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Abstract

This thesis is a study of closed and open string theories in low dimensional space-

times, and the various relations between these theories. In particular, we focus on

the theory of the two-dimensional black hole.

We first study closed strings in the background of the Euclidean two-

dimensional black hole (SL2(IR)/U(1)) tensored with flat space, using the duality

relating these theories to non-critical superstrings described by the supersymmetric

sine-Liouville interaction on the worldsheet. We point out a subtlety in their geo-

metric interpretation, and clarify the symmetry structure of the theories based on

the understanding of these theories as near horizon limits of wrapped NS5-branes.

In one such example (cigar ×IR6), we use the brane description to understand the

enhancement of the global symmetry in the coset theory from U(1) to SO(3) under

which the sine-Liouville and cigar interactions are related. In the same example, a

worldsheet description of the moduli space IR4/ZZ2 is presented.

We then study open strings in the topologically twisted Euclidean two-

dimensional black hole which is equivalent to noncritical c = 1 bosonic string theory

compactified on a circle at self-dual radius. These strings live on D-branes that are

extended along the Liouville direction. We present explicit expressions for the disc

two- and three-point functions of boundary operators in this theory, as well as the

bulk-boundary two-point function. The expressions obtained are divergent because

of resonant behavior at self-dual radius. However, these can be regularised and

renormalized in a precise way to get finite results. The boundary correlators are

found to depend only on the differences of boundary cosmological constants, sug-

gesting a fermionic behaviour. We initiate a study of the open-string field theory

localized to the physical states, which leads to an interesting matrix model.

Finally, we present evidence that the worldvolume theory of N unstable D-

particles in type IIB superstring theory in two-dimensions is represented by the

supersymmetric matrix model of Marinari and Parisi. This identification suggests

that the matrix model gives a holographic descriptions of superstrings in a two-

dimensional black hole geometry.
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Chapter 1

Introduction, Summary and Discussion

1. What is this dissertation about?

This dissertation is an investigation of a few related topics in the quantum

theory of one-dimensional objects - strings - living in certain spacetimes having the

feature that the strength of the string interactions - the string coupling - varies as

a function of one of the spatial directions. These theories are also known as non-

critical string theories, and there are many known examples with a small number

of dimensions (two or less). In particular, this thesis shall focus on a solution of

these theories which, from the spacetime point of view, looks like a black hole in

two dimensions. Since string theory is a consistent theory of quantum gravity, this

is exciting because it might throw some light on issues in the physics of black holes,

like the problem of information loss, i.e. understanding unitarity of the quantum

theory, and the origin of entropy.

Following this introductory chapter, this thesis consists of three chapters based

on the works [1–3]. The second chapter discusses the gravitational theory of closed

superstrings in various spacetime backgrounds in less than ten dimensions which

contain the two dimensional black hole geometry as the most important part. The

main focus is on the geometry of these backgrounds, and where these theories fit

into the space of solutions of superstring theory. The third and the fourth chapter,

motivated by the concept of holography as manifested by open-closed string duality,

study open strings in the black hole with the intention of getting information about

the closed string gravitational theories. The third chapter sets forth the quantum

field theory of open strings on D-branes in the topological Euclidean black hole.

The fourth chapter studies the tachyonic open string theory in the physical black

hole background and based on this, proposes a dual unitary quantum theory to

describe the black hole.

The current chapter has two goals. Firstly, it is meant to put this thesis in

perspective for the reader with a general interest in particle physics, gravitation
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and string theory by introducing the main ideas in the thesis along with some

relevant background. Secondly, for the reader with more specific interest in the

topics discussed – superstrings in low dimensions, the two dimensional black hole,

open-closed string duality and matrix models – a brief summary of results and

some discussion relating the various threads is provided towards the end of the

chapter. More detailed discussions are present in the corresponding chapters and

each chapter can be read as a logically independent unit with its own conclusions.

In view of this, there is no separate concluding chapter.

We shall begin with some general motivation to study the non-critical theories,

and the rest of the chapter is devoted to introducing the background material for

the three chapters to follow, and to explain some of the terms, ideas and concepts

appearing in the above paragraphs in a heuristic manner. A general reference for

the background material on string theory is [4]. All other references to topics at

hand are indicated in the chapters where they arise.

The motivation to study non-critical string theories is manifold, among the primary

ones are:

1. These theories are quantum theories of gravity, which are tractable, and in

some cases exactly solvable. They do not exactly model the world we live in;

nevertheless, they contain many lessons about a theory of quantum gravity in

four large spacetime dimensions, which has been difficult to understand so far,

despite a lot of progress along many directions.

2. The theory of strong interactions of particle physics – Quantum Chromo Dy-

namics (QCD) – which governs the force that holds a nucleus inside an atom

together has string-like excitations of the flux of ”glue”, the carrier of the strong

force. These flux tubes bind quarks to one another. The theory of these strings

of glue is very similar to the non-critical string theories that we will study. One

hopes to learn lessons about QCD by studying the non-critical string theories.

3. In recent years, it has been realized through many examples, that the theory

of strong interactions, and gauge theories in general, have deep connections

with the theory of gravity in certain spacetimes. This idea is part of a more

general set of ideas which together go by the name of holography, which relates

the quantum theory of gravity of a particular spacetime to non-gravitational
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theories like QCD, in a related spacetime of one dimension less. Non-critical

string theories are another fertile field to explore and extend this connection

further.

4. Non critical string theories admit solutions which resemble black holes in four

dimensions. The possibility of studying black holes via a holographic unitary

quantum theory is obviously very exciting towards understanding the issue of

unitarity, or information loss in a black hole.

We shall begin below with a brief introduction to string theory as a quantum

theory of gravity. Next we shall briefly describe the tool used to compute ampli-

tudes for processes in this theory which is the two-dimensional quantum field theory

living on the surface that a propagating string sweeps out in spacetime. We shall

then turn to general conditions that this theory must satisfy in order to make the

theory consistent and discuss the fact that if the spacetime has less than a certain

critical number of dimensions, then it cannot be flat. In the process of trying to

formulate a theory of strings in a few flat dimensions1, the string worldsheet devel-

ops another dynamical mode which can be regarded as an extra dimension along

which the curvature and the string coupling varies. This extra dimension, known

as the Liouville field is a hallmark of non-critical string theories.

Then follows a brief description of supersymmetry in string theory, a symmetry

which is a natural extension of the Poincare symmetries which we observe at low

energies, and at the technical level, is an ingredient which makes the theory stable.

As a quantum theory of gravity, string theory must be able to describe the

physics of black holes. We turn next to a brief discussion of black holes in string

theory, and the relation among black holes in two dimensions and the supersym-

metric non-critical string.

We next discuss the idea of a manifestation of holography as a duality between

open and closed string theories. This gives us a very precise set-up in which to

explore the idea of holography further and in particular, we shall discuss how the

setting of non-critical string theories is a natural environment in which this kind

of relation arises, and also, how due to their tractability, they hold the promise of

being a very important laboratory for testing these ideas.

1 One exmaple being the QCD string, which one might at first try to formulate in four

flat dimensions
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In Chapters 2,3 and 4, we present detailed investigations along some of the

lines sketched above. In the rest of this introductory chapter, we shall point out

along the way where and how the three bulk chapters fit into the scheme of things.

2. String theory in general spacetimes

String theory is presently the best candidate for a quantum theory of gravity.

It is a quantum theory of one-dimensional objects (strings) which may or not have

a boundary (open/closed strings). The theory is perturbatively defined by a sum

(functional integral) over Riemann surfaces, analogous to the Feynman diagram

expansion in field theory. Different modes of vibration of the string are interpreted

as different particles with different mass, charge, spin and other quantum numbers.

A Riemann surface then corresponds to a dynamical process in spacetime where

some strings (particles) come in, interact with each other and some other particles

go out. The amplitude associated to such a diagram has a factor of the string

coupling constant gs for each vertex where three strings meet.

Fig. 1: The string worldsheet (left) naturally spreads the interaction over

a finite region of spacetime; point particle theory (right) has interactions

at one spacetime point.

One of the main reasons this theory is so attractive as a theory of quanutm

gravity is that the spectrum of vibrations of the closed string always contains a spin

two massless particle, i.e. a graviton, a quantum of the gravitational field. The fact

that the interaction between the strings is not localized to one point in spacetime

renders the theory perturbatively finite and consistent.
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To formulate a perturbative quantum theory of gravity, one thinks of fluctua-

tions around a given background for the metric and the other matter fields in the

theory. The theory must specify the interaction between these fluctuations. For the

sake of illustration, let us suppose that the background spacetime parametrized by

variables Xµ is completely specified by the metric Gµν(X), that is to say that there

are no macroscopic sources which produce other background fields in the spacetime.

The string propagating in this spacetime describes a two dimensional surface Xµ(σ),

known as the worldsheet of the string. Perturbation theory is then defined in terms

of a two dimensional quantum field theory living on the worldsheet parameterized

by the variables (σ1, σ2):

S =
1

2πα′

∫
d2σ

√
hαβGµν(X)∂αX

µ∂αXν . (2.1)

hαβ is the fluctuating metric on the two dimensional surface which has to be inte-

grated over, α′ is the one dimensionful parameter in the theory (Planck scale).

Extremizing this two-dimensional action describes the classical shape of the

worldsheet. The full quantum theory is defined by a path integral over the fields

describing the embedding of the worldsheet in spacetime, as well as the metric on

the worldsheet. For example, the partition function is

Z =

∫
[DXµ][Dhαβ]e−S[Xµ,hαβ ]. (2.2)

The perturbative expansion of this path integral gives a Feynman diagram-like

expansion:

+

+ + ...

Fig. 2: The perturbative expansion over different genera
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Fluctuations of the worldsheet about this stationary point are the dynamical

fields of the theory. As mentioned above, one of the fluctuations is the pertur-

bations of the metric itself, or the graviton. Along with the graviton, the string

spectrum contains other fields, which could be thought of as arising from matter

sources. For example, there could be sources corresponding to p−forms which are

the generalizations of the electromagnetic field strength. At low energies compared

to the string scale, the light modes should be observable and there is an effective

field theory governing their interactions.

Among the fields in the theory, there is always a scalar field Φ called the dilaton

which is the trace of the metric tensor. The zero mode of this field couples to the

integral of the scalar curvature of the worldsheet, which is simply its Euler number.

In the perturbation theory of (2.2) in Fig[2], the dilaton is related to the string

coupling as gs = eΦ. The interaction between the strings is, in this sense naturally

encoded in the topology of the Riemann surface.

In order to reproduce known physics at low energies, the two dimensional quan-

tum theory on the worldsheet is required to be conformal, i.e. invariant under local

changes of scale on the worldsheet. Conformal invariance of the theory plays an

important role in making the theory consistent. At the classical level (in the two

dimensional theory), any flat background is conformal. At the quantum level, the

background is required to satisfy certain conditions. The departure from confor-

mal invariance of the theory can be measured in terms of a number known as the

conformal anamoly, or central charge c. The theory on the worldsheet includes repa-

rameterization ghosts which contribute c = −26. Thus the condition for conformal

invariance is that the matter theory which represents the spacetime has c = 26.

Each spacetime dimension contributes to the central charge by one unit. The

conformal invariance condition is satisfied by 26 flat dimensions (for the bosonic

string – the supersymmetric string has more fields and satisfies the condition with

10 flat dimensions). More generally, any conformal field theory with central charge

c = 26 serves as a consistent background for the bosonic string. For more general

backgrounds with curvature and sources, the condition for conformal invariance

involves a relation between these sources and the curvature of the metric which, at

lowest order in α′ reduces to Einstein’s equations. In this fashion, string theory is a

well defined theory at high energies (distance scales of
√
α′), and reduces to general

relativity at larger length scales where we know its veracity.
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3. Strings in low dimensions: Non-critical backgrounds

The spectrum of the bosonic string contains a scalar field called the tachyon,

which in general, is an unstable mode in the perturbation theory. A very simple

non-trivial background which is conformally invariant is one where the spacetime

in d dimensions has a flat metric and the only field which has an expectation value

is the scalar tachyon:

Gµν(X) = ηµν , Φ(X) =

(
26 − d

6α′

) 1
2

X1

T (X) = exp(qX1), q =

(
26 − d

6α′

) 1
2

−
(

2 − d

6α′

) 1
2

(3.1)

Translational invariance in this spacetime is broken by the background tachyon and

dilaton. Notice that the string coupling which is determined by the dilaton grows

indefinitely along the X1 direction. If the number of dimensions d > 2, the theory

is unstable and there is really a tachyon in the spectrum. For d ≤ 2, the tachyon

field is stable, (and the word tachyon is a misnomer).

Since the tachyon field has a background, it should be added to the worldsheet

action (2.1):

S = Sfree +

∫
d2σ T (X) (3.2)

For d ≤ 2, the tachyon field is real and the exponential potential suppresses the

path integral (2.2) in the strong coupling region. Thus it effectively acts as a

barrier and prevents strings from penetrating too deep into the strong coupling

region. Perturbation theory is thus valid in this theory in spite of the fact that the

string coupling diverges in a certain region of spacetime.

If the free field direction is compactified on a circle, the spacetime manifold is

a flat cylinder. Asymptotically, there is no potential, and the only non-trivial field

is the dilaton which varies linearly along the non-compact direction.

In fact, if one does not demand that the worldsheet theory be conformally

invariant, and instead thinks of the worldsheet theory as matter coupled to 2-

dimensional gravity, the measure in the path integral over metrics makes the scale

factor in the metric a dynamical field, known as the Liouville field which behaves

like the direction X1 above, and supplies the additional central charge. This was

historically known as non-critical string theory.
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3.1. Supersymmetry

In order to look for a realistic (stable) theory of the world in more than two

dimensions, one must get around the problem of the tachyons described above. One

way to do that is to introduce fermions and supersymmetry in the theory. In addi-

tion to the bosonic degrees of freedom corresponding to the embedding dimensions,

one can consider theories with fermionic variables on the worldsheet. Instead of

two dimensional gravity coupled to matter, one has two dimensional supergravity

coupled to a supersymmetric matter theory.

If there are a sufficient number of fermionic degrees of freedom, (so that there is

N = (2, 2) supersymmetry2 on the worldsheet), one gets consistent supersymmetric

theories in spacetime which are stable and do not contain any tachyonic degrees of

freedom.

The theory now also contains reparameterization ghosts for the fermionic de-

grees of freedom, and they contribute with central charge c = 11, so the critical

central charge for the superstring is c = 26 − 11 = 15. Since each bosonic field

with c = 1 has a fermionic partner with c = 1/2, this corresponds to 10 flat di-

mensions. In lower dimensions, one can have supersymmetric generalizations of the

non-critical string (3.1). It turns out (as we shall study in detail in chapter 2), that

the N = 2 supersymmetric version that we are interested in has, in addition to the

Liouville coordinate ρ, an angular bosonic coordinate θ, and two fermions ψρ, ψθ

which are coupled to each other via the worldsheet interaction:

Ssine−Liouville
int = ψψ̃ e−

1
Q

(ρ+ρ̃+i(θ+θ̃)) + c.c (3.3)

where ψ = ψρ+iψθ is the superpartner of ρ+iθ and ψ̃ is its rightmoving counterpart.

Supersymmetry ties the two fields together into a complex field which we shall

consider to have Euclidean signature in spacetime. The bosonic part of the in-

teraction is called the sine-Liouville interaction. The purely bosonic sine-Liouville

theory is classically unstable, the supersymmetric counterpart of course is well-

defined. Asymptotically, this theory also reduces to a linear dilaton theory on a

cylinder like the compactified bosonic d = 2 theory (3.1) considered above. How-

ever, the symmetries of the theory are different. The bosonic d = 2 theory had a

2 These numbers correspond to the number of fermionic supercharges in the theory, of

positive and negative chirality.
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global U(1) × U(1) symmetry, one of the U(1)’s corresponding to the momentum

around the circle, the other to the winding of strings around the circle which is also

conserved. The sine-Liouville potential breaks the U(1) of momentum by giving an

expectation value to a momentum mode. We shall see the same phenomenon in

another, seemingly different context later.

4. Black holes in low dimensions

As a theory of quantum gravity, string theory should be able to describe pro-

cesses involving strong gravitational fields like black holes. String theory, or its low

energy limit supergravity, is known to admit solutions which are black, in the sense

that there is an event horizon which causally disconnects one region of spacetime

from another.

A particular example which is understood as an exact perturbative string back-

ground, and not just in the supergravity limit is that of a black hole in two spacetime

dimensions. The spacetime manifold can actually be thought of as parameterizing a

coset of the group SL(2, IR) by a U(1) subgroup, and this symmetry can be exploited

to understand the solution to all orders in α′, beyond the gravity approximation.

There is a discrete parameter in the solution which is a positive integer, and in fact,

for small values of the integer, the solution is highly curved and is well beyond the

regime of classical gravity.

If we perform a Wick rotation of the time coordinate into Euclidean space, the

region behind the horizon is excised and we have a smooth manifold which has the

shape of a cigar, labelled by the coordinates (ρ ≥ 0, θ ∼ θ + 4π
Q ). The non-trivial

fields in spacetime are the metric and the dilaton:

ds2 = dρ2 + tanh2(
Qρ

2
)dθ2;

Φ = − log cosh(
Qρ

2
).

(4.1)
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θ R
ρ

Fig. 3: The Euclidean black hole or the cigar

This solution, apart from being of intrinsic interest as a black hole, arises in

many contexts in string theory - for example as the near-horizon limit of NS5-

branes, and blow-ups of singular Calabi-Yau manifolds.

Asymptotically, the manifold looks like a cylinder with the dilaton varying

linearly along its length. This resembles the compactified d = 2 bosonic theory and

the sine-Liouville theory, both of which we encountered above. The cigar manifold

also has only a single U(1) symmetry of momentum around the cigar. Strings

winding around the circle can slip off the tip of the cigar and can unwind. The cigar

and the sine-Liouville solutions have the same behavior, that of a linear dilaton on

a cylinder and one of the U(1) symmetries of the cylinder being broken by the

behavior of the solution in the strong coupling region. In fact, it is easy to see that

asymptotically, the two solutions are related by a duality called T -duality which

takes a circle of small radius into a circle of large radius, and interchanges the

momemtum and winding of the strings.

It is a non-trivial fact that this duality is a true relation between the two

exact CFT’s. More precisely, the supersymmetric sine-Liouville theory and the

supersymmetric version of the cigar theory are related by a duality called Mirror

symmetry, which in the asymptotic region reduces to T -duality.

In chapter 2, we shall study the supersymmetric version of the 2-d black hole

using this duality and discuss the geometry of these solutions in detail, as well as

higher dimensional solutions which include the 2-d black hole as a part. We find that

there is a subtlety in the geometric interpretation of the higher dimensional theories

and that the spectrum is most naturally interpreted as couplings to currents in a

putative holographic boundary theory. We also explain how the symmetries of the

various theories can be understood as those of the near horizon limit of certain brane

configurations in superstring theory. Based on this understanding, we discover a
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certain global symmetry relating the sine-Liouville and the cigar worldsheet theories.

This throws some light on the duality between the two theories,

In chapter 4, we shall discuss a proposal for an exact non-perturbative de-

scription of the 2-d black hole using a duality between open and closed strings. In

chapter 3, we shall study the open string theory in the example of the bosonic two-

dimensional theory (3.1), (3.2). Apart from being a simpler example than the black

hole, this bosonic theory actually turns out to capture the topological aspects of the

2d black hole. As a build-up to these studies, in the next part of the introduction,

we shall discuss at an introductory level, the powerful open-closed string duality in

string theory.

5. Open-closed string duality, branes, holography

As we mentioned earlier, strings can be either open (with two endpoints as

boundaries), or closed loops. The closed string theory is a consistent quantum

theory of gravitons and other closed strings. The open string theory does not contain

gravitons in the perturbative spectrum and generally contains gauge bosons.

In closed string theory, there are solutions to the classical equations of motion

analogous to instantons in gauge theory, in the sense that their action is proportional

to 1/g2
s . There are also other solutions whose action is proportional to 1/gs. These

are called D-branes. They are sources for gravitons – meaning they have mass,

and curve space around them – and other closed strings (in the case of p-forms,

this means that they are charged under those potentials). They can be thought

of as a condensate of closed strings. It was realized by Polchinski in 1995 that D-

branes have another description in terms of open string theory as hypersurfaces on

which open strings can end. This realization led to a very important discovery of a

duality between gravitational theories in the presence of these D-brane sources, and

ordinary non-gravitational theories like gauge theories which live on these D-branes.

At the nuts-and-bolts level, this duality can be be understood by the following

simple observation:

11



Fig. 4: Closed string exchange between two branes or equivalently, an open

string running in a loop.

The picture [Fig.4] can be understood as a closed string tree-level exchange between

the two D-branes, or as a open string one-loop diagram, where the open strings has

its ends on the two branes.

More physically, the duality between closed string (gravitational) theories, and

the corresponding open string (non-gravitational) ones can be understood as a real-

ization of holography - which is a paradigm which states that the degrees of freedom

of a gravitational theory in a certain region of spacetime live on the boundary of

that region. This has been a powerful paradigm to understand the entropy of black

holes as the well-understood entropy of the non-gravitational theories living on the

boundary of spacetime. A much-studied example of this is the duality between type

IIB superstring theory on AdS5 × S5 and N = 4 Yang-Mills theory on IR4. The

radial direction in AdS5 is understood as the energy scale in the Yang-Mills theory.

Another fertile field of examples of holography are the non-critical string the-

ories we discussed earlier. The Liouville direction, which is the scale factor in the

metric is naturally associated with energy scale of the worldsheet. If we choose a

gauge in which the time on the worldsheet is related to the time in spacetime, we

can understand that the Liouville direction is naturally associated with the energy

scale in spacetime.

In the early nineties, a lot of progress was made in understanding the non-

critical bosonic theories by discretizing the worldsheet, and performing a path-

integral over random surfaces. This procedure led to a non-perturbative formulation

of these theories as a quantum mechanics of square matrices of size N . These

12



matrices have a self coupling κ, and we need to take a special limit where N → ∞,

and the coupling is tuned to a critical value κ→ κ0 keeping a particular combination

(κ− κ0)
xN fixed3 which corresponds to the string coupling.

This description of two dimensional closed string theory as a one-dimensional

(quantum mechanical) theory of matrices can also be thought of as holography.

Recently, it was realized that this duality can also be understood as a open-closed

string duality. The matrix model was realized as an effective open string theory

living on D-branes in the non-critical background.

This duality has recently been under intense study, and one tool which has

been added to the string theorist’s arsenal to understand closed string theories

in the background of D-branes is to study the corresponding open string theories

living on the branes. The complete theory of open strings on the D-branes can be

described by what is called open string field theory (OSFT). Sen has made a precise

conjecture that the full OSFT on D-branes is dual to the theory of closed strings

that the branes couple to.

In many cases, the cost one has to pay for completeness is complication - in

most examples, the open string field theory is only understood using approximations

like truncating the theory to a finite set of modes. In the case of bosonic d = 2,4

one actually has a handle on the full OSFT on branes in the theory.

In chapter 3, we enunciate and explore the open string field theory of the

compactified c = 1 theory in some detail. We find that the OSFT reduces to a

model of matrices living on a two-sphere with coefficients depending purely on the

open string parameters. The form of the action also suggests that the branes can

be thought of as fermions in the theory.

In the cases where the full open string is not easily tractable, one technique

which has been often used successfully is to consider limits in which most of the

open string modes decouple and the open string theory reduces to something simple

(like the quantum mechanics of free fermions for bosonic d = 2).

