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Abstract: We review the canonical transformation in quantum physics known as the Bogoliubov
transformation and present its application to the general theory of quantum field mixing and
oscillations with an arbitrary number of mixed particles with either boson or fermion statistics.
The mixing relations for quantum states are derived directly from the definition of mixing for
quantum fields and the unitary inequivalence of the Fock space of energy and flavor eigenstates is
shown by a straightforward algebraic method. The time dynamics of the interacting fields is then
explicitly solved and the flavor oscillation formulas are derived in a unified general formulation with
emphasis on antiparticle content and effect introduced by nontrivial flavor vacuum.
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1. Introduction

The importance of the proper choice of the degrees of freedom can hardly be un-
derestimated in physics. Taking the form of canonical transformations and generalized
coordinates formalism in classical mechanics, the transformations of degrees of freedom
had been taken to a qualitatively different level in quantum physics and are responsible
for such dramatic phenomena as phase-transitions, superconductivity, superfluidity and
quark-hadron duality. Representations of physical theory in terms of different generalized
coordinates in classical mechanics were emphasized and elaborated in the theory of canon-
ical transformation (CT) using Hamiltonian dynamics and the Jacobi Equation. The theory
of CT plays a central role in classical mechanics both by providing a powerful tool for
solving dynamics and by setting up a conceptual framework to establish bridges between
various physical models. However, the general theory of CT fails in quantum mechanics
due to the operator nature of the generalized coordinates that leads to the ordering ambi-
guities in generating functions. Although some conjectures existed that identified CT in
quantum mechanics with unitary transformations and even some classes of non-unitary
transformations, the true relevance of CT in quantum physics is yet to be established. Out
of a large body of CT known in classical mechanics, the only transformation that survived
the quantum transition is what is known today as the Bogoliubov Transformation (BT).

In this work, we consider the role of BT in the field theory of mixing and the definition
of the flavor quantum states and make an attempt toward a complete formulation of such
a field theory of mixing. This involves an introduction of general formalism as well as
phenomenological implications. Quantum mixing of particles is among the most interest-
ing and important topics in particle physics [1–6]. The standard model involves quantum
mixing in the form of the Kobayashi–Maskawa (CKM) mixing matrix [7], a generalization
of the original Cabibbo mixing between d and s quarks [8]. Also, recently, convincing
evidence of neutrino mixing have been provided by Super-Kamiokande and SNO experi-
ments [5,6,9–14], thus suggesting neutrino oscillations as the most likely resolution for the
solar neutrino puzzle [15–18] and the neutrino masses [19–22].
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Since the middle of the century, when the quantum mixing was first observed in
meson systems, this phenomenon has played a significant role in the phenomenology
of particle physics. Back in the 1960s, the mixing of K0 and K̄0 provided evidence of
CP-violation in weak interactions [23] and till today meson mixing is used immensely
to experimentally determine the precise profile of the CKM unitarity triangle [7,8,24].
Upgraded high-precision B-meson experiments would be vital to search for deviations
from the unitarity in a CKM matrix, which can put important constraints on the physics
beyond the standard model. At the same time, in the fermion sector, the discovery of
neutrino mixing and neutrino masses challenged our fundamental understanding of the
P-violation and, in part, of the standard model itself.

Regarding the vanishing magnitudes of the expected new physics effects (such as the
unitarity violation in the CKM matrix and/or neutrino masses), it is imperative that the
theoretical aspects of the quantum mixing are precisely understood. In this respect, it was
noticed recently that the conventional treatment of flavor mixing, where the flavor states
are defined in the Fock space of the energy eigenstates, suffers from the problem with the
probability conservation [25,26]. This suggested that the mixed states should be treated
independently from the energy eigenstates. It was found, indeed, that the flavor mixing
in quantum field theory introduces very nontrivial relationships between the flavor and
the energy quantum states, which lead to unitary inequivalence between the Fock space
of the interacting fields and that of the free fields [27–30]. This is quite different from the
conventional perturbation theory where one expects the vacuum of the interacting theory
to be essentially the same as one of the free theory (up to a phase factor eiS0 [31,32]).

Recently, the importance of mixing transformations has prompted their fundamental
examination from a field-theoretical perspective. The investigation of two-field unitary
mixing in the fermion sector by Blasone and Vitiello [25,30,33,34] demonstrated a rich
structure of the interacting-field vacuum as a SU(2) coherent state and altered the oscilla-
tion formula to include the antiparticle degrees of freedom. Subsequent analysis of the
boson case revealed a similar but much richer structure of the vacuum of the interacting
fields [35,36]. Especially, the pole structure in the inner product between the vacuum of
the free theory and the vacuum of the interacting theory was found and related to the
convergence radius of the perturbation series [36]. Attempts to look at the mixing of more
than two flavors have also been carried out [37,38]. Also, a mathematically rigorous study
of 2-flavor quantum field mixing has been offered by Hannabuss and Latimer [39,40].

In this article, we present a brief review of CT and apply the quantum linear CT (or
BT) to the advances in quantum field theory of mixing. The mixing relations for quantum
states here are derived directly from the definition of the mixing for quantum fields and
the unitary inequivalence of the Fock spaces of energy and flavor eigenstates is shown by a
direct algebraic method. The time dynamics of the interacting fields is explicitly solved and
the flavor oscillation formulas are derived in a general form with emphasis on antiparticle
content and the effect from the nontrivial flavor vacuum.

The paper is organized as follows. In Section 2, we discuss the theory of CT with a
special emphasis on quantum linear CT (or BT) as they appear in classical and quantum
physics discussing their novel applications even in superfluidity and low-energy QCD. In
Section 3, we analyze quantum mixing from a general perspective of quantum field theory
and introduce most general field-theoretical linear mixing relations. We then analyze
implications of these relations for the flavor vacuum state, flavor Fock space and time
dynamics of flavor states in quantum field theory. In Section 4, we present the mixing
matrices and discuss the mass parameterization issue. We obtain the mass parameters in
rather general form for boson/fermion mixing with an arbitrary number of flavors and
discuss the issue of the mass parametrization. Conclusions follow in Section 5.

Supplemental materials are placed in the Appendices. Appendix A is devoted to
explicitly solving the structure of the nontrivial flavor vacuum state in the general quantum
field theory of flavor mixing. In Appendix B, we list explicitly the mixing parameters for
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the most important cases of particle mixing. In Appendix C, we present the results of
application of our general formalism to 2-flavor mixing for spin 0, 1/2 and 1 particles.

2. Canonical Transformations in Quantum Physics

The theory of CT is a powerful tool of classical mechanics. Yet, the strength of CT
is yet to be fully realized in quantum mechanics [41–44]. The ground for CT in classical
mechanics is laid down by the Hamilton formalism in which the Lagrangian function and
the dynamics in terms of generalized coordinates

∂

∂q̇i
L(q, q̇, t)− ∂

∂qi
L(q, q̇, t) = 0 (1)

is translated into dynamics in terms of twice as many coordinates and momenta and the
Hamiltonian function

q̇i =
∂

∂pi
H(q, p, t),

ṗi = − ∂
∂qi
H(q, p, t).

(2)

Hamiltonian formalism is advantageous over Lagrangian formalism in that it reduces
the system’s dynamics to the solution of a set of first order differential equations. On
the other hand, one has to deal with twice as many variables. The main advantage
of the Hamiltonian formalism is, however, in the conceptual framework. Note that in
Lagrangian formalism the only “fundamental” degrees of freedom are the generalized
coordinates and the momenta are merely derivatives p = ∂L

∂q̇ . In Hamiltonian formalism
both coordinates and momenta are treated on equal footing and are independent except for
the dynamical link established by Hamilton’s Equation (2). Such independence provides
the most important piece of the foundation for the theory of canonical transformations.

Thus, in classical mechanics CT is such a change of the phase space variables (q, p)→
(Q, P) that preserves the Poisson bracket

[q, p] = 1 = [Q, P]. (3)

The Poisson bracket is defined as usual,

[ f , g] =
∂ f
∂q

∂g
∂p
− ∂ f

∂p
∂g
∂q

. (4)

The main property of CT is the way the action is transformed∫
dt(pq̇−H(p, q, t)) =

∫
dF(P, Q, t) +

∫
dt(PQ̇−H′(P, Q, t)), (5)

where the full differential is given by

dF = p · dq− P · dQ. (6)

As long as Equation (5) holds, the dynamics of the system in new coordinates is
described with Hamilton formalism and, in this sense, is similar to that of the original
description. F(P, Q, t) is often used to characterize classical CT and is typically called a
generating function [45]. CTs are extremely helpful tools that allow to change the system’s
Hamiltonian to a simpler form thus leading to great simplifications in the equations of
motion. A textbook example in this respect is the oscillator dynamics, which can be
transformed to a trivial problem with decoupled variables with [45]

P = 1√
2
(ip + x)

Q = 1√
2
(−ip + x),

(7)
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conventionally denoted as a and a†. CT can also be used to generate families of exactly
solvable Hamiltonians out of a single Hamiltonian where the dynamics are known, thus,
providing a set of "toy" models in which the properties can be studied exactly. Finally,
CT plays a central role in the Jacobi theory where a special transformation is sought that
reduces the dynamics to a trivial oneH → H′ = 0 and thus provides immediately the full
solution to the classical equations of motion [45].

In quantum mechanics, however, the use of CTs is practically completely lost. Three major
problems exist in the translation of the formalism of CTs to the quantum mechanics [46–48]: the
ordering of operators must be specified, the inverse and fractional powers of operators that
may appear in the transformation must be handled and the possibility of non-unitary CT
must be addressed. While in classical mechanics three major roles of canonical transforma-
tions (evolution, physical equivalence and solving theory) are blurred together, in quantum
mechanics they are distinct. In quantum mechanics the evolution is produced by unitary
transformations, while the physical equivalence is proved with isometric transformations
(norm preserving isomorphisms between different Hilbert spaces) and the solution of a
theory is achieved by general transformations, which may involve non-unitary transforma-
tions [49,50].

