ)+VT (φ) . (5.18)

4The contribution to the zero temperature potential from φ itself is of the form V =
1

64π2 (V ′′(φ))2 log(V ′′(φ)
w2 ). Since V ′′ ∼ 9g4w2/(64π2) our analysis is consistent for g ∼ 1.
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The contribution to VT (φ) from the hidden sector gauge bosons is

VT (φ)⊃
niT 4

2π2

∫
∞

0
q2 log

(
1− exp

(
−
√

q2 +m2
A (φ)/T 2

))
dq , (5.19)

where ni = 9 and mA (φ) =
1
2gφ . The one loop correction from φ loops has a similar form

and at temperatures around the time of the phase transition is subleading to Eq. (5.19), as
is the case with the zero temperature potential. 5

Although it demonstrates the existence of a phase transition, the simple one-loop
thermal potential is known to lead to significant inaccuracies in many models and can even
lead to incorrect predictions of the order of a transition. Different approaches have been
proposed to capture the effects missed by Eq. (5.19) (a recent discussion can be found
in [77]). In our present work we are interested in phenomenological possibilities rather
than precise demarcation of the parameter space. It is therefore sufficient to only improve
Eq. (5.19) by resumming an infinite set of daisy diagrams. This fixes the most severe
shortcoming of Eq. (5.19) by removing IR divergences that would otherwise spoil the
perturbative loop expansion [78, 79]. In practice the daisy resummation can be performed
by simply replacing the masses in Eq. (5.19)

m2
i (φ)→ m2

i (φ)+Πi , (5.20)

where Πi is the finite temperature self energy of the species i. At leading order in T 2 the
longitudinal components of the hidden sector gauge bosons have Πlong =

11
6 g2T 2 and the

transverse gauge bosons have no dependence at this order, and Πφ = 1
2

(
g2 +λ

)
T 2 [80].

5This can be seen directly by expanding the integral analogous to that in Eq. (5.19).
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Fig. 5.4 The scalar potential V (φ) of the hidden sector that we consider, at different points
in parameter space (left and right), at zero temperature (solid) and increasing temperature
(dashed, dotted). The model plotted in the left panel has a barrier between the two vacua
that remains at zero temperature, and the barrier disappears at zero temperature in the
model in the right panel.

In Fig. 5.4 we show examples of φ ’s finite temperature potential for different points in
parameter space, computed after making the modifications in Eq. (5.20). The RG scale
w is the only dimensionful parameter in the hidden sector and fixes the overall scale. At
high temperatures φ = 0 is always favoured and if this field value remains as a stable
minimum there will be no phase transition, but if it persists as a metastable minimum there
could be a first order phase transition. Further, if φ = 0 becomes a local maximum by
the time the temperature reaches zero, the phase transition could be second order if the
barrier disappears before the φ ̸= 0 minimum has lower energy than φ = 0. Conversely
the transition could be first order if this happens while a barrier remains. 6

6In contrast if λ ≳ g so that the tree-level potential dominates over the 1-loop potential any phase
transition will be second order, unless there are additional hidden sector degrees of freedom.
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Chapter 6

First Order Phase Transitions in Cold
Hidden Sectors

If a hidden sector is extremely weakly coupled to the visible sector there is no reason to
expect that the two should be at the same temperature in the early universe. Indeed, as
we will discuss, if a hidden sector contains relatively light degrees of freedom it might
need to be cold to be compatible with constraints on the effective number of additional
relativistic degrees of freedom at the time of Big Bang nucleosynthesis (BBN) and at the
formation of the cosmic microwave background (CMB). A hidden sector that contains
stable heavy states without efficient annihilation channels may also need to be cold to
avoid these overclosing the universe (e.g. this is the case for pure gauge hidden sectors
that contain stable glueballs).

In this Chapter we will study the properties of a possible first order phase transition
taking place in a hidden sector that is cold relative to the visible sector. To do this we
adopt the SU(2) hidden sector model that we outlined in Sec. 5.5.3 and first discuss the
mechanisms and conditions for it to be cold relative to the visible sector in Sec. 6.1. This
discussion of cosmological bounds provides us with the necessary basis to explore the
nature of the phase transitions in different regions of the viable parameter space in later
sections.

We will be particularly interested in the qualitatively different behaviour of the first
order phase transition when the hidden sector is very cold and a barrier remains in the
potential at zero temperature, which is a distinctive feature possible in the type of model
we consider (see Sec. 5.5.3). We will see in Chapter 7 that such scenarios can lead to
an observable GW signal with a frequency dependence that may allow such cold hidden
sectors to be distinguished from models in which the hidden and visible sector temperatures
are similar.
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6.1 Cosmological Constraints

A hidden sector can affect the cosmological history of the universe, and the requirement
that its effects do not lead to contradictions with observations can exclude large regions of
parameter space. In particular, the energy density in a hidden sector should not destroy the
successful predictions of BBN or leave an imprint in the CMB, while any stable relics it
contains that potentially could make up the dark matter must not overclose the universe.
The resulting constraints depend on when the hidden sector phase transition happens
relative to events in the visible sector. In Chapter 7 we will see that hidden sector phase
transitions can take place at hidden sector temperatures Th ∼ w or when the hidden sector
is much colder Th ≪ w.

In this section we summarise the cosmological constraints, laid out in detail in Ap-
pendix B, on scenarios where there exists a temperature ratio between the hidden and
visible sectors. We will use these to lead us in the rest of this chapter when we study
possible first order phase transitions that could have taken place in cold hidden sectors and
also the ensuing gravitational wave signals that could be generated from such events (see
Chapter 7).

The class of hidden sectors that we consider has many potentially viable parts of param-
eter space, and rather than fully explore all of these we simply argue that cosmologically
acceptable models can easily be found. For simplicity, we consider theories in which
the hidden sector Higgs is lighter than the gauge bosons mφ < mA (c.f. Eq. (5.17)). In
this case there are no decay or annihilation channels for φ unless it has a coupling to the
visible sector. Further, the hidden sector gauge bosons are stable through the analogue
of the SM’s custodial symmetry. Both φ and the gauge bosons can be made unstable by
introducing new light hidden sector fermions, and we will see that this is necessary to
evade cosmological bounds in some parts of parameter space.

We define a parameter characterising the amount of energy released by the hidden
sector phase transition

α =
ρvac

ρv
, (6.1)

where ρvac is the energy density released by the phase transition, and ρv is the energy
density in the visible sector thermal bath when it occurs. We also introduce a similar
parameter measuring the energy released relative to that in the hidden sector thermal bath,
ρh, immediately prior to the transition

αh =
ρvac

ρh
. (6.2)

We will see in Chapter 7 that α ≲ 10 and both αh ∼ 1 and αh ≫ 1 are possible, depending
on the type of transition.
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6.1.1 Generating a temperature hierarchy

In this section we explore possible mechanisms to generate a temperature difference
between a hidden and visible sector in the early universe. We define the temperature ratio
between the hidden and visible sectors to be

ε ≡ Th

Tv
, (6.3)

where Th and Tv are the hidden and visible sector temperatures at some time prior to the
phase transition.

If there is no energy exchange between the visible and hidden sectors and no entropy
injection into either sector, ε is approximately constant during the evolution of the universe.
In this case it only evolves due to changes in the number of relativistic degrees of freedom
in the two sectors and

ghT 3
h

gvT 3
v
=

gh,RHT 3
h,RH

gv,RHT 3
v,RH

, (6.4)

where gh and gv are the number of relativistic degrees of freedom in the hidden and
visible sectors respectively, and RH indicates that a quantity is defined immediately after
reheating completes. The resulting changes in ε are relatively small and do not matter
when considering extreme temperature hierarchies. However, only a mild temperature
difference is needed to satisfy observational constraints from BBN and the CMB so the
effects of Eq. (6.4) are relevant when considering these bounds.

The universe might enter its final period of radiation domination when the inflaton
decays at the end of inflation. Alternatively, in many string theory models the universe
goes through a period of matter domination after inflation. This is due to the presence of
relatively light and long lived moduli that are initially displaced from the minimum of their
potentials, before being reheated for a final time when the longest lived of these decays.
In both of the above cases the initial value of ε is set by the partial decay rates to the
visible and hidden sectors (Γv and Γh, respectively) of the state responsible for reheating
the universe for the final time. Then assuming the energy density in the two sectors is
negligible prior to reheating, the temperature ratio just after this is

εRH =

(
gvΓh

ghΓv

)1/4

, (6.5)

where gv and gh are the effective number of relativistic degrees of freedom in the visible
and hidden sectors immediately after reheating. It is plausible that Γh and Γv could differ
dramatically leading to a significant temperature ratio. For example, this could occur if the
longest lived modulus in a string compactification comes from a cycle associated with the
visible sector, and the hidden sector is localised elsewhere.
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Having obtained a hierarchy in their initial values, we also require that the temperature
ratio between the hidden and visible sectors persists until the hidden sector phase transition
occurs. This can be achieved simply by assuming that the two sectors are completely
decoupled. 1

On the other hand, it is interesting to consider the size of interactions between the two
sectors that are allowed without the temperature hierarchy being destroyed. The presence
of such a coupling would affect the cosmological history of a hidden sector, for example
by allowing otherwise stable hidden sector states to decay, and could potentially also lead
to observable signals of a hidden sector.

In Appendix B.1 we show that maintaining a large temperature hierarchy requires
parameterically smaller portal couplings than the well known conditions for a hidden
sector to remain out of thermal equilibrium with the visible sector. For example, the
constraint on the Higgs portal coupling,

L ⊃−1
2

λp |Φ|2 |H|2 , (6.6)

where H is the SM Higgs doublet, to maintain a temperature hierarchy is found to be

λp ≲ 10−10
ε

2 . (6.7)

6.1.2 The viable parameter space

Summarising the results in Appendix B, we identify two regions of our model’s parameter
space that are cosmologically safe and in which it is out of thermal equilibrium with the
visible sector. These serve as a basis for our subsequent study of hidden sector phase
transitions and their gravitational wave signals.

In the first region, the hidden sector is at a relatively high scale such that mφ ≫ mh and
its temperature is not too different to that of the visible sector, so the hidden sector phase
transition happens before EW symmetry breaking. The introduction of a small Higgs portal
coupling allows φ to decay to the visible sector before BBN, and this does not destroy
the temperature asymmetry provided ε ≳ 10−3. Meanwhile, since ε is not too small the
annihilation of hidden sector gauge bosons is reasonably efficient compared to the Hubble
parameter at the time of the phase transition and the relic abundance of these can easily be
viable.

A second possibility is that the hidden sector has no portal coupling to the visible sector.
In this case, by introducing light hidden sector fermions, hidden sector models at any
scale are viable provided the values of ε and α are such that BBN and CMB constraints

1There is still the possibility of thermalisation via the inflaton if this has relatively large couplings,
however if it decays via non-renormalisable operators this effect is negligible [81, 82].
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are satisfied (assuming the hidden sector fermions are sufficiently light that their relic
abundance is small).

We compare the phase transitions that happen in cold hidden sectors to those in hidden
sectors that are at the same temperature as the visible sector. It is therefore useful to briefly
discuss the parameter space in which such sectors are not excluded.

First we note that any hidden sector at the same temperature as the visible sector
is excluded by BBN constraints if it goes through a phase transition at a temperature
T ≲ 10 MeV. For the hidden sector that we consider, this is the case if w ≲ 50 MeV.

If the example SU(2) hidden sector that we consider has a portal coupling λ ≳ 10−7

at a scale w ≳ 10 GeV, it reaches thermal equilibrium with the visible sector and is
cosmologically safe. φ decays safely before BBN and the relic abundance of hidden sector
gauge bosons can easily be viable. Such a model is also not excluded by collider bounds,
e.g. on invisible Higgs decays, provided that λ is not too large.

It is hard, but not impossible, to accommodate the hidden sector that we consider if
50 MeV ≲ w ≲ 5 GeV and it is at the same temperature as the visible sector. φ must
decay to evade the relic density constraint, however light hidden sector fermions cannot
be introduced due to BBN limits. Instead φ must decay to the visible sector before BBN,
which most easily happens through a Higgs portal operator. There are numerous strong
constraints on such operators, and such a model is only viable in small parts of parameter
space (e.g. if φ has a mixing angle with the Higgs sin2

θ ≃ 10−8) [83].
More generally, we expect that there are relatively few viable models of hidden sectors

that are thermalised with the visible sector and which go through transitions at temperatures
10 MeV ≲ T ≲ 5 GeV. Such a sector must have a relatively strong interaction with the
visible sector for its energy to be transferred to the visible sector before BBN. However,
portal interactions at low scales are strongly constrained by, for example, observations of
supernovae and beam dump experiments.

6.2 Thermal Transitions vs. Tunnelling Transitions

A first order phase transition in a hidden sector begins when hidden scalar field bubbles
of the true vacuum start to be nucleated at a significant rate and completes when these
have expanded and engulfed the universe. In the process, the difference in energy density
between the two hidden sector vacua, including the finite temperature contribution to the
potential, is released. This drives the expansion of the bubbles and heats the hidden thermal
bath behind the bubble walls. 2

Bubbles of the true vacuum can be nucleated by thermal fluctuations or by quantum
tunnelling through the energy barrier (see Sec. 5.1). Given the scaling of the volume and

2In transitions with subsonic walls speeds, the plasma ahead of the bubble walls is also heated.
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surface energies of a bubble with its radius, there is a minimum bubble size above which it
will expand. The probability of nucleating such a bubble is set by an action, determined
from the field profile of a critical bubble. The action depends on whether the bubble is
nucleated through a thermal fluctuation or quantum tunnelling and is denoted S3 or S4

respectively. 3

The probability of nucleating a critical hidden scalar bubble via a thermal fluctuation
per unit time and volume, Γ3, is approximately

Γ3 ≃ T 4
h

(
S3

2πTh

)3/2

e−S3/Th , (6.8)

where Th is the temperature of the hidden sector [51]. The analogous expression for the
rate of nucleations by tunnelling, Γ4, is

Γ4 ≃ w4
(

S4

2π

)2

e−S4 , (6.9)

where w is the VEV that φ gets after the transition [84, 85]. As well as the explicit
temperature dependence in S3/Th, both S3 and S4 implicitly depend on the hidden sector
temperature, since they are determined by the finite temperature potential. Both S4 and
S3/Th tend to infinity for temperatures approaching that at which the high temperature
phase is energetically favoured and go to 0 if the barrier disappears.

The critical actions can sometimes be estimated with one of several analytic approxi-
mations [86]. The simplest of these, appropriate if the barrier between the vacua is large
compared to the energy difference between them, is the thin wall approximation outlined in
Sec. 3.1.6. This treats the actions as a sum of independent contributions from the bubble’s
volume and from its surface. However, the assumption of a thin wall is not valid for the
close to conformal models that we consider and leads to significant inaccuracies [74] (other
analytic approaches are also inaccurate in such models [87]). 4

Instead, we calculate the critical actions numerically by varying the field configurations
to minimise the actions. 5 We also note that Eqs. (6.8) and (6.9) are only approximations
to the nucleation rates. Their accuracy can be improved by replacing the factors in front of
the exponentials with a function that includes the determinant of fluctuations around the

3The S4 action is exactly equivalent to the SE Euclidean action discussed in previous Chapters. For the
remainder of the thesis we refer to S4 for notational convenience.

4Calculating the predicted thickness of the bubble walls in our model assuming the thin wall approxima-
tion shows that this is not self consistent, and the results for the critical actions that we obtain numerically
also deviate significantly from the thin wall predictions.

5This can be done efficiently using an overshoot/undershoot method. We use the publicly available code
CosmoTransitions [35], which we have validated with our own implementation.



6.2 Thermal Transitions vs. Tunnelling Transitions 119

critical field configuration [88–91]. However, the error introduced by Eqs. (6.8) and (6.9)
is typically relatively mild, so they are sufficient for our present purposes. 6
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Fig. 6.1 Examples of the dependence of the critical bubble nucleation actions S3/Th and
S4 on the hidden sector temperature Th. The parameters g and m̃2 define the model via
Eq. (5.15). The left panel corresponds to a hidden sector for which the energy barrier
between the two minima vanishes at zero temperature, so both S3/Th and S4 go to zero.
The right panel corresponds to a model in which a barrier remains at zero temperature, so
S4 asymptotes to a constant and S3/Th → ∞.

In Fig. 6.1 we show examples of the critical bubble actions for two points in the
parameter space of the hidden sector model described in Sec. 5.5.3. As seen in the left
panel of Fig. 6.1, a transition is guaranteed to complete if the hidden sector potential is
such that the barrier between the two minima disappears at low temperatures. Provided that
the true vacuum is energetically favoured before the barrier vanishes (and internal thermal
equilibrium is maintained), the transition happens through bubble nucleation before the
barrier vanishes completely due to the rapid increase in the Γ3 and Γ4 at such times [93, 94].
The temperatures at which the symmetry breaking vacuum is energetically favoured, that
at which nucleation becomes efficient, and that at which the barrier disappears completely
are typically not dramatically different.

As seen in the right panel of Fig. 6.1, in the parts of the parameter space in which
a barrier remains between the two vacua at zero temperature, the behaviour of S3/Th

and S4 are qualitatively different from each other. S3/Th initially decreases at large
hidden sector temperatures because small decreases in Th result in comparatively large
decreases in the height of the barrier meaning thermal fluctuations in the thermal bath have
greater chance of jumping over the barrier and into the true vacuum. Conversely, at low
hidden sector temperatures S3/Th increases with decreasing temperature, since the energy
available from the thermal bath to fluctuate into a bubble decreases whilst the barrier
approaches a constant shape in the Th → 0 limit. Thus a minimum value of S3/Th exists at

6Alternative, more accurate, non-perturbative methods to calculate the nucleation probabilities have also
been developed [92].
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a hidden temperature between these extremes for which the energy available for thermal
flucatuations is maximised relative to the barrier height.

The S4 action has no such dependence on the energy in the thermal bath and only
depends on the hidden sector temperature through the shape of the potential. Therefore, at
high Th, S4 rapidly drops with deceasing temperature due to the quickly reducing barrier
height, before asymptoting to a non-zero value as the barrier approaches a constant shape
in the Th → 0 limit.

The time when a phase transition begins can be estimated as the point when one critical
bubble is nucleated per Hubble volume per Hubble time, so that the true vacuum starts to
permeate, i.e. when

max [Γ3 (Th) ,Γ4 (Th)] = H (Tv)
4 . (6.10)

If a hidden sector is at the same temperature as the visible sector, this condition is satisfied
if S3/Th ≃ 120 or S4 ≃ 120 for a phase transition at temperatures around the EW scale.

Although Eq. (6.10) is useful to get a rough idea of when a transition happens, it is
not accurate enough to reliably determine whether a transition successfully completes
if a barrier remains at zero temperature. Further, the gravitational wave signal that is
produced depends on how long a transition takes and the average bubble size. To extract
these properties, we evaluate S3/Th and S4 as a function of temperature for a given point
in hidden sector parameter space. Another required physical input is the speed of the
bubble walls throughout the transition vw. Over all of the parameter space that we consider
the phase transitions are fairly strong so that vw ≃ 1 and for tracking the progress of the
transition and the average size of bubbles it is sufficient to fix vw = 1. 7 Then we track
the proportion of the universe that is in the low temperature phase and the distribution
of bubble sizes throughout the phase transitions, accounting for bubbles only forming in
regions of space that are in the false vacuum and allowing for the expansion of bubbles.
This calculation is standard (see e.g. Sec. 3.2 of [95] for a clear summary).

6.3 Transitions in Hot and Cold Hidden Sectors

We start by assuming that the hidden sector reheating temperature is high enough that the
high temperature phase (⟨φ⟩= 0) is initially favoured. As before the temperature of the
visible and hidden sectors are allowed to differ by a ratio ε , and we assume there is no
energy transfer between the sectors. 8

7When we study the gravitational wave signals produced, the difference between bubble walls with
Lorentz factors γw = O (1) and those with γw → ∞ will be important.

8When presenting results we quote ε at the time of the hidden sector phase transition.
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Fig. 6.2 Contours of the minimum values of S3/Th (left) and S4 (right) as a function of the
parameters of the hidden sector (defined in Sec. 5.5.3).

In Fig. 6.2 we plot contours of the minimum values of S4 and S3/Th as a function of
the dimensionless parameters of the hidden sector, for models such that a barrier persists
at zero temperature. The value of w does not affect these results, since it is the only
relevant scale in the calculation. We consider relatively large gauge couplings 1 ≳ g ≳ 2.5.
Towards the upper end of this range the accuracy of our perturbative calculations may be
compromised, however since g<

√
4π we do not expect the qualitative dynamics to change

significantly. Therefore, despite this source of potential numerical imprecision, we regard
our hidden sector as a useful toy model to explore the phenomenological possibilities that
can arise more generally.

The minimum value of S3/Th is smaller than that of S4 over all of the parameter space
in Fig. 6.2. Further, S3/Th is also smaller than S4 at hidden sector temperatures Th ∼ w (as
is the case for the points in parameter space shown in Fig. 6.1). These features are not
surprising. As discussed in [96], in the thin wall approximation the actions scale as

S3/Th ∼
w
Th

(
w4

∆V

)2

, (6.11)

and

S4 ∼
(

w4

∆V

)3

, (6.12)

where ∆V is the difference in energy density between the two vacua. Even though the
thin wall approximation often does not give precise numerical results, the feature that if
S3/Th ≫ 1 then S4 ≫ S3/Th is typical across many classes of models (although it would
be interesting to find theories for which it does not hold). As a result, if a first order phase
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transition happens at a temperature Th ∼ w, this will be through nucleation of bubbles by
thermal fluctuations (including in the case that no barrier remains at zero temperature).

In a model for which a barrier remains at zero temperature, if a transition does not
complete when Th ∼ w then S3/Th subsequently increases as the temperature drops further,
while S4 only changes slightly. This raises the possibility that a hidden sector might fail
to complete a thermal transition but could later undergo a tunnelling transition once the
Hubble parameter has dropped, despite Γ4 remaining smaller than the largest value of Γ3.
However, if the hidden and visible sectors are at the same temperature this is not possible
in generic models, for a reason related to the problems faced by old inflation [97]. If a
transition is to occur, the total vacuum energy density at the true minimum must be tuned
to (approximately) zero, so the vacuum energy density of the false minimum is ∼ w4. Once
Th = Tv ≪ w this will dominate the energy density of the universe. As a result H remains
∼ w2/MPl, and the universe enters a new inflationary phase. Therefore, the proposed
tunnelling transition, which requires much smaller values of H since S4 ≫ min(S3/Th),
cannot occur.

Consequently, for the model we consider, a first order phase transition in a hidden sector
at the same temperature as the visible sector will only ever happen through nucleation of
bubbles by thermal fluctuations, at a time when the hidden sector temperature is Th ∼ w.
We also believe that this is a typical feature across generic models, although it would be
interesting to study other calculable models further.

This conclusion does not hold if the hidden sector is cold relative to the visible sector.
If there is barrier between the two vacua that remains at zero temperature, the Hubble
parameter when S3/Th is minimised is H ∼ ε−2w2/MPl. For a transition to occur through
thermal fluctuations requires

H (Tv)
4 ≲ T 4

h

(
S3

2πTh

)3/2

e−S3/Th . (6.13)

If this is ever satisfied, it happens when Th ∼ w, and requires(
S3

Th

)
<

(
S3

Th

)
0
−8log

(
1
ε

)
, (6.14)

where (S3/Th)0 is the value necessary for a transition to complete when the two sectors
are at equal temperatures (e.g. (S3/Th)0 ∼ 120 for an EW scale transition). A cold hidden
sector requires a smaller value of S3/Th because the universe is expanding faster when
S3/Th reaches its minimum, so the condition for the true vacuum to permeate is stronger.
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On the other hand, the vacuum energy of a cold hidden sector still starts dominating
the expansion of the universe when Hmin ≃

√
ρvac/(3MPl), and provided

Γ4 (Th ≃ 0)≳ H4
min , (6.15)

the transition can complete through tunnelling. This is independent of whether the hidden
sector is colder than the visible sector (apart from the variation of Γ4 with temperature,
which is negligibly small for the relevant temperatures Th ≪ w).

Eq. (6.15) is a weaker condition than Eq. (6.14), so for sufficiently small ε a hidden
sector can fail to undergo a thermal transition at Th ∼ w, but later goes through a tunnelling
transition. Even though the minimum value of S3/Th is smaller than that of S4, the
tunnelling transition happens later when the visible sector temperature has dropped and
the Hubble parameter is smaller.
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Fig. 6.3 The bubble nucleation rate as a function of the hidden sector temperature for a
model with g = 2 and m̃2 = 0.04 (as in the right panel of Fig. 6.1) and w = 1 GeV. Results
are shown for a hidden sector at the same temperature as the visible sector (ε = 1, left)
and for a hidden sector that is much colder (ε = 10−8, right). The Hubble parameter in
the two cases is also plotted, assuming that the transition occurs prior to the hidden sector
false vacuum energy dominating the energy density of the universe (dashed black), and
assuming the phase transition does not complete prior to this (dotted black). If ε = 1 (left
panel) the hidden sector false vacuum energy begins to dominate at Tv = Th ≃ 0.2 GeV
when the two Hubble curves diverge. A transition happens when H(t) is first smaller
than one of Γ

1/4
3 or Γ

1/4
4 . Therefore the warm hidden sector (left) undergoes a thermally

nucleated transition, while the cold hidden sector (right) misses a thermal transition, but
subsequently goes through a tunnelling transition.

In Fig. 6.3 we show this by plotting the nucleation rates via thermal fluctuations and
tunnelling as a function of the hidden sector temperature, for a model with ε = 1 and
ε = 10−8. The hidden sector is the same as in the right panel of Fig. 6.1 with w = 1 GeV.
We also plot the Hubble parameter assuming the transition occurs prior to the hidden sector
false vacuum energy density dominating the universe and assuming that the transition
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never occurs, with the cosmological constant tuned to zero in the true vacuum. However,
in both models plotted the transition will complete and the dotted Hubble dependence is
not realised. As expected, for ε = 1 the transition happens through thermal nucleation. 9

For ε = 10−8, the larger value of the Hubble parameter when Th ∼ w prevents a thermal
transition occurring, and a tunnelling transition happens later once H is smaller.

For a tunnelling transition to happen this way, logε must be comparable to the dif-
ference between the minimum values of S3/Th and S4. Since this is typically O(10) a
huge temperature hierarchy is required, indeed, in the model that we consider ε ≲ 10−7.
Such small values are compatible with our assumed cosmological history, provided that
the visible sector reheating temperature TRH ≳ w/ε (so that the hidden sector is reheated
above w). The visible sector temperature when the phase transition takes place is fixed by

Γ4 ≃ H (Tv)
4 , (6.16)

i.e. when

Tv ≃
S1/4

4 e−S4/8

g1/4
v

√
wMPl , (6.17)

where S4 is approximately temperature independent at the relevant times. The exponential
dependence on S4 in Eq. (6.17) means that Tv changes by orders of magnitude as the
parameters of the hidden sector vary.

9If the hidden sector parameters are altered to increase the height of the barrier, Γ3 and Γ4 decrease by
approximately the same factor. So if the maximum value of Γ3 is small enough that a thermal transition
does not occur, the hidden sector false vacuum energy density dominates the universe before a tunnelling
transition is possible.



6.3 Transitions in Hot and Cold Hidden Sectors 125

α=30 10 3 1 0.3 0.1

thermal

No transition

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

g

m
˜ 2

ϵ =1

α=10-2

10-5

10-10

10-20

10-30

excluded

tunneling

thermal

No transition

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

g

m
˜ 2

ϵ =10-8

Fig. 6.4 The type of phase transition that occurs (yellow: thermal, blue: tunnelling) over
the hidden sector parameter space for w = 1 GeV, when the hidden sector is at the same
temperature as the visible sector (left) and when the hidden sector is much colder with
ε = 10−8 (right). The contours give the values α for the transitions. In the white region no
phase transition takes place. For cold hidden sectors there are models that cannot lead to
an acceptable cosmological history, as described in the text.

In Fig. 6.4 we plot the type of phase transition that occurs over our example hidden
sector parameter space for ε = 1 and ε = 10−8. Only the region in which a barrier remains
at zero temperature is shown, since in the converse case a thermal transition always occurs.

