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Abstract

We transform superstring scattering amplitudes into the correlation functions of primary conformal fields
on two-dimensional celestial sphere. The points on celestial sphere are associated to the asymptotic di-
rections of (light-like) momenta of external particles, with the Lorentz group realized as the SL(2, C)
conformal symmetry of the sphere. The energies are dualized through Mellin transforms into the parame-
ters that determine dimensions of the primaries. We focus on four-point amplitudes involving gauge bosons
and gravitons in type I open superstring theory and in closed heterotic superstring theory at the tree-level.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In modern-day particle colliders, accelerators produce beams of incident particles with spe-
cific energies and momenta, described to a reasonable accuracy by the packets of plane waves
with a narrow spread of four-momentum. Similarly, the detectors are designed to measure four-
momenta of the scattered particles. Hence it is not surprising that almost all studies of the
scattering amplitudes are focused on the transitions between four-momentum eigenstates (planar
wave-functions). For example, the Feynman rules are usually formulated in such a momentum
representation.
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Much of the recent progress in computing the scattering amplitudes is due to the applications
of spinor-helicity techniques. For a review, notations and conventions, see [1]. The amplitudes
describing massless particles are most succinctly expressed in terms of momentum spinors which
transform under Lorentz transformations in the defining representations of SL(2, C). Some time
ago, when investigating relations between field-theoretical and string amplitudes, we defined
complex projective coordinates z = o7 /02, the ratios of momentum spinor components o and
07, and mapped these kinematic variables into the positions of vertex operators on the Riemann
sphere describing string world-sheet [2,3]. The Lorentz symmetry under

az+b
cz+d

was mapped into conformal symmetry group of the spherical world-sheet. This mirrored the
observation made long ago by Penrose that the snapshots of night sky — the so-called celestial
sphere, as taken by different observers, are related by such conformal transformations.

More recently, Strominger [4] and collaborators applied a similar construction to map the
scattering amplitudes from the momentum space to celestial sphere in Refs. [5,6]. In Minkowski
spacetime parameterized by Bondi coordinates (u, r, z, 7), z and z describe celestial sphere. On
the other hand, in terms of the projective coordinates mentioned in the previous paragraph, any
light-like momentum can be written as

z—> (ad —bc=1), (1.1)

. 1 . -
pl=wgh, with g* =2 (14 1af e+ 2 —i = 2. 1= 12P). (1.2)
where o is the light-cone energy scale which transforms as
®— (cz+d) (CZ+d) o (1.3)

under conformal transformations (1.1). After expressing all kinematic variables in terms of w, z
and z, the standard transition amplitudes between momentum eigenstates become functions of
celestial coordinates and energies. Actually, the amplitudes can be streamlined into familiar 2D
CFT correlators by considering the scattering of so-called conformal wave packets [7]

o0

o N A-1 _tiogx—ew __ (:Fi)AF(A)
Pxx ,Z,Z)—/a) e TR AT (1.4)

0

which are Mellin transforms of the usual plane waves. These packets are described by massless
scalar conformal primary wave functions of dimension A, the variable dual to the energy in
the Mellin sense, and can be generalized to higher spin [7]. By using such Mellin transforms,
“old-fashioned” gauge and gravitational amplitudes can be converted into conformal correlators
of primary fields on celestial sphere, labeled by their conformal spin and dimensions.

There are several interesting aspects of this proposal. Perhaps most remarkably, understanding
the nature of 2D CFT on celestial sphere would enable a holographic description of flat spacetime
[8,9]. Unfortunately, as pointed out by Strominger, it is not a “garden variety” of CFT, although it
has some intriguing properties. For example, soft photons correspond to A = 1 current insertions
on celestial sphere, and the related soft theorems can be interpreted as Ward identities associated
to certain asymptotic symmetries [4,10]. We are interested, however, in another aspect.

