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Abstract

We investigate dynamical many-body systems capable of universal computation, which leads to
their properties being unpredictable unless the dynamics is simulated from the beginning to the
end. Unpredictable behavior can be quantitatively assessed in terms of a data compression of the
states occurring during the time evolution, which is closely related to their Kolmogorov
complexity. We analyze a master equation embedding of classical cellular automata and
demonstrate the existence of a phase transition between predictable and unpredictable behavior as
a function of the random error introduced by the probabilistic character of the embedding. We
then turn to have this dynamics competing with a second process inducing quantum fluctuations
and dissipatively driving the system to a highly entangled steady state. Strikingly, for intermediate
strength of the quantum fluctuations, we find that both unpredictability and quantum
entanglement can coexist even in the long time limit. Finally, we show that the required many-body
interactions for the cellular automaton embedding can be efficiently realized within a variational
quantum simulator platform based on ultracold Rydberg atoms with high fidelity.

1. Introduction

The discovery of problems that are fundamentally undecidable is one of the most striking results in the
history of mathematics [1, 2]. For physical systems, this means that certain problems such as the existence of
a spectral gap in a many-body system can be undecidable as well [3-5]. Likewise, the long-term dynamics of
a physical system can be unpredictable in the sense that the only way to compute observables is to simulate the
system from the beginning to the end [6]. Here, we show that driven-dissipative quantum systems provide an
ideal platform to study such fascinating systems and to explore the hitherto largely unknown relation of this
unpredictably with entanglement that is absent in classical dynamical systems. Strikingly, while we find that
the statistical aspects of entangled states inherently drive the system towards chaotic behavior, we find that
under the right conditions, unpredictability and entanglement can coexist in the steady state.

The dynamical behavior of unpredictable systems is most readily analyzed in the framework of cellular
automata (CA), as one can show rigorously that these systems are Turing-complete and hence unpredictable
[7-10]. However, common quantum version of CA [11-15] rely on purely unitary dynamics and are
therefore challenging to realize without having access to fault-tolerant quantum computers. For this reason,
variants of quantum CA using open quantum many-body systems [16, 17] appear to be a much more
promising route to investigate the interplay between unpredictability and inherently quantum properties of
the dynamics like quantum superpositions and entanglement.

In this article, we provide an embedding of CA into a Lindblad master equation, which is commonly used
within open quantum systems. To this end, we consider two coupled one-dimensional (1D) chains
representing the state of the automaton at the time step ¢ and t + 1, respectively, see figure 1(a). Here, we
focus on a class of elementary CA introduced by Wolfram [18], as this class contains Turing-complete
automata and can be realized in the embedding using at most four-body interactions. The mapping of CAs
onto master equation requires a periodic switching of the chains, with the exact CA dynamics being
recovered in the limit of infinite cycle times. Interestingly, the imperfections to the perfect CA rules
introduced by finite cycle times do not immediately destroy unpredictability, as shown using an

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/acf151
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/acf151&domain=pdf&date_stamp=2023-9-15
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3176-8077
mailto:javad.kazemi@itp.uni-hannover.de
mailto:hweimer@itp.uni-hannover.de

10P Publishing

New J. Phys. 25 (2023) 093034 ] Kazemi and H Weimer

input ring ..

()

output ring ..

b c d
Chaotic 5 ' ' —— Unpredictable
. 7 T — N=11 —— N=31 300
— N=20 — N =100
N ‘\\ ]
3t .
200 3 000 005 010 ] 200
= “ /N | =
£ 2f : =
100 100
1 L 4
L 03 4 6 8 10 :
0 50 100 v, 0 50 100
Space Space

Figure 1. (a) Physical implementation of elementary CA on two rings of lattice sites, with the input and output ring switching
after a cycle time t.. (b) Typical trajectory of the rule 110 CA evolving from a single cell in the 1 state (black) for a short cycle time
te = 4/, leading to Class III chaotic behavior. (c) Increasing the cycle time induces a transition to unpredictable behavior as
shown by the slope S5 of the characteristic compression exponent. Finite size scaling (inset) points to a value of vt. = 5.80 - 0.08
for the transition in the thermodynamic limit. (d) Typical trajectory in the unpredictable Class IV phase at a large cycle time

t = 10/~. At longer times, emergent glider structures propagating through the systems become clearly visible. Calculations were
made at n =50 and t = 300 to obtain convergence in S;. For each initial state, 100 Monte-Carlo samples were taken.

