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Jakub Trusina, Jǐŕı Franc, Adam Novotný
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Abstract. In High Energy Physics, tests of homogeneity are used primarily in two cases:
for verification that data sample does not differ significantly from numerically produced Monte
Carlo sample and for verifying separation of signal from background. Since Monte Carlo samples
are usually weighted, it is necessary to modify classical homogeneity tests in order to apply them
to weighted samples. In ROOT, the only homogeneity tests that allow testing weighted samples
are implemented for binned data. However, after the data are binned the full information is
lost. Therefore we compare these ordinary tests with modified versions of the Kolmogorov-
Smirnov, Anderson-Darling, and Cramér-von Mises tests that use full sample information. The
proposed tests are compared by estimating a probability of type-I error which is crucial for a
test’s reliability.

1. Introduction
Comparing the properties of two datasets is one of the most common tasks in statistics.
Homogeneity tests allow us to determine whether two or more populations have the same
probability distribution. In High Energy Physics (HEP), we use these tests, among others,
to compare the distribution of measured data and simulated Monte Carlo (MC) samples. Since
the MC generators can produce much more records than the real experiment and on top of that
these entries can be modified by weights, we need to use a generalization of classical homogeneity
tests. In this paper, we present the homogeneity tests which can be applied to weighted unbinned
data samples in ROOT. We verify that proposed generalized test statistics have their presumed
asymptotic distribution in a large simulation study.

1.1. Homogeneity tests currently available in ROOT
Several homogeneity tests are implemented in ROOT [1], some can be found in the TH1 library
for histograms (binned data with multinomial distribution), some in TMath library. The list of
all available homogeneity tests with their basic properties is presented below:

• TH1::Chi2Test allows testing weighted samples, but it can be applied only to binned
data. Results for data from continuous distribution are unreliable when sample sizes are
significantly different. Various binning can lead to different test’s conclusion.

• TH1::KolmogorovTest is a modification of the Kolmogorov-Smirnov (KS) test that can
be applied to binned weighted data; however, returned p-value is higher than the true one
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• TH1::AndersonDarlingTest is a modification of the Anderson-Darling (AD) test, it can
be applied to binned unweighted data only

• TMath::KolmogorovTest is the classical KS test which can be applied only to unweighted
and unbinned data

• ROOT::Math::GoFTest This class contains implementations of KS and AD test, where
both tests are applicable to unweighted and unbinned samples. AD test can be applied also
to binned data.

We can see from this list that only TH1::Chi2Test and TH1::KolmogorovTest tests allow
testing weighted data, but these tests can be used only with binned data and are unreliable in
many situations. We present the problem with binned, unweighted data in the following example.

Suppose two samples produced from normal distributions N (0, 1) and N (0.1, 1). We use
two different binning configurations for the same samples, first one with nbins = 10,min =
−2.5,max = 2.5 and second one with nbins = 11,min = −2.45,max = 2.55. As we can see
from figure 1 we obtained different results from the χ2 test. The p-value in the first approach is
approximately 0.01 and in the second one 0.23. If we choose the significance level α = 0.05, we
reject the null hypothesis in the first case and fail to reject in the second one.

Figure 1. An example of various binning of the same sample and its effect.

This problem is common for all tests with binned data that lose the information of the sam-
ple’s distribution within each bin and can lead to a different decision if the user adjusts the
binning configuration.

On the other hand, tests based on empirical distribution function (EDF) keep complete
information. Every difference inside bin’s interval can be counted (such as Cramér-von Mises
(CvM) or Anderson Darling (AD) test). Binned KS test does not find the true maximum distance
between EDFs but the maximum distance between cumulative histograms which is most likely
lower.

2. Generalized homogeneity tests
In order to apply homogeneity tests to weighted samples, the classical unweighted homogeneity
tests need to be generalized. Generalizations for one-sample KS and AD tests are
suggested in [2]. We suggest modifications of KS, CvM and AD homogeneity test
statistics. Let (X,W ) = ((X1, ..., Xn)′, (W1, ...,Wn)′) be first sample with its weights and
(Y ,V ) = ((Y1, ..., Ym)′, (V1, ..., Vm)′) be the second one. Let W· =

∑n
i=1Wi, 1A(·) be indicator

function of set A, and K1/4(·) be Bessel function of the third kind. To propose appropriate and
weighted test statistics, we need to define the following:
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Wi1(−∞,Xi](x) ne =

(
n∑

i=1
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)2

n∑
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W 2
i

HW ,V
ne,me(x) = neFW

n (x)+meFV
m (x)

ne+me

Now we can present test statistics and presumed asymptotic distribution (a. d.) of generalized
homogeneity tests. Details for unweighted samples are in [3] or [4], among others, and in [5] for
weighted samples.