Some models in Fig. 6.4 right are incompatible with the cosmological history of the
universe regardless of how the vacuum energy is tuned, despite the hidden sector being
extremely cold. For example, both tuning the vacuum energy of the universe to zero when
the hidden sector is in the false vacuum and tuning it to zero in the true minimum lead to
an unacceptable cosmology when the thermal transition window is missed. In the former
case, the tunnelling nucleation rate must be small compared to the present day value of
the Hubble parameter, which is not always the case, whilst in the latter case the universe
can become dominated by the false minimum and subsequently trapped in this phase. A
significant region of the parameter space of models with ε = 10−8 fail in both scenarios
and are always problematic. 10

Finally we note that models with a low reheating temperature, below that at which the
hidden sector temperature is restored, do not evade our argument that tunnelling transitions
only occur in cold hidden sectors. We do not consider such theories further, and details of
the dynamics in this case may be found in Appendix B.4.

10If ε = 1 the difference between S3/Th and S4 is sufficiently large that if a thermal transition is missed, a
tunnelling transition will be slow compared to the age of the universe, so this issue does not arise.
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6.4 Transition Properties

If a hidden sector is colder than the visible sector this will affect the properties of its
phase transition, even if the transition still happens through thermal fluctuations; and if a
transition happens through tunnelling rather than thermal fluctuations this will also affect
its dynamics.

One crucial quantity for determining the gravitational wave signal produced that will
be of interest in Chapter 7, is the amount of energy released by the phase transition relative
to that in the thermal bath. This is the quantity α defined in Eq. (6.1).

First we consider transitions that happen through thermal fluctuations. Suppose there
are two identical hidden sectors, at the same scale w, that both go through thermal tran-
sitions, one of which is at the same temperature as the visible sector and the other much
colder. Both transitions happen when their respective hidden sector temperatures are
Th ∼ w, with only an O(1) difference due to the increased Hubble parameter when there is
a hotter visible sector present (c.f. Eq. (6.14)). Therefore the visible sector temperature at
the time of the phase transition is approximately

Tv ∝
w
ε
, (6.18)

and
α =

gh

gv
αhε

4 . (6.19)

In thermal transitions the relative energy released into the hidden sector is αh ≲ 10 and α

is strongly suppressed when the hidden sector is cold.
The situation is different if a hidden sector transition happens through tunnelling. In

this case the visible sector temperature at the time of the transition, and therefore α , is
fixed by Eq. (6.17), which is independent of ε . Unlike for thermal transitions, α can span a
wide range of values for different models. It still cannot be orders of magnitude larger than
1 since this would mean that the hidden sector vacuum energy dominated the universe prior
to the transition, leading back to the problems of old inflation. Since tunnelling transitions
always happen at temperatures Th < w we also know that α ≳ ε4.

Contours of α as a function of the hidden sector parameters are plotted in Fig. 6.4.
In the left panel ε = 1, so the phase transition is always via thermal fluctuations and α

is roughly O(1). As the value of g increases the hidden sector potential favours the true
vacuum at higher temperatures, so the transition happens slightly earlier and α decreases.
Relatively large values of α ≃ 30 are possible close to the boundary at which the transition
only just manages to complete, corresponding to significant supercooling. This is due to the
almost conformal nature of our hidden sector, which results in the energy barrier between
the two vacua remaining temperature dependent down to temperatures significantly below
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w. For example, Fig. 5.4 shows the barrier changing at temperatures around T ≃ 0.1w. 11

The possibility that conformal models could lead to significant supercooling has previously
been studied in [87, 98–100] and we study one such model, outlined in Sec. 5.5.2, in the
context of magnetic field generation in Sec. 9.6.3.

In the right panel of Fig. 6.4 the hidden sector is cold, with ε = 10−8, and over
the majority of this parameter space a phase transition happens through tunnelling. As
expected, α takes a wide range of values 10−25 – 1 and it is fairly large only close to the
boundary at which a transition fails to complete. In the part of parameter space for which a
thermal transition takes place α is extremely small, roughly ε4.

Another parameter that is important in determining the gravitational wave signal is the
time taken for the phase transition to complete relative to the Hubble parameter when the
transition occurs. This is also approximately inversely proportional to the average size of
bubbles when they collide compared to the Hubble distance.

If a thermal transition takes place relatively fast, and at a temperature such that S3/Th

decreases approximately linearly with temperature, it will complete once S3 decreases by
an order 1 amount after nucleation first becomes efficient (since its exponential dependence
means the nucleation rate will be extremely fast at this point). The duration of such a phase
transition can be estimated as β−1 where

β =−∂S3

∂ t
, (6.20)

evaluated at the time of the phase transition (see e.g. [101]). Eq. (6.20) can be rewritten in
the more useful form

β

H∗
= Tv∗

∂

∂Tv

(
S3

Th

)
= Th∗

∂

∂Th

(
S3

Th

)
,

(6.21)

where a ∗ indicates a quantity at the time of the phase transition, and the derivative is
evaluated at this time as well. The right hand side of Eq. (6.21) is not far from O (1) even if
the hidden sector is cold, so the duration of such a phase transition is always approximately
set by the Hubble parameter.

More generally the duration of a transition can be defined as the time between e.g.
90% and 10% of the universe being in the high temperature phase (the qualitative features
of our results are not sensitive to these particular choices). Unlike the estimate from β ,
this is applicable to tunnelling transitions, and also thermal transitions that happen when
S3/Th is close to its minimum (additionally, Eq. (6.21) requires modification in the case of
significant supercooling, as can occur in our model).

11In that figure m̃2 is relatively large so that the presence (or absence) of the barrier is visible. Models
with smaller values of m̃2 are more phenomenologically interesting, and in this case the suppression of the
critical temperature is more pronounced.
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In tunnelling transitions the duration of a phase transition is also approximately set
by the Hubble parameter. Once nucleation is efficient enough that 10% of the universe
reaches the low temperature phase, existing bubbles expand at close to the speed of light
and further bubbles continue to form, so the rest of space goes through the transition within
approximately a Hubble time. This is also the case in the previously mentioned classes of
thermal transitions for which β is not a good measure of the duration.
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Fig. 6.5 Contours of phase transition duration τ relative to the Hubble parameter for a
hidden sector at the same temperature as the visible sector (left panel) where transitions
happen via thermal fluctuations (red shading) and for a cold hidden sector (right panel)
with ε = 10−8 where most transitions happen via quantum tunnelling (blue shading).

In Fig. 6.5 we plot the duration of the hidden sector phase transition as a function of
the model’s parameters, for ε = 1 and 10−8. As expected the duration of a transition is
∼ H−1

∗ up to a numerical factor ≲ 100, regardless of whether the hidden sector is cold.
The average bubble radius can also be calculated and is similarly parametrically given by
H−1
∗ , even if the hidden sector is cold (with a numerical factor ∼ 0.001 – 0.1, as expected

from [102]).
Despite having the same parametric dependence on H∗, there is a mild difference

between the duration of a thermal and tunnelling transitions. In typical thermal transitions
the critical action decreases fast once it first becomes small enough for a significant number
of bubbles to form, and the transition usually completes within ≃ 1/100 of a Hubble
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time.12 Tunnelling transitions typically take slightly longer, leading to a slightly larger
average bubble radius, since the nucleation rate is constant in this case. 13

6.5 Bubble Wall Velocities in Hot and Cold Transitions

We now study the velocities of bubble walls in hidden sector models with thermal and
tunnelling transitions where much of the analysis in Sec. 5.3 and Sec. 5.4 still applies.
Specifically, we explore first order phase transitions of the hidden scalar field to a lower
minimum of its potential meaning the ensuing bubbles that are nucleated are made up of
this hidden scalar. Due to the vanishing coupling between the hidden sector and visible
sector, the hidden scalar wall can only couple with the hidden sector plasma as it expands
which results in a frictional pressure impeding the bubble walls expansion and transferring
energy into the hidden plasma. Therefore the speed the walls reach is related to the
proportion of the energy released by the hidden phase transition that is concentrated in
the bubble walls compared to the proportion being dissipated into the surrounding hidden
plasma. As we discuss in the next section, this has a significant effect on the spectrum of
gravitational waves that is produced by a phase transition.

The leading order friction on the bubble walls is independent of γw when γw ≫ 1 and
arises from hidden states having different masses in the two phases. The total effective
pressure on the bubble walls can be obtained by making the approximation

(ρvac −∆PLO)→

(
V0 (0)−V0 (φmin)+

T 2
h

24 ∑
i

m2
i (0)−m2

i (φmin)

)
, (6.22)

in Eq. (5.3), where φmin is the position of the true vacuum of the full finite temperature
potential, and V0 is the zero temperature potential. 14 In our example model the right hand
side of Eq. (6.22) is

V0 (0)−V0 (φmin)+
T 2

h
24 ∑

i
m2

i (0)−m2
i (φmin) =

9g4

1024π2
2− m̃2

4
w4 −

3g2w2T 2
h

32
, (6.23)

where we have consistently neglected the subleading contribution from φ itself, as in
Sec. 5.5.3.

12The small non-monotonic dependence on g that is visible in Fig. 6.5 left is because exact dependence
of S3/Th on time throughout the phase transition varies across the parameter space (e.g. transition might
begin closer or further away from the minimum of S3/Th).

13For ε = 10−8 thermal transitions are slightly slower than when ε is larger. This is because such transi-
tions only just complete, and happens when S3/Th is close to its minimum and approximately temperature
independent.

14More accurate expressions in terms of integrals over particle occupation numbers are given in [53].
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Not surprisingly, the friction and driving forces in Eq. (6.22) depend only on the
temperature of the hidden sector and its microscopic properties. Therefore, if a hidden
sector goes through a thermal transition, the friction on the bubble walls is approximately
independent of whether it is cold relative to the visible sector. There are only order 1
changes in the friction due to bubble nucleation becoming efficient at slightly different
hidden sector temperatures, as a result of the larger value of the Hubble parameter at this
time if the hidden sector is cold. We find that this source of friction leads to finite bubble
wall speeds over some, but not all, of the parameter space of the model that we consider.
The region with finite bubble walls speeds approximately coincides with those parts of
Fig. 6.4 for which α ≲ 0.5, and the value of ε only changes the boundary of this region of
parameter space slightly. 15

As discussed in Sec. 5.3, there is a further source of friction that arises due to the
splitting radiation that takes place when hidden gauge bosons gain mass across the wall.
This next-to-leading order contribution to the friction depends on the γw factor and we take
it to be [54]

∆PNLO ∼ γwg3wT 3
h , (6.24)

6.6 Runaway Walls in Cold Hidden Sectors

Assuming we are not considering a very strong transition with a high degree of supercooling
(Sec. 5.3) we expect most of the energy released during a thermal hidden sector phase
transition to be transferred into the hidden plasma. This is because in thermal transitions
the bubbles typically reach terminal velocity long before they collide so most of the energy
in the wall is efficiently dumped into the hidden plasma. We now argue that, in contrast,
tunnelling transitions can lead to the vast majority of the energy density going into bubble
walls with a negligible proportion transferred to the plasma via friction. This is possible
because the hidden sector can be arbitrarily cold compared to the scale that sets the driving
force.

The hidden sector temperature at the time of a tunnelling transition is Th = εTv ≃
(εgw)/α1/4. Therefore the γw independent contribution to the friction Eq. (6.22) is
suppressed by T 2

h ≃ ε2g2/α1/2. For small ε , and not too small α , this does not transfer a
significant fraction of the released energy to the plasma, and it is never sufficient to prevent
the bubble walls running away. This is intuitively due to the low hidden sector temperature
compared to the scale of the driving force Th ≪ w suppressing the number density of the
hidden sector particles that the walls pass through, and also reducing the mismatch in the
thermal distributions ahead of and behind the bubble walls.

15Other conditions for this source of friction to prevent bubble walls accelerating without bound have
been given in the literature, sometimes differing slightly from Eq. (6.22). The small differences are of no
consequence for our present work.
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The γw dependent contribution to the friction has a different effect to the γw independent
piece, since it grows arbitrarily large as the bubble walls gain speed. However, for a
sufficiently cold hidden sector the bubble walls will not have reached sufficiently high
speeds for this friction to become relevant before they collide. If they are still accelerating
at the time of the collision, the friction will be suppressed by γ∗/γt where γ∗ is the Lorentz
factor of the bubble walls when they collide and γt is the value corresponding to the
bubble wall’s terminal velocity. Apart from models close to the boundary γ∗ = γt, such
a suppression is sufficient to prevent any significant energy transfer to the plasma. On
the other hand, if the bubble walls reach their terminal velocity before colliding, at least
an O(1) fraction of the released energy goes into the plasma, and if they reach terminal
speeds long before they collide the vast majority of the energy goes into the plasma.

In the model that we consider the γw dependent frictional force is parametrically
nhγwg3w, and the driving force on the bubble walls per unit area is approximately g4w4

(ignoring numerical factors). The terminal value of γw is therefore roughly

γt ≃
w3

nh
≃ w3

ε3T 3
v∗

≃ α3/4

g2ε3 . (6.25)

As expected, the terminal velocity is large if ε is small and α is not too small.
We compare γt to what the wall’s Lorentz factor would be in the absence of friction as

a function of a bubble’s radius, which we denote γ0 (R). In the thin wall approximation,
which is accurate up to order 1 factors in our model, this is simply

γ0 (R)≃
Rρv

σ
≃ g2Rw . (6.26)

The typical bubble radius at the time of collisions R∗ is to be set by the Hubble parameter
at the time of transition

R∗ ≃ 10−2H−1
∗ ≃ α

1/2 MPl

g2w2 . (6.27)

As a result, the bubble walls are still accelerating at the time they collide if

α
1/2 MPl

w
≲

α3/4

g2ε3 , (6.28)

that is
ε < 10−6

α
1/12

( w
GeV

)1/3
g−2/3 . (6.29)

Thus a hidden sector must be extremely cold for the bubble walls to effectively runaway.
For a particular hidden sector, the energy density in the bubble walls when they collide

is
γ∗
γ0

= min [1,Rt/R∗] = min

[
1,

α1/4

g2ε3
w

MPl

]
, (6.30)



132 First Order Phase Transitions in Cold Hidden Sectors

where γ∗/γ0 = 1 corresponds to runaway bubble walls. The proportion of the energy
density released into the fluid is ∼ 1− γ∗/γ0, which is negligible for runaway bubbles and
≃ 1 for bubbles that reach terminal velocity.
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Chapter 7

Gravitational Waves from Cold Hidden
Sectors

We now consider the gravitational wave spectra produced by first order transitions, in hot
and cold hidden sectors. Rather than focusing exclusively on the particular SU(2) hidden
sector that we have studied, we aim to study the effect of those features identified above
that apply to large classes of hidden sectors.

Gravitational waves from phase transitions can be produced by different processes,
and excellent reviews on the development of the literature can be found in [103–107].
Depending on the type of transition, and the dynamics of the bubble walls, the overall
spectrum is made up of contributions from a subset of the following sources:

• Colliding scalar field shells. Depending on the nature of the phase transition,
a significant fraction of the energy released can be concentrated in the bubble
walls. When these collide they lead to quadrupole moments, which efficiently emit
gravitational waves.

• Acoustic waves in the plasma. If a transition happens in a thermal bath, some of
the energy in the wall will be deposited into the plasma via friction. This produces
acoustic wave fronts in the plasma which, when they collide, can source gravitational
waves.

• Turbulence in the plasma. After the acoustic sound shells collide, some portion of
their energy is transferred into turbulent flows, which could act as a relatively long
lasting source of gravitational waves.

• Long lived field oscillations after collisions. When bubble collision take place
they can establish long lived oscillations of the field, which can emit gravitational
waves.
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The gravitational wave spectrum emitted by each of these sources can be studied using
numerical simulations and theoretical models. Although both of these approaches have
shortcomings, a reasonably good understanding of the expected signal from each source
has been reached in the literature, as a function of the physical parameters of a transition. 1

For our present work, gravitational waves from bubble collisions and sound waves are
the most important, while turbulence and long lived field oscillations give negligible
contributions to the overall signal. We therefore focus on these effects, utilising standard
parameterised fits to predict the signals produced. In Appendix C, we collect results from
different parts of the literature that support this approach.

7.1 Bubble Collisions

The gravitational wave signal from colliding bubbles during a first order phase transition
was first proposed in [108, 109] and was carefully studied in [110–112], where the ‘en-
velope’ approximation was developed. This approximates the gravitational waves from
collisions as being sourced by an expanding infinitely thin bubble of stress energy, and
neglects regions in which the bubbles have previously overlapped. In this context the
thickness of a bubble wall is judged relative to e.g. bulk motions of any plasma present, and
the thin wall assumption was shown to be valid for relatively strong transitions in [113]. 2

In cold hidden sectors the profile of the bubble walls is determined by αh =
ρvac
ρh

rather than
α = ρvac

ρv
, where here, ρvac, ρh and ρv are the vacuum energy released in the transition, the

energy density in the hidden sector and the energy density in the visible sector respectively.
Also, the thin wall assumption is valid for all the models that we consider.

Various predictions, both analytical [111, 114, 115] and numerical [116–118], have
been made regarding the form of the frequency dependence of the gravitational wave
spectrum emitted by bubble collisions. We use the fit of the gravitational wave power
spectrum from bubble collisions given in [104]. After redshifting to the present day, this
takes the form

Ωcoll( f )≡ 1
ρcrit

dρGW-coll

d ln f
, (7.1)

where ρcrit is the critical density of the Universe, and

h2
Ωcoll( f ) = 1.67×10−5

∆

(
H∗
β

)2(
κcolα

1+α

)2(100
gv∗

) 1
3

Senv( f ) (7.2)

1In this Sec., we denote the transition time by β , regardless of the type of transition (even though
we previously defined β in Eq. (6.21) in a way that was only appropriate to particular classes of thermal
transitions).

2This is a weaker condition than that involved in the thin walled approximation for calculating the
critical bubble actions.
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where h ≃ 0.7 is the dimensionless present day Hubble parameter. As before, ∗ indicates
the value of a quantity at the time of the phase transition, and α is the ratio between the
energy density released during the transition and the background radiation density in the
visible sector defined in Eq. (6.1).

The remaining parameters in Eq. (7.2) are: κcol, which is the efficiency with which
the vacuum energy released is deposited in the bubble wall; ∆, which is the amplitude of
the gravitational wave signal in the limit κcol → 1 and α ≫ 1; and Senv( f ), which is the
spectral shape, normalised to have maximum value 1.

∆ can be fitted by

∆ =
0.48v3

w
1+5.3v2

w +5v4
w
. (7.3)

Using the envelope approximation, the peak energy density in gravitational waves from
thin walled bubble collisions scales like h2Ωenv ∝ κ2

col. The dependence of the peak energy
density on κcol in Eq. (7.2) can be derived in the envelope approximation, and is also
supported by numerical simulation. The overall amplitude, i.e. the prefactor in Eq. (7.2),
is set by theory [114] and agrees fairly well with simulations [116]. We can approximate

κcol ≃
γwσ

R∗ρvac
, (7.4)

where σ is the surface tension of the wall and R∗ is the average bubble separation length at
collision, R∗ = vwβ−1. This is precisely the quantity that we calculated when analysing
the finite bubble wall speeds, leading to the result Eq. (6.30).

Finally, the frequency dependence of the gravitational wave spectrum Senv( f ) takes the
form (for vw close to 1)

Senv( f ) =

[
cl

(
f

fenv

)−3

+(1− cl − ch)

(
f

fenv

)−1

+ ch

(
f

fenv

)]−1

(7.5)

where fits to numerical simulations give rise to the values cl = 0.064 and ch = 0.48. We
are assuming here that the high frequency tail drops like f−1, which as discussed may not
be precisely the case. The peak frequency f∗ is given by

fenv = 16.5 µHz
(

f∗
β

)(
β

H∗

)(
Tv∗

100GeV

)( g∗
100

) 1
6
, (7.6)

which has a dependence on vw via 3

f∗
β

=
0.35

1+0.069vw +0.69v4
w
. (7.7)

3This has a slightly different form to that adopted in [119] due to the fact they are using results from the
earlier analysis of [116].
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7.2 Sound Waves

If a significant proportion of the energy released by a phase transition is transferred to the
plasma through friction, sound waves in the plasma form. These propagate through the
primordial plasma either behind the wall, as deflagrations, or in front of it as detonations
(hybrid regimes are also possible). As mentioned, the model that we consider is always in
the supersonic detonation regime for both thermal and tunnelling transitions. The collision
of these acoustic shells causes a stirring of the plasma, which provides a long lasting source
of gravitational waves.

A combination of numerical simulations [120–122] and analytical models [123, 124]
suggest that sound waves are an important source of gravitational waves if a significant
fluid component exists. The spectrum obtained peaks at a wavelength approximately set
by the average bubble separation at collision, R∗, and at high frequencies, the signal falls
off ∝ f−3 for detonations, and it seems to be even steeper for deflagrations. This is in stark
contrast to the shape of signals arising from phase transitions occurring in vacuum, which
fall off in the range f−1 to f−1.5 at high frequencies.

For our present work, we use the fit of the gravitational wave spectrum given in [104],
based on the simulations in [122]. This is

h2
Ωsw( f ) = 8.5×10−6

(
100
g∗

) 1
3

κ
2
sw(vw,α)α2

(
H∗
β

)
vw Ssw( f ) , (7.8)

where the spectral shape is

Ssw( f ) =
(

f
fsw

)3( 7
4+3( f/ fsw)2

)7/2

, (7.9)

with approximate peak frequency

fsw = 8.9 µHz
1

vw

(
β

H∗

)(
Tv∗

100GeV

)( g∗
100

) 1
6
, (7.10)

and we have fixed the simulation derived factor zp which appears in [122] to take what is
estimated to be its usual value of 10.

The fit in Eq. (7.8) is based on simulations in which vw is not too close to 1. However,
in the model that we consider, γw is typically at least O (1) in thermal transitions since
the bubble walls only reach a terminal velocity due to the loop suppressed γw dependent
friction. Meanwhile, in tunnelling transitions the terminal value of γw can be huge and the
sound wave contribution to the gravitational wave spectrum is only significant if this is
reached. This difference in dynamical regimes introduces some unavoidable uncertainty
into our analysis. Directly studying systems with extremely large γw appears impossible in
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simulations, however further theoretical developments might be possible and such progress
could potentially be combined with extrapolations of results from simulations. 4

The parameter κsw in Eq. (7.8) is the proportion of the vacuum energy transferred to
kinetic energy in the plasma. If the bubble walls reach a constant velocity, κsw can be
determined from a hydrodynamical analysis of the wall and plasma system. Since this
depends only on the properties of the hidden sector, we can adapt results calculated for
visible sector phase transitions [55], and if vw ≃ 1

κsw ≃ αh

0.73+0.083
√

αh +αh
. (7.11)

In the model we consider αh is typically ∼ 1 in thermal transitions, which corresponds to
efficient conversion to kinetic energy in the plasma and little energy going into directly
heating it. In tunnelling transitions, αh is ≫ 1, so if the bubble walls reach a terminal
velocity long before colliding then κsw is basically 1. As argued, if the bubble walls are
still accelerating when they collide, the energy transfer to the plasma is negligible and we
can simply set κsw = 0. In the intermediate regime for which the bubble walls reach a
terminal velocity not long before colliding, we can estimate

κsw = 1− γ∗/γ0 , (7.12)

which also takes the correct values in the other regimes.

7.3 Gravitational Wave Signals

We are now ready to study the gravitational wave signal produced by a particular phase
transition, and analyse its detectability in future experiments [101, 125–129]. To do this
we use the standard sensitivity curves corresponding to the noise power spectral density
(see [130]) which are widely used in the phase transition literature.

First we note that the amplitude of a gravitational wave signal is strongly suppressed
if α ≪ 1, regardless of which source dominates, and only models with relatively large
α have a chance of being observed. In Sec. 6.4 we saw that β/H∗ ∼ 10 in tunnelling
transitions and β/H∗ ∼ 10 – 100 in thermal transitions, regardless of whether the hidden
sector is cold or at the same temperature as the visible sector. Combined with Eqs. (7.6)
and (7.10), this means that a signal’s peak frequency is always parameterically set by
the Hubble parameter at the time of the transition. Tunnelling transitions usually have a
slightly smaller peak frequency than thermal transitions for a given value of the Hubble
parameter, due to having smaller β/H∗. However, there are likely to exist models with

4We also note that the amplitude of the fit that we use differs from that in [101], which was based on
earlier simulations.
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thermal transitions for which β/H∗ ≃ 10 as well, for example due to a nucleation rate that
is only weakly temperature dependent, so this is not a sharp prediction.

In thermal transitions α ≃ ε3αh, where 0.1≳αh ≳ 10 in typical models (c.f. Eq. (6.19)).
As discussed in Sec. 6.5, the bubble wall velocity is always finite in thermal transitions in
the model that we consider, so the vast majority of the energy is transferred to the plasma.
The gravitational wave spectrum is therefore dominantly produced by sound waves, and
has a high frequncy fall off ∝ f−3. The amplitude of the gravitational wave signal produced
by bubble collisions is suppressed by

κcol ≃ γwσ/(R∗ρvac) , (7.13)

and is negligible as expected.

Fig. 7.1 Example gravitational wave spectra from thermal transitions in the model de-
scribed in Sec. 5.5.3. Results are shown for different hidden and visible sector temperature
ratios ε , and scales w which determine the hidden sector temperature that the transition
occurs at. We fix g = 2, and adjust m̃2 such that αh = 1 remains fixed. As ε decreases, the
thermal energy in the visible sector is increasingly greater than the energy released by the
phase transition. Thus with decreasing ε the amplitude of the gravitational wave spectrum
becomes heavily supressed and rapidly moves out of sensitivity of any upcoming searches.
Somewhat larger values of αh ≲ 50 are possible in some parts of parameter space, which
would increase the detection possibilities slightly.

In Fig. 7.1 we plot example spectra from thermal transitions with different values of ε ,
and fixed αh = 1 (so that α varies). We see that, in this frequency range, observable signals
are only possible in such models for ε ≃ 1, corresponding to a hidden sector at almost the
same temperature as the visible sector prior to the transition. The closeness of the hidden
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and visible sector temperatures required for a detectable signal is slightly relaxed for larger
αh, and values αh ≃ 50 are possible in parts of the hidden sector parameter space that we
consider, corresponding to significant super cooling. However, the minimum ε that leads
to an observable signal only scales approximately as ∝ α

1/3
h , so sectors with parametrically

small ε remain unobservable even in this case.
Unlike in thermal transitions, the gravitational wave signal from a tunnelling transi-

tion can be dominated either by emission from sound waves or from bubbles collisions,
depending on whether the bubble walls reach a terminal velocity, or not, respectively. The
boundary between the two regimes is determined by Eq. (6.30), via the factors κcol and
κsw in Eqs. (7.4) and (7.12) (we study the change in spectral shape moving between these
two regimes shortly). Regardless of which dominates, the amplitude of the signal is again
strongly suppressed if α ≪ 1.

Fig. 7.2 Examples of the gravitational wave spectra emitted by tunnelling transitions in
the absence of friction (due to the hidden sector being extremely cold, with ε ≈ 0). We
show results for different values of the relative energy released by the transition compared
to that in the visible sector: α , as well as for different hidden sector scales w, and we fix
g = 2. For a fixed α the scale w determines the visible sector temperature at the time of
the transition. In such models the bubbles walls runaway and gravitational waves are
dominantly produced by the collision of bubbles. A signal is only observable for models in
which α is relatively large.

In Fig. 7.2 we show the GW spectrum from a tunnelling transition in the absence of
any hidden sector thermal bath, i.e. if ε = 0, for different values of α . This corresponds
to all the released energy going into the bubble walls, and the signal from a model with
any ε that is significantly less than the boundary value between effective runaway and
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terminal wall velocities will also look almost identical. It can be seen that only transitions
for which α ≳ 10−4 have a chance of being detected in currently proposed experiments,
and this is also the case for tunnelling transitions with larger ε for which the signal comes
dominantly from sound waves. In tunnelling transitions α varies from ∼ ε3 to ∼ 1, with a
roughly logarithmic distribution of models in this range, so detectable signals only occur
in relatively small parts of parameter space.