A number of approaches had been pursued in a general attempt to resolve these
issues [41–44,47,48,51–59]. The conjecture that CTs in quantum mechanics are one and the
same with the unitary transformations is one of the oldest such attempts [51,52]. Non-
hermitian linear transformations [56] and general form integral transformations [53–55]
had also been considered in this respect. Such approaches typically experience the problem
that the procedure necessary to build and apply a CT is not at all simpler than finding the
solution of the original Schrodinger equation itself, thus undermining the very first idea of
the use of CT for simplification of the original problem [51–55].

A rather different approach embraces the path integral as the base for further devel-
opment of CT in the quantum theory [57–59]. The Feynman path integral (PI) written in
the phase space of p and q provides one of the most startling paradoxes in the breakdown
between classical and quantum CTs. Conventionally, one writes the PI in the Euclidean
space as

U (q, q′; t) =
∫
Dq(t)Dp(t)e

∫
dt(ipq̇−H(p,q,t)). (8)

The similarity between Equations (5) and (8) may tempt one to use this relation as
the basis for the program of quantization of CT [57–59]. Nonetheless it had been noted in
the literature that the main obstacle along this line consists in the discretized nature of the
expression (8) [44]. Specifically, one needs to remember that Equation (8) is only a formal
representation in which the time derivatives, for example, should be properly defined. In
this sense Equation (5) can not hold if p · dq− P · dQ 6= dF(P, Q) in a finite-difference form.
Also, an explicit application of canonical transformation to formal expression (8) to derive,
for example, the analog of the Jacobi equation for the propagator U (q, q′) immediately
yields an inconsistent answer.

The breakdown of Equation (6) in the quantum case can be seen as the primary source
of the lack of correspondence between quantum and classical CTs. It may be of interest to
examine this point more closely. Consider, for example, the point transformation q→ Q(q)
in the usual Lagrangian form of the path integral

U (q, q′; t) =
∫
Dq(t)e−

∫
dt(q̇2/2+V(q)) →

U (Q, Q′; t) =
∫
DQ(t)J(Q)e−

∫
dt[( dQ

dq )
2Q̇2/2+V(Q)].

(9)

This transformation is widely applied in the field theory and generally known to work
well even though Equation (9) is only a formal representation of a properly discretized
expression. One reason for this is that the contributions to the PI in Lagrangian form come
only from the trajectories that are continuous, thus, justifying the use of transformation (9).
Really, one considers a trajectory that has a discontinuity q(τ)→ q(τ + 0) = q(τ) + ∆ at
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some time τ. If sampled with time step dt, such trajectory would contribute to the integral
a quantity

e−∆2/2dte
−
∫

t 6=τ

dt(q̇2/2+V(q))
. (10)

As dt→ 0, this contribution becomes exponentially suppressed relative to the contri-
butions coming from the comparable continuous trajectories. Then, it can be said that the
support of the integral in Equation (9) consists only from the continuous trajectories q(t)
and this is why the formal operation with the integrand in Equation (9) works.

In the case of the phase space form of PI (8), one may immediately observe that integra-
tion over discontinuous trajectories (q(t), p(t)) is not suppressed. Really, the contribution
of such a trajectory would come with merely a factor of ep∆q where ∆q is the discontinuity
in q(t). Moreover, to derive the Lagrangian PI from Equation (9), one needs to integrate
each p(x) from −∞ to +∞ regardless of the values of p(x) at the neighboring points. Thus,
in Equation (8) the discretized nature of the integral is important and Equation (6), infinites-
imally correct, cannot be generally used. It is useful to note, however, that Equation (6) will
retain its general validity in finite-differenced form if the canonical transformation is linear.
Indeed, it had been known for quite some time that linear canonical transformation can
be applied successfully in quantum mechanics (most typical example is, again, quantum
oscillator) [41–43].

Despite such severe limitations of the apparatus of CTs in quantum mechanics, the use
of linear CT had proved to be of great advantage in the study of nonperturbative features
of quantum systems. The quantum linear CT was first put forward in 1947 by Russian
physicist N. Bogoliubov in order to build a microscopic theory of superfluidity and often
bears his name [60]. The method was then extended to superconductivity in 1958 [61,62].
The theory of BT is usually formulated in terms of creation/annihilation operators of the
quantum many-body problem. Two forms of BT (one for fermions and another for bosons)
are known. For bosons BT reads

Ak = u(k)ak − v(k)b†
−k

B†
−k = v(k)ak − u(k)b†

−k,
(11)

where u(k) and v(k) are transformation amplitudes such that u2(k) − v2(k) = 1. For
fermions

Ak = u(k)ak + v(k)b†
−k

B†
−k = −v(k)ak + u(k)b†

−k
(12)

and u2(k) + v2(k) = 1.
The theory of BT can be viewed mathematically as a rotation of basis in the linear

space of quantum fields built on (ak, bk, h.c.). BT is a unitary transformation and can be
represented in the form

U = e
i ∑

k
ρ(k)(a†

k b†
−k−akb−k)

. (13)

Physically, due to the manifestation of fundamental physical properties as observable
effects inherent to quantum physics, this transformation describes an alternative set of
degrees of freedom of the field-theoretic model that appear as quasi-particles with different
properties than those of the original particles.

Over the years, BT found a wide range of applications in various areas of quantum
physics from condensed matter theory [63] to strongly interacting QCD [64–67]. It pro-
vided a powerful nonperturbative tool that helps to understand many central features of
macroscopic behavior of field-theoretic models. To illustrate the power of BT, let us begin
by considering its first success in the theory of superfluidity in more detail.

Superfluidity is the phenomenon of loss of viscous friction in a flowing fluid at
superlow temperatures. Superfluidity was discovered by Petr Kapitza and Arno Allen
Penzias and Robert Woodrow Wilson in 1938 [68]. P. Kapitza later received the Nobel prize
for this discovery. The theoretical explanation of superfluidity was obtained in the works
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of L. Landau and N. Bogoliubov [60,69,70]. According to Landau, viscous friction is due
to the transfer of momentum between neighboring fluid elements toward the walls of the
fluid container via the gradient in the fluid velocity. At low temperature, the viscous drag
is transferred to the fluid from the stationary walls by means of elementary excitations. If
such elementary excitation is created at the wall with momentum p, it will transfer to the
fluid a momentum P0 = p and an energy E0 = ε(p) so that the momentum and energy of
the fluid become

P = Mv + P0
E = 1

2 Mv2 + E0 + P0v.
(14)

The central point of this argument is the notion that the viscous drag excitations can
be created at the walls only if there is free energy to do so, i.e., if the energy of the fluid will
decrease when such excitation is created. That means that if

v < ε(p)/p (15)

then none such elementary excitation can be created. For any fluid in which elementary
excitations at low temperature are phonons with speed

u = lim
T→0

ε(p)
p

, (16)

such condition occurs when v < u.
In our argument, we intentionally dismissed the role of momentum transfer by the

population of thermal elementary phonons that always exist in the liquid and that is
capable of carrying momentum from one point to another and thus provide a source of
viscous friction. The momentum, which thermal elementary excitations may support,
is finite and decrease with the temperature. It may be shown that such momentum is
proportional to fluid velocity and is

P = Mexv. (17)

Whenever Mex < M the momentum capacity of thermal phonons becomes insufficient
to decelerate the fluid, i.e., superfluidity is observed. In these conditions, one component
of mass Mex acts like an ordinary fluid being subject to viscous forces and the remainder
experiences zero viscous effect and forms the superfluid component. The amount of
viscous components at a given temperature can be calculated in the microscopic theory
of superfluidity, which we will describe below, and can be shown to fall as T4 as the
temperature decreases.

The microscopic theory of superfluidity had been suggested originally by N. Bogoli-
ubov [60,63] and made use of three fundamental points, which are thought to be valid for
low-temperature real fluid. The three fundamental assumptions of Bogoliubov’s treatment
are that at low temperature a macroscopic number N0 of particles in the fluid occupies
one single-particle state, for example, k = 0, the interaction between particles is essentially
short range and its main effect consists in scattering particles in/out of the Bose condensate,
thus making pairs of particles with momenta k and −k as the second largest population in
the system. With these assumptions the original many-body Hamiltonian

H = ∑
k

ε0
k a†

k ak +
1

2V ∑
k1,k2,k3,k4

Vk1−k3 a†
k1

a†
k2

ak3 ak4 δk1+k2,k3+k4 (18)

can be transformed into

H =
gN2

2V
+

1
2 ∑

k 6=0

[
(ε0

k + ng)(a†
k ak + a†

−ka−k) + ng(a†
k a†
−k + aka−k)

]
, (19)
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where we also neglected “small” commutator [a0, a†
0] relative to N0. Here, g is the strength of

effective short range interaction between the particles in the superfluid fluid and n = N/V
is the particle density.

It was further observed by N. Bogoliubov that Hamiltonian (19) can be exactly diago-
nalized with the linear canonical transformation of the form (11) where

v2
k = u2

k − 1 =
1
2

(
ε0

k + ng
Ek

− 1

)
(20)

and
Ek =

√
(ε0

k + ng)2 − (ng)2 =
√
(ε0

k)
2 + 2ngε0

k . (21)

After BT, the Hamiltonian becomes

H =
1
2

gn2V − 1
2 ∑

k 6=0
(ε0

k + ng− Ek) +
1
2 ∑

k 6=0
Ek(A†

k Ak + A†
−k A−k). (22)

Equation (22) solves the original problem in its entirety yielding the energy spectrum
of the elementary excitations, ground state energy and vacuum structure. In particular, all
elementary excitations correspond to coherent superpositions of particles a†

k and holes a−k
in the Bose condensate with the wave vector k and energy Ek. In a long-wavelength limit
(k→ 0) the elementary excitations represent sound waves with the propagation speed

s =
√

ng
M

. (23)

For short wavelength, the spectrum is that of a free particle shifted upward by a
constant gn arising from the interaction with the Bose condensate.