In chapter 4, we shall use this technique to study the two-dimensional su-

perstring which, as we saw above is equivalently a theory of the supersymmetric

3 The number x depends on the particular non-critical theory in question
4 Because of the non-critical string interpretation, this is referred to, in the literature

as the c = 1 theory.
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two-dimensional black hole. We present evidence that the theory of the black hole

is described by a certain supersymmetric quantum mechanics of large N matrices,

known as the model of Marinari and Parisi.

6. Discussion

A full quantum mechanical description of a black hole is obviously very exciting,

one would then hope to describe strong gravitational processes like formation of

a black hole and Hawking radiation in a unitary fashion. We have now quite a

few examples of black hole solutions in string theory, some of which even have

brane descriptions whose entropy can be microscopically counted. However, most

of them are at the level of supergravity, and the entropy counting can be really

done for solutions which (unrealistically) preserve a lot of supersymmetry. The

two-dimensional black hole, by virtue of its being an exact CFT overcomes these

limitations and is a system which certainly deserves a lot of attention.

One of the fundamental questions which must be asked is: what is the nature

of the true degrees of freedom of the black hole, or more generally of a gravitating

system like a closed string theory? One answer which has arisen time and again in

different guises5 is simple: open strings. If one accepts this, the natural question

to follow is: what is the theory which governs the dynamics of the open strings?

Two kinds of answers have arisen in previous examples: the first kind of theory is

when there is a special limit one must take which consistently focuses on certain

open string modes, decoupling most of the infinite degrees of freedom of a typical

string theory. The second kind is open string field theory - the quantum theory of

all the open strings present in the background in question.

Examples of the first kind have produced in many cases quantum field theories

which we understand well – analytically at weak coupling, and in principle on a

computer in general. These have been extremely useful to describe gravitational

theories in specific examples where there have been consistent limits which retain

interesting dynamics. Adding to this list of examples is an important task which

may help us understand some more general principles of this kind of duality.

The second kind of theories contain much more information in principle, but in

practice has proven to be hard to understand, because of the nature of these theories

5 Eg: AdS/CFT, Matrix theory, Old matrix models, Topological models.
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– there are infinite modes, usually coupled to each other and with many derivatives

in spacetime and it is not clear what a good approximation scheme is. Examples

where open string field theories are tractable – even the first step of being able to

write down the action for all the modes – are rare and therefore very important.

In the setting of non-critical string backgrounds, the rest of the chapters of this

thesis take steps in the directions sketched above. We hope that it leads to a better

understanding of the various issues alluded to in this introductory chapter.
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Chapter 2

Non-Critical Superstrings in Various Dimensions

1. Introduction and summary

It has been known for a long time that consistent string theories can live in

low number of dimensions. These theories typically develop a dynamical Liou-

ville mode [5] on the worldsheet, and have been called non-critical string theories.

These theories can be thought of as Weyl invariant string theories in a spacetime

background which is one dimension higher, and contains a varying dilaton and a

non-trivial ‘tachyon’ profile which corresponds to the Liouville interaction on the

worldsheet. While the bosonic non-critical string is perturbatively consistent for

one or less spacetime dimensions, the authors of [6] constructed non-critical theories

with N = (2, 2) supersymmetry on the worldsheet, which have the N = 2 super-

Liouville, also known as the sine-Liouville interaction, on the worldsheet giving rise

to consistent string theories with spacetime supersymmetry in all even dimensions

less than ten.

One aspect of this construction which has not been completely clear is the

geometric interpretation of these theories. Fateev, Zamolodchikov and Zamolod-

chikov [7] conjectured that the sine-Liouville theory is equivalent to the conformal

field theory describing the two dimensional Euclidean black hole or the cigar [8].

This conjecture was extended to the N = 2 supersymmetric case by [9] and proved

using the techniques of mirror symmetry by [10] (another derivation of the duality

was recently given in [11]) . String theory in the black hole background has been

previously studied by many authors [see e.g.[12]]. This duality provides a possi-

ble interpretation of the non-critical superstrings in d spacetime dimensions as an

(infinite) set of fields propagating on the cigar tensored with IRd−1,1, analogous to

string theory in ten flat dimensions.

We shall study the non-critical theories in flat space for various values of d

using the above two dual worldsheet conformal field theories:
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1. The N = 2 supersymmetric sine-Liouville theory tensored with flat spacetime6

IRd−1,1 as defined by [6].

2. The N = 2 supersymmetric version of the cigar defined as the Kazama-Suzuki

[13] supercoset SL2(IR)/U(1), tensored with IRd−1,1.

More recently, it has been understood how these theories fit into the moduli

space of superstring theories. Motivated by the search for a holographic description

of these theories, [9,14] conjectured that the non-critical theories arise as a certain

double scaling limit of ten dimensional string theory. One approaches a point in

moduli space of string theory on a Calabi-Yau manifold where it develops an isolated

singularity, taking the string coupling to zero at the same time in such a way as to

keep a combination of the two parameters fixed. To study the theory of the singular

Calabi-Yau in the limit of gs → 0, one replaces the Calabi-Yau by its (non-compact)

form near the singularity. To study the double scaling limit, one smoothes out the

singularity by deforming the non-compact surface. The precise descriptions of the

non-critical theories defined above is:

3. Superstring theory on IRd−1,1 tensored with the non-compact manifold
∑n

i=1 z
2
i =

µ, n = (12 − d)/2, zi ∈C.

A T-dual [15,16,17] of this description is given in terms of wrapped NS5-branes:

4. Superstring theory in the near-horizon background of NS5-branes with d flat

spacetime directions and 6 − d directions wrapped on
∑n

i=3 z
2
i = µ.

The appearance of NS5-branes is not surprising considering that the near horizon

geometry of a stack of NS5-branes involves an infinite tube with the dilaton varying

linearly along the length of the tube. It has also been noted [18] that singular

geometries like (3) with µ = 07 also involve an infinite tube for the winding modes.

6 d = 0, 2, 4, 6; d = 0 is interpreted as the pure sine-Liouville theory. For d = 8, the

extra two dimensions are flat, producing ten dimensional flat space string theory.
7 Note that all the four descriptions presented above are singular at µ = 0 - the first

two descriptions in this limit have an infinite tube with a linearly growing dilaton, and

the latter two have geometric singularities at the point zi = 0. Turning on µ resolves the

singularities - in (1), the sine-Liouville interaction is turned on, which provides a potential

preventing strings from falling into the strong coupling region; in (2), the topology of

the tube is changed to that of a cigar with the string coupling at the tip of the cigar

determined by µ, thus eliminating the strong coupling singularity; in (3) and (4), the

geometric singularities are smoothed out by the deformation.
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In both the descriptions (3) and (4), some of the ten dimensions decouple in the

limit - roughly speaking, (3) describes the string modes which are localised near the

singularity and these only fluctuate in d+ 2 dimensions.

In this chapter, we use the above four descriptions in order to study and clarify

some properties of the non-critical theories, in particular their geometric structure.

The worlsheet description (1) gives us a handle on perturbative calculations like

the spectrum. Using this, we find that there is a clear geometric interpretation in

terms of a set of fields propagating on the cigar (2) except for the appearance of

some discrete symmetries which are non-geometric from the cigar viewpoint. On

the other hand, we show that these symmetries are natural from the point of view

of descriptions (3) and (4). Indeed, they are simply the global symmetries of the

above 5-brane (or Calabi-Yau) configurations which do not decouple after taking

the limit described above. Our analysis also uncovers some new features of some of

the sine-Liouville–cigar duality.

As just mentioned, in general, the physical spectrum cannot be interpreted as

a set of fields propagating on a perhaps singular cigar-like manifold. From the point

of view of the worldsheet CFT, this is due to the fact that the chiral ZZ2 symmetry

used in the GSO projection is not the naive one of changing the sign of the chiral

fermions, rather it acts by translation on the chiral part of the compact boson of the

cigar in addition to the above action on the fermions. This is the only consistent

choice for the GSO projection because the pure chiral rotation of the fermions on the

worldsheet is anamolous due to the curvature of the cigar, and the conserved chiral

U(1) current acts on the compact boson of the cigar in addition to the fermions.

This means that for a given field on the d + 2 dimensional geometry, its spin in

flat space is correlated with its momentum around the cigar. In the Green-Schwarz

picture, this is due to the fact that the conserved current corresponding to the

momentum around the cigar is a combination of the naive momentum and a piece

acting on the worldsheet fermions.

The theories we consider asymptote to a linear dilaton geometry and are con-

jectured [19] to have holographic non-gravitational duals. In agreement with this

statement is the structure of the target space supersymmetry in these theories;

the supercharges anticommute to the flat spacetime8 momentum generators. We

8 In [6], the dilaton direction was interpreted as the time direction, and this was called

space-supersymmetry.
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demonstrate that the spectrum can be classified as current multiplets in the bound-

ary theory, as consistent with the holographic interpretation. The conserved U(1)

momentum around the cigar is part of the R symmetry in the boundary theory. We

shall exhibit this for the first few Kaluza-Klein modes for the d = 4 theory.

For d = 6, there is an explicit CFT interpretation as the near-horizon geome-

try of two parallel non-coincident NS5-branes [15]. The CFT describing the near-

horizon geometry of k ≥ 2 coincident five branes is IR5,1 × IR× SU(2)k [20]. There

is an infinite throat along which the dilaton increases indefinitely as one approaches

the location of the branes, and a trasverse 3-sphere. This theory on k coincident

NS5-branes has the global rotation symmetry SO(5, 1) × SO(4). Separating the

5-branes in the four transverse directions in a ring-like structure partially smoothes

out the singularity, and the resulting theory has a symmetry SO(5, 1)×U(1)×Zk,

and is conjectured to be string theory on IR5,1 × SL2(IR)k

U(1)
× SU(2)k

U(1)
.9 10 In the case

k = 2, the bosonic sphere and the flux disappear and the deformed geometry is

precisely the one we want to study for d = 6.

This geometric description of the d = 6 theory reveals some new features of the

sine-Liouville–cigar duality. The moduli space of the theory is IR4/ZZ2 corresponding

to the separation of the two 5-branes, and the global symmetry of this configuration

is SO(4) broken to O(3). We shall discuss these features in the conformal field

theory. We find that the action of the CFT in the curved directions is not purely

the sine-Liouville action, or the cigar action - only specific linear combinations of the

two preserves the global symmetry. The d = 6 theory thus is an example where the

duality between the sine-Liouville and the cigar is present already at the kinematic

level, giving a better understanding of the duality which was conjectured based on

dynamical reasons.

The plan of this chapter is the following: In section 2, we shall begin by re-

viewing the Euclidean black hole background and the non-critical superstring con-

struction. Then we shall lay down the general features of the construction for all

the dimensions. In section 3, we describe the special features of all the theories on a

case-by-case basis. In particular, we describe many interesting features of the d = 6

9 The GSO projection relates the different factors and so the product is not direct.
10 The WZW model corresponding to the sphere consists of bosonic SU(2) currents at

level k − 2 and fermionic currents at level 2.
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theory. We also make a short note on the N = (4, 4) algebra in this case. In section

4, we present the explanation of the global symmetries of the various theories using

the embedding in ten dimensional flat space string theory. In Appendices A and

B, we record the spectrum and one loop partition function of the various theories.

Appendix C summarizes the details of the Green-Schwarz formalism, and Appendix

D discusses the details of the conformal field theory at second order.

2. Superstring theories on the Cigar

The spacetime directions are Xa = ρ, θ,Xµ, (ρ ≥ 0, µ = 0, 1..d − 1). The

geometry in the string frame11 is that of a cigar tensored with flat spacetime:

ds2 = dρ2 + tanh2(
Qρ

2
)dθ2 + dXµdXµ, θ ∼ θ +

4π

Q
;

Φ = − log cosh(
Qρ

2
), Bab = 0.

(2.1)

with the string coupling gs = eΦ. This metric is a good one for string propaga-

tion because the dilaton obeys the equation 2DaDbΦ + Rab = 0, where Da is the

spacetime covariant derivative, and Rab is the spacetime curvature.

In the asymptotic region ρ → ∞, the geometry reduces to IRd−1,1 tensored

with a cylinder of radius R = 2
Q with the dilaton varying linearly along its length.

When d + 2 fermions are added to this theory, it also has N = 2 supersymmetry.

The currents of the cigar part of the theory in this region are

Tcig = −1

2
(∂ρ)2 − 1

2
(∂θ)2 − 1

2
(ψρ∂ψρ + ψθ∂ψθ) −

1

2
Q∂2ρ

G±
cig =

i

2
(ψρ ± iψθ)∂(ρ∓ iθ) +

i

2
Q∂(ψρ ± iψθ)

Jcig = −iψρψθ + iQ∂θ ≡ i∂H + iQ∂θ ≡ i∂φ

(2.2)

In the exact cigar background the N = 2 supersymmetry is preserved but the exact

expressions are more complicated. Away from the asymptotic region ∂H and ∂θ

cannot be extended to conserved currents but their leftmoving linear combination

∂φ is exactly conserved. The current which asymptotically looks like (jθ(z), j̃θ(z)) =
iR
2 (∂θ, ∂θ̃) is conserved in the full theory and the corresponding charge P θ is the

11 We shall set α′ = 2 throughout this chapter
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momentum around the cigar in units of the inverse radius. Since it is not purely

leftmoving, the winding number is not conserved.

We conclude that the exact theory on the cigar has three conserved currents.

∂φ is leftmoving, ∂φ̃ is rightmoving and jθ has both a leftmoving and a rightmoving

component. In the asymptotic region where the theory looks like a linear dilaton

theory one can describe the operators in terms of H, H̃, θ and θ̃. But in the full

theory it is better to use φ ≈ H +Qθ and φ̃ ≈ H̃ +Qθ̃.

When IRd−1,1 is tensored with the cigar, the currents Td, G
±
d , Jd of the d free

bosons and fermions should be added to this CFT. All the conserved chiral currents

now have additional pieces from the free CFT. The momentum around the cigar

as defined above is still a symmetry, and there are also d conserved momenta in

the flat directions. We can add the superconformal ghosts to this theory to form a

consistent string background. The central charge of this theory, ĉ = 2(1 +Q2) + d

should be set to 10 which gives Q =
√

1
2 (8 − d).

To construct theories with spacetime supersymmetry, we need to introduce

supercharge operators. As seen above, the U(1) R current of the worldsheet algebra

in these theories involves the compact boson in addition to the worldsheet fermions.

This means that the standard R-NS construction of the theory yields a spectrum

which does not have a good spacetime interpretation as particles propagating in the

d+2 dimensional curved spacetime; the spin of a particle and its momentum around

the cigar are not independent. Rather, the theories have a natural holographic

interpretation as a non-gravitational theory living in d dimensions. As we shall see,

this feature is intimately related to the structure of supersymmetry in such curved

spacetimes.

To emphasize the above point, we shall first construct the bosonic Type 0

theories, and then generate the supersymmetric Type II theories as a ZZ2 orbifold

of the former. The bosonic Type 0 theories have no surprises and we shall quickly

review the standard construction. We shall then see that the chiral GSO projection

to get to the Type II theories has a subtlety involved, and the spectrum looks

slightly unusual from the cigar perspective. We shall then present the classification

of the particles of the Type II theories as off shell operators in the d dimensional

holographic theory.
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2.1. Type 0 theories on the cigar ×IRd

We first construct the chiral (left or right moving) part of the vertex operators

by demanding that they are physical operators in the theory. For example, in the

pure cigar (d = 0) case, the the form of the vertex operators in the asymptotic

region where all the worldsheet fields are free is (ignoring discrete states)

ONS
nkp = e−ϕ+inH+ikθ+(−1+p)ρ

OR
nkp = e−

1
2
ϕ+i(n+ 1

2
)H+ikθ+(−1+p)ρ

(2.3)

Here n ∈ Z and p ≥ 0, and ϕ is the bosonized superconformal ghost [21]. In

the higher dimensional theories, the operators are functions of the free fields as

well. Physical operators also obey the condition of BRST invariance. To form the

closed string theories, we put together the left and right movers with the following

conditions:

1. Modular invariance demands a diagonal GSO projection, i.e. the same bound-

ary conditions for the left and rightmoving fermions, together with

0B : (−)jL = (−)jR ;

0A : (−)jL = (−)jR in NS,

(−)jL = (−)jR+1 in R.

(2.4)

where jL,R are the leftmoving and rightmoving fermion number currents.

2. The parity even combination of the lowest NS-NS winding operators ONS
n=0,k=± 1

2

,

ÕNS
n=0,k=∓ 1

2

is the interaction term in the sine-Liouville theory written in the

dual variables. The duality between the two theories shows that the spectrum

must have the above two NS vertex operators. Imposing locality of the rest of

the spectrum relative to these vertex operators, demanding that the Liouville

momentum of ρ and ρ̃ must be the same, and the level matching condition

determines the spectrum.

At this point, we should make a remark concerning the nature of these op-

erators. In theories which asymptote to linear dilaton backgrounds, there is no

state-operator correspondence. Non-normalizable modes correspond to local oper-

ators in the theory, and the normalizable modes are the states, or vacuum defor-

mations in spacetime [22]. For the non-critical superstring theories with d ≤ 4,

the sine-Liouville interaction is a non-normalizable local operator and can be put
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in the action. The cigar metric is normalizable for all the theories. For d > 4, the

sine-Liouville operator is normalizable as well. We shall not grapple with this issue

in the following, and shall study all the theories, including d = 6.

The Type 0 theories as defined above for all d have a straightforward inter-

pretation in terms of the cigar geometry. The spectrum can be classified as a set

of particles with increasing masses. Asymptotically, all the propagating modes are

determined by a free field propagating on the geometry, so that the particles have

all integer momenta and winding (which is not a good quantum number) allowed

by the equation of motion.

The lowest lying modes are a tachyonic scalar, and a graviton multiplet with d2

degrees of freedom in the NS-NS sector, and a set of massless R-R fields appropriate

to the particular dimension12. The winding modes in the R-R sector have a possible

interpretation as Wilson lines of R-R potentials around the tube. This interpretation

is only valid asymptotically, where the field strength vanishes. The type 0 spectra

are presented in Appendix A with an example.

We can study the high energy behaviour of these theories and get an estimate

for the asymptotic density of states by a saddle point approximation of the partition

sum. The result for the mass density of states as a function of the spacetime

dimension d is (Appendix B):

ρ(m) ∼ m−(d+2) exp(
m

m0
), m0 = (π

√
dα′) (2.5)

As noted in [6], [23], this is unlike compactification to d dimensions wherein the

string at high energies does see all the ten dimensions. These string theories are in

this sense, truly d dimensional.

2.2. The chiral GSO projection and Type II theories

The symmetries of the 0A and 0B theories are the momentum around the cigar,

and naively two (vector and axial) U(1) R symmetries on the worldsheet. Only the

first one under which all the R-R fields pick up a negative sign and is the one used

in the type 0 projection, is a true symmetry of the theory. This is clear from the

sine-Liouville interaction LSL
int = ψψ̃ e−

1
Q

(ρ+ρ̃+i(θ−θ̃)) +c.c where ψ = ψρ + iψθ is the

12 For d = 0, there are no transverse oscillators and no graviton, there are only a few

field theoretic states in the spectrum.
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superpartner of ρ+ iθ and ψ̃ is its rightmoving counterpart. The chiral rotation of

the fermions is not a symmetry, the rotation of the left and right moving fermions

in opposite directions is. It is also clear that there is a conserved chiral U(1) current

which rotates the left moving fermion by an angle α and simultaneously translates

the left moving boson θ by Qα.

From the cigar point of view, the non-conservation of the chiral rotation can be

understood as due to the anomaly at one-loop in the U(1) current jL which rotates

only the left moving fermions caused by the curvature of the cigar:

∂αj
α
L = R(ǫαβ ∂αρ ∂βθ), (2.6)

where R = −2DaDaΦ = −Q2

2 cosh2 Qρ
2

is the Ricci curvature of the cigar.

Due to the special form of the curvature in two dimensions, we can define a new

current which is conserved. Changing to complex coordinates on the worldsheet,

this current is the sum of the chiral rotation and another piece proportional to the

left moving momentum:

∂jG := ∂(jL +Q(tanh
Qρ

2
)∂θ) = 0 (2.7)

which reduces to the U(1) R current of the N = 2 SCFT (2.2) in the asymptotic

region.

We conclude that to perform a chiral ZZ2 projection to get the type II theories,

we must use the ZZ2 symmetry generated by the conserved current above, which

acts in the asymptotic region as

G = (−)jL+QkL . (2.8)

This GSO projection is implemented by introducing the target space super-

charge in the twisted sector, as in [6]. For example, in the pure cigar case, we

demand that the OPE of the (1, 0) operator

S = e−
ϕ

2
+i φ

2 (2.9)

with the physical operators is local. When IRd is tensored to this background,

S = e−
ϕ
2
+i φ

2 and S = e−
ϕ
2
−i φ

2 are each multiplied by spin fields which are spinors

of Spin(d) (for d/2 even these are conjugate spinors and for d/2 odd they are the
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same spinor). There is also a similar condition on the rightmoving side depending

on whether the theory is IIA or IIB.

The algebra of the supercharges can be deduced by examining the currents in

the asymptotic region. For d/2 odd or even, one has respectively

{Sα,Sβ} = 2γµ
αβPµ, or {Sα,Sβ̇} = 2γµ

αβ̇
Pµ. (2.10)

Note, in particular that it does not contain translation in θ. In fact, the symmetry

generator P θ corresponding to the translation around the cigar is an R symmetry.

[P θ,Sα] =
1

2
Sα, [P θ,Sα̇] = −1

2
Sα̇. (2.11)

This means that the fields in a given supersymmetry multiplet do not all have

the same value of momentum. Thus, the allowed momenta around the cigar of a

particle is correlated with its behaviour under Lorentz rotations in spacetime. For

instance, in the zero winding sector, the graviton has only even momenta, and the

tachyon13 has only odd momenta. The fermionic states which arise in the twisted

sector have half integer momenta. This means that they are antiperiodic around

the tube. This is the expected behaviour for spinors which are single valued on the

cigar (the spin structure which can be extended). We find also a discrete winding

symmetry which is not natural from the cigar perspective. This discrete symmetry

has its most natural interpretation from the Calabi-Yau or NS5-brane description

of the theories, as described later in section 4. The type II spectrum is presented

in Appendix A with an example.

In the Green-Schwarz formulation of the superstring, the states of the theory

are in a representation of the zero modes of the spinors which are the superpartners

of the bosonic fields. The quantization is treated in Appendix C. Here we point out

two features of these theories. The first one is how the above non-smooth spacetime

structure manifests itself in the Green-Schwarz formalism. In this description, the

conserved current which corresponds to momentum around the cigar is really a

combination of the naive momentum and a piece which acts on the worldsheet

fermions. The spin of a particle and the momentum around the cigar are thus not

independent of each other.

13 The tachyonic zero mode is projected out and the field is no longer tachyonic. The

type II theories are stable.
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The second issue regards the comparision to the 10-dimensional Green-Schwarz

string. In that case, in the light-cone gauge, the symmetry group SO(8) has the

property of triality relating the chiral spinor and vector representations which is

crucial in showing that the spectrum is the same as that obtained by the R-NS

formalism. In our theories in lower dimensions, there is no triality, but correspond-

ingly, the NS-NS ground state is not a graviton built out of left and right moving

vectors, rather it is the scalar (tachyon) field with one unit of momentum. There is

no need for triality in these theories.

