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Abstract

Revised systematics for prompt fission γ-ray spectra (PFGS) characteristics as function of both atomic and mass number of the

compound system, derived from recent experiments on thermal-neutron induced and spontaneous fission, is presented and applied

to fission induced by fast neutrons. Results from these calculations for 238U(n, f) and 235U(n, f) for incident neutron energies from

0 to 20 MeV are compared to new experimental results, exhibiting nice agreement. Very recent PFGS measurements for 240Pu(sf)

and 242Pu(sf) have been evaluated and the determined PFGS characteristics are shown to also fit well with the systematics. From

this we conclude that the obtained systematics, although purely empirical, is indeed a useful tool for the prediction of average total

γ-ray energy released in prompt fission, mean energy per photon as well as average photon multiplicity for fissioning systems,

which are difficult or even impossible to study experimentally.
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1. Introduction

In recent years the measurement of prompt-fission γ-ray spectra (PFGS) has gained renewed interest. After about

forty years since the first (and at the same time last) comprehensive studies on this topic, the development of lanthanide

halide scintillation detectors as well as new data acquisition and signal-processing techniques provided appropriate

tools to determine PFGS characteristics, i.e. average total γ-ray energy released in prompt fission, mean energy per

photon as well as average photon multiplicity, with unprecedented accuracy. These new experimental efforts were

motivated by OECD/NEA requests for new values especially for gamma-ray multiplicities and mean photon energies,
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Fig. 1. (Color online) Comparison of measured PFGS from 252Cf(sf) from Billnert et al. (2013) and Chyzh et al. (2012), using the DANCE detector

system (Heil et al., 2001), depicted as full (red) and dashed (black) line, respectively, together with the result of calculations with the Hauser-

Feshbach Monte Carlo code FIFRELIN (Regnier et al., 2013), provided by Regnier (2013) (blue dotted line). The (red) hatched areas below 500

keV and above 4 MeV indicate the missing photon yield in the DANCE spectrum of the amount of 30%.

in particular for 235U(n, f) and 239Pu(n, f) (NEA, 2006). Both target isotopes are considered the most important ones

with respect to the modeling of innovative cores for fast Generation-IV reactors (Rimpault et al., 2012).

Based on recent experimental results from the reactions 235U(nth, f) (Oberstedt A. et al., 2013) and 241Pu(nth,

f) (Oberstedt S. et al., 2014) as well as from the spontaneous fission of 252Cf (Billnert et al., 2013; Oberstedt A.

et al., 2015), we have recently presented a revised version of systematics for PFGS characteristics as function of

both atomic and mass number of the compound systems (Oberstedt A. et al., 2014,a), originally established already in

2001 (Valentine, 2001). Although corresponding PFGS measurements were carried out also with the DANCE detector

system at Los Alamos National Laboratory (Heil et al., 2001) during the last couple of years, those results are not taken

into account for the systematics, because of grave underestimations of especially low-energy photons, as depicted in

Fig. 1. This leads obviously to severe differences when determining PFGS characteristics, which is discussed in more

detail by Oberstedt A. et al. (2015). Neverthless, this systematics allows estimating gamma-ray multiplicity, mean and

total photon energy in cases, where target nuclei are not available or accessible experimentally. While this has been

done before for thermal-neutron induced and spontaneous fission, we show in this work how PFGS characteristics

may even be predicted for fission induced by fast neutrons. Below we give examples for 238U(n, f) and 235U(n, f)

and compare predicted PFGS characteristics with values obtained in both recent experiments and model calculations.

Moreover, preliminary results for 240Pu(sf) and 242Pu(sf) are presented and compared to the systematics too.

2. 238U(n, f) PFGS characteristics – experiments and predictions

From the revised systematics presented by Oberstedt A. et al. (2014), PFGS properties were inferred for the fis-

sioning system n + 238U in the incident neutron energy range En = 0 to 20 MeV. The results are denoted as prediction

and depicted in Fig. 2. The upper part shows the predicted average total γ-ray energy released in fission as function

of incident neutron energy together with a linear fit to an empirical approach from Madland (2006). Part of this has

recently been presented by Oberstedt A. et al. (2014a), where also the result of a FIFRELIN (Regnier et al., 2013)

calculation at En = 1.8 MeV was shown (Litaize et al., 2014a), here indicated by a (blue) open circle. The (green)

squares and triangles represent results from calculations by Tudora (2013) in the framework of the Point-by-Point
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Fig. 2. (Color online) Prediction of PFGS characteristics, i.e. average total γ-ray energy (upper part), average photon multiplicity (middle part)

as well as mean energy per photon (lower part), for the reaction 238U(n, f) as function of incident neutron energy (full red lines with error bars)

compared to corresponding experimental results (symbols) and results from different model calculations (lines); see text for details.