From Equation (21), the thermal spectrum of the excitations can be easily derived and
shown to be that of a Bose gas and all other thermodynamic properties of superfluid can
be found [63]. In particular, one can easily show that the momentum, which can be carried
by thermal excitations, at low temperatures is proportional to T4

P = −
∫ d3 p

(2πh̄)3 p · n(ε− pv) ∼ vT4, (24)

where n(ε) is the Bose–Einstein distribution. In this brief example, the power of the
application of CT can be vividly seen because an exact solution to a highly nontrivial
problem is obtained with ease and full information about the system becomes available.

Even when BT does not lead to a full diagonalization of the model Hamiltonian, the
reduction gained by its use may be beneficial. In QCD, BT has been used continuously to
describe nontrivial structure of a QCD vacuum, its superconducting properties and values
of quark and glue condensations [64–67,71]. In a number of variational and field-theoretic
works, it was suggested that the quantum configurations with quark pairs may have a
lower free energy than a perturbative QCD vacuum and thus be energetically preferred
leading to existence of nontrivial color condensation in a QCD vacuum. Such models had
also been extended to describe properties of dressed constituent quarks and to derive from
fundamental QCD hadron structure and mass spectrum [71]. In BT treatment, the QCD
vacuum |Ω〉 is modeled as the BT vacuum annihilated by quasi-particle operators obtained
from the original current-quark ladder operators with a rotation

Aλ(k) = cos θkaλ(k)− λ sin θkb†
λ(k),

Bλ(k) = cos θkbλ(k) + λ sin θka†
λ(k).

(25)
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Here, λ is the helicity of the quark. Such vacuum can be explicitly related to the
perturbative vacuum by

|Ω〉 = exp

[
−∑

λ

∫ d3k
(2π)3 λ tan θka†

λ(k)b
†
λ(k)

]
|0〉, (26)

where the gap angle θk is a free parameter used to minimize the energy of the trial QCD
vacuum. The condition of the energy minimization typically results in a nonlinear integral
gap equation, which needs to be solved in order for the explicit structure of the vacuum
to become transparent. Such approach is able to describe the vacuum condensations in
QCD as well as superconducting BCS features of the QCD vacuum. Operators Aλ(k) can
be seen to describe the dressed quarks and may be further used to model dynamical mass
generation of the constituent quarks in the Constituent Quark Model (CQM) and to produce
a CQM-like description of the hadrons starting from the current quarks and fundamental
QCD Hamiltonian [71]. The BT application to the QCD in 1+1 dimensions [72] has been
exhibited for the mass gap of the quark [73–75] and the quark–antiquark bound-state
equations [76–79].

Along this line, one employs the above QCD vacuum to construct meson states as
produced on top of |Ω〉 by means of the meson creation operator

Q†
nJP = ∑

γδ

∫ d3k
(2π)3 ΨnJP

γδ (k)A†
λ(k)B†

δ (−k). (27)

The application of a variational principle, or Tamm–Dancoff truncation, to

|nJP〉 = Q†
nJP|Ω〉 (28)

leads to a Schrodinger type equation, which can be solved for the spectrum and wave-
functions of the mesons [71]. Further improvements of this approach, which rely on the
QCD vacuum improved by an introduction of two and four quasi-particle correlations, is
known in QCD as Random Phase Approximation (RPA) [71,80,81]. RPA, based on taking
into account particle–particle and particle–hole correlations in the mean field, also applied
in many other areas of quantum physics.

In all of these applications, BT serves as a powerful tool to help gain nonperturbative
knowledge about quantum-mechanical and field-theoretical properties of physical systems.
BT, stemming from the classical apparatus of CTs, is more an exception rather than a rule
given that the systematic translation of classical CTs into quantum framework experiences
detrimental difficulties. Nonetheless, since its introduction in 1947, BT found a wide area
of applications ranging from problems of condensed matter physics to strong interacting
QCD as well as meson physics. It is repeatedly employed to describe nontrivial correlations
in physical systems responsible for some dramatic physical behavior such as superfluidity,
superconductivity, phase transitions, nontrivial vacuum condensations. In this article, we
will now focus our attention on the application of BT that appeared in the field theory
of flavor oscillations. In the upcoming sections, we will examine this development in
greater detail.

3. General Theory of Quantum Field Mixing

Quantum field mixing is a fascinating phenomenon, first observed in weak interac-
tions, where the interacting states of a particle are dramatically different from the free-
propagation states. As a result, the particle, say, produced in a weak decay evolves over
time into a drastically different weak-interaction state with a very different weak decay
signature. One usually thinks of this phenomenon in terms of weak-interaction (or flavor
A, B, . . . ) eigenstates and free-propagation (or energy a, b, . . . ) eigenstates. The flavor state
produced in weak interaction shall be represented as a superposition of energy-eigenstates,
which then propagate independently from each other. Should weak decay happen once
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more, however, the evolved superposition of energy-eigenstates should be represented
again in terms of flavor-eigenstates to find appropriate weak-decay modes. In quantum
mechanics, mixing of flavors is described by the interaction Hamiltonian 1

HI =
1
2 ∑

k
∑

µ,ν=A,B,...
mµν(a†

µ,kaν,k + a†
ν,kaµ,k), (29)

where a†
A,B,...(aA,B,...) are creation (annihilation) operators for quantum flavor-states. The

full Hamiltonian
H = ∑

k
∑

µ=A,B,...
εµ,ka†

µ,kaµ,k + HI (30)

can be straightforwardly diagonalized by introducing quantum energy states

H = ∑
k

∑
i=a,b,...

εi,ka†
i,kai,k+const

ai,k = ∑
µ=A,B,...

U†
iµaµ,k, (31)

where U†
iµ is an appropriate unitary mixing matrix. This simple transformation allows one

to immediately solve for time dynamics of flavor states in quantum mechanics and arrive
to oscillation formulas for probability for a flavor state A to appear as a flavor state B after
time t;

|µ, k〉 = ∑
i

Uµi|i, k〉

|〈ν, k|µ, k, t〉|2 = |∑
i

UµiU†
iνe−iεi,kt |2.

(32)

In the case of only two flavors, one recovers the famous Pontecorvo oscillation formu-
las

|〈A|A; t〉|2 = 1− sin2(2θ) sin2( Ea−Eb
2 t);

|〈B|A; t〉|2 = sin2(2θ) sin2( Ea−Eb
2 t),

(33)

where θ is a 2-flavor mixing angle.
In quantum field theory, analogously, mixing is described with interaction Hamilto-

nian density

HI(φ(x)) =
1
2 ∑

µ,ν=A,B,...
mµνφ†

µ(x)φν(x) + h.c. (34)

Full classical Hamiltonian can be similarly diagonalized with appropriately chosen
linear transformation from flavor-fields φµ to mass-fields ϕi

φµ → ϕi = ∑
µ=A,B,...

U†
iµφµ, (35)

H0(φ(x)) +HI(φ(x))→ H′0(ϕ(x)). (36)

HereH0 is a free-theory Hamiltonian and the free-fields ϕi are given in terms of their
Fourier transform as usual

ϕi = ∑
σ

∫ dk√
2εik

(
ui

kσaikσ(t)eikx + vi
kσb†

ikσ(t)e
−ikx

)
. (37)

1 We use the Latin indices i, j, k, . . . and small Latin letters a, b, . . . to label the mass-eigenstates and the Greek indices µ, ν, ρ, . . . and capital Latin
letters A, B, . . . to label the flavor-eigenstates.



Universe 2021, 7, 51 10 of 27

aikσ(t) = e−iεiktaikσ and bikσ(t) = e−iεiktbikσ with the standard equal time commuta-
tion/anticommutation relationships. In Equation (37), ui

kσ and vi
kσ are the free particle and

antiparticle amplitudes, respectively, and σ is the helicity quantum number given by

(n · s)ui
kσ = σui

kσ ; (n · s)vi
kσ = σvi

kσ , (38)

where s is the spin operator and n = k/|k|.
Differently from the quantum mechanics, in the quantum field theory the transforma-

tion (35) does not immediately imply a specific form for the mixing relations between flavor
and energy eigenstates. In fact, the intrinsic presence of antiparticle degrees of freedom in
quantum field theory introduces a dramatic difference. In field theory any operators with
the same conserved quantum numbers can mix. This means that in general in Equation (31)
not only the flavor particle annihilation operators with momentum k and helicity σ will
mix, but also the flavor antiparticle creation operators with momentum −k and helicity
−σ may enter. Thus, the most general linear mixing relations in quantum field theory are

aµkσ = ∑
i=a,b,...

(
αµi(k)aikσ + βµi(k)b†

i−k−σ

)
,

b†
µ−k−σ = ∑

i=a,b,...

(
αµi(k)b†

i−k−σ + ηβµi(k)aikσ

)
,

(39)

where aµ(ai) stands for flavor-eigenstate (mass-eigenstate) particle annihilation operator
and bµ(bi) stands for flavor-eigenstate (mass-eigenstate) antiparticle annihilation operator.
In these relations, we explicitly imply that antiparticles and "particle-holes" are treated
on an equal footing, as they enter covariant field ϕ(x). Factor η = (−1)2S with S being
the spin of the mixed fields (η is +1 for bosons and −1 for fermions) has the quantum-
statistics related origin and is required to guarantee [aµkσ, bµ−k−σ]± = 0. Consequently,
we have introduced two mixing matrices, αµi and βµi, describing particle–particle mixing
and particle–antiparticle cross-mixing. For brevity, we will suppress momentum notation
implying that all quantities are taken at given momentum k and helicity σ or −k, −σ as
indicated by the sign in front of the flavor/mass-eigenstate index (i.e., ai stands for aikσ

and b−i for bi−k−σ).
A few simple properties of quantum mixing transformation are in place. For Equation (39)

to preserve commutation/anticommutation relationships,{ ∣∣αµi
∣∣2 + ∣∣βµi

∣∣2 =
∣∣Uµi

∣∣2 fermions,∣∣αµi
∣∣2 − ∣∣βµi

∣∣2 =
∣∣Uµi

∣∣2 bosons,
(40)

so that one can relate αµi and βµi to cos and sin for fermions or cosh and sinh for bosons,
respectively;

αµi = Uµi

{
cos(θµi) fermions
cosh(θµi) bosons

,

βµi = Uµi

{
sin(θµi) fermions
sinh(θµi) bosons

.
(41)

Equation (39) must also furnish a representation of the classical mixing transforma-
tion (35) in the linear space of quantum fields. Then, it follows that the following relation
should hold

θµi − θµi′ = θi′i (42)

independent of µ. We will consider a specific form of α and β quantum mixing matrices in
Section 4. Let us continue with this general form for the moment.