• Kolmogorov-Smirnov test

Test statistic TW ,V
n,m =

√
neme
ne+me

sup
x∈R

∣∣FW
n (x)− FV

m (x)
∣∣

Presumed a. d. K(λ) = 1− 2
+∞∑
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(−1)k+1e−2k
2λ2

• Cramér-von Mises test

Test statistic TW ,V
n,m = neme

ne+me

∫
R

(
FW
n (x)− FV

m (x)
)2

dHW ,V
ne,me

Presumed a. d. LCvM(z) = 1
π
√
z
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(−1)k
(− 1

2
k

)√
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4

(
(1+4k)2

16z

)
• Anderson-Darling test

Test statistic TW ,V
n,m = neme

ne+me

∫
0<HW ,V

ne,me (x)<1

(FW
n (x)−FV

m (x))
2

HW ,V
ne,me (x)(1−H

W ,V
ne,me (x))

dHW ,V
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Presumed a. d. LAD(z) =
√
2π
z

+∞∑
k=0

(− 1
2
k

)
(1 + 4k)exp

(
− (1+4k)2π2

8z

)
+∞∫
0

exp
(

z
8(w2+1)

− (1+4k)2π2w2

8z

)
dw

3. Numerical verification of presumed distributions
It is necessary to verify whether generalized test statistics have the same asymptotic distribution
as the original test statistics. Since no theoretical proof of asymptotic properties has been done
yet, we can demonstrate them numerically. If we consider data as random variables, distribution
of test statistic is a continuous function, and if the null hypothesis is true then

p-value =̇ 1− FT
(
TW ,V
n,m

)
∼ U(0, 1).

We carried out many experiments in which we produced two samples from different
distributions and assigned them weights in such a way that their WEDFs converge to the
same distribution. Afterward, we applied homogeneity tests. In figure 2 we present results from
two such experiments, in which we compare two samples with 1000 observations and different
weights with TH1::Chi2test. The number of bins is chosen by the rule described in [6]. It is
obvious that the χ2 test from TH1 library significantly underestimates the true p-value.

Another approach for verification of the p-value’s computation uses the fact that
P [p-value < α] = α where α is significance level. As α can be any value between 0 and
1, we obtain distribution function of U(0,1). We repeated the whole procedure 10 000 times
with selected parameters. Then we plotted EDF of each test’s p-values and compared it to
CDF of U(0,1). In the figure 3 we can see results of this experiment, where the first sample
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Figure 2. The ratios of rejection (on significance level 0.05) for two different experiments. In
the left one, the first sample Xi ∼ N (0, 1) with weights Wi = 1 and the second Yi ∼ N (µ, σ2)

with weights Vi = σ ϕ(Yi)
(
ϕ
(
Yi−µ
σ

))−1
where ϕ is the standard normal distribution. In

the right one, the first sample Xi ∼ N (0, 1) with weights Wi = 1, the second Yi ∼ N (0, 1) and
Vi ∼ Gamma(k, θ) with various E [Vi] and Var [Vi]. Ratios were counted out of 10 000 repetitions.

Xi ∼ N (0, 1) with weights Wi = 1 while the second sample Yi ∼ N (0.3, 1.12) with weights

Vi = 1.1 ϕ(Yi)
(
ϕ
(
Yi−0.3
1.1

))−1
. While p-values from generalized KS, AD, and CvM tests are

uniformly distributed if the null hypothesis is true, p-values from χ2 are not and the type-I error
is larger than it should be for arbitrary significance level.
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Figure 3. From left to right: Generalized KS, CvM, AD tests and χ2 test from TH1 class.

4. Power of test comparison
Power of test, defined as a probability that we reject the test while the null hypothesis is not
true, differs for various experiments’ setting. We carried out another experiment in which we
observed the effect of six parameters on it.

We produced two samples from N (0, 1) and N (µs, (1 + σs)
2). All weights of the first sample

are equal to 1 while the weights of the second sample were independently generated from
Gamma(k, θ). Parameters k and θ will be represented by mean (µw) and variance (σw) of
weights. The first sample’s size is equal to n while the other sample’s is equal to k·n. For every
setting of (µs, σs, µw, µw, σw, n, k) we repeated procedure 1000 times and calculated ratio of
rejected tests (r) on significance level α = 0.05 which is power of test’s estimate. In figure 4
we illustrate how the power of test behaves with shifting mean and standard deviation of the
second sample. In figure 5 we present the change in power of test while changing the sample
size of both samples. In all experiments, the AD test is the most powerful among the presented
tests.
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Figure 4. Parameter setting: (µw, σw, n, k) = (0.3, 0.1, 200, 10). AD test has the highest ratio
of rejected tests for both changing parameter µs and σs. This is also true for µs = 0.3, 0.4, 0.5.
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Figure 5. Parameter setting: (µs, σs, µw, σw) = (0.1, 0.2, 0.4, 0.01). AD test has again the
highest ratio of rejected tests for both changing parameter k and n.

5. Results
In this paper, we have presented part of results from the large simulation study that verified the
correctness of test statistics for the proposed generalized homogeneity test. All three generalized
tests have been implemented in C++ (ROOT) and the code can be downloaded from [7]. The
integration of this code into the new version of ROOT is in the process. For weighted data
samples originating from a continuous distribution, we recommend to use presented generalized
AD test, which is more powerful than KS or CvM in most cases.
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