The amplitude of a gravitational wave signal from a phase transition in a sector at
the same temperature as the visible sector can easily vary by orders of magnitude across
different models. For example, a transition with relatively small bubble walls speeds,
significantly below the speed of light, will produce a strongly suppressed signal. Hence,
observation of a signal with a small amplitude would not be sufficient to claim discovery
of a sector that is not thermalised with the visible sector. Similarly the peak frequency of
the gravitational wave signal from a sector at the same temperature as the visible sector
can be adjusted by altering the scale of the hidden sector. This flexibility in the signals
from thermalised sectors seems unpromising for discriminating between thermalised and
non-thermalised hidden sectors. However, we now describe two possibilities that might
provide an insight into the source of a gravitational wave signal, were one to be discovered.

7.3.1 Runaway vs non-runaway transitions

The high frequency fall off of a measured gravitational wave spectrum could give a clear
indication that it arose from a transition in which the bubble walls runaway with negligible
energy transfer to the plasma, rather than a transition in which a significant proportion
of the released energy is transferred to the plasma. The spectrum emitted by the former
will have a fall off ∝ f−1 – f−1.5 since it is dominantly produced by bubble collisions
(allowing for the uncertainty between simulations and theoretical predictions), which is
significantly different to the ∝ f−3 fall off in transitions with finite bubble wall speeds. 5

A transition with negligible energy transfer to the plasma can arise in a cold hidden
sector that goes through a tunnelling transition at a time when the number density of the
hidden sector thermal bath is sufficiently small (see Sec. 6.6).

5As mentioned previously, we assume that the contribution from turbulence is sub-leading.
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Fig. 7.3 The gravitational wave spectrum emitted by tunnelling transitions for different
values of the hidden sector temperature (via different ε). We fix the visible sector tem-
perature at the time of transition Tv∗ = 1461 GeV, w = 103 GeV, α = 0.1, and g = 2
across the different spectra. As ε is increased from 1× 10−5 to 4.2× 10−5, the hidden
sector temperature at the transition increases, so the friction on the bubble walls increases.
For ε ≳ 1.2× 10−5, the bubble walls reach a terminal velocity before they collide, and
the gravitational wave spectrum goes from being dominated by bubble collisions (with a
∝ f−1 high frequency fall off) to being dominated by sound waves (with a ∝ f−3 fall off).

In Fig. 7.3 we show the change in the gravitation wave spectrum emitted by a tunnelling
transition in the hidden sector that we consider, for different values of ε . As ε increases,
the friction grows and the bubble walls reach their terminal velocity prior to collisions.
The fast drop in κcol after ε passes the boundary between regimes, Eq. (6.29), results in a
sharp transition in the signal’s shape. 6

As discussed, it is unclear if runaway bubbles are possible in thermal transitions in
models without gauge bosons. Even if this can occur, at least ≃ 10% of the released
energy is transferred to the plasma through the γw independent friction in typical models.
The amplitude of the gravitational wave signal from sound waves Eq. (7.8) appears to be
larger than that from bubble collisions, fit by Eq. (7.2), in the limit vw ≃ 1, and the peak
frequencies of the signals from sound waves and bubble collisions differ by a factor ≃ 2.
Therefore, it seems plausible that a sound wave contribution could usually be distinguished
in most such cases. It would be interesting to study the shape of the spectra produced in

6These results are calculated using fits from simulations with much smaller values of γw than will occur
in the regime plotted, which introduces some uncertainty. However, based on theoretical models, we still
expect a significantly less steep fall off of the spectrum in a bubble dominated collision.
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this case in more detail, especially if further results from large scale numerical simulations
become available. 7

This difference in gravitational wave spectral shape between a runaway tunnelling,
and a non-runaway tunnelling or non-runaway thermal transition could be experimentally
distinguished, provided that the signal is detected over a reasonably wide frequency range.
Although it may not be possible to exclude a runaway thermal transition that is completely
dominated by bubble walls, the unusual model building requirements for this to arise
mean that detection of such a spectral shape would still be extremely interesting. From
Fig. 7.3 we see that a f−1 fall off, which would be enough to show that emission from
bubble walls dominates, could be observed at e.g. LISA if α is close to O (1). Discovery
of a signal would also prompt further targeted experimental investigation with increased
sensitivity, which would allow for more detailed analysis of the frequency dependence of
the spectrum.

7.3.2 Phase transitions around BBN

Another potentially observable possibility is that a thermal transition in a hidden sector
that is slightly colder than the visible sector, or a tunnelling transition, could lead to a
detectable gravitational wave signal in a frequency range that is not possible from a hidden
sector at the same temperature as the visible sector, due to cosmological constraints. 8

The constraint on the effective number of relativistic degrees of freedom in the hidden
sector at the time of BBN, Eq. (B.20), means that a phase transition at a temperature
Tv∗ ≲ 10 MeV is not possible in a hidden sector at the same temperature as the visible
sector. The corresponding peak frequencies of gravitational wave spectra emitted at around
such temperatures are (assuming sound wave domination, and vw ≃ 1)

fsw = 6.1×10−8 Hz
(

β/H∗
100

)(
Tv∗

10 MeV

)
, (7.14)

where β/H∗ is typically 50 – 100, but might plausibly be as small as 10 in some models.
As discussed in Sec. 6.1.2 transitions Tv∗ ≳ 10 MeV are possible in hidden sectors at the
same temperature as the visible sector, although the parameter space is quite strongly
constrained unless the transition is at a much higher temperature Tv∗ ≫ 10 MeV.

In contrast, a cold hidden sector can have a transition at any visible sector temperature,
and therefore emit gravitational waves with any peak frequency. It needs only satisfy

7Additionally, an intermediate f−1 dependence could arise in transitions with vw close to the speed of
sound [122], confirming the need for careful analysis of the spectral shape after initial discovery for models
to be discriminated.

8This has also been carefully considered in [119], which was posted on the arXiv as we were preparing
our manuscript. Our results are compatible with theirs, and the reader is refereed there for an alternative very
nice discussion of this possibility.
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the constraints, outlined in Sec. 6.1.2, on its energy density (ε < 0.2 and α < 0.015) and
contain light hidden sector states that avoid the universe being over closed, none of which
restrict the allowed time of a transition. 9
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Fig. 7.4 The minimum value of α that leads to a gravitational wave signals that can be
detected at SKA and IPTA as a function of the visible sector temperature at the time of
the transition Tv∗. Results are shown for runaway bubble walls in an effective vacuum
with β/H∗ = 10 (left) and sound waves from a phase transition that is strong (but without
runaway bubble walls) with β/H∗= 100 (right). The corresponding peak frequencies of the
emitted gravitational wave signal are also indicated. We assume the hidden sector states
decay to light hidden sector states, and the effects of these on the number of relativistic
degrees of freedom constrains α < 0.015. Once parameterised in terms of β/H∗, α , and
Tv∗ the results are independent of the particular hidden sector considered. Constraints from
BBN mean we do not expect to see a signal from a hidden sector at the same temperature
as the visible sector for Tv∗ ≲ 10 MeV, which means that a signal with a peak frequency
≲ 10−9 Hz would be a strong indication of a signal originating in a cold hidden sector
(even allowing for freedom in β/H∗).

In Fig. 7.4 we plot the minimum values of α that could be detected in the upcoming
experiments IPTA and SKA, for runaway tunnelling transitions and non-runaway thermal
transitions with vw ≃ 1. The results are shown as a function of the visible sector temperature
at the time of the transition, and the corresponding peak frequencies of the signals are also
given. For our purposes a model is detectible if any part of its gravitational wave spectrum
crosses the sensitivity curve of an experiment.

In these plots we assume β/H∗ = 10 and β/H∗ = 100 for the tunnelling and thermal
cases respectively, although the results are not too sensitive to these choices. We also
show the constraint on α from CMB observations, assuming that all of the energy released
by the phase transition ends up in light hidden sector states (the previously mentioned
model dependent opening up of the allowed values of α at Tv∗ ≳ 10 MeV is not shown).

9We impose the slightly stronger constraints on ε and α from the CMB rather than BBN so that the light
hidden sector states can definitely evade the relic abundance bound, however the difference is only small.
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Although the hidden sector that we have studied provides an example of a model that can
lead to the signals we consider here, the results in Fig. 7.4 are general to any cold sector,
once its phase transition is parameterised in terms of α and β/H∗ (and the dominant source
of gravitational waves is determined).

We see that there are significant regions of parameter space in which a cold hidden
sector has a phase transition at a visible sector temperature Tv∗ ≲ 10 MeV that leads to a
gravitational wave signal that is detectable at SKA, without being excluded by cosmological
constraints. There is also a small region of parameter space in which the same is true of
IPTA. In these parts of parameter space the peak frequencies of the gravitational wave
signals are in the range ≲ 10−9 Hz and ≲ 10−8 Hz for runaway bubbles and sound waves
respectively.

There is no sharp lower bound on the peak frequency of a gravitational wave signal
from a hidden sector at the same temperature as the visible sector, since there is some
freedom in the value of β/H∗, and the fit Eq. (7.9) may not be precisely correct for all
transitions. However, it seems extremely unlikely that such a sector would produce a signal
with a peak frequency ≲ 10−9 Hz.

As a result, the discovery of a signal with a sufficiently small peak frequency would be a
strong sign of the existence of a cold hidden sector that was out of thermal equilibrium with
the visible sector. The first observation of a signal is likely to be through integration over
frequencies, which might not be sufficient to exclude the possibility that the observed signal
is the low frequency tail of a spectrum peaked at higher frequencies. However, with further
observation, combined with much more careful analysis of experimental uncertainties than
we attempt, the location of the spectrum’s peak could be reliably determined.
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Chapter 8

Gravitational Waves from Helical MHD
Turbulence

In this chapter we study in detail the epoch following the phase transition during which we
expect magnetohydrodynamic (MHD) turbulence to be generated in the primordial plasma
from which a significant emission of Graviational Waves could take place. In particular we
focus on the case where there is some initial magnetic helicity in the plasma immediately
after the transition and see how this can boost the gravitational wave signal compared to
the case where there is no helicity present. As we will see, this scenario could leave an
imprint on the stochastic gravitational wave background (SGWB) in the form of a circular
polarisation that could be detectable by the up-coming LISA experiment. 1

The subject of helical MHD turbulence in the primordial plasma from a first order phase
transition has been extensively discussed in the literature [15, 131–133] and is often looked
at in the context of its impact on any potential primordial magnetic field [15, 134, 135]
as studied in detail in Chapter 9. However, more recently some effort has been put
into understanding the potential effects it could have on the period of GW generation
expected after a first-order phase transition and whether this could be imprinted on the GW
spectrum [136–142].

The turbulent regime develops over time after the phase transition due to a system of
eddy currents that are first generated at the scale of the bubble radius, R∗, and subsequently
extend over a range of both larger and smaller length scales. This network of eddies allows
for plasma and magnetic energy, both initially concentrated at the scale R∗, to be spread
throughout the MHD system in a ‘cascade’ of energy, as discussed in [143]. Once MHD
turbulence has fully developed at a given scale it decays freely, and we expect equipartition
between the plasma and magnetic energy densities, ρM ∼ ρK ∼ ρeq.

1Only future experiments with one or more triangular sets of interferometers, such as LISA, would be
sensitive to polarisation in the SGWB [14], as discussed further in Appendix D.
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As we discuss further in Sec. 8.4, the behaviour of the turbulence can be dramatically
changed if the initial magnetic field left over after the phase transition has a non-zero helical
component [144]. In this scenario the non-helical component of the field gets dissipated
away leaving a fully helical field that induces an inverse cascade in the turbulence where
energy is transferred to increasingly larger scales resulting in an increase in the fields
strength and correlation length of the field. This process could result in a significant boost
to any potential gravitational wave signal and could even result in emission of circularly
polarised GW, a manifestation of the helicity imprinted on the signal.

Such initial magnetic helicity could be generated via a variety of mechanisms including
bubble collisions at the electroweak [145, 146] or QCD [147, 148] phase transitions,
baryon-number-violating processes such as decaying non-perturbative field configurations,
e.g. electroweak sphalerons [149], or even via inflation [150]. We do not discuss further the
possible origin of this helical turbulence, but parametrise it by the initial helicity fraction
of the magnetic field left over after the transition, ζ∗.

8.1 Sourcing Gravitational Waves and Computing the Spec-
trum

We consider statistically homogeneous and isotropic turbulence, which sources GW lasting
for a limited time τT <H−1

∗ , so that the expansion of the universe may be ignored during the
period in which the gravitational radiation is produced. Furthermore, following [151, 152],
we make the additional simplifying assumption that direct cascade MHD turbulence
decaying on a time scale τdirect is equivalent to stationary turbulence with duration τdirect/2,
as justified by the argument for unmagnetised turbulence in [153]. For the inverse cascade
period we also consider stationary turbulence [152], but this time with a scale-dependent
duration time as outlined in Sec. 8.4. There has been some debate in the literature [139, 151]
regarding the extent to which assuming a stationary source is a valid simplification. 2

However, whilst such an approximation has limitations, it is currently the only available
model that has a complete treatment of helicity and inverse cascade turbulence, and hence
the potential polarisation signal. Thus, our results may be considered as a demonstration of
principle, which may be used as a prototype for other, more sophisticated calculations. We
expect that our results will be refined as many unknowns in the simulation and modelling
of turbulence are clarified.

As shown in [151], in order to find the total GW energy density at a point in space
and time we integrate over a spherical shell centered at that point that contains all GW

2This debate is especially relevant in the case of direct cascade turbulence where no attempt has been
made to account for the decay of the source by considering scale dependent turbulence, in contrast to inverse
cascade tubulence.
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sources with a light-like distance from such an observer. The thickness of the shell would
then correspond to the duration of the phase transition, and its radius would correspond
to the proper distance between observer and source along a light-like trajectory. Follow-
ing [151, 152] we can estimate the ensuing GW signal strength with ±25% accuracy by
working in the aero-acoustic approximation (k → 0). Using our premise that the source is
homogeneous and isotropic and making the aforementioned simplifying assumption that
the source is stationary, the integral for the total GW energy density finally simplifies to

ρGW(ω∗) =
dρGW

d lnω∗
= 16π

3
ω

3
∗Gw2

τT Hi ji j(0,ω∗) , (8.1)

where ω∗ = ω(t∗) is the angular frequency measured at the time of the phase transition
and w is the enthalpy density.3 The scalar quantity Hi ji j(0,ω∗) is the double trace of
the four-dimensional power spectrum of the energy density tensor describing stationary
turbulence in the k → 0 approximation [152]. The quantity Hi ji j controls both the peak
frequency and shape of the resulting GW signal, and its functional form varies depending
on whether one is considering direct cascade or inverse cascade turbulence, as we outline
in the following sections.

In order to calculate the spectrum of GW radiation measured today, we redshift Eq. (8.1)
to now and normalise it to the critical energy density required to make the universe flat
(k = 0), namely ρc = 3H2

0/(8πG), defining the fraction of energy density in GWs today as

ΩGW,0 =

(
a∗
a0

)4
ρGW,∗
ρc,0

=

(
a∗
a0

)
128π4

3H2
0

ω
3G2w2

∑m=1,2τ
(stage m)
T H(stage m)

i ji j (0,ω∗) ,

(8.2)
where ω = (a∗/a0)ω∗, the enthalpy density w = 4ρ∗/3 = 2π2g∗T 4

∗ /45, H2
∗ = 8πGρ∗/3 =

8π3Gg∗T 4
∗ /90 and m = 1,2 corresponding to the direct and inverse cascade stages of the

turbulent epoch respectively. Rearranging this relation, we obtain G2w2 = H4
∗/4π2, and

substituting this back into the Eq. (8.2) we get

ΩGW,0 =

(
a∗
a0

)
32π2

3H2
0

ω
3H4

∗∑m=1,2τ
(stage m)
T H(stage m)

i ji j (0,ω∗)

=

(
a∗
a0

)
1×1037

Hz2 ω
3H4

∗∑m=1,2τ
(stage m)
T H(stage m)

i ji j (0,ω∗) ,

(8.3)

where we have used H0 = h0 ×100 kmsec−1 Mpc−1 with h0 = 0.67 [154].

3This definition of w is in contrast to previous chapters where it was defined as the vacuum expectation
value of the field studied.
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8.2 Our Stationary Direct Cascade Model

Collisions of bubbles at the end of the phase transition cause stirring of the primordial
plasma on scales close to the average radius R∗ of the bubbles. In order to compute the
characteristic velocity of such turbulent motions at the beginning of the turbulent period, we
first identify two distinct forms in which the liberated vacuum energy, typically quantified
by α = ρvac/ρrad, is initially deposited. We express these forms quantitatively via GW
efficiency factors κi equivalent to those described in Chapter 7.

First, a fraction of the available vacuum energy goes into accelerating the bubble wall,
which is expressed using the GW efficiency factor κcol. This fraction should generally be
subtracted from the total energy subsequently deposited into the plasma. However, we will
be dealing with transitions that are not strong enough to produce the runaway scenario
described in Sec. 5.4, meaning that the bubble walls will reach a terminal velocity long
before collision due to the high friction on them from the surrounding plasma. Therefore,
it is valid to assume that essentially all the energy is transferred to the plasma, so that
αeff = α (1−κcol)≈ α [64].

The vacuum energy deposited into the plasma can either be transferred into bulk fluid
motion that sources GWs or can be used in heating up the plasma itself. Thus, as is common
in the literature and we also employed in Sec. 7.2, we finally express the fraction of vacuum
energy in our GW source as the fraction transferred into fluid motion [55, 64, 101]:

κsw =
α

0.73+0.083
√

α +α
, (8.4)

where we have assumed for simplicity that the speed of expansion of the walls is relatively
fast, with vw ≈ 1. We can then express the RMS fluid velocity as [121, 143]

U f =

√
3
4

α

1+α
κsw . (8.5)

Given that we only consider scenarios where the sound wave period is relatively short, we
can assume that not much energy in the plasma is lost and make the approximation that
all the energy left in the bulk fluid motion when the flow becomes nonlinear is converted
into vortical turbulent motions of the plasma, κturb ≈ κsw [64]. We also assume that the
characteristic velocity of the plasma at the beginning of the turbulent period is as shown in
Eq. (8.5).

This initial vortical fluid motion drives the formation of a hierarchy of eddy currents,
first on scales around the bubble radius and subsequently on scales λ ≤ R∗. This is known
as the ‘direct energy cascade’. We parameterise the turbulent system with the quantity
ξM(t), known as the magnetic correlation length which describes the maximum scale at
which the magnetic field is correlated and thus physically represents the size of the largest
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magnetic eddy. During the direct cascade period energy is transferred from the initial
correlation scale of the turbulence ξM(t∗)≃ R∗, to increasingly smaller scales until it is
viscously dissipated as heat at the dissipation scale of the plasma, λd .

The distribution of magnetic and plasma energy at different scales in a direct cascade
is known to follow a Kolmogorov decay law ρ∗,i(λ , t∗) ≈ ρ∗,iλ

−2/3 where i = K,M for
kinetic and magnetic components, respectively [138, 152]. We assume that this direct
cascade period of turbulence lasts for a few times longer than the characteristic turn-over
time of the largest eddy, τ0 = R∗/U f , so that the hierarchy of eddy currents have time to
equilibrate. 4 Thus the duration of this stage of turbulence is τdirect = s0τ0, where in this
work we make the representative choice s0 = 3 [152].

In the case of direct cascade turbulence, the quantity Hi ji j from Eq. (8.2) takes the
form [152]

H(stage 1)
i ji j (0,ω)≈

7C2
k ε

6π3/2

∫ kd

k0

dk
k6 exp

(
− ω2

ε2/3k4/3

)
erfc

(
− ω

ε1/3k2/3

)
, (8.6)

where ε = k0U3
f = k0M3 is the energy dissipation rate per unit enthalpy, M =U f < 1 is

the turbulent Mach number and Ck is a constant that is O(1). We assume that in the above
integral k0 ≪ kd , where k0 is the wavenumber associated with the average bubble radius
that sets the characteristic scale of the turbulence, and kd is the wavenumber associated
with the scale at which the turbulence is dissipated by viscosity. As we are considering
MHD turbulence, we take the prefactor of Eq. (8.6) as 7/6, after doubling the result for
pure hydrodynamic turbulence given in [151] to account for approximate equipartition
between the magnetic and kinetic energy components. The integral (Eq. (8.6)) for direct
cascade turbulence is dominated by large-scale contributions at wavenumbers close to k0,
corresponding to the average bubble radius and, as such, we expect the GW signal for this
stage of turbulence to peak at frequencies close to this scale.

After normalising Eq. (8.6), we can express the peak frequency of the GW signal due
to direct cascade turbulence at the time of the transition as

fpeak,∗ = 1.48M/R∗ , (8.7)

which after red-shifting gives a peak frequency today of

fpeak,0 =
a∗
a0

fpeak,∗ = 2.45×10−5 Hz
(

T∗
100GeV

)(
g∗

100

)1/6 M
R∗H∗

, (8.8)

4The eddy turn-over time is defined as the time it takes for an eddy at a given plasma scale to complete
one full revolution.
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where we have used the relation

a∗
a0

≈ 8×10−16
(

100GeV
T∗

)(
100
g∗

)1/3

. (8.9)

The peak amplitude of the direct cascade GW signal can then be written as

Ω
(stage 1)
GW,0 = 7.357×10−6

(
100
g∗

)1/3

(R∗H∗)
(
τT H∗

)
C2

k M6 , (8.10)

where τT H∗ ≤ 1 is the duration of the Stage 1 direct cascade turbulence normalised to the
Hubble time, R∗H∗ is the average bubble radius at percolation normalised to the Hubble
radius, M is the Mach number and Ck is a constant of order unity.

The τT H∗ factor in Eq. (8.10) tells us that, as expected, the longer lasting the period
of direct cascade turbulence the larger the abundance of GW emitted during this direct
cascade stage. The average bubble size R∗H∗ < 1 sets the characteristic length scale of
the problem, and thereby controls the peak frequency of the GW spectrum arising from
direct cascade turbulence, as seen in Eq. (8.8). A larger bubble radius R∗H∗ also implies
fewer bubbles per Hubble horizon, which in turn means a higher energy concentration as
the bubbles convert vacuum energy from their volume into the walls. After the bubble
collisions this results in a more inhomogeneous energy distribution centred around the
scale R∗, and thus a higher abundance of GWs as exhibited by the factor ∝ R∗H∗ seen
in (8.10).

8.3 Alternative Direct Cascade Models

Several other models for approximating the GW signal from direct cascade turbulence
have been proposed in the literature. Generalising Eq. (8.7), they may be characterised by
the peak frequency at the time of the phase transition:

fpeak,∗ =
A
R∗

, (8.11)

which is redshifted to the following generalisation of (8.8) today,

fpeak,0 = BHz
T∗

100GeV

(
g∗

100

) 1
6 1

R∗H∗
, (8.12)

where A and B are constants that depend on the way the turbulent GW source is modelled.
They take the following values in some commonly-used source models:

• The stationary approximation discussed above yields A= 1.48M, B= 2.45×10−5M,
and the spectra shown as black curves in Figs. 8.1 & 8.2 below;
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• The top-hat approximation yields A = 5.1, B = 8.46×10−5 (see Eq. (85) of [139]),
and the spectra shown as dark grey curves in Figs. 8.1 & 8.2 below;

• The coherent approximation yields A = 0.586, B = 9.728× 10−6 (see Eq. (80)
of [139]);

• The incoherent approximation yields A = 8.64, B = 1.43× 10−4 (see Eq. (76) of
[139]).

In the LISA phase transitions working group review paper [101], which we use for
our analysis of gravitational waves from hidden sectors in Chapter 7, the main source of
GW signal from plasma flow is associated with sound waves. Repeating the details of this
model here, the GW spectrum for this source is [155, 122, 123, 121]

h2
Ωsw,0 = 0.9×10−6 (R∗H∗)(τswH∗)

(
κswα

1+α

)2(100
g∗

) 1
3

Ssw( f ) , (8.13)

where κsw is the efficiency with which vacuum energy is transformed into bulk motion of
the fluid (and can be easily expressed for fast bubble walls, see Eq. (8.4)), and the spectral
shape is

Ssw( f ) = ( f/ fsw)
3
(

7
4+3( f/ fsw)2

)7/2

. (8.14)

Finally, there is an additional suppression factor that depends on fluid velocity (see
Eq. (8.5))

τswH∗ = min
(

1,
R∗H∗
U f

)
, (8.15)

which is associated with the time at which shocks develop in the flow [122], and is much
less than one for most models [59, 64, 143, 156]. The peak frequency of the sound wave
source at the time of the phase transition reads

fsw,∗ =
3.38
R∗

(8.16)

which becomes

fsw,0 = 5.61×10−5 Hz
T∗

100GeV

(
g∗

100

) 1
6 1

R∗H∗
(8.17)

when redshifted to the present day. This contribution provides the light grey curves in
Figs. 8.1 & 8.2 below.

In order to model the GWs sourced from turbulence, Ref. [101] used the top-hat
approximation to estimate the signal (dark grey curves in Figs. 8.1 & 8.2) for reasons
outlined in [139]. Assuming Kolmogorov-type turbulence, they calculate the associated
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GW spectrum arising from this model to be

h2
Ωturb,0 = 1.14×10−4 (R∗H∗)

(
κswα

1+α

) 3
2
(

100
g∗

) 1
3

Sturb( f ) , (8.18)

where vw is the wall velocity, 5 R∗H∗ is the amplitude suppression factor discussed in the
previous section and we have also used κsw as the efficiency for conversion of the latent
heat released during the phase transition into MHD turbulence. This comes from our
optimistic assumption that when the flow becomes non-linear and the sound wave period
ends, the remaining energy is readily converted into turbulence. Given that we discuss
scenarios in which the sound wave period lasts a relatively short time, very little energy is
lost and we expect this to be a reasonable approximation. However, in principle there can
be an extra damping factor due to, for example, loss of sound wave energy into reheating
the plasma. The corresponding spectral shape is

Sturb( f ) =
( f/ fturb)

3

[1+( f/ fturb)]
11
3 (1+8π f/h∗)

, (8.19)

where

h∗ = 16.5×10−6 Hz
(

T∗
100GeV

)(
g∗

100

)1/6

(8.20)

is the inverse Hubble time at GW production redshifted to today. This contribution provides
the dark grey curves in Figs. 8.1 & 8.2 below.

8.4 Modelling Inverse Cascade Turbulence

We expect helicity to be conserved in a highly conductive plasma. Thus, if there is
some initial helicity left over in the magnetic field after the phase transition, which we
parameterise with the initial magnetic helicity fraction ζ∗ as defined in [152], we expect it
to be approximately conserved during the direct cascade period of turbulence. After this
stage the turbulence, with the plasma and the magnetic field both in equipartition, relaxes
to a fully helical state, since the non-helical turbulent energy is fully dissipated away at
small scales in contrast to the conserved helical component [143].

This results in a second period of ‘inverse cascade’ turbulence following the direct
cascade stage, during which the remaining fully helical turbulence can only be transferred
to scales that are increasingly larger than the bubble radius. For large enough initial
helicity fractions, this can result in a rapid increase in the magnetic correlation length of

5We assume vw ∼ 1 in this work.
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the turbulence, ξM(t), which corresponds physically to a large increase in the size of the
largest eddy, compared with the direct cascade period.

