
JID:NUPHB AID:14435 /FLA [m1+; v1.288; Prn:5/09/2018; 10:28] P.1 (1-24)

Available online at www.sciencedirect.com

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43
N
C

O
R

R
EC

TE
D

 P
R

O
O

F

ScienceDirect

Nuclear Physics B ••• (••••) •••–•••
www.elsevier.com/locate/nuclphysb

Strings on celestial sphere

Stephan Stieberger a,b, Tomasz R. Taylor c,d

a Max–Planck–Institut für Physik, Werner–Heisenberg–Institut, 80805 München, Germany
b Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

c Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Poland
d Department of Physics, Northeastern University, Boston, MA 02115, USA

Received 26 June 2018; received in revised form 31 August 2018; accepted 31 August 2018

Editor: Leonardo Rastelli

Abstract

We transform superstring scattering amplitudes into the correlation functions of primary conformal fields 
on two-dimensional celestial sphere. The points on celestial sphere are associated to the asymptotic di-
rections of (light-like) momenta of external particles, with the Lorentz group realized as the SL(2, C)

conformal symmetry of the sphere. The energies are dualized through Mellin transforms into the parame-
ters that determine dimensions of the primaries. We focus on four-point amplitudes involving gauge bosons 
and gravitons in type I open superstring theory and in closed heterotic superstring theory at the tree-level.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In modern-day particle colliders, accelerators produce beams of incident particles with spe-
cific energies and momenta, described to a reasonable accuracy by the packets of plane waves 
with a narrow spread of four-momentum. Similarly, the detectors are designed to measure four-
momenta of the scattered particles. Hence it is not surprising that almost all studies of the 
scattering amplitudes are focused on the transitions between four-momentum eigenstates (planar 
wave-functions). For example, the Feynman rules are usually formulated in such a momentum 
representation.
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Much of the recent progress in computing the scattering amplitudes is due to the applications 
of spinor-helicity techniques. For a review, notations and conventions, see [1]. The amplitudes 
describing massless particles are most succinctly expressed in terms of momentum spinors which 
transform under Lorentz transformations in the defining representations of SL(2, C). Some time 
ago, when investigating relations between field-theoretical and string amplitudes, we defined 
complex projective coordinates z ≡ σ1/σ2, the ratios of momentum spinor components σ1 and 
σ2, and mapped these kinematic variables into the positions of vertex operators on the Riemann 
sphere describing string world-sheet [2,3]. The Lorentz symmetry under

z → az + b

cz + d
(ad − bc = 1) , (1.1)

was mapped into conformal symmetry group of the spherical world-sheet. This mirrored the 
observation made long ago by Penrose that the snapshots of night sky – the so-called celestial 
sphere, as taken by different observers, are related by such conformal transformations.

More recently, Strominger [4] and collaborators applied a similar construction to map the 
scattering amplitudes from the momentum space to celestial sphere in Refs. [5,6]. In Minkowski 
spacetime parameterized by Bondi coordinates (u, r, z, ̄z), z and z̄ describe celestial sphere. On 
the other hand, in terms of the projective coordinates mentioned in the previous paragraph, any 
light-like momentum can be written as

pμ = ωqμ , with qμ = 1

2
(1 + |z|2, z + z̄,−i(z − z̄),1 − |z|2) , (1.2)

where ω is the light-cone energy scale which transforms as

ω → (cz + d) (c̄z̄ + d̄) ω (1.3)

under conformal transformations (1.1). After expressing all kinematic variables in terms of ω, z
and z̄, the standard transition amplitudes between momentum eigenstates become functions of 
celestial coordinates and energies. Actually, the amplitudes can be streamlined into familiar 2D 
CFT correlators by considering the scattering of so-called conformal wave packets [7]

ϕ±
�(xμ; z, z̄) =

∞∫
0

ω�−1e±iωq·x−εω = (∓i)��(�)

[−x · q(z, z̄) ∓ iε]� , (1.4)

which are Mellin transforms of the usual plane waves. These packets are described by massless 
scalar conformal primary wave functions of dimension �, the variable dual to the energy in 
the Mellin sense, and can be generalized to higher spin [7]. By using such Mellin transforms, 
“old-fashioned” gauge and gravitational amplitudes can be converted into conformal correlators 
of primary fields on celestial sphere, labeled by their conformal spin and dimensions.

There are several interesting aspects of this proposal. Perhaps most remarkably, understanding 
the nature of 2D CFT on celestial sphere would enable a holographic description of flat spacetime 
[8,9]. Unfortunately, as pointed out by Strominger, it is not a “garden variety” of CFT, although it 
has some intriguing properties. For example, soft photons correspond to � = 1 current insertions 
on celestial sphere, and the related soft theorems can be interpreted as Ward identities associated 
to certain asymptotic symmetries [4,10]. We are interested, however, in another aspect.

Together with the progress in computing the scattering amplitudes in perturbative gauge the-
ories, Einstein’s gravity, Einstein–Yang–Mills (EYM) theory and string theory, it became clear 
that gravitational interactions are closely related to gauge interactions, at least at lowest orders 
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of perturbation theory. The archetypal Kawai–Llewellen–Tye (KLT) relations relate the ampli-
tudes with external gravitons to products of pure gauge amplitudes [11]. The color-kinematic 
duality reveals some intriguing kinematic gauge structures hidden in gravitational amplitudes 
[12]. Finally, the most recent collinear relations [13–15] allow substituting gravitons with pairs 
of collinear gauge bosons in practically all EYM amplitudes. All this indicates to yet unknown, 
profound connections between gravity and gauge interactions. Can 2D CFT on celestial sphere 
offer some new insight into these connections?

There are some good reasons to address the above question in the context of string theory. 
Indeed, the gauge-gravity connection appears to be a consequence of the observation that closed 
strings look like two open strings connected at the ends. The most important reason however is 
that every order in the perturbative expansion of gravity violates the unitarity bounds by growing 
powers of energy. As we will see later, this uncontrollable growth at large energies poses an 
obstacle for transforming gravitational amplitudes to celestial sphere. This problem does not 
appear in string amplitudes which are renowned for their super-soft ultraviolet behavior [16,
17]. Furthermore, returning to the connection of kinematic variables to the string world-sheet 
mentioned at the beginning, we want to know if there are any connections between a relatively 
simple CFT on the world-sheet and rather intricate CFT on celestial sphere. To that end, we 
will discuss Mellin transforms of full-fledged superstring amplitudes. We will start from the 
amplitudes with three external particles, for which there is no difference between QFT and string 
theory.

2. Preliminaries and three-particle amplitudes

In the first step towards celestial life, the amplitudes are expressed in terms of complex co-
ordinates and light-cone energies. The relevant SL(2, C) conformal transformation properties 
are given in Eqs. (1.1) and (1.3), respectively. We will be classifying conformal primary fields 
according to their conformal weights (h, h̄) or their dimensions � = h + h̄ and spins J = h − h̄. 
Note that energies transform in (1.3) as weight (1/2, 1/2) primaries. The amplitudes, written in 
the helicity basis, depend on the spinor products [1]

〈ij〉 = √
ωiωi zij , [ij ] = −√

ωiωj z̄ij (zij ≡ zi − zj , z̄ij ≡ z̄i − z̄j ) (2.1)

and the usual scalar products:

sij ≡ 2pipj = 〈ij 〉[ji] = ωiωjzij z̄ij . (2.2)

The angle products 〈· · · 〉 have weights (−1/4, 1/4) while the square products [· · · ] have weights 
(1/4, −1/4). These weights allow identifying four-dimensional helicity with 2D conformal spin.