information-theoretical complexity measure based on data compression of the states during the dynamical
evolution of the system [19]. We then introduce quantum fluctuations by adding a second set of terms to the
master equation that drive the system to a highly-entangled Rokhsar—Kivelson state [20]. We explore the
interplay between unpredictability and entanglement by modifying the relative rates of the two competing
dynamics, finding an intermediate regime in which both entanglement and unpredictability coexist. Finally,
we demonstrate the experimental feasibility of our approach by investigating a platform based on ultracold
Rydberg atoms [21, 22]. To this end, we introduce an open system version of a variational quantum
estimation algorithm [23-25] and show that the full dynamics including dissipative many-body interactions
can be realized efficiently.

2. Complexity classes and unpredictability

The fundamental properties of the dynamical evolution of translation invariant dynamical systems like CAs
can be broadly captured in four distinct classes [6, 26], referring to their generic behavior for almost all
initial states. Class I refers to a fast evolution towards a steady state. Class I behavior is present in many
driven-dissipative systems with detailed balance. Class II systems evolve towards periodic limit-cycle
oscillations. A paradigmatic example of Class II is time crystals, systems that change their properties
periodicity in time instead of space, for a review see [27]. Class III systems are chaotic, which can be captured
in terms of a positive Lyapunov exponent [28] and fast relaxation of entropic measures to a constant value
that is large. Lorenz systems exhibit Class III behavior that illustrates the challenges of long-term weather
forecasting, see e.g. [29]. Finally, Class IV systems exhibit diverging correlation lengths, emerging structures
that can be very complex, and other statistical features [30]. It is conjectured that Class IV systems are
capable of universal computation and hence their behavior in the thermodynamic limit is fundamentally
uncomputable [6]. It has also been discussed that Class IV systems are critical phases at the edge between
regular periodic and chaotic behavior [30]. A well-known example of this class is Conway’s game of life [31].

While chaotic (i.e. Class III) systems are sometimes also classified as unpredictable because of their
sensitivity to changes in the initial condition, the notion of unpredictability we employ here is more strict, as
statements about some long-time properties of chaotic systems are possible in terms of statistical averages,
e.g. by coarse-graining the system under consideration [32]. Our notion of unpredictability is closely
connected to the concept of sophistication in computer science [33], which can also be understood as
capturing the complexity of systems at a coarse-grained level [34].
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Table 1. Classification of dynamical behavior in translation invariant systems based on data compression measures. Class I and II can be
distinguished from III and IV, as the asymptotic state S can be highly compressed for the first two classes, while the last two are
essentially incompressible. The second classifier is the sensitivity of the compression length to changes in the initial state, captured in the
slope S5 of the characteristic compression exponent.

Class I Class II Class III Class IV
Dynamical . L . .
. Uniform Periodic Chaotic Unpredictable
behavior
compressed "
length C,(S) C(S) < S C(S) =S
Slope Ss Vanishing Finite Vanishing Finite

The quantitative identification of Class IV behavior is extremely challenging, requiring the computation
of observables that go beyond entropic measures or Lyapunov exponents geared to the analysis of Class I1I
systems. For systems of discrete variables, one possibility is an information-theoretical analysis of the
computational strings encoding the state of the system. For each string S, the algorithmic complexity is given
by its Kolmogorov complexity K(S), which is defined as the length of the shortest program that can output S
[35]. However, Kolmogorov complexity itself is an uncomputable quantity, preventing a direct practical
application. Fortunately, it is possible to construct practically useful complexity measures by considering the
compression length C(S) = C.(S) + Cy where C.(S) is the compressed length of S using a compression
program of length Cy, the latter being the same for all strings S. We would like to note that C.(S) can be seen
as an upper bound to the Kolmogorov complexity, i.e. IC(S) < C.(S), but it is not necessarily a particular
tight bound for all types of dynamics; for our purposes, it is more important that it is a measure that is not
biased towards particular dynamical systems.