model (for details see e.g. in Tudora (2013a) and references therein). The (green) dashed line indicates results from

the most recent calculations based on the same model (Tudora, 2013), however with model parameters used by Tudora

et al. (2012). Experimental results are scarce for this fissioning system, but two measurements were reported at En =

1.7 and 15.6 MeV by Laborie et al. (2012). In the meantime two more experiments were performed at En = 1.7 and

5.2 MeV and the data analysis is in progress. Preliminary results were provided by Laborie (2014), which are also

shown in Fig. 2 as full (black) circles. The middle part of Fig. 2 shows our prediction for the average prompt fission

γ-ray multiplicity as function of incident neutron energy. One theoretical value is available (Litaize et al., 2014),



94   A. Oberstedt et al.  /  Physics Procedia   64  ( 2015 )  91 – 100 

again depicted as (blue) open circle, and the preliminary experimental results from Laborie (2014) (full black circles)

could be shown as well for comparison. The lower part of Fig. 2 finally contains our predictions for the average γ-ray

energy per photon as function of incident neutron energy, obtained by dividing the predicted values depicted in the

upper part with those in the middle part. The model predicts a constant value (Oberstedt A. et al., 2014), which is

indicated by the (black) dashed line. Again a theoretical result from Litaize et al. (2014) and preliminary experimental

results from Laborie (2014) are shown as open (blue) and full (black) circles, respectively. They too were obtained by

dividing the values in the upper part of Fig. 2 with the corresponding ones in the middle.

Obviously, the agreement between our predicted PFGS characteristics and the results from the model calculations

is excellent, in particular with respect to the kinks apparent at the thresholds for second and third chance fission. These

are a consequence of taking into account – and subtract – pre-fission neutron emission in order to properly assess the

energy dependence of prompt fission particle emission, with the prompt fission neutron multiplicities νn(E) taken from

the evaluated library ENDF/B-VII.1 (2011). A detailed explanation is given by Oberstedt A. et al. (2014) and will be

the subject of an upcoming paper (Oberstedt A. et al., 2015a). In contrast, this effect has not been considered in the

approximation by Madland (2006), hence the linear energy dependence. The few experimental values, although very

preliminary according to Laborie (2014), are in reasonable agreement with our predictions. Still, a correct judgement

will have to wait until the data analysis has been finished. This applies as well to data from a recent experiment

performed at the novel directional neutron source LICORNE (Lithium Inverse Cinematiques ORsay NEutron source)

recently installed at IPN Orsay (Lebois et al., 2014), which will be described below in more detail.

3. 235U(n, f) PFGS characteristics – experiments and predictions

In July 2013 a first experiment with LICORNE was conducted over a period of two weeks, split into two parts

with about 100 h of beam time each. The aim was to measure PFGS from the target nuclei 232Th, 235U and 238U. In

the first part thin targets of 235U and 238U of 10 mg approximate mass each were placed back-to-back at the central

cathode position inside a cylindrical twin Frisch-grid ionization chamber. The counting gas was P10 (90% argon,

10% methane), providing a detection efficiency for fission fragments of almost 100%. In coincidence with the fission

fragments, γ-rays were measured with 14 hexagonal BaF2 scintillation detectors of 62 kg scintillator material in

total, configured into two independent clusters of seven detectors, as well as with three coaxial LaBr3:Ce scintillation

detectors of size 5.08 cm × 5.08 cm. The second part of the experiment involved the same two BaF2 clusters in a

close packed geometry around thick samples of 238U (38 g) and 232Th (50 g), forming a calorimeter with a geometric

efficiency of approximately 70%. The ionization chamber had been removed. Neutron beams were pulsed at 2.5 MHz

rate, corresponding to 400 ns between bunches, and a bunch width of around 2 ns. This allowed timing information

from the beam buncher to be used as a reference with which to measure event detection times relative to the bunch.