We will start from two-particle collisions in which two incident particles, with momenta p1
and p2, scatter into N − 2 particles in the final state. They are described by the amplitudes of the 
general form

A = i(2π)4 δ(4)

(
p1 + p2 −

N∑
k=3

pk

)
M , (2.3)

where M are the so-called invariant matrix elements that can be computed by using Feynman 
rules or some other techniques.1 They depend on all quantum numbers, including internal gauge 

1 From now on we will skip the factor i(2π)4.
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charges, and may contain some group-dependent (a.k.a. color) factors. In such cases, i.e. in the 
presence of gauge bosons, we will be considering the so-called “partial” amplitudes associated 
to the canonical trace factor, that is purely kinematic functions “stripped” of color factors.

All conformal primary wave functions (1.4) and their higher spin partners solve 4D wave 
equations, but in order to form complete, normalizable sets, their dimensions must be restricted 
to the principal continuous series with � = 1 + iλ, λ ∈ R [7]. Thus Mellin transforming a given 
amplitude from the momentum basis to the conformal basis amounts to evaluating:

Ã{λn}(zn, z̄n) =
( N∏

n=1

∞∫
0

ωiλn
n dωn

)
δ(4)(ω1q1 + ω2q2 −

N∑
k=3

ωkqk) M(ωn, zn, z̄n) . (2.4)

In the case of three external particles, the amplitudes vanish because the constraints of mo-
mentum conservation, as enforced by the delta function inside (2.4), force all kinematic invariants 
to be zero. These constraints can be relaxed by changing the metric signature from (+ − − −)

to (+ + − −). This allows treating z and z̄ as two independent real variables. Then two classes 
of non-trivial kinematic solutions are allowed: all zij = 0 with all z̄ij 
= 0 or all z̄ij = 0 with 
all zij 
= 0. In the case of amplitudes involving three gauge bosons, the first one is appropriate 
for “mostly minus” helicity configurations while the second one is good for the “mostly plus” 
amplitudes. We will focus on the latter ones. Assuming all zij 
= 0, the momentum-conserving 
delta function can be written as

δ(4)(ω1q1 +ω2q2 −ω3q3) = 4

ω2
3

1

z23z31
δ(ω1 − z32

z12
ω3) δ(ω2 − z31

z21
ω3) δ(z̄13) δ(z̄23) , (2.5)

with the additional constraint that the variables must be ordered in one of two possible ways: 
z1 < z3 < z2 or z2 < z3 < z1, to ensure that all energies are positive.

The mostly-plus three-gluon amplitude is given by2:

M(−,−,+) = 〈12〉3

〈13〉〈23〉 = ω1ω2

ω3

z3
12

z13z23
. (2.6)

The corresponding celestial amplitude is:

Ã(−,−,+) = 4 z
1−i(λ1+λ2)
21 z

iλ1−1
23 z

iλ2−1
31 δ(z̄13)δ(z̄23)

∞∫
0

ω
i(λ1+λ2+λ3)−1
3 dω3 . (2.7)

This amplitude has conformal transformation properties of a three-point correlation function of 
primary conformal fields with weights3

h1 = i

2
λ1, h̄1 = 1 + i

2
λ1,

h2 = i

2
λ2, h̄2 = 1 + i

2
λ2,

h3 = 1 + i

2
λ3, h̄3 = i

2
λ3,

(2.8)

2 We are using here a self-explanatory notation and skip the coupling constant factors. In case of any doubt, the reader 
should consult [1].

3 Actually, due to the delta functions, h̄-weights are not uniquely determined. The only constraint is 
∑3

n=1 h̄n =
2 + i ∑3 λn.
2 n=1
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in agreement with �n = 1 + iλn, J1 = J2 = −1 and J3 = +1. Note that the energy integral 
remaining on the r.h.s. of (2.7) is logarithmically divergent in the infra-red and in ultra-violet. 
Since any cutoff would violate SL(2, C) symmetry, there is no other choice than to interpret it in 
the sense of a distribution [6]:

∞∫
0

ω
i(λ1+λ2+λ3)−1
3 dω3 = 2π δ(λ1 + λ2 + λ3) . (2.9)

We do not discuss here other helicity configurations because they can be analyzed in a similar 
way.

The mostly-plus three-graviton amplitude is given by the square of three-gluon amplitude4:

M(−−,−−,++) = 〈12〉6

〈13〉2〈23〉2 = ω2
1ω

2
2

ω2
3

z6
12

z2
13z

2
23

. (2.10)

The corresponding celestial amplitude is:

Ã(−−,−−,++) = 4 z
2−i(λ1+λ2)
21 z

iλ1−1
23 z

iλ2−1
31 δ(z̄13) δ(z̄23)

∞∫
0

ω
i(λ1+λ2+λ3)
3 dω3 . (2.11)

It has conformal transformation properties of a three-point correlation function of primary con-
formal fields with weights5

h1 = −1

2
+ i

2
λ1, h̄1 = 3

2
+ i

2
λ1,

h2 = −1

2
+ i

2
λ2, h̄2 = 3

2
+ i

2
λ2,

h3 = 3

2
+ i

2
λ3, h̄3 = −1

2
+ i

2
λ3 ,

(2.12)

in agreement with �n = 1 + iλn, J1 = J2 = −2 and J3 = +2. The main difference, however, 
between the gravitational and gauge amplitudes is the energy integral, which in the gravitational 
case (2.11) is linearly divergent in the ultraviolet. The degree of this divergence will grow with 
the number of external gravitons, reflecting the violation of unitarity bounds at each order of 
perturbative Einstein’s gravity. One needs an ultraviolet completion of the theory in order to 
make sense out of the gravitational amplitude (2.10). In the next section, we will see that string 
theory does indeed provide such a completion.

There is one more mostly-plus amplitude which is useful for studying the gauge-gravity con-
nection. It is the EYM amplitude involving one graviton and two gauge bosons

M(−−,−,+) = 〈12〉4

〈23〉2 = ω2
1ω2

ω3

z4
12

z2
23

. (2.13)

4 Here again, we skip the (gravitational) coupling constant factors.
5 Actually, due to the delta functions, h̄-weights are not uniquely determined. The only constraint is 

∑3
n=1 h̄n =

2 + i ∑3 λn .
2 n=1
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The corresponding celestial amplitude is

Ã(−−,−,+) = 4 z
1−i(λ1+λ2)
21 z

iλ1−1
23 z

iλ2
31 δ(z̄13) δ(z̄23)

∞∫
0

ω
i(λ1+λ2+λ3)
3 dω3 , (2.14)

which is linearly divergent again. It is easy to check that also in this case, the weights agree with 
the dimensions and spins of gauge and graviton primaries.

In superstring theory, at the energies much smaller than the characteristic string energy scale 
(determined by the ‘universal Regge slope” parameter α′), gravitons and gauge boson interact 
exactly the same way as in EYM theory. String corrections due to massive string excitations 
appear at higher energies and are often discussed in terms of the expansion in powers of α′, 
which has dimension of length square. These corrections are absent, however, at the level of 
three-point amplitudes, for purely kinematic reasons. In the next section, we will see how string 
effects appear in four-particle celestial amplitudes.