For the classification of dynamical systems, the Kolmogorov complexity (or the compression length) is
not sufficient to capture unpredictability, as the (pseudo-)randomness inherent in chaotic systems will
generically lead to large values of K(S) even for Class III systems. However, it is possible to differentiate Class
III and Class IV by looking at the compression length for different initial states [19, 26], see table 1. For
chaotic Class III systems, the Kolmogorov complexity does not depend on the particular initial state,

i.e. differential measures of Kolmogorov complexity are vanishing. Importantly, this is not the case in Class
IV systems, where the Kolmogorov complexity strongly depends on the initial state. This can be understood
as the initial state encoding a program that is run using the universal computing capabilities of the Class IV
system. Some programs can produce simple computing results exhibiting a low Kolmogorov complexity,
while others can lead to arbitrary complex computations. This can be captured quantitatively in the form of
a characteristic compression exponent [19], which is a generalization of the Lyapunov exponent to
algorithmic complexity. It is given by

; (1)

where S;(t) refers to the string representation of the entire evolution of the system up to the time ¢ for the jth
initial state and the sum runs over # initial states in total. Here we estimate S;(¢) by Monte-Carlo sampling
and afterwards we average the corresponding compressed lengths denoted by C.. For systems with binary
degrees of freedom, this can be achieved by choosing the initial state based on the Gray code [36], which
ensures that the changes observed in the compression lengths are not stemming from discontinuities within
the initial conditions [19]. For the compression algorithm, we use the z1ib. compress function provided by
Python 3.6.9., which provides a widely used implementation of [37], see appendix A for further details.

Generically, 6,,(¢) will increase linearly with time in the long time limit. Therefore, the slope
Ss = dd,(t)/dt of the characteristic exponent for sufficiently large n is the actual quantity that can be used to
identify Class IV systems.

An additional complication may arise if different subsets of initial states give rise to different classes of
dynamics. However, the classification presented in table 1 can still be applied. For example, if chaotic and
unpredictable behavior are found among a subset of initial states, the overall slope Ss will decrease due to the
contribution of chaotic initial states, but the overall dynamics will still have a finite slope and hence classified
as unpredictable.
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Table 2. Ruleset for ECA rule 110 = 01101110, indicating how the central site is updated. The ruleset for the corresponding rule 137 can
be found by inverting all inputs and outputs.

State at ¢ 111 110 101 100 011 010 001 000

Central site at t + 1 0 1 1 0 1 1 1 0

3. Embedding of elementary CA

Elementary CA (ECAs) [38] are two-level systems on a 1D lattice, where the state i at the dimensionless time
t 4 1 depends only on the states of the sites i — 1, i, and i 4 1 and time ¢. In total, there are 22" — 256 different
possible ECA rules, which can be enumerated according to the binary representation of their ruleset. Here,
we will be interested in rule 110 (or its binary complement 137), see table 2 for the ruleset, as this ECA has
been proven to be capable of universal computation [9] and hence belongs into Class IV.

Most ECA rules are irreversible, as each output bit depends on three input bits. This prevents an
implementation in a quantum system in terms of unitary operations and instead requires the use of a
dissipative quantum channel V providing the mapping p(t+ 1) = Vp(#) for the quantum state p. The
Liouvillian, which is the generator of such a quantum channel, can be expressed in terms of a purely
dissipative quantum master equation in Lindblad form,

d

=T (cme - % { fCi,p}> , (2)

with ¢; being the associated quantum jump operators [39] and - being the characteristic rate of the
dynamics. Note that the channel V is only implemented in the steady state, i.e. in the infinite time limit, see
appendix B. For the case of a finite evolution time f,, this means that the evolution of the corresponding
cellular automaton becomes probabilistic. However, since a finite error rate can be recovered in classical
systems by error correction codes, one can expect that Class IV systems capable of universal computation can
tolerate a finite amount of computational errors introduced by the probabilistic update scheme. Interestingly,
this setting allows to treat the cycle time ¢, as a control parameter, which allows to alter the dynamical
properties of the system under consideration in a relatively simple way.

For practical implementation purposes, it is highly desirable that the quantum jump operators are
quasi-local, i.e. they act only on a small subset of the total Hilbert space. Within the ECA framework, this can
be readily achieved by considering a second copy of the system, in which the state at time t + 1 is prepared,
see figure 1(a). After a time #, the role of the two copies is reversed and the second copy is taken as the input
for the creation of the new state at time ¢ + 2 in the first copy. Note that these cyclic update scheme result in
the Liouvillian being time-dependent and one cannot compute the complexity class by inspecting the
spectrum of the Liouvillian.