Together with the progress in computing the scattering amplitudes in perturbative gauge the-
ories, Einstein’s gravity, Einstein—Yang—Mills (EYM) theory and string theory, it became clear
that gravitational interactions are closely related to gauge interactions, at least at lowest orders
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of perturbation theory. The archetypal Kawai-Llewellen—Tye (KLT) relations relate the ampli-
tudes with external gravitons to products of pure gauge amplitudes [11]. The color-kinematic
duality reveals some intriguing kinematic gauge structures hidden in gravitational amplitudes
[12]. Finally, the most recent collinear relations [13—15] allow substituting gravitons with pairs
of collinear gauge bosons in practically all EYM amplitudes. All this indicates to yet unknown,
profound connections between gravity and gauge interactions. Can 2D CFT on celestial sphere
offer some new insight into these connections?

There are some good reasons to address the above question in the context of string theory.
Indeed, the gauge-gravity connection appears to be a consequence of the observation that closed
strings look like two open strings connected at the ends. The most important reason however is
that every order in the perturbative expansion of gravity violates the unitarity bounds by growing
powers of energy. As we will see later, this uncontrollable growth at large energies poses an
obstacle for transforming gravitational amplitudes to celestial sphere. This problem does not
appear in string amplitudes which are renowned for their super-soft ultraviolet behavior [16,
17]. Furthermore, returning to the connection of kinematic variables to the string world-sheet
mentioned at the beginning, we want to know if there are any connections between a relatively
simple CFT on the world-sheet and rather intricate CFT on celestial sphere. To that end, we
will discuss Mellin transforms of full-fledged superstring amplitudes. We will start from the
amplitudes with three external particles, for which there is no difference between QFT and string
theory.

2. Preliminaries and three-particle amplitudes

In the first step towards celestial life, the amplitudes are expressed in terms of complex co-
ordinates and light-cone energies. The relevant SL(2, C) conformal transformation properties
are given in Eqgs. (1.1) and (1.3), respectively. We will be classifying conformal primary fields
according to their conformal weights (i, h) or their dimensions A = h + h and spins J = h — h.
Note that energies transform in (1.3) as weight (1/2, 1/2) primaries. The amplitudes, written in
the helicity basis, depend on the spinor products [1]

) =Joiw;i Zij , lij] = —Jwio) Zij (zij=zi—2j, Zij =% —Zj) 2.1

and the usual scalar products:

sij =2pip; = (ij)ljil = wiw;jzijZij - 2.2)

The angle products (- - - ) have weights (—1/4, 1/4) while the square products [- - - ] have weights

(1/4, —1/4). These weights allow identifying four-dimensional helicity with 2D conformal spin.

We will start from two-particle collisions in which two incident particles, with momenta p;

and p», scatter into N — 2 particles in the final state. They are described by the amplitudes of the
general form

N
A=i@m)ts® (pl +p2 - Zpk) M, (2.3)

k=3
where M are the so-called invariant matrix elements that can be computed by using Feynman
rules or some other techniques.' They depend on all quantum numbers, including internal gauge

1 From now on we will skip the factor i(2n)4.
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charges, and may contain some group-dependent (a.k.a. color) factors. In such cases, i.e. in the
presence of gauge bosons, we will be considering the so-called “partial” amplitudes associated
to the canonical trace factor, that is purely kinematic functions “stripped” of color factors.

All conformal primary wave functions (1.4) and their higher spin partners solve 4D wave
equations, but in order to form complete, normalizable sets, their dimensions must be restricted
to the principal continuous series with A =1 4 iA, A € R [7]. Thus Mellin transforming a given
amplitude from the momentum basis to the conformal basis amounts to evaluating:

N N
A @ns Zn) = (1‘[ / w;;*"dwn) 8D (@ig1 + 292 = Y 0rgk) M(@n, 20, Zn) . (24)
n=1 0

k=3

In the case of three external particles, the amplitudes vanish because the constraints of mo-
mentum conservation, as enforced by the delta function inside (2.4), force all kinematic invariants
to be zero. These constraints can be relaxed by changing the metric signature from (+ — — —)
to (+ + — —). This allows treating z and 7 as two independent real variables. Then two classes
of non-trivial kinematic solutions are allowed: all z;; = 0 with all z;; # 0 or all z;; = 0 with
all z;; # 0. In the case of amplitudes involving three gauge bosons, the first one is appropriate
for “mostly minus” helicity configurations while the second one is good for the “mostly plus”
amplitudes. We will focus on the latter ones. Assuming all z;; # 0, the momentum-conserving
delta function can be written as

@) 4 1 232 231 o
W (w1g1+ g2 —w3g3) = — §(w1 ——w3) 8(w2 — —w3) 8(213) 8(223) , (2.5)
w5 223731 212 221
with the additional constraint that the variables must be ordered in one of two possible ways:
71 <73 <22 Or 23 < 73 < Z1, to ensure that all energies are positive.
The mostly-plus three-gluon amplitude is given by”:
(12> o 73,

M(—,— +)= = . 2.6
( +) (13)(23) w3 213223 @0

The corresponding celestial amplitude is:

o

~ 1=iGu+A2) it —1 _ido—1 g = \g/= [ (g +A3)—1

A=, = 4) =4y trth) sl 5(113)5(Z23)/w’3( A2 s .7
0

This amplitude has conformal transformation properties of a three-point correlation function of
primary conformal fields with weights®

i - i
hi ==X, hi =14+ =X,
1 21 1 +21
i - i
hy = =M, hy =14 =2s, 2.8
2= 72 2 +22 (2.8)
i - i
h3=1+ =A3, hy = =\3,
3 +23 3 23

2 We are using here a self-explanatory notation and skip the coupling constant factors. In case of any doubt, the reader
should consult [1].
3 Actually, due to the delta functions, h-weights are not uniquely determined. The only constraint is 22:1 hy =

24+ 553
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in agreement with A, =1 +iA,, J1 = J» = —1 and J3 = +1. Note that the energy integral
remaining on the r.h.s. of (2.7) is logarithmically divergent in the infra-red and in ultra-violet.
Since any cutoff would violate SL(2, C) symmetry, there is no other choice than to interpret it in
the sense of a distribution [6]:

o
f W IR g 0 §(hy +d0 + A3) - 29)
0

We do not discuss here other helicity configurations because they can be analyzed in a similar
way.
The mostly-plus three-graviton amplitude is given by the square of three-gluon amplitude®:

(120 ojw) 2
(132232~ o? 2,22,

M=~ 44 = 2.10)

The corresponding celestial amplitude is:
0
A==, ==, +4) =42 PR =l bl 52 0y 5(203) f MR gy @211
0

It has conformal transformation properties of a three-point correlation function of primary con-
formal fields with weights®

1 i - 3
hi=—=+4+ =1, hi==+4=Ap,
1 2+21 1 2+21
| - 3 g
hy=—=+ =)o, hy ==+ —Aa, 2.12
2 2-I—2 2 2 2+2 2 (2.12)
hy=2+ L fy= s+ i
3_2 2 3, 3= 2 2 3,
in agreement with A, =1+ 1iX,, J| = J» = —2 and J3 = +2. The main difference, however,

between the gravitational and gauge amplitudes is the energy integral, which in the gravitational
case (2.11) is linearly divergent in the ultraviolet. The degree of this divergence will grow with
the number of external gravitons, reflecting the violation of unitarity bounds at each order of
perturbative Einstein’s gravity. One needs an ultraviolet completion of the theory in order to
make sense out of the gravitational amplitude (2.10). In the next section, we will see that string
theory does indeed provide such a completion.