2.3. Holographic interpretation

The bosonic spectrum of the supersymmetric theories cannot be organized as

multiplets of the d + 2 dimensional bosonic Poincare group, but the full spectrum

can be organized into multiplets of spacetime supersymmetry. This algebra (2.10) is

effectively d dimensional and the modes of the d+2 dimensional fields are naturally

classified as d dimensional off-shell currents (operators). This is consistent with the

holographic interpretation of such theories [19]. We shall illustrate this using the

d = 4 example.

The spacetime supersymmetry algebra of the theory is a four dimensional N =

2 algebra with a U(1) R charge which we identified as the momentum around the

cigar R = 2P θ. The six dimensional fields arrange themselves into multiplets of this

supersymmetry. The Kaluza-Klein modes with a certain value of momentum around

the cigar will be on-shell particles in five dimensions, and so they will fall into the

current representations of the four dimensional algebra [e.g. Table 1,2 below]. These

off shell four dimensional currents are conserved because of the gauge invariance in

five dimensions.

Table 1: Tachyon multiplet

6d rep: (Aa)RR (ψ1, ψ2), (ψ1, ψ2) (T, T ∗), (Tw, T
∗
w) Tachyon

4d rep: (Vµ, D) (ψ1, ψ2), (ψ1, ψ2) (φ1, φ
∗
1), (φ2, φ

∗
2) N = 2 vector current

n = 1
2R : 0 ( 1

2 ,
1
2 ), (−1

2 ,−1
2) (1,−1, ), (0, 0)
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Table 2: Graviton multiplet

6d rep: (G,B, φ)NSNS (χ, ψµ), (χ, ψµ) (F±µ, F
(±)
µν )RR Graviton

4d rep: (Tµν , Bµν , Aµ, Bµ) (χ, ψµ), (χ, ψµ) (∂µD ± k2
νVµ), (V

(±)
µν ) N = 2 supercurrent

n = 1
2R: 0 ( 1

2 ,
1
2 ), (−1

2 ,−1
2) (1,−1), (0, 0)

Supersymmetry structure of the d = 4 spectrum: These are the first
two Kaluza-Klein modes of the six dimensional fields in the type IIA
theory. In six dimensions, these are the tachyon multiplet and the
graviton multiplet. They are classified by their properties under
the 6d Poincare algebra and the 4d SuperPoincare algebra. The
momentum around the cigar is proportional to the U(1) R charge.
The spinors are two component spinors in 2 and 2 of SO(4).

The details of the various type II theories differ slightly from each other. Some

of the higher dimensional theories have been studied in [24,25,26]. These authors

however, were interested in constructing modular invariant partition functions in

particular cases, and the spacetime picture is not dwelt upon. In Appendix B, we

present the modular invariant partition functions for the perturbative string spec-

trum for the various values of d. These are constructed by the standard technique

[4] of counting the physical momentum and winding forced by the above GSO pro-

jection in the light cone gauge. In the next section, we shall visit the various theories

and highlight the interesting features that each of them have.

3. Special features of the various theories

3.1. d = 0

In the theory of the pure cigar, the spectrum looks smooth in that it can be

interpreted as a set of particles propagating on the cigar14. There are no transverse

oscillators, and hence no infinite tower of states that we find in higher dimensional

theories. We can explicitly write down the all the vertex operators easily in this

14 This is loose usage of language - in two dimensions, there is no notion of a particle.
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case. In the IIB theory, we have (all operators with p = |k|):

e−ϕ−ϕ̃+i(N+ 1
2
)(θ−θ̃)+(−1+|N+ 1

2
|)(ρ+ρ̃) N = 0,±1,±2, ...

e−ϕ− 1
2
ϕ̃− 1

2
iH̃−i(N+ 1

2
)(θ+θ̃)+(− 1

2
+N)(ρ+ρ̃) N = 0, 1, 2...

e−
1
2
ϕ−ϕ̃− 1

2
iH−i(N+ 1

2
)(θ+θ̃)+(− 1

2
+N)(ρ+ρ̃) N = 0, 1, 2...

e−
1
2
ϕ− 1

2
ϕ̃+ 1

2
i(H+H̃)+iN(θ+θ̃)+(−1+N)(ρ+ρ̃) N = 0, 1, 2...

(3.1)

In the NS-NS sector we have only winding modes of the scalar. In the NS-R and

the R-NS sector, we find spacetime fermions. As can be seen from the H and H̃

behavior of the vertex operators they both have spin −1
2 . As mentioned earlier,

the half integer momentum is the expected behavior for spacetime spinors which

are single valued on the cigar. This agrees with the interpretation of a black hole

at finite temperature. From the R-R sector we find a spacetime boson which is

periodic around the tube. We interpret this boson as the R-R scalar of the IIB

theory. Note that the two fermions have only negative k and the R-R scalar has

only positive k.

In the IIA theory we find

e−ϕ−ϕ̃+i(N+ 1
2
)(θ−θ̃)+(−1+|N+ 1

2
|)(ρ+ρ̃) N = 0,±1,±2, ...

e−ϕ− 1
2
ϕ̃+ 1

2
iH̃+i(N+ 1

2
)(θ+θ̃)+(− 1

2
+N)(ρ+ρ̃) N = 0, 1, 2...

e−
1
2
ϕ−ϕ̃− 1

2
iH−i(N+ 1

2
)(θ+θ̃)+(− 1

2
+N)(ρ+ρ̃) N = 0, 1, 2...

e−
1
2
ϕ− 1

2
ϕ̃+ 1

2
i(−H+H̃)−i(N+ 1

2
)(θ−θ̃)+(− 1

2
+N)(ρ+ρ̃) N = 0, 1, 2...

e−
1
2
ϕ− 1

2
ϕ̃+ 1

2
i(H−H̃)+iN(θ−θ̃)+(−1+N)(ρ+ρ̃) N = 0, 1, 2...

(3.2)

We again find only winding modes of the scalar in the NS-NS sector. The NS-R and

R-NS sectors lead to antiperiodic spacetime fermions. Their spins are +1
2 and −1

2 ,

which is consistent with the spacetime parity of the IIA theory. The R-R sector

leads to winding modes which have an asymptotic interpretation as Wilson lines of

the R-R one form around the tube.

One aspect worth mentioning about this theory is that the physical spectrum

is extremely constrained due to the lack of transverse oscillators. There are no

gravitons, and the supercharges are not part of the spectrum. In fact, to obtain
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a modular invariant partition function[Appendix B], we cannot impose the Dirac

equation, and we need to demand it as a further condition to read off the physical

spectrum. Even when we do this, the bosons and fermions are not paired and so

the partition function does not vanish.

3.2. d = 2

In the theories with d = 2, 6, there is a further subtlety in the chiral projection

which arises because of the way the conserved fermion number current jG = jL+QkL

acts in these theories. The symmetry G = eπijG has a ZZ4 (and not ZZ2) action on

the fields of the type 0 theories. The symmetry G1 = (−)2jG is a ZZ2 subgroup of the

ZZ4 symmetry in the type 0 theories. Orbifolding by G1 gives another bosonic theory

which we call the type 0′ theories. These theories has a ZZ4/ZZ2 = ZZ2 symmetry G2

by which they can be further orbifolded to get the supersymmetric type II theory.

In the d = 2 dimensional case, Q =
√

3 which gives R = 2√
3
. The ZZ2 symmetry

in the type 0 theories is G1 = (−)2jL+2
√

3kL . The NS-NS operators have charge

(−)2
√

3kL and the R-R operators have charge (−)2
√

3kL+1 under this symmetry (This

is because there are only two spin fields in four dimensions). The construction of the

type 0′ theories is implemented by demanding the presence of the R±R∓ operators

in the 0’B and R ±R± operators in the 0’A with winding w = ±1
2 . The chiral ZZ2

symmetry of these theories is (−)jL+
√

3kL , orbifolding by which we get the type II

theories. This is implemented as usual by demanding the supercharges to be present

in the spectrum. The supercharges in this theory have (n, w) = ±( 1
2 ,±3

4 ).

3.3. d = 4

We have been presenting examples from the d = 4 theory above to illustrate

the various general features, and shall only make one remark here. The asymptotic

radius of the cigar is the self-dual radius. Asymptotically, the current ∂θ is a

physical current, but the currents e
±i 1√

2
θ

are not. The SU(2) symmetry of the free

boson is therefore not present in this model.
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3.4. d = 6 or k = 2 NS5-branes

This example is particularly rich because of the explicit geometric description in

terms of NS5-branes referred to in the introduction. We shall focus on three main

points:

1. The equivalence between the cigar and sine-Liouville theories. We shall see

that the two interactions are related by a symmetry.

2. The description of the moduli space of the theory, and

3. A discussion of the discrete ZZ2 symmetries present in the various 5-brane and

cigar theories.

A quick review of the picture we shall use is the following: The conformal field theory

in the asymptotic region is that of two parallel NS5-branes. This can be explicitly

seen by fermionizing the angular coordinate θ on the tube to two free fermions

e±iθ ≡ 1√
2
(ψ1± iψ2), which along with the fermion ψθ ≡ ψ3 generates a left moving

SU(2)2.
15 The theory has an SU(2)L × SU(2)R = SO(4) symmetry generated

on the worldsheet by the rotation of the three leftmoving and three rightmoving

fermions. The worldsheet interaction which resolves the singularity at the origin

breaks the symmetry down to a global diagonal SO(3) corresponding to the rotation

of the three directions transverse to the two separated 5-branes.

The relationship between the cigar and sine-Liouville theories is a strong-weak

coupling duality on the worldsheet. For large k, the cigar has small curvature and

the classical description in terms of the metric is a good approximation to the full

theory. The sine-Liouville term decays much faster than the cigar metric asymptoti-

cally, and the sine-Liouville lagrangian is strongly coupled. For small k on the other

hand, the sine-Liouville term asymptotically dominates over the cigar metric which

has large curvature, and it is the sine-Liouville which is a better description in terms

of a weakly coupled worldsheet theory. For general k, the effective lagrangian in the

full quantum theory has both these terms, and the dominance of one of these terms

over the other is governed by the value of k. This has been confirmed by explicit

15 In this case, Q = 1 ⇒ R = 2 which is the free fermion radius.
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calculations of scattering amplitudes [e.g. [27] and refs. therein] where one sees

poles corresponding to both the terms which can be used to compute an explicit

relation between the two couplings.

In our theory with k = 2, both the terms decay at the same rate. As we

shall see, they are related by a rotation in the SO(3) symmetry group mentioned

above. This gives an example where the kinematic structure determines explicitly

that both the terms are present in the lagrangian and also determines the relation

between the strength of the two couplings.

The three N = 2 invariant currents ψie
−ρ (in the −1 picture) are in a triplet

under SU(2)L. The meaning of these currents is better understood when expressed

in the 0 picture in the variables of the cigar: (ψρ ∓ iψθ)e
−ρ±iθ, (ψρψθ +∂θ)e−ρ - the

first two terms are nothing but the sine-Liouville interaction, and the third term is

the first order correction from the cylinder towards the cigar metric. We can express

these currents in a manifestly SU(2) covariant manner as the fermion bilinears

Ai = (ψρψi− 1
2
ǫijkψjψk)e−ρ. There are also the corresponding rightmovers. Noting

the Clebsch-Gordon coefficients relating the 4 of the SO(4) and the 3’s of the left

and the right SU(2) (the ’tHooft symbols),

ηi
µν , η̃

i
µν = δ0[µδ

i
ν] ±

1

2
ǫijkδ

j
µδ

k
ν , (3.3)

we can write down the proposed interaction for the theory of the non-coincident

parallel NS5-branes. The matrix Lµν = ηi σ
µ η̃j

σνAiÃj is in the symmetric traceless

(9) of the SO(4), and the interaction

Sint =

∫
d2z XµXνLµν (3.4)

corresponds to separating the branes in the direction Xµ with the center of mass

at the origin. A choice of Xµ breaks the SO(4) symmetry to an SO(3) rotation

symmetry. Changing the position of the branes by a SO(4) transformation leads to

a different SO(3) being preserved. This is reflected in the lagrangian by simulta-

neously conjugating the matrix Lµν by the same transformation. In keeping with
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the conventions used in the earlier sections, we shall relabel the four transverse

directions as µ = 6, ..9.

Since the two 5-branes are identical, the moduli space of the theory is IR4/ZZ2,

parameterized above by Xµ. In the SL2(IR)/U(1) description of the theory, there

are only four independent (1, 1) physical states. Two of the three chiral operators

Ai (and correspondingly the rightmovers) are related by the spectral flow operation

by one unit in the SL2/U(1) theory. This means that only two of them are inde-

pendent states. The wavefunction of a state is in general a linear combination of

the wavefunctions of the states reached by spectral flow from a given state. The

coefficients of these wavefunctions depends on the given point in moduli space, be-

cause this determines the boundary conditions at the tip of the cigar [28,29]. The

above four states are in the representation 1+3 of the SO(3), corresponding to the

radial motion of the branes and the motion on the three-sphere of given radius.

In the subspace that preserves the momentum symmetry of the cigar and the

parity of the angular coordinate, there is only one exactly marginal deformation.

This was interpreted in [10] as the metric deformation. As mentioned above, this

interpretation is only correct for large k where it dominates - as we see here, the

spectral flow relation means that the deformation is a combination of operators as

given by (3.4).

In the lagrangian (3.4) proposed above, the fact that there are only four inde-

pendent operators is seen as a condition of second order conformal invariance of the

theory. In the linear dilaton background, all the nine operators are conformal. In

the background given by the interaction corresponding to say X6 6= 0, X7,8,9 = 0,

only the operators L6µ remain conformal. To determine exactly marginal deforma-

tions, we add an arbitrary combination of the nine operators CµνLµν to the free

action, and find that the theory remains conformal iff Cµν = xµxν [Appendix D]

which is exactly the four dimensional moduli space written above.

To summarize, there is no pure sine-Liouville or pure cigar theory, only partic-

ular linear combinations given by (3.4) are consistent with the SO(4) being broken

to an SO(3) rotation symmetry. The theory has a four dimensional moduli space
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IR4/ZZ2.

We now make a few remarks:

1. The discrete winding symmetry in the theory is identified in the NS5-brane

picture as the rotation by π in a plane containing the two branes, exchanging

the two. This ZZ2 symmetry completes the SO(3) into an O(3).

2. The separation of the branes means that the origin is not singular, and this

gives a unique spin structure in the transverse space. This forces the fermions

to pick up a phase of ±i under the action of the exchange symmetry generator,

precisely as seen in the spectrum. The fermions also transform in the SU(2)

cover of the global SO(3).

3. We can make precise the relation of the cigar and 5-brane theories defined

by the various GSO projections. The type 0′ and II theories on the cigar

correspond to the type 0 and II theories on the two 5-branes. The ZZ2 orbifold

by the exchange symmetry mentioned above takes us from the type 0′ to the

type 0 theory on the cigar. The smooth (but tachyonic) type 0 theory on the

cigar is identified with the theory of one 5-brane on IR4/ZZ2 away from the

origin. This theory does not have the SO(3) symmetry.

4. To restate a point, the orbifold which gives the 5-brane theories from the Type

0 theory on the cigar does not have a geometric interpretation like changing

the radius. The type 0A(B) and Type IIA(B) theory on the 5-branes can

be obtained by quotienting by a chiral ZZ2 either the type 0A(B) theory with

radius R = 2, or the type 0B(A) with radius R = 1 (which is produced from

the former 0B(A) by a geometric quotient).

3.5. A note on the N = (4, 4) algebra in the d = 6 theory.

This small subsection is slightly outside the main flow of the chapter. The main

points in this subsection are the existence of an extended superconformal algebra

in the d = 6 theory, and a comment on the related D1/D5 system.

Consider first the theory of k = 2 coincident NS5-branes. In a physical gauge

where the lightcone directions along the NS5-branes are fixed, the degrees of freedom
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on the worldsheet are four free bosons (parallel to the branes) + four free fermions

which have an N = (4, 4) superconformal structure with c = 6, and a linear dilaton

(ρ) + four free fermions (ψµ = (ψρ, ψi)). There is also an N = (4, 4) superconformal

algebra involving the latter fields [20] of central charge c = 6, which extends our

algebra (2.2). There are four fermionic currents and three R currents forming an

SU(2)1. The currents of the algebra are:

T = −1

2
(∂ρ)2 − 1

2
ψµ∂ψµ − 1

2
∂2ρ

Gµ =
1√
2
ψµ∂ρ+

1

6
√

2
ǫµνστψ

νψσψτ +
1√
2
∂ψµ

Ji =
1

2
(ψρψi +

1

2
ǫijkψjψk) =

1

2
ηµν

i ψµψν .

(3.5)

As shown above, when the branes are noncoincident, the moduli are pa-

rameterized by the operators Lµν constructed using the chiral operators Ai =

(ψρψi − 1
2ǫijkψjψk)e−ρ ≡ J ie

−ρ and their right moving counterparts. These opera-

tors commute with the above algebra and the N = (4, 4) superconformal symmetry

is preserved at all points in the moduli space. This is consistent with the fact

that there are 16 supercharges in spacetime even when the two branes are non-

coincident (but parallel). The SO(4) = SU(2) × SU(2) of the Ji, J̃i is identified

with the rotation of the four directions parallel to the brane.

A fact worth pointing out is that for a system of k NS5-branes, in addition

to the above algebra (3.5) with c = 6, there is a second N = 4 algebra with

c = 6(k − 1). The R currents of this algebra contains J i and another piece from

the bosonic SU(2)k−2, and the slope of the dilaton is different. Both these algebras

have the same algebraic structure (called the ‘small’ N = 4 algebra), and they are

both subalgebras of the ‘large’ N = 4 algebra. This ‘large’ algebra contains both

the sets of SU(2) R currents and its generators do not contain the improvement

terms from the linear dilaton [20,30].

As explained in [30], these two conformal field theories are spacetime descrip-

tions of the short and long string excitations respectively in the background of

k NS5-branes and many fundamental strings.16 Equivalently, they describe the

16 In the gauge we have chosen, at distances where we are in the near horizon limit of the
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Coulomb and Higgs branches respectively of the gauge theory on a D1-brane in the

presence of D1-branes and D5-branes in the IIB theory. In general, the slope of

the dilaton in the Higgs branch differs in sign and magnitude from the Coulomb

branch, and the symmetries of the two branches are different.

For the case k = 2, there is a symmetry mapping one theory to the other. In

this special case, both the chiral subalgebras have c = 6, and the string couplings are

inverses of each other. There are two SO(4) = SU(2)L×SU(2)R - one corresponding

to the rotation of the four directions parallel to the 5-brane and the other to the

rotation of the four transverse directions. In the Coulomb branch, the parallel SO(4)

generated by the Ji, J̃i is preserved and the transverse SO(4) is broken to a global

diagonal SU(2) by turning on the moduli parameterized by J
i
, J̃ i corresponding

to the separation of the branes. In the Higgs branch, the roles of J i’s and J
i
’s

are reversed (in this system, the moduli are the self dual NSNS B field and a

linear combination of the RR zero form and four form). Given the identification

of the long tube of the two branches as in [30], one can summarize the above by

saying that there is a symmetry relating the short and long string systems given by:

(ρ, ψρ) → −(ρ, ψρ). Starting from the weak coupling end of either theory, turning

on the moduli to a non-zero value caps off the infinite tube to a semi-infinite cigar.

4. The global symmetries of the various theories

The global symmetries of the various theories are the following:

Table 3: Global Symmetry structure

Theory d = 6 d = 4 d = 2 d = 0

Supersymmetry N = (2, 0) or N = (1, 1) N = 2 N = (4, 0) or N = (2, 2) N = 2

Bosonic Symmetry SO(5, 1)×O(3)R SO(3, 1) × U(1)R SO(1, 1)× (U(1) × ZZ2)R U(1)R

Only the Lorentz part of the full Poincare group in the flat directions
is written above. The supersymmetry algebra could be chiral or

5-branes but not near horizon of the strings, the theory of short strings in this background

is the same as the one we have been studying with 5-branes alone [14].
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non-chiral in d = 6, 2 depending on if the theory is IIA or IIB. The
fermions in the theories with d = 6, 4, 2 transform in the Spin(d−
1, 1) in the flat directions. They also transform in the spin cover
of the R symmetry group: In d = 6, they are charged under SU(2)
of rotation, they have half integer charge under the U(1)’s in the
d = 4, 2, 0 theories, and they pick up a phase of ±i under the ZZ2

generator in the d = 6, 2 theories.

From the CFT description of the non-crtitical string theories, we saw in section

2 the appearance of all these symmetries. From the spacetime point of view, the

super-Poincare group in the flat directions is natural. As we saw earlier, the U(1)

part of the R symmetry group is interpreted as the conserved momentum around

the cigar. In the previous section, we saw using the NS5-brane picture, exactly

how all the symmetries of the d = 6 theory arise. The full R symmetry groups

for all the theories including the discrete ZZ2 symmetries are naturally seen in the

singular Calabi-Yau or NS5-brane description, which is what the rest of this section

is devoted to.

As mentioned in the introduction, all the non-critical theories above are con-

jectured to arise as near horizon geometries of wrapped NS5-branes, which are dual

to string theory near the singularity of certain singular Calabi-Yau manifolds ten-

sored with flat space in a double scaling limit [9,14,15]. The global symmetries of

our theories are nothing but the symmetries of these brane configurations in the

near-horizon limit, or equivalently, those of the dual geometry whose action remains

non-trivial in the double scaling limit. We will now describe the T-duality between

the singular spaces and wrapped NS5-branes [[17], and refs. therein] and their re-

spective deformations, and track which symmetries survive in the scaling limit. A

linear sigma model analysis of this T-duality has been done in [31].

The non-critical theory in d dimensions is conjectured to be equivalent to string

theory on IRd−1,1×M10−d where M10−d is defined as the hypersurface
∑n

i=1 z
2
i = µ

inCn where n = (12−d)/2.17 By considering as above non-compact geometries, we

17 For d = 0, we should consider the Euclidean theory, and in terms of the brane picture,

it is the theory of an Euclidean NS5-brane completely wrapped on a non-compact Calabi-
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have already taken the limit in which we zoom in on the singularity of the Calabi-

Yau. In terms of the dual 5-brane description which we present below, the branes

are stretched out to infinity even in the non-flat directions, describing deformed

intersecting surfaces in these directions for d ≤ 4. The only global symmetries left

are the ones involving the directions fully transverse to the brane. Another way

to see this is that in the holographic dual which is the decoupled theory on the

brane world-volume, the degrees of freedom (D-strings in type IIB) are stuck near

the intersection of the branes and only have kinetic terms in the flat directions. All

the states in the theory are therefore singlets under internal rotations in the curved

directions.

Let us fix coordinates so that the flat ones are x0...xd−1. For n = 3 and µ = 0,

the above Calabi-Yau is just the ALE space IR4/ZZ2. This has an isometry which

rotates (z2, z3) into each other. Performing a T-duality along this circle gives us

two NS5-branes at the origin of IR4. The deformation of the ALE space into a

two-center Taub-Nut is dual to the separation of the location of the 5-branes in the

IR4. This is the d = 6 theory. We can chose coordinates so that x6 is the circle

of isometry. This circle shrinks to zero size at the location of the singularity, and

thus in the brane picture, this grows to an infinite direction near the branes. The

separation of the branes is in the direction (x6, x8, x9) at x7 = 0. The former three

coordinates can be rotated so that the branes are at x7,8,9 = 0 giving rise to the

SO(3) as in the previous section. The exchange of the two 5-branes x6 → −x6 is

the symmetry which has a non-trivial ZZ2 action on the bosons.

For n = 4, 5, 6 which corresponds to the lower dimensional theories, we can

write the Calabi-Yau near the deformed singularity as z2
1 + z2

2 + z2 = µ where

z2 = z2
3 + ..z2

n. This should be thought of as an ALE fibration over the curve z2 = µ.