4. Cycle time phase transition

4.1. Purely classical dynamics

Let us now turn to investigating how the dynamics of the rule 110 CA change with the cycle time f.. Since the
dynamics is purely classical, the master equation can be simulated efficiently using Monte-Carlo sampling.
Figure 1(c) shows that the slope of the characteristic compression exponent Ss indeed undergoes a phase
transition from a chaotic Class III phase (figure 1(b)) with vanishing S5 to an unpredictable Class IV phase
(figure 1(d)) with finite Ss. We also observe that the value of S; significantly depends on the system size N,
which can be attributed to the appearance of emergent glider structures, i.e. sequences of triangular patterns,
much larger than the three-site unit cell of the CA [9]. For example, the smallest system size in which all
types of gliders can be realized is N = 11. Nevertheless, we can still perform finite size scaling of S5 by
considering only those system sizes at which S; is at a local maximum, a technique that has been used
previously in the analysis of systems with strong incommensurability effects [40, 41]. Here, we find the phase
transition to occur at f, = 5.80 = 0.08 in the thermodynamic limit. Note that it might seem surprising that
we are able to perform finite size scaling in a system with unpredictable behavior, as unpredictability is
directly tied to a breakdown of finite size scaling theory [4]. This rules out to treat S5 /N as an order
parameter for unpredictability. However, here one of the two phases has the computable value of zero for S5
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Table 3. Ruleset to prepare the Rokhsar—Kivelson state |1/rk). The operator yi; = P;_;|—X+[;P; acts on the three sites surrounding i

1—
on the output ring, with |[£) = (|0) 4= |1)). The operator o _ acts only on the site i.

State k at ¢ 111 110 101 100 011 010 001 000

Operation Oy m o_ W I m m m m

in the thermodynamic limit, which means that the phase transition can successfully detected by observing
deviations from Ss vanishing for increasing system sizes.

4.2. Competition with entanglement

So far, we have not addressed including quantum fluctuations into the dynamics. While there are many
different proposals for CA dynamics within quantum systems [11, 14, 16, 17, 42—44], here we focus on the
case where we have two competing dynamics £, and £, which are both generators satisfying the purely
dissipative Lindblad form of equation (2), i.e. the full Lindblad generator L is given by

£ = sin? (q&%) L.+ cos’ (q&%) Ly, (3)

where ¢ is a parameter that interpolates between the fully quantum and fully classical dynamics. This
approach has the advantage that the relevant observable S; for detecting unpredictability can be carried over
to the quantum case by identifying the ith bit in the string S; by the most likely measurement result when
sampled over many trajectories.

In the following, we will be interested in the case where the quantum part of the dynamics is carefully
chosen to have its unique steady state being highly entangled. For this, we choose a recently introduced
quantum master equation that prepares the system in a Rokhsar—Kivelson state [20], which is given by

N
|7/)RK> = \%ZH(l7Pk_10ﬁ_Pk+1)|OO...0>, (4)
k

where P = |0)0, 0% = [1)0|, and Z is a normalization constant. This state is an equal-weight
superposition of all states that have no adjacent qubits in the |1) state. To give an example, the RK state for
N =4isequal to

1

V7

The jump operators c! required to prepare |trx) can be brought into a similar form as the one for the
rule 110, i.e.

|[Yri)s = (|0000> — |1000) — [0100) — [0010) — [0001) + |1010) + |0101>). (5)

= "0,Qix, (6)
k

where O; ; is an operator acting on the sites i — 1, 7, and i + 1 on the output ring, while Q; = [k)k| is a
three-body projection operator acting on the corresponding sites of the input ring. The index k runs over all
eight basis states on the sites i — 1, 7, and i + 1. Table 3 shows a set of operators that lead to |1)rk) being the
dark state of the dynamics, satisfying ¢! [{rx) = 0. Importantly, since [O; x, Oi1 4] # 0 for k # 110, L, is
capable of generating entanglement even in the absence of any Hamiltonian dynamics.