The possibility of antiparticle admixture in (39) has important consequences. In partic-
ular, it is clear that the vacuum |0〉, associated with the free fields ϕi, is not annihilated by
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aµ. In fact, the use of |0〉 to define flavor quantum states introduces various normalization
problems. For example, if one proceeds to define the flavor quantum state as

|A〉 = a†
A|0〉,

then obviously, as follows from Equation (40),

〈A|A〉 = ∑
i
|αAi|2 6= 1.

This forces one to introduce much artificial normalization factors as in, for exam-
ple, [27,30]. In a more general form, a similar normalization problem had been demon-
strated for a regular perturbation theory in the mixing of two fermions of spin 1/2 [25,26].

Quantum field theory of 2-flavor mixing is a theory simple enough for the perturbation
series to be summed exactly. For example, one may obtain for a time-ordered two-point
function SAA = 〈0|T[ψAψ̄A]|0〉

SAA = SA(1 + m2
ABSBSA + m4

ABSBSASBSA + . . . )

= SA(1−m2
ABSBSA)

−1

= cos2(θ) 6k+ma
k2−m2

a+iδ
+ sin2(θ) 6k+mb

k2−m2
b+iδ

(43)

where the “bare” propagators are SA,B = ( 6 k−mA,B + iδ)−1. The transition amplitude for
a fermion A created at time t = 0 to go into the same particle at time t then is given by

Pr
AA(k, t) = iur†

k,aeiεa,ktS>
AA(k, t)γ0ur

k,a

= cos2(θ) + sin2(θ)|Uk|2ei(εk,a−εk,b)t,
(44)

where S>
AA(t) is forward (t > 0) propagation function, ua,b are bi-spinors used to expand

mass-eigenstate fields and

|Uk|2 =
1
2 ∑

r,s
|ur†

k,bus
k,a|

2.

Upon computing |Uk|2 one can explicitly observe that |Uk|2 < 1 and thus PAA(t→
+0) 6= 1 [25,26]. These results indicate that special care needs to be taken in quantum
field theory to properly define flavor quantum states. In particular, the flavor vacuum
state |Ω〉 shall be properly defined as a state annihilated by all flavor particle/antiparticle
annihilation operators and flavor quantum states shall be built on top of |Ω〉.

The explicit structure of a flavor vacuum state can be obtained by solving the set
of equations

aµ|Ω〉 = 0, bµ|Ω〉 = 0. (45)

Let us express the flavor vacuum state as a linear combination of the mass eigenstates,
i.e., in the most general form,

|Ω〉 = ∑
(n),(l)

1
n1!n2! . . . nk!

B(n)(l)

(
a†

1

)n1
. . .
(

a†
k

)nk
(

b†
−1

)l1
. . .
(

b†
−k

)lk |0〉, (46)

with (n) = (n1n2n3 . . .). After applying Equation (45) to Equation (46) we get an infinite
set of coupled equations

∑
i
(αµiB(ni+1)(l) + βµiB(n)(li−1)) = 0, for all sets of (n), (l), (47)
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where (ni ± 1) = (n1n2 . . . ni ± 1 . . .). The solution of this problem is presented in Appendix
A. For the flavor vacuum state we find explicitly

|Ω〉 = 1
Z exp(

N

∑
i,j=1

Zija†
i b†
−j)|0〉, (48)

where Zij is an (i, j) element of the matrix Z = −α−1 · β. The normalization constant Z
is fixed by 〈Ω|Ω〉 = 1; Z = det1/2(1 + ẐẐ†) for fermions and Z = det−1/2(1− ẐẐ†) for
bosons. We see that the flavor vacuum state has a rich coherent structure. This situation
is different from the perturbative quantum field theory, where the adiabatic enabling of
interaction ensures that |0〉interacting ∼ |0〉 f ree. A rich flavor vacuum renders additional
effects in the flavor dynamics. In particular, the normalization constant Z is always greater
than 1 so that in the infinite volume limit, when the density of states is going to infinity, we
have

Ztot = exp
(

V
(2π)3

∫
d~k ln(Z~k)

)
→ ∞. (49)

Thus, any possible state for the flavor vacuum shall have an infinite norm in the
free-field Fock space and therefore the flavor vacuum state cannot be found in the original
Fock space. The unitary inequivalence of the flavor Fock space and the original Fock space
is therefore established as 〈Ω|0〉 = 1

Ztot
→ 0 as V → ∞.

The time dynamics of quantum field theory can be entirely described in terms of its
non-equal time commutation/anticommutation relationships. We note that in quantum
field theory of mixing only aikσ and b†

i−k−σ operators and their conjugates can mix together.
We denote the set of quantum fields formed by all linear combinations of these operators
and their products (algebra on ai~kσ

, bi−~k−σ
and h.c.) as a cluster Ω(k, σ) with a particular

momentum k and helicity σ. It follows then that Ω(k, σ)’s are invariant under mixing
transformation (39) and we can analyze each cluster independently from each other.

Then, the non-equal time commutators/anticommutators for flavor fields with given
k and σ can be derived from (39) using the standard commutation/anticommutation
relationships for the mass-eigenstate ladder operators;

Fµν(t) = [aµ(t), a†
ν]± = ∑

k,k′

(
αµkα∗νk′

[
ake−iεkt, a†

k′
]
± + βµkβ∗νk′

[
b†
−keiεkt, b−k′

]
±

)

= ∑
k
(αµkα∗νke−iεkt − ηβµkβ∗νkeiεkt);

[b−µ(t), b†
−ν]± = Fνµ(t);

Gµν(t) = [b−µ(t), aν]± = ∑
k,k′

(
α∗µkβνk′

[
b−ke−iεkt, b†

−k′

]
±
+ ηβ∗µkανk′

[
a†

k eiεkt, ak′
]
±

)

= ∑
k
(α∗µkβνke−iεkt − β∗µkανkeiεkt),

(50)

where ± in [ ]± corresponds to commutation/anticommutation. The two matrices F and G
represent the only nontrivial commutators/anticommutators in the sense that all others
are either zero or can be written in terms of elements of these matrices. It is useful to note
that, for t→ +0, Equation (50) shall be reduced to Fµν(0) = δµν and Gµν(0) = 0. We also
note that

Fµν(t)∗ = Fνµ(−t),

Gµν(t)∗ = −Gνµ(t).
(51)

Equation (50) allows one to compute many quantities in the quantum field theory of
flavor mixing directly. For example, the time dynamics of the flavor-field ladder operators
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can be written as aµ(t) = ∑
ν
( fµνaν(0) + gµνb†

−ν(0) + . . .). Then, one can directly get

f ∗µν = [aν(0), a†
µ(t)]± = Fνµ(−t) and gµν = [b−ν(0), aµ(t)]± = Gνµ(−t), while all other

coefficients are zeros:

aµ(t) = ∑
ν

(
Fµν(t)aν + Gνµ(−t)b†

−ν

)
;

b−µ(t) = ∑
ν

(
Fνµ(t)b−ν + ηGµν(t)a†

ν

)
.

(52)

We can now consider various quantities in quantum field theory of mixing, such
as the condensate densities of the mass-eigenstate particles in the flavor vacuum (Z′i =
〈Ω|a†

i (t)ai(t)|Ω〉), the number of flavor-eigenstate particles in the flavor vacuum (Zν =
〈Ω|a†

ν(t)aν(t)|Ω〉) and the particle number expectation for a single flavor-particle ini-
tial state, which is related in the Heisenberg picture to Nρνρ = 〈ρ|a†

ν(t)aν(t)|ρ〉, N̄ρνρ =
〈ρ|b†

−ν(t)b−ν(t)|ρ〉.
The free-field particle condensates in the flavor vacuum state can be computed directly

from Equation (39);
Z′i = ∑

j

∣∣βij
∣∣2. (53)

In the following, the particle–antiparticle symmetry should be taken into account, so
that a corresponding antiparticle quantity can be found from the particle expression after a
necessary substitution (particles→antiparticles and vice versa). It means that the antiparti-
cle condensate is also given by Equation (53). Similarly, the flavor particle condensates in
the free-field vacuum are given by Equation (53) as well. Using Equation (52), we can also
get the flavor-particle condensates in the flavor vacuum;

Zν(t) = ∑
µ

∣∣Gνµ(−t)
∣∣2. (54)

It is remarkable that this number is not zero but oscillates with time.
The evolution of the particle (Nρνρ) and antiparticle (N̄ρνρ) expectation number with

flavor ν can be found using the standard technique of normal ordering, i.e., moving annihi-
lation operators to the right side and creation operators to the left side of the expression.
With this technique, in general, we obtain

Nρνσ(t) = [aρ, a†
ν(t)]±[aν(t)a†

σ]± + δρσ < 0|a†
ν(t)aν(t)|0 >

= F∗νρ(t)Fνσ(t) + δρσZν(t),

N̄ρνσ(t) = η[aρ, b−ν(t)]±[b†
−ν(t), a†

σ]± + δρσ < 0|b†
ν(t)bν(t)|0 >

= ηGνρ(t)Gνσ(t)∗ + δρσZν(−t). (55)