We can perform the same T-duality as above, and we get an NS5-brane wrapped

on z2 = µ. For µ = 0, the curved part of the configuration is embedded in IR2(n−2)

parameterized by xd...x5, x8, x9, and the coordinates x6, x7 are transverse to this

brane. When µ is turned on, there is a deformation in the internal space IR2(n−2)

Yau 3-fold embedded in IR8.
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and in x6 which causes the brane configuration to posses a minimum size Sn−3.

Suppressing all the coordinates except the transverse directions (x6, x7), there are

two point-like branes at the origin of the plane for µ = 0, and the deformation

separates them by µ in this plane.

Let us now look at the global symmetries. As mentioned above, the only

global symmetries are those involving the transverse directions. First let us consider

the singular case µ = 0. For d = 4, 2, 0 (n = 4, 5, 6), the symmetry is U(1) ×
U(1) of momentum and winding around the circle that rotates the two transverse

directions (x6, x7). We can identify the rotation of the transverse directions in

complex coordinates as z → eiφz, which is produced by zi → eiφzi. The deformation

preserves the U(1) of winding and breaks the rotation to the discrete rotation z →
−z. It is clear that, upto an SO(n − 2) symmetry rotating the branes, this is

equivalent to z3 → −z3 for odd n and to a trivial rotation for even n. That the

former is a rotation by π can be seen by looking at the projection of the curve to

(z4, ..., zn) = 0 which is invariant under the above symmetry.

From the Calabi-Yau point of view, we can present the following argument.

At a particular value of the radius in the geoemtry, the bosonic symmetry group is

O(n) = SO(n)×ZZ2 for the theory specified by n. For odd n, the SO(n) commutes

with the ZZ2 and the product is really a direct product. In this case, the ZZ2 is

just that of parity, and wavefunctions of particles propagating on this manifold are

labelled by the quantum numbers of SO(n), and a sign. For even n, the SO(n) does

not commute with the ZZ2, and the good quantum numbers are those of the SO(n)

alone. The wavefunctions with non-zero spin are peaked away from the origin and

in the limit of going near the singularity, they decouple. Only the singlets under the

SO(n) remain, and only for odd n, there is also a ZZ2 symmetry. This ZZ2 symmetry

acts on the top form of the Calabi-Yau as Ω → −Ω, which is equivalent to a rotation

of π. These facts can be checked in the cases that there are explicit metrics which

have been written down. For instance, in the conifold theory [see e.g. [32] and

refs. therein] , the angle ψ has period 4π in the full conifold. Near the tip though,

a rotation by 2π along with a rotation in the sphere brings you back to the same
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point.

We end with two comments:

1. The difference between the d = 6 case and the lower dimensional ones is the

following: for n = 3, turning on µ deforms the curve z2
3 = 0 in the directions

(x8, x9) and in x6 just like the other cases. Because the curve in this case is a

pair of points, the symmetry structure is SO(4) → O(3). In the other cases,

because the two directions (x8, x9) are filled in by the brane, the symmetry

is U(1) × U(1) → U(1) × ZZ2. The deformation in the d = 4, 2, 0 theories

correspond to turning on the sine-Liouville term in the action. As we saw

earlier, the enhanced symmetry in the d = 6 theory could be seen from the

conformal field theory as well where the sine-Liouville and cigar terms are

related by the symmetry.

2. When n is even (d = 4, 0), we saw that the there is only a rotation by 2π in the

curved directions of the brane that remains as a symmetry. The fermions pick

up a negative sign under this and this gives the discrete winding symmetry

which is equivalent to (−)FS for d = 4. For d = 0, the supercharges are

charged under this rotation by 2π, but because of the lack of flat directions,

the physical bosons and fermions are not paired by the supercharges. The

physical fermionic operators in the lists (3.1) , (3.2) are thus not charged under

the discrete winding symmetry.

Appendix A. Spectrum of the higher dimensional theories

The vertex operators become complicated as the mass in spacetime in-

creases. To construct the states at a general level, we can use the oscil-

lator algebra of the worldsheet fields which are free asymptotically. If we

fix the reparameterization invariance on the worldsheet by going to the light

cone gauge, we can write down the form of the general state in the the-

ory asymptotically in terms of worldsheet oscillators in d transverse directions.
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Table 1: Type 0 spectrum

Theory Sector (n,w) Example (d = 4)

0B and 0A NS+NS+ (N,M) Graviton multiplet (G,B, φ)

NS-NS- (N,M) Tachyonic scalar T

0B R+R+ (N,M) Scalar, two form (φ1, B
sd
ab)

R-R- (N,M) Scalar, two form (φ2, B
asd
ab )

0A R+R- (N,M) Vector A1
a

R-R+ (N,M) Vector A2
a

The operators are labelled by the momentum n and winding w
(N,M integers). The ± signs in the sectors are the naive chirality
on the worldsheet defined asymptotically. These are not good quan-
tum numbers, and they are only indicated to classify the spin of a
particle in the asymptotic region. The superscripts in the R-R sec-
tor indicate the (anti)self duality condition that the field strenghts
of the listed potential obeys. If there is no superscript, the field
strength is unconstrained.

Table 2: Type II spectrum (d = 4)

Theory Sector (n,w) Example (d = 4)

IIB and IIA NS+NS+ (2N, 2M), (2N + 1, 2M + 1) (G,B, φ)

NS-NS- (2N + 1, 2M), (2N, 2M + 1) T (non-tachyonic)

IIB R+R+ (2N, 2M), (2N + 1, 2M + 1) (φ1, B
sd
ab)

R-R- (2N + 1, 2M), (2N, 2M + 1) (φ2, B
asd
ab )

IIA R+R- (2N, 2M), (2N + 1, 2M + 1) A1
a

R-R+ (2N + 1, 2M), (2N, 2M + 1) A2
a

IIB R+NS-, NS+R- (2N + 1
2
, 2M − 1

2
), (2N − 1

2
, 2M + 1

2
) (Supercharge,

R-NS+, NS-R+ (2N + 1
2 , 2M + 1

2), (2N − 1
2 , 2M − 1

2 ) Photino, Gravitino)

IIA R+NS-, NS+R+ (2N + 1
2 , 2M − 1

2), (2N − 1
2 , 2M + 1

2 ) (Supercharge,

R-NS+, NS-R- (2N + 1
2 , 2M + 1

2), (2N − 1
2 , 2M − 1

2 ) Photino, Gravitino)

The notation is as in Table 1. Notice that the particles cannot
be described by an effective action, because not all the modes are
present. The fermionic states are obtained by the action of the
supercharges on the bosons. Their Lorentz representation is correl-
lated with the momentum.
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Appendix B. Partition functions of the various theories

On the sphere, the partition function vanishes in all even dimensions due to

the presence of two extra fermionic zero modes on the cigar [6]. To compute the

torus partition sum, we shall go to light cone gauge. In this gauge in d dimensional

theories, the physical oscillators are αI
n, α̃

I
n, ψ

I
n, ψ̃

I
n, I = ρ, θ, 1, 2, ..d− 2.

A general state is built out of the raising operators acting on the vacuum, and

has momentum p, kµ in the d + 1 non-compact directions and momentum n and

winding w around the circle. The left and right moving momentum around the

circle are given by kL = Qn
2 + w

Q ; kR = Qn
2 − w

Q . The physical state condition gives

us the mass of a state in terms of the oscillators. In the left moving sector (the

right moving mass shell equation is defined likewise):

L0 :=
∞∑

n=1

nαI
−nα

I
n +

∞∑

r= 1
2

rψI
−rψ

I
r +

1

2
(k2

µ + k2
L − p2) − d

16
= 0 (NS)

L0 :=

∞∑

n=1

nαI
−nα

I
n +

∞∑

m=1

mψI
−mψ

I
m +

1

2
(k2

µ + k2
L − p2) = 0 (R)

(B.1)

The energy of the NS sector vacuum state (tachyon) can be understood as arising

from the presence of the dilaton, or the curvature of spacetime, as in the previous

sections.18 It can also be seen by adding the zero point energies of d free bosons

and d antiperiodic fermions on the worldsheet. The energy of the R sector vacuum

is 0.

The one loop partition sum is split into the integration over the non-compact

momenta, the sum over the allowed compact momentum and winding, and oscillator

sums; taking into account the GSO projection:

ZT2 = Vd+2

∫
d2τ

4τ2

∫
ddkµ

(2π)d

∫
dp

4π

∑

n,w

1

R
Tr(−1)FSqL0qL0 (B.2)

where q = e2πiτ and the trace is over the physical Hilbert space of the theories.

18 As a reference, in the 10 dimensional string theory, the energy of the NS vacuum in

our units is −
1
2
.
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The definition of the Θ and η functions are:

η(τ) = q
1
24

∞∏

n=1

(1 − qn)

Θab(τ) = q
a
8 eπiab/2

∞∏

n=1

(1 − qn)(1 + eπibqn−(1−a)/2)(1 + e−πibqn−(1+a)/2)

(B.3)

The modular invariance of the partition sum of the type 0 theories is straightforward

in all cases, relying on the transformation properties of the Θ functions defined

above.

The partition function for the type 0′ and type II theories is computed by

taking into account the GSO projection. We present below the modular invariant

partition sums for the theories as a function of the dimension.

B.1. d=0

In this case, fixing to light-cone gauge leaves us with no oscillators. As we found

in the text, there are only the few field-theoretic degrees of freedom in the pure black

hole, and we can compute the partition function purely as a sum over winding and

momenta, and integration over the dilaton direction. The type 0 partition function

is:

ZT2 ∼ V2

∫
d2τ

τ2
2

∞∑

m,w=−∞
exp

(−π|m− wτ |2
2τ2

)
(B.4)

which is equal to half the partition function of the two dimensional bosonic theory

[33].

In the type II theory, the sum over the NS-NS sector cancels the sum over the

spacetime fermions, and the RR field has all momentum and winding (we do not

impose the Dirac equation at this level). The full partition function is therefore half

of the type 0 partition function:

ZT2 ∼ V2

∫
d2τ

τ2
2

∞∑

m,w=−∞
exp

(−π|m− wτ |2
2τ2

)
(B.5)
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B.2. d=2

The torus partition function of the type 0 theory is:

ZT2 ∼ V4

∫
d2τ

τ2
2

1

τ2

∞∑

m,w=−∞
exp

(−2π|m− wτ |2
3τ2

)
1

|η(τ)|4×
[∣∣∣∣

Θ00(τ)

η(τ)

∣∣∣∣
2

+

∣∣∣∣
Θ01(τ)

η(τ)

∣∣∣∣
2

+

∣∣∣∣
Θ10(τ)

η(τ)

∣∣∣∣
2

∓
∣∣∣∣
Θ11(τ)

η(τ)

∣∣∣∣
2
] (B.6)

The partition function of the type 0′ theory is given by:

ZT2 ∼ V4

∫
d2τ

τ2
2

1

τ
1
2

2

1

|η(τ)|2×

2∑

k=0



∣∣∣∣∣
Θ00(τ)Θ 2k

3
0(3τ)

η2(τ)

∣∣∣∣∣

2

−
∣∣∣∣∣
Θ01(τ)Θ 2k

3
1(3τ)

η2(τ)

∣∣∣∣∣

2

+

∣∣∣∣∣
Θ10(τ)Θ 2k+1

3
0(3τ)

η2(τ)

∣∣∣∣∣

2



(B.7)

The modular invariance of the above function can be seen by noticing the identity

[34]

Θ0, 2k
3

(
−1

3τ
) =

l=2∑

l=0

Θ 2l
3

,2k(
−3

τ
). (B.8)

The partition function for the type II theory is given by:

ZT2 ∼ V4

∫
d2τ

τ2
2

1

τ
1
2

2

1

|η(τ)|2 ×
∣∣∣∣
Θ00(τ)Θ00(

τ
3 )

η(τ)2
− Θ01(τ)Θ01(

τ
3 )

η(τ)2
− Θ10(τ)Θ10(

τ
3 )

η(τ)2

∣∣∣∣
2

(B.9)

This function is modular invariant [34], and in fact, it vanishes, as it should for a

supersymmetric theory.

B.3. d=4

The type 0 partition sum is

ZT2 ∼ V6

∫
d2τ

τ2
2

1

τ2
2

∞∑

m,w=−∞
exp

(−π|m− wτ |2
τ2

)
1

|η(τ)|8×
[∣∣∣∣

Θ00(τ)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
Θ01(τ)

η(τ)

∣∣∣∣
4

+

∣∣∣∣
Θ10(τ)

η(τ)

∣∣∣∣
4

∓
∣∣∣∣
Θ11(τ)

η(τ)

∣∣∣∣
4
] (B.10)
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where the ∓ sign is for the 0A and 0B theories respectively. The tachyon is contained

in the sum of the first two terms.

To fill a gap in the text, we will use this example to get an estimate of the high

energy behaviour of our theories. This calculation can easily be generalized to the

other cases. In the left moving R sector with no momentum, the partition sum is

∑
dnq

n = TrqL0 = 4

∞∏

n=1

(
1 + qn

1 − qn

)4

∼q→1(1 − q)2 exp

(
π2

1 − q

)
(B.11)

The chiral density of states dn for large n can be estimated by a saddle point

approximation of the contour integral, and it is given by dOp
n ∼ n− 7

4 exp(2π
√
n).

In the closed string, we have dCl
n = (dOp

n )2 ∼ n− 7
2 exp(4π

√
n). Considering that

the mass of the string is related to the level as α′

4 m
2 = n gives the mass density of

states:

ρ(m) ∼ m−6 exp(
m

m0
), m0 = (π

√
4α′) (B.12)

The partition sum on the torus (for IIB and IIA) is

ZT2 ∼ V6

∫
d2τ

τ2
2

1

τ
3/2
2

1

|η(τ)|6 ×
[∣∣∣∣
(

Θ2
00(τ)

η2(τ)
+

Θ2
01(τ)

η2(τ)

)
α11(τ)

η(τ)
− Θ2

10(τ)

η2(τ)

α01(τ)

η(τ)

∣∣∣∣
2

+

∣∣∣∣
(

Θ2
00(τ)

η2(τ)
− Θ2

01(τ)

η2(τ)

)
α01(τ)

η(τ)
− Θ2

10(τ)

η2(τ)

α11(τ)

η(τ)

∣∣∣∣
2
]

(B.13)

where the functions αm1 are:

αm1(τ) =
∑

n∈Z

q(n+m/2)2 (m = 0, 1). (B.14)

The partition function defined above vanishes as expected for spacetime supersym-

metric theories [26]. The first expression in the oscillator sum contains the tachyon

(with odd momenta) and the tachyno, and the second contains the graviton multi-

plet (with even momenta) and its superpartner.
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B.4. d=6

The torus partition function of the type 0 theory is:

ZT2 ∼ V8

∫
d2τ

τ2
2

1

τ3
2

∞∑

m,w=−∞
exp

(−2π|m− wτ |2
τ2

)
1

|η(τ)|12×
[∣∣∣∣

Θ00(τ)

η(τ)

∣∣∣∣
6

+

∣∣∣∣
Θ01(τ)

η(τ)

∣∣∣∣
6

+

∣∣∣∣
Θ10(τ)

η(τ)

∣∣∣∣
6

∓
∣∣∣∣
Θ11(τ)

η(τ)

∣∣∣∣
6
] (B.15)

The partition function of the type 0′ theory (which is the type 0 theory on two

NS5-branes is given by:

ZT2 ∼ V8

∫
d2τ

τ2
2

1

τ
5
2

2

1

|η(τ)|10 ×
[∣∣∣∣

Θ00(τ)

η(τ)

∣∣∣∣
8

+

∣∣∣∣
Θ01(τ)

η(τ)

∣∣∣∣
8

+

∣∣∣∣
Θ10(τ)

η(τ)

∣∣∣∣
8
]

(B.16)

The partition function for the type II theories is given by:

ZT2 ∼ V8

∫
d2τ

τ2
2

1

τ
5
2

2

1

|η(τ)|10 ×
∣∣∣∣
Θ4

00(τ)

η4(τ)
− Θ4

01(τ)

η4(τ)
− Θ4

10(τ)

η4(τ)

∣∣∣∣
2

(B.17)

Appendix C. Quantization in the Green-Schwarz formalism (d = 4)

The six bosonic coordinates are Xa = Xa + X̃a and their spacetime superpart-

ners are θα, θ̃α which are six dimensional Weyl spinors in the 4 or 4 of SU(4). We

shall work in light cone gauge where the coordinates are XI (I = ρ, θ, 1, 2), and

Weyl spinors Sα, Sα in the 2 and S̃α, S̃α in the 2 or 2′ (IIB or IIA) of SO(4). In

the T-dual variables, the interaction is the sine-Liouville interaction:

S =

∫
d2σ

(
1

2
∂µX

I∂µXI − iS
α
∂+S

α − iS̃α∂−S̃
α

−e−
1√
2
(ρ+iθ)

S2S̃2 − e
− 1√

2
(ρ−iθ)

S
2
S̃

2
+ e−

√
2ρ

)
.

(C.1)

In the above action, a specific choice of σ matrices has been made which breaks the

U(1) symmetry which rotates the spinors S1, S2 into each other.

The right and left moving Lorentz generators are given by:

J12 = X1P 2 − P 2X1 +
1√
2
θ̇ − 1

2
S

2
S2 +

1

2
S

1
S1,

J̃12 = X̃1P̃ 2 − P̃ 2X̃1 +
1√
2

˙̃
θ − 1

2
S̃2S̃2 +

1

2
S̃1S̃1,

(C.2)
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The rotation in the 1-2 direction is given the sum of the left and right moving

parts which also we shall call J12. The only other physical symmetry of the theory

(consistent with the R-NS analysis) is:

w =
1√
2
(θ̇ − ˙̃

θ) − 1

2
(S

2
S2 − S̃2S̃2) − 1

2
(S

1
S1 − S̃1S̃1) (C.3)

In the cigar theory, this current is the conserved momentum which we saw earlier.

Note that in this formalism, the above conserved current is a combination of naive

momemtum around the cigar and a piece which acts on the worldsheet fermions.

The free action has eight leftmoving (and another eight rightmoving) super-

symmetries - four shifts of the spinors and four linearly realised supersymmetries.

The interaction preserves only half of the above symmetries - only shifts of S1, S
1

are preserved, and two of the linear supersymmetries (which are modified due to the

superpotential so that they are no longer purely left or right moving) are preserved.

These supercharges are charged under the currents J12, w (here σ3 =

(
−1 0
0 1

)
):

[J12, Qα] =
1

2
σ3

αβQ
β, [J12, Q̃α] =

1

2
σ3

αβQ̃
β ;

[J12, Q
α
] = −1

2
σ3

αβQ
β
, [J12, Q̃α] = −1

2
σ3

αβQ̃
β ;

[w,Qα] =
1

2
Qα, [w, Q̃α] = −1

2
Q̃α;

[w,Q
α
] = −1

2
Q

α
, [w, Q̃α] =

1

2
Q̃α.

(C.4)

The ground state is annihilated by all bosonic and fermionic lowering operators,

and is in a irrep of the susy algebra which (for the left moving part alone) consists of

four states, all of vanishing energy. Below, we list the states and the charges under

the two conserved currents winding and the spacetime rotation J12. We start with

a state which asymptotically obeys S
α|0〉 = θ̇|0〉 = 0, and build three other left

moving states of the same energy (and repeat the construction on the rightmoving

side):
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Table 5: Ground states in the Green-Schwarz formalism

State |0〉 S
2|0〉 S

1|0〉 S
2
S

1|0〉 |0〉 S̃2|0〉 S̃1|0〉 S̃2S̃1|0〉
J12 0 −1

2
1
2

0 0 −1
2

1
2

0

w 0 −1
2 −1

2 −1 0 1
2

1
2 1

The closed string spectrum is built by tensoring these two together. The space-

time spin properties are given by the charge under J12. At this level, we get 16

states with zero energy which form a scalar(tachyon) multiplet. The four tachyon

states have winding number −1, 0, 0, 1. The conserved charges are the same as in

the NSR formalism.

The states with least non-zero energy E = 1
2 is built on states which obeys

S
α| ± 1〉 = 0, θ̇| ± 1〉 = ± 1√

2
| ± 1〉 tensored with the rightmovers. This gives 64

states with spins corresponding to the graviton multiplet. The gravitons have zero

winding, and the conserved charges of all the states are the same as in the NSR

formalism.

The general state in the spectrum is constructed by the action of the raising

operators of the four bosons αI
−n, α̃

I
−n and the eight fermions Sα

−n, S
α

n, S̃
α
−n, S̃

α

n, on

the states annihilated by all the lowering operators with arbitrary integer or half

integer value of momemtum. The algebra of the conserved charges being the same

as in the NSR formalism, and the ground state being the same guarantees that the

full spectrum is identical as well.

Appendix D. Conformal invariance at second order in the d = 6 theory

The operators Lµν are all of dimension (1, 1). The nine operators generate

other operators when they come close to each other, and the coefficients of these

operators should vanish for the theory to remain conformal.

1. As in the Liouville theory, we assume that in the OPE of ep1ρ with ep2ρ, the

operator that is generated is normalizable (p < 0) if e(p1+p2)ρ is.

2. Asymptotically, we can consistently choose to keep operators which decay

slower than a certain rate (i.e., p > p0 for some p0). In the five brane the-
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ory, we can think of this as an expansion in x2/r2 where x is the separation of

the branes and r is the radial distance from the center of mass.

It can be checked to order e−ρ, that the are the only operators that preserve

N = (2, 2) superconformal symmetry on the worldsheet and are not total derivatives

are the above nine. This means that the above set of operators are closed under

the OPE (upto perhaps change in the zero modes of fields).

We have then, Ai(z)Aj(0) ∼ c1

2z ǫijkAk(0). The free field part of this OPE can

be explicitly computed, and the dilaton part - e−ρ with itself - gives again e−ρ with

a coefficient c1 which we assume is non-zero. This relation is consistent with charge

conservation after taking into account the background charge of the dilaton.

If we consider separating the branes in the directions (X8, X9) alone, we turn

on only Lint = C66L66 + C77L77 + 2C67L67. At second order in the coefficients,

there are new operators generated - the contribution to the beta function by these

new operators is proportional to ((C66 +C77)Lint + (C66C77 −C2
67)Lnewint)e−ρ−ρ̃.

Demanding that the second term vanishes gives us C66C77 − C2
67 = 0. We get five

other such conditions for other separations.

The solution to these constraints is labelled by four parameters xµ such that

Cµν = xµxν . It can be checked that this is a good solution for the most general in-

teraction allowed. The interaction Lint = xµxνLµνe−ρ−ρ̃ generates at second order

a contribution to the beta function proprtional to (xµx
µ)Lint which is equivalent

to a change in the zero mode of the dilaton. More precisely, the expectation value

of e−ρ0 is identified with (xµx
µ). The value of the dilaton at the tip corresponds to

the distance of the branes from the origin, and the other three operators correspond

to moving the branes on a sphere at constant radius.
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Chapter 3

Stable D-branes and Open String Field Theory

in Two Dimensions

1. Introduction

Non-critical string theories, describing strings propagating in two dimensions

or less, were instrumental in shaping our understanding of the behaviour of string

theory beyond the perturbative regime. The O(1/gs) nonperturbative effect, so

characteristic of D-branes, first emerged from the study of these systems[35]. Only

recently, thanks to the advancement in our understanding of boundary Liouville

dynamics[7–47] (following earlier work [48,49]), has a physical understanding of

the nonperturbative effects begun to emerge[50–55]. (See the review [56] for an

exhaustive list of references.)