Adopting Model B outlined in detail in [152] and originally based on the work of [157,
158], we take the following evolution law for the magnetic eddy correlation scale

ξM(t)≃ R∗

(
1+

t
τ1

)2/3

, (8.21)

where τ1 ≃ R∗/v1 = τ0/ζ
1/2
∗ is the characteristic eddy turn-over time of the largest eddy

at the beginning of the inverse cascade stage, v1 ≃ ζ
1/2
∗ U f is the associated characteristic

plasma velocity, and we have used the relation R∗ = τ0U f . Furthermore, the evolution of
the magnetic and kinetic energy densities are given by

ρM(t)≃ wb2
1

(
1+

t
τ1

)−2/3

,

ρK(t)≃ wv2
1

(
1+

t
τ1

)−2/3

,

(8.22)

where v1 ≃ ζ
1/2
∗ U f and b1 ≃ ζ

1/2
∗ b0 are, respectively, characteristic velocity and magnetic

field perturbations at the beginning of the inverse cascade stage, and v1 ≃ b1 due to
equipartition of the two components. The turnover time at the correlation scale of the
turbulence (τ

ξ
) and the inverse cascade timescale (τinverse) then evolve as

τ
ξ
≃ τinverse ≃

ξM(t)
vk(t)

= τ1

(
1+

t
τ1

)
, (8.23)

where we have used that vk(t)∝ v1(1+ t
τ1
)−1/3 from Eq. (8.22). Putting Eq. (8.21) together

with Eq. (8.23), we obtain the time when turbulence exists on the scale ξM(t) as

τinverse ≃ τ1

(
ξM(t)

R∗

)3/2

= τ1

(
k0

kξ (t)

)3/2

, (8.24)

where the wavenumber of the largest eddy is defined as kξ (t)≡ 2π/ξM(t).
Based on the approach used in [159], we compute the GW output during the inverse

cascade period by adopting a stationary turbulence model wherein, rather than considering
freely-decaying turbulence, we consider stationary turbulence with a duration time that
depends on the scale, k, being considered, i.e.,

τinverse(k)≈ τ1

(
k0

k

)3/2

. (8.25)
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Thus we can express the turn-over time associated with the largest scale, ks, when the
inverse casade stops as

τs ≈ τ1

(
k0

ks

)3/2

. (8.26)

In the absence of any effective mechanisms for dissipating the turbulence at the largest
scales, an inverse cascade can cause the correlation length of the magnetic field to increase
greatly during this period, limited only by the Hubble expansion of the universe. Thus, the
inverse cascade stops either at a scale, λs, when the correlation length of the turbulence
reaches the Hubble radius,

λs ≤ H−1
∗ , (8.27)

or the inverse cascade stops after a time, τs, when the turn-over time of the largest eddy
reaches the expansion timescale,

τs = τ1

(
k0

ks

)3/2

=
λ

3/2
s

U f ζ
1/2
∗ R1/2

∗
≤ H−1

∗ . (8.28)

Since R∗H∗, U f and ζ∗ are all less than unity, we see that the inequality Eq. (8.28) gives a
stronger condition than (8.27). Thus we obtain an expression for the scale at which the
inverse cascade stops by saturating the inequality

λs

R∗
≤
(

U f

R∗H∗

)2/3

ζ
1/3
∗ . (8.29)

For the period of freely-decaying inverse cascade MHD turbulence we adopt the ‘Model
B’ introduced in Sec. 8.4 and outlined in [152]. 6 The form of the Hi ji j(0,ω) quantity
from Eq. (8.2) that is associated with the inverse cascade period is then expressed as

H(stage 2)
i ji j (0,ω)≈

7C2
1M3ζ

3/2
∗

6π3/2k3/2
0

∫ k0

ks

dk
k7/2 exp

(
− ω2k0

ζ∗M2k3

)
erfc

(
−

ωk1/2
0

ζ
1/2
∗ Mk3/2

)
,

(8.30)
where ζ∗ is the fraction of magnetic helicity left over at the end of the phase transition,
and C1 is a O(1) constant that links the magnetic energy and helicity densities with their
respective power spectra.

In contrast to the direct cascade, the length scale providing the largest contribution
to the H(stage 2)

i ji j (0,ω) quantity used to calculate the GW signal arising from the inverse
cascade period of turbulence is model-independent, being simply set by the Hubble scale.
This is because the majority of the turbulent energy is found around the Hubble scale at
the end of the inverse cascade before it is dissipated due to the expansion of the universe

6If we had used the ‘Model A’ also outlined in [152], which was originally based on the work of
[160, 161], we would have found the same peak frequency but a mild suppression of the GW peak amplitude.
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as outlined in Sec. 8.4. Taking the value of the Hubble parameter at the phase transition
and red-shifting it to today, we find that the characteristic frequency of the inverse cascade
GW spectrum today is

fhorizon,0 = 1.65×10−5 Hz
(

T∗
100GeV

)(
g∗

100

)1/6

. (8.31)

As we will see in the examples in the next section, at this frequency the power-law of
abundance of GWs changes from ΩGW ∝ f 3 as expected beyond the horizon scale [162]
to a flatter plateau composed of contributions from both the direct cascade turbulence and
the helicity fraction dependent inverse cascade turbulence. The size of the plateau depends
on the magnitude of the helicity fraction: for small ζ∗ the signal briefly levels off before
reverting to its original ΩGW ∝ f 3 growth rate; whilst for sufficiently large ζ∗ the plateau
continues all the way up to the scale associated with the bubble size at the transition (see
Eq. (8.12)).
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8.5 Graviational Wave Spectra

Fig. 8.1 and Fig. 8.2 compare our calculated GW spectra (black) for representative choices
of the model parameters α,R∗ and T∗ with the LISA [101] and AEDGE [163] sensitivity
curves (shown in orange and green, respectively). The value of M is not an independent
quantity, being related to the magnitude of α (see Eq. (8.5)). Our calculations are for
four values of the helicity fraction ζ∗ = 0.05 (solid), 0.1 (dashed), 0.5 (dash-dotted) and 1
(dotted).

Fig. 8.1 Calculations of GW spectra for fixed T∗ = 100 GeV and ζ∗ = 0.05 (solid black),
0.1 (dashed black), 0.5 (dash-dotted black) and 1.0 (dotted black), compared with the
spectra from sound waves (light grey) and turbulence (dark grey) taken from [101]. R∗H∗
increases from left to right and α decreases from top to bottom. The parameter values are
the same as in panel (a) unless specified. The power-law integrated LISA [101] (orange)
and AEDGE [163] (green) sensitivity to the total SGWB spectrum, each for a 4-year
integration time.

Fig. 8.1 shows comparisons for fixed T∗ = 100 GeV and different choices of the
parameters α (going down) and R∗H∗ (going across), describing the strength of the first-
order transition and the bubble size R∗ respectively. We recall that α sets the value of the
turbulent Mach number M through Eq. (8.5). The value of M affects the peak frequency
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and amplitude of the direct cascade GW signal through Eq. (8.8) & Eq. (8.10), respectively,
whilst the characteristic amplitude of the inverse cascade GW signal is given by Eq. (8.30).

Fig. 8.1(a) shows that, as ζ∗ increases, the size of the low-frequency plateau in the GW
spectrum arising from the inverse cascade period of turbulence, which was discussed in
Sec. 8.4, also increases. Indeed, for large enough ζ∗ where the contribution to the GW
spectrum from the inverse cascade period is sufficiently sizeable, the plateau transitions
into a distinct new peak at a frequency slightly below the frequency of the direct cascade
peak. Similar features are seen in Fig. 8.1(b) and 8.1(c).

Comparing Fig. 8.1(a) with Fig. 8.1(b), we see that decreasing the value of R∗H∗ ≤ 1
both suppresses the amplitude of the GW signal and pushes it to higher frequencies. This
is to be expected from the analysis in Sec. 8.2. Furthermore, we see that the relative
contribution of the low-frequency inverse cascade turbulence to the overall GW amplitude
decreases with increasing R∗H∗, because for larger values of R∗ the inverse cascade
turbulence has less time to develop before being washed out by the Hubble expansion.

Comparing Fig. 8.1(a) with Fig. 8.1(c) where the value of α (and thus the value of M)
has been decreased, we see that for smaller values of α the peak frequency of the GW
spectrum is shifted to lower frequencies and the amplitude is suppressed.

Comparing our predictions with the top-hat approximation favoured in the LISA phase
transitions working group review paper [101] (dark grey curves), we see that the peak
frequencies are closer for larger α (and M). The heights of our peaks increase with ζ∗

and are generally higher than the top-hat peaks for α = 1.0, but lower for α = 0.1. Both
our calculations and the top-hat approximation for the choices α = 1.0 and R∗H∗ = 0.01
(Fig. 8.1(a)) and 0.1 (Fig. 8.1(b)) yield spectra peaking well within the sensitivity of LISA,
whereas for α = 0.1 and R∗H∗ = 0.01 (Fig. 1(c)) both peaks lie below the LISA sensitivity.
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Fig. 8.2 Similar to Fig 8.1 but for fixed α = 1.0, R∗H∗ = 0.01 and varying T∗, which
increases from left to right and decreases from top to bottom.

In Fig. 8.2 we display comparisons similar to Fig. 8.1, but now fixing α = 1.0 and
R∗H∗ = 0.01 and choosing different transition temperatures T∗. (Fig. 8.1(a) is repeated here
as panel (c)). The peaks of the calculated spectra shift to larger frequencies for larger T∗.
We can see from Fig. 8.2(a) that our calculations for T∗ = 1 TeV peak within the LISA [101]
sensitivity, whereas the peak of the top-hat calculation peaks within the AEDGE [163]
sensitivity. Fig. 8.2(b) shows that for T∗ = 10 TeV our peak reaches within the AEDGE
sensitivity, whereas the peak of the top-hat calculation peaks at higher frequency.

Our calculations indicate that LISA and AEDGE have complementary capabilities to
detect the SGWB from a first-order phase transition, with the higher frequency range of
AEDGE extending the detectable range of T∗ to higher values.

8.6 Circular Polarisation of the Stochastic Gravitational
Wave Background

One of the most interesting scientific targets for upcoming gravitational-wave (GW)
detectors is the stochastic gravitational-wave background (SGWB) [106, 164]. This
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SGWB could come from many sources including primordial inflation [165] astrophysical
sources [166] and of course strong phase transitions in the early Universe [108, 139, 167].

The most easily measurable characteristic of a SGWB is its frequency spectrum, but
this provides limited insight into its origin. Further valuable information could be provided
by its intrinsic circular polarisation, which is due to a difference between the amplitudes
of GWs with left and right polarisations. A SGWB generated by astrophysical sources
would have negligible net polarisation, since it arises from multiple uncorrelated sources.
However, a cosmological SGWB could be generated coherently over large scales, and
might exhibit net circular polarisation if interactions that violate parity were important
in the early Universe. Indeed, polarisation of the SGWB could in principle arise from a
variety of physical mechanisms in the early Universe, for example gravitational chirality
and modifications of gravity at high energies [168–170], pseudoscalar-like couplings
between the inflaton and gauge fields [171–173] and helical turbulence created during a
first-order phase transition [140, 174]. Thus the polarisation of the SGWB could be an
important diagnostic tool for probing fundamental physical processes in the early Universe.

For the purpose of our work we are particularly interested in assessing the detectability
of a potential net circular polarisation of the SGWB arising from helical MHD turbulence
after a first-order phase transition, following on from work in [140, 151, 152].

8.6.1 Detecting polarised gravitational wave signals

The circular polarisation of a GW signal is given by [140, 174]

PGW(k) =
⟨h+⋆(k)h+ (k′)−h−⋆(k)h− (k′)⟩
⟨h+⋆(k)h+ (k′)+h−⋆(k)h− (k′)⟩

=
IA(K)

IS(K)
, (8.32)

where h+ and h− are the states corresponding to right- and left-handed circularly polarised
GWs, and K = k/k0 is a wavenumber normalised to the wavenumber associated with
the bubble radius at collision, k0. The explicit calculation of the polarisation of the GW
spectrum using Eq. (8.33) is only required for the direct cascade period of turbulence
where ζ∗ < 1. For the GW spectrum emitted during the inverse cascade period, on the
other hand, we simply assume that the emitted GW spectrum is fully polarised, on the
premise that ζ∗ ≃ 1 at the beginning of the inverse cascade stage.

In the particular case of helical turbulence the relevant functions can be approximated
as [140]

IS(K)≃
∫

dP1 P1

∫
dP2 P2 Θ̄

[(
1+ γ

2
p
)(

1+β
2
p
)

PnS
1 PnS

2 +4h2
γpβpPnA

1 PnA
2
]
,

IA(K)≃ 2h
∫

dP1 P1

∫
dP2 P2 Θ̄

[(
1+ γ

2
p
)

βpPnS
1 PnA

2 +
(
1+β

2
p
)

γpPnA
1 Pns

2
]
,

(8.33)
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where

γp =
K2 +P2

1 −P2
2

2KP1
, βp =

K2 +P2
2 −P2

1
2KP2

,

Θ̄ = θ (P1 +P2 −K)θ (P1 +K −P2)θ (P2 +K −P1) ,

(8.34)

and θ is the Heaviside step function. The parameter h is the fraction of helicity dissipation
as defined in [140], which is related to the magnetic helicity fraction. Indeed, these two
parameters coincide in the helical Kolmogorov turbulence model: ζ∗ ≃ h [140]. Following
the approach in [140], which seeks to generalise the polarisation degree calculation for
helical hydrodynamic turbulence given in [174] to the case of helical MHD turbulence, in
this paper we determine the polarisation degree of the direct cascade period by modelling
the source as stationary 7 and using the symmetric and helical spectral indices, nS =−11/3
and nA =−14/3, consistent with a helical Kolmogorov spectrum. 8 We take the integration
limits in Eq. (8.33) to range from 1 to kd/k0, and simply discard scales larger than the
bubble radius, i.e., k < k0, which are only relevant to the inverse cascade period of
turbulence.

Using ΩGW(k) ∝ k5⟨h(k)2⟩, we can rearrange Eq. (8.32) to obtain

ΩGW(k)PGW(k) = Ω
+
GW(k)−Ω

−
GW(k) , (8.35)

where ΩGW(k) = Ω
+
GW(k)+Ω

−
GW(k). Then, for the helical turbulence model we consider

in this work, we have

Ω
+
GW(k) =

1+Pstage 1
GW (k)
2

Ωstage 1(k)+Ωstage 2(k) ,

Ω
−
GW(k) =

1−Pstage 1
GW (k)
2

Ωstage 1(k) ,

(8.36)

where we have assumed Pstage 2
GW (k)≈ 1, on the basis that by the beginning of the second

stage ζ∗ ≈ 1 and we are in a regime of strong helical turbulence that can be well approx-
imated by a helicity transfer spectrum [140, 174] where PGW(k) ≈ 1 across the range
of k relevant to inverse cascade turbulence. In the large wave-number limit where this
approximation could no longer hold, the contribution of Stage 2 to the GW abundance is
negligible.

7Debate regarding the validity of modelling the direct cascade source as stationary is of less importance
when the helicity fraction is large given our results shown later demonstrate that in this regime the inverse
cascade spectrum, which attempts to account for the turbulent decay through scale dependent decorrelation,
dominates the overall signal.

8If the helicity fraction is large, strong helical turbulence modelling [174] could be more appropriate, and
would result in a larger helicity fraction from the first stage of turbulence. However, as we demonstrate later
and have explicitly checked for all our results, the contribution from the second stage of turbulence is always
clearly dominant in the case of a large helicity fraction, and for simplicity we use here the Kolmogorov
spectrum also for the first stage.
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Fig. 8.3 Degree of polarisation of Stage 1 direct cascade GWs as a function of the nor-
malised wavenumber K = k/k0, assuming indicated values of the helicity dissipation
parameter h. Value of h coincides with initial magnetic helicity fraction ζ∗ for helical
Kolmogorov turbulence (HK) model considered in this paper (solid lines). We also show
the polarisation fraction for Stage 1 turbulence driven by the Helicity Transfer (HT) model
(dashed lines) whose use may be more appropriate in the large helicity regime.

In Fig. 8.3 we plot the degree of polarisation of GWs emitted during Stage 1 direct
cascade turbulence. We see that Pstage 1

GW reaches a peak at K ∼ 2, whose height increases
with h = ζ∗, and then falls for larger K.

Fig. 8.4 Strengths of polarised ΩGW,± signals for different initial helicity fractions, ζ∗
and fixed α = 1.0, T∗ = 100 GeV and R∗H∗ = 0.01. Power-law integrated sensitivity of
LISA to total GW signal (orange) and polarised signal (purple) are also shown assuming
polarisation fractions (Eq. (8.35)) PGW = 1 (solid), 0.1 (dashed) and 0.01 (dot-dashed).

Fig. 8.4 displays the strengths of the signals for different GW polarisations Ω
±
GW for

fixed T∗ = 100 GeV, R∗H∗ = 0.01, α = 1.0, and various choices of the initial helicity
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fraction, ζ∗. We see in Fig. 8.4(a) that for small ζ∗ ≲ 0.05 the total GW signal Ωtot
GW is

dominated by the contribution from direct cascade turbulence with negligible net polarisa-
tion, i.e., Ω

+
GW ≃ Ω

−
GW. Conversely, the small low-frequency inverse cascade plateau in

the signal emits fully-polarised GW, Ω
+
GW ≃ Ωtot

GW, as expected from our previously-stated
assumption that ζ∗ ≃ h. Moving to Fig. 8.4(b), we see that raising ζ∗ to 0.1 increases
the size of the fully-polarised inverse cascade plateau in the GW signal, an effect that
continues until ζ∗ ∼ 0.5 (Fig. 8.4(c)) where it begins to dominate and transitions from
being a plateau into a distinct new peak of the total GW signal. We see in the lower two
panels of Fig. 8.4 that for ζ∗ ≳ 0.5 the contribution of the fully-polarised inverse cascade
GW increasingly dominates that of the total GW signal, Ωtot

GW.

Fig. 8.5 The strengths of the polarisation of the ΩGW,± signals for various values of the
average bubble radius, R∗H∗, ζ∗ and fixed ζ∗ = 0.4 α = 1.0 and T∗ = 100 GeV. The orange
and purple sensitivity curves are the same as in Fig 8.4.

Fig. 8.5 shows the Ω
±
GW signal strengths for fixed T∗ = 100 GeV, ζ∗ = 0.4, α = 1.0,

and various choices of R∗H∗. We can see that as R∗H∗ decreases the total GW amplitude
decreases, as expected from the discussion in the previous section. However, the net
polarisation of the signal increases as R∗H∗ decreases. This is because inverse cascade
turbulence is more important at smaller R∗H∗ since the turnover time of the largest eddy,
τs, takes longer to reach the Hubble timescale for phase transitions with smaller average
bubble radius. Thus the duration of the inverse cascade stage where fully-polarised GWs
are emitted increases, resulting in a GW signal with larger net polarisation.

Figs. 8.4 and 8.5 also feature power-law integrated sensitivities for LISA: the orange
curves are the usual PI sensitivity for the total gravitational wave signal [130], while in
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purple we show PI curves for a polarisation signal. We refer the reader to Appendix D for
a formal derivation. The interpretation is the same as in the unpolarised case, i.e., a power
law with a polarisation fraction PGW (see Eq. (8.35)) crossing a purple line with the same
PGW gives SNR≥ 10 for a polarisation measurement with LISA.

As can be seen in Fig. 8.2, the effect of increasing T∗ would be to shift the ΩGW signal
to higher frequencies, without changing the relative amounts of Ω

±
GW or their dependences

on ζ∗ and R∗H∗.

8.6.2 LISA sensitivity

We now assess the sensitivity of LISA to both the SGWB and to its circular polarisation,
as would be generated by helical turbulence following a first-order phase transition. To
do this we take an approach with the least possible sensitivity to the underlying particle
physics model, calculating the transition strengths and temperatures, bubble sizes, and
helicity fractions required to obtain a LISA SNR value greater than or equal to 10. This
requires us to draw upon much of the analysis in the previous sections, first calculating
the contributions to the total GW spectrum (Eq. (8.3)) from both direct cascade (Eq. (8.6))
and inverse cascade (Eq. (8.30)) turbulence for a particular point in parameter space and
then computing the associated circularly-polarised spectrum (Eq. (8.36)). Finally, we
translate both signal types into the LISA SNR values associated with the total GW spectra
(Eq. (D.11)) and its polarised counterpart (Eq. (D.12)).

The left panels of Fig. 8.6 display reaches in the (R∗H∗,α) plane for a LISA mea-
surement of the overall strength of the total SGWB signal with a signal-to-noise ratio
SNRtot = 10, with larger values of SNR found in the shaded regions above these lines.
The panels from top to bottom correspond to T∗ = 10 GeV, 1 TeV and 10 TeV, and the
various contours correspond to different values of the initial helicity fraction ζ∗. Thus, if
a parameter point is enclosed within the shaded area of a given ζ∗ contour, one can infer
that a GW signal with this value of ζ∗ would be detectable by LISA with an SNR ≥ 10.
The red crosses correspond to sample frequency spectra plotted in the indicated previous
Figures for fixed R∗H∗, α and T∗, which exemplify the spectral sensitivity of LISA to the
GW signal.

As expected, the largest detectable signals in all three panels come from larger values
of R∗H∗, where the number of bubbles per horizon is smaller and thus the average bubble
radius at collision is larger. As R∗H∗ decreases we see that increasingly large values of the
helicity fraction, ζ∗, are required to obtain a signal with SNRtot ≳ 10. Thus GW emission
from the inverse cascade turbulent period is increasingly important for LISA to be sensitive
to the total GW signal for smaller values of R∗H∗. This can be traced back to the R∗H∗

suppression of the GW amplitude produced in a direct cascade that is a general feature of
the models used to describe GW emission from turbulence (see Sec. 8.2).
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We see from the different contours that increasing the initial helicity fraction increases
the total SNR, in agreement with the increasing strength of the GW signal shown for
different values of ζ∗ in Fig. 8.1. In general, the GW signal should be detectable at a level
of SNRtot ≳ 10 for α ≳ 1 and R∗H∗ ≳ 10−3 for a transition at T∗ = 100GeV. For larger
values of T∗, larger values of R∗H∗ are needed for SNRtot = 10 measurements, though
smaller values of α are sufficient.

We also see in the left panels of Fig. 8.6 that for large values of R∗H∗ the position
of the SNRtot = 10 contours are approximately independent of ζ∗ and depend only on α ,
whereas for smaller values of R∗H∗ the contour lines have a greater dependence on the
value of ζ∗ associated with the contour. This is explained by the fact that for large R∗H∗

the contribution of inverse cascade period is minimised as the large average bubble radius
at collision means inverse cascade turbulence cannot operate for very long before being
washed out by the Hubble expansion. Thus increasing ζ∗ does relatively little to increase
the amplitude of the signal (see Fig. 8.1(b)) and has minimal effect on its sensitivity to
LISA. Conversely, for small R∗H∗ the inverse cascade can operate for far longer before
being washed out by the expansion, and thus the potential contribution from the inverse
cascade to the total GW signal can be much larger (see Fig. 8.1(a)). As larger values of ζ∗

result in greater importance of the inverse cascade period for the total GW signal, it follows
that in the low-R∗H∗ region of the parameter space, the SNRtot is much more sensitive to
the value of ζ∗. 9

The right panels of Fig. 8.6 display the corresponding reaches in the (R∗H∗,α) plane
for a LISA measurement of the circular polarisation of the SGWB with SNRpol = 10. As
expected the reach is smaller than for the total GW signal, but we see that many of the
qualitative features of the plots of SNRtot described above are also present in the polarised
case. Whilst detection prospects for circular polarisation in the SGWB are strongest
for large R∗H∗ where the suppression in the amplitude of the spectra is minimised (see
Fig. 8.5), in order for LISA to be able to probe a circularly-polarised signal at small R∗H∗,
larger values of ζ∗ are required to compensate for the suppression R∗H∗ introduces into
the total GW signal. Larger ζ∗ means fully-polarised GWs from the inverse cascade period
make an increasingly important contribution to the total GW signal, raising the amplitude
of Ω

+
GW relative to Ω

−
GW and increasing the prospects for detection by LISA of circular

polarisation in the SGWB from a phase transition.
Comparing the right panels of Fig. 8.6, we see that for smaller values of the helicity

fraction, ζ∗ ≲ 0.2, LISA is most sensitive to polarisation of the GW signal when the
transition temperature is T∗ = 1TeV. This can be understood by looking at Fig. 8.2 and
noting that, of the three transition temperatures, the T∗ = 1TeV spectrum peaks at the

9We note that new simulations suggest that the f 1 plateau at low frequencies could also develop in cases
with small initial helicity [142]. This would improve detection prospects for low-ζ∗ scenarios and reduce the
dependence of the total SNR on that parameter.
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optimal frequency for LISA to be sensitive to the fully-polarised low-frequency inverse
cascade plateau that develops in the signal for small ζ∗.

As seen in the right hand panels of Fig. 8.6, in the polarised case the positions of
the SNRpol = 10 contours exhibit a larger relative dependence on ζ∗ at large R∗H∗ than
their SNRtot counterparts. Whilst in the Ωtot

GW case the low-frequency inverse cascade
contribution was less important for larger R∗H∗, in the polarised case it has a larger impact.
Even when considering the case of a low-frequency plateau in the signal associated with
relatively low helicity inverse cascade turbulence (see Fig. 8.4(a)), fully-polarised GW are
still being emitted, implying that relatively small changes in the value of ζ∗ can have a
larger effect on the net polarisation of the SGWB and the ability of LISA to probe it.

As seen in the top right panel of Fig. 8.6, for larger values of the helicity fraction,
ζ∗ ≳ 0.3, the parameter space in which SNRpol > 10 expands significantly in the T∗ =
100GeV case, allowing a larger range of small R∗H∗ values to be probed by LISA. This
can be understood by referring to the T∗ = 100GeV spectrum plot in Fig. 8.1(a) and noting
that for intermediate values of the helicity fraction, 0.1 ≲ ζ∗ ≲ 0.5 the low-frequency,
fully-polarised inverse cascade plateau transitions into a new, distinct peak, and in so doing
becomes rapidly more sensitive to the frequency band where LISA is most sensitive.

Similar behaviour is seen for the T∗ = 1TeV case shown in the middle panel of Fig. 8.6,
though less pronounced, because the GW spectra for this transition temperature peak at
higher frequencies where LISA is already more sensitive to the fully-polarised inverse
cascade plateau.
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Total signal Polarised signal

Fig. 8.6 Signal-to-noise (SNR) = 10 contours in the (R∗H∗,α) plane for T∗ = 100 GeV
(top), T∗ = 1 TeV (middle) and T∗ = 10 TeV (bottom), for a LISA measurement with a
4-year observation time. In the left panels the SNR is shown for the total SGWB signal
and in the right panels for observing the polarisation of the SGWB. The different contours
correspond to various values of the initial helicity fraction ζ∗, as shown in the plots. The
red crosses correspond to sample GW spectra for fixed α , R∗H∗ and T∗ plotted in the
indicated previous Figures, which allow comparison of the LISA sensitivity to the GW
signal for ranges of ζ∗ values.
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Chapter 9

Intergalactic Magnetic Fields from First
Order Phase Transitions

The existence, magnitude and origin of an intergalactic magnetic field (IGMF) have
long been topics for debate. Until relatively recently there were only upper limits on
its possible magnitude coming from Big-Bang Nucleosynthesis (BBN) [175, 176], and
measurements of the spectrum and anisotropies of the cosmic microwave background
(CMB) [177–184]. However, for some years now lower limits on the magnitude of the
IGMF have been reported [185–189], in particular in a recent analysis by the Fermi-
LAT collaboration [190], based on their observations of blazars in conjunction with
measurements of very-high-energy (VHE) γ emissions by imaging air Čerenkov telescopes
(IACTs). In combination, these provide evidence for electromagnetic cascades interpreted
as being due to the processes of pair production via the IGMF: γ +B → e+e− followed
by γ emission during e± scattering off the magnetic field: e±+B → e±+ γ . The inferred
magnitude of the IGMF depends on its unknown coherence length λ and on the unknown
duration of blazar emissions. Making the very conservative assumption that the blazars
studied have been active at a similar level for at least 10 years, the Fermi-LAT collaboration
established the lower limit |B| > 3× 10−16 Gauss over a large range of λ > 10−2 Mpc
[190], increasing at smaller λ , rising to |B|> 10−14(3×10−13) Gauss for plausible active
periods of 104(107) years.