For a specific case of the number evolution in the beam with a fixed 3-momentum, we
find:

Nρνρ =< 0|aρa†
ν(t)aν(t)a†

ρ|0 >=
∣∣Fνρ(t)

∣∣2 + Zν(t),

N̄ρνρ =< 0|aρb†
−ν(t)b−ν(t)a†

ρ|0 >= η
∣∣Gνρ(t)

∣∣2 + Zν(−t).
(56)

We emphasize that no general reason can be found in the above theory for Zν(t) to be
equal to Zν(−t). In fact, explicit computation shows that if the mixing matrix Uµi is not real,
for example, CP violating CKM matrix, Zν(t)− Zν(−t) will have nonzero contribution
proportional to the imaginary part of U. We must understand this quite unexpected result
as a manifestation of T-violation in the presence of CP-violating mixing, which should
be required by the CPT-theorem. Interestingly, Equation (51) demonstrates then that T-
violation can manifest itself only in “particle–antiparticle” cross-mixing, described by Gµν

and not in “particle–particle” mixing described by Fµν.
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The flavor charge Qρνρ can be defined by [33–35]

Qρνρ =
∣∣Fνρ(t)

∣∣2 − η
∣∣Gνρ(t)

∣∣2. (57)

Explicitly we get

Qµνµ = ∑
k,k′

(αµkα∗νkeiεkt − ηβµkβ∗νke−iεkt)(α∗µk′ανk′ e
−iεk′ t − ηβ∗µk′βνk′ e

iεk′ t)

− η ∑
k,k′

(α∗νkβµke−iεkt − β∗νkαµkeiεkt)(ανk′β
∗
µk′ e

iεk′ t − βνk′α
∗
µk′ e
−iεk′ t)

= ∑
k,k′

(ανk′α
∗
νk − ηβνk′β

∗
νk)(e

−i(εk′−εk)tα∗µk′αµk − ηei(εk′−εk)tβµkβ∗µk′)

− η(β∗νkανk′ − α∗νkβνk′)(e
−i(εk′+εk)tβµkα∗µk′ − ei(εk′+εk)tαµkβ∗µk′). (58)

Taking into account Equation (42), we can write, for example, for fermions (S=1/2),

ανk′α
∗
νk + βνk′β

∗
νk = Uνk′U∗νk(cos(θνk′) cos(θνk) + sin(θνk′) sin(θνk))

= Uνk′U∗νk cos(θνk′ − θνk) = Uνk′U∗νk cos(θkk′),

β∗νkανk′ − α∗νkβνk′ = Uνk′U∗νk(cos(θνk′) sin(θνk)− cos(θνk′) sin(θνk))

= Uνk′U∗νk sin(θνk − θνk′) = Uνk′U∗νk sin(θk′k).

Thus, we find

Qµνµ = ∑
k,k′

Uνk′U∗νkUµkU∗µk′(cos2(θkk′) cos(ωk′kt) + i cos(θk′k) cos(θµk + θµk′) sin(ωkk′ t)

+ sin2(θk′k) cos(Ωk′kt)− i sin(θk′k) sin(θµk + θµk′) sin(Ωkk′ t));
(59)

where Ωij = εi + εj and ωij = εi − εj, and finally

Qµνµ = ∑
k,k′

Re(Uνk′U∗νkUµkU∗µk′)(cos2(θkk′) cos(ωk′kt)− η sin2(θk′k) cos(Ωk′kt))

+ ∑
k,k′

Im(Uνk′U∗νkUµkU∗µk′)(cos(θkk′) cos(θµk + θµk′) sin(ωk′kt)

−η sin(θk′k) sin(θµk + θµk′) sin(Ωk′kt)).

(60)

These formulas are valid for bosons with the substitution cos→ cosh, sin→ sinh.
Finally, we note that Equation (56) may be viewed as a superposition of two terms:

ρ→ ν propagation and background vacuum contribution Zν. Thus, one may introduce the
particle–particle and particle–antiparticle propagation amplitudes, respectively,

Pρ→ν(k, t) = [aν(t), a†
ρ(0)]± = Fνρ(t)

Pρ→−ν̄(k, t) = [b−ν(t), aρ(0)]± = Gνρ(t).
(61)

Indeed, such propagation amplitudes also appear from the flavor-field Green functions
defined on the flavor vacuum |Ω〉: 〈Ω|T[φν(k, t)φ†

ρ(k, 0)]|Ω〉.

4. Mixing Matrices and Mass Parameters Issue

As we have seen in the previous section, the possibility of antiparticle admixture
in quantum field-theoretical flavor mixing is capable of introducing new effects in flavor
dynamics. The flavor vacuum state requires rich coherent structure and oscillation formulas
change with high-frequency antiparticle terms.

If the description of classical (or quantum-mechanical) mixing involves one unitary
matrix U†, in quantum field theory in general one needs two matrices α and β to describe
a representation of the mixing transformation. In field theory, these matrices should be
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related to their classical counter-part. A way to establish such a relationship was proposed
in the quantum field theory of flavor mixing by Blasone and Vitiello [30].

Blasone and Vitiello based their theory on the observation that an explicit quantum
transformation Λ(U, t) in the linear space of quantum fields can be constructed out of
fields ϕ and their canonical momenta π that provides a representation of the classical
relation (35);

φA(t) = ∑
i

UAi ϕi(t) = Λ(U, t)† ϕa(t)Λ(U, t), etc. (62)

In the simplest case of two-scalar mixing such a transformation is explicitly

Λ(θ, t) = ei θ
∫

dx(π†
a (x,t)ϕb(x,t)−π†

b (x,t)ϕa(x,t)+h.c.).

This indeed generates the mixing transformation for 2-flavors

φA = cos(θ)ϕa + sin(θ)ϕb
φB = − sin(θ)ϕa + cos(θ)ϕb

and diagonalizes the quantum Hamiltonian, which can be checked by a straightforward
computation. In the associate Fock-space Λ(U, t) acts similarly;

|A〉 = Λ(U, 0)†|a〉, etc, (63)

and the ladder operators are transformed in the same way;

aA(t) = Λ(U, t)†aa(t)Λ(U, t), etc. (64)

These definitions are consistent in the sense that

|A + 1〉 = a†
A(0)|A〉 = Λ(U, 0)†a†

a(0)Λ(U, 0)Λ(U, 0)†|a〉

= Λ(U, 0)†a†
a(0)|a〉 = Λ(U, 0)†|a + 1〉

(65)

and the flavor vacuum state satisfies

aA(0)|Ω〉 = Λ(U, 0)†aa(0)Λ(U, 0)Λ(U, 0)†|0〉 = 0. (66)

The two-flavor mixing and the three-flavor mixing (where explicit building of Λ(U, t)
is a much more difficult task) for both spin-1/2 fermions and scalar bosons had been
analyzed along this line in the literature [30,33–35,38].

To develop our general formulation, we shall pursue a slightly different strategy.
We shall avoid the step of explicitly building the quantum representation Λ(U, t) by
employing Equation (35) and an observation, pioneered in [28], that the ladder operators
can be directly extracted from the covariant fields with a linear operation. For example, for
spin-1/2 fermions

aikσ(t) =
√

2εik
Hii

kσ

ui†
kσ ϕik(t),

bi−k−σ(t) =
[√

2εik
Hii

kσ

vi†
−k−σ ϕik(t)

]†
,

(67)

where H and h parameters are defined as follows

Hµj
kσδσ,σ′ = uµ†

kσuj
kσ′ = vµ†

−k−σvj
−k−σ′ ,

hµj
kσδσ,σ′ = uµ†

kσvj
−k−σ′ .

(68)

Since the Fourier component ϕik(t) = ∑
σ

1√
εik

(
ui

kσaikσ(t) + vi
−kσb†

i−kσ(t)
)

is obviously

a linear combination of ϕi(x, t), one can express the ladder operators as linear combinations
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of the original covariant fields. Using linearity of the mixing transformation (62), we can
find the structure of aµkσ(t) without explicitly building Λ(U, t);

aµkσ(t) =
√

2εµk

Hµµ
kσ

uµ†
kσ(Λ(U, t)† ϕ̄k(t)Λ(U, t))µ

= ∑
j

√
2εµk

Hµµ
kσ

uµ†
kσUµj ϕjk(t),

bµ−k−σ(t) = ∑
j

√
2εµk

Hµµ
kσ

U∗µj ϕ
†
jk(t)v

µ
−k−σ.

(69)

For the bosons, however, the ladder operators do not separate as in the fermion case,
for example,

ui†
kσ ϕik(t) =

1√
2εik

(aikσ(t) + hii
kσb†

i−k−σ(t)) (70)

and in general hii
kσ 6= 0. Equation (70) implies that particles and antiparticles in boson case

can not be distinguished unless time dynamics is considered. Therefore, we define the
ladder operators for bosons by

aikσ = ui†
kσ

(√
εik
2 ϕik(t) + 1√

2εik
ϕ̇ik(t)

)
,

b†
i−k−σ = vi†

−k−σ

(√
εik
2 ϕik(t)− 1√

2εik
ϕ̇ik(t)

)
.