In another development, the dynamics of tachyon condensation led Sen to pro-

pose a new duality between open and closed strings[57–59]. Noncritical string the-

ories are likely to be ideally suited for understanding this duality and indeed they

have already played an important role in the shaping of these ideas. Recently in an

interesting work[55], Gaiotto and Rastelli applied this philosophy to Liouville the-

ory coupled to c = −2 matter. This system has certain topological symmetries[60]

constraining its dynamics. Using these symmetries the authors obtain the Kontse-

vich topological matrix model[61] describing the closed-string theory starting from

the open-string field theory.

Among the non-critical string theories, the theory of a single scalar field cou-

pled to worldsheet gravity has perhaps the richest structure. The matter theory has

central charge c = 1, while the Liouville field with its central charge cL = 25 pro-

vides an interpretation as a critical string theory with two-dimensional target space.

Closed strings in this background have been studied in the past from quite a few
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different angles: matrix quantum mechanics (see Ref.[62] and references therein),

worldsheet conformal field theory[63–65], topological field theory[66–68] and topo-

logical matrix models[69–72] related to the moduli space of Riemann surfaces (see

[73] for a recent review). As shown in [67], this string theory actually captures the

topological sector of string theory on the Euclidean black hole that we studied in

the previous chapter.

The c = 1 closed-string theory has a marginal deformation, corresponding to

changing the radius R of compactification of the scalar field. At a particular value

of this radius, R = 1 in our conventions, the theory is self-dual under T-duality

and an SU(2)×SU(2) symmetry gets restored as a result of which momentum and

winding modes become degenerate with each other.

In this chapter, we will consider the open-string version of this two-dimensional

string theory – more precisely, a scalar field compactified at the self-dual radius

on a worldsheet with the topology of a disc or an upper half plane, coupled to

the Liouville mode. Various types of branes are possible depending on the choice

of boundary condition on the fields. We will choose to work with (generalized)

Neumann boundary conditions on the Liouville field ϕ. On the matter field X we

impose Dirichlet boundary conditions, as a result of which the brane is localised

in X and there are no momentum modes in that direction, only winding modes.

Because the radius is self-dual, one can equally well impose Neumann boundary

conditions in X and then there are momentum but no winding modes. The physics

is identical in the two cases.

The resulting branes are stable and are known as FZZT branes[7–37]. We will

compute the two- and three-point disc correlation functions of the fields living on

the FZZT branes, as well as the bulk-boundary two-point function of such fields

with ‘bulk’ fields. The Liouville contributions to these correlators are non-trivial

and general expressions are available in the literature[7,41,40,47]. Some of them

are only known in the form of contour integrals. From the point of view of these

theories, the cL = 25 Liouville field coupled to c = 1 matter is at the ‘boundary’ of

the theories studied in Refs.[7--49]. In the specific case of interest, we take a careful
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limit to obtain the desired correlators. In particular we are able to evaluate the

relevant contour integrals in our case, leading to expressions that are much simpler

and more explicit than those previously given in the literature for the more general

c ≤ 1 case.

The resulting expressions satisfy the expected consistency conditions and other

recursion relations. When the Liouville theory is combined with matter, one gets a

massless ‘tachyon’ field19 labelled by integer winding numbers. The matter contribu-

tion to the tachyon correlators are just winding number conserving delta functions.

In addition to the tachyons, there are discrete states at ghost numbers one and

zero[74,75]. The former are the remnants of massless and massive states of critical

strings and their correlators are determined by the SU(2) symmetry at the self-dual

radius. (The latter class of operators are characteristic of non-critical theories and

in particular, they form a ring on which the symmetry of the theory can be re-

alized in a geometric way[76].) We have not attempted to study this ring in the

FZZT brane background (for general results on the c ≤ 1 boundary ground ring,

see Ref.[77]). As mentioned above, the expressions for these correlators are diver-

gent. As we will see, once we perform renormalizations of the bulk and boundary

cosmological constants, the divergence is a common multiplicative factor for both

the two- and three-point boundary correlators.

The simple and elegant form of the answers obtained is suggestive of a simple

physical interpretation, perhaps in terms of fermions, as we will see. The answers

share some of the properties of the (simpler) case of c = −2[55], notably that they

are independent of the bulk cosmological constant. All this encourages us to try

and understand the corresponding open-string field theory, following the ideas in

Ref.[55]. Accordingly, in the last section of this chapter, we begin to study the

open-string field theory of the FZZT branes. Motivated by the fact that the disc

path integral describing classical processes of non-critical string theory localizes to

19 No operator in this chaper is truly unstable on the worldsheet. The FZZT boundary

conditions do not allow such modes. With this in mind, and since there is also no unstable

operator in the bulk, we use the word tachyon as is conventional.
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the BRS cohomology, we evaluate the action for the ‘on-shell’ states (tachyons and

the discrete states). This results in a theory of infinitely many matrices. We hope

to analyse this theory in more detail in the future.

The organisation of this chapter is as follows. Sec. 2 describes the background

and sets up notation. The Liouville contributions to the two- and three-point func-

tions are evaluated in Sections 3 and 4. In Sec. 5 we calculate the bulk-boundary

two-point function. Sec. 6 is devoted to string field theory. We end with some

comments in the final Sec. 7. Appendix A contains some properties of the spe-

cial functions that appear in the Liouville correlators. Some details of the contour

integral relevant for Sec. 4 are given in Appendix B.

2. Two-dimensional Open String Theory and the FZZT branes

The theory we are interested in is described by the worldsheet action20

1

4π

∫

D

(
(∂X)2 + (∂ϕ)2 +QR̂ϕ+ 4πµ0 e

2bϕ
)

+
1

2π

∫

∂D

(
QK̂ϕ+ 2πµB,0 e

bϕ
)
,

(2.1)

where X, φ are the matter and Liouville fields and Q, b are numerical coefficients. In

this action, D has the topology of a disc/UHP, R̂ is the curvature of the (reference)

metric, K̂ the induced curvature of the boundary and µ0 and µB,0 are the (bare)

bulk and boundary cosmological constants respectively.

With the action above, the matter sector has central charge c = 1 while the

Liouville sector has cL = 1 + 6Q2. The coefficient b appearing in the exponents

satisfies Q = b+ 1
b . Criticality requires the choice cL = 25, from which we determine

Q = 2 and b = 1. Because of divergences that appear at b = 1, we will need to

carefully take the limit b→ 1 and regularise the divergences appropriately.

On the field ϕ, we will impose

i(∂ − ∂)ϕ = 4πµB,0 e
bϕ, (2.2)

20 We work in α′ = 1 units.
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the generalized Neumann boundary condition.

The field X , which we take to be Euclidean is, in general, compactified on a

circle of radius R. We can impose a suitable boundary condition on the field X ;

for instance, at a generic radius, we could impose Dirichlet or Neumann boundary

conditions (∂± ∂)X = 0 which, in conjunction with the boundary condition on the

Liouville field above, describe the non-compact D-instanton and D0-brane respec-

tively. As noted in the introduction, the two choices are physically equivalent at

self-dual radius.

In the bulk, the observables of the theory are a massless scalar field in the

two dimensional target space known as the ‘tachyon’ field, and an infinite set of

quantum mechanical states which arise at special values of the momentum, known

as the discrete states. The vertex operators21 corresponding to the tachyon field

take the following form at weak coupling:

Tk = cc exp
(
ik(X ±X) + (2 − |k|)ϕ

)
. (2.3)

The tachyon vertex operator on the boundary on the other hand carries addi-

tional indices (σ1, σ2) corresponding to the boundary conditions on the two ends of

the open string:

Tk ≡ c
[
eikX Vβ

]σ1σ2

= c [exp (ikX + βϕ)]
σ1σ2 , (2.4)

where the second expression is the asymptotic form. From this we see that β

labels the Liouville momentum, and the conformal dimension of the Liouville vertex

operator is ∆ = β(Q − β) where Q = b + 1
b = 2. Requiring that the full vertex

operator has dimension one, one finds the on-shell condition β = 1 − |k|. The

boundary label σ is related to the (bare) cosmological constants µ0 and µB,0 by:

cos 2πb

(
σ − Q

2

)
=
µB,0√
µ0

√
sinπb2. (2.5)

As we shall discuss later, the cosmological constants require renormalisation in the

c = 1 string theory.

21 We are only considering local operators, which correspond to non-normalizable modes.
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We are specifically interested in the theory at self-dual radius R = 1, where the

worldsheet theory is an SU(2)L×SU(2)R current algebra at level 1. The symmetry

of the closed-string theory is generated by (J±, J3) = (e±i2X , i∂X) and their right

moving counterparts. The physical vertex operators at ghost number one are[76]:

Zk;m,m = cc V mat(k,m)V
mat

(k,m) exp ((2 − k)ϕ) . (2.6)

where k is a non-negative integer or half integer; V mat(k, k) ≡ eikX , and the op-

erators V mat(k,m < k) are defined by acting with the SU(2)L lowering operator.

Hence m = k, k−1, · · · ,−k. The corresponding right movers are defined in a similar

manner. The physical content of the theory can also be summarized as a massless

field T (θ, φ, ψ;ϕ) living on an S3 times the non-compact Liouville direction.

The open string imposes a boundary condition relating the left and right mov-

ing currents Ja and J
a
. The branes in the SU(2)n theory are labelled by a half-

integer J = 0, · · · , n
2 which labels the conjugacy class in the group, and continuous

moduli which take values in SO(3) which label the origin of the 3-sphere viewed

as a group manifold[78]. The conjugacy classes are topologically 2-spheres in the

group manifold.

For our case, level n = 1, there are only two possible discrete labels J =

0, 1/2 and the full moduli space is SU(2) which is topologically S3[79]. A brane

is simply a point on this sphere, which can be thought of as a degenerate S2. It

breaks the SO(4) = SU(2)× SU(2) symmetry of the 3-sphere to a diagonal SU(2)

symmetry group of the degenerate 2-sphere. The open-string modes are classified

as representations of this SU(2).

For example, the boundary states which correspond to Neumann and Dirichlet

for generic radii are labelled by the two poles on the S3, and are given respectively

by Ja = ±Ja
. The generators of the diagonal SU(2) subgroup which is preserved

are Ja ± J
a
. The allowed representations of the diagonal SU(2) are k ± k where

both k and k are integer or half integer, so that the allowed representations of the

diagonal subgroup are integer. Note that half the representations of SU(2) (the

half-integer spins) do not correspond to physical operators.
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Thus the physical vertex operators of the open string at ghost number one are:

Y σ1σ2(k,m) ≡ c
[
V mat(k,m)Vβ

]σ1,σ2
= c

[
V mat(k,m) exp((1 − k)ϕ)

]σ1σ2
, (2.7)

where, (k,m) are the usual SU(2) labels with spin k an integer and m = k, k −
1, . . . ,−k.

3. Boundary Two-Point Function

In this section, we shall compute the two-point function of the Liouville vertex

operators V σ1σ2

β which enter the physical open-string vertex operators (2.7). The

two-point function of boundary operators in Liouville theory, of arbitrary central

charge cL = 1 + 6Q2, is given by[7]:

〈
V σ1σ2

β1
(x)V σ2σ1

β2
(0)
〉
≡ δ(β1 + β2 −Q) + d(β|σ1, σ2)δ(β1 − β2)

|x|2∆β1

, (3.1)

where d(β|σ1, σ2) is the reflection amplitude, the expression for which is given below.

The delta functions can be understood as arising due to the reflection from the

Liouville potential, and is not present in the higher-point functions. Every non-

normalizable operator in the theory is related to a normalizable operator by this

reflection, V σ1σ2

β = d(β|σ1, σ2)V
σ1σ2

Q−β .

The reflection amplitude d(β|σ1, σ2) is given by[7]:

d(β|σ1, σ2) = A1 A2 A3,

A1 =
(
πµ0γ(b2)b2−2b2

)Q−2β
2b

,

A2 =
Γb(2β −Q)

Γb(Q− 2β)
,

A3 =
Sb(2Q− σ1 − σ2 − β)Sb(σ1 + σ2 − β)

Sb(β + σ1 − σ2)Sb(β + σ2 − σ1)
.

(3.2)

In the above, γ(x) ≡ Γ(x)/Γ(1 − x) and the special functions Γb(x) and Sb(x) are

defined in [7,47]. We record the relevant details in Appendix A.

As mentioned above, to specialise to c = 1 we must carefully take the limit

b→ 1, Q→ 2. This limit is singular and requires us first of all to renormalize both
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the bulk and boundary cosmological constants. In the first line in Eq.(3.2), we set

b = 1 − ε
2 and find that

A1 → (πµ0γ(1 − ε))
1−β

. (3.3)

Using γ(1−ε) → ε, we see that the above expression becomes finite if we define the

renormalised22 bulk cosmological constant by:

µ = 4πµ0 ǫ. (3.4)

Using this and recalling from (2.7) that β = 1− k with k a non-negative integer, it

follows that the first factor in the two-point amplitude is:

A1 =
(µ

4

)1−β

=

(√
µ

2

)2k

. (3.5)

The renormalisation of the bare bulk cosmological constant µ0 performed above is

well-known, and leads to the result that the cosmological operator for c = 1 closed

strings is not the naive one, e2ϕ, but rather ϕ e2ϕ.

Now coming back to Eq.(2.5) and taking b = 1 − ε
2 we have, for small ε:

cos 2πσ =
√
πε

µB,0√
µ0

= 2πε
µB,0√
µ
, (3.6)

which means that we also need to define a renormalised23 boundary cosmological

constant µB = 2πεµB,0. Hence finally the relation between the σ parameter and

the renormalised (bulk and boundary) cosmological constants is:

cos 2πσ =
µB√
µ
. (3.7)

The parameter σ can be real or imaginary depending on whether µB <
√
µ or

µB >
√
µ. In what follows, we keep all the σi generic.

22 This differs by a factor of 4 from the normalisation used in Refs.[42,51]. However, it

is more natural as the area of a unit 2-sphere is 4π.
23 Once again this differs (now by a factor of 2) from the normalisations of Refs.[51,42],

and is consistent with the length of a unit circle being 2π.
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The factor A2 depends only on β and not on σi. Using Eq.(3.2), we find:

A2 =
Γ1(−2k)

Γ1(2k)
. (3.8)

This expression is actually divergent. However, we can regulate it by going slightly

off-shell. We can do this by shifting β from the integer value by an amount ǫ:

k → k + ǫ and extract the leading divergence. We could use a different regulator

and deform b away from 1 to 1 − ǫ and we get the same answer. As detailed in

Appendix A, A2 is determined to be:

A2 =
(−1)k

(2π)2k Γ(2k + 1)Γ(2k)

1

ǫ2k+1
. (3.9)

Finally we turn to the third factor in Eq.(3.1):

A3 =
S1(2Q− σ1 − σ2 − β)S1(σ1 + σ2 − β)

S1(β + σ1 − σ2)S1(β + σ2 − σ1)
. (3.10)

Now using the inversion relation Sb(x)Sb(Q − x) = 1 and substituting β = 1 − k,

A3 can be rewritten as:

A3 =
S1(σ2 + σ1 − β)

S1(−Q+ β + σ2 + σ1)

S1(Q− β + σ1 − σ2)

S1(β + σ1 − σ2)

=
S1(−1 + k + σ2 + σ1)

S1(−1 − k + σ2 + σ1)

S1(1 + k + σ1 − σ2)

S1(1 − k + σ1 − σ2)
.

(3.11)

Next we define the combinations σ± = σ1 ± σ2 and invoke the recursion relation

(see Appendix A) S1(x+ 1) = 2 sinπxS1(x) to write:

A3 =

2k∏

m=1

(
2 sinπ(σ+ + k − 1 −m)

) 2k∏

n=1

(
2 sinπ(σ− + k − 1 − n)

)

=
(
4 sin πσ+ sin πσ−)2k

.

(3.12)

This can be rewritten in terms of the original boundary parameters σ1 and σ2:

A3 = (2 (cos 2πσ1 − cos 2πσ2))
2k

=

(
2
µ1B − µ2B√

µ

)2k

. (3.13)

Putting everything together, we finally get:

d(1 − k|µ1B, µ2B) =
(−1)k

ǫ2k+1

(µ1B − µ2B)
2k

(2π)2k Γ(2k + 1)Γ(2k)
. (3.14)
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We will find it convenient to renormalize the open-string operators (2.7) as

Ỹ σ1,σ2

k,m = (2πǫ)kΓ(2k)Y σ1σ2

k,m . (3.15)

This redefinition is different from the standard one found in the literature for closed

strings, as it has an additional factor of (2πǫ)k. For the cosmological operator

(k = 0) this extra factor is absent and the renormalisation is the standard one.

The matter contribution to the two-point function being trivial, let us put the

renormalization factor in the Liouville vertex operator alone and define

Ṽ σ1,σ2

1−k = (2πǫ)kΓ(2k)V σ1,σ2

1−k . (3.16)

Expressed in these variables, the reflection amplitude is:

d̃(1 − k|µ1B, µ2B) =
(−1)k

ǫ

(µ2B − µ1B)
2k

2k
. (3.17)

Several features of this result are noteworthy. First, it is independent of the bulk

cosmological constant µ. A similar feature was noticed[55] for the correlators of

c = 28 Liouville theory (corresponding to strings propagating in a c = −2 matter

background). Second, the result depends only on the difference of the two boundary

cosmological constants µ1B, µ2B. We will see later that these features persist for

the boundary three-point function. They are reminiscent of the identification of the

extended B-type branes of topological field theories to fermions[80]. Finally, we see

that after renormalization, the reflection amplitude has a simple pole singularity (as

a function of ǫ). Again this turns out to be the case for the boundary three-point

function as well. Later, when we use this in the string field theory action, we will

need to absorb this singularity by a redefinition of the string coupling constant.

4. Boundary Three-Point Function

The three-point function in boundary Liouville theory is defined by:

〈V σ2σ3

β1
(x1)V σ3σ1

β2
(x2)V σ1σ2

β3
(x3)〉 =

Cσ2σ3σ1

β1β2β3

|x21|∆1+∆2−∆3 |x32|∆2+∆3−∆1 |x13|∆3+∆1−∆2
.

(4.1)
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An expression was found in Ref.[41] (see also Refs.[42,47] for subsequent discussions)

for the coefficient C as a product of four factors:

Cσ2σ3σ1

β1β2β3
= B1 B2 B3 B4, ,

B1 =
(
πµγ(b2)b2−2b2

) 1
2
(Q−β1−β2−β3)

,

B2 =
Γb(β2 + β3 − β1)Γb(2Q− β1 − β2 − β3)Γb(Q− β1 − β2 + β3)Γb(Q− β1 + β2 − β3)

Γb(Q) Γb(Q− 2β1) Γb(Q− 2β2) Γb(Q− 2β3)
,

B3 =
Sb(Q− β3 + σ1 − σ3)Sb(2Q− β3 − σ1 − σ3)

Sb(β2 + σ2 − σ3)Sb(Q+ β2 − σ2 − σ3)
,

B4 =
1

i

∫ +i∞−0

−i∞−0

ds

4∏

i=1

Sb(Ui + s)

Sb(Vi + s)
.

(4.2)

In the factor B4, the quantities Ui, Vi, i = 1, · · · , 4 are defined as follows:

U1 = σ1 + σ2 − β1, V1 = 2Q+ σ2 − σ3 − β1 − β3,

U2 = Q− σ1 + σ2 − β1, V2 = Q+ σ2 − σ3 − β1 + β3,

U3 = β2 + σ2 − σ3, V3 = 2σ2,

U4 = Q− β2 + σ2 − σ3, V4 = Q.

(4.3)

We want to compute the above for the values b = 1, βi = 1 − ki for our case of

c = 1. In this section, we choose the kinematic regime k3 > k1, k2 > 0. We shall

later need to take a careful limit as ki approach integers. The first two factors are

evaluated as before, and we get

B1 =
(µ

4

) 1
2
(k1+k2+k3−1)

=

(√
µ

2

)∑
i
ki−1

,

B2 =
Γ1(1 +

∑
i ki)Γ1(1 + k1 + k2 − k3)Γ1(1 + k1 − k2 + k3)Γ1(1 + k1 − k2 − k3)

Γ1(2) Γ1(2k1) Γ1(2k3) Γ1(2k2)

=
(−1)⌊(k2+k3−k1)/2⌋

(2πǫ)k2+k3−k1
× Γ1 (1 +

∑
i ki)

Γ1(2)

× Γ1(1 + k1 + k2 − k3) Γ1(1 + k1 − k2 + k3) Γ1(1 − k1 + k2 + k3)

Γ1(2k1) Γ1(2k2) Γ1(2k3)

=
(−1)⌊(k2+k3−k1)/2⌋

(2πǫ)k2+k3−k1

Γ1 (1 +
∑

i ki)

Γ1(2)

3∏

j=1

Γ1 (1 +
∑

i ki − 2kj)

Γ1(2kj)
,

(4.4)
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where ⌊x⌋ is the integer part of x. We have used the properties of the special

function Γ1(x) at integer arguments given in Appendix A to rewrite the last factor

in the numerator of B2.

For the factor B3, we insert the values of the parameters to write it as:

B3 =
S1(1 + k1 + k2 + σ1 − σ3)S1(3 + k1 + k2 − σ1 − σ3)

S1(1 − k2 + σ2 − σ3)S1(3 − k2 − σ2 − σ3)
. (4.5)

It turns out that this simplifies when combined with a similar factor in B4.

Finally we must evaluate the contribution B4. This is carried out in Appendix

B, where the contour integral in the last line of Eq.(4.2) is evaluated explicitly. That

is then combined with B3 of Eq.(4.5) above to give the following amazingly simple

result for the product:

B3 B4 =
(−1)k1

(2πǫ)2k1+1

(
2µ21√
µ

)−1
{(

2µ23√
µ

)∑
i
ki

−
(

2µ13√
µ

)∑
i
ki

}
. (4.6)

Putting everything together, we arrive at the three-point function (with βi =

1 − ki):

Cµ2µ3µ1

β1,β2,β3
= B1 B2 B3 B4

=
(−1)⌊Σiki/2⌋

(2πǫ)1+Σiki

µΣiki

23 − µΣiki

13

µ21

Γ1 (1 +
∑

i ki)

Γ1(2)

3∏

j=1

Γ1 (1 +
∑

i ki − 2kj)

Γ1(2kj)
.

(4.7)

In terms of the renormalised operators defined in Eq.(3.15) and (3.16), the three-

point function becomes:

C̃µ2µ3µ1

β1,β2,β3
=

(−1)⌊Σiki/2⌋

2πǫ

µΣiki

23 − µΣiki

13

µ21

Γ1 (1 +
∑

i ki)

Γ1(2)

3∏

j=1

Γ1 (1 +
∑

i ki − 2kj) Γ(2kj)

Γ1(2kj)
.

(4.8)

In the special case of tachyons, the momenta of the three operators obey k1+k2 = k3,

and the three point function takes the simpler form

C̃µ2µ3µ1

β1,β2,β1+β2−1 =
(−1)⌊Σiki/2⌋

ǫ

µ2k1+2k2

23 − µ2k1+2k2

13

µ21
. (4.9)

Like the boundary reflection amplitude Eq.(3.17), the boundary three-point function

obtained here also turns out to be independent of the bulk cosmological constant,
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depends only on pairwise differences of boundary cosmological constants, and has

a simple pole singularity in ǫ. We conjecture that these three properties also hold

for all n-point functions of boundary operators in this theory.

As a check, we consider the three-point function with momenta k1 = k, k2 = 1

and k3 = k for the three operators. In this case the middle operator has β = 0 and

hence, if we choose σ1 = σ3 (which implies µ1B = µ3B), it reduces to the identity.