Fission events can be discriminated from background by looking for high sum-energy and multiplicity events in the

calorimeter that occurred within a short time window. More technical information about this experiment is given

by Lebois et al. (2014a) and Wilson et al. (2015). From there it is obvious that the neutrons, produced in an inverse

p(7Li,7Be)n reaction, had an average energy En = 1.5 MeV. Below we focus on the PFGS measurement from 235U(n,f),

performed during the first part of the experiment, and first data taken with the LaBr3:Ce detectors.

In order to extract an emission spectrum from the measured one, the response function of the detector(s) must

be determined and unfolded. However, the usual procedure by means of Monte Carlo simulation of mono-energetic

γ-rays, taking into account the geometrical efficiency and the experimental setup and adjusting the resulting spectra to

the measured spectrum (details are given by Billnert et al. (2013)), is not possible here due to poor statistics. Instead

we followed a different approach, which is motivated by the fact that the detectors in use were of exactly the same

type as those employed before in a similar geometry in the PFGS measurement from 235U(nth, f), and because the

measured spectra from that experiment (Oberstedt A. et al., 2013) and this work exhibit the same shape. From that

experiment a properly unfolded PFGS had been extracted previously (Oberstedt A. et al., 2013). This spectrum may

also be deduced from the measured one by taking into consideration the geometrical efficiency εgeom and the number

of fission events N f ission according to

ES (Eγ,i) = T F(Eγ,i) × MS (Eγ,i)/εgeom/Nf ission . (1)
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Fig. 3. (Color online) Prompt γ-ray spectrum for 235U(n, f) at En = 1.5 MeV depicted as full (red) circles. It is compared to a corresponding

spectrum for 235U(nth, f) from Oberstedt A. et al. (2013), shown as thin (black) line.

Here, ES (Eγ,i) denotes the emission spectrum, MS (Eγ,i) the measured one and T F(Eγ,i) a transformation function.

The latter was determined for the experiment on 235U(nth, f) and eventually applied to the measured spectrum taken

at LICORNE. Finally, we obtain an emission spectrum as depicted in Fig. 3. However, the absolute values had to

be adjusted due to loss of photon events during the measurement. But from recent systematics from Oberstedt A.

et al. (2014), we know how the average prompt fission γ-ray multiplicity νγ should depend on the prompt fission

neutron multiplicity νn and, hence, on the incident neutron energy. Hence, from the recently published multiplicity for

thermal-neutron induced fission of the same system, νγ(therm) = 8.19 ± 0.11 (Oberstedt A. et al., 2013), we deduce

νγ(1.5MeV) = νγ(therm) + [(16.6 ± 0.5) − (11.0 ± 0.4) × 10−2 × Z5/3A−1/2] × [νn(1.5MeV) − νn(therm)]

= 8.69 ± 0.43 ,
(2)

where Z = 92 and A = 236 for the fissioning system and νn(therm) = 2.421 as well as νn(1.5MeV) = 2.578 ±
0.018 (ENDF/B-VII.1, 2011) was used. The latter is the mean value of the tabulated multiplicities for 1.4 and 1.6

MeV and its uncertainty represents the standard deviation. The emission spectrum, adjusted as outlined above, is

shown as full (red) circles in Fig. 3. The error bars include the statistical uncertainties from the measured spectrum,

uncertainties in the transformation function as well as the uncertainty of the assumed multiplicity from Eq. 2. For

comparison the PFGS for the thermal-neutron induced fission of the same compound system is shown as black line.

We observe an excellent agreement, at least above 300 keV, which is no surprise rather than a confirmation that using

the transformation function in this case works well. The reason for this discrepancy will be explained elsewhere. For

now we restrict ourselves to stating that this had been corrected for, leading to an average energy per photon εγ =
(0.85 ± 0.07) MeV. Together with an average multiplicity νγ = 8.7 ± 0.4, derived from the systematics according to

Eq. 2, we obtain an average total γ-ray energy release per fission Eγ,tot = (7.4 ± 0.7) MeV. Although only part of

all experimental data could have been considered so far, the deduced preliminary results on PFGS characteristics are

compared to other ones, from both experiments and calculations. For this fissioning system we also predicted PFGS

characteristics for fast-neutron induced fission, based on the same systematics as used in the previous section.