3. Four-gluon amplitudes in open superstring theory

At the perturbative level, two distinct superstring theories include massless gauge bosons: type 
I open superstrings and heterotic superstrings. The latter incorporates gravitons in the massless 
spectrum and is suitable for studying mixed gauge-gravitational amplitudes. Virtual gravitons 
and massive neutral closed string excitations can propagate also inside pure gauge amplitudes, 
therefore the heterotic theory gives rise to a richer variety of multi-trace color structures. Here, we 
focus on the amplitudes with single-trace color factors and the corresponding partial amplitudes. 
Open and heterotic single trace amplitudes are different, but they both reproduce Yang Mills 
amplitudes in the α′ = 0 limit. Furthermore, they are related by the mathematical operation called 
“single-value” (sv) projection [18,19]: the α′ expansion series of heterotic amplitudes can be 
obtained by acting with sv on the open ones [20,21]. The effect of single-value projection is to 
map the zeta function coefficients onto a subspace thereof, for example sv[ζ(2)] = 0, sv[ζ(3)] =
2ζ(3), etc. The kinematic dependence of α′ expansion coefficients remains untouched by the map 
sv. For the purpose of our discussion, we will be considering open and heterotic cases separately, 
in each case applying (2.4) to transform the amplitudes.

In the case of four particles, the momentum-conserving delta function inside (2.4) can be 
rewritten as

δ(4)(ω1q1 + ω2q2 − ω3q3 − ω4q4) = 4

ω4|z14|2|z23|2

× δ

(
ω1 − z24z̄34

z12z̄13
ω4

)
δ

(
ω2 − z14z̄34

z12z̄32
ω4

)
δ

(
ω3 + z24z̄14

z23z̄13
ω4

)
δ(r − r̄) ,

(3.1)

where r is the conformal invariant cross ratio:

r = z12z34

z23z41
. (3.2)

The physical meaning of this parameter can be understood by computing the ratio of Mandel-
stam’s variables s = s12 = (p1 + p2)

2 and u = −s23 = (p2 − p3)
2

s23 = 1 = −u = sin2
(

θ
)

, (3.3)

s12 r s 2
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where θ is the scattering angle in the center of mass frame. From the above relation it is clear that 
the cross-ratios are restricted to r > 1. Indeed, r = r̄ , as required by the delta function in (3.1), 
together with r > 1, ensure that all energies, as determined by the delta functions remaining in 
(3.1), are real and positive. In the physical domain, s > 0 and u = −s/r < 0.

All four-particle amplitudes belong to the class of maximally helicity violating (MHV); as in 
the previous section, we will be considering mostly plus MHV configurations only. The well-
known four-gluon Yang–Mills amplitude is

M(−,−,+,+) = 〈12〉3

〈23〉〈34〉〈41〉 = ω1ω2

ω3ω4

z3
12

z23z34z41
= r

z12z̄34

z̄12z34
, (3.4)

where in the last step, we used the constraints of (3.1). The corresponding celestial amplitude is

Ã(−,−,+,+) = 4 δ(r − r̄)

(
z̄34

z12

)iλ1
(

z34

z̄12

)iλ2
(

z24

z̄13

)i(λ1+λ3)
(

z̄14

z23

)i(λ2+λ3)

× θ(r − 1)
r3

z̄2
12 z2

34

J0 ,

(3.5)

where the step function θ(r − 1) enforces the kinematic constraint r > 1 and the energy integral 
is:

J0 =
∞∫

0

ω
i(λ1+λ2+λ3+λ4)−1
4 dω4 . (3.6)

It is easy to see that the conformal weights agree with �n = 1 + iλn, J1 = J2 = −1 and J3 =
J4 = +1. As in the three-particles case, the energy integral yields:

J0 = 2π δ

( 4∑
n=1

λn

)
. (3.7)

At this point, one can cast the amplitude in a form appropriate to a four-point CFT correlator

Ã(−,−,+,+) = 8π δ(r − r̄) δ

( 4∑
n=1

λn

)

×
(

4∏
i<j

z
h
3 −hi−hj

ij z̄
h̄
3 −h̄i−h̄j

ij

)
r

5
3 (r − 1)

2
3 θ(r − 1) ,

(3.8)

where h = ∑4
n=1 hn and h̄ = ∑4

n=1 h̄n. Up to some numerical factors, the above result is in 
agreement6 with [6].

The type I open superstring amplitude is related to the Yang–Mills amplitude by a simple 
rescaling

MI (−,−,+,+) =M(−,−,+,+) FI (s, u) , (3.9)

with the string “formfactor” [23]

6 Yang–Mills amplitudes with five and more external gluons have been recently discussed in [22].
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FI (s, u) = −α′s12B(−α′s12,1 + α′s23) = −sB(−s,1 − u) = �(1 − s)�(1 − u)

�(1 − s − u)
, (3.10)

where we rescaled Mandelstam’s variables by the string scale: s ≡ α′s12 and u ≡ −α′s23 =
−s/r . Since s > 0 and u < 0, the poles due to massive string excitations appear in the s-channel 
only, at s integer and positive. Before transforming the amplitude to celestial sphere, we want to 
exhibit the well-known super-soft high energy behavior of the formfactor, at s → ∞ and fixed 
angle, i.e. fixed r > 1. It is convenient to define a = 1/r ∈ (0, 1), so that u = −as. Then

FI (s, u) = as
sin[π(1 − a)s]

sin(πs)

�(as) �[(1 − a)s]
�(s)

(3.11)

and the asymptotic behavior can be determined by using Stirling’s formula

FI (s, u) ∼
√

2πas

(1 − a)

sin[π(1 − a)s]
sin(πs)

aas(1 − a)(1−a)s , (3.12)

which is exponentially suppressed at s → ∞, except at the singular points.
The celestial string amplitude corresponding to (3.9) is given by the same expression as the 

Yang–Mills amplitude (3.5), but now with J0 replaced by a non-trivial energy integral:

JI =
∞∫

0

ω
i(λ1+λ2+λ3+λ4)−1
4 FI (s, u) dω4 . (3.13)

Recall that the formfactor FI is given by (3.10), with:

s = α′(r − 1)
|z14|2|z34|2

|z13|2 ω2
4 , u = − s

r
. (3.14)

The basic difference between Yang–Mills (3.6) and string (3.13) energy integrals is in the ultra-
violet regime at ω4 → ∞, where the exponential suppression (3.12) of the string formfactor 
makes it square-integrable. In addition, the integration runs over massive string poles, although 
it is not a problem because these singularities can be handled by using the iε prescription [24]. 
Note that there is no difference in the infrared because F(s, u) → 1 as ω4 → 0. It is convenient 
to change the integration variables and express the amplitude in terms of the integral:

I (r,β) := 1

2

∞∫
0

w−β−1FI (rw,−w)dw , β := − i

2

4∑
n=1

λn . (3.15)

After some algebra, we obtain:

ÃI (−,−,+,+) = 4(α′)β δ(r − r̄) θ(r − 1)

(
4∏

i<j

z
h
3 −hi−hj

ij z̄
h̄
3 −h̄i−h̄j

ij

)

× r
5−β

3 (r − 1)
2−β

3 I (r,β) .

(3.16)

In order to compute the energy integral (3.15), it is convenient to use the explicit integral 
representation of the beta function that enters the formfactor in (3.10):

B(−rw,1 + w) =
1∫
dx x−1−rw (1 − x)w . (3.17)
0
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With w > 0, this representation is valid for r < 0 only, i.e. outside our kinematic domain. Never-
theless, we will use it and perform analytic continuation to r > 1 at the end. After switching the 
orders of integration in (3.15), we obtain:

I (r,β) = −�(1 − β)
r

2

1∫
0

dx

x
[r lnx − ln(1 − x)]β−1 . (3.18)

In order to compute this integral, we use the binomial expansion:

[r lnx − ln(1 − x)]β−1 =
∞∑

k=0

�(k + 1 − β)

�(k + 1)�(1 − β)
(r lnx)β−k−1 lnk(1 − x) . (3.19)

The first term yields the same delta function (3.7) as in Yang–Mills theory,

1

2

1∫
0

dx

x
(− lnx)β−1 = 2π δ

( 4∑
n=1

λn

)
, (3.20)

while the subsequent terms involve polylogarithmic integrals:

S(β − k, k) := (−1)β−1

�(β − k)�(k + 1)

1∫
0

dx

x
(lnx)β−k−1 lnk(1 − x). (3.21)

In this way, the energy integral (3.15) becomes:

I (r,β) = 2π δ

( 4∑
n=1

λn

)
+ 1

2
�(β) �(1 − β) (−r)β

∞∑
k=1

(−r)−k S(β − k, k) . (3.22)

The expansion coefficients (3.21) are related to Nielsen’s polylogarithm functions Sn,k(t) [25]

Sn,k(t) = (−1)n+k−1

(n − 1)!k!
1∫

0

dx

x
lnn−1 x lnk(1 − xt) , t ∈ C , (3.23)

labeled by positive integers n and k. Assuming that this function can be extended to complex n, 
S(β − k, k) = Sβ−k,k(1). This is not difficult for the first term because Sn,1(t) = Lin+1(t), where 
Lin+1 is the standard polylogarithm of order n + 1. Since Lin+1(1) = ζ(n + 1), S(β − 1, 1) =
ζ(β), which can be checked by an explicit computation of the integral (3.21):

S(β − 1,1) = −�(β − 1)−1

1∫
0

dx

x
(− lnx)β−2 ln(1 − x)

= �(β − 1)−1
∞∑

n=1

1∫
0

dx

x
(− lnx)β−2 xn

n
=

∞∑
n=1

n−β = ζ(β) , Re(β) > 1 .

(3.24)
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For k > 1, Sn,k(1) = ζ(n + 1, {1}k−1) [26,27], where

ζ(n + 1, {1}k−1) = ζ(n + 1,1, . . . ,1︸ ︷︷ ︸
k−1

) =
∑

n1>n2>···>nk

1

nn+1
1 n2 · · ·nk

(3.25)

is a multiple zeta value (MZV) of depth k. At the end, we obtain:

I (r,β) = 2π δ

( 4∑
n=1

λn

)

+ iπ

2
(−r)β−1 sinh

(
1

2

4∑
n=1

λn

)−1 ∞∑
k=0

(−r)−kζ

(
− i

2

4∑
n=1

λn − k, {1}k
)

.

(3.26)

The final result, summarized in Eqs. (3.16) and (3.26), has some interesting features. The 
delta function part of the string amplitude agrees with Yang–Mills theory. The remaining terms 
should be hence interpreted as “string corrections” due to massive string modes, and we will 
show below that this is indeed the case. They do not come, however in the usual form of an 
expansion in the string parameter α′. In fact, α′-dependence is limited to an overall (α′)β factor 
in (3.16), just to provide the right dimensions. Instead of an α′ expansion, we obtain a small 
scattering angle expansion in r−1 = sin2( θ

2 ) (3.3). In traditional string amplitudes, quantum field 
theory is recovered in the α′ → 0 limit. Here, in celestial amplitudes, quantum field theory is 
recovered in the kinematic limit of large r , that is in the limit of forward scattering at θ = 0. 
Indeed, in this limit, the process is dominated by the exchanges of massless particles.

There is an alternative expression for I (β, r) of (3.26) which displays the connection to mas-
sive string states. The Nielsen polylogarithm function (3.23) can be expanded as [27]

Sn,k(t) =
∞∑

m=k

[
m

k

]
tm

m! mn
, (3.27)

where 
[
m
k

]
are the unsigned Stirling numbers. The relation

m∑
k=1

[
m

k

]
xk = �(x + m)

�(x)
(3.28)

allows rewriting

∞∑
k=1

(−r)−k Sβ−k,k =
∞∑

n=1

1

n! nβ

�
(−n

r
+ n

)
�
(−n

r

) . (3.29)

After inserting it in (3.22), we obtain an alternative expression:

I (r,β) = 2π δ

( 4∑
m=1

λm

)

+ iπ

2
(−r)β sinh

(
1

2

4∑
m=1

λm

)−1 ∞∑
n=1

1

n! nβ

�
(−n

r
+ n

)
�
(−n

r

) .

(3.30)

The above form of the energy integral allows identifying the contributions of all mass levels. In 
fact, the n-th term of the sum originates from mass 

√
n/α′ string excitations. The best way to see 
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this is by converting the energy integral (3.15) into a complex integral over the Hankel contour. 
Then

I (r,β) = 2π δ

( 4∑
m=1

λm

)
+ iπ

(1 − e−2πiβ)

∞∑
n=1

Ress=n

{( s

r

)−β

B
(
−s,1 + s

r

)}
, (3.31)

where the delta function originates from the segment encircling w = 0 while the residues are due 
to massive string poles at mass levels 

√
n/α′. Since

Ress=n

{
B
(
−s,1 + s

r

)}
= �

(−n
r

+ n
)

n! �
(−n

r

) , (3.32)

Eq. (3.31) reproduces Eq. (3.30).

4. World-sheet as celestial sphere

In the previous section, we stressed that the ultra-soft high energy behavior of string form-
factors ensures the convergence of energy integrals. The asymptotic form of the four-gluon open 
string formfactor was exhibited in (3.12) by using Stirling’s formula. It is known that this behav-
ior can be also obtained by using the steepest descent (saddle point) method [17]. Recall that the 
beta function appears in (3.10) as a result of integrating one vertex position x over the boundary 
of string disk worldsheet.7 For s < 0 and u = −as < 0 (a = r−1 < 0),

B(−s,1 − u) =
1∫

0

x−1−s(1 − x)as (4.1)

The range (0, 1) of integration is correlated with one particular color (Chan–Paton) factor. In 
order to discuss the s → −∞ limit, one writes

B(−s,1 − u) =
1∫

0

x−1e−sf (x)dx , f (x) = lnx − a ln(1 − x) (4.2)

and solves the stationary point equation

f ′(x0) = 0 ⇒ x0 = 1

1 − a
. (4.3)

Note that for a < 0, x0 is on the integration path, where the function reaches the maximum value 
f (x0) = −(1 − a) ln(1 − a) − a ln(−a). After applying Laplace’s formula, we obtain

FI (s, u) ∼
√

2πas

(1 − a)
(−a)as (1 − a)(1−a)s (4.4)

which is exponentially suppressed at s → −∞ with a < 0. The same result follows by applying 
Stirling’s formula. It should be kept in mind that s < 0 and a = r−1 = sin2(θ/2) < 0 are in 
the unphysical domain of imaginary center of mass energy and imaginary scattering angle. Note, 
however, that the stationary point equation ties the world-sheet vertex position x0 to the kinematic 

7 Three remaining vertex positions are fixed by SL(2, R) Möbius invariance.



JID:NUPHB AID:14435 /FLA [m1+; v1.288; Prn:5/09/2018; 10:28] P.12 (1-24)

12 S. Stieberger, T.R. Taylor / Nuclear Physics B ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47
U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

cross ratio r , identifying a point on the worldsheet with a point on celestial sphere (modulo 
SL(2, R)-transformation).