Now the above correlator should reduce to the two-point function. From Eq.(4.7)

we find:

Cµ2µ1µ1

1−k,1,1−k =
(−1)k

(2πǫ)2k+2

2π µ2k
21

Γ(2k + 1)Γ(2k)
. (4.10)

Comparing with Eq.(3.14), we see that this is related to the (bare) reflection am-

plitude by:

Cµ2µ1µ1

1−k,1,1−k =
1

2πǫ
d(1 − k|µ1, µ2). (4.11)

If we interpret 1
2πǫ as the δ(0) factor arising from δ(β1 − β2) in Eq.(3.1), we may

conclude that in the special case being considered, the three-point function indeed

reduces to the two-point function as expected.

5. Bulk-Boundary Two-Point Function

The bulk-boundary two-point function on the disc involves a boundary operator

V σσ
β and a bulk operator Vα. This was computed in Ref.[40] (see also Refs.[42,47])

and the result is:

〈
Vα(z, z)V σσ

β (x)
〉

=
Aσ

αβ

|z − z|2∆α−∆β |z − x|2∆β
, (5.1)

where,

Aσ
αβ = C1 C2 C3,

C1 = 2π
(
πµ0γ(b2)b2−2b2

)(Q−2α−β)/2

,

C2 =
Γ3

1(Q− β)Γ1(2α− β)Γ1(2Q− 2α− β)

Γ1(Q)Γ1(Q− 2β)Γ1(β)Γ1(2α)Γ1(Q− 2α)
,

C3 =
1

i

∫ i∞

−i∞
dt e2πi(2σ−Q)t S1

(
t+ 1

2β + α− 1
2Q
)
S1

(
t+ 1

2β − α+ 1
2Q
)

S1

(
t− 1

2β − α+ 3
2Q
)
S1

(
t− 1

2β + α+ 1
2Q
) .

(5.2)
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We want to evaluate this in the c = 1 string theory where, as usual, we need to take

the singular limit b = 1. Let us also recall that β = 1 − k and α = 1 − 1
2k — the

bulk and boundary windings are related due to the winding number conservation

condition from the matter sector. We will assume that k > 0. The first factor

C1 can be rewritten using the the by-now familiar renormalized bulk cosmological

constant:

C1 = 2π
(µ

4

)k− 1
2

, (5.3)

while the second factor is easily evaluated to be:

C2 =
(−1)1+k

2πΓ(2k) (Γ(k))
2 (2πǫ)2k−1. (5.4)

Finally, we come to the third factor C3 which involves an integral similar to the one

encountered in the evaluation of the boundary three-point function. Specifically,

we have to evaluate

C3 =
1

i

∫ i∞

−i∞
dt exp (4πi(σ − 1)t)

S1

(
t− k + 1

2

)
S1

(
t+ 1

2

)

S1

(
t+ k + 3

2

)
S1

(
t+ 3

2

) . (5.5)

For large imaginary values of t, the integrand falls off exponentially. This

makes the integral (5.5) convergent. In the kinematic region where k is negative,

all the poles of the integrand arising from the numerator are in the left half-plane

while those from the denominator are in the right half-plane. For other values of k

the integral is defined by analytic continuation described in detail in Appendix B.

Once again, the integral is dominated by its singular part, which comes from the

collision of the poles from the two half-planes. Denoting t+ 1
2

= n, the conditions

for collision are met for integer values of n between 1 − k and k. Evaluating the

(singular) residues at these poles we find

C3 =
1

(2πǫ)2k+1
e−2πiσ

k∑

n=1−k

e4πiσn =
1

(2πǫ)2k+1

sin(4πσk)

sin 2πσ
. (5.6)

Combining Eqs.(5.3), (5.4) and (5.6), the bulk-boundary two point function of
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tachyons is found to be:

Aσ
αβ =

(√
µ

2

)2k−1
(−1)k−1

ǫ2 Γ(2k) (Γ(k))
2

sin(4πσk)

sin(2πσ)

=

(√
µ

2

)2k−1
(−1)k−1

ǫ2 Γ(2k) (Γ(k))
2

k∑

ℓ=1

(−1)ℓ+1

(
2k − ℓ

ℓ− 1

) (
2µB√
µ

)2k−2ℓ+1

.

(5.7)

Like the previous correlators, this too is conveniently expressed in terms of renor-

malised bulk and boundary operators, the latter being given by Eqn.(3.15) and for

the former we choose:

Z̃(k;m,m) = (2πǫ)−k Γ(k)

Γ(1 − k)
Z(k;m,m). (5.8)

Once again, this redefinition differs from the standard one and is chosen so as sim-

plify the form of the renormalized expression. Specialising to the tachyons (2.3),(2.4)

for simplicity,

〈
T̃σσ(k)T̃ (k)

〉
=

(√
µ

2

)2k−1
(−1)k−1

ǫ2
sin(πk) sin(4πσk)

π sin(2πσ)
. (5.9)

Unlike the boundary two- and three-point functions, we see that the bulk-boundary

correlator does depend explicitly on the bulk cosmological constant µ, through

σ. It also lacks the translational symmetry in µB that we found in the boundary

correlators. (This was to be expected, since there is only one boundary operator V σσ
β

and this is necessarily diagonal in the boundary cosmological constant. However,

we suspect that with more boundary operators too, the bulk-boundary correlators

will lack translational symmetry in the µB .) Finally, we see that this correlator

has a double pole singularity in ǫ, unlike the simple pole found in the boundary

correlators.

Specialising further to k = 0 (the cosmological operators) we find:

〈
T̃σσ(0)T̃ (0)

〉
=
〈
T̃σσ(k)T̃ (k)

〉∣∣∣
k→0

= − 2√
µ

4πσ

sin 2πσ
. (5.10)

Interestingly, in this case the correlator is non-singular.
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As a consistency check, the bulk-boundary two-point function, if correctly nor-

malised, should reduce to the bulk one point function when the boundary Liouville

momentum vanishes, β → 0. This corresponds to k = 1 in our case. The bulk

one-point function of Liouville theory is given by[7]:

〈Vα(z, z)〉σ =
Uσ(α)

|z − z|2∆α
, (5.11)

where,

Uσ(α) =
2

b

(
πµγ(b2)

)Q−2α
2b Γ(2bα− b2) Γ

(
2α

b
− 1

b2
− 1

)

× cos
(
π(2α−Q)(2σ −Q)

)
.

(5.12)

Due to the momentum conservation condition from the matter sector, this should

strictly be evaluated only at k = 0. Nevertheless, let us keep k arbitrary at this

stage. Putting b = 1 in (5.12) and performing the familiar renormalization of

cosmological constants, as well as renormalization of the bulk tachyon as in Eq.(5.8),

the one-point function is:

Ũσ(k) = −
(√

µ

2

)k

(2πǫ)−k 2π cos(2πσk)

k sin(πk)
. (5.13)

The bulk-one point function above is seen to satisfy the expected functional equation

Ũσ+ 1
2
(k)+Ũσ− 1

2
(k) = 2 cos(πk) Ũσ(k) rather trivially[42]. Substituting k = 1 (hence

α = 1 − k
2

= 1
2
) formally,

Ũσ(k = 1) = −
√
µ

2

cos 2πσ

πǫ2
, (5.14)

On the other hand, Eq.(5.9) evaluated at k = 1 gives:

〈
T̃σσ(1, 1)T̃ (1)

〉
=

√
µ

2

2 cos 2πσ

ǫ
. (5.15)

Recalling from Eq.(3.15) that T̃ (1) = 2πǫ T (1) we see that

〈
Tσσ(1)T̃ (1)

〉
=

√
µ

2

cos 2πσ

πǫ2
. (5.16)

This agrees with Eq.(5.14) (upto a sign).
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6. Physical Correlators and Open String Field Theory

According to a recent proposal of Sen[57–59], open-string field theory on D-

branes in a certain background is dual to a theory of closed strings to which the

branes in that background couple. In most known examples, the complete string

field theory is extremely complicated, and lacking the necessary analytic tools, is

only accessible through approximation schemes such as level truncation. Having

examples of D-branes on which the full open-string field theory can be analysed is

clearly important. Non-critical string theories, with their relatively simple yet rich

physical content and high degree of symmetry, are string backgrounds where we may

further our understanding of this duality[58,59]. Indeed in Ref.[55], the topological

Kontsevich matrix model of topological gravity (equivalent to c = −2 closed-string

theory) is shown to arise from the open-string field theory of the branes of c = −2

matter coupled to Liouville theory.

In this section, we take the first step in this direction for the case of the N

FZZT branes in the c = 1 theory compactified at R = 1. Open-string field theory

has an infinite number of fields, but it also has infinite gauge redundancy. The

closed-string sector of the c = 1 theory at the self-dual radius, and indeed of all

non-critical string theories, possesses a topological symmetry due to which only

degenerate worldsheets at the boundary of the moduli space of Riemann surfaces

contribute to correlators. In other words, only physical (‘on-shell’) states in the

cohomology of the BRS operator QB contribute to quantum string amplitudes, at

all genus. This is the well-known topological localisation.

When D-branes, i.e. open strings, are included, we lack a direct proof that

this property continues to hold. However, an important source of intuition comes

from the relation of the bulk theory to the topological SL(2)/U(1) coset[67] and

the deformed conifold[81]. There has been progress in understanding localisation

in the open-string sector of the topological SU(2)/U(1) cosets[82], closely related

to the first description. On the other hand, a classic result due to Witten[83]

tells us that the open-string field theory on D3-branes wrapping a 3-cycle of the

deformed conifold localises to pure Chern-Simons theory (this considerably preceded
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the discovery of D-branes!). With this motivation, for the moment we simply assume

that the string field theory localises onto the physical states (as defined by the BRS

cohomology) and arrive at an action for these modes, postponing a detailed analysis

of localisation and the resulting model for future work24.

Let the CFT Hilbert space of the states of the first-quantized string between

the ith and the jth brane be Hij (i, j = 1, · · · , N). The open-string field |Ψ(ij)〉 is

a ghost-number one state in this Hilbert space. The action defining the classical

string field theory is

S[Ψ] = − 1

2gs0

∑

ij

〈
Ψ(ij), QBΨ(ji)

〉
− 1

3gs0

∑

ijk

〈
Ψ(ij)Ψ(jk)Ψ(ki)

〉
, (6.1)

where the quadratic and the cubic terms are given in terms of CFT correlators

and QB is the BRST operator (see [84] for a review). The linearised equation of

motion of the theory QB|Ψ〉 = 0 is the statement that the worldsheet configuration

is physical in the free theory — the cubic term then describes interactions.

Our task now is to compute the OSFT action (6.1) on the FZZT branes localized

onto the physical states. This amounts to the evaluation of correlators in the CFT

of c = 1 matter plus Liouville plus the (b, c) ghosts. In Liouville theory, there is

no sense in which the string coupling is weak, therefore we cannot really regard the

cubic term as a perturbation. This is reflected in the fact that there is an infrared

divergence in the two-point correlators of the physical states. We shall use the same

regulator that we did earlier and see that the kinetic and the cubic term, evaluated

on the on-shell states, contribute to the same order.

We have seen earlier that the physical states of the background CFT are sum-

marized as an N × N matrix field living on a 2-sphere. The expansion of the

24 In [55], a powerful nilpotent symmetry of the gauge fixed quantum action of the

c = −2 noncritical string theory is exploited for localisation. The existence of such a

symmetry is stronger in that it takes into account the effect of worldsheet instantons. We

note, however, that the absence of compact two-cycles in the deformed conifold geometry

will forbid potential instanton correction.
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open-string field in terms of these states is:

∣∣Ψ(ij)

〉
=
∑

k,m

Tij(k,m)
∣∣∣Ỹ ij(k,m)

〉
, (6.2)

where |Ỹ ij(k,m)〉 is the ghost number one primary state in the boundary CFT

corresponding to the open string with ends on branes (i, j) transforming as spherical

harmonics Ym
k (θ, φ) under rotations of S2. Under the assumptions described above,

the open-string field theory action reduces to an action for these matrices.

The coefficients of the string field in the OSFT action are determined by the

CFT correlation functions for primary operators. The matter and ghost contribu-

tion to the two- and three-point correlators are very simple. As we saw in section

2, the physical operators behave exactly like the spherical harmonics. For the

two-point function, the matter contribution is the condition k1 = k2 ≡ k and the

conservation condition m1 = −m2 ≡ m of the J3 component of angular momentum.

The full two-point function is:

Dij(k) ≡
〈
Ỹ ij(k,m), c0Ỹ

ji(k,−m)
〉

=
(−1)k

ǫ2
(zj − zi)

2k

2k
, (6.3)

where, we have introduced the notation µB ≡ z. Let us note that for the special

case of the cosmological operators, both the terms in Eq. (3.1) contribute.

The full three-point function is determined from the SU(2) addition condition

from the matter sector and, using Eq.(4.8), its expression is:

Cjki(k1, k2, k3) ≡
〈
Ỹ jk(k1, m1)Ỹ

ki(k2, m2)Ỹ
ij(k3, m3)

〉

=
(−1)Σiki/2

(2πǫ)

(
zΣiki

jk − zΣiki

ik

zji

)
Γ1(1 + Σiki)

Γ1(2)

3∏

j=1

Γ1(1 + Σiki − 2kj)Γ(2kj)

Γ1(2kj)

×
∫
d(cos θ)dφ Ym1

k1
(θ, φ)Ym2

k2
(θ, φ)Ym3

k3
(θ, φ),

(6.4)

where Yk
m(θ, φ) are the spherical harmonics of S2. Let us recall that the three-point

function is evaluated with the condition k3 > k1, k2, a choice made in evaluating

the Liouville correlators in Sec. 4. We would also like to point out that the ex-

tra divergence present in the two-point function (6.3) compared to the three-point
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function (6.4) is due to the delta function in (3.1), which can be understood as an

infra-red divergence arising from the volume of the target space.

It is now straightforward to evaluate the action (6.1) localised on the physical

states. The kinetic operator QB simplifies to c0L0 in the Siegel gauge. This has a

zero acting on the physical states |Ỹ ij(k,m)〉, (which are dimension zero primaries

of the underlying CFT):

〈
Ỹ ij(k′, m′), QBỸ

ji(k,m)
〉

=
〈
Ỹ ij(k′, m′)

∣∣∣ c0L0

∣∣∣Ỹ ji(k,m)
〉

=
〈
Ỹ ij(k′, m′)

∣∣∣ c0
(
k2 + β2(2 − β2) − 1

) ∣∣∣Ỹ ji(k,m)
〉

= 2kǫ
〈
Ỹij(k

′, m′)
∣∣∣ c0
∣∣∣Ỹ ji(k,m)

〉

= 2kǫ Dij(k) δk,k′δm+m′,0.

(6.5)

This zero absorbs the volume divergence in the two point function. Using (6.3) in

(6.5), we get the coefficient of the kinetic term

〈
Ỹ ij(k,m), QBỸ

ji(k,−m)
〉

=
(−1)k

ǫ
(zj − zi)

2k
, (6.6)

which has a simple pole in ǫ. The coefficient of the cubic term is simply the three-

point function (6.4) with the same singularity. Thus, the two terms in the action

(6.1) have an identical singular coefficient. Then we can renormalise the string

coupling as

gs ≡ ǫgs0, (6.7)

to get a sensible matrix theory with a finite action. The novelty of this matrix

model, compared to the existing ones in the literature, is that it has the SU(2)

symmetry of the theory manifest from the beginning.

Let us note that the (singular) renormalisation (6.7) of the string coupling

was also necessary in Ref.[55] in order to get the Kontsevich model. It is actually

implicit in [55], where the 1/ǫ singularity of the three-point function as well as the

delta-functions in the two-point functions have been suppressed[85].

The complete action involving all the modes in (6.2) is a little cumbersome.

However, if we restrict to the tachyons (thereby giving up SU(2) symmetry), we
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find the action S = S2 + S3, where

S2 = − 1

2gs

∞∑

k=0

(−1)k
∑

ij

T̃ ij(k) (zj − zi)
2k
T̃ ji(−k)

S3 = − 1

3gs

∑

k1,k2

(−1)k1+k2

∑

ijl

z2k2+2k2

jl − z2k2+2k2

il

zji
T̃ jl(k1)T̃

li(k2)T̃
ij(−k1 − k2).

(6.8)

In terms of a matrix Z = diag (iz1, iz2, · · ·), the kinetic term may be written as

S2 ∼
∑

k

Tr T̃ (k)
[
Z, · · ·

[
Z, T̃ (k)

]
· · ·
]
. (6.9)

The fact that our Liouville correlators depend only on the difference of boundary

cosmological constants shows up as a symmetry of the above term under a shift

of the matrix T̃ by an arbitrary diagonal matrix. This symmetry is shared by the

cubic term which can also be written down similarly.

7. Discussion

We have studied correlators of the boundary Liouville theory in the limit that

the Liouville central charge cL tends to 25, or equivalently c → 1. The results are

embodied in Eqs.(3.14)–(3.17), (4.8)–(4.9) and (5.9). The principal motivation to

present these results is that they are far more explicit than the boundary correlators

known for the c < 1 theory (as embodied in Eqs.(3.2),(4.2) and (5.2)). The latter

are given in terms of special functions Sb(x),Γb(x) and some of the correlators are

known only as contour integrals over products of such functions. These contour

integrals can be explicitly evaluated for c = 1 only, as far as we know, at the self-

dual radius25. The boundary correlators we obtain in this way are all divergent, but

as we have noted, the divergence factors out from the two- and three-point functions

and can be absorbed in a rescaling of the string coupling leading to a well-defined

open-string field theory action.

25 Of course, rational multiples of this radius which correspond to orbifolds of the theory

also have a similar behaviour.
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The fact that the boundary correlators are independent of the bulk cosmological

constant is reminiscent of a similar fact in Ref.[55]. There, the dependence of the

two-point function on µB is crucial in recovering the Kontsevich model[61], where

the different µB,i turn into the eigenvalues of the Kontsevich matrix. In similar

vein, our matrix model depends only on µB,i which are the eigenvalues of a constant

matrix Z.

We did not find a proof that the boundary correlators at c = 1 and selfdual

radius are all independent of the bulk cosmological constant. However, if we assume

this to be true, then we can see that the n-point tree-level boundary correlators must

scale with the boundary cosmological constant µB as:

〈V (k1)V (k2) · · ·V (kn)〉 ∼ µ

∑
n

i=1
ki−n+2

B (7.1)

where a factor of (ki−1) comes from each Liouville vertex operator and an additional

2 comes from the linear dilaton factor in the path integral. This scaling is satisfied

by the two- and three-point correlators that we computed. It is tempting to also

conjecture that the n-point correlators will depend only on the pairwise differences

µij of boundary cosmological constants.

The natural matrix model that we might have expected to find from our compu-

tations, which is the analogue of the Kontsevich model for c = 1 at self-dual radius,

is the model of Ref.[72]. But this is a one-matrix model, and here we find a model

with infinitely many matrices. Moreover the model of [72] incorporates amplitudes

for (closed-string) tachyon external states only, based as it is on the amplitudes

computed in Ref.[71] from matrix quantum mechanics, in which the other discrete

states have not yet been constructed. So there is in fact no candidate matrix model

presently available that incorporates the full SU(2) symmetry of the c = 1 string at

self-dual radius. In contrast, the approach in the present chapter does lead to such

a model, presented in embryonic form in Eqs.(6.4)–(6.6) More work is needed to

understand this model and confirm whether open/closed duality works as expected.
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Appendix A. Special Functions at c = 1

The correlators of Liouville theory are expressed in terms of some special

functions[7,47]. In the case of cL = 25, i.e., b = 1, they are:

ln Γ1(x) =

∫ ∞

0

dt

t

(
e−xt − e−t

(1 − e−t)2
− (1 − x)2

2et
− 2(1 − x)

t

)
,

lnS1(x) =

∫ ∞

0

dt

t

(
sinh 2t(1 − x)

2 sinh2 t
− 1 − x

t

)
.

(A.1)

Both are meromorphic functions and are related to each other via:

S1(x) =
1

S1(2 − x)
=

Γ1(x)

Γ1(2 − x)
, (A.2)

where, we have also made use of the unitarity relation S1(x)S1(2 − x) = 1. The

function Γ1 has poles at zero and negative integer arguments. Therefore, from

Eq.(A.2), S1(x) has poles at these arguments and zeroes at integers larger than 1.

The functions Γ1(x) and S1(x) satisfy the recursion relations:

Γ1(x+ 1) =

√
2π

Γ(x)
Γ1(x),

S1(x+ 1) = 2 sin(πx)S1(x);

(A.3)

where, Γ(x) is the usual Euler gamma function. The values of these special functions

at (half)-integer arguments turn out to be of interest. In particular, we would need

the ratio Γ1(−n)/Γ1(n), which, as a matter of fact, is divergent. However, using

the recursion relations above, one can show that the leading divergence, near an

integer n is
Γ1(−n)

Γ1(n)
≡ lim

ǫ→0+

Γ1(−n− ǫ)

Γ1(n+ ǫ)

=
(−1)n(n+1)/2

(2π)nΓ(n)Γ(n+ 1)

1

ǫn+1
.

(A.4)

However, for half-integer arguments:

Γ1

(
−2m+1

2

)

Γ1

(
2m+1

2

) =
(−1)(m+1)(m+2)/2

√
2

πm+ 3
2 (2m− 1)!! (2m+ 1)!!

, m ∈ Z, (A.5)

the corresponding ratio is finite.
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Likewise, using the relations above, S1(1 − x) = Γ(x)Γ1(−x)
Γ(−x)Γ1(x) . Therefore, one

finds that

S1(1 − n) =
(−1)n(n−1)/2

(2πǫ)n
,

S1

(
1 − 2n+ 1

2

)
=

(−1)−n(n+1)/2

22n+ 1
2 πn+ 3

2

,

(A.6)

for an integer n. Once again, the first of the above is to be defined as a limit.

Appendix B. Evaluation of a Contour Integral for the Three-Point Func-

tion

Here we will evaluate the contour integral

B4 =
1

i

∫ +i∞−0

−i∞−0

ds

4∏

i=1

Sb(Ui + s)

Sb(Vi + s)
(B.1)

where Ui, Vi are given in Eq.(4.3). The definition of the contour integral as an

analytic function of the momenta is explained in Ref. [47]. We shall summarize

and use that prescription for our case in which ki approach positive integers, and

b → 1. We shall use an off-shell parameter ǫ here which is the deformation b away

from b = 1. As mentioned in section 3, an equivalent deformation is one where the

Liouville momenta is shifted away from integers.

For large imaginary |s|, the integrand decays exponentially, so the integral is

convergent in that region. Near the origin, the contour needs to be defined because

the integrand has poles which lie on the origin. We do this by shifting the contour

a little to the left of the imaginary axis.

Let us list the arguments of the functions S1 for our case:

U1 = −1 + σ1 + σ2 + k1, V1 = 2 + σ2 − σ3 + k1 + k3,

U2 = 1 − σ1 + σ2 + k1, V2 = 2 + σ2 − σ3 + k1 − k3,

U3 = 1 + σ2 − σ3 − k2, V3 = 2σ2,

U4 = 1 + σ2 − σ3 + k2, V4 = 2.

(B.2)
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The poles from the numerator and the denominator are at26

s+ Ui = −ni and s+ Vi = 2 +mi, (ni, mi = 0, 1, 2, · · ·) (B.3)

respectively. For Re Ui > 0 and Re Vi ≤ 2, the poles arising from the numerator

are all in the left half-plane and those from the denominator are in the right half-

plane27. The imaginary axis is therefore a well-defined contour and thanks to the

asymptotic behaviour, the integral has a finite value.