(71)

With Equations (67) and (71), we then derive for fermions

aµ =

√
2εµ

Hµµ ∑
j,σ′

(uµ†
kσuj

kσ′ aj + uµ†
kσvj
−k−σ′b

†
−j)

Uµj√
2εj

= ∑
j

(√
εµ

εj
Hµj

Hµµ Uµjaj +
√

εµ

εj
hµj

Hµµ Uµjb†
−j

)
;

b−µ =

√
2εµ

Hµµ ∑
j,σ′

((
vµ†
−k−σuj

kσ′

)∗
a†

j +
(

vµ†
−k−σvj

−k−σ′

)∗
b−j

) U∗µj√
2εj

= ∑
j

(√
εµ

εj

(Hµj)
∗

Hµµ U∗µjb−j −
√

εµ

εj

(hµj)
∗

Hµµ U∗µja
†
j

) (72)

and for bosons:

aµ =

√
2εµ

2 ∑
j,σ′

(
uµ†

kσuj
kσ′

εµ+εj
εµ

aj + uµ†
kσvj
−k−σ′

εµ−εj
εµ

b†
−j

) Uµj√
2εj

= ∑
j


√

εµ
εj
+

√
εj
εµ

2 HµjUµjaj +

√
εµ
εj
−
√

εj
εµ

2 hµjUµjb†
−j

;

b̃−µ =

√
2εµ

2 ∑
j,σ′

(
vµ†
−k−σuj

kσ′
εµ−εj

εµ
a†

j + vµ†
−k−σvj

−k−σ′
εµ+εj

εµ
b−j

)∗ U∗µj√
2εj

= ∑
j


√

εµ
εj
+

√
εj
εµ

2 (Hµj)∗U∗µjb−j +

√
εµ
εj
−
√

εj
εµ

2 (hµj)∗U∗µja
†
j

.
(73)

By defining
αµj = γ+

µjUµj, βµj = γ−µjUµj, (74)
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where

γ+
µj =


√

εµ

εj
Hµj

Hµµ fermions,

Hµj

√
εµ
εj
+

√
εj
εµ

2 bosons.

γ−µj =


√

εµ

εj
hµj

Hµµ fermions,

hµj

√
εµ
εj
−
√

εj
εµ

2 bosons,

(75)

this can be put in the form given by Equation (39).
Using the formulas presented in Appendix B, we can explicitly verify for S = 0, 1/2, 1

that the conditions (40) and (42) are satisfied and Equations (72) and (73) provide a repre-

sentation of the classical mixing transformation. As an example, consider
∂γ−µj
∂mµ

for spin-1/2

fermions. One notices that
∂γ−µj
∂mµ

can be reduced to
∂γ−µj
∂mµ

= γ+
µj f (mµ), for example, for

fermions

∂θµj′

∂mµ
−

∂θµj

∂mµ
=

∂ sin(θµj′ )

∂mµ

cos(θµj′)
−

∂ sin(θµj)

∂mµ

cos(θµj)
= f (mµ)− f (mµ) = 0

so that θµj = θµ − θj, where cos(θµ) = 1
2√εµ

(
√

εµ + mµ +
√

εµ −mµ) and sin(θµ) =
1

2√εµ
(
√

εµ + mµ −
√

εµ −mµ). Thus, Equation (42) is trivially satisfied. One can use then
the general results from the previous sections to analyze the flavor dynamics in this case.

We note that Nρνρ’s as well as Qρνρ’s are in general dependent on the choice of mass
parameters mµ used to define H and h in (72) and (73) via amplitudes uµ and vµ. One may
explicitly see this in the example of the charge operator. As can be seen from Equation (60),
Qµνµ will not depend on the choice of mass parameters mµ only for real mixing matrix Uµj.
Otherwise, as in the example of CP-violating CKM matrix, there will be a nontrivial mass
dependence from the imaginary part of U. Interestingly, even in the latter case, there is no
dependence on the mass of the flavor field ν (mν) but only on the mass associated with the
initial flavor state µ. Blasone and Vitiello maintained that the set of the free-field masses
mi=a,b,... shall be chosen as mµ.

An alternative view considers Equation (69) as a result of expanding the flavor fields
φµ(x) in the basis parametrized by masses mµ, where Blasone and Vitiello’s choice cor-
responds to setting mµ to the free-field masses observed in the experiment. Still, one
may as well expand the flavor fields on a basis with other flavor mass parameters mµ,
corresponding to choosing uµ

~kσ
, vµ

−~kσ
as different free-field amplitudes with flavor mass

parameters mµ in Equations (72) and (73) [28].
This ambiguity can be understood in terms of the original Blasone and Vitiello’s idea as

follows. For any Λ(U, t) that is a valid representation of the classical mixing transformation,
Λ′(U, t) = I(t)Λ(U, t), which can be obtained by means of a similarity transformation that
mixes aµkσ(t) and b†

µ−k−σ(t) but leaves their covariant combination φ(~k) unchanged (i.e.,

φµ(k, t) = I(t)†φµ(k, t)I(t)), is also a valid representation of the mixing transformation.
The ladder operators, defined by Equations (72) and (73), therefore depend on the choice of
I(t) or, equivalently, the choice of “bare" mass mµ associated with the flavor states.

Although there are different opinions about whether or not the measurable quantities
in the theory shall depend on the mass parameters [28,34–36,82], we note that the mass
parametrization problem indeed is not specific to the quantum mixing but exists in almost
any instance of quantum field theory. For example, consider a free theory with Hamiltonian

: H0 := ∑
~kσ

(
ε~ka†

~kσ
a~kσ

+ ε~kb†
~kσ

b~kσ

)
, (76)
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one may change the mass parametrization m→ mµ [35];

(
ã(t)
b̃†(t)

)
= I−1(t)

(
a
b†

)
I(t) =

(
ei(ε̃~k−ε~k)tρ∗~k

ei(ε̃~k+ε~k)tλ~k
e−i(ε̃~k+ε~k)tλ∗~k

e−i(ε̃~k−ε~k)tρ~k

)(
a(0)
b†(0)

)
, (77)

where ε̃k =
√

k2 + mµ
2 and εk =

√
k2 + m2. The number operator in such a transformation

is not conserved [36], for example, for fermions we can get

〈Ñ〉 = |{ã, ã†(t)}|2 =
∣∣∣|ρk|2e−iεkt + |λk|2eiεkt

∣∣∣2, (78)

That may lead to an obviously incorrect assertion that the number of particles in the
free field case is not an observable quantity. Mathematically, this is understood once we note
that the above transformation is equivalent to the splitting of the initial Hamiltonian into

H0 = H′0 + H′I =
∫

d4 p
({

( p̂ψ)†( p̂ψ)−mµ
2ψ†ψ

}
+ (mµ

2 −m2)ψ†ψ
)

. (79)

The additional self-interaction term there is responsible for oscillations in 〈Ñ〉.
Physically, the transformation given by Equation (77) shall be viewed as a redefinition

of one-particle state. The tilde quantities correspond to a new quasi-particle, so that the
tilde number operator describes a different type of particles and thus it does not have to be
invariant under such a transformation. Still, the particle–antiparticle difference is conserved
in the transformation (77). The situation here may be analogous to the dependence of
physical observables upon the choice of the coordinate system. Although the Casimir
operator (e.g., ~S2 in the spin observables) must be independent from the coordinate system,
other physical quantities (e.g., Sx, Sy and Sz) do depend on the choice of the coordinate
system. To compare the value of Sz, say, between theory and experiment, one should
first fix the coordinate system. Similarly, specific mass parameters may need to be fixed
in a quantum field theory from physical reasons to compare theoretical results (e.g., the
occupation numbers) with the experiment.

From the above example it is clear that the mass parametrization problem is present in
any regular perturbation theory if one attempts to redefine the physical one-particle states
as in Equation (77). In the free theory and the perturbation theory this issue is resolved by
the presence of the mass scale of well defined asymptotic physical states, which therefore
fix the mass parameters. In this sense, one can agree with Blasone and Vitiello in that the
mass scale of the energy-eigenstates is the most natural choice for fixing mµ. Still, at least
one other possible mass scale exists for the flavor mixing problem, which corresponds to
the free-field part of the Hamiltonian (36).

One may find the above analogy with coordinate systems crude and deem the mass pa-
rameters in Blasone and Vitiello theory “unphysical" or “arbitrary" and, thus, conclude that
measured quantities cannot depend on such arbitrary parameters. However, we emphasize
again that, as we demonstrated above, the same mass parameterization problem is present
and well-tested by experiment perturbative quantum field theory. Many observables that
are considered well defined in perturbative quantum field theory depend on the choice
of such parameter. In perturbative theory, the asymptotic free fields provide a physical
ground to fix those masses. In flavor mixing, where there is no option to asymptotically
enable the mixing interaction, we are not yet aware of such an unambiguous way.

5. Conclusions

The quantum field mixing effects may be understood by considering interplay be-
tween the two Fock-spaces of the free-fields and the flavor fields. As we demonstrate,
this interplay is highly nontrivial and gives rise to deviations from a simple quantum
mechanical description that can be attributed to antiparticle effects in quantum field theo-
retical flavor mixing. We have now presented a solution for the quantum field theory of
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mixing with arbitrary number of fields of boson or fermion statistic. Our results fall into the
same scheme and can be easily unified. We investigated the time dynamics by calculating
non-equal time commutators in such a theory. We found an explicit solution for the Fock
space of the interacting fields and the corresponding vacuum structure, which turned
out to be a generalized coherent state. We then demonstrated the unitary inequivalence
between the mixed-fields’ Fock space and the free-fields’ Fock space in the infinite volume
limit. After we built a formal framework, we applied it to solve mixing dynamics of two
vector mesons (S = 1) and fermions (S = 1/2). We found that the scalar/pseudoscalar
(S = 0) boson mixing is the same as the mixing of transverse components of the vector
fields, while for the longitudinal component of the vector field we found richer momentum
dependence than in the spin-zero case. In Reference [83], we have also addressed the
problem of time-to-space conversion in quantum field theory of mixing and explicitly
considered the effect from a nontrivial flavor vacuum on oscillations of flavor in space.

The general quantum field theory of mixing introduces the following differences
relative to conventional quantum mechanical treatment: the oscillation formulas involve
all possible low-frequency and high-frequency energy combinations; the amplitudes of
the oscillation terms are momentum dependent; we find a red EPR-coherent antiparticle
beam generated for an initially spatially localized definite-flavor particle wave-packet with
momentum k and propagating in the opposite direction from an emitted particle [83]; the
shape of flavor spatial oscillations is distorted from a simple sinusoid.