In the physical range of s > 0, u < 0, the asymptotic behavior (3.11) is slightly different from 
(4.4). If one naively extrapolates (4.4) to the physical domain, one will miss the ratio of sines 
containing the poles of massive string states. The reason is that the integral representation (4.1)
is not valid for s > 0. The integration path needs to be modified to the complex contour known 
as Pochhamer contour, although for u < 0 it is sufficient to use any contour running through 
x = 1 and circling 0.8 As far as the asymptotic behavior is concerned, however, the steepest 
descent method can be used again, with the same stationary point equation (4.3) that yields 
x0 = (1 − a)−1, identifying x0 as a point on celestial sphere. Since now a > 0, x0 > 1 and the 
contour runs twice through the stationary point on two Riemann sheets, on its way out from and 
back to x = 1. It is not difficult to see that these two contributions combine to the ratio of sines, 
as in (3.11).

In celestial amplitudes (2.4), the energy dependence is integrated out through Mellin trans-
forms. Is there any limit in which vertex positions are tied to celestial sphere? We have already 
shown that r → ∞ corresponds to the limit of low-energy massless theory. Now we will show 
that the equivalent of high-energy “super-Planckian” limit is reached at λ ≡ ∑4

n=1 λn → ∞. To 
see this, we rewrite (3.18) as:

I (r,β) = 1

2
(−a)−β �(1 − β)

1∫
0

x−1e(β−1)g(x)dx , g(x) = ln[− lnx + a ln(1 − x)] .

(4.5)

Since β = −iλ/2, in order to discuss the limit of λ → ∞ we can use the steepest descent method 
again, now solving the stationary phase equation:

g′(x0) = 0 ⇒ x0 = 1

1 − a
. (4.6)

The stationary phase point is exactly at the same position as the saddle point (4.3) of the string 
formfactor. We find

I (r,β) ∼ �(1 − β)(−a)−β

√
πa

λ(a − 1)
lnβ− 1

2 [(−a)a(1 − a)(1−a)] (4.7)

We conclude that the string world sheet becomes celestial in the limit of λ = ∑4
n=1 λn → ∞. It 

would be very interesting to establish a relation between the two underlying CFTs.

5. Four-gluon amplitudes in heterotic superstring theory

In heterotic superstring theory, similarly to type I, the four-gluon amplitude is related to the 
Yang–Mills amplitude (3.4) by a simple rescaling,

MH (−,−,+,+) =M(−,−,+,+) FH (s,u) , (5.1)

with the heterotic formfactor [28]

8 It is an open contour because it returns to 1 on a different Riemann sheet.
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FH (s,u) = − �(−α′s12) �(α′s23) �(α′s31)

�(α′s12) �(−α′s23) �(−α′s31)
= −�(−s) �(−t) �(−u)

�(s) �(t) �(u)
, (5.2)

where s = α′s12, t = −(1 − a)s, u = −as, with a = r−1 of Eq. (3.2). In the physical domain, 
s > 0, t < 0, u < 0, a ∈ (0, 1). At s → ∞,

FH (s,u) ∼ 2
sin(πas) sin[π(1 − a)s]

sin(πs)
× a2as(1 − a)2(1−a)s , (5.3)

i.e. the formfactor is exponentially suppressed, except at the singular points associated to massive 
string modes propagating in the s-channel.

Recall that the formfactor appears as a result of integrating one of four vertex position over the 
closed string world-sheet – the Riemann sphere which is usually mapped into a complex plane.9

It originates from the following complex integral:

FH (s,u) = − s

π

∫
C

d2z |z|−2s−2 |1 − z|−2u (1 − z)−1 . (5.4)

Note that this integral converges for s < 0, u < 0 only, while Eq. (5.2) represents its analytic 
continuation to all complex s and u.

The computation of heterotic celestial amplitude corresponding to (5.1) proceeds in the same 
way as in the open string case. The amplitude ÃH can be cast in the same form as (3.16), but 
now with I (r, β) replaced by

H(r,β) ≡ 1

2

∞∫
0

w−β−1FH (rw,−w)dw , β ≡ − i

2

4∑
n=1

λn . (5.5)

We use the integral representation (5.4) and, after switching the orders of integration, we obtain:

H(r,β) = −�(1 − β)
r

2π

∫
C

d2z

|z|2(1 − z)

[
r ln |z|2 − ln |1 − z|2

]β−1
. (5.6)

Next, we use the binomial expansion as in (3.19), to generate a series expansion in the powers of 
r−1. The first term contains the complex analog of (3.20):

1

2π

∫
C

d2z

|z|2(1 − z)
(− ln |z|2)β−1 = 2π δ

( 4∑
n=1

λn

)
. (5.7)

To see this, note that in polar coordinates z = ρeiφ , the angular integral of (5.7) becomes

1

2π

2π∫
0

dφ (1 − ρeiφ)−1 =
{

1, 0 < ρ < 1 ,

0, ρ > 1 ,
(5.8)

leaving

2β−1

1∫
0

dρ

ρ
(− lnρ)β−1 = 2π δ

( 4∑
n=1

λn

)
, (5.9)

9 Here again, three vertex positions are fixed by SL(2, C) symmetry of the sphere.
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which is exactly the same field-theoretical delta function as in (3.20). The remaining terms in 
the binomial expansion of (5.6) are complex integrals of the form very similar to Nielsen’s poly-
logarithms (3.23), with single-valued integrands (without branch points), so it is appropriate to 
consider them as generalized single-valued Nielsen’s polylogarithms:

Sc
n,k(t) ≡ (−1)n+k−1

π(n − 1)!k!
∫
C

d2z

|z|2 (1 − z)−1 lnn−1 |z|2 lnk |1 − zt |2 . (5.10)

We also define:

Sc(n, k) := Sc
n,k(1) . (5.11)

At the end, we obtain:

H(r,β) = 2π δ

( 4∑
n=1

λn

)

+ iπ

2
(−r)β−1 sinh

(
1

2

4∑
n=1

λn

)−1 ∞∑
k=0

(−r)−k Sc
(

− i

2

4∑
n=1

λn − k − 1, k + 1

)
.

(5.12)

Again, the integrals (5.11) can be determined by an explicit computation, e.g.

Sc(1, β) = (−1)β [1 + (−1)β ] ζ(1 + β) , Re(β) > −1 , (5.13)

which may be computed by using Gegenbauer decomposition, cf. Appendix B. Furthermore, for 
the k = 0-term in the sum (5.12) we have10:

Sc(β − 1,1) = −�(β − 1)−1π−1
∫
C

d2z

|z|2
(− ln |z|2)β−2

1 − z
ln |1 − z|2

= [1 − (−1)β ] �(β − 1)−1π−1
∫

|z|<1

d2z

|z|2
(− ln |z|2)β−2

1 − z

{ ∞∑
n=1

(
zn

n
+ zn

n

)}

= [1 − (−1)β ] ζ(β) , Re(β) > 1 . (5.14)

Let us compare the above result (5.12) with its type I open superstring analogue (3.26). The 
starting points for both expressions are the string formfactors FI of Eq. (3.10) and FH of Eq. 
(5.2). These are related by the single-valued projection11 [20]:

FH (s,u) = sv FI (s, u) . (5.15)

Recall that this relation holds at the level of α′-expansions, which are expansions in the powers of 
s and u. In the next step, these functions are integrated as in Eqs. (3.15) and (5.5). We expect that, 
at least in some region of parameters r and β , the relation (5.15) survives Mellin transformations:

H(r,β) = sv I (r,β) . (5.16)

10 To evaluate this integral we have introduced polar coordinates z = ρeiφ and used the integral 1
π

∫ 2π
0 dφ

cos(nφ)

1−ρeiφ =
ρn , 0 < ρ < 1.
11 For a detailed account on this projection we refer the reader to Appendix A.
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For the leading string correction, this entails

Sc(β − 1,1) = sv ζ(β) , (5.17)

and more generally:

Sc(β − k − 1,1 + k) = sv ζ
(
β − k, {1}k

)
, k = 1,2, . . . . (5.18)

In fact, putting (3.24) and (5.14) together gives rise to

Sc(β − 1,1) = [1 − (−1)β)] S(β − 1,1) = [1 − (−1)β)] ζ(β) , (5.19)

which for integer β (with β > 1) reduces to (5.17). Although for generic β ∈ C (with β 
= k + 1) 
it may be difficult to give a rigorous proof of the relation (5.18), we will present some more 
supporting arguments in the Appendix B.