To observe the interplay between unpredictability and entanglement, it is helpful to make the two
competing dynamics more compatible with each other. Increasing the compatibility is desirable as the
generation of superposition states necessary to observe entanglement is adding quantum fluctuations to the
unpredictability measure, see appendix B for details. In particular, one can see that |¢gx) will have more 0 s
than 1 s in its binary representation due to the action of the projection operators Px. On the other hand, the
dynamics of rule 110 is slightly biased towards the 1 state, as there are more 1 s than 0 s in the output set.
Therefore, we consider the binary complement rule 137 = 10001001,, which is then also biased towards the 0
state, but having otherwise identical properties as rule 110.

To further align the two competing dynamics, we additionally split the dynamics into two parts, each
being t./2 long. During the first part, both the classical part £, and the quantum part £, are active, while
during the second part only the classical dynamics is acting on the system. Importantly, the second part
recovers the classical patterns which are affected by quantum fluctuations in the first half of the cycle time
provided that 7. is sufficiently large. In this setting, all observables are evaluated at the time 7. /2.



10P Publishing

New J. Phys. 25 (2023) 093034 ] Kazemi and H Weimer

0.8

0.6

Ss

-0.4

10

FLF
o

Trerrer

Space

0 EEER . EENR | |
015 T T T T
0.10 .
0.05
0‘000 10 20 30 40 50
Time Steps

Figure 2. Competition between classical and quantum dynamics. (a) Slope Ss of the characteristic compression exponent as a
function of the cycle time t. and the interpolation parameter ¢, showing an extended region of unpredictable Class IV behavior
even in the presence of quantum fluctuations. (b) Average over 50 Monte-Carlo samples of a single initial configuration for

~yt. = 10 and ¢ = 0.6. Although quantum fluctuations lead to a washing out of the patterns, the emergent structures remain
clearly visible. The negativity N (between even and odd sites) rapidly increases and remains finite in the long time limit (The
time steps are of length ~yf. = 10 and they correspond to the midpoint of each cycle time). In other words, entanglement persists
also for values of ¢ that lead to unpredictable dynamics, i.e. entanglement and unpredictability are not mutually exclusive.

Let us now turn to a numerical investigation of the competition between the classical rule 137 dynamics
L. and the quantum dynamics £, preparing the Rokhsar—Kivelson state. Figure 2 shows the unpredictability
of the system in terms of the slope S5 of the characteristic compression exponent as a function of the cycle
time f. and the interpolation parameter ¢, as well as the entanglement of the system in terms of the negativity

_ L™l -1

N(p) 5

; (7)

where ||.||, denotes the trace norm and p’* is the partial transpose of p with respect to the subsystem A [45].
In this case, we consider all odd sites as the subsystem A to be able to compute entanglement spreading over
the entire output ring. Calculations were performed using massively parallelized wave-function Monte-Carlo
simulations [46] for 22 sites (see appendix C), improving the previously reported largest system size for
simulations retaining the full Hilbert space [47]. This allows us to study unpredictability as 11 sites on each
ring is the smallest system size potentially supporting class IV behavior. For the classical limit ¢ — 1, we
recover the classical transition to an unpredictable Class IV phase reported in section 4.1. However, this
transition remains observable away from the classical limit as well. Crucially, we also find a nonzero
negativity for sufficiently low values of ¢, meaning that unpredictability and entanglement can coexist in the
system. Finally, when the interpolation parameter ¢ is decreased further, unpredictable Class IV behavior is
destroyed by quantum fluctuations. Interestingly, our results suggest that Class IV behavior can be broken up
into distinct sub-classes, at least in the quantum case. Here, we observe two possible types of dynamics,
depending on whether the system is asymptotically entangled or not.
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Figure 3. Sketch of the variational quantum simulation scheme. A quantum state p, () is generated from an initial state pj, and a
set of variational parameters @ = {6, }¢_, for d layers. The variational circuit consists of local Pauli rotations R (8,), local
dissipation operators D(@,), and global unitary operations L4 (0,).

5. Variational quantum simulation (VQS)

The realization of the jump operators for the classical and quantum dynamics requires the implementation
of four and six-body interactions, respectively. While such high-order interactions can be readily engineered
in digital quantum simulators [48, 49], recently developed techniques for the variational preparation of
quantum states [23—25] can be adapted for the quantum simulation of open system dynamics, especially on
noisy intermediate-scale quantum devices. Basically, VQS is a hybrid classical-quantum approach that can
approximately reproduce the dynamics of a quantum system without explicit realization of the
corresponding Hamiltonian.