For general values of ki, the integral is defined by analytic continuation of the

above prescription. Specifically, this means that as we vary ki (or equivalently,

Ui, Vi) smoothly, some of the poles from the LHP cross the imaginary axis and

enter the RHP, and vice-versa. In such a case, one deforms the contour such that

the poles from the numerator and the denominator are always separated by the

contour. Alternatively, this could be done by an equivalent deformation as follows.

Suppose, a pole of the numerator migrates to the LHP. The new (deformed) contour

now consists of two parts, one is the old one and another a small circle around the

‘migrating’ pole. The latter will pick up the residue of the integrand around that

pole. However, this also gives a finite contribution and will not be of our final

interest.

The integral diverges if two poles, one originating in numerator and another in

denominator, approach towards each other to coincide. In this case, the contour is

‘pinched between’ the two poles. Alternatively, the migrating pole hits another pole.

This divergence dominates over the finite piece and it is this which is of interest to

us. In order to extract the leading divergence in such cases, let us deform b away

from the value b = 1 by an amount ǫ and make the circle around a migrating pole

very small. As it hits a would-be singularity at b = 1, we determine the divergent

residue as a power of ǫ.

26 Here we have already plugged in b = 1, the general formula has simple poles at

s + Ui = −nb − mb−1. At b = 1, these simple poles coalesce to a pole of high order.
27 The V4 factor has a pole at the origin, but we have shifted the contour a little to

the left as indicated in (4.2). With this understanding, we shall continue to call it the

imaginary axis.
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The condition for collision between the poles (B.3) is s = −Ui−ni = 2−Vj+mj ,

(ni, mj = 0, 1, 2, · · ·), i.e.,

Vj − Ui = 2 +m, m = 0, 1, 2, · · · . (B.4)

For generic σi, this can only happen when V1 collides with U3 or U4. Moreover,

V1 − U3 = 1 + k1 + k2 + k3 = V1 − U4 + 2k2, so the divergence from the collision of

V1 and U3 dominates and it is sufficient to consider only that. Let

s+ (σ2 − σ3) = n ∈ ZZ. (B.5)

Then, a collision between the poles (B.3) happens when

1 + n− k2 = −n3, n+ k1 + k3 = m1, (n3, m1 = 0, 1, 2, · · ·). (B.6)

This happens when −k1−k3 ≤ n ≤ k2−1. This set is non-empty for (k1, k2) 6= (0, 0).

The divergence of the integrand for a particular value of n, as defined in

Eq.(B.5) above, contributes an amount to the integral B4 that we denote B(n)
4 .

Hence,

B4 =
∑

n

B(n)
4 (B.7)

The range of values of n over which the sum is to be performed will be determined

below.

The net order of divergence of the integrand at a given value of n comes from

counting the poles/zeroes in U3, U4, V1 and V2 (keeping σi are generic), and (using

Eq.(B.5) and the formula for the divergence of the S1-function given in Appendix

A) is equal to:

−(n− k2) − (n+ k2) + (1 + n+ k1 + k3) + (1 + n+ k1 − k3) = 2 + 2k1. (B.8)

One of these poles is the migrant one with a circular contour around it, so the

divergent part of the residue28 is 1/(2πǫ)2k1+1.

28 Let us see how the same result is obtained with the equivalent regulator in which

b = 1 but k is shifted away from an integer. The contour integral is about a pole of

higher order, say M ≡ n + k1 + k3, if the migrant pole is from V1. The residue is then

the (M − 1)th derivative of the other factor which has a pole of order 2k1 + 2 − M . The

dominant singularity comes from differentiating this singular part, leading to the same

final answer.
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The finite piece of the residue is due to the other four S1-functions. Once again,

using (B.5), we can write the contribution B(n)
4 as:

B(n)
4 =

(−1)k1

(2πǫ)2k1+1

S1(−1 + n+ k1 + σ1 + σ3)S1(1 + n+ k1 − σ1 + σ3)

S1(n+ σ2 + σ3)S1(2 + n− σ2 + σ3)
. (B.9)

Combining B3 and B(n)
4 and using some inversions of S1 along the way,

B3 B(n)
4 =

(−1)k1

(2πǫ)2k1+1

S1(−1 + n+ k1 + σ1 + σ3)

S1(−1 − k3 + σ1 + σ3)

S1(−1 + k2 + σ2 + σ3)

S1(n+ σ2 + σ3)

× S1(1 + k3 + σ1 − σ3)

S1(1 − n− k1 + σ1 − σ3)

S1(−n+ σ2 − σ3)

S1(1 − k2 + σ2 − σ3)

=
(−1)k1

(2πǫ)2k1+1
(2 sinπ(σ1 + σ3))

k1+k3+n(2 sinπ(σ2 + σ3))
k2−n−1

× (2 sinπ(σ1 − σ3))
k1+k3+n(2 sinπ(σ2 − σ3))

k2−n−1

=
(−1)k1

(2πǫ)2k1+1

(
2
µ1B − µ3B√

µ

)k1+k3+n(
2
µ2B − µ3B√

µ

)k2−n−1

.

(B.10)

Finally we have to sum over all these residues, since the contour is a disjoint

sum of all these circles at various values of s labelled by an integer n, which ranges

from −k1 − k3 to k2 − 1. This is a geometric series. Evaluating the sum, we get:

B3 B4 = B3

k2−1∑

n=−k1−k3

B(n)
4

=
(−1)k1

(2πǫ)2k1+1

(
2µ21√
µ

)−1
{(

2µ23√
µ

)∑
i
ki

−
(

2µ13√
µ

)∑
i
ki

}
,

(B.11)

where we have defined:

µij ≡ µiB − µjB . (B.12)
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Chapter 4

Unstable D-branes in Two-dimensions

and the Supersymmetric Matrix Model

1. Introduction

Matrix models provide an elegant and powerful formalism for describing low-

dimensional string theories. Recently, it was proposed that the large N matrix vari-

ables can be viewed as the modes of N unstable D-particles in the corresponding

string theory, in a decoupling limit [86,44]. This proposal reinterprets the matrix-

model/string-theory correspondence as a holographic open-string/closed-string du-

ality, and suggests a search algorithm for more examples. It has been clarified

[87,88,43,89] and very recently extended to type 0 strings [90,91]. In this note, we

apply this perspective to shed some new light on the physical identification of the

supersymmetric matrix model of Marinari and Parisi [92].

This chapter is organized as follows. We begin by recollecting the basic features

of the Marinari-Parisi model and its proposed continuum limit. In section 3, we

review some of the target space properties of 2-d superstring theory. In section 4

we collect a list of correspondences between the two theories. Most notably, we find

that the open string spectrum on unstable D-particles of the 2-d string theory is

that of (a minor improvement of) the MP model, expanded around the maximum

of its potential. We also make a direct comparison between the vacuum structure

and instantons of both models. We end with some concluding remarks and open

problems. Some technical discussions are sequestered to appendices A and B.

2. The Marinari-Parisi model

The Marinari-Parisi model is the quantum mechanics of an N × N hermitian
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matrix in a one-dimensional superspace

Φ(τ, θ, θ) = M(τ) + θΨ(τ) + Ψ(τ)θ + θθF (τ). (2.1)

The action is

S = −N
∫
dτ dθ dθTr

{
1

2
DΦDΦ +W0(Φ)

}
, (2.2)

where D,D are superspace derivatives. We can choose a cubic superpotential

W0(Φ) =
1

2
Φ2 − 1

3
λ2Φ3. (2.3)

The Feynman graph expansion for the model generates a discretization of random

surfaces in superspace. Related work on supersymmetric matrix models includes

[93,94,95,96,97,98,99,100,101,102,103].

The model we will discuss is actually a slight modification of the original MP

model. We will take the derivatives appearing in (2.2) to be covariant with respect

to gauge transformations which are local in superspace; their form is described in

appendix A. In the case of the c = 1 matrix model, its identification with the

worldline theory of D-particles made clear that the U(N) conjugation symmetry of

the matrix model should be gauged. As we will see, the same correspondence in our

case suggests that we should introduce a superfield gauge symmetry in the model

(2.2), which naturally effects the truncation to singlet states [95].

The model with superpotential (2.3) has two classical supersymmetric extrema

W ′
0(Φ) = 0. These are minima of the bosonic potential V (M) = M2(1 − λ2M)2.

In addition, V has an unstable critical point at Mc = 1
2λ2 . The quadratic form of

the action, when expanded near this non-supersymmetric critical point is (defining

Y = M −Mc)

S = −N
∫
dτTr

{
1

2
(DτY )2 + ΨDτΨ +

1

2
λ2Y 2 − 1

16λ2

}
. (2.4)

In the following we will argue that this action can be viewed as that of N unstable

D-particles, localized in the strong coupling/curvature region of the 2d string theory

background.
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In the MP model, the fermi level is not an independent parameter, in that it

is determined by the form of the potential [95]. Critical behavior arises instead in

this model through a singularity in the norm of the ground-state wavefunction [95].

We will discuss the ground states of the matrix model further in §4, but for now it

suffices to study an exemplary one, |f0〉, whose norm is given by

eF ≡ |f0|2 =

∫ ∏

i

dzi

∏

i<j

(zi − zj)
2 e−2W0(z); (2.5)

this is a c < 1 matrix integral. For odd W0, there is an irrelevant divergence at

large |z| which we simply cut off. A critical limit arises by tuning the potential

W0 to the m = 2 pure-gravity critical point of [104], near which the tree-level free

energy is F ∝ κ−2, with κ−1 = (λ− λc)
5/4N providing the string coupling.

This limit naively gives a supersymmetric sigma model on 1d superspace

(τ, θ, θ) coupled to 2d Liouville supergravity. In [105], however, the following ar-

gument was presented against such a description of the continuum limit: the mat-

ter part of the action is necessarily interacting, and has a one-loop beta function

predicting that the coupling grows in the IR and that the matter fields become

disordered. This would seem to indicate that the superspace coordinates (τ, θ, θ)

become massive, and that spacetime does not survive in the critical theory. We

consider this conclusion premature. The reasoning assumes that the matter theory

and the worldsheet gravity are coupled only via the gauge constraints. This is not

the case for the supersymmetric string in two dimensions [106].

3. Two-dimensional Superstrings

We saw in Chapter 2 how to construct 2d superstring theory. We review this

briefly and move on to discuss some non-perturbative aspects of this theory.

To formulate 2d superstring theory, one starts from N = 2 Liouville theory

[107] and then performs a consistent GSO projection to obtain a string theory with

target space supersymmetry [106,108]. Unlike bosonic and N = 1 supersymmetric

Liouville theory, the time direction τ is involved in the N = 2 supersymmetry
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algebra, and it is involved in the N = 2 Liouville interaction as well:

LSL
int = ψψ̃ e−

1
2
(ρ+ρ̃+i(τ−τ̃)) + c.c. (3.1)

with ψ = ψρ + iψτ .

Interestingly, N = 2 Liouville theory has been shown [109] to be dual

to superstrings propagating inside the 2d black hole defined by the supercoset

SL(2, IR)/U(1) [8]. The semiclassical background is

ds2 = dρ2 + tanh2 ρdτ2, τ ≡ τ + 2π;

Φ = Φ0 − log cosh ρ,
(3.2)

with gs = eΦ.29 This explicitly shows that in the infrared region of small eρ,

the τ direction degenerates. The dependence of the string background on ρ can

be attributed to a gravitational dressing of the operators. This does however not

preclude the existence of a two-dimensional continuum description (c.f. the above

discussion of the scaling of the MP matrix model).

We now summarize a few properties of the target space theory. A good starting

point is the worldsheet description of the Euclidean theory, the fermionic cigar at

the free-fermion radius [108]. The string worldsheet theory on the cigar has three

conserved currents: the left-moving and right-moving chiral currents J and J̃ , with

J = −ψψ + i2∂τ ≡ i∂(H + 2τ), (3.3)

and a non-chiral current whose integral charge Pτ is the quantized euclidean energy,

i.e. the discrete momentum around the cigar. The chiral projection that defines the

type II theories is the condition that physical operators should have a local OPE

with the spectral flow operators, which in type IIB string theory takes the form

S = e−
1
2
ϕ+ i

2
(H+2τ) S̃ = e−

1
2
ϕ̃+ i

2
(H̃+2τ̃) (3.4)

29 Type IIB string theory based on this CFT is also equivalent, via a more trivial T-

duality, to type IIA string theory on the circle of the inverse radius, with (3.1) replaced

by the corresponding momentum condensate.
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(here ϕ denotes the bosonized superghost current). Since the U(1) R current of the

N = 2 algebra involves the compact boson τ in addition to the worldsheet fermions,

the symmetry generator Pτ is an R symmetry (here S =
∫
dz S is the supercharge)

[Pτ ,S] =
1

2
S [Pτ , S̃] =

1

2
S̃ . (3.5)

States in a given supersymmetry multiplet therefore do not all have the same energy.

The perturbative closed string spectrum in the euclidean IIB string theory

consists [108] of an NSNS (non-tachyonic) tachyon with odd winding modes, a left-

moving periodic RR scalar (the self-dual axion), and a right moving complex fermion

Υ with half-integer momenta. This is the expected behaviour for spinors which are

single valued on the cigar. Therefore, in the compact theory, a rotation τ → τ +2π

acts on the spacetime fields as e2πiPτ = (−1)Fs , where Fs is the target-space fermion

number. There is another Z2 symmetry (−1)FL which acts by

χ 7→ −χ, Υ 7→ Υ. (3.6)

The N = 2 Liouville which has primarily been considered in the literature has

a euclidean time direction. On the other hand, matrix quantum mechanics is most

easily described in a real-time Hamiltonian language. It will therefore be convenient

for us to hypothesize a consistent analytic continuation of this theory. However, this

analytic continuation needs to be understood better. Translating to a Minkowskian

spectrum, we find a left-moving scalar χ and a complex right-moving fermion Υ. In

addition to these propagating degrees of freedom, there are also discrete physical

states at special energies.

D-Instantons and Flux sectors

The physics of the RR axion is closely linked to that of D-instantons. Two-

dimensional IIB string theory, however, has some special features. First, the axion

is a self-dual middle-rank form; it couples both electrically and magnetically to the

D-instanton. One important implication of this is that the axion itself does not have
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a well-defined constant zeromode. Secondly, unlike the 10d case, where the BPS

D-instanton breaks sixteen supercharges and thus carries an even number of fermion

zeromodes, it seems that the 2d D-instanton only breaks one supersymmetry and

therefore carries only one fermion zeromode. It thus interpolates between sectors

with opposite fermion parity. A preliminary study of the D-instanton boundary

state in appendix B bears this out.

At this point it is natural to introduce the right-moving scalar field U via

bosonization Υ = eiU . In this bosonized language, the entire field-theoretic spec-

trum of 2d type IIB can thus be reassembled into a single non-chiral scalar field

φ = φL + φR with

φL = χ, φR = U. (3.7)

Since φR = U is periodic with the free-fermion radius, it is natural to suspect that

the axion φL = χ is periodic with the free-fermion radius as well.30 Note that

(−1)FL as defined above acts by (−1)FL : φ 7→ −φ.

The fact that the D-instanton has only one fermion zero mode means the

operator that creates it carries fermion number 1. This indicates that
∮

γ
∂U = 1,

where γ is a contour containing the instanton. Further, from the coupling of the

D-instanton to the RR axion, we expect that in the presence of a D-instanton
∮

γ
∂χ

= 1. A natural candidate for the effective operator with the right properties to

create a D-instanton at the space-time location x is then

eiφ(x) = ei(χ(x)+U(x)). (3.8)

Instantons are tunnelling events that interpolate between perturbative sectors.

These sectors are characterized by an integer flux (here Σ denotes a space-filling

contour): ∫

Σ

∂0φ = k k ∈ Z, (3.9)

30 This claim can be verified (or refuted) by computing the axion charge carried by a

D-instanton [110], or the axion flux produced by a decaying D-brane, along the lines of

[87,91].
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which is the quantized momentum dual to the constant zero mode φ0 of φ (φ0 is

periodic with period 2π). The integer k can be thought of as a slight generalization

of the “s-charge” of [111].31

4. Dual Correspondence

We will now try match the physics of the Marinari-Parisi matrix model with

that of the two-dimensional type IIB string theory. Following the logic of [86,87]

we start by examining the open string spectrum of the unstable D-particles.

D-particles

In type II string theory, the boundary state for an unstable Dp-brane has the

form [113,114,115,116]

|D̂p〉 = |B,NSNS; +〉 − |B,NSNS;−〉. (4.1)

Here |B,NSNS; η〉 denotes a boundary state in the NSNS sector, satisfying

(Gr − iηG̃r)|B; η〉 = 0; G = G+ +G− is the gauged worldsheet supercurrent. The

boundary state describing an unstable brane with unperturbed tachyon contains

no term built on Ramond primaries. Experience with less supersymmetric Liou-

ville models suggests that branes localized in the Liouville direction correspond

to boundary states associated with the Liouville vacuum state, which we will call

|B0; η〉. The defining property of these states is that the corresponding bosonic open

string spectrum (of NS-sector open strings for which both end-points satisfy this

specific boundary condition) have support only at Liouville momentum P = −i,
corresponding to the identity Liouville state.

Details regarding these boundary states appear in appendix B. Using the gen-

eral formula (4.1), the basic unstable D0-brane of type IIB is represented by the

31 Since ∂+φ = ∂+χ, sectors with nonzero pL are backgrounds in which flux quanta of

the RR axion are turned on. Backgrounds of two-dimensional type IIA strings with RR

flux were described in [112].
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boundary state |D̂0〉 = |B0; +〉 − |B0;−〉. Study of the annulus amplitude for this

D-brane, detailed in appendix B, reveals that the open string spectrum on this

brane is precisely that of the Marinari-Parisi model, expanded as in (2.4), including

the gauge supermultiplet. This correspondence is the first strong indication that

the MP model describes the type IIB non-critical string theory.

Symmetry considerations

There are two prominent continuous symmetries of the MP model: there is the

conserved energy H, and there is the overall fermion number F̂ ≡∑i ψ
†
iψi. In the

Hilbert space of the MP model, the quantum number F takes N different values, for

which we take the CP-invariant choice −N/2, . . . , N/2. We would like to identify

(−1)Fs of the target space theory with (−1)F of the MP model. Further, as in the

bosonic and type 0 cases, we identify the Hamiltonians of the systems

H = Pτ .

The matrix model can also have a Z2 R-symmetry. Its interpretation can be

understood as follows. Due to the coupling between the D-brane worldvolume fields

and the closed strings, the worldvolume fields transform under (−1)FL . (−1)FL acts

by [114,117]

Y ↔ −Y, ψ ↔ ψ†. (4.2)

We will see below that this is consistent with Υ ↔ Υ†. Therefore (−1)FL acts

as an R-symmetry in the matrix quantum mechanics: it acts on the superspace

coordinates as (−1)FL : θ ↔ θ. In order for this to be a symmetry of the worldline

action, W0 must be an odd function of Y . This implies that supersymmetry is

broken, since then none of the standard [118] candidate supersymmetric ground

states e±W |0〉 is normalizible.

Spectrum and c = 1 Scaling
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In [95], it was shown that the supercharges act within the space of super matrix

eigenvalues as

Q =
∑

k

ψ†
k

( 1

N

∂

∂zk
+
∂Weff(z)

∂zk

)
, Q† =

∑

k

ψk

( 1

N

∂

∂zk
− ∂Weff(z)

∂zk

)
, (4.3)

where

Weff(z) =
∑

k

W0(zk) − 1

N

∑

k<l

log(zk − zl). (4.4)

These supercharges exactly coincide [119] with those of the supersymmetric

Calogero-Moser model [120][121]. The corresponding Hamiltonian reads

H =

N∑

i=1

(
1

2
p2

i + V (zi) +
2

N
W

′′

0 (zi)ψ
†
iψi

)
+

1

N2

∑

i<j

1 − κij

(zi − zj)2
(4.5)

where with pi = −i
N

∂
∂zi

and κij = 1 − (ψi − ψj)(ψ
†
i − ψ†

j ) is the fermionic exchange

operator [121]; it assigns fermi-statistics to the spin-down eigenvalues, and bose-

statistics to the spin-up ones (here we are using the terminology of appendix A).

The potential reads [95]

V (z) =
1

2

(
W

′

0(z)
)2

−W
′′

0(z), (4.6)

where we used that for a cubic superpotential W0 one has
∑

i<j
W ′

0(zi)−W ′
0(zj)

zi−zj
=

(N − 1)
∑

iW
′′
0(zi). We see that the Hamiltonian describes a system of interacting

eigenvalues. The interaction is such that eigenvalues always repel each other: it

represents a 2/r2 repulsion between the boson states with κij = −1, and although

it vanishes between two fermionic states with κij = 1, such particles still avoid each

other since their wavefunctions are antisymmetric.

In the case all the eigenvalues have spin down, so that all κij = 1, the

Hamiltonian reduces to a decoupled set of one-particle Hamiltonians. It is easy

to write the ground state wave function in this case. Let us introduce the nota-

tion ∆(i1, ..ik) =
∏

i<j∈(i1,..ik)(zij), the vandermonde of the k variables {zik
} (here

zij = zi − zj). In this notation:

|f0〉 ≡ f0| ↓↓ · · · ↓〉 = eTrW0∆(1, 2..n)| ↓↓ · · · ↓〉. (4.7)
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This vacuum state represents the filled Fermi sea of the first N energy levels. In the

harmonic potential, this is a supersymmetric ground state. In the cubic potential,

there is a corresponding ground state in each well, only one of which is perturbatively

supersymmetric.

In the sectors with non-zero fermion number, there are no normalizable super-

symmetric ground states, even for the harmonic well. As described in Appendix C,

the groundstate eigenfunction in the fermion number k sector is:

|fk〉 =
∑

i1<i2<..<ik

∆(i1, ..ik)

k∏

m=1

ψ†
im
|f0〉. (4.8)

This wavefunction obeys the right statistics imposed by gauge invariance. From the

expression (4.8) we can read off that the energy levels of the spin up eigenvalues

are double spaced relative to that between spin down states [122].

V

Fµ
µ

zz zF1 z2 3

W

Wprobe

V

Fig. 5: The approximate probe superpotential, superpotential and bosonic

potential of the f0 state. The fermi level of the perturbatively supersym-

metric ground state f0 coincides with the minimum of the right well (left).

The ground state in the sector with k spin up eigenvalues fills up to the

N + k-th energy level, which in the double scaling limit approaches the

unstable maximum (right).

Now let us discuss the system with a cubic superpotential. The state f0 is a

perturbatively supersymmetric state, with a filled fermi sea in the left well. It turns

out that the fermi level exactly coincides with the bottom of the second well, as
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indicated on the left of Fig. 1. Although the super-Calogero-Moser model with a

cubic potential has no known exact treatment, it seems reasonable to assume that

the super-eigenvalues in each of the two potential wells behave qualitatively similar

as for the single harmonic potential. This suggests that in the sector with k up-

spins, the ground state is well-approximated by taking the single particle energy

spectrum, and fill the first N−k levels with the fermionic eigenvalues, and all levels

N − k + 2m with m = 1, . . . , k up to the N + k-th energy level. When k gets large

enough, this N +k-th energy level starts approaching the unstable maximum of the

potential, as indicated on the right of Fig. 1. Here we expect to find c = 1 critical

behavior. Our proposal is that the double scaled eigenvalue dynamics near this

unstable maximum encodes the scattering non-perturbative physics of non-critical

IIB strings.

Matrix model instantons

Single-eigenvalue tunneling events in the matrix model interpolate between the

sectors with different number of up-spins: they relate the adjacent ground states

|fk〉 and |fk+1〉. Note that these sectors have opposite parity of fermion number.