In any case, while Nielsen’s polylogarithms (3.23) seem to be the natural objects for de-
scribing open string amplitudes on celestial sphere (cf. (3.26)), their single-valued version (5.10)
appear in closed string amplitudes (cf. (5.12)). This is reminiscent of the periods Sn,p appearing 
in the α′-expansion of the open string form factor (3.10) through the relation [25]

Sn,p = − 1

(n − 1)!p!
∂n+p−1

∂sn−1∂up

1

s
FI (s, u)

∣∣∣∣
s=u=0

, (5.20)

which in turn as consequence of (5.15) implies for the periods (5.11)

Sc(n,p) = − 1

(n − 1)!p!
∂n+p−1

∂sn−1∂up

1

s
FH (s,u)

∣∣∣∣
s=u=0

, (5.21)

with the formfactor FH given in (5.2), respectively.

6. Mixed gauge-gravitational amplitudes

We proceed to mixed amplitudes involving gauge bosons and gravitons. In Einstein–Yang–
Mills (EYM) quantum field theory, these scattering processes are due to minimal couplings of 
gauge bosons to gravitons. The simplest amplitude involving one graviton and three gluons [29]
is

M(−−,−,+,+) = 〈12〉4

〈23〉〈34〉〈42〉 = ω2
1ω2

ω3ω4

z4
12

z23z34z42
= r

z12z̄
2
34z14

z̄12z34z̄13
ω4 . (6.1)

In order to obtain the corresponding celestial amplitude, we apply the Mellin transform as in 
(2.4). The result is:

Ã(−−,−,+,+) = 4 δ(r − r̄)

(
z̄34

z12

)iλ1
(

z34

z̄12

)iλ2
(

z24

z̄13

)i(λ1+λ3)
(

z̄14

z23

)i(λ2+λ3)

× θ(r − 1) r3 z14 z̄34

z̄2
12 z2

34 z̄13
JE1 ,

(6.2)

with the energy integral:

JE1 =
∞∫

ω
i(λ1+λ2+λ3+λ4)
4 dω4 . (6.3)
0
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The above integral is linearly divergent in the ultra-violet. Under conformal SL(2, C), it trans-
forms in the same way as ω1+iλ

4 , where λ = ∑4
n=1 λn. Taking this into account, it is easy to see 

that the amplitude (6.2) has the transformation properties of a four-point correlation function of 
primary conformal fields with weights

h1 = −1

2
+ i

2
λ1 h̄1 = 3

2
+ i

2
λ1,

h2 = i

2
λ2, h̄2 = 1 + i

2
λ2,

h3 = 1 + i

2
λ3, h̄3 = i

2
λ3,

h4 = 1 + i

2
λ4, h̄4 = i

2
λ4,

(6.4)

in agreement with �n = 1 + iλn, J1 = −2, J2 = −1 and J3 = J4 = +1.
The amplitude with one graviton and three gauge bosons is also present in heterotic super-

string theory, where it incorporates the effects of all massive closed string excitations. Similarly 
to the case of four gluons, it is related to EYM amplitude by a simple rescaling [29,30]

MH (−−,−,+,+) =M(−−,−,+,+) FH (s,u) , (6.5)

where FH is exactly the same heterotic formfactor (5.2) as in the pure Yang–Mills case. This 
means that its celestial transform has the same form as (6.2), with JE1 of Eq. (6.3) replaced by:

JH1 =
∞∫

0

ω
i(λ1+λ2+λ3+λ4)
4 FH (s,u) dω4 . (6.6)

Unlike in quantum field theory, this integral is perfectly convergent because the string formfactor 
is exponentially suppressed at high energies, see (5.3). The heterotic celestial amplitude can be 
cast into a form of a four-point CFT correlator:

ÃH (−−,−,+,+) = 4(α′)β− 1
2 δ(r − r̄) θ(r − 1)

(
4∏

i<j

z
h
3 −hi−hj

ij z̄
h̄
3 −h̄i−h̄j

ij

)

× r
13−2β

6 (r − 1)
1−2β

6 H1(r, β) ,

(6.7)

with:

H1(r, β) = 1

2

∞∫
0

w−β− 1
2 FH (rw,−w)dw , β = − i

2

4∑
n=1

λn . (6.8)

The above integral is the same as the heterotic gauge integral (5.5) with the shifted parameter 
β → β − 1

2 , i.e.

H1(r, β) = H(r,β − 1
2 ) . (6.9)

Its expansion in the inverse powers of r has the same form as (5.12), although without the field-

theoretical delta function because its argument is empty. The first term is of order O(rβ− 3
2 ) and 

contains Sc(β − 3
2 , 1) = [1 − (−1)β− 1

2 ]ζ(β − 1
2 ).

The amplitudes with two gravitons and two gauge bosons can be discussed in a similar way.
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7. Four-graviton amplitudes in heterotic superstring theory

Over the last thirty years many intriguing connections have been discovered between gauge 
and gravitations forces. Some of the most interesting ones stem from the classic KLT relations 
[11] which allow expressing multi-graviton amplitudes as linear combinations of products of 
pure gauge amplitudes weighted by kinematic factors. KLT relations were originally derived in 
the framework of heterotic superstring theory. Since the α′ → 0 limit of the heterotic theory is 
described by a minimally coupled Einstein–Yang–Mills quantum field theory, the graviton am-
plitudes of Einstein’s theory can be expressed in terms of pure Yang–Mills (partial) amplitudes. 
We are interested in the four-graviton MHV amplitude which can be written as

M(−−,−−,++,++) =M(−,−,+,+) s12 M′(−,−,+,+) , (7.1)

where M(−, −, +, +) is the Yang–Mills amplitude of (3.4) and the prime indicates 3 ↔ 4 trans-
position with respect to the canonical (1, 2, 3, 4) particle ordering. In terms of the energy and 
celestial coordinates, this becomes:

M(−−,−−,++,++) = ω2
4

|z14|2|z34|2
|z13|2

(
r

z12z̄34

z̄12z34

)2

. (7.2)

The corresponding celestial amplitude is

Ã(−−,−−,++,++) = 4 δ(r − r̄)

(
z̄34

z12

)iλ1
(

z34

z̄12

)iλ2
(

z24

z̄13

)i(λ1+λ3)
(

z̄14

z23

)i(λ2+λ3)

×θ(r − 1) r4 |z14|2|z34|2
|z13|2

z12 z̄34

z̄3
12 z3

34

JG , (7.3)

with the gravitational energy integral

JG =
∞∫

0

ω
1+i(λ1+λ2+λ3+λ4)
4 dω4 , (7.4)

which is now quadratically divergent in the ultra-violet. The above amplitude has the transfor-
mation properties of a CFT correlation function of four primary fields with the weights:

h1 = −1

2
+ i

2
λ1 h̄1 = 3

2
+ i

2
λ1,

h2 = −1

2
+ i

2
λ2 h̄2 = 3

2
+ i

2
λ2,

h3 = 3

2
+ i

2
λ3 h̄3 = −1

2
+ i

2
λ3

h4 = 3

2
+ i

2
λ4, h̄4 = −1

2
+ i

2
λ4 .