Within our VQS approach, we can realize the time evolution of largely arbitrary open quantum
many-body systems according to a Lindblad quantum master equation. To this end, we consider the
dynamics of an observable O in the Heisenberg picture,

do N 1
_ _ tor. — 2 (111,
= = LyO=i[H,0] + E{ L'OL; 2{LiL,,O}. (8)

The strategy behind VQS is to consider a variational parametrization of the state p(¢+ 7) after a continuous
timestep 7, given the state p(t) at time ¢ and the dynamics according to the quantum master equation. Our
approach is based on the variational principle for open quantum systems [50], which also has been
generalized towards variational approximation of the time evolution, both in the Schrédinger [51] and in the
Heisenberg picture [52]. Within the latter, one can introduce a variational cost functional F, given by

Fo= Y [(0u(t+7)) = (0(0)) = 3 Lal0s(0) + Ot + 7)) ©)

which realizes a discretized version of the master equation that is correct up to second order in 7. Crucially,
the sum does not need to run over a complete set of observables to achieve accurate results [52].

Having defined the variational cost function, we also need to specify the parameterization of the density
matrix p using a set of variational parameters 6. For this, we consider a variational circuit consisting of three
parts, see figure 3: (i) coherent single qubit rotations, (ii) dissipative single qubit damping, and (iii) global
unitary time evolution under an interacting many-body Hamiltonian that can be implemented efficiently.
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To be specific, we envision the qubits stored in the hyperfine ground states of ultracold atoms trapped in
an optical tweezer array [53, 54]. While the coherent single qubit rotations are following from standard Pauli
rotations around two independent axes using microwave driving, the dissipative dynamics is governed by
two separate quantum channels realized by dissipative optical pumping of the qubit states (D,;) and phase
fluctuations mediated by noisy laser driving (D, ), respectively. In the operator sum representation [55] the
two channels can be written as

ZN: { "4 D pp() } (10)

j=1

Z\~

where p € {d,p} and

Dy =V 1—ebig_, (11)
Ddz :P0+e_9d/zpla (12)

[e=0/2 1—e b
Dy, p, = 5 + ( 5 )UZ7 (13)

depending on the variational parameters 65 and 0. Finally, the global unitaries /4, are implemented based on
coupling the |1) state to a strongly interacting Rydberg state in a Rydberg dressing configuration [56-59],
giving rise to the effective Hamiltonian

Z <>+Z _ G piplh, (14)

1<] I J|

where (2 indicates the Rabi frequency of the driving field and C4 denotes the effective van der Waals
coefficient of the Rydberg-dressed state. The global unitaries act first on both of the rails at the same time
and then subsequently on each rail independently. The times #; and ¢, of these steps provide two additional
variational parameters.

Let us now benchmark our VQS procedure for the quantum rule 137 dynamics using two rings of N =3
sites. In our simulations, we set Cg /€ = 100 as this corresponds to a Rydberg blockade radius
1, = v/6Cs/Q ~ 2.15 in units of the lattice spacing, which is comparable to the range of the multi-qubit
jump operators in the quantum master equation. Furthermore, we choose a variational circuit depth of
d = 3. For the set of observables entering the variational cost function (9), we choose a complete set of
three-local Pauli operators per site, i.e. 4> = 64 observables. Numerical optimization of the highly non-linear
cost function is performed using a sequential quadratic programming algorithm [60] in a layerwise fashion
to avoid getting stuck in barren plateaus [61].

Figure 4(a) shows variational norm F, and error probability € between the exact density matrix p and
variational state p,(0) at time #, defined in terms of the fidelity F as

2
e=1-F=1- |:TI' pv(e)p pv(0>‘| : (15)

For ¢ = 0.5 and ~y¢, = 10, where unpredictability and quantum entanglement coexist, the results indicate
overall errors less than 2% for almost all data points. Figure 4(b) demonstrates that entanglement measured
in terms of the negativity also shows good quantitative agreement with the exact dynamics, underlining the
power of the VQS approach.
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Figure 4. Benchmarking of the VQS approach for ¢ = 0.5 and ¢, = 10 for a system of N = 3 sites, using d = 3 variational layers.
Variational norm F,, error probability € (a) and quantum negativity A (b) as a function of time for the first two timesteps. The
inset shows the density pattern in the output ring at the middle of the steps.