The origin of such a field on large scales does not yet have a satisfactory explanation.
There are several astrophysical scenarios for the generation of magnetic fields on cluster
and galaxy scales which involve battery effects creating seed fields [191–193] which
are subsequently amplified to the observed strength in galaxies and clusters by dynamo
action [194–196]. Such mechanisms have difficulty in explaining magnetic fields in the
large voids which would be required to explain the constraints from gamma rays outlined
above, so one is led to envisage possible primordial sources originating from processes
involving particle physics. Natural sources include non-adiabatic episodes in the early
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universe such as cosmological inflation [167, 197–199] or some phase transition, e.g., the
QCD or electroweak phase transition [131, 200, 201]. The QCD phase transition is well
understood and thought to have been rather smooth, and hence unlikely to have generated
large primordial magnetic fields. The electroweak phase transition would also have been
quite smooth in the Standard Model (SM), but there is scope for extensions of the SM
that could have generated a first-order phase transition that might have created significant
primordial magnetic fields [202].

Here we study IGMF generation in two possible extensions of the SM, outlined in
Sec. 5.5, that have been used previously in the literature to explore the possible magnitudes
of GW signatures. One is the SM supplemented by an |H|6 operator (SM+H6) [59], and
the other is a classically scale-invariant extension of the SM with an extra gauged U(1)
B−L symmetry (SMB−L) [64].

In exploring the possible generation of the IGMF in these models, we consider two
contributions arising from non-adiabatic processes during a first-order phase transition:
bubble collisions and turbulence in the primordial plasma. These were both already found
to make significant contributions to the GW signals produced in these two models [59, 64].
We also consider two different sources that lead to significant amplification of the magnetic
field via an inverse cascade process: primordial helical field configurations [144, 203] and
kinetic helicity [204–206].

9.1 Primordial Magnetic Field Generation

In this section we discuss possible sources of magnetic fields generated during a first-order
phase transition, using an approach similar to that used previously [59, 64] for gravitational
wave production (see Chapter 7). We expect that some fraction of the energy released
during the phase transition would generically be available for the production of magnetic
fields, and can divide the sources into two main sub-classes:

• energy stored in the bubble walls, which source B-fields upon collision,

• turbulent kinetic energy in the charged plasma that is available for later B-field
generation via magnetohydrodynamic (MHD) mechanisms.

At any given time t ≥ t∗ after the phase transition, we can describe both the magnetic
field and the turbulent plasma using their respective energy density spectra, ρi(λ , t) =
dρi(t)/dlogλ , i = B,K, and the corresponding magnetic field spectrum is then given by

B(λ , t) =
√

2ρB(λ , t) . (9.1)

The mean energy densities of the two components at this time are ρi(t) =
∫

ρi(λ , t)dlogλ .
We define v2

i (t) = 2ρi(t)/ρ0, so that vB and vK are, respectively, the Alfvèn velocity
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associated with the magnetic field and the root-mean-square plasma velocity, while ρ0

describes the initial plasma energy density.
Magnetic fields sourced from bubble collisions were recently revisited in [207], where

it was found that about 10% of the energy of the transition was expended on production of
magnetic fields, mostly as the field oscillates around the minimum of the potential after the
transition has been completed. In this simulation all the energy from vacuum conversion
was used to accelerate the bubble walls. In order to use these results in the more realistic
setting of a transition taking place in a plasma-filled background, we need to include the
appropriate efficiency factor

κcol =
ρwall

ρV
, (9.2)

which describes the fraction of energy used to accelerate the bubbles, just as in the case of
GW generation (see Sec. 7.1 for details).

For the plasma-related sources the efficiency factor is

κsw =
αeff

α

αeff

0.73+0.083
√

αeff +αeff
, with αeff = α(1−κcol) , (9.3)

which describes the fraction of the energy converted into bulk fluid motion [55, 101],
including also through αeff the fraction of energy used for bubble acceleration [64]. Here
α = ρvac/ρrad is the usual quantity that parameterises the strength of the phase transition.
We assume that the efficiency for converting bulk fluid motion of the plasma into magnetic
fields via MHD turbulence is 10% [132, 208, 209]. This value is an order-of-magnitude
estimate at best, but it will be very simple to re-scale our estimates below with more
accurate results once more detailed estimates are available. This assumption leads to
a simple final expression for the energy density of the magnetic field after the phase
transition:

ρB,∗ =
0.1κ α

1+α
ρ∗ , (9.4)

where κ is the efficiency factor for the source in question (either κcol or κsw ) and ρ∗ =

3M2
pH2

∗ is the total energy density at the time of percolation.
Taking the Fourier transform of the mean magnetic and kinetic energy densities, we

obtain a power spectrum for each of these components PB(λ ) and PK(λ ). These power
spectra can then be expressed in terms of their associated energy density spectra as

Pi(λ , t) =
λ 3

4π
ρi(λ , t), (9.5)

where i = B,K describe quantities related to the magnetic and turbulent plasma fields
respectively. We can represent the initial configuration of the two fields in terms of their
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power spectra, both of which peak at the average bubble size at collision, λ∗ = R∗:

P∗,i(λ , t∗)≈ P∗,iλ−ni(λ ) (9.6)

where we have approximated each initial power spectrum with a separate power law.
At scales λ > λ∗, causality and the divergence-free condition on the initial magnetic

field require that nB ≥ 2 [210], whilst in the case of the plasma the requirement is less
stringent, with nK ≥ 0, where nK = 0 and 2 correspond to compressible and incompressible
plasmas, respectively, both of which are feasible scenarios in an MHD system.

We do not consider the slope of the initial spectrum at length scales smaller than λ∗, as
we generically expect turbulence, driven by the turbulent eddies at the coherence scale,
to fully develop relatively quickly on these smaller length scales, due to the smaller eddy
turnover times involved. Once the turbulent eddies have developed on all scales λ < λ∗,
magnetic and kinetic energy is subsequently transferred to increasingly smaller scales
via a direct energy cascade, 1 until the energy is eventually lost as heat at the dissipation
scale of the plasma, λd . When a turbulent eddy develops on a particular distance scale, we
expect the power spectrum of the initial magnetic or plasma field to be ‘processed’ into an
independent spectrum following a global turbulent decay law. In our work we assume that
the form of any processed turbulent spectrum follows a Kolmogorov decay law [211] with
ni =−11/3, as argued on dimensional grounds in [212].

Assuming the power nB = 2 at large scales, the initial magnetic field energy density
spectrum is then given by

ρB(λ , t∗) =
17
10

ρB,∗


(

λ

λ∗

)−5
for λ ≥ λ∗ ,(

λ

λ∗

)2/3
for λ < λ∗ .

(9.7)

In the following we discuss how this spectrum evolves. The evolution changes only the
amplitude and the coherence scale of the spectrum, but does not change its shape.

9.2 Direct Cascade Evolution of the Magnetic Field

The initial power in the magnetic field subsequently spreads over a variety of different
length scales, due to the non-zero coupling between the magnetic and plasma components.
To study the evolution of the magnetic field in the turbulent plasma we need to track how
key quantities, such as the comoving magnetic coherence length, λB, 2 and the comoving
magnetic field strength, B, change with time from their initial values set immediately after

1This direct energy cascade arises due to the non-linear terms in the fluid equations that facilitate
interactions between the different wavelength modes.

2Here λB is the equivalent quantity to that denoted ξM in Chapter 8.



9.2 Direct Cascade Evolution of the Magnetic Field 171

the phase transition completes, at t = t∗. Properties related to both the turbulent plasma
and inherent to the magnetic field itself, e.g., non-zero magnetic helicity, can significantly
impact this evolution, as we discuss below, broadly following the approach in [208].

It is important to emphasize that the scaling laws of the magnetic field quoted in this
section apply only in the presence of a plasma background. As such, we assume they are
relevant only until the time of recombination, trec, and that subsequently the magnetic field
strength simply dilutes as normal due to redshift, B ∼ a−2.

Immediately after the phase transition, turbulent eddies have only had time to develop
fully 3 on scales λ < λ∗. At subsequent times after the transition, turbulent eddies begin
to develop on increasingly larger scales λ > λ∗, and the power spectrum on these scales
is processed from its initial slope to one characterised by a Kolmogorov decay law. Thus
the maximum comoving distance on which the field is correlated, known as the comoving
coherence scale, λi, increases with time. We can approximate the time evolution of λi by a
power law

λi ∼ tζi , i = B,K , (9.8)

where ζi > 0. Assuming Kolmogorov turbulent decay, the direct energy cascade transfers
both magnetic energy and turbulent plasma energy to increasingly smaller scales before it
is eventually dissipated into heat. Thus the comoving energy density of both the magnetic
field, ρB, and the turbulent plasma, ρK , can be assumed to decay with time.

These energy densities define characteristic velocities for the respective magnetic and
turbulent plasma field components, describing the rate at which changes in the relevant
field can propagate. We can subsequently use these velocities to describe the maximum
length scale on which each of the fields are correlated at any given time t ≫ t∗ after the
transition:

λi ∼ vit . (9.9)

Once MHD turbulence has fully developed at a given scale, we expect equipartition
between the plasma and magnetic energy densities, ρB ∼ ρK ∼ ρeq. Using Eq. (9.5) in
conjunction with Eq. (9.6), we can write

veq ∼
√

2ρeq ∼ λ
− 3+n

2
eq , (9.10)

where λeq ∼ λB ∼ λK and veq ∼ vB ∼ vK from the equipartition condition, and n =

min(nB,nK) corresponds to the spectral decay law of the field that initially dominates,
whether it be the magnetic field or the turbulent plasma. The size of the largest ‘processed’

3By ‘develop fully’ we mean that the plasma eddy needs to have completed one rotation on the scale of
interest.
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eddy can then be expressed using Eq. (9.10) as

λeq ∼ veqt ∼ t
2

5+n . (9.11)

Using Eqs. (9.1) and (9.11) we obtain the following scaling laws based on dimensional
arguments:

B(λeq)∼
√

2ρeq ∼ t
3+n
5+n , (9.12)

and
B(λeq)∼ λ

− 3+n
2

eq . (9.13)

9.3 Inverse Cascade Evolution of the Magnetic Field in a
Helical Plasma

As shown in [213, 214], the behaviour of the field evolution can be changed dramatically
in the presence of non-zero average magnetic helicity, ⟨A·B⟩, where B = ∇×A, a quantity
describing the twisting of magnetic field lines. We considered this in the context of
gravitational wave generation in Chapter 8. We expect some fraction of magnetic helicity
to be left over after the phase transition from baryon-number-violating processes such
as decaying non-perturbative field configurations, e.g., electroweak sphalerons [215].
Furthermore, we expect some amount of helicity to be generated as the swirling plasma
results in twisted field lines, due to the coupling between magnetic field and plasma
components in an MHD system [214].

In a highly conductive plasma we expect magnetic helicity to be conserved: ⟨A·B⟩ ∝

ρBλB = const, and thus B ∼√
ρB ∼ 1/

√
λB, which we can use with Eq. (9.13) to deduce

that this corresponds to the case n=−2. Thus from Eq. (9.11) and (9.12) the time evolution
of the comoving coherence scale λB and the comoving magnetic field strength B in the
presence of magnetic helicity can be argued to be [213]

λeq ∼ t
2
3 , B(λeq)∼ t−

1
3 . (9.14)

Assuming some initial fractional magnetic helicity immediately after the transition, we
expect the field to reach a maximally helical state some time later [200], due to the
direct energy cascade, which results in the conversion of the large-scale non-helical field
component to heat [179].

More recently, numerical simulations in [216] have shown that inverse cascade be-
haviour also takes place when a non-helical magnetic field is in the presence of a plasma
with initial kinetic helicity. The scalings of the comoving coherence scale and comoving
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magnetic field amplitude with time in this scenario are then found to be

λeq ∼ t
1
2 , B(λeq)∼ t−

1
2 . (9.15)

9.4 Magnetic Field Spectrum Today

Using the above results for the evolution of the comoving magnetic field spectrum, we can
calculate the spectrum today. The scaling laws (9.14) and (9.15) hold until recombination,
which happens only shortly after matter-radiation equality, so it is a good approximation
that the scale factor behaves as a ∼ t. So, redshifting the initial spectrum (9.7) while
assuming a decay law ∼ a−qB of the comoving magnetic field until recombination gives
the following magnetic field spectrum today:

B0(λ )≡ B(λ , t0) =
(

a∗
arec

)qB
(

a∗
a0

)2√17
10

ρB,∗


(

λ

λ0

)−5/2
for λ ≥ λ0 ,(

λ

λ0

)1/3
for λ < λ0 ,

(9.16)

where the initial magnetic field energy density ρB,∗ is given by Eq. (9.4). Similarly,
assuming that the comoving field coherence scale evolves as ∼ aqλ until recombination,
the field coherence scale today is

λ0 ≡ λB(t0) =
(

arec

a∗

)qλ
(

a0

a∗

)
λ∗ , (9.17)

where the initial coherence scale is given by the bubble size at percolation, λ∗ = R∗.
Assuming fast reheating to a temperature Treh after the phase transition, the factor a∗/a,
where a is either arec or a0, can be expressed as

a∗
a

=

(
heff(T )

heff(Treh)

) 1
3 T

Treh
, (9.18)

where heff(T ) is the effective number of entropy degrees of freedom at temperature T .

9.5 Experimental Constraints on the IGMF

The strength of an IGMF can be constrained in a variety of different ways, both from above
and from below. Additionally, the maximum size of an IGMF can be constrained by the
horizon size today.

We expect upper bounds arising from the BBN and the CMB. Strong magnetic fields
are expected to affect BBN in a variety of different ways as summarised in [175, 176],
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a primary example of which is a significant increase in the neutron decay rate which
suppresses the relic abundance of helium as after the neutron to proton ratio has been
frozen the neutrons can decay before they can be bounded into composite nuclei.

CMB constraints arise from measurements of the spectrum and anisotropies of the
cosmic microwave background that we would expect would imprint itself on the CMB in
the presence of a strong, largescale magentic field [177–184].

As mentioned at the beginning of the chapter, very-high-energy gamma rays emitted by
TeV blazars will Thompson scatter with the photons in the Extragalatic Background Light
(EBL) to produce highly-relativistic e+e− pairs. These pairs are subsequently expected
to lose energy via inverse Compton scattering with CMB photons, finally producing a
significant emission of secondary cascade photons in the GeV band.

A lower bound on the IGMF can be inferred from the non-observation of such GeV
cascade photons. In the presence of an IGMF, e+e− pairs produced during the cascade
process would be deflected from the trajectory expected in the absence of the magnetic field.
Thus the total emission in the GeV band would be reduced for increasing IGMF strength,
as the initial incoming photon flux is distributed over a greater solid angle. Additionally, a
stronger IGMF would also result in an increasing time delay between the cascade GeV
and direct TeV emissions. Both these effects provide mechanisms for suppressing the flux
of GeV cascade photons, which can then be re-expressed in terms of a lower bound on the
strength of the IGMF.

Refs. [185–187, 190, 217] analysed Fermi data from blazars possessing hard TeV
spectra with negligible GeV cascade emission, under the assumption that this suppression
was due to the large angular size of the cascade emission. They each derived a constraint,
later verified by [218] using simultaneous GeV/TeV energy band observation data, on
the minimum value of the IGMF. The constraints reported varied in the range B0 ≳

10−16 −10−15 G for λ0 ≳ 1 Mpc depending on the adopted EBL and source model. For
our purposes we adopt the Fermi-LAT constraint in [190], B0 > 3×10−16 G, corresponding
to the blue solid line of the plots in Sec. 9.6. Their analysis shows that the high-latitude
sources detected by the Fermi-LAT do not have significant spatial extension.

Independently, Refs. [218, 219] considered explaining the suppressed GeV emission by
an IGMF-induced time delay in the GeV cascade signal compared to the TeV direct signal.
Using simultaneous multi-band observation data from Fermi and ground-based Cherenkov
telescopes, and assuming that the blazars had not been firing for a long period, so that
the cascade signal had not yet reached the detectors, these authors were able to deduce
lower bounds on the IGMF lying in the range B0 ≳ 10−18 −10−17 G for λ0 ≳ 1 Mpc. The
difference between the values obtained by the two investigations can be explained by
the method used to model the cascade signal, and in our work we take the constraint
from [218], B0 > 10−17 G, shown as the dashed blue line in the plots in Sec. 9.6.
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The above constraints on the IGMF are independent of the magnetic coherence scale
for λ0 ≳ 1 Mpc, because the length scales on which e+e− pairs undergo inverse Compton
cooling are much smaller than those over which the underlying field is correlated. In this
scenario the pairs can be approximated as moving through a homogeneous magnetic field.
However, for scales λ0 ≲ 1 Mpc this simplifying approximation is no longer valid and the
e+e− pairs may experience changes in their deflection trajectory as they journey through
uncorrelated patches of the IGMF. Thus an uncertainty in the final deflection angle and
time delay of the signal is introduced at these scales. To account for this, the strength of
the magnetic field should increase like B0 ∼ λ

−1/2
0 at scales λ0 ≲ 1 Mpc, in order to ensure

that the trajectories of the e+e− pairs are deflected to the degree required to explain the
absence of the GeV emission in the experimental data.

For our plots in Sec. 9.6 we take the IGMF constraint associated with the extended
angular cascade emission from Ref. [190], where the bound is taken to be flat for λ0 ≳

10 kpc and increases like B0 ∼ λ
−1/2
0 below such scales. On the other hand, for the IGMF

constraint associated with the time delay of the cascade signal we take the result from
Ref. [217], where the bound is taken to be flat for λ0 ≳ 100 kpc.

9.6 Results in Illustrative Examples

In order to calculate the IGMF generated by a particular phase transition, we need to be
more specific about the scenario that we consider. Here we follow closely the two scenarios
outlined in Secs. 5.5.1 and 5.5.2, the first being a Higgs sector with an additional non-
renormalizable |H|6 operator (SM+H6), and the second being a classically scale-invariant
extension of the SM with an extra gauged U(1) B−L symmetry (SMB−L).

The generation of GWs in these models has been analyzed previously in [59, 64] and
we follow the procedure described there in the current analysis. The GW signal produced
by turbulence could be enhanced due to the inverse cascade occurring during the evolution
of MHD turbulence with a helical magnetic field [14, 152], as considered in Chapter 8.
The impact of this modification, however, depends on the modelling of the evolution of
the turbulence and will not change the experimental reach into the models at hand, as
turbulence is usually not the dominant source of GWs. Still, observation of the tail of the
signal produced by turbulence could probe the helicity of the source through polarisation
of the GW signal [140].

9.6.1 Template plot components

Before moving on to analysing our concrete examples of Magnetic field generation from a
first order phase transition we first will build up and briefly explain the different components
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of the template Magnetic field plot that we will generate and analyse for each of the
examples.

(a) Upper bounds on:
- B0 from BBN (green) and CMB (purple),
- λ0 from horizon size (grey)

(b) Lower bounds on B0 from non-observation of
GeV Blazar cascade due to:
- angular size (solid blue line)
- time delay (dashed blue line).

Fig. 9.1 Experimental constraints on the IGMF

In Fig. 9.1 we plot the constraint curves we discussed in Sec. 9.5. Fig. 9.1a shows the
upper bounds on the field strength of an IGMF at a given coherence length λ0, where the
green curve is from Big Bang Nuclesynthesis and the purple curve is from the CMB. The
grey vertical curve is a constraint on the maximum size of any IGMF from the measured
size of the cosmological horizon today.

The blue curves in Fig. 9.1b are lower bounds on the strength of an IGMF from the
non-observation of a secondary GeV cascade emission from TeV blazars, as discussed in
Sec. 9.5. The solid blue line represents the bound that arises from the assumption that the
negligible GeV cascade emission is due to it being spread over a large angular size due to
deflection by the IGMF. The dashed blue line, on the other hand, represents the bound that
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arises from assuming there is a IGMF-induced time-delay of the signal that explains the
non-observation of the GeV cascade signal.

(a) Generated B0

(b) Evolution of B0

(c) Example spectrum of B0 today

Fig. 9.2 Components of template plot related to generation and evolution of the field

In Fig. 9.2 we show the components of the template plot related to generation and
evolution of the magnetic field to today. The rainbow curve in Fig. 9.2a shows the strength
of the magnetic field generated from a first order phase transition at a given coherence
length where we have used Eq. (9.1) with Eq. (9.4) and assumed that the coherence length
of the field is dictated by the size of the average bubble radius at collision, i.e. λ∗ ≈ R∗.
Each point on the curve has a colour of the rainbow assigned to it which corresponds to
the strength of the phase transition, α . The shape of this rainbow curve should reveal a
lot about the dynamics of the PT in the individual theories we consider when we come to
analyse them.

In Fig. 9.2b we use Eq. (9.16) to show an example of how such a range of primordial
fields generated from a phase transition might have evolved to today in the presence of an
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initial helical component seeded in either the gauge field or the plasma. The resulting field
strengths today for each of these cases are shown by the two lower rainbow curves, each of
which are labelled with an arrow denoting the case it corresponds to. In both scenarios
we assume the initial helical component induces an inverse cascade shortly after, which
increases the field strength and correlation length of the field via Eq. (9.14) for the helical
field case and Eq. (9.15) for the kinetic helicity case, up until recombination when the
plasma disappears and after which time the magnetic field is simply red-shifted as normal
like a2 till today.

In Fig. 9.2c we use Eq. (9.16) to show an example magnetic field spectra (red dashed
line) that might be present today for a field with coherence length today, λ0, in the case of
a magnetic field that was generated with initial kinetic helicity. The spectrum peaks at the
predicted value of the present day field strength after fixing the coherence length of the
field to one of the range of possible values. The red colour of the spectral line matches the
color of the PT strength, α , assigned to this parameter point.

9.6.2 Standard Model with |H|6 term

This model, discussed in Sec. 5.5.1, serves as a minimal and natural extension of the SM
in which to explore the consequences of a possible first-order electroweak phase transition
which could have been the source of the intergalactic magnetic field. The dynamics of
the phase transition in this model is quite generic, and it has features typical of many
simple modifications of the SM featuring polynomial potentials as might be generated, for
instance, by a new neutral scalar. Specifically, the field cannot remain in the metastable
vacuum too long without spoiling percolation. As a result, the strength of the phase
transition is bounded by α ≲ 1 for all feasible transitions in this model.

Large couplings with the plasma result in a large leading-order plasma friction on the
wall that arises from particles gaining mass as they cross the scalar field boundary (see
Sec. 5.3). The impossibility of cooling in order to decrease this friction means that the
bubbles reach their terminal velocity very quickly, and most of the energy of the transition
is dumped into plasma shells surrounding the bubbles. In principle, these models could be
mapped onto the recent simulations of first-order SM phase transitions [207]. However, in
those simulations, interaction of the wall with the plasma background was neglected and
the source of the magnetic field was oscillations of the scalar field.

Since we find that most of the energy is transferred into the plasma, we would only ex-
pect a very small residual magnetic field to be produced - the fraction of energy transferred
directly into the bubble walls is very small κcol ≈ 10−10 [64]. Instead, just as in the GW
case [64], the bulk of our results come from plasma-related sources, specifically turbulence
developing in the plasma after the transition. The sound-wave period in these models



9.6 Results in Illustrative Examples 179

lasts less than a Hubble time [59], and the nonlinear dynamics following it may lead to a
significant amount of bulk fluid motion which could be converted into turbulence [64, 101].
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Fig. 9.3 Magnetic field strength B0 as a function of its coherence length λ0. Phase transition
model: SM+H6. Panels: left turbulence, right bubble collisions. Colour coding: strength
of transition, α(Λ). Arrows: B0 evolution due to inverse cascade. Dashed lines: final B0
spectra for selected transitions.

In Fig. 9.3 we show the results for both bubble collisions and plasma-related sources
for all of the SM+H6 parameter space with a reasonably strong transition. We see that
the calculated field strength generically exhibits a peak at a coherence scale λ0 given by
Eq. (9.17), which originates from the break in the initial magnetic field energy density
shown in Eq. (9.7). The value of λ0 at the peak and the corresponding value of B0 depend
on the strength α of the transition, which depends in turn on the scale Λ of the |H|6

operator, as indicated by the colour coding. The left panel of Fig. 9.3 shows the possible
contribution to the magnetic field spectrum from turbulence, and the right panel shows that
from bubble collisions. In each panel we also exhibit the evolution of the field due to the
inverse cascade in the plasma background under the hypotheses that the primordial field is
due to helical field configurations or kinetic helicity.

We see that the magnetic field strength due to turbulence may well exceed the blazar
lower limit, peaking at a coherence scale ∼ 10−5 to ∼ 10−2 Mpc. On the other hand, it is
not possible to explain the blazar data with a magnetic field produced by bubble collisions
in the plasma after the phase transition in this model, even when the transition is rather
strong and the field becomes fully helical quickly after it is produced.

The parameter region where the phase transition is strong offers other possible experi-
mental probes. We consider first the GWs produced by the same phenomena responsible
for magnetic field production [220–222].
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Fig. 9.4 Magnetic field strength B0 as a function of transition strength α . Phase transition
model: SM+H6. Panels: top magnetic helcity, bottom kinetic helicity. Axes: bottom
transition strength α , top cut-off scale Λ. Curve colours: orange B0 from turbulence, red
B0 from bubble collisions Green vertical lines (RHS): sensitive to HL-LHC signal (dashed
2-σ , solid 3-σ ). α∞ grey vertical line (RHS): bubble wall overcomes leading-order plasma
friction.

In Fig. 9.4 we show the strength of the magnetic field and in Fig. 9.5 the signal-to-noise
ratio (SNR) in the planned GW experiments most relevant for this model: LISA [165],
MAGIS [223, 224] and AION [225]. 4 As we can see, the strength of both magnetic field
and GW signal produced grows with the strength of the transition. Both the signals are
also produced predominantly by plasma related sources with bubble collisions predicting
a contribution too weak to explain the observed IGMF. The conclusion here is that, as
expected, the GW signals and magnetic field production are correlated and, in the case of
purely kinetic helicity, future GW experiments will be able to probe all of the parameter
space in which the resulting magnetic field is strong enough to satisfy the blazar bounds. 5

Another promising avenue for testing such scenarios is in collider experiments, although
here the details depend a lot more on the underlying particle physics model [226–228].
In our particular case of a single non-renormalisable H6 operator the only such probe is
through the modification of the triple-Higgs coupling [59], and we indicate the reach of

4See [64] for more details on the GW spectra.
5This is not necessarily the case if the field becomes fully helical at some point.
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Fig. 9.5 The top panel shows SNR of the GW signal from the phase transition in the
SM+H6 model for different experiments, while the lower panel indicates the magnetic field
coherence scale. The solid and dashed lines in the lower panel correspond to evolution
assuming a helical magnetic field or kinetic helicity, as shown in Fig. 9.3.

HL-LHC in Fig 9.4 and Fig 9.5, expressed as the scale Λ associated with the |H|6 operator.
We see that HL-LHC will also be able to probe all of the parameter space relevant from the
point of view of magnetic field production. However, this is a model-dependent statement
that would not necessarily be true in other SM extensions e.g. singlet scalar [229, 230].

9.6.3 Classically scale invariant U(1)B−L

In the classically scale-invariant U(1)B−L extension of the SM (Sec. 5.5.2) the transition
can be very strong, α ≫ 1. The breaking of the U(1)B−L gauge symmetry is triggered
by a new hidden scalar field ϕ . The thermal corrections to its scalar potential induce a
barrier between the B−L-symmetric and B−L-breaking minima, so that the transition is
first-order. These corrections are dominated by the B−L gauge boson Z′. Therefore, the
B−L gauge coupling gB−L and the Z′ mass mZ′ determine the dynamics of the transition.
As the hidden ϕ field acquires a non-zero vacuum expectation value, it triggers electroweak
symmetry breaking via the portal coupling −λph2ϕ2/4. We show results for mZ′ = 4TeV
(LHC energies) and mZ′ = 40TeV (100 TeV circular collider energies). 6

6Using the latest constraints from the ATLAS collaboration [231], we find that the 95% confidence level
constraints on the gauge coupling gB−L are {0.11, 0.40, 0.83} for mZ′ ={3 TeV, 4 TeV, 5 TeV} respectively.
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Production of magnetic fields in this model is less trivial than in SM extensions that
modify the Higgs potential to feature a first-order phase transition. The reason is that most
of the transition energy is carried by bubbles of the new scalar field ϕ , or is transferred to
the dark sector Z′ plasma, neither of which contribute to magnetic fields directly.