(7.5)

In heterotic superstring theory, four-graviton amplitude is related to Einstein’s amplitude by a 
simple rescaling,

MH (−−,−−,++,++) =M(−−,−−,++,++) FH (s,u) , (7.6)

where FH is the same formfactor (5.2) as in the four-gluon case. As a result, we obtain the 
following celestial amplitude:
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ÃH (−−,−−,++,++) = 4 (α′)β−1 δ(r − r̄) θ(r − 1)

(
4∏

i<j

z
h
3 −hi−hj

ij z̄
h̄
3 −h̄i−h̄j

ij

)

× r
11−β

3 (r − 1)
−1−β

3 G(r,β) ,

(7.7)

with:

G(r,β) = 1

2

∞∫
0

w−β FH (rw,−w)dw , β = − i

2

4∑
n=1

λn . (7.8)

Note that the above integrand is square integrable. Once again, we obtain the heterotic integral 
(5.5), now shifted by β → β − 1, i.e.

G(r,β) = H(r,β − 1) . (7.9)

Its expansion in the inverse powers of r has the same form as (3.26) but now, due to the 
shift, the field theoretical delta function is absent. The first term contains Sc(β − 2, 1) =
[1 + (−1)β ] ζ(β − 1). The series begins at O(rβ−2) order. Note that at large r , the r-dependent 
prefactor in (7.7) grows like r

10
3 , therefore four-graviton celestial amplitude blows up in the 

forward scattering limit of r → ∞.

8. Conclusions

In this work, we transformed traditional four-point, tree-level scattering amplitudes of gauge 
bosons and gravitons, describing transitions between their momentum eigenstates, into confor-
mal correlation functions of primary fields on the celestial sphere. In this new representation, the 
Lorentz group is realized as the conformal symmetry of the sphere. We considered such ampli-
tudes in type I open string theory and in closed heterotic superstring theory, which in the zero 
slope limit (α′ → 0) are described by minimally coupled Einstein–Yang–Mills systems. This 
framework ensured ultraviolet finiteness of Mellin transforms of all amplitudes, including the 
amplitudes involving gravitons that suffer from uncontrollable growth in Einstein’s theory while 
in superstring theory they become supersoft, exponentially suppressed at high energies.

In the momentum space, four-particle amplitudes depend on two kinematic variables that can 
be chosen to be the center of mass energy and the scattering angle. The scattering angle depen-
dence remains on the celestial sphere as the dependence on one cross-ratio r of the four insertion 
points of the primary fields; r is constrained to be a real number as expected by the planarity 
of four-particle scattering processes. On the other hand, particle energies are transformed into 
the Mellin–dual energy parameters corresponding to the imaginary parts λn of the dimensions 
�n = 1 + iλn of primary fields. It is remarkable that after extracting conformal prefactors, the 
amplitudes depend only on the total dual energy λ = ∑4

n=1 λn, so the celestial amplitudes de-
pend on two parameters only, the same number as the usual amplitudes. Actually, this total energy 
turns out to be zero for pure Yang–Mills amplitudes, as a consequence of the four-dimensional 
conformal symmetry (scale-invariance) that holds in Yang–Mills theory at the tree-level. There 
are no such constraints for gravitational amplitudes or for superstring amplitudes, but even in 
Yang–Mills theory, λ = 0 is not expected to hold beyond the tree approximation.

One interesting feature of celestial superstring amplitudes is their trivial dependence of the 
string parameter α′ which is reduced to an overall power factor. In traditional amplitudes, α′ →
0 is considered as the field theory limit, in which the heavy string modes decouple from the 
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massless spectrum. In celestial amplitudes, all string excitations participate at the same footing. 
There is, however, a limit in which gauge boson amplitudes approach the Yang–Mills limit. It 
is r → ∞, which corresponds to forward scattering, a process dominated by the exchanges of 
massless particles. In the presence of gravitons, however, this limit is singular.

The celestial superstring amplitudes were presented as series in the inverse powers of r , that 
is as small scattering angle expansions, with the coefficient determined by the periods (special 
values) of Nielsen polylogarithms (3.21) and their complex generalizations (5.10). The latter can 
be interpreted as single-valued descendants of the real Nielsen polylogarithms. We explained 
how the single-valued projection, that relates heterotic and open string amplitudes order by order 
in their α′ expansions, is implemented at the level of celestial amplitudes.

Another interesting property of celestial superstring amplitudes is revealed in the λ → ∞
limit. In this limit, the dominant contributions can be analyzed by using the stationary phase 
approximation, in a way similar to the saddle point approximation used for extracting the asymp-
totic “super-Planckian” behavior of standard amplitudes. The amplitudes involve integrating over 
the positions of string vertex operators on the world-sheet, more precisely just one vertex position 
left after the positions of three remaining ones are fixed by the world-sheet conformal invariance. 
In the stationary phase approximation, this integral is dominated by the position determined by 
r , therefore the world-sheet can be identified with the celestial sphere. This raises an interesting 
question whether CFT on celestial sphere is related in some way to free CFT on the world-sheet.

Hopefully, the properties of celestial scattering amplitudes will be helpful in extracting more 
information about the underlying CFT on celestial sphere.
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Appendix A. The single-valued projection

Power expanding the string formfactors FI of Eq. (3.10) and FH of Eq. (5.2) w.r.t. small α′
gives:

FI (s, u) = 1 − ζ(2) su − ζ(3) su (s + u) − 2

5
ζ(2)2 su (s2 + 1

4
su + u2) +O(α′ 5) ,

FH (s,u) = 1 − 2 ζ(3) su (s + u) +O(α′ 5) , (A.1)

respectively. Note, that with the relations (5.20) and (5.21) the coefficients in the powers series 
expansions (A.1) are given by Nielsen’s polylogarithms (3.23) and their complex analogs (5.10), 
respectively. Moreover, in Ref. [19] it has been observed that the second series can be obtained 
from the first series by applying the following map:
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sv :
{

ζ(2n + 1) �→ 2 ζ(2n + 1), n ≥ 1 ,

ζ(2) �→ 0 .
(A.2)

This map represents the single-valued projection sv introduced in (5.15). It is called projection 
since, e.g. ζ(2)-terms are projected out. More generally, sv represents a morphism acting on 
the space of MZVs (3.25) mapping the latter to a subspace of MZVs, namely the single-valued 
multiple zeta values (SVMZVs) [18]

ζsv(n1, . . . , nr) ∈ R . (A.3)

The numbers (A.3) can be obtained from the MZVs (3.25) by generalizing the map (A.2) to the 
full space of MZVs [18]:

sv : ζ(n1, . . . , nr ) �→ ζsv(n1, . . . , nr ) . (A.4)

The map (A.4) has been constructed12 by Brown in Ref. [18], where also SVMZVs have been 
studied from a mathematical point of view. For instance, we have ζsv(5, 3) = sv(ζ(5, 3)) =
−10ζ(3)ζ(5) and ζsv(7, 3) = sv(ζ(7, 3)) = −28ζ(3)ζ(7) − 12ζ(5)2.