6. Conclusion

In summary, our work establishes a novel dynamical class of open quantum many-body systems that allow to
study the interplay between computational properties and quantum effects. Strikingly, we have shown that
computational unpredictability is not incompatible with quantum entanglement, but that the two can coexist
with each other for a long time. Given the inherent difficulty to simulate open quantum systems on classical
computers [62], these systems are also excellent candidates to observe a quantum advantage. Our results on
the VQS suggest that the interplay between entanglement and unpredictability can be experimentally realized
using present technologies. In the future, it will be also interesting to develop quantum analogs of the data
compression approach for Class IV systems, using quantum compression algorithms [63—66].
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Table 4. Gray code enumeration of initial states. Each state only has a single bit differing with its adjacent state, i.e. the Hamming
distance between two adjacent states is 1. Here, the first 12 states of the Gray code are shown.

Gray-code pure state j

|10) = |00...00000) |16) =00...01111)
[41) =00...00001) |4)7) = [00...01011)
[42) =00...00011) |4s) = [00...01001)
[43) =[00...00111) |2b9) = [00...11001)
|14y = |00...00101) [110) = [00...11011)
|1h5) = 100...01101) [1) = [00...11111)

Appendix A. Compressed length of mixed states

In this appendix, we explain the procedure required to compute the characteristic compression exponent
given the mixed-state representation of the two-ring ECA dynamics. We first initialize the input ring as well
as the output ring as

Pj (t = 0) = |wj><'(/1j|output & |'(/)j><¢j|inputa (A1)

where [1)j) denotes the jth Gray-code state, see table 4. We only consider j > 1, as the system needs at least
one excitation to initiate a non-trivial dynamics.

Next, we need to obtain a string representation of a given mixed state on the output ring. For this, we
employ a repeated random sampling based on the Monte-Carlo method. Following that, we introduce a
digitized version IT; j(t) = [P;rjaJ (t)] of a single-trajectory occupation probability P;?J (t) of the site i at time ¢
for the jth initial state, with [-] being the rounding operation. The Monte-Carlo approach is advantageous
specifically for the classical case where the rounding is exact, i.e. P;?J () € {0,1}. A single-trajectory string
representation is then constructed as

$(t) =1, (0) © T1,,(0) @ ... @ Ty (0)
&) Hlyj(l) @sz'(l) D...0P HN)]'(I) D...0D Hl,j(t) @sz'(l’) D... @HNﬁj(t), (A2)

indicates a sample of all the N sites on the output ring evolving from an initial state p;(ty) until an arbitrary
(discrete) time ¢, i.e. a string consists of N(¢+ 1) bits. Here, @ refers to concatenation of the binary digits.

Having computed a binary string S, we employ a lossless data-compression algorithm to compute the
compressed length C(S). To this end, we use a Python implementation of the DEFLATE algorithm provided
by the z1ib module in Python 3.6.9. The compress function in this module returns a compressed
representation of the given data in bytes. The desired compressed length is then computed by

C.(S) = len(zlib.compress(S)), (A3)

where 1len returns the string length of the compressed data. Importantly, the compressed length should
reflect genuine properties of the given string regardless of the choice of the compression algorithm. We have
validate this numerically for different lossless algorithms. However, there might be minor quantitative
differences for different algorithms which originates from the fact that optimal data compression is also
undecidable.

Now, we are in the position to calculate the characteristic compression exponent using the resulting
discretized data. To compute the averaged compressed length in equation (1) we incorporate sampled binary
strings as follows

- B Niraj Cc ( S;raj ( t))

Now (A4)
where traj runs over Ny,j samples. Hence, we perform a trajectory average over 50 trajectories for each initial
state j. In practice, we observe good convergence of the results for n =40 distinct initial states and final times
of t =200. We should emphasize that since the strings S;raj (t) correspond to individual trajectories of the
Monte-Carlo simulation, any function of the strings is also probabilistic as an artefact of the method’s
stochasticity. However, the measurement outcomes of the two-ring ECA are intrinsically probabilistic as they
exhibit random fluctuations, both stemming from quantum fluctuations in the case of quantum dynamics
and the probabilistic implementation of the ECA rules in the presence of a finite cycle time ..
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Appendix B. Lindblad generator of elementary cellular automata