Our general approach does not use any specific continuous parametrization of the
mixing group but directly takes the values of the matrix elements. This allows an analysis
to be carried out in a unified closed form presented in Sections 3 and 4. In general, it may
be preferable to find solutions for mixing quantities without going through intermediate
explicit parametrizations of the flavor mixing transformation.
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Appendix A. The Flavor Vacuum State

In this appendix we present a solution for the explicit flavor vacuum structure. We
first consider the boson case.

We write the sought flavor vacuum as the most general linear combination from the
original-field Fock space, i.e., Equation (46) :

|Ω〉 = ∑
(n),(l)

1
n1!n2! . . . nk!

B(n)(l)

(
a†

1

)n1
. . .
(

a†
k

)nk
(

b†
−1

)l1
. . .
(

b†
−k

)lk |0〉. (A1)

The part of Equation (45) involving antiparticle annihilation operators results in a
dependent set of equations and thus can be omitted. Expanding Equation (45), we find:

∑
j

(
αijB(nj+1)(l) + βijB(n)(lj−1)

)
= 0, all (n), (l) (A2)

where (nj + 1) notation stands for (n1, n2, . . . , nj + 1, . . . nk) and k is the number of flavor
fields. To solve this infinite set of equations we introduce symbolic operators, which

https://www.nersc.gov/users/policies/
https://www.nersc.gov/users/policies/
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decrease the subscript index of B coefficients, i.e., d−jB(n)(l) = B(n)(lj−1). Then solving
each set of equations in (A2) with respect to B(nj+1)(l) we find

B(ni+1)(l) = (∑
j

Zijd−j)B(n)(l) (A3)

and consequently
B(n)(l) = ∏

i
(∑

j
Zijd−j)

ni B(0)(l) (A4)

with matrix Ẑ = −α̂−1 · β̂. Considering the momentum conservation and the original
Equation (A2), it can be shown that only B(0)(l=0) must be non-zero among all (l). Thus,
applying symbolic operators d−j and leaving only term B(0)(0) in the expansion, we get

B(n)(l) = ∑

(jip)
∑
p

jip = ni

∑
i

jip = lp



∏
i

ni!
ji1! . . . jik!

Zji1
i1 . . . Z

jik
ik B(0)(0). (A5)

It is possible to rewrite this complicated expression in a more compact form;

|Ω〉 = 1
Z ∑

(k)
∏

i

1
ki!

(∑
j

Zija†
i b†
−j)

ki |0〉, (A6)

That can be shown directly by expanding the above expression. On the other hand, it
can be argued that to obtain B(n)(l) from Equation (A6) one needs to leave only those terms
in the expansion that give the correct power of particle and antiparticle creation operators,
i.e., the total powers of all a†

i ’s are ni’s and b†
i ’s are li. However, this is the same to extract

B(n)(l) from Equation (A3). The constant Z is introduced instead of B(0)(0) and serves as a
normalization factor determined by 〈Ω|Ω〉 = 1.

Equation (A6) can be further simplified to

|Ω〉 = 1
Z ∑

(k)
∏
i

1
ki !
(∑

j
Zija†

i b†
−j)

ki |0〉 =

= 1
Z ∏

i

∞
∑

ki=0

1
ki !
(∑

j
Zija†

i b†
−j)

ki |0〉 =

= 1
Z exp(

N
∑

i,j=1
Zija†

i b†
−j)|0〉.

(A7)

Let us now proceed to the fermion case. We employ the same idea with the symbolic
shifting operators. One needs to be careful about the sign convention here. If Ĉ(n)(l) stands
for creation operator for fermion state |(n), (l)〉, we want then

aiB(ni+1)(l)Ĉ(ni+1)(l)|0〉 = ±B(ni+1)(l)Ĉ(n)(l)|0〉 = d+iB(n)(l)Ĉ(n)(l)|0〉
b†

i B(n)(li−1)Ĉ(n)(li−1)|0〉 = ±B(n)(li−1)Ĉ(n)(l)|0〉 = d−iB(n)(l)Ĉ(n)(l)|0〉
(A8)

with the correct sign. Equation (A2) then can be written in the form

∑
j
(αijd+j + βijd−j)B(n)(l) = 0 (A9)

which binds together the shifting operators that increase and decrease the index. This set
can be solved as

d+i[B(n)(l)] = ∑
j

Zijd−j[B(n)(l)] (A10)
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with the same matrix Ẑ found in the boson case. From the definition of shifting operators it
can be inferred that they obey the anticommutation property (i.e., d±id±j = −d±jd±i) and
thus it can be shown further that for i1 > i2 > . . . > in

d+in d+in−1 . . . d+i1 B(0)(l) = B(i)(l)
d−i1 d−i2 . . . d−il B(n)(l) = B(n)(l−i)

(A11)

so that the solution can be written again as

B(n)(l) = ∏
i
(∑

j
Zijd−j)

ni B(0)(l), (A12)

where only B(0)(0) survives. Here, ni can be only 0 or 1 and the anticommutation rules
for the ordering are applied. It is remarkable that Equation (A6) can still be used for
the fermion vacuum. This can be verified by a direct expansion keeping in mind the
anticommutation nature of the ladder operators. Thus, for either the boson or fermion case
the flavor vacuum state can be written as

|Ω〉 = 1
Z exp(

N

∑
i,j=1

Zija†
i b†
−j)|0〉. (A13)

We now proceed to find the normalization constant Z . For this, we consider

||Ω〉|2 = | exp(
N

∑
i,j=1

Zija†
i b†
−j)|0〉|2 = ∑

L

1
L!2
|(

N

∑
i,j=1

Zija†
i b†
−j)

L|0〉|2, (A14)

where we use the fact that the states of (∑N
i,j=1 Zija†

i b†
−j)

L|0〉 are orthogonal for different

L’s. We then employ the fact that matrix Ẑ can be transformed to a diagonal form with two
unitary transformations, i.e.,

Z′ =

 x1 0 . . .

0
. . . 0

. . . 0 xN

 = UZV†. (A15)

We can now introduce additional unitary transformations a′† = U†a†, b′† = V†b†

to make
N
∑

i,j=1
Zija†

i b†
−j =

N
∑

i=1
Z′iia

′†
i b′†−i, where a′i, b′−j satisfy the standard commutation /

anticommutation relationship. Then, using the binomial formula to expand (
N
∑

i=1
Z′iia

′†
i b′†−i)

L,

we find

∑
L

1
L!2 |(

N
∑

i=1
Z′iia

′†
i b′†−i)

L|0〉|2 = ∑
L

1
L!2 ∑

n1+...+nN=L
L!2

N
∏
j=1

1
nj !2
|(Z′jja

′†
j b′†−j)

nj |0〉|2

= ∑
L

∑
n1+...+nN=L

N
∏
j=1

nj !2

nj !2
|Z′nj

jj |
2 = ∑

n1,...,nN

λn1
1 . . . λnN

N ,
(A16)

where λi’s are eigenvalues of ZZ†. The summation limits in Equation (A16) are different
for fermions and bosons. For bosons ni run from 0 to ∞, while for fermions they only can
be 0 or 1. In either case the sum can be evaluated to give

| exp(
N

∑
i,j=1

Zija†
i b†
−j)|0〉|2 =

 ∏
i
(1 + λi) fermions

∏
i

1
1−λi

bosons
=

{
det(1̂ + ZZ†) fermions
det−1(1̂− ZZ†) bosons

. (A17)
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Appendix B. Essential Cases of Mixing Parameters H and h

Here, we list H and h parameters for the most essential cases in particle physics
including scalar/pseudoscalar spin 0, vector spin 1 bosons, and spin 1/2 fermions. For
these cases, the flavor mixing parameters can be explicitly derived from quantum field
theory [2,21]. We have, for scalar/pseudoscalar fields (spin 0):

u~k,0 = v~k,0 = 1, (A18)

for vector fields (spin 1):
u~k,0 = v~k,0 =

(
k
m , i ε(k)

m ~n
)

,
u~k,±1 = v~k,±1 = (0, i~n±),

(A19)

where ~n =
~k
k = ~ez and ~n± = ∓ 1√

2
(~ex ± i~ey) form a spherical basis. For bi-spinor fields

(spin 1/2), we use the standard representation of the γ-matrices

γ0 =

(
Î 0
0 − Î

)
,~γ =

(
0 ~σ
−~σ 0

)
, (A20)

and the corresponding representation for the spinors:

u~k,σ = (
√

ε(k) + mωσ,
√

ε(k)−m(~n~σ)ωσ),
v−~k,σ = (−

√
ε(k)−m(~n ·~σ)ω−σ,

√
ε(k) + mω−σ),

(A21)

where ωσ is spinor satisfying (~n ·~σ)ωσ = σ ·ωσ and σ takes values ±1.
The H and h parameters are then, for scalar case:

Hµj = hµj = 1, (A22)

for spin 1: 
Hµj
~k,0

=
εµ(k)εj(k)−k2

mµmj
,

hµj
~k,0

=
εµ(k)εj(k)+k2

mµmj

, σ = 0

Hµj
~k,±

= hµj
~k,±

= 1, σ = ±1;

(A23)

and for spin 1/2:

Hµj
~k,σ

=
√(

εµ(k) + mµ

)(
εj(k) + mj

)
+
√(

εµ(k)−mµ

)(
εj(k)−mj

)
,

hµj
~k,σ

= σ
(√(

εµ(k)−mµ

)(
εj(k) + mj

)
−
√(

εµ(k) + mµ

)(
εj(k)−mj

))
.