The probe super-eigenvalue Z moves in the mean-field superpotential

Wprobe(Z) = W0(Z) − 1

2

∑

i

ln(Z −Xi). (4.9)

There exists [95] a BPS tunneling trajectory:

0 = δψ = żcl −W ′
probe(zcl). (4.10)

This trajectory breaks just one supersymmetry, and thus supports a single fermion

zero mode.

We propose to identify the vacuum of the matrix model with fermion number

k with the string theory vacuum with k units of flux, as defined in §3. This iden-

tification is directly supported by the interpretation of the MP matrix model as

the worldline theory of the unstable branes and of the D-instantons with the tun-

nelling trajectories of the worldline tachyon field Y . Recall that an unstable type
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II Dp-brane couples to the RR p-form potential C(p) via the gradient of its tachyon

according to
∫
C(p) ∧ dW(Y ) [123,115,124,125] with V (Y ) = ∂

∂Y W(Y ) [126]. For

the unstable D-particle, this takes the form

SD̂0 ⊃
∫
χ
dY

dt
V (Y ) dt. (4.11)

Combined with our proposal, this coupling implies that the tunnelling trajectory

sources the RR axion. It can therefore be identified with a D-instanton, further

vindicating the prescient analysis of [127].

5. Concluding remarks

We have collected evidence supporting the conjecture that the supersymmetric

matrix model of Marinari and Parisi can be identified with the matrix mechanics of

N unstable D-particles in two-dimensional IIB string theory. This suggests that in

a suitable double scaling limit, the MP model, when viewed from this perspective,

provides a non-perturbative definition of the string theory. The two systems on

both sides of the conjectured duality, however, clearly need further study. We end

with some concluding comments.

Space-time fields

An important open problem is the proper identification of the space-time fields

in the MP model. It is reasonable to expect that, as for the c = 1 [128] and ĉ = 1

cases, the spacetime fields arise from the matrix model via the collective fields

for the eigenvalue density. Possibly the supersymmetric collective field theory of

[129,96,97,98] is the correct framework, though it seems that some Z2 projection

may be needed, since the target space boson χ and fermions Υ are chiral with

opposite chirality. If Υ is linear in the fermionic component of the eigenvalue density

(e.g. a Laplace transform of it), then the matrix model action of (−1)FL : ψ ↔ ψ,

is consistent with the action on closed-string fields Υ ↔ Υ.

Space-time supersymmetry
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Space-time supersymmetry should provide a helpful guideline in finding a pre-

cise dictionary. Expanded around the quadratic maximum of its bosonic potential,

the model (2.4) has many symmetries; indeed the small bosonic and fermionic fluc-

tuations are decoupled. It is not difficult to find fermionic operators which behave

as in (3.5). The more mysterious question is how to describe the matrix model

supersymmetry in the target space of the string theory.

D-brane decay

It should be possible to generalize the analysis of [86,87,88] to study the decay

of a single unstable D-brane. This will presumably involve a superfield version of

the fermion operator that creates and destroys the super-eigenvalues, and a super-

field bosonization formula along the lines of [130]. This analysis would allow an

independent determination of the compactification radius of the axion, along the

lines of [87,91], confirming that χ is periodic at the free fermion radius.

Appendix A. The gauged Marinari-Parisi model

In this appendix, we describe two ways of introducing an auxiliary gauge field

for the supersymmetric matrix model. We show that the second method is equiva-

lent to the eigenvalue reduction of the MP model given in [95].

Gauged Model, Version I

The conventional method of gauging a supersymmetric action is to introduce

a real matrix superfield V, and replace the superderivatives in (2.2) with gauge-

covariant superderivatives of the form

DVΦ = eadVD(e−adVΦ) , D = ∂θ + θ∂τ (A.1)

DVΦ = eadVDθ(e
−adVΦ) D = ∂θ + θ∂τ (A.2)

These derivatives are designed to be covariant under local gauge transformations

Φ 7→ eadΛ Φ , V 7→ V + Λ (A.3)
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where Λ is an arbitrary real superfield. We can thus choose the gauge V = 0.

The presence of the gauge field still manifests itself, however, by means of the re-

quirement that physical states must be annihilated by the generator of infinitesimal

bosonic gauge rotations Φ 7→ U †ΦU . This invariance can be used to diagonalize,

say, the bosonic component φ of the matrix superfield. The off-diagonal fermionic

matrix elements, however, remain as physical degrees of freedom.

Gauged Model, Version II

A second possible procedure is to introduce a complex superfield A and define

superderivatives

DAΦ = DΦ − [A,Φ] , DAΦ = DΦ − [A,Φ] (A.4)

covariant under local gauge transformations

Φ 7→ eadΛ Φ , A 7→ A +DΛ , A 7→ A +DΛ (A.5)

with Λ an arbitrary real matrix superfield. In this case, the gauge invariance is not

sufficient to choose a gauge in which A and A are set equal to zero. However, since

A and A appear as non-dynamical fields, we can eliminate them via their equations

of motion

G ≡ [ Φ,Π ] = 0 , Π ≡ DAΦ . (A.6)

We will impose the physical state conditions in the weak form

G |Ψphys〉 = 0 . (A.7)

The space of solutions to this constraint is characterized as follows. Let U be the

bosonic unitary matrix that diagonalizes the bosonic component φ of the matrix

superfield. We can then define

(UΦU†)kk = zk + θ ψk + ψ†
k θ + θθfk . (A.8)

Here the zk are the eigenvalues of φ. A straightforward calculations shows that the

gauge invariance conditions is solved by physical states that depend on zk and ψk
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only. Since the physical state constraint (A.6) is a supermultiplet of constraints,

this guarantees that this subspace forms a consistent supersymmetric truncation

of the full matrix model. One can also verify directly that it is invariant under

supersymmetry transformations. After absorbing a factor of ∆ =
∏

i<j(zi − zj)

into our wave functions

Ψ(z, ψ) = ∆(z)Ψ̃(z, ψ) (A.9)

the supersymmetry generators take the form (4.3).

It is convenient to think of the system of eigenvalues as N particles moving

in one dimension, each with an internal spin 1
2 degree of freedom, a spin “up”

or “down.” Accordingly, we can define the Hilbert space on which the fermionic

eigenvalues act by

ψi|↓↓ · · · ↓〉 = 0, ∀i; ψ†
i |↓↓ · · · ↓〉 ≡ | ↓ · · · ↓︸ ︷︷ ︸

i−1

↑↓ · · · ↓〉; etc... (A.10)

A general state in the physical Hilbert space is then

|fη〉 =
∑

η

fη(z)|~η〉 (A.11)

where η is a vector of N up or down arrows, and we have arranged the eigenvalues

in a vector z. Since it is possible via U(N)-rotations to interchange any eigen-

value superfield (zi, ψi) with any other eigenvalue superfield (zj , ψj), the matrix

wavefunctions should be symmetric under this exchange operation.

However, since our wave-functions depend on anti-commuting variables, the

model will inevitably contain bosonic as well as fermionic sectors. Let us now define

a a fermionic interchange operation κij with the property that it interchanges the i

and j spin state, and also multiplies the overall wavefunction by a minus sign in case

both spins point in the up-direction. This minus sign reflects the Fermi statistics of

ψi and ψj. Define the total exchange operation as the product of the bosonic and

fermionic one Kij = Kij κij where Kij interchanges zi and zj . We now specify the

overall statistics of the physical wavefunctions by means of the requirement that

Kij |Ψ̃phys〉 = −|Ψ̃phys〉 for all i, j (A.12)
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The minus sign on the right-hand side ensures that the original wavefunction, before

splitting off the Vandermonde determinant (see eqn (A.9)), is completely symmet-

ric. The condition (A.12) implies that particles with spin “up” are fermions, while

particles with spin “down” are bosons. We can call this the spin-statistics theorem

for our model.

Appendix B. Boundary states for N = 2 Liouville

In this appendix, we will attempt to write down the boundary state for the

unstable D-particle of type IIB in the N = 2 Liouville background. In doing this,

we will take advantage of the worldsheet N = 2 supersymmetry by expanding the

boundary state in Ishibashi states which respect the N = 2. In order to write the

Ishibashi states, we will need to recall some facts about the primaries on which they

are built, and their characters.

Characters of the N = 2 superconformal algebra

The chiral N = 2 characters are defined by

χV (q, y) = TrV q
L0−c/24yJ0 . (B.1)

The trace is over an N = 2 module V . These representations are built on primary

states labelled by the eigenvalues h, ω of the central zeromodes L0, J0. It will

be convenient to label our primary states by P and ω, related to the conformal

dimension by h = (Q2/4+P 2 +ω2)/2 = (1+P 2 +ω2)/2. The Liouville momentum

P 32 is determined by this equation up to choice of branch, both of which have the

same character.

These characters were written down in [131]. For the module associated with

a generic NS primary, labelled by [P, ω], the character is

χNS
[P,ω](q, y) = qP 2/2+ω2/2 yω ϑ00(q, y)

η3(q)
(B.2)

32 Here we are defining Liouville momentum as P appearing in the wavefunction

e−(Q/2+iP )ρ.
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In the R-sector, a primary is also annihilated by G+
0 or G−

0 , and this results in

an extra label σ = ± on the character. For the primary with labels P, ω, σ, the

character is (let y ≡ e2πiν)

χR
[P,ω,σ](q, y) = 2 cosπν qP 2/2+ω2/2 yω+ σ

2
ϑ1,0(q, y)

η3(q)
(B.3)

We will also need the character for the identity representation

χNS
1

(q, y) = q−1 1 − q

(1 + yq1/2)(1 + y−1q1/2)

ϑ0,0(q, y)

η3(q)
. (B.4)

Modular properties of the characters

The modular transformation properties of the chiral characters of the N = 2

algebra will be crucial for our study of D-branes in N = 2 superLiouville. We

use the notation q̃ = e2πiτ , ỹ = e2πiν for closed string modular variables, and

q = e−2πi/τ , y = eπiν/τ for their open string transforms. The characters participate

in the following formulas [132][133].

∫ ∞

−∞
dP̃dω̃ S(p̃, ω̃) χNS

[p̃,ω̃](q̃, ỹ) = χNS
1

(q, y) (B.5)

∫ ∞

−∞
dP̃dω̃ S(p̃, ω̃) χNS

[p̃,ω̃](q̃,−ỹ) ≡ χR
1
(q, y) (B.6)

S(p̃, ω̃) =
sinh2 πp̃

2 cosh(πp/2 + iπω/2) cosh(πp/2 − iπω/2)
. (B.7)

Note that these formulas (B.5)–(B.7) are relevant for the case that R-charge is not

quantized, on which we focus for simplicity in our study of boundary states. The

refinement of these formulas to the case of compact euclidean time follows from

(B.5)–(B.6) by Fourier decomposition. Further, these formulas arise by performing

a formal sum; a careful treatment of convergence issues reveals additional contribu-

tions from discrete states [133].

Ishibashi states for N = 2
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Using this notation for representations of the N = 2 algebra, let us now study

Ishibashi states based on these representations33. Such states [137] provide a basis

for D-brane states which respect the N = 2 algebra. They carry two kinds of labels:

those which specify the primary of the chiral algebra on which the state is built; and

those which specify the automorphism of the chiral algebra which was used to glue

the left and right chiral algebras. In our notation, we will separate these labels by

a semicolon. Only automorphisms of the N = 2 which preserve the gauged N = 1

subalgebra are allowed.

There is a Z2 automorphism group of the N = 1 subalgebra (G = G+ +G−)

G→ ηG (B.8)

with η = ±1. There is an additional Z2 automorphism of the N = 2 algebra, which

commutes with (B.8), and which is generated by

G± → G±ξ, J → −ξJ

with ξ = ± [134] (the trivial map, ξ = +1 is B-type, the nontrivial map ξ = −1 is

A-type).

Let j label the N = 2 primaries; it is a multi-index with three components:

j =


h, n,





NS
R+
R−






 .

(recall that an R primary is further specified by whether it is annihilated by G+
0 or

G−
0 .) An A-type Ishibashi state satisfies

(Ln − L̃n)|j;A, η〉〉, (G±
r − iηG̃∓

r )|j;A, η〉〉 = 0, (Jn − J̃n)|j;A, η〉〉 (B.9)

where r is half-integer moded if |j〉 is an NS primary, and integer moded if |j〉 is

from an R sector.

33 Useful references include [134,116,135,136].
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In order to make type II D-branes from these states, we will need to know the

action of the fermion number operators on them. In the NS sector [116],

(−1)F |j, NS; ξ, η〉〉 = −|j, NS; ξ,−η〉〉 = (−1)F̃ |j, NS; ξ, η〉〉. (B.10)

Note that the existence of the state with one value of η plus the conserved chiral

fermion number implies the existence of the other. In the R sector, the action is

more subtle because of the fermion zero modes. Since unstable branes may be built

without using RR Ishibashi states, we will not discuss them further.

Next we need to know the matrix of inner products between these states. The

inner product is defined by closed-string propagation between the two ends of a

cylinder:

〈〈j1; ξ1η1| D(q̃, ỹ) |j2; ξ2η2〉〉 = δ(j1, j2) δξ1,ξ2
χj1(q̃, η1η2ỹ) (B.11)

where D(q̃, ỹ) is the closed-string propagator, twisted by the R-current. The delta-

function on primaries is obtained from the overlap of closed-string states:

δ(j1, j2) ≡
(
〈j1| ⊗ 〈j̃1|

)
|j2〉 ⊗ |j̃2〉 (B.12)

The D0 boundary state

We would now like to describe the boundary state for the unstable D-particle.

Since it is extended in the R-symmetry direction, it should be a B-type brane. To

construct consistent boundary states for N = 2 Liouville, we will follow the strategy

which was successful for bosonic Liouville [138,139,140], and for N = 1 Liouville

[141,142]. Basically, the consistent boundary states are Cardy states [140]; their

wavefunctions can be written in terms of the modular matrix Uj(i) =
Si

j√
Si

0

[143].

To be more precise, suppose, as in [138], that we can expand the desired boundary

state in Ishibashi states for the non-degenerate (NS) representations of the N = 2

algebra:

|B0, η〉 =

∫ ∞

−∞
dω

∫ ∞

−∞
dP Uη(P, ω) |P, ω,NS;B, η〉〉. (B.13)
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In writing an integral over ω in (B.13), we are focusing on the case when the time

direction is infinite in extent. To build non-BPS type II branes from these boundary

states, GSO-invariance requires U(P, ω) = U+(P, ω) = −U−(P, ω) according to

(B.10). We will therefore write

|D̂0〉 = |B0, η = +1〉〉 − |B0, η = −1〉〉. (B.14)

Next, we make the self-consistent assumption that the bosonic open-string spec-

trum should contain only states with Liouville momentum P = −i corresponding

to the identity state. Given (B.5) a solution to this requirement is [132][133]

U(P, ω) =
√

2 · eiδ(P,ω) · sinh πP

cosh(πp/2 + iπω/2)
. (B.15)

The phase eiδ(P,ω) is not actually determined by the modular hypothesis. As we will

verify next, the D-brane with this wavefunction (B.15) indeed has only the identity

representation in its bosonic open-string spectrum.

Open string spectrum

The vacuum annulus amplitude between the boundary state and itself,

A(q) = 〈D̂0|D(q̃)|D̂0〉, (B.16)

determines the open string spectrum by channel duality. In this expresseion, D(q̃) is

the closed-string propagator, on a tube of length τ = ln q̃/2πi. Given the expression

(B.13), it takes the form

A(q) =

∫ ∞

−∞
dP dω Û(P, r) Û†(P, ω)

∑

η1η2

η1η2 χ
NS
[P,ω](q̃, η1η2) χ

NS
gh (q, η1, η2). (B.17)

Note that there are two sets of terms which are identical. This reflects the fact that

unstable branes are
√

2 times heavier than BPS D-branes.

Using the modular transformation formulas above, and the wavefunction

(B.15), in the open-string channel this reads

A(q) = 2
(
χNS

1 (q, 1) χNS
gh (q, 1) + χR

1 (q, 1) χR
gh(q, 1)

)
. (B.18)
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As usual for two-dimensional strings, the contribution from the N = 2 bcβγ ghost

system cancels all of the modular functions from each term, and we find

Z ≡
∫
dt

2t
tr qHopen =

∫
dt

2t

[(
q−1/2 − 2 + . . .

)
− (1 + . . .)

]
(B.19)

with q ≡ e−πt. Deducing the mass of the states propagating in the open string

loop is subtle because the time direction participates in the N = 2 algebra, and the

analytic continuation needs to be understood better. We can however understand

the spectrum by looking at the large-t behaviour of the amplitude. The first term

in brackets is the contribution of the NS sector. The two contributions indicated

give rise to divergences and represent a tachyon Y , and a complex massless discrete

state, respectively. This is similar to the case of the unstable D-particle in the

bosonic c = 1 string34 (q.v. the lovely appendix B of [87]) and in the ĉ = 1 type 0B

string [90,91].

The second term in brackets is the contribution of the R sector, which pro-

duces the fermions which were absent in the above examples. The term indicated

represents a massless complex fermion ψ,

This is the spectrum of the gauged Marinari-Parisi model (2.2) on a circle.

The appearance of non-quantized energies at intermediate stages can be remedied

[133] by employing characters of the N = 2 algebra extended by the spectral flow

generators.

For the instanton-anti-instanton pair, the only difference is that we use A-

type Ishibashi states, which describe branes which are localized in the R-symmetry

direction. The spectrum of the BPS D-instanton is obtained from this by an open-

string GSO projection, and therefore has half as many fermion zeromodes, namely

one.

Clearly we have merely begun to study the interesting zoology of D-branes in

this system. Further development appears in [132][133].

34 upon multiplying α′ by 2
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Appendix C. Ground states of the harmonic superpotential for arbitrary

fermion number

For a quadratic superpotential W0(z) = 1
2ωz

2, the Hamiltonian we are inter-

ested in is:

H =
1

2

N∑

i=1

(p2
i + ωz2

i ) +
∑

i<j

(1 − κij)

(zi − zj)2
+

N∑

i=1

ωψ†
iψi − E0. (C.1)

where pi = −i ∂
∂zi

and κij is the fermionic exchange operator, and E0 = 1
2N

2.

We introduce the notation ∆(i1, ..ik) =
∏

i<j∈(i1,..ik)(zi − zj), the vandermonde of

the k variables {zik
}.

We saw earlier that the supersymmetric ground state of this hamiltonian is

|f0〉 ≡ f0|↓↓ · · · ↓〉 = e−TrW0∆(1, 2..n)|↓↓ · · · ↓〉. (C.2)

We will show now that the groundstate eigenfunction in the fermion number k sector

is:

|fk〉 =
∑

i1<i2<..<ik

∆(i1, ..ik)
k∏

m=1

ψ†
im
f0|↓↓ · · · ↓〉. (C.3)

This wavefunction obeys the right statistics imposed by gauge invariance:

Kij |fk〉 = −κij |fk〉. (C.4)

Conjugation by f0 transformes the Hamiltonian to

H̃ =
N∑

i=1

(
1

2
p2

i + ωzi∂i + ωψ†
iψi) +

∑

i<j

1

z2
ij

(1 − κij) −
∑

i<j

1

zij
(∂i − ∂j)

≡
N∑

i=1

H̃i +
∑

i<j

H̃ij

(C.5)

and the wavefunctions (C.3) transform to

|f̃k〉 =
∑

i1<i2<..<ik

∆(i1, ..ik)

k∏

m=1

ψ†
im
|↓↓ · · · ↓〉. (C.6)
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with the statistics

Kij|fk〉 = κij |fk〉. (C.7)

It is clear that |f̃k〉 are eigenfunctions of H̃i, we will show below that they are

also eigenstates of H̃ij . To do so, we will show that

∑

i6=j

1

zij
(∂i − ∂j)∆(i1, ..ik) =

∑

i6=j

1

z2
ij

(1 −Kij)∆(i1, ..ik). (C.8)

Using (C.7), it follows that
∑

i<j H̃ij |f̃k〉 = 0.

For instance, it is easy to check that for k = 0, 1, 2, the action of zij(∂i − ∂j)

on f̃k is identical to the action of (1 −Kij) thus verifying (C.8) term by term. For

a general value of k, we proceed as follows:

For a given k-tuple (i1...ik), let us denote by roman alphabets the variables which

are part of the k-tuple a, b... ∈ (i1...ik) and by greek alphabets the variables which

are not α, β... ∈ (i1...ik)c. We shall for now call ∆(i1, ..ik) = ∆k
35. Let us now

analyze the terms in (C.8) according to whether (i, j) = (α, β), (a, b) or (a, α).

Two identities we shall use are:

1.

∂m
a ∆k =

∑

a1 6=a2.. 6=am 6=a

m∏

j=1

1

zaaj

∆k (C.9)

2. If P (z1, ..zn) is a completely antisymmetric polynomial in n variables, then it

vanishes identically unless:

deg(P ) ≥ 1

2
n(n− 1). (C.10)

Now let us analyse the three cases:

1. (i, j) = (α, β), Kαβ = 1. It is then trivially true that

1

zαβ
(∂α − ∂β)∆k =

1

z2
αβ

(1 −Kαβ)∆k = 0. (C.11)

35 This is not the best notation because the function is not specified by k, but there is

no ambiguity in this context
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2. (i, j) = (a, b), Kab = −1.

∑

a<b

1

zab
(∂a − ∂b)∆k =

∑

a<b

2

zab

∑

c 6=a

1

zac
∆k

=
∑

a<b

2

z2
ab

+
∑

b6=c 6=a

1

zab

1

zac
∆k

=
∑

a<b

2

z2
ab

+
∑

a

∂2
a∆k using (C.9)

=
∑

a<b

2

z2
ab

∆k =
∑

a<b

(1 −Kab)

z2
ab

∆k.

(C.12)

where in going to the last line, we have used (C.10).

3. (i, j) = (a, α). In this case, for each α,

∑

a

1

z2
aα

(1 −Kaα)∆k =
∑

a

1

z2
aα

(1 −
∏

b6=a

zαb

zab
)∆k =

∑

a,α

1

z2
aα


1 −

∏

b6=a

(1 − zaα

zab
)


∆k

=
∑

a

1

z2
aα


1 −

k∑

m=0

∑

a1 6=a2.. 6=am 6=a

(−zaα)m
m∏

j=1

1

zaaj


∆k

= −
∑

a

k∑

m=1

∑

a1 6=a2.. 6=am 6=a

(−zaα)m−2
m∏

j=1

1

zaaj

∆k

= −
k∑

m=1

∑

a

(−zaα)m−2∂m
a ∆k, using (C.9).

=
∑

a

1

zaα
∂a∆k =

∑

a

1

zaα
(∂a − ∂α)∆k

(C.13)

In going to the last line, we note that all the terms except for m = 1 are

antisymmetric polynomials and hence (C.10) applies.

The hamiltonian H by virtue of its being supersymmetric, is positive semi-definite

for any superpotential (in particular, for ω = 0). Since conjugation does not change

the spectrum of an operator, H̃(ω = 0) is also positive definite, which means

H̃ ≥
N∑

i=1

(ωzi∂i + ωψ†
iψi). (C.14)
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In the sector with fermion number k, the antisymmetry property36 (C.10) tells us

that E ≥ ( 1
2k(k − 1) + k)ω = 1

2k(k + 1)ω. This tells us that |fk〉’s are indeed the

ground states at fermion number k with energy 1
2
k(k + 1)ω.

36 The bosonic part of the right hand side (the Euler operator) has homogeneous poly-

nomials as its eigenfunctions.
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