Figure 4 contains the predictions of PFGS properties for n + 235U in the incident neutron energy range En = 0 to

20 MeV. As shown in the previous section for 238U(n, f), the upper part shows the average total γ-ray energy released

in fission, the middle part the average photon multiplicity and the lower part the mean energy per photon. Our recent
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Fig. 4. (Color online) Prediction of PFGS characteristics, i.e. average total γ-ray energy (upper part), average photon multiplicity (middle part)

as well as mean energy per photon (lower part), for the reaction 235U(n, f) as function of incident neutron energy (full red lines with error bars)

compared to corresponding experimental results (symbols) and results from different model calculations (lines); see text for details.

experimental result at En = 1.5 MeV is depicted as open black circle, other results on fast-neutron induced fission from

Fréhaut (1989) are indicated as open (purple) triangles (upper part only). The long dashed (purple) lines in the middle

and lower part correspond to evaluations from the same author. The upper part of Fig. 4 shows also results from

several model calculations for the average total γ-ray energy. The values from Vladuca et al. (2001) and Tudora et al.

(2012a) are denoted as long dashed and full drawn (green) lines, while the linear empirical approach from Madland

(2006) is indicated by a short dashed (brown) line. Again, our predictions agree very well with the cited calculations,

apart from the fact that the approach from Madland (2006) does not take into account higher chance fission and, hence,
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Fig. 5. (Color online) Prompt γ-ray spectra for 240Pu(sf) and 242Pu(sf), depicted as red and blue dots. It is compared to a corresponding spectrum

for 241Pu(nth, f) from Oberstedt S. et al. (2014), shown as thin (black) line.

does not exhibit the thresholds for second and third chance fission. The experimental results from both LICORNE

(this work) and Fréhaut (1989) are also reproduced well. For comparison, data from thermal-neutron induced fission

from Oberstedt A. et al. (2013), Chyzh et al. (2013, 2014) and Verbinski et al. (1973) are shown as well, as full (black)

circles, (blue) squares and (orange) diamonds, respectively. The agreement is good, except for the results obtained

with DANCE (Chyzh et al., 2013, 2014). However, we remind that these deviations have already been addressed and

explained with the lack of low-energy photons in the detected PFGS (cf. Fig. 1 in Sect. 1).

4. Experimental results from 240,242Pu(sf)

Recently, PFGS were measured from the spontaneous fission of both 240Pu(sf) and 242Pu(sf). The experimental

setup was identical to the one used in a previous experiment on 241Pu(nth, f), as described by Oberstedt S. et al.

(2014), i.e. photons were measured with a coaxial LaBr3:Ce scintillation detector, this time of size 7.62 cm × 7.62 cm,

in coincidence with fission fragments. The fission trigger was provided by a cylindrical twin Frisch-grid ionization

chamber. The Pu(OH)4 samples of mass 92.9 μg 240Pu and 671 μg 242Pu, respectively (Salvador-Castiñeira et al.,

2013), were placed on each side of the central cathode, which allowed the simultaneous detection of fission fragments

from both isotopes. Prompt photons were selected within a time-of-flight range of ±5.25 ns with respect to the prompt

peak, which ensured a good suppression of photons created in other reactions than fission. To date, only part of this

data has been analyzed, corresponding to about one week of measurement. As a consequence of this, together with

the long half-lives of both isotopes for spontaneous fission (Salvador-Castiñeira et al., 2013), the measured spectra

suffer from rather low statistics. Therefore, emission spectra were deduced according to the method applied before

on the data from 235U(n, f) at En = 1.5 MeV (cf. Sect. 3), however with a transformation function determined from

the measurement on 241Pu(nth, f) (Oberstedt S. et al., 2014). The resulting PFGS are shown in Fig. 5, with the red and

blue dots denoting 240Pu and 242Pu, respectively. For comparison, the PFGS from 241Pu(nth, f) is depicted as black

line. The deduced characteristics are

• for 240Pu(sf): Eγ,tot = (6.9 ± 0.7) MeV, νγ = 7.7 ± 0.5, εγ = (0.9 ± 0.1) MeV

• for 242Pu(sf): Eγ,tot = (6.9 ± 0.3) MeV, νγ = 7.7 ± 0.4, εγ = (0.89 ± 0.06) MeV

Below these results are compared with the previously mentioned systematics for PFGS characteristics.
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5. Summary and conclusions

Above we have presented predictions for PFGS characteristics from fast-neutron induced fission, based on empir-

ically found systematics as function of both atomic and mass number of the fissioning system. The systematics in

turn is based on recently obtained results from measurements on 235U(nth, f) (Oberstedt A. et al., 2013), 241Pu(nth, f)

(Oberstedt S. et al., 2014) and 252Cf(sf) (Billnert et al., 2013; Oberstedt A. et al., 2015). Figure 6 gives an overview

of all experimental results for Eγ,tot(νn,Z,A), νγ(νn,Z,A) and εγ(Z,A) in the upper, middle and lower part, respectively.