The quantization of ECA rules on the two-ring setup shown in figure 1 is based on the mapping
p(t+1) = e"p(t), (B1)

where ¢ denotes discrete time and L is the matrix form of the Lindblad generator
L = sin? ((;5 g) Lo+ cos? (¢> g) L, (B2)

which is composed of two Lindblad operators L. and £, defined in continuous time 7 as

TR N (R
£C/q(p) :%/q(T>Z <Cc/¢1pcc/q ) {Cc/q Cc/fl’p}> ’ (B3)

with time-dependent dissipation rates .(7) = -y for the full cycle time . and v,4(7) = 7 for t < t./2. The
jump operators of the classical part are defined based on the corresponding ECA rule such that

¢=0") Qxt+ol > Qi (B4)
ke A keB
where o' = |0X1]; and O’i_ = |1)(0}; are lowering and raising operators respectively. i refers to site i on the

output ring and k denotes a three-body state whose projection operator Q; = |k)k| acts on sites i — 1, 1, and
i+ 1. Here, k runs over two subsets A and BB, which for the ECA rule 110 are given by

A ={000,100,111},

(B5)
B ={001,010,011,101,110}.
To be explicit, the first summation in equation (B4) reads as
> Qik = (00050001 541+ [100X100[; 1 j i1 + 1IN L i1 541, (B6)

ke A

and the second summation is the complement acting on the rest of the basis states, i.e.

Z Qir=1- Z Qi k- (B7)

keB ke A
In a similar fashion for the ECA rule 137 we have

A ={001,010,100,101, 110},

B8
B ={000,011,111}. (B8)
Additionally, we define the jump operators of the quantum part as
¢ = oL 110X 110141 + Py |~ Y+H[Pry Y Qi (B9)

k110

where the first term removes trivial steady states by populating the 0 state on the output ring and the second
term generates entangled states by a three-body operation on the output ring provided that the
corresponding the-body state k on the input ring is not equal to 110.

Appendix C. Monte-Carlo sampling of unpredictable dynamics

We here outline the main steps of the wave-function Monte-Carlo method that we utilized in our numerical
simulation. The advantage of this method comes from the fact that a density matrix is essentially a statistical
ensemble of pure states. This allows breaking the quadratic complexity of a density matrix by decomposing it
into (several) wave functions as their complexity is linear in terms of the Hilbert space dimension. Therefore,
instead of evolving the whole density matrix through time, one can evolve individual pure states to a desired
time and then compute the expectation values of the observable of interest according to standard
Monte-Carlo sampling. To be explicit, each trajectory is evolved according to an effective non-Hermitian
Hamiltonian Heg = H — % > c}L ¢j describing the dissipative dynamics of the underlying open system. In our
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model, the Liouvillian is purely dissipative, i.e. H =0 and we define the total set of jump operators as
following

N

c= { [sin2 ((;S g) ’yc(t)} 2 ci, [cos2 (d) g) fyq(t)} 2 cfi}' , (C1)

i=1

which means that in total there are 2N jump operators. Now, to implement the trajectory propagation using
the effective Hamiltonian of our system, one can follow the steps below:

1. Pick an initial pure state [¢)(t)) = |¥) ouipur @ |¥j)inpuc 81ven the Gray-code state j;

2. Choose a random number r = [0, 1] standing for the occurrence of a quantum jump;

3. Evolve the state using the effective Hamiltonian |1 (t)) = exp(—iHegt) |1 (fo)) up to the time #; where
(V(t)|¥(5)) = r. Here, t; denotes the time that a specific jump occurs, say ¢, in which n determines the
site index i plus the type of the jump, i.e. c or g;

4. Determine n such that P, > rwith P, = Y7 (1 () |c;-rci |t(#)) /0p where dp normalizes the probability
Py;

5. Calculate the after-jump state [1(t;))’ = cn|1/1(tk)>/<1/}(tk)|clcn\w(tk)>l/2;

6. If the time ¢ corresponds to the middle of a cycle time, calculate compressed length of the
single-trajectory binary representation with respect to the output ring CC(S;-raJ ());

7. If the time t corresponds to the end of a cycle time, switch the rings by converting ¢; < ¢;;

8. Replace |t(#)) with the new state and repeat the steps.

The algorithm above outputs the time evolution of a single trajectory for a given initial state. This
treatment makes it possible to speed up the simulation by running the computations with respect to different
trajectories in parallel.
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