Generically, in the α′-expansion of open superstring tree-level amplitudes the whole space of 
MZVs (3.25) enters [31,32], while closed superstring tree-level amplitudes exhibit only the sub-
set (A.3) of SVMZVs in their α′-expansion [31,19]. The relation between open and closed string 
amplitudes through the single-valued projection (A.4) has been observed in [19] and established 
in [20].

Appendix B. Single-valued Nielsen’s polylogarithms

The Nielsen’s generalized polylogarithms (3.23) can be expressed in terms of harmonic poly-
logarithms Lw . The latter are specified by a word w of letters e0 and e1 as

Le0w(x) =
x∫

0

Lw(t)

t
, Le1w(x) =

x∫
0

Lw(t)

1 − t
,

with

Len
0
(x) = 1

n! lnn x , Len
1
(x) = (−1)n

n! lnn(1 − x) ,

and L1 = 1 with 1 being the empty word. There is also an expression in terms of Goncharov 
polylogarithms, which are recursively defined through the iterated integral [33]

G(a1, . . . , an; t) =
t∫

0

dx1

x1 − a1
G(a2, . . . , an;x1) . (B.1)

In terms of Goncharov polylogs we have:

G(0n;x) = Len
0
(x) G(1n;x) = (−1)n Len

1
(x) .

12 Strictly speaking, the map sv is defined in the Hopf algebra H of motivic MZVs ζm. In this algebra H the ho-
momorphism sv : H → Hsv, with ζm(n1, . . . , nr ) �→ ζm

sv(n1, . . . , nr ) and ζm
sv(2) = 0 can be constructed, cf. [18] for 

details.
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The Nielsen’s generalized polylogarithms are expressed as [34]:

Sn,p(z) = (−1)p G(0n,1p; z) = Lin+1,1,...,1(z,1, . . . ,1) . (B.2)

In particular we have:

G(n,p) := Sn,p(1) = (−1)p G(0n,1p;1) = ζ(n + 1,1, . . . ,1) . (B.3)

The relation (B.2) is derived by first applying shuffle relations as follows:

Sn,p(z) = (−1)n+p−1

1∫
0

dt

t
G(0, . . . ,0︸ ︷︷ ︸

n−1

; t) G(
1

z
, . . . ,

1

z︸ ︷︷ ︸
p

; t)

= (−1)n+p−1

1∫
0

dt

t

∑
w∈{0} III {1/z}

G(w; t) = (−1)n+p−1
∑

w∈{0} III {1/z}
G(0,w;1)

= (−1)p G(0, . . . ,0︸ ︷︷ ︸
n

,1, . . . ,1︸ ︷︷ ︸
p

; z) . (B.4)

In the last step, shuffle relations as G(a1, a2, . . . , al−1, 0; z) = G(a1, a2, . . . , al−1; z)G(0; z) −
G(a1, a2, . . . , 0, al−1; z) . . .−G(a1, a2, . . . , 0, al−2, al−1; z) − . . .−G(0, a1, a2, . . . , al−1; z) are 
applied to eliminate any term with al = 0 and eventually apply the scaling relation.

Multiple polylogarithms Lw(z) can be combined with their complex conjugates Lw(z) to 
remove branch cuts at 0, 1 and ∞ and obtain a single-valued function on CP1/{0, 1, ∞}. The 
single-valued multiple polylogarithms (SVMPS) have been introduced by Brown [35]. They are 
entirely constructed from holomorphic and anti-holomorphic harmonic polylogarithms as real 
analytic functions on the punctured complex plane C/{0, 1}. There exists a unique family of 
SVMPS Lw(z), each of which is a linear combination of the functions Lw1(z)Lw2(z), with w1
and w2 words in e0 and e1 and they fulfil the following differential equations

∂

∂z
Le0w(z) = Lw(z)

z
,

∂

∂z
Le1w(z) = Lw(z)

1 − z
, (B.5)

such that L1(z) = 1 and

Len
0
(z) = 1

n! lnn |z|2 , (B.6)

and lim
z→0

Lw(z) = 0 if w is not of the form en
0 . Besides, the functions Lw(z) fulfill the shuffle 

relations. Furthermore, we have:

Len
1
(z) = (−1)n

n! lnn |1 − z|2 . (B.7)

In terms of (B.6) and (B.7) the numbers Sc(n, p) defined through (5.10) and (5.11) as 
Sc(n, p) = Sc

n,p(1) read

Sc(n,p) = π−1 (−1)n+p−1

(n − 1)!p!
∫
C

d2z

|z|2 (1 − z)−1 lnn−1 |z|2 lnp |1 − z|2

= π−1 (−1)n−1
∫

d2z

|z|2 (1 − z)−1 L
en−1

0
(z) Le

p
1
(z) , (B.8)
C
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whose integrand is manifestly single-valued. The complex integral (B.8) can be performed by 
Gegenbauer technique, which uses the expansion [21]

1

|1 − z|2α
=

⎧⎪⎪⎨⎪⎪⎩
∞∑

n=0
C

(α)
n (cos θ) rn, 0 < r < 1 ,

∞∑
n=0

C
(α)
n (cos θ) r−n−2α, r > 1 ,

(B.9)

with Gegenbauer polynomials C(α)
n and z = reiθ . With the latter method we directly compute, 

e.g.

Sc(1,1) = −π−1
∫
C

d2z

|1 − z|2 z
ln |z|2

= − 2

π

2π∫
0

dθ

∞∑
n=0

C(1)
n (cos θ) e−iθ

⎛⎝ 1∫
0

dr rn ln r +
∞∫

1

dr r−n−2 ln r

⎞⎠ = 0 ,

Sc(2,1) = π−1
∫
C

d2z

|1 − z|2 z
ln |z|2 ln |1 − z|2

= − 2

π

∂

∂α

2π∫
0

dθ

∞∑
n=0

C(α)
n (cos θ)e−iθ

⎛⎝ 1∫
0

dr rn ln r +
∞∫

1

dr r−n−2α ln r

⎞⎠∣∣∣∣∣∣
α=1

= 2 ζ(3) ,

in agreement with (5.13) and (5.14), respectively. In fact, these integrals are just the single-valued 
projection of the corresponding real Nielsen polylogarithms (3.23), i.e. Sc(1, 1) = sv S1,1(1) =
sv ζ(2) = 0, and Sc(2, 1) = sv S2,1(1) = sv ζ(3) = 2ζ(3), respectively. Furthermore, in the same 
way we easily verify:

Sc(1,2p − 1) = − 1

π(2p − 1)!
∫
C

d2z

|z|2 (1 − z)
(ln |1 − z|2)2p−1 = 0 ,

Sc(1,2p) = 1

π(2p)!
∫
C

d2z

|z|2 (1 − z)
(ln |1 − z|2)2p

= 2 ζ(2p + 1) = sv ζ
(

2, {1}2p−1
)

, p ≥ 1 .

(B.10)

Alternatively, the complex integrals (B.8) may be computed by the residue theorem [36] yielding:

Sc(n,p) = sv Sn,p(1) = sv ζ
(
n + 1, {1}p−1

)
. (B.11)

This relation can be proven for integer n, p ≥ 1 and (5.17) should be read as analytic continuation 
of the relation (B.11).
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