(A24)

Appendix C. Applications of General Quantum Field Theory of Flavor Mixing

Appendix C.1. Vector Meson Mixing (S=1) for Two Flavors

We now consider the unitary mixing of two fields with spin 1 (vector mesons). U(2)
parametrization consists of four parameters: three phases that can be absorbed in the phase
redefinition of fields and one essential real angle that is left, so that

U =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
. (A25)

Using Appendix B, we define γ±µi =
1
2

(√
εµ

εi
±
√

εi
εµ

)
for σ = ±1 and

γ+
µi =

1
2

εµεi−k2

mµmi

(√
εµ

εi
+
√

εi
εµ

)
,

γ−µi =
1
2

k2+εµεi
mµmi

(√
εµ

εi
−
√

εi
εµ

) (A26)
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for σ = 0. For the free-field mass parameters mµ, γ+
12 = γ+

21 = γ+, γ−12 = −γ−21 = γ−.
The ladder mixing matrices α and β are given by

α =

(
cos(θ) γ+ sin(θ)

−γ+ sin(θ) cos(θ)

)
,

β =

(
0 γ− sin(θ)

−γ− sin(θ) 0

)
.

(A27)

For the flavor charge oscillations we then obtain the result that is independent from
the mass parametrization;

Q111 = 1 + sin2(2θ)
(

γ2
− sin2

(
Ω12t

2

)
− γ2

+ sin2
(

ω12t
2

))
,

Q121 = sin2(2θ)
(

γ2
+ sin2

(
ω12t

2

)
− γ2

− sin2
(

Ω12t
2

))
.

(A28)

We see that this result, with an exception of greater complexity of γ±, is identical to
the case of spin 0 [35,36]. According to the above theory, in fact, this should be expected for
the two-flavor mixing with any integer spin. For S = 1 we see that an essential difference
from the scalar/pseudoscalar meson mixing, such as the complication of momentum
dependence of γ±, occurs only for the mixing of longitudinally polarized particles. The
mixing of transverse components is essentially the same as in the case of spin-zero particles.

The details of non-equal time commutators are given by

F =

{
e−iε1t cos2(θ) + e−iε2tγ2

+ sin2(θ)− eiε2tγ2
− sin2(θ); γ+ sin(θ) cos(θ)

(
e−iε2t − e−iε1t)

γ+ sin(θ) cos(θ)
(
e−iε2t − e−iε1t); e−iε2t cos2(θ) + e−iε1tγ2

+ sin2(θ)− eiε1tγ2
− sin2(θ)

}
, (A29)

G =

(
γ+γ− sin2(θ)

(
e−iε2t − eiε2t) γ− sin(θ) cos(θ)

(
e−iε1t − eiε2t)

γ− sin(θ) cos(θ)
(
e−iε2t − eiε1t) γ+γ− sin2(θ)

(
eiε1t − e−iε1t) )

. (A30)

The condensates of free-field particles are

Z′1 = Z′2 = γ2
− sin2(θ) (A31)

and the condensates of the flavor particles in the vacuum are

Z1 = 4γ2
− sin2(θ)

(
cos2(θ) sin2

(
Ω12t

2

)
+ γ2

+ sin2(θ) sin2
(

Ω22t
2

))
,

Z2 = 4γ2
− sin2(θ)

(
cos2(θ) sin2

(
Ω12t

2

)
+ γ2

+ sin2(θ) sin2
(

Ω11t
2

))
.

(A32)

The flavor vacuum structure is defined by the matrix Ẑ:

Ẑ =
−1(

cos2(θ) + γ2
+ sin2(θ)

)( −γ+γ− sin2(θ) γ− cos(θ) sin(θ)
γ− cos(θ) sin(θ) γ+γ− sin2(θ)

)
(A33)

with the normalization constant being Z = (1− γ2
− sin2(θ)

cos2(θ)+γ2
+ sin2(θ)

)−1 = 1 + γ2
− sin2(θ). One

can see that 1
Z as function of γ2

− sin2(θ) has a pole at imaginary γ− sin(θ) = i, so that the
perturbative expansion in γ2

− sin2(θ) would have a finite convergence radius.
The time evolution of the flavor particle number (if #1 was emitted) is given by:

N111 = 1 + sin2(θ){8γ2
− cos2(θ) sin2

(
Ω12t

2

)
− 4γ2

+ cos2(θ) sin2
(

ω12t
2

)
+8γ2

+γ2
− sin2(θ) sin2

(
Ω22t

2

)
},

N̄111 = 4γ2
− sin2(θ)

(
2γ2

+ sin2(θ) sin2
(

Ω22t
2

)
+ cos2(θ) sin2

(
Ω12t

2

))
,

(A34)
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N121 = sin2(θ){4γ2
+ cos2(θ) sin2

(
ω12t

2

)
+ 4γ2

− cos2(θ) sin2
(

Ω12t
2

)
+4γ2

+γ2
− sin2(θ) sin2

(
Ω11t

2

)
,

N̄121 = 4γ2
− sin2(θ)

(
2 cos2(θ) cos2

(
Ω12t

2

)
+ γ2

+ sin2(θ) sin2
(

Ω11t
2

))
.

(A35)

Also we note that the scalar and pseudoscalar case follows immediately from the above

presentation when γ±µi =
1
2

(√
εµ

εi
±
√

εi
εµ

)
. In this respect, the spin-zero mixing is equiva-

lent to the mixing of transverse components of vector fields, described by Equations (A28),
(A29), (A33) and (A34). These results are in accord with [35,36].

Appendix C.2. Fermion Mixing (S=1/2) for Two Flavors

We also present here the calculations for the S = 1/2 case. For the consistent notation
with the previous works [30,82] 2, we define

U =

√
(ε1+m1)(ε2+m2)+

√
(ε1−m1)(ε2−m2)

2
√

ε1ε2
,

V = σ

√
(ε1−m1)(ε2+m2)−

√
(ε1+m1)(ε2−m2)

2
√

ε1ε2
.

(A36)

The charge fluctuations are then given by

Q111 = 1− sin2(2θ)
(

U2 sin2
(

ω12t
2

)
+ V2 sin2

(
Ω12t

2

))
,

Q121 = sin2(2θ)
(

U2 sin2
(

ω12t
2

)
+ V2 sin2

(
Ω12t

2

)) (A37)

and the ladder mixing matrices are

α =

(
cos(θ) U sin(θ)
−U sin(θ) cos(θ)

)
,

β =

(
0 V sin(θ)

V sin(θ) 0

)
,

(A38)

which are the same with [30,82].
We can give more details on the fermion mixing dynamics. The non-equal time

anticommutators are given by

F =

{
e−iε1t cos2(θ) + e−iε2tU2 sin2(θ) + eiε2tV2 sin2(θ); U sin(θ) cos(θ)

(
e−iε2t − e−iε1t)

U sin(θ) cos(θ)
(
e−iε2t − e−iε1t); e−iε2t cos2(θ) + e−iε1tU2 sin2(θ) + eiε1tV2 sin2(θ)

}
, (A39)

G =

(
UV sin2(θ)

(
e−iε2t − eiε2t) V sin(θ) cos(θ)

(
e−iε1t − eiε2t)

V sin(θ) cos(θ)
(
e−iε2t − eiε1t) UV sin2(θ)

(
eiε1t − e−iε1t) )

. (A40)

The condensates of the free-field particles are

Z′1 = Z′2 = V2 sin2(θ) (A41)

and the condensates of the flavor particles are

Z1 = 4V2 sin2(θ)
(

cos2(θ) sin2
(

Ω12t
2

)
+ U2 sin2(θ) sin2

(
Ω22t

2

))
,

Z2 = 4V2 sin2(θ)
(

cos2(θ) sin2
(

Ω12t
2

)
+ U2 sin2(θ) sin2

(
Ω11t

2

))
.

(A42)

2 In our notation U = γ+, V = γ−.
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The vacuum structure is defined by the matrix Ẑ:

Ẑ =
−1

cos2(θ) + U2 sin2(θ)

(
−UV sin2(θ) V cos(θ) sin(θ)

V cos(θ) sin(θ) UV sin2(θ)

)
with the normalization constant being Z = 1

cos2(θ)+U2 sin2(θ)
= 1

1−V2 sin2(θ)
.

The time evolution of the flavor particle number (if #1 was emitted) is then given by:

N111 = 1− 4U2 sin2(θ) cos2(θ) sin2
(

ω12t
2

)
,

N̄111 = 4V2 sin2(θ) cos2(θ) sin2
(

Ω12t
2

)
,

(A43)

N121 = 4 sin2(θ){U2 cos2(θ) sin2
(

ω12t
2

)
+ V2 cos2(θ) sin2

(
Ω12t

2

)
+U2V2 sin2(θ) sin2

(
Ω11t

2

)
},

N̄121 = 4U2V2 sin4(θ) sin2
(

Ω11t
2

)
.

(A44)

Appendix C.3. Boson and Fermion Mixing for Three Flavors

Mixing of three and more flavors can be considered in full analogy to the calculations
presented above using our unified formulation. Due to growing complexity of SU(N)
general parametrization for larger N, it makes better sense to consider such cases in nu-
merical form, applying our formalism to an explicitly given mixing matrix. Nonetheless,
some results for mixing in SU(3) are known in the literature in Standard and Wolfenstein
parametrization [84]. Due to the size of the relevant formulas, we do not find it possible to
explicitly list these results here. The interested reader should look at the relevant publica-
tions [37,38]. When treating such problem in general, it may be useful to keep in mind a
few comments immediately following from the general formalism. In particular, mixing
of N-flavors have similar structure for any spin with spin-information being encoded
implicitly in αµi, βµi mixing parameters. Once such result is written in terms of α and β,
immediate generalization to other spins can be obtained. Furthermore, there exist close
parallels between results for bosons and fermions. If one goes from the fermion to boson
case, the sign of β2 terms shall be changed and α, β parameters should be reinterpreted
according to the spin change. For these reasons, in fact, it is sufficient to know only one case
of mixing, say fermions, in given SU(N) parametrization to extract the general result. In
particular, Reference [38] presents SU(3) calculations in standard parametrization, which
can be appropriately generalized to describe a boson case. Reference [37] considers both
the boson and fermion case for Wolfenstein parametrization of SU(3), although one shall
keep in mind that this parametrization is only an approximate description of a SU(3)
matrix.
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