If the transition proceeds at sufficiently low temperatures T∗ ≲ 140 GeV (Sec. 5.5.2)
the bubble wall is made up of the usual hidden scalar ϕ and an additional Higgs component
h. In this scenario a small fraction of bubble wall energy is stored in the Higgs component
of the bubble wall, proportional to κh ≡ ∆Vh/∆Vϕ , which is small due to the large ratio
between the vacuum expectation values of the fields. Provided that kinetic mixing between
the U(1)Y and U(1)B−L gauge fields is present, part of the energy deposited into the dark
plasma is expected to be transferred to the SM fields. However [65] showed that magnetic
field transfer from a dark U(1) to the visible U(1) through kinetic mixing is not efficient
and the transferred magnetic field is weaker than that generated directly.
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Fig. 9.6 Results as in Fig. 9.3 computed for SMB−L model with mZ′ = 4TeV. The upper
panels show optimistic results assuming all phase transition energy is transferred into the
visible sector, and lower panels are for realistic cases in which only the Higgs field bubbles
produce magnetic fields, with no contribution from heavy fields beyond the SM.

In Fig. 9.6 we show the predicted magnetic field strengths today for a range of possible
coherence lengths of the field, generated from a first order U(1)B−L phase transition.
Magnetic fields that are generated predominantly by bubble collisions are shown in the
left panels whilst those generated by turbulence are shown in the right panels. In the
bottom panels we show our results for fields that are generated with κh = ∆Vh/∆Vϕ which
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corresponds to the more realistic case where the magnetic field are produced purely by the
Higgs component of the bubble wall with negligible kinetic mixing between the hidden
and visible sectors. For comparison, in the top panels we also show the overly optimistic
case with no suppression, κh = 1, that would correspond to the case where the transfer of
the magnetic field from the dark U(1) to the visible one would be very efficient.

Summarising our findings from Fig. 9.6, we see that both bubble collisions and tur-
bulence may yield a peak above the blazar lower limit if the primordial field was seeded
by magnetic helicity even when including the κh = ∆Vh/∆Vϕ suppression but this is not
always true in the case of initial kinetic helicity.

Fig. 9.7 The red and yellow lines show the magnetic field strength B0 at the coherence
scale λ0 with and without the ∆Vh/∆Vϕ suppression. The short and long dashed lines show
separately the contributions from bubble collisions and turbulence in the plasma. The
upper and lower panels correspond respectively to evolution assuming a helical magnetic
field or kinetic helicity, as shown in Fig. 9.6.

In Fig. 9.7 we show the total strength of the magnetic field as a function of the phase
transition strength α for a transition with initial kinetic helicity where the mass of the Z′

boson is MZ′ = 4 Tev. The case with the κh = ∆Vh/∆Vϕ supression is shown in yellow
whilst the overly optimistic case with no suppression, κh = 1, is shown in orange. In each
of these scenarios we show the individual contributions from bubble collisions (coloured
short dashed lines) and turbulence (coloured long dashed lines) to the overall magnetic
field strength (coloured thick lines). Which of these two source dominate the magnetic field
generation is clearly dictated by whether the α value of the PT is to the left (turbulence
dominated) or right (bubble collisions dominated) of the R∗ = Req line (grey dashed vertical
line) which we will explain the meaning of presently.

In the U(1)B−L model the phase transition tends to be very strong with α ≫ 1, as can
be seen in Fig. 9.7 where most of the observable parameter space lies to the right of the
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grey α = 1 line. This results in the γw factors, which parameterise the bubble wall speed,
tending to be very large and the γw dependent next-to-leading order friction term arising
from transition radiation in the plasma becomes important (see Sec. 5.3).

In these scenarios one can calculate the γw factor at which the vacuum energy driving
the bubble wall forward balances both the leading order and the γw dependent next-to-
leading order friction. At this speed, γw = γeq, the wall reaches terminal velocity. This can
be expressed in terms of a bubble radius at which the bubble wall reaches terminal velocity,
R∗ = Req, marked as a grey dashed vertical line on Fig. 9.7.

For α values to the left of this line, the next-to-leading order friction term successfully
balances the pressure driving the walls expansion and the bubble walls reach terminal
velocity before collision i.e. R∗ > Req. This results in there being a significant period of
time where the vacuum energy is deposited into the plasma so that the plasma ends up
being the dominant source of magnetic fields.

For α values to the right of the R∗ = Req line, the PT is so strongly super-cooled that
that the vacuum energy released outweighs the next-to-leading order plasma friction and
the bubbles are said to run away (see Sec. 5.4). In this case, the bubble walls do not reach
terminal velocity before percolation, R∗ < Req, which means most of the energy released
in the PT is stored in the bubble wall at collision and so bubble collisions are the dominant
source of magnetic field generation.

As explained in Sec. 5.5.2, if the hidden ϕ transition percolates below the scale of the
QCD phase transition then the ϕ field takes on a small VEV, vQCD, prior to the transition.
This subsequently induces a small negative mass term in the ϕ field that acts to reduce
the size of the barrier between ϕ = 0 and ϕ = vϕ . A reduction in the size of the barrier
height means it is easier for the field to thermally jump over the barrier which leads to a
larger nucleation rate of bubbles of the new phase. This means there are more bubbles
nucleated per Hubble horizon and each bubble has less time to get large before it collides,
which results in a reduction in R∗ and, ultimately, a reduction in the coherence length of
the magnetic field. We see this effect in Fig. 9.7, where at T∗ = TQCD (grey vertical dashed
line) there is an increase in the blazar bounds for transitions that happen at temperatures
T∗ < TQCD shown to the right of this T∗ = TQCD line, owing to the fact that there is a
decrease in the correlation length of the field for transitions happening around these
temperature. This effect is seen more clearly later on in the lower panels of Fig. 9.9 where
we plot the coherence length of the magnetic field as a function of α and also in the upper
panels of Fig. 9.9 where we plot the GW SNR as a function of α for a U(1)B−L phase
transition.
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Fig. 9.8 The red and yellow lines show the magnetic field strength B0 at the coherence
scale λ0 with and without the ∆Vh/∆Vϕ suppression. The short and long dashed lines show
separately the contributions from bubble collisions and turbulence in the plasma. The
upper and lower panels correspond respectively to evolution assuming a helical magnetic
field or kinetic helicity, as shown in Fig. 9.6.

In Fig. 9.8 we show a repeat of the Fig. 9.7 but as part of a comparison of the cases
of mZ′ = 4TeV (left panels) and mZ′ = 40TeV (right panels) for a transition with initial
magnetic helicity (upper panels) and initial kintetic helicity (lower panels). In these plots
we additionally include the strength of the gB−L gauge coupling on the top axis which
dictates much of the phase transition dynamics. Most of the previous analysis holds for
each of these plots, in particular we note that the total strength of the magnetic field for
α ≫ 1 is roughly independent of the strength of the transition, with bubble collisions
making the dominant contribution when the average radius of the bubbles at percolation is
R < Req (corresponding to α ≲ 1012), and turbulence dominating at larger α . We see that a
magnetic field generated during a first order U(1)B−L phase transition with initial magnetic
helicity could well lie above the Blazar bounds but find that the observation prospects are
significantly less optimistic when the helicity is seeded kinetically.

After the phase transition, the plasma is reheated to a high temperature where the
electroweak symmetry is restored. Then, as the plasma cools, the electroweak symmetry
becomes broken again but this time the transition is a smooth crossover. The results of
Ref. [232] indicate that in the presence of a helical magnetic field that could explain the
blazar observations, an overabundance of baryons is produced in the crossover transition
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which would place additional constraints on the helical field case shown in the upper panels
of Fig. 9.8. The impact depends on the evolution of the weak mixing angle during the
crossover, which has considerable uncertainty. However, it seems that a transition faster
than in the SM case [233] is required in order to avoid the baryon overproduction.
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Fig. 9.9 The lower panels show the coherence scale of the magnetic field produced in the
phase transition for the two different evolutions shown in Fig. 9.6. The show the SNR of
the GW signal from the phase transition for different future observatories.

In Fig. 9.9 we demonstrate the promising opportunity for complimentary searches for
evidence of a U(1)B−L phase transition by utilising upcoming GW experiments together
with searches for evidence of an IGMF generated by such an event. In the upper panels
we plot the projected SNR of GW signals as a function of the transition strength, α , for
different upcoming GW experiments, whilst in the lower panels we plot coherence scale,
λ0, of the magnetic field against α . As seen as in the SM+H6 model, the coherence scale
of the peak of the magnetic field is below 0.01 Mpc in all the cases studied.
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Chapter 10

Conclusion

In this thesis we have studied scenarios in quantum field theory that involve the decay of
the false vacuum via bubble nucleation, putting particular emphasis on the application of
this theory to situations in the early universe where the universe could have undergone a
violent first order phase transition. Such an event could have left imprints on the sky that
we could search for today using current and future experimental detection programmes
and much of this thesis has been geared towards an analysis of the observational prospects
of such a goal.

In Chapter 4 we employed a novel approach in terms of ‘tunnelling potentials’ [16, 17]
to find false vacuum decay solutions in potential landscapes with multiple minima. We
found that our algorithm can successfully find tunnelling solutions to non-adjacent minima
in both single and two field scenarios but that the detailed shape of the potential and
relationship of the energy density between successive vacua can have a bearing on whether
a solution can be found. This work could form the basis of a more detailed investigation
into whether the scenarios in which a solution is not found are due to numerical issues
or whether tunnelling directly to non-adjacent minima is simply not possible for these
potentials. In the latter situation the false vacuum would then have to decay via successive
tunnelling events between neighbouring minima.

In Chapters 6 & 7 we studied phase transitions in hidden sectors that are cold relative
to the visible sector and the possible resulting gravitational wave signals. Using a simple
example model we have shown that phase transitions in extremely cold hidden sectors can
proceed through nucleation of bubbles by tunnelling, as opposed to via thermal fluctuations
as occurs if a hidden sector is at roughly the same temperature as the visible sector.

The gravitational wave signals of a tunnelling transition in a cold hidden sectors can be
observably different to those produced by a typical thermal transition in a warm hidden
sector, owing to the differing dynamics of the bubble walls in the two cases. In particular,
in a sufficiently cold hidden sector there is no significant bath of hidden sector states,
which if present transfer a proportion of the energy released by the phase transition to bulk
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motions of the hidden sector plasma. 1 In this regard, a key difference between our results
and earlier work (e.g. [101]) that considered the possibility of gravitational wave signals
dominated by bubble collisions, is that we include the recently discovered γw dependent
friction [54]. This prevents runaway walls in typical thermal transitions, even in those
with significant supercooling (which is sufficient to render the γw independent friction
negligible).

We have also seen that due to BBN constraints cold hidden sectors can lead to gravi-
tational wave signals in a frequency range that would otherwise not be possible. These
two effects mean that if a gravitational wave spectrum were to be discovered, it might
be possible to show that it comes from a sector that is cold relative to the visible sector.
Given that such a sector would be far out of reach of direct exploration by experiments,
this would be an extremely interesting discovery. More pessimistically, gravitational wave
signals from cold hidden sectors are strongly suppressed in thermally nucleated transitions
if the hidden sector is extremely cold, and likewise in tunnelling transitions if the energy
released is much smaller than the energy in the visible sector. Observable signals therefore
only arise in relatively small regions of hidden sector parameter space.

In Chapter 8 we analysed the prospects for detection of circular polarisation of the
stochastic GW background produced by a first-order phase transition at a temperature
T∗ ≥ 100 GeV. We focused on an analytical model for the sourcing of GWs by MHD
turbulence produced in the plasma during the transition. Crucially, the model allows us to
describe not only a direct energy cascade in the plasma but also an inverse cascade that
develops if there is some initial helicity fraction in the fluid motion, usually sourced from
helicity left over in the magnetic field after the transition. The direct cascade describes
energy transferred into smaller scales, and the resulting signal peak corresponds to the
characteristic scale of the transition, which is related to the average bubble size R∗. The
signal produced during the second stage of inverse cascade turbulence will be circularly
polarised and, provided the initial helicity fraction is large enough, it results in an overall
stochastic background with a significant degree of polarisation.

We have revisited the capability of future GW detectors to measure the polarisation
of a SGWB background, focusing on LISA. We find that in the model we use to describe
the signal arising from MHD turbulence following a phase transition, detection with
SNRpol > 10 could be possible. However, this would require a sufficiently strong phase
transition with α ⪆ 1 as well as either a large helicity fraction close to unity or large
bubbles of sizes approaching the horizon size. The smaller the helicity fraction, the more
supercooled the transition would have to be to produce an observable polarisation in

1At present, it is unknown if thermal transitions in unusual models could also lead to overwhelmingly
bubble collision sourced spectra, and this is an important area for future work. However, even if such thermal
transitions turn out to be possible, the theories that give rise to them will have to have unusual properties,
so observation of a bubble collision dominated signal will remain exciting, even if it does not conclusively
point to a cold hidden sector.



189

the stochastic GW background signal. We conclude that LISA may have a significant
opportunity to measure polarisation of the SGWB, whilst also emphasising that the model
we have used to calculate the amount of polarisation certainly requires improvement and
should be tensioned against other models as they emerge.

Finally in Chapter 9 we revisited the possibility of generating magnetic fields during a
first-order phase transition in the early universe. Since the electroweak phase transition
is second-order in the SM, we have considered two well motivated beyond the Standard
Model extensions. First we considered a dimension-6 extension of the Higgs potential
that leads directly to a first-order phase transition. We showed that, in such a model, the
strong coupling between the Higgs and the rest of the SM would result in friction that
would slow the motion of bubble walls, suppressing the subsequent generation of magnetic
fields. We also showed, however, that turbulence created by vorticity in gauge fields in the
plasma could create magnetic fields with interesting magnitudes. We also calculated the
corresponding gravitational wave signal associated with such phase transitions.

The second model we considered was a minimal extension of the SM with an additional
scalar ϕ associated with a B−L gauge symmetry. In this situation, the field ϕ can undergo
a strong first-order phase transition where most of the energy goes into the bubble wall
rather than the plasma. A part of this energy is later transmitted to the SM fields via a
portal coupling, potentially leading to large magnetic fields. Again we have calculated the
gravitational wave signal for this model. The strength of the magnetic field goes down as
the mass of the Z’ boson increases, and the existing limits on mZ′ and gB−L from the LHC
leave open a region where it is possible to explain the observed magnetic fields. However,
this window could be further constrained by baryon overproduction.

In case of the U(1)B−L model, whenever we are able to produce magnetic fields with
sufficient magnitude to explain the Fermi data, we produce enough GWs to be detected
by one of the future experiments. This is not the case in the SM +H6 model, where
GW experiments will be able to probe all of the relevant parameter space only if the
magnetic field is seeded by kinetic helicity, whereas a fully helical magnetic field could be
produced without a corresponding GW signal being within reach. In this model, however,
the HL-LHC will be able to probe all of the relevant parameter space. These conclusions
suggest that, generically, the production of strong intergalactic magnetic fields through a
phase transition in the early universe may lead to other observable signals either in future
GW experiments or at a future collider.

The renewed interest in strong first-order phase transitions due to recent developments
in GW detection shows no sign of diminishing. When considering such phase transitions
and their effects upon the SM gauge fields, it is natural to wonder if the magnetic fields
seen in cosmic voids may have such a dramatic origin. This work shows that this is indeed
possible under appropriate conditions.
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Appendix A

Numerical scheme action derivatives

A.1 Computation of discretised St derivatives

In this appendix we provide analytical derivatives of the discretised action in Eq. (4.20) that
we use in our code to ensure precision and speed of our numerical results. The discretised
action from i = 0 to n takes the form

St =
27π2

2

n−1

∑
i=0

[V (
˜
φi)+V (

˜
φi+1)−Vt,i −Vt,i+1]
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˜
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φi+1 −
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φi)]

2

(Vt,i+1 −Vt,i)3 , (A.1)

or
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so that in terms of the field coordinates φ x and φ y in field space we then have
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27π2

2

n−1

∑
i=0

[V (φ x
i ,φ

y
i )+V (φ x

i+1,φ
y
i+1)−Vt,i −Vt,i+1]

2 [(∆φ x
i )

2 +(∆φ
y
i )

2]2

(Vt,i+1 −Vt,i)3 (A.6)

Let

Gi = [(∆
˜
φi).(∆

˜
φi)]

2 = [(∆φ
x
i )

2 +(∆φ
y
i )

2]2 = [(φ x
i+1 −φ

x
i )

2 +(φ y
i+1 −φ

y
i )

2]2 (A.7)

Fi,i̸=0 =
[V (φ x

i ,φ
y
i )+V (φ x

i+1,φ
y
i+1)−Vt,i −Vt,i+1]

2

(Vt,i+1 −Vt,i)3 (A.8)



208 Numerical scheme action derivatives

and as the boundary condition requires that Vt,0 =V (φ x
0 ,φ

y
0 ) we also have for the boundary

node i = 0 that
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so that
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where in (A.9) we have applied the boundary conditions Vt,0 =V (φ x
0 ,φ

y
0).

See Appendix A.2 for a discussion of why we can still differentiate (A.9) to get local
Fi=0 derivatives. To minimise the action (A.6) using a Newton iteration we need to evaluate
the local gradients of St and Hessian of St at each path point ”i” along the path in field
space and use these gradients to shift the path to one with a lower action St . From (A.4)
we have
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Then from (A.7) and (A.11), (A.12), (A.13), (A.14) we have

∂Gi−1

∂φ x
i

=
∂ [(∆

˜
φi−1).((∆

˜
φi−1)]

2

∂φ x
i

=+4[(∆
˜
φi−1).(∆

˜
φi−1)]∆φ

x
i−1 (A.19)

∂Gi

∂φ x
i
=

∂ [(∆
˜
φi).(∆

˜
φi)]

2

∂φ x
i

=−4[(∆
˜
φi).(∆

˜
φi)]∆φ

x
i (A.20)

∂Gi−1

∂φ
y
i

=
∂ [(∆

˜
φi−1).((∆

˜
φi−1)]

2

∂φ
y
i

=+4[(∆
˜
φi−1).(∆

˜
φi−1)]∆φ

y
i−1 (A.21)

∂Gi

∂φ
y
i
=

∂ [(∆
˜
φi).(∆

˜
φi)]

2

∂φ
y
i

=−4[(∆
˜
φi).(∆

˜
φi)]∆φ

y
i (A.22)

and from (A.7) and (A.15), (A.16), (A.17), (A.18) we have

∂Gi−1

∂φ x
i−1

=
∂ [(∆

˜
φi−1).((∆

˜
φi−1)]

2

∂φ x
i−1

=−4[(∆
˜
φi−1).(∆

˜
φi−1)]∆φ

x
i−1 (A.23)

∂Gi

∂φ x
i+1

=
∂ [(∆

˜
φi).(∆

˜
φi)]

2

∂φ x
i+1

=+4[(∆
˜
φi).(∆

˜
φi)]∆φ

x
i (A.24)

∂Gi−1

∂φ
y
i−1

=
∂ [(∆

˜
φi−1).((∆

˜
φi−1)]

2

∂φ
y
i−1

=−4[(∆
˜
φi−1).(∆

˜
φi−1)]∆φ

y
i−1 (A.25)

∂Gi

∂φ
y
i+1

=
∂ [(∆

˜
φi).(∆

˜
φi)]

2

∂φ
y
i+1

=+4[(∆
˜
φi).(∆

˜
φi)]∆φ

y
i (A.26)

So, for example,

F1 =
[V (φ x

1 ,φ
y
1)+V (φ x

2 ,φ
y
2)−Vt,1 −Vt,2]

2

(Vt,2 −Vt,1)3 (A.27)

F2 =
[V (φ x

2 ,φ
y
2)+V (φ x

3 ,φ
y
3)−Vt,2 −Vt,3]

2

(Vt,3 −Vt,2)3 (A.28)

F3 =
[V (φ x

3 ,φ
y
3)+V (φ x

4 ,φ
y
4)−Vt,3 −Vt,3]

2

(Vt,4 −Vt,3)3 (A.29)

G1 = [(∆
˜
φ1).(∆

˜
φ1)]

2 = [(φ x
2 −φ

x
1)

2 +(φ y
2 −φ

y
1)

2]2 (A.30)

G2 = [(∆
˜
φ2).(∆

˜
φ2)]

2 = [(φ x
3 −φ

x
2)

2 +(φ y
3 −φ

y
2)

2]2 (A.31)

G3 = [(∆
˜
φ3).(∆

˜
φ3)]

2 = [(φ x
4 −φ

x
3)

2 +(φ y
4 −φ

y
3)

2]2 (A.32)

The only components of St containing φ x
j or φ

y
j in ∑

n
i=0 FiGi are Fj−1, Fj, G j−1 and G j.

Where
Fj−1G j−1 = [(∆

˜
φ j−1).(∆

˜
φ j−1)]

2Fj−1 (A.33)



210 Numerical scheme action derivatives

and
FjG j = [(∆

˜
φ j).(∆

˜
φ j)]

2Fj. (A.34)

For example, for j = 2, the only components of St containing φ x
2 are F1,F2,G1,G2. So, in

general, for all points apart from the boundary point at φ0

∂St

∂φ x
j, j ̸=0

=
∂

∂φ x
j

27π2

2

n

∑
i=0

FiGi

=
27π2

2
∂

∂φ x
j
[Fj−1G j−1 +FjG j]

=
27π2

2
[
∂Fj−1

∂φ x
j

G j−1 +Fj−1
∂G j−1

∂φ x
j

+
∂Fj

∂φ x
j
G j +Fj

∂G j

∂φ x
j
]. (A.35)

and

∂St

∂φ
y
j, j ̸=0

=
27π2

2
[
∂Fj−1

∂φ
y
j

G j−1 +Fj−1
∂G j−1

∂φ
y
j

+
∂Fj

∂φ
y
j
G j +Fj

∂G j

∂φ
y
j
]. (A.36)

Whilst at the φ0 boundary

∂St

∂φ x
0
=

27π2

2
[
∂F0

∂φ x
0

G0 +F0
∂G0

∂φ x
0
]. (A.37)

∂St

∂φ
y
0
=

27π2

2
[
∂F0

∂φ
y
0

G0 +F0
∂G0

∂φ
y
0
]. (A.38)

The F derivatives required by (A.35) and (A.36) are ∂Fj−1
∂φ x

j
, ∂Fj

∂φ x
j
, ∂Fj−1

∂φ
y
j

and ∂Fj

∂φ
y
j

and

excluding the boundary node j = 0 are obtained from (A.8) as

∂Fj−1

∂φ x
j

=
2[V (φ x

j−1,φ
y
j−1)+V (φ x

j ,φ
y
j )−Vt, j−1 −Vt, j]

(Vt, j −Vt, j−1)3

∂V (φ x
j ,φ

y
j )

∂φ x
j

(A.39)

∂Fj

∂φ x
j
=

2[V (φ x
j ,φ

y
j )+V (φ x

j+1,φ
y
j+1)−Vt, j −Vt, j+1]

(Vt, j+1 −Vt, j)3

∂V (φ x
j ,φ

y
j )

∂φ x
j

. (A.40)

∂Fj−1

∂φ
y
j

=
2[V (φ x

j−1,φ
y
j−1)+V (φ x

j ,φ
y
j )−Vt, j−1 −Vt, j]

(Vt, j −Vt, j−1)3

∂V (φ x
j ,φ

y
j )

∂φ
y
j

(A.41)

∂Fj

∂φ
y
j
=

2[V (φ x
j ,φ

y
j )+V (φ x

j+1,φ
y
j+1)−Vt, j −Vt, j+1]

(Vt, j+1 −Vt, j)3

∂V (φ x
j ,φ

y
j )

∂φ
y
j

. (A.42)
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and for adjacent points,

∂Fj−1

∂φ x
j−1

=
2[V (φ x

j−1,φ
y
j−1)+V (φ x

j ,φ
y
j )−Vt, j−1 −Vt, j]

(Vt, j −Vt, j−1)3

∂V (φ x
j−1,φ

y
j−1)

∂φ x
j−1

(A.43)

∂Fj

∂φ x
j+1

=
2[V (φ x

j ,φ
y
j )+V (φ x

j+1,φ
y
j+1)−Vt, j −Vt, j+1]

(Vt, j+1 −Vt, j)3

∂V (φ x
j+1,φ

y
j+1)

∂φ x
j+1

. (A.44)

∂Fj−1

∂φ
y
j−1

=
2[V (φ x

j−1,φ
y
j−1)+V (φ x

j ,φ
y
j )−Vt, j−1 −Vt, j]

(Vt, j −Vt, j−1)3

∂V (φ x
j−1,φ

y
j−1)

∂φ
y
j−1

(A.45)

∂Fj

∂φ
y
j+1

=
2[V (φ x

j ,φ
y
j )+V (φ x

j+1,φ
y
j+1)−Vt, j −Vt, j+1]

(Vt, j+1 −Vt, j)3

∂V (φ x
j+1,φ

y
j+1)

∂φ
y
j+1

. (A.46)

while for the boundary node at j = 0 we have using (A.9)

∂Fj=0

∂φ x
j=0

=
∂

∂φ x
j=0

[V (φ x
1 ,φ

y
1)−Vt,1]

2

(Vt,1 −V (φ x
0 ,φ

y
0))

3 =+3
[V (φ x

1 ,φ
y
1)−Vt,1]

2

(Vt,1 −V (φ x
0 ,φ

y
0))

4

∂V (φ x
0 ,φ

y
0)

∂φ x
0

(A.47)

∂Fj=0

∂φ
y
j=0

=+3
[V (φ x

1 ,φ
y
1)−Vt,1]

2

(Vt,1 −V (φ x
0 ,φ

y
0))

4

∂V (φ x
0 ,φ

y
0)

∂φ
y
0

(A.48)

and for the point adjacent to the boundary,

∂Fj=0

∂φ x
j=1

=
∂

∂φ x
1

[V (φ x
1 ,φ

y
1)−Vt,1]

2

(Vt,1 −V (φ x
0 ,φ

y
0))

3 =+2
[V (φ x

1 ,φ
y
1)−Vt,1]

(Vt,1 −V (φ x
0 ,φ

y
0))

3

∂V (φ x
1 ,φ

y
1)

∂φ x
1

(A.49)

∂Fj=0

∂φ
y
j=1

=+2
[V (φ x

1 ,φ
y
1)−Vt,1]

(Vt,1 −V (φ x
0 ,φ

y
0))

3

∂V (φ x
1 ,φ

y
1)

∂φ
y
1

(A.50)

For the second derivatives with respect to φ x
j and φ

y
j again only the St components

Fj−1, Fj, G j−1 and G j contain φ x
j or φ

y
j . We therefore have using (A.35) and (A.36)

∂ 2St

∂φ x
j, j ̸=0∂φ x

j, j ̸=0
=

27π2

2
∂

∂φ x
j
[
∂Fj−1

∂φ x
j

G j−1 +Fj−1
∂G j−1

∂φ x
j

+
∂Fj

∂φ x
j
G j +Fj

∂G j

∂φ x
j
] (A.51)
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∂ 2St

∂φ
y
j, j ̸=0∂φ

y
j, j ̸=0

=
27π2

2
∂

∂φ
y
j
[
∂Fj−1

∂φ
y
j

G j−1 +Fj−1
∂G j−1

∂φ
y
j

+
∂Fj

∂φ
y
j
G j +Fj

∂G j

∂φ
y
j
] (A.52)

∂ 2St

∂φ x
j, j ̸=0∂φ

y
j, j ̸=0

=
27π2

2
∂

∂φ
y
j
[
∂Fj−1

∂φ x
j

G j−1 +Fj−1
∂G j−1

∂φ x
j

+
∂Fj

∂φ x
j
G j +Fj

∂G j

∂φ x
j
] (A.53)

giving

∂ 2St

∂φ x
j, j ̸=0∂φ x

j, j ̸=0
=

27π2

2
[

∂ 2Fj−1

∂φ x
j ∂φ x

j
G j−1 +Fj−1

∂ 2G j−1

∂φ x
j ∂φ x

j
+

∂ 2Fj

∂φ x
j ∂φ x

j
G j +Fj

∂ 2G j

∂φ x
j ∂φ x

j
+

∂Fj−1

∂φ x
j

∂G j−1

∂φ x
j

+
∂Fj−1

∂φ x
j

∂G j−1

∂φ x
j

+
∂Fj

∂φ x
j

dG j

∂φ x
j

+
∂Fj

dφ x
j

dG j

∂φ x
j
]