The depicted presentations were chosen according to the work of Valentine (2001). The full drawn (black) lines cor-

respond to his evaluation, based on experimental results that were reported until 1973, denoted by full drawn (black)

circles (the complete list of references is given by Oberstedt A. et al. (2014)). The (blue) open squares indicate the

recent results obtained by using the DANCE detector system (Chyzh et al., 2012, 2013; Ullman et al., 2013). Our

results, also recently published by Billnert et al. (2013); Oberstedt A. et al. (2013, 2015); Oberstedt S. et al. (2014), are

shown as (red) open circles. The values for νn were taken as given in Valentine (2001). Due to obvious discrepancies

between the historical and the recently obtained experimental data, a new evaluation seems to be reasonable on the

basis of these new results. However, even those exhibit considerable differences as mentioned above, depending on by

which experimental group they were obtained. An explanation has been given in Sect. 1. Hence, only values from our

previous work were included in a new evaluation, whose result is depicted by (red) dashed lines in Fig. 6. They were

obtained by least-squares fits to our experimental results mentioned above, weighted with the uncertainties, which

leads to the following description of the average total γ-ray energy released in fission in MeV

Eγ,tot(νn,Z, A) = [(3.02 ± 0.21) − (1.54 ± 0.15) × 10−5 × Z2A1/2] × νn + 4.0 , (3)

and the average energy per photon in MeV

εγ(Z, A) = (0.80 ± 0.41) − (0.00 ± 0.22) × 102 × Z1/3A−1 , (4)

while the average prompt fission γ-ray multiplicity may be approximated by

νγ(νn,Z, A) = [(16.60 ± 0.52) − (10.98 ± 0.40) × 10−2 × Z5/3A−1/2] × νn . (5)

Although the fit parameters are afflicted with considerable uncertainties, basically due to the fact that only few

experimental results could have been considered for the new evaluation, the differences compared to the work of

Valentine (2001) are quite obvious. In addition, the recent preliminary results from the fast-neutron induced fission

of 235U and 238U from the previous sections are shown as well in Fig. 6 as full (orange) diamonds. The correspond-

ing values of νn at a given neutron energy were taken from the evaluated library ENDF/B-VII.1 (2011). Within the

certainly still considerable uncertainties one may observe a reasonable agreement with the revised evaluation. This is

also true for the new preliminary results from the spontaneous fission of 240Pu and 242Pu, represented by open (orange)

diamonds.

From this we conclude that the new systematics, which was originally found for thermal-neutron induced and spon-

taneous fission (Valentine, 2001) and revised with up-to-date experimental results, may as well be applied to fission

induced by fast neutrons as long as the corresponding prompt fission neutron multiplicities are known and correctly

used. Hence, we consider it a useful tool for the prediction of average total γ-ray energy released in prompt fission,

mean energy per photon as well as average photon multiplicity for fissioning systems, which are difficult or even

impossible to investigate experimentally.
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Fig. 6. (Color online) Overview of experimental results for the average total γ-ray energy released in fission (upper part), average prompt fission

γ-ray multiplicity (middle part) and mean energy per photon (lower part) as function of A and Z for different fissioning systems. Full (black) circles

denote historical results, open (blue) squares indicate results obtained with DANCE and open (red) circles represent results from our previous work

(see Oberstedt A. et al. (2014) for detailed list of references). Also shown are results from evaluations by Valentine (2001) (solid black line) and

from our work (dashed red line), based on the historical data and our previous results, respectively. In addition, recent results from fast-neutron

induced (full (orange) diamonds) and spontaneous (open (orange) diamonds) fission mentioned in this work are depicted as well. For the sake of

clarity, the corresponding fissioning systems are given, too.
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