There is one more mostly-plus amplitude which is useful for studying the gauge-gravity con-
nection. It is the EYM amplitude involving one graviton and two gauge bosons

(12)% _ Wl i
(23)2 w3 23,

M(——,—,+H) = (2.13)

4 Here again, we skip the (gravitational) coupling constant factors.
5 Actually, due to the delta functions, i-weights are not uniquely determined. The only constraint is 22:] hy =

24+ 533
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The corresponding celestial amplitude is
o
A==, —, ) = a0 =l b 5200 8(203) / M) gy (2.14)
0

which is linearly divergent again. It is easy to check that also in this case, the weights agree with
the dimensions and spins of gauge and graviton primaries.

In superstring theory, at the energies much smaller than the characteristic string energy scale
(determined by the ‘universal Regge slope” parameter o), gravitons and gauge boson interact
exactly the same way as in EYM theory. String corrections due to massive string excitations
appear at higher energies and are often discussed in terms of the expansion in powers of o,
which has dimension of length square. These corrections are absent, however, at the level of
three-point amplitudes, for purely kinematic reasons. In the next section, we will see how string
effects appear in four-particle celestial amplitudes.

3. Four-gluon amplitudes in open superstring theory

At the perturbative level, two distinct superstring theories include massless gauge bosons: type
I open superstrings and heterotic superstrings. The latter incorporates gravitons in the massless
spectrum and is suitable for studying mixed gauge-gravitational amplitudes. Virtual gravitons
and massive neutral closed string excitations can propagate also inside pure gauge amplitudes,
therefore the heterotic theory gives rise to a richer variety of multi-trace color structures. Here, we
focus on the amplitudes with single-trace color factors and the corresponding partial amplitudes.
Open and heterotic single trace amplitudes are different, but they both reproduce Yang Mills
amplitudes in the &’ = 0 limit. Furthermore, they are related by the mathematical operation called
“single-value” (sv) projection [18,19]: the a’ expansion series of heterotic amplitudes can be
obtained by acting with sv on the open ones [20,21]. The effect of single-value projection is to
map the zeta function coefficients onto a subspace thereof, for example sv[{(2)] =0, sv[¢(3)] =
2¢(3), etc. The kinematic dependence of a’ expansion coefficients remains untouched by the map
sv. For the purpose of our discussion, we will be considering open and heterotic cases separately,
in each case applying (2.4) to transform the amplitudes.

In the case of four particles, the momentum-conserving delta function inside (2.4) can be
rewritten as

4
w4)z141%|2231?

s (wl 224234 w4) 4 (a)z 214234 w4> 5 (w3 | 24 w4> 5 — 7).

8 (w1q1 + w2g2 — w3q3 — waqa) =

212213 712232 223213
3.1
where r is the conformal invariant cross ratio:
212234
r= . (3.2)
223241

The physical meaning of this parameter can be understood by computing the ratio of Mandel-
stam’s variables s = 512 = (p1 + pz)2 and u = —s23 = (p2 — p3)2

1 6
Sﬁz_z_ﬁzsﬂﬂ(_), (3.3)
s 2

S12 r
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where 0 is the scattering angle in the center of mass frame. From the above relation it is clear that
the cross-ratios are restricted to r > 1. Indeed, r = r, as required by the delta function in (3.1),
together with r > 1, ensure that all energies, as determined by the delta functions remaining in
(3.1), are real and positive. In the physical domain, s > 0 and u = —s/r < 0.

All four-particle amplitudes belong to the class of maximally helicity violating (MHV); as in
the previous section, we will be considering mostly plus MHV configurations only. The well-
known four-gluon Yang—Mills amplitude is

3 -
(12)3 _@o 3y 21T

M(_’ ) +? +) = = — s
(23)(34)(41)  w3w4 223734241 212234

(3.4)

where in the last step, we used the constraints of (3.1). The corresponding celestial amplitude is

- = il iAp i(A14+2A3) /= i(Ay+A3)
A= =+ ) =460 —7) (Zﬁ> (Zﬁ> (Zﬁ> (Zﬁ>
212 212 213 223

1’3
X 9(}" — 1) ﬁ .]O .
212434

(3.5)

where the step function 6 (r — 1) enforces the kinematic constraint » > 1 and the energy integral
is:

[e¢)
Jo= f w MO g, (3.6)
0

It is easy to see that the conformal weights agree with A, =1+ iA,, J1 =Jo=—1and J3 =
J4 =+1. As in the three-particles case, the energy integral yields:

4
Jo=27 5(2%). (3.7)
n=1

At this point, one can cast the amplitude in a form appropriate to a four-point CFT correlator

4
A=, =+, +) =87 5(r — f)g(Zx,,)
n=1

(3.8)

4 —

Y—hi=hj _S=hi—h;\ 3 2

< | [Tz "Mz ) rse =3 -,
i<j

where h = Zi:l h, and h = Z:=1 h,,. Up to some numerical factors, the above result is in
agreement® with [6].

The type I open superstring amplitude is related to the Yang—Mills amplitude by a simple
rescaling

MI(_7_7 +’ +):M(_’_7 +7 +) F[(S,Lt) ) (39)

with the string “formfactor” [23]

6 Yang-Mills amplitudes with five and more external gluons have been recently discussed in [22].
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, , , r'a—-srd—u
Fi(s,u)=—a'spB(—a's1p, 1 +a'sp3) =—sB(—s,1 —uy)y= ————=
'l—s—u)

where we rescaled Mandelstam’s variables by the string scale: s = a’s12 and u = —a'sy3 =
—s/r. Since s > 0 and u < 0, the poles due to massive string excitations appear in the s-channel
only, at s integer and positive. Before transforming the amplitude to celestial sphere, we want to
exhibit the well-known super-soft high energy behavior of the formfactor, at s — oo and fixed

. (3.10)

angle, i.e. fixed r > 1. It is convenient to define a = 1/r € (0, 1), so that u = —as. Then
i 1-— r 1 —
Fi(s.u) = as Sln[ff( a)s] I'(as) T'[(1 — a)s] 3.11)
sin(rrs) I'(s)

and the asymptotic behavior can be determined by using Stirling’s formula

Fi(s. 1) ~ 2mwas sin[rf(l —a)s] (1 — a)(l—a)s ’ (3.12)
(1—a) sin(rrs)

which is exponentially suppressed at s — oo, except at the singular points.
The celestial string amplitude corresponding to (3.9) is given by the same expression as the
Yang—Mills amplitude (3.5), but now with Jy replaced by a non-trivial energy integral:

o0
Jy= / w MO B (6 ) day . (3.13)
0
Recall that the formfactor Fj is given by (3.10), with:

2 2
s=a/(r— el o S (3.14)
|z13]2 r
The basic difference between Yang—Mills (3.6) and string (3.13) energy integrals is in the ultra-
violet regime at wqs — 00, where the exponential suppression (3.12) of the string formfactor
makes it square-integrable. In addition, the integration runs over massive string poles, although
it is not a problem because these singularities can be handled by using the ie prescription [24].
Note that there is no difference in the infrared because F (s, u) — 1 as w4 — 0. It is convenient

to change the integration variables and express the amplitude in terms of the integral:

o0 . 4
1(r, B) :=%/w‘ﬁ_1F1(rw,—w)dw, ﬂ::—%ZAn. (3.15)
0 n=1

After some algebra, we obtain:

- S h g h_p_i
Ai(=, =+, 0 =4@) 80 =7) 00 = 1) (1_[15- M hj)

i<j (3.16)
< =051 B).