∂ 2St

∂φ
y
j, j ̸=0∂φ

y
j, j ̸=0

=
27π2

2
[

∂ 2Fj−1

∂φ
y
j ∂φ

y
j
G j−1 +Fj−1

∂ 2G j−1

∂φ
y
j ∂φ

y
j
+

∂ 2Fj

∂φ
y
j ∂φ

y
j
G j +Fj

∂ 2G j

∂φ
y
j ∂φ

y
j
+

∂Fj−1

∂φ
y
j

∂G j−1

∂φ
y
j

+
∂Fj−1

∂φ
y
j

∂G j−1

∂φ
y
j

+
∂Fj

∂φ
y
j

dG j

∂φ
y
j

+
∂Fj

dφ
y
j

dG j

∂φ
y
j
]

∂ 2St

∂φ x
j, j ̸=0∂φ

y
j, j ̸=0

=
27π2

2
[

∂ 2Fj−1

∂φ x
j ∂φ

y
j
G j−1 +Fj−1

∂ 2G j−1

∂φ x
j ∂φ

y
j
+

∂ 2Fj

∂φ x
j ∂φ

y
j
G j +Fj

∂ 2G j

∂φ x
j ∂φ

y
j
+

∂Fj−1

∂φ x
j

∂G j−1

∂φ
y
j

+
∂Fj−1

∂φ
y
j

∂G j−1

∂φ x
j

+
∂Fj

∂φ x
j

dG j

∂φ
y
j

+
∂Fj

dφ
y
j

dG j

∂φ x
j
]

so

∂ 2St

∂φ x
j, j ̸=0∂φ x

j, j ̸=0
=

27π2

2
[

∂ 2Fj−1

∂φ x
j ∂φ x

j
G j−1 +Fj−1

∂ 2G j−1

∂φ x
j ∂φ x

j
+

∂ 2Fj

∂φ x
j ∂φ x

j
G j +Fj

∂ 2G j

∂φ x
j ∂φ x

j
+

2
∂Fj−1

∂φ x
j

∂G j−1

∂φ x
j

+2
∂Fj

∂φ x
j

∂G j

∂φ x
j
] (A.54)

∂ 2St

∂φ
y
j, j ̸=0∂φ

y
j, j ̸=0

=
27π2

2
[

∂ 2Fj−1

∂φ
y
j ∂φ

y
j
G j−1 +Fj−1

∂ 2G j−1

∂φ
y
j ∂φ

y
j
+

∂ 2Fj

∂φ
y
j ∂φ

y
j
G j +Fj

∂ 2G j

∂φ
y
j ∂φ

y
j
+

2
∂Fj−1

∂φ
y
j

∂G j−1

∂φ
y
j

+2
∂Fj

∂φ
y
j

∂G j

∂φ
y
j
] (A.55)
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∂ 2St

∂φ x
j, j ̸=0∂φ

y
j, j ̸=0

=
27π2

2
[

∂ 2Fj−1

∂φ x
j ∂φ

y
j
G j−1 +Fj−1

∂ 2G j−1

∂φ x
j ∂φ

y
j
+

∂ 2Fj

∂φ x
j ∂φ

y
j
G j +Fj

∂ 2G j

∂φ x
j ∂φ

y
j
+

∂Fj−1

∂φ x
j

∂G j−1

∂φ
y
j

+
∂Fj−1

∂φ
y
j

∂G j−1

∂φ x
j

+
∂Fj

∂φ x
j

dG j

∂φ
y
j

+
∂Fj

dφ
y
j

dG j

∂φ x
j
]

(A.56)

Where the terms ∂Fj−1
∂φ x

j
, ∂Fj

∂φ x
j
, ∂Fj−1

∂φ
y
j

and ∂Fj

∂φ
y
j

are given in (A.39) to (A.42) for j > 0 and the

terms ∂Fj=0
∂φ x

j=0
and ∂Fj=0

∂φ x
j=0

are given in (A.47), (A.48) for j = 0.
The derivatives that include adjacent points are,

∂ 2St

∂φ
y
j−1, j ̸=0∂φ x

j, j ̸=0
=

27π2

2
∂

∂φ
y
j−1

[
∂Fj−1

∂φ x
j

G j−1+Fj−1
∂G j−1

∂φ x
j

+
∂Fj

∂φ x
j
G j+Fj

∂G j

∂φ x
j
] (A.57)

∂ 2St

∂φ
y
j+1, j ̸=0∂φ x

j, j ̸=0
=

27π2

2
∂

∂φ
y
j+1

[
∂Fj−1

∂φ x
j

G j−1+Fj−1
∂G j−1

∂φ x
j

+
∂Fj

∂φ x
j
G j+Fj

∂G j

∂φ x
j
] (A.58)

giving,

∂ 2St

∂φ
y
j−1, j ̸=0∂φ x

j, j ̸=0
=

27π2

2
[

∂ 2Fj−1

∂φ
y
j−1∂φ x

j
G j−1 +Fj−1

∂ 2G j−1

∂φ
y
j−1∂φ x

j
+

∂ 2Fj

∂φ
y
j−1∂φ x

j
G j +Fj

∂ 2G j

∂φ
y
j−1∂φ x

j
+

∂Fj−1

∂φ x
j

∂G j−1

∂φ
y
j−1

+
∂Fj−1

∂φ
y
j−1

∂G j−1

∂φ x
j

+
∂Fj

∂φ x
j

dG j

∂φ
y
j−1

+
∂Fj

dφ
y
j−1

dG j

∂φ x
j
]

∂ 2St

∂φ
y
j+1, j ̸=0∂φ x

j, j ̸=0
=

27π2

2
[

∂ 2Fj−1

∂φ
y
j+1∂φ x

j
G j−1 +Fj−1

∂ 2G j−1

∂φ
y
j+1∂φ x

j
+

∂ 2Fj

∂φ
y
j+1∂φ x

j
G j +Fj

∂ 2G j

∂φ
y
j+1∂φ x

j
+

∂Fj−1

∂φ x
j

∂G j−1

∂φ
y
j+1

+
∂Fj−1

∂φ
y
j+1

∂G j−1

∂φ x
j

+
∂Fj

∂φ x
j

dG j

∂φ
y
j+1

+
∂Fj

dφ
y
j+1

dG j

∂φ x
j
]

so

∂ 2St

∂φ
y
j−1, j ̸=0∂φ x

j, j ̸=0
=

27π2

2
[

∂ 2Fj−1

∂φ
y
j−1∂φ x

j
G j−1 +Fj−1

∂ 2G j−1

∂φ
y
j−1∂φ x

j
+ 0 + 0 +

(A.59)

∂Fj−1

∂φ x
j

∂G j−1

∂φ
y
j−1

+
∂Fj−1

∂φ
y
j−1

∂G j−1

∂φ x
j

+ 0 + 0 ] (A.60)
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∂ 2St

∂φ
y
j+1, j ̸=0∂φ x

j, j ̸=0
=

27π2

2
[ 0 + 0 +

∂ 2Fj

∂φ
y
j+1∂φ x

j
G j +Fj

∂ 2G j

∂φ
y
j+1∂φ x

j
+ (A.61)

0 + 0 +
∂Fj

∂φ x
j

dG j

∂φ
y
j+1

+
∂Fj

dφ
y
j+1

dG j

∂φ x
j
] (A.62)

Differentiating (A.39) to (A.42) then gives the remaining Fj>0 terms: ∂ 2Fj−1
∂φ x

j ∂φ x
j

and
∂ 2Fj

∂φ x
j ∂φ x

j
for (A.54), ∂ 2Fj−1

∂φ
y
j ∂φ

y
j

and ∂ 2Fj

∂φ
y
j ∂φ

y
j

for (A.55), ∂ 2Fj−1
∂φ x

j ∂φ
y
j

and ∂ 2Fj

∂φ x
j ∂φ

y
j

for (A.56) as

∂ 2Fj−1

∂φ x
j ∂φ x

j
=

2[V (φ x
j−1,φ

y
j−1)+V (φ x

j ,φ
y
j )−Vt, j−1 −Vt, j]

(Vt, j −Vt, j−1)3

∂ 2V (φ x
j ,φ

y
j )

∂φ x
j ∂φ x

j
+

2
(Vt, j −Vt, j−1)3 (

∂V (φ x
j ,φ

y
j )

∂φ x
j

)2

(A.63)

∂ 2Fj

∂φ x
j ∂φ x

j
=

2[V (φ x
j ,φ

y
j )+V (φ x

j+1,φ
y
j+1)−Vt, j −Vt, j+1]

(Vt, j+1 −Vt, j)3

∂ 2V (φ x
j ,φ

y
j )

∂φ x
j ∂φ x

j
+

2
(Vt, j+1 −Vt, j)3 (

∂V (φ x
j ,φ

y
j )

∂φ x
j

)2

(A.64)
for (A.54),

∂ 2Fj−1

∂φ
y
j ∂φ

y
j
=

2[V (φ x
j−1,φ

y
j−1)+V (φ x

j ,φ
y
j )−Vt, j−1 −Vt, j]

(Vt, j −Vt, j−1)3

∂ 2V (φ x
j ,φ

y
j )

∂φ
y
j ∂φ

y
j

+
2

(Vt, j −Vt, j−1)3 (
∂V (φ x

j ,φ
y
j )

∂φ
y
j

)2

(A.65)

∂ 2Fj

∂φ
y
j ∂φ

y
j
=

2[V (φ x
j ,φ

y
j )+V (φ x

j+1,φ
y
j+1)−Vt, j −Vt, j+1]

(Vt, j+1 −Vt, j)3

∂ 2V (φ x
j ,φ

y
j )

∂φ
y
j ∂φ

y
j

(A.66)

+
2

(Vt, j+1 −Vt, j)3 (
∂V (φ x

j ,φ
y
j )

∂φ
y
j

)2 (A.67)

for (A.55),

∂ 2Fj−1

∂φ x
j ∂φ

y
j
=

2[V (φ x
j−1,φ

y
j−1)+V (φ x

j ,φ
y
j )−Vt, j−1 −Vt, j]

(Vt, j −Vt, j−1)3

∂ 2V (φ x
j ,φ

y
j )

∂φ x
j ∂φ

y
j

(A.68)

+
2

(Vt, j −Vt, j−1)3 (
∂V (φ x

j ,φ
y
j )

∂φ x
j

)(
∂V (φ x

j ,φ
y
j )

∂φ
y
j

) (A.69)
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∂ 2Fj

∂φ x
j ∂φ

y
j
=

2[V (φ x
j ,φ

y
j )+V (φ x

j+1,φ
y
j+1)−Vt, j −Vt, j+1]

(Vt, j+1 −Vt, j)3

∂ 2V (φ x
j ,φ

y
j )

∂φ x
j ∂φ

y
j

(A.70)

+
2

(Vt, j −Vt, j−1)3 (
∂V (φ x

j ,φ
y
j )

∂φ x
j

)(
∂V (φ x

j ,φ
y
j )

∂φ
y
j

) (A.71)

for (A.56).
For the derivatives with adjacent points,

∂ 2Fj−1

∂φ
y
j−1∂φ x

j
=

2[V (φ x
j−1,φ

y
j−1)+V (φ x

j ,φ
y
j )−Vt, j−1 −Vt, j]

(Vt, j −Vt, j−1)3

∂ 2V (φ x
j ,φ

y
j )

∂φ
y
j−1∂φ x

j
(A.72)

+
2

(Vt, j −Vt, j−1)3 (
∂V (φ x

j ,φ
y
j )

∂φ x
j

)(
∂V (φ x

j−1,φ
y
j−1)

∂φ
y
j−1

) (A.73)

∂ 2Fj

∂φ
y
j+1∂φ x

j
=

2[V (φ x
j ,φ

y
j )+V (φ x

j+1,φ
y
j+1)−Vt, j −Vt, j+1]

(Vt, j+1 −Vt, j)3

∂ 2V (φ x
j ,φ

y
j )

∂φ
y
j+1∂φ x

j
(A.74)

+
2

(Vt, j+1 −Vt, j)3 (
∂V (φ x

j ,φ
y
j )

∂φ x
j

)(
∂V (φ x

j+1,φ
y
j+1)

∂φ
y
j+1

) (A.75)

as the second derivative of the potential with respect to different points vanishes, we get

∂ 2Fj−1

∂φ x
j ∂φ

y
j−1

= 0 (A.77)

+
2

(Vt, j −Vt, j−1)3 (
∂V (φ x

j ,φ
y
j )

∂φ x
j

)(
∂V (φ x

j−1,φ
y
j−1)

∂φ
y
j−1

) (A.78)

∂ 2Fj

∂φ x
j ∂φ

y
j+1

= 0 (A.80)

+
2

(Vt, j+1 −Vt, j)3 (
∂V (φ x

j ,φ
y
j )

∂φ x
j

)(
∂V (φ x

j+1,φ
y
j+1)

∂φ
y
j+1

) (A.81)

At the boundary φ0 we have

∂ 2St

∂φ x
0 ∂φ x

0
=

27π2

2
[

∂ 2F0

∂φ x
0 ∂φ x

0
G0 +Fj

∂ 2G0

∂φ x
0 ∂φ x

0
+

+2
∂F0

∂φ x
0

∂G0

∂φ x
0
] (A.82)
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∂ 2St

∂φ
y
0 ∂φ

y
0
=

27π2

2
[

∂ 2F0

∂φ
y
0 ∂φ

y
0

G0 +F0
∂ 2G0

∂φ
y
0 ∂φ

y
0
+

+2
∂F0

∂φ
y
0

∂G0

∂φ
y
0
] (A.83)

∂ 2St

∂φ x
0 ∂φ

y
0
=

27π2

2
[

∂ 2F0

∂φ x
0 ∂φ

y
0

G0 +F0
∂ 2G0

∂φ x
0 ∂φ

y
0
+

+
∂F0

∂φ x
0

dG0

∂φ
y
0
+

∂F0

dφ
y
0

dG0

∂φ x
0
] (A.84)

whilst for the derivative that includes the point adjacent to the boundary,

Hxy
01 =

∂ 2St

∂φ x
0 ∂φ

y
1
=

27π2

2
∂

∂φ
y
1
[
∂F0

∂φ x
0

G0 +F0
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] =
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1 ∂φ x

0
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y
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0
+

+
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∂φ x
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y
1
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∂F0

dφ
y
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(A.85)

Hxy
10 =

∂ 2St

∂φ x
1 ∂φ

y
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=
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2
∂

∂φ x
1
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∂φ
y
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y
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∂φ x
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y
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(A.86)

For the boundary terms with Fj=0 we differentiate (A.47) and (A.48) to give

∂

∂φ x
j=0

∂Fj=0

∂φ x
j=0

=+3
∂

∂φ x
j=0
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[V (φ x

1 ,φ
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y
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y
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y
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y
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y
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y
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y
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1
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∂

∂φ
y
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(
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1 ,φ
y
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y
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so that

∂ 2Fj=0

∂φ x
j=0∂φ x

j=0
=+3

[V (φ x
1 ,φ

y
1)−Vt,1]

2

(Vt,1 −V (φ x
0 ,φ

y
0))

4

∂ 2V (φ x
0 ,φ

y
0)

∂φ x
0 ∂φ x

0
(A.87)

+12
[V (φ x

1 ,φ
y
1)−Vt,1]

2

(Vt,1 −V (φ x
0 ,φ

y
0))

5 (
∂V (φ x

0 ,φ
y
0)

∂φ x
0

)2 (A.88)

∂ 2Fj=0

∂φ
y
j=0∂φ

y
j=0

=+3
[V (φ x

1 ,φ
y
1)−Vt,1]

2

(Vt,1 −V (φ x
0 ,φ

y
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4

∂ 2V (φ x
0 ,φ

y
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0

(A.89)

+12
[V (φ x

1 ,φ
y
1)−Vt,1]

2

(Vt,1 −V (φ x
0 ,φ

y
0))

5 (
∂V (φ x

0 ,φ
y
0)

∂φ
y
0

)2 (A.90)

and

∂ 2Fj=0
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y
j=0
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1)−Vt,1]

2
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4
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(A.91)

+12
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1 ,φ
y
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2
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y
0))

5 (
∂V (φ x

0 ,φ
y
0)

∂φ x
0

)(
∂V (φ x

0 ,φ
y
0)

∂φ
y
0

) (A.92)

whilst

∂ 2F0

∂φ x
0 ∂φ

y
1
= 0 +6

[V (φ x
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y
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y
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)(
∂V (φ x
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y
1)
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) (A.93)

∂ 2F0

∂φ x
1 ∂φ

y
0
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[V (φ x
1 ,φ

y
1)−Vt,1]

(Vt,1 −V (φ x
0 ,φ

y
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4 (
∂V (φ x

1 ,φ
y
1)

∂φ x
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)(
∂V (φ x

0 ,φ
y
0)

∂φ
y
0

) (A.94)

Using (A.11) to (A.14) to help differentiate (A.19) to (A.22) then gives

∂ 2G j−1

∂φ x
j ∂φ x

j
=+4[(∆

˜
φ j−1).(∆

˜
φ j−1)]+8(∆φ

x
j−1)

2 (A.95)

∂ 2G j

∂φ x
j ∂φ x

j
=+4[(∆

˜
φ j).(∆

˜
φ j)]+8(∆φ

x
j )

2 (A.96)

∂ 2G j−1

∂φ
y
j ∂φ

y
j
=+4[(∆

˜
φ j−1).(∆

˜
φ j−1)]+8(∆φ

y
j−1)

2 (A.97)

∂ 2G j

∂φ
y
j ∂φ

y
j
=+4[(∆

˜
φ j).(∆

˜
φ j)]+8(∆φ

y
j )

2 (A.98)

∂ 2G j−1

∂φ x
j ∂φ

y
j
=+4[(∆

˜
φ j−1).(∆

˜
φ j−1)]+8(∆φ

x
j−1)(∆φ

y
j−1) (A.99)
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∂ 2G j

∂φ x
j ∂φ

y
j
=+4[(∆

˜
φ j).(∆

˜
φ j)]+8(∆φ

x
j )(∆φ

y
j ) (A.100)

and for the second order derivatives that include adjacent points we have

∂ 2G j−1

∂φ
y
j−1∂φ x

j
=−4[(∆

˜
φ j−1).(∆

˜
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y
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x
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∂ 2G j
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j+1∂φ x
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=−4[(∆

˜
φ j).(∆

˜
φ j)]−8(∆φ

y
j )(∆φ

x
j ) (A.102)

To evaluate a Hessian block,

Hxy =
∂ 2St

∂φ x∂φ y =
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y
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n−1∂φ
y
n−1


(A.103)

we therefore use ∂ 2St
∂φ

y
j−1, j ̸=0∂φ x

j, j ̸=0
from (A.59 ), ∂ 2St

∂φ
y
j+1, j ̸=0∂φ x

j, j ̸=0
from (A.61) and ∂ 2St

∂φ x
j, j ̸=0∂φ

y
j, j ̸=0

from (A.56).
To evaluate the gradient, ∇St , where

˜
∇St =

[
∇xSt
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]
=



∂St
∂φ x

1...
∂St

∂φ x
n−1

∂St
∂φ

y
1...

∂St
∂φ

y
n−1


. (A.104)

we use ∂St
∂φ x

j
from (A.35) and ∂St

∂φ
y
j

from (A.36).
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A.2 Boundary Conditions

Consider variations of the action, St , under variations of the path
˜
φ . Here we keep Vt(

˜
φ)

fixed with Vt(
˜
φ) = Vt(

˜
φ +δ

˜
φ). This cannot be done if

˜
φ0 is also varied in the modified

path and V (
˜
φ) ̸=V (

˜
φ +δ

˜
φ) (

˜
φ+ is always fixed at the false vacuum). In that case we can

always extend the original (or deformed) path from
˜
φ0 to

˜
φ0 +δ

˜
φ0 by keeping Vt =V and

V
′

t ̸= 0 in that interval. This extended path has the same action as the un-extended path
as it corresponds to the original path to

˜
φ0 plus an extended path component from

˜
φ0 to

˜
φ0 +δ

˜
φ0 that is entirely in the V surface. From (4.20) we have

St = 54π
2
∫

ϕ0

ϕ+

dϕ
(V −Vt)

2

(−Vt)3

where we can rewrite the action by introducing an aditional variable α that parameterises
the path so that

St = 54π
2
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α0

dα
(V −Vt)

2

(dVt
dα

)3

(d
˜
φ

dα
.
d

˜
φ

dα

)2

This action is evidently invariant under a reparameterisation of the path α → ᾱ(α) as α

was chosen arbitrarily in the first place as any parameter that parameterises the path.
A generic change of path

˜
φ and tunneling potential Vt(ϕ) to reduce the action St towards

a lower value can be decomposed into a change of Vt(ϕ) that keeps the path
˜
φ fixed and a

change of path
˜
φ that keeps Vt(ϕ) fixed. This is because, in the latter case, if the length

of the path is modified we can still keep Vt(ϕ) fixed by using the α reparameterisation
invariance. From (4.20) using Vt as the path variable

St = 54π
2
∫

α+
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dα
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2
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φ
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˜
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2

(−Vt)3 (A.105)

and Vt = V with V
′

t ̸= 0 means that the integrand remains at zero at
˜
φ0 + δ

˜
φ0. The

changed portion of the Action integral (A.6) from
˜
φ0 to

˜
φ0 +δ

˜
φ0 is then

δSt,0 =
27π2

2
[V (φ x

0 +δφ
x
0 ,φ

y
0 +δφ

y
0)+V (φ x

1 ,φ
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2 [(∆φ x
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2 +(∆φ
y
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2]2

(Vt,1 −Vt,0)3

(A.106)
or

δSt,0 =
27π2

2
[V (φ x

1 ,φ
y
1)−Vt,1]

2 [(∆φ x
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2 +(∆φ
y
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2]2

(Vt,1 −V (φ x
0 +δφ x

0 ,φ
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0 +δφ

y
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3 (A.107)
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which only depends on the original (φ x
0 ,φ

y
0) values through V (φ x

0 ,φ
y
0) and V (φ x

1 ,φ
y
1)−Vt,1.

From (A.107) we then have

δSt,0 =
27π2

2
[V (φ x

1 ,φ
y
1)−Vt,1]

2 [(∆φ x
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2 +(∆φ
y
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2]2

(Vt,1 −V (φ x
0 ,φ

y
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3 (A.108)

To minimise the action with respect to the release point
˜
φ0 we need to find a change in

˜
φ0 that reduces the action St by evaluating ∂St

∂φ x
0

and ∂St
∂φ

y
0
.
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Appendix B

Cosmological Constraints on
non-thermalised sectors

B.1 Maintaining a Temperature Hierarchy

A necessary condition to maintain a temperature difference between the hidden and visible
sector is that they stay out of thermal equilibrium with each other. This is the case if the
(temperature dependent) interaction rate between them, ΓI , satisfies

ΓI < H , (B.1)

at all times between reheating and the hidden sector phase transition. The form of ΓI

depends on which of the hidden and visible sectors is hotter. We assume that the visible
sector is hotter, in which case Eq. (B.1) becomes

⟨σv⟩nv < H(Tv) , (B.2)

where ⟨σv⟩ is the thermally averaged cross section between the visible and hidden sectors
and nv is the number density of the relevant states in the visible sector.1

For relatively small temperature differences the condition in Eq. (B.1) is approximately
sufficient to maintain a hierarchy. However, for large temperature ratios a stronger condition
is required. The hidden sector temperature must not be increased by energy transfer from
the visible sector, even if this energy is not enough for the two sectors to reach the same
temperature. The resulting constraint can be estimated by demanding that the energy
density transferred per Hubble time to the hidden sector is smaller than that already present

1A hidden sector that is hotter than the visible sector is less interesting. The universe must be dominated
by the visible sector before BBN, so in this case the energy density in the hidden sector must be transferred
to the visible sector before this time. There are regions of parameter space in which this is possible. However
the gravitational wave signal that would arise is similar in shape and amplitude to if the two sectors were in
thermal equilibrium throughout.
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in the hidden sector, all times prior to the phase transition. This corresponds to

n2
v ⟨σv⟩Tv

H4 ≲
T 4

h
H3 , (B.3)

where we have dropped factors of order 1. If a hidden sector is initially colder than this,
but the portal coupling is not large enough for full thermalisation, it would be partially
heated up until Eq. (B.3) is satisfied.

The hidden sector that we consider can couple to the visible sector in multiple different
ways, and we focus on a simple Higgs portal operator as an example. This interaction
takes the form

L ⊃−1
2

λp |Φ|2 |H|2 , (B.4)

where H is the SM Higgs doublet. Although λp = 0 is technically natural, it is not
unreasonable to suppose a non-zero value might be present, for example due to heavy
states that couple to both sectors.

If the hidden sector phase transition happens when the visible sector temperature is
above the scale of the electroweak (EW) phase transition, the cross section between the
two sectors at the relevant times is

⟨σv⟩ ∼
λ 2

p

32πT 2
v
, (B.5)

and Eq. (B.3) becomes

λp ≲ 10−8
ε

3/2
( w

GeV

)1/2
. (B.6)

When ε = 1 this matches the previously known condition for the two sectors to not
thermalise at temperatures above the EW scale λ ≲ 10−7 [234]. As expected, smaller
values of the portal couplings are required to maintain a large temperature hierarchy
between the two sectors, and tiny portal couplings are needed if ε ≪ 1.

The condition on λp is different if the hidden sector phase transition happens when the
visible sector temperature is below the EW scale. In this case the dominant energy transfer
from the visible sector happens immediately after the EW phase transition, since at this
point the decay channel h → φφ is open and there is still a thermal population of the SM
Higgs (which will later be exponentially suppressed).2 The resulting energy transfer can
be approximated from the Higgs branching fraction to the hidden sector [234], which leads
to the constraint to maintain a temperature hierarchy

λp ≲ 10−10
ε

2 . (B.7)

2Since we assume that the hidden sector is colder than the visible sector this is automatically kinemati-
cally allowed.
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This again matches the condition for thermalisation when ε = 1, and it is much stronger
for small ε . Such tiny portal couplings are far beyond the reach of any direct experimental
searches.3

B.2 Constraints from dark matter

In this section we will use well known observational upper bounds on the relic density
of dark matter to put constrains on either the temperature ratio, ε , or the strength of the
transition, α , for a variety of cosmological scenarios involving a cold hidden sector. To do
this we will first consider bounds on the hidden φ particle in the case that where it is stable,
where it can decay to lighter hidden sector states and where it can decay to SM particles
(such as the SM Higgs or visible sector fermions) respectively. Finally we will also asses
how the relic abundance of hidden gauge bosons can affect bounds on ε and α .

First we estimate the relic abundance of φ if it is stable. Assuming that its num-
ber changing interactions become inefficient immediately after the hidden sector phase
transition, the relic yield of φ is

Yφ =
nφ

sv
, (B.8)

where sv is the visible sector entropy density at this time (which is assumed to dominate
the universe). If the energy released by the phase transition is small compared to the energy
in the hidden sector at this time, i.e. αh ≲ 1, the relic yield is

Yφ ∼ 80
gvg2 ε

3 (B.9)

where gv and ε are evaluated at the time of the phase transition. For the relic population of
φ not to exceed the observed DM abundance

Yφ <
4.4×10−10 GeV

mφ

, (B.10)

which constrains

ε ≲ 2×10−3
(

GeV
w

)1/3( gv

106.75

)1/3
, (B.11)

3A temperature difference could be maintained with larger values of the portal coupling if the reheating
temperature of the universe was below the EW scale. In this case energy is only transferred to the hidden
sector through scattering of light SM fermions via an off-shell Higgs, and the rate that this occurs at is
strongly suppressed. Portal couplings that are large enough to have observational consequences might be
possible in this case, although we do not investigate it further.
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at the time of the phase transition.4

If the energy released by the phase transition is large compared to that previously in
the hidden sector thermal bath, the relic abundance of φ constrains α rather than ε . Since
the hidden sector is reheated to a temperature Th ≲ w, the number of φ states produced is
approximately ρvac/mφ and the yield of φ can be estimated as

Yφ ∼ 1

g1/4
v

α
3/4 . (B.12)

For this to not over close the universe requires5

α ≲ 10−11
( gv

106.75

)1/3
(

GeV
g2w

)2/3

. (B.13)

Although they are only very approximate, Eq. (B.11) and (B.13) are sufficient to show
that if φ is stable then values of ε ∼ 1 are not viable regardless of how little energy is
released by the hidden sector phase transition. If ε ≪ 10−3 and α ≪ 10−11 there is no
danger of a relic population of φ over closing the universe. However, we will see that the
gravitational wave signals from a sector satisfying these conditions are unobservably small,
so we now consider models in which φ is unstable.

If the Higgs portal operator Eq. (6.6) is present φ can decay to the visible sector once
it has a VEV. Its decay rate to a pair of visible sector fermions with mass m f (after the EW
phase transition) is

Γφ =
λ 2

p

4π

w2m2
f mφ

m4
h

(
1−

4m2
f

m2
φ

)3/2

, (B.14)

which, considering visible sector fermions with m f ≪ mφ , corresponds to a lifetime

Γ
−1
φ

≃
(

10−7

λp

)2(GeV2

m f w

)2

s . (B.15)

If φ is sufficiently heavy it can also decay directly to the SM Higgs. This is possible while
the SM is in the unbroken EW phase (due to the Higgs thermal mass this still requires
mφ > 2mh), but for our purposes it is enough to note that its decay rate once EW symmetry

4We assume that the hidden sector is in internal thermal equilibrium immediately before it undergoes its
phase transition. This will be the case unless there is an extreme hierarchy between the hidden and visible
sectors’ temperatures, which would result in a negligibly small relic abundance from energy in the hidden
sector prior to the transition.

5If the energy in the hidden sector thermal bath immediately before the transition is similar to that
released, so αh ∼ 1, the constraints Eq. (B.11) and Eq. (B.13) coincide, as expected.
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is broken, assuming mφ ≫ mh, is

Γφ ≃
λ 2

pw2

32πmφ

, (B.16)

which leads to a lifetime

Γ
−1
φ

≃
(

10−12

λp

)2(100 GeV
w

)
s . (B.17)

In some parts of parameter space Eqs. (B.15) and (B.17) allow φ to decay before
BBN for values of λp that do not destroy the temperature hierarchy between the hidden
and visible sectors. However, this is not possible if φ is relatively light. In such cases,
the simplest option to obtain a viable model is to introduce light hidden sector fermions,
with mass mψ , that φ can decay to. We assume that the coupling of φ to these states is
sufficiently large that it decays fairly fast, but that these states only interact with each other
weakly and after the phase transition their comoving number density is constant. If αh ≳ 1
their yield can be estimated similarly to Eq. (B.12) and to avoid overclosure of the universe
requires

mψ ≲
eV

α3/4 , (B.18)

while if αh ≲ 1 we need

mψ ≲
eV
ε3 , (B.19)

similarly to how Eq. (B.9) was derived. If α ∼ 1 the relic population of ψ forms a warm
dark matter component, which must be subdominant to the main cold dark matter.

There can also be a significant relic abundance of the hidden sector gauge bosons.
Given our assumption about the hierarchy of masses in the hidden sector these have an
annihilation channel to φ (with a cross section that is proportional to g2/w2), so their relic
abundance is set by freeze-out.

If the hidden sector is at approximately the same temperature as the visible sector, the
gauge boson relic abundance is the same as has been studied in the literature. In this case
there are large regions of parameter space that have either an under-abundance of gauge
boson dark matter, or the full required abundance (provided that w ≲ 105 GeV due to
the usual unitarity bound) [68]. If the hidden sector is cold relative to the visible sector,
this will affect the gauge boson relic abundance. The Hubble parameter will be larger
when the hidden sector temperature drops below mA, owing to the energy density in the
visible sector, so freeze-out will happen at a slightly higher hidden sector temperature
than would otherwise be the case. On the other hand, the final dark matter yield will be
dramatically decreased since the entropy of the universe is higher, which typically more
than compensates the previous effect.
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An upper bound on the gauge boson yield can be obtained similarly to that of φ in
Eq. (B.9) and (B.12). This corresponds to assuming that gauge boson annihilations become
inefficiently immediately after the phase transition. Since we consider parts of parameter
space in which the gauge bosons masses are similar to the mass of φ , the resulting bounds
on α and ε are similar to Eqs. (B.11) and (B.13).

We therefore conclude that if α and ε are such that a population of stable φ particles is
cosmologically safe, the hidden sector gauge bosons will also not overclose the universe.
Models in which φ can decay to the visible sector via a Higgs portal operator are only
possible with not too different hidden and visible sector temperatures (otherwise the
temperature hierarchy would be erased), so there are large regions of parameter space
such that the gauge boson relic abundance is viable. Finally in models that require light
hidden sector fermions for φ to decay to, these states can break the hidden sector custodial
symmetry, and therefore allow the gauge bosons to also decay.

B.3 Bounds from BBN and CMB

In this section we consider observational constraints on the additional number of relativistic
degrees of freedom from BBN and the CMB to put constraints on the phase transition
strength, α and tempaerture ratio at the time of the transition ε . To do this we first use
observational constraints to put bounds on ε at BBN/CMB times before utilising arguments
regarding conservation of entropy discussed in Sec. 6.1.1 to put bounds on ε at reheating
and the time of the phase transition.

The current observational constraint on the effective number of additional relativistic
degrees of freedom gnew at the time of BBN is (at 95% confidence level) [235]

gnew < 0.263 , (B.20)

which, following [236], can be interpreted as a constraint on cold hidden sectors. A hidden
sector that contains gh,BBN relativistic degrees of freedom with a temperature Th,BBN at the
time of BBN gives a contribution to gnew of

∆gnew = gh,BBN

(
Th,BBN

Tv,BBN

)4

= gh,BBN ε
4
BBN

(B.21)

where BBN denotes quantities evaluated at the time of BBN.6

6It is straightforward to extend these expressions to include hidden sector states that are on the threshold
of becoming non-relativistic.
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If the hidden sector phase transition happens after BBN (so the hidden sector Higgs
and gauge fields are relativistic at this time), Eq. (B.21) constrains

εBBN < 0.40 , (B.22)

assuming there are no additional hidden sector degrees of freedom. If an additional hidden
sector Dirac fermion is introduced so that φ can decay the constraint is slightly stronger

εBBN < 0.37 . (B.23)

Assuming that entropy is conserved between reheating and the hidden sector phase transi-
tion, these can be converted into bounds on ε at the time of reheating via Eq. (6.4)

εBBN ≃ 0.47εRH

(
106.75
gv,RH

)1/3

=⇒ εRH < 0.76
(

106.75
gv,RH

)1/3

,

(B.24)

where we assume the presence of light hidden sector fermions in the last line.
If the phase transition happens before BBN and φ is stable, the relic density constraints,

Eqs. (B.11) and (B.13), are much stronger than BBN bounds so the latter are automatically
satisfied in viable models. If φ decays to the visible sector prior to BBN there are also no
constraints from this source.7

If the phase transition happens prior to BBN and there are light hidden sector fermions,
the constraints from BBN can be significant. Shortly after the phase transition all of the
hidden sector’s energy density is transferred to a population of ψ , and the relic density
bound requires that the mass of these is such that they remain relativistic until the time of
BBN (assuming a relatively large α for an observable signal). As a result we require

α < 0.024 , (B.25)

if αh ≳ 1, and ε < 0.23 at the time of the phase transition otherwise.
CMB bounds on the additional number of relativistic degrees of freedom might also

be relevant. Analogously to Eq. (B.21), these can be converted to a constraint on a cold
hidden sector

gh,CMB ε
4
CMB ≤ 0.0518 (95% CL) , (B.26)

at the time of photon decoupling [154].

7Models in which there are decays of hidden sector states to the visible sector around the time of BBN,
or subsequently, are strongly constrained [237], however we focus on parts of parameter space safely away
from this issue.
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We assume that the hidden sector phase transition happens long before the formation
of the CMB. In this case CMB limits are only important if the hidden sector contains light
fermions. We assume α is not too small (as is required for observable gravitational wave
signals), so the relic ψ states are still relativistic at CMB time from Eq .(B.18). Then
Eq. (B.26) is satisfied if

α < 0.015 , (B.27)

and
ε < 0.2 , (B.28)

at the time of the phase transition. These limits are slightly, but not dramatically, stronger
than the constraints from BBN.

The strong dependence of Eq. (B.21) on ε means that only a mild temperature hier-
archy between the hidden and visible sectors is needed to accommodate BBN and CMB
observations. Despite this, the temperature difference resulting from the large change in
the visible sector number of relativistic degrees of freedom at the QCD phase transition and
electron/positron annihilation is not quite sufficient for the constraints to be satisfied if the
hidden and visible sectors are initially at the same temperature, and an initial temperature
difference is required.8

B.4 Transitions after low scale reheating in the hidden
sector

In this section we analyse the impact of relaxing our previous assumption that the hidden
sector is reheated above the temperature at which its high temperature phase is favoured.
In doing so we show that a tunelling transition still only occurs if the hidden sector is cold
relative to the visible sector.

The hidden sector might be reheated to a temperature that is below the scale at which its
symmetry is restored, or it may not be reheated at all. If the hidden sector is in the symmetry
preserving phase at the end of inflation, this can result in a phase transition happening
through tunnelling rather than thermal fluctuations. Such initial conditions arise most
naturally if the Hubble parameter during inflation is above the symmetry restoration scale.
We will see that this scenario is easily possible in models with a significant temperature
difference between the hidden and visible sectors, but it cannot occur for hidden sectors at
the same temperature as the visible sector if the scale of the phase transition is ≲ TeV.9

8We assume the SM high temperature value of gv at reheating.
9It may be possible to arrange for these initial conditions despite a lower Hubble scale during inflation,

evading our argument, by introducing a more complex prior cosmological history. However this simply
postpones the question of the initial conditions to earlier times.
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We suppose that the Hubble scale during inflation HI > w, and for the moment we also
assume that the hidden and visible sectors are at the same temperature. The visible sector
reheat temperature must be ≳ 5 MeV to preserve the successful predictions of BBN. This
constrains the inflaton decay rate Γinf to

MeV ≲ (ΓinfMPl)
1/2 , (B.29)

which means that the maximum temperature after inflation Tmax (which is larger than the
reheating temperature) will be [238]

Tmax ≃
(
HIM2

PlΓinf
)1/4

≳ 3000GeV
(

HI

100 GeV

)1/4

.
(B.30)

Therefore for hidden sectors at a scale w ≲ TeV the universe automatically reaches a
temperature at which the hidden sector symmetry is restored if HI ≳ w. Subsequently,
as the temperature drops a thermal transition will happen in preference to a tunnelling
transition, as in the previously considered case.10

For hidden sectors at higher scales it is possible that its symmetry is restored during
inflation and the sector subsequently undergoes a tunnelling transition, despite being at
the same temperature as the visible sector. This requires Tmax < w, and that the tunnelling
transition happens before H drops below ∼ w2/MPl, when the universe would reenter
an inflationary phase. The conflicting pressures of reheating above the scale of BBN
and having Tmax < w mean that tunnelling transitions only happen in a small region of
parameter space. Additionally, the entropy injection by the inflaton decays after the phase
transition dilute the present day gravitational wave signal in this case.

These issues are avoided if the hidden sector is cold relative to the visible sector. The
Hubble scale during inflation can be sufficiently high that the hidden sector symmetry
is restored, H > w. However, if the inflaton decays dominantly to the visible sector the
hidden sector temperature might never get close to w, despite the visible sector being
reheated above the scale of BBN. In this case a thermal transition will not take place, but
provided S4 is sufficiently large a tunnelling transition can happen before the hidden sector
vacuum energy density dominates the universe.

The condition that a tunnelling transition completes is Γ4 ≳
√

ρvac/(3MPl), as before.
The parts of parameter space that satisfy this condition are those in Fig. 6.4 right that

10A minor caveat to this argument is that the relation between the Hubble parameter and temperature is
altered during reheating, because the universe is matter dominated. This makes it slightly less likely that a
transition completes through thermal fluctuations. In practice the difference between the two actions, e.g.
from Eqs. (6.11) and (6.12), is sufficiently large that this does not lead to a tunnelling transition in any of the
parameter space of our model.
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undergo a transition (including parts shown as going through a thermal transition in the
previous context of that plot). The visible sector temperature at the time of the transition
is again given by Eq. (6.17) (assuming, for simplicity, that the transition happens after
reheating completes i.e. when the Hubble parameter is ≲ H (TRH)).
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Appendix C

Gravitational waves signals

Here we summarise results from the literature that support the parameterised fits of the
gravitational waves signals that we use in Chapter 7, and our neglect of emission from
turbulence and field oscillations. In particular, we argue that despite uncertainty on the
details of the signals, the prediction of a significantly steeper fall off in the spectrum from
sound waves compared to that from bubble collisions is robust.

Theoretical uncertainty arises because results from numerical simulations require
extrapolation to the large scale separations in the physical phase transitions. In particular,
there is a large difference between the scale of the microscopic physics fixing the critical
bubble radius and bubble wall thickness, and that of the Hubble distance setting the
typical bubble radius at collision. Meanwhile theoretical predictions require simplifying
approximations. Consequently, a combination of these approaches is required to maximise
the reliability of predictions.

C.1 Bubble collisions

The envelope approximation has been used to make theoretical predictions of frequency
dependence of the gravitational wave spectrum emitted by bubble collisions. The low
frequency part of the gravitational wave spectrum is fixed by causality to have a power law
h2ΩGW ( f ) ∝ f 3 (where f is the frequency), since its source is uncorrelated on time scales
bigger than 1/β . As early as 1992, Kosowsky et al. proposed that the high frequency tail
follows a power law f−1.5. This work has since been complemented with an independent
analytical estimate in [114] that predicts a f−1 dependence. The subsequent inclusion of
a slight time dependence of the bubble nucleation rate, as might be the case in a thermal
transition, only altered this prediction by O(10%) and seems to leave the peak magnitude
of the signal unchanged [115].

Numerical simulations using the envelope approximation were performed in [116] and
support the idea of a gradual high frequency fall-off, finding a result that is closer to f−1.
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Subsequent work in [117], also using the envelope approximation, obtained compatible
results, and argues that this is independent of the bubble nucleation rate.

More recently, facilitated by advances in computational power and techniques, [118]
carried out large simulations of the gravitational wave emission in vacuum phase transition,
by directly evolving a scalar field with a suitable potential. This allowed the validity of the
envelope approximation itself to be tested precisely. They found a signal with an f−1.5

high frequency decay and an overall magnitude that is the same as is obtained using the
envelope approximation to within a factor of a few.1 We will for the moment put this
potentially important result to one side, and work with the established results from the
envelope approximation, in the knowledge that the precise magnitude and spectrum of our
expected signal might change slightly.

C.2 Sound waves

The gravitational wave power spectrum from acoustic waves has been studied in increas-
ingly large simulations, in a range of hydrodynamic regimes and with different bubble wall
velocities, in [120–122]. Even with the limited scale separations accessible in simulations,
the sound waves are found to be an important source of gravitational waves if a significant
fluid component exists, and that emission continues for at least a Hubble time after the
bubbles collide. Following this numerical progress, [123] and [124] proposed analytical
models for the emission of gravitational waves from sound waves.

[121] also discusses the extrapolation to the physical regime in the scenario that the
bubble walls reach a terminal velocity and emission by sound waves overwhelmingly
dominates that from bubble collisions. The model in [123] was also tested on the lattice in
[122] and the two descriptions were found to be in broad agreement.

C.3 Turbulence in the plasma

The collision of acoustic sound shells stirs the plasma, and potentially produces turbulent
flows. These start at the scale of the average bubble radius R∗, and cascade to smaller
scales, until damped by viscosity [240, 241, 152, 242]. Gravitational waves are emitted
during this process, potentially over a period of several Hubble times. If the hidden sector
plasma is ionised with respect to a light gauge field, the evolution of the system is more
complex. In this case hidden sector magnetic fields, sourced by the phase transition, are

1The earlier direct simulation of a scalar field [239] finds a gravitational wave signal with an amplitude
dramatically smaller than the theoretical prediction, however this was not confirmed by [118], and the origin
of this result remains unclear.
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amplified dramatically and feed in to the dynamics, leading to a magneto-hydrodynamical
(MHD) system [137, 139, 138].

Studying turbulence with numerical simulations is challenging, owing to the character-
istic wide range of scales in the problem. The largest available simulations of gravitational
wave production from phase transition, [121, 122], find no evidence for a significant
turbulent contribution to the gravitational wave spectrum in a thermal transition, in the
case that MHD effects are not included. However, these simulations are of relatively weak
transitions. Numerical results analysing systems with larger fluid velocities, for which
turbulence is expected to be more important, would be very welcome in determining the
impact of this contribution (although existing simulations are already a numerical tour de
force, and involve substantial computational resources).

When considering phase transitions in the visible sector, for which the plasma is ionised
and MHD is the correct description of the system, the spectrum of gravitational waves
emitted by turbulence is often assumed to take the standard Kolmogorov form, with an
analytically calculated amplitude [139]. This can be parameterised as [101]

h2
Ωturb( f ) = 3.35×10−4

(
H∗
β

)(
κturbα

1+α

)2(100
g∗

) 1
3

vw Ssw( f ) (C.1)

where κturb is the fraction of latent heat released in the phase transition that is converted
into turbulent flows. The spectral shape is

Sturb( f ) =
(

f
fturb

)3( 1
[1+( f/ fturb)]11/3(1+8π f/h∗)

)7/2

, (C.2)

where

h∗ = 1.65×10−3
µHz

(
Tv∗

100 GeV

)( gv∗
100

)1/6
, (C.3)

and the approximate peak frequency is

fturb = 2.7×10−2
µHz

1
vw

(
β

H∗

)(
Tv∗

100GeV

)( gv∗
100

) 1
6 (C.4)

The fraction of the total energy density available for turbulent flows is parameterised as
κturb = εturbκsw, where εturb accounts for the efficiency with which bulk motion is converted
to vorticity. It is generally thought that εturb ≃ 0.05 – 0.1, although this is not conclusive.

For our present purposes, we assume that the contribution to the gravitational wave
spectrum from turbulence is subleading to that from sound waves, which is accurate if the
fits in Eq. (7.8) and (C.1) are accurate. If this is the case, the gravitational wave emission
by turbulence will not affect any of the observational features that we subsequently identify,
and can be safely neglected. Such an assumption is however not fully justified for the
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model that we consider. As discussed, emission from the plasma will only be significant if
the bubble walls reach a terminal speed, but the value of γw in such cases is still typically
large. Despite this, we use the existing fits as a reasonable first approximation, which could
be improved in future work.

C.4 Long lived oscillations after collisions

When bubbles collide they produce large amplitude non-linear oscillations in the scalar
field, which act as a relatively long lasting source of gravitational waves. These were
observed in [239], and studied carefully in [118] using large numerical simulations. This
component of the spectrum is clearly identifiable in simulations of vacuum transitions,
however it appears to be subsumed in (or simply subdominant to) the sound wave emission
in simulations of thermal transitions.

The gravitational wave spectrum produced in long lived oscillations (in simulations
of vacuum transitions) has a peak frequency that appears to be ∼ 1/l0, where l0 is the
thickness of the bubble walls, which has the parametric form [118]

l0 ≃
1√

d2V/dφ 2
. (C.5)

The limited scale separations achievable in simulations means that the low frequency tail
contribution from this source is mixed into the spectrum of gravitational waves from bubble
collisions. At the physically relevant scale separation between H−1

∗ and l0, this emission
would presumably lead to an extremely high frequency peak in the gravitational wave
spectrum, well separated from the signal from bubble collisions.

In the largest simulations carried out so far, the gravitational wave spectrum from
this source is found to still be growing when the simulations are ended [118], and at this
time their contribution to the energy in gravitational waves is starting to exceed that from
bubble collisions. However, as argued in [118], this appears to be an artifact of the limited
scale separations in simulations. By analysing the rate at which the spectrum grows in
simulations, and using the physical expectation that oscillations only persist for a time
H−1
∗ , they predict that the relative energy in the gravtiational waves produced by such

oscillations Ωosc compared to that from bubble collisions scales as

Ωosc

Ωcoll
≃ 102 l2

0
H2
∗
. (C.6)

In the physically relevant regime, Eq. (C.6) predicts, very approximately, Ωosc/Ωcoll ≲

w2/M2
Pl (dropping numerical factors, gauge couplings, and factors of β/H∗). Therefore, in

transitions happening in an effective vacuum, Eq. (C.6) means that a completely negligible
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fraction of the total energy density in gravitational waves comes from long lived field
oscillations sourced this way2 The suppression in transitions with finite bubble walls speeds
will be even stronger, since the vast majority of the energy released by the transition goes
directly into the plasma. As a result, we do not need to consider this source when we
subsequently study the gravitational wave spectra from hidden sectors.

2If further investigation reveals that the amplitude of the signal from this source is larger than predicted
by Eq. (C.6), it would be interesting to investigate if it could lead to observable high frequency signals in
some models.
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Appendix D

Measurements of the SGWB and its
polarisation

The signal-to-noise ratio (SNR) for combining two GW detector channels O and O′ is

SNROO′ =

√∫ tobs

0
dt
∫

d f
S∗OO′( f )SOO′( f )
Pn,O( f )Pn,O′( f )

, (D.1)

where tobs is the total duration of the measurement and Pn,O( f ) and Pn,O′( f ) are the noise
spectral functions in the channels O and O′. Following Ref. [243], the signal function
SOO′( f ) for a stochastic GW background, defined via the Fourier transform of the correlator
of the GW signals passing through the O and O′ channels, can be expanded as a function
of the peculiar velocity of the solar system v = 1.23×10−3 as

SOO′( f )=
3H2

0
8π2 f 3 ∑

λ

{
M λ

OO′( f )Ω
λ
GW( f )−4i vDλ

OO′( f )

[
Ω

λ
GW( f )− f

4
dΩλ

GW( f )
d f

]
+O(v2)

}
,

(D.2)
where λ =±1 is the GW helicity and

M λ

OO′(k) = 4
∫ dΩk

4π
eab,λ (k̂)ecd,λ (−k̂)Qab

O (⃗k)Qcd
O′ (−⃗k) ,

Dλ

OO′(k, v̂) = 4i
∫ dΩk

4π
eab,λ (k̂)ecd,λ (−k̂)Qab

O (⃗k)Qcd
O′ (−⃗k) k̂ · v̂ ,

(D.3)

are the monopole and dipole response functions and k ≡ |⃗k|= 2π f . The matrices Qab
O,O′ (⃗k)

contain the geometries of the detector channels, and the product of the polarisation opera-
tors appearing in the above expressions is given by

eab,λ (k̂)ecd,λ (−k̂) =
1
4
(
δac − k̂ak̂c − iλεacek̂e)(

δbd − k̂bk̂d − iλεbdek̂e) . (D.4)
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LISA consists of three spacecraft arranged in an equilateral triangle whose sides
provide three baselines, and the combinations of pairs of these baselines form three laser
interferometers. We denote the positions of the vertices of the triangle by x⃗i and we fix the
side length to L = 2.5×106 km [244]. Linear combinations of the three interferometers
can be used to construct three detector channels: A, E and T [245]. In the following
we focus on the A and E channels, which are antisymmetric combinations of the three
interferometers. The T channel, known as the null channel, is symmetric between the three
interferometers and is relatively insensitive to the GW signal. The noise function, assumed
to be equal for the A and E channels so that Pn,A = Pn,E ≡ Pn, is given by [246, 247] 1

Pn( f ) =
1
3
[2+ cos( f/ f0)]PIMS( f )+

4
3
[
1+ cos( f/ f0)+ cos2 ( f/ f0)

]
PAcc( f ) , (D.5)

where f0 = 1/(2πL) = 0.019Hz and the interferometer measurement system noise is

PIMS( f ) = 3.6×10−41 Hz−1

[
1+
(

2mHz
f

)4
]
, (D.6)

and the acceleration noise is

PAcc( f ) = 9.2×10−52 Hz−1
(

f
Hz

)−4
[

1+
(

0.4mHz
f

)2
][

1+
(

f
8mHz

)4
]
. (D.7)

The Qab
O (⃗k) matrices for the O = A,E,T channels are linear combinations of those in the

Michelson basis (i = 1,2,3): Qab
O (⃗k) = ∑i=1,2,3 ci

OQab
i (⃗k) [249], where

c =


2
3 −1

3 −1
3

0 − 1√
3

1√
3

1
3

1
3

1
3

 (D.8)

and
Qab

i (⃗k) =
1
4

e−i⃗k·⃗xi
[
T (kL, k̂ · l̂i)l̂a

i l̂b
i −T (kL,−k̂ · l̂i+2)l̂a

i+2l̂b
i+2

]
. (D.9)

Here l̂i = (⃗xi+1 − x⃗i)/L is the unit vector pointing from spacecraft i to spacecraft i+1, all
indices i, i+1, . . . are modulo 3, and the detector transfer function is given by

T (kL, k̂ · l̂) = e−ikL(1+k̂·l̂)/2 sinc
[

kL
2
(1− k̂ · l̂)

]
+ eiπkL(1−k̂·l̂)/2 sinc

[
kL
2
(1+ k̂ · l̂)

]
.

(D.10)
Using these we can calculate the monopole and dipole functions for LISA.

1See also the LISA Data Challenge Manual [248].
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Fig. D.1 non-zero monopole response function (left panel) and the dipole response function
(right panel) for LISA. In the right panel the purple and yellow colours indicate positive
and negative values for λDλ

AE .

The monopole functions M λ
AA and M λ

EE are equal, non-zero and independent of the
helicity λ , whereas the corresponding dipole functions vanish: Dλ

AA =Dλ
EE = 0. Moreover,

M λ
AE = 0, so the signal-to-noise ratio for LISA observing a GW monopole signal is

therefore
SNRtot =

√
SNR2

AA +SNR2
EE =

√
2SNRAA . (D.11)

The dipole response function for the AE channel combination is instead non-zero. It
depends on the angle θv between the normal of the LISA’s detector plane and the direction
of motion of the solar system, and the helicity of the signal, Dλ

AE ∝ λ cosθv. The AE
channel therefore probes the circular polarisation of the GW signal and the signal-to-noise
ratio for observing a circularly-polarised signal with LISA is given by

SNRpol =

√
SNR2

AE +SNR2
EA =

√
2SNRAE . (D.12)

The non-zero response functions M λ
AA = M λ

EE and Dλ
AE are displayed in Fig. D.1.

In the left panel of Fig. D.2 we show the LISA sensitivities for the total GW signal and
its polarisation defined as

Ptot( f ) =
Pn( f )

M λ
AA( f )

, Ppol( f ) =
Pn( f )

4vDλ
AE( f )PGW

, (D.13)

where PGW denotes the fractional polarisation of the GW signal (see Eq. (8.35)). In the
right panel of Fig. D.2 we show the power-law integrated sensitivity curves for LISA
assuming tobs = 4y and the threshold SNR = 10, for different values of the polarisation
fraction PGW. We find that LISA can observe the polarisation of a fully-polarised GW
signal down to h2

0ΩGW = 4×10−11, in agreement with Ref. [243]. The sensitivity scales
as a function of the polarisation fraction of the signal as 1/PGW.
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Fig. D.2 Left panel: The dashed line shows the noise spectral density P1/2
n for LISA, the

solid red line the corresponding sensitivity for the total GW signal and the solid purple
line the corresponding sensitivity for a fully polarised GW signal, PGW = 1. Right panel:
The power-law integrated LISA sensitivity curves for the total GW signal and polarisation
of the GW signal for a 4-year integration time with different values of the polarisation
fraction PGW (see Eq. (8.35)).

It is clear from the above discussion that detectors with just a single interferometer
channel, such as a single LIGO detector, cannot detect circular polarisation of the SGWB.
Nor, indeed, can AEDGE or a pair of such detectors. On the other hand, missions with one
or more triangular sets of interferometers such as ALIA, BBO [250], DECIGO [251] and
AMIGO [252] would be sensitive to polarisation of the SGWB at higher frequencies than
LISA.
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