In order to compute the energy integral (3.15), it is convenient to use the explicit integral
representation of the beta function that enters the formfactor in (3.10):

1
B(—rw,1+w)=/dx x7Ir = (3.17)
0
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With w > 0, this representation is valid for r < 0 only, i.e. outside our kinematic domain. Never-
theless, we will use it and perform analytic continuation to » > 1 at the end. After switching the
orders of integration in (3.15), we obtain:

1
I(r,,B):—F(l—ﬁ)% /”_lx—x [rInx — In(1 — x)]P~" | (3.18)
0

In order to compute this integral, we use the binomial expansion:

o0

[rFlnx —In(1 — x)]P~ ' = Z Fkk+1-p)

B—k—1 1 ko1 _
2 T+ oA B (rInx) Inf(1 = x) . (3.19)

The first term yields the same delta function (3.7) as in Yang-Mills theory,

| [d 4
5/7’“ (—Inx)P~1 = 2x S(Z,\n>, (3.20)
0 n=1

while the subsequent terms involve polylogarithmic integrals:

!
._ CR dx B—k—1 1k
SB—k,k):= TB -k + 1) / 7 (Inx) In" (1 — x). (3.21)
0

In this way, the energy integral (3.15) becomes:

4 1 00
1(r, B) =2n8<zxn) +5 TOTA=) = Y (=T SB—kkb. (322
n=1 k=1

The expansion coefficients (3.21) are related to Nielsen’s polylogarithm functions S, ¢ (t) [25]

( ])n+k 1 :
— @A -
Sk = o / ' x k(1 —x1) , reC, (3.23)

labeled by positive integers n and k. Assuming that this function can be extended to complex 7,
S(B—k, k) = Sg_ k(1). This is not difficult for the first term because S, 1 (t) = Li,+1(t), where
Li, 4 is the standard polylogarithm of order n + 1. Since Li,+1(1) =¢(n+ 1), S(B—1,1) =
£(B), which can be checked by an explicit computation of the integral (3.21):

1

SB—1,)=-I(B-1"" / i—x (=Inx)?~? In(1 — x)

0
o L n 00
=F(B-1" 1Zfix (—In0)f 2= =30 =5(8) . Re(B) > 1.
n=1y n=1

(3.24)
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Fork > 1, Spx(1) =¢(n + 1, {1}¥=1) [26,27], where

_ 1
4+ 1L, {1 Y=tm+1,1,.... )= Z T (3.25)

k—1 n1>n2>~~>nkn1 na---nk

is a multiple zeta value (MZV) of depth k. At the end, we obtain:

4
I(r,ﬂ)=2n8(ZAn>

n=l (3.26)

4 —1 o0 4
+%(—r)ﬂ—1sinh<%z,\n> Z( r) ( 3=k )
n=1 n 1

The final result, summarized in Egs. (3.16) and (3.26), has some interesting features. The
delta function part of the string amplitude agrees with Yang—Mills theory. The remaining terms
should be hence interpreted as “string corrections” due to massive string modes, and we will
show below that this is indeed the case. They do not come, however in the usual form of an
expansion in the string parameter «’. In fact, o’-dependence is limited to an overall («’)? factor
in (3.16), just to provide the right dimensions. Instead of an o’ expansion, we obtain a small
scattering angle expansion in 7 ! = sinz(%) (3.3). In traditional string amplitudes, quantum field
theory is recovered in the o’ — 0 limit. Here, in celestial amplitudes, quantum field theory is
recovered in the kinematic limit of large r, that is in the limit of forward scattering at 6 = 0.
Indeed, in this limit, the process is dominated by the exchanges of massless particles.

There is an alternative expression for 7 (8, r) of (3.26) which displays the connection to mas-
sive string states. The Nielsen polylogarithm function (3.23) can be expanded as [27]

Sk =" [’Z]mf—m , (3.27)

m=k

where ['Z] are the unsigned Stirling numbers. The relation

“ r
E[e-r

allows rewriting

oo o0

1T(-2+
S FSpaa=Y o - ") (3.29)

= =1n!nﬂ r(-2)

After inserting it in (3.22), we obtain an alternative expression:

4

1(r, ,8):2n8(ZAm>

- (3.30)
R | ( "+n)

I . -7
~|—7(—r)ﬁsmh< ZA) Zn'nﬁ e

The above form of the energy integral allows identifying the contributions of all mass levels. In
fact, the n-th term of the sum originates from mass /n /o’ string excitations. The best way to see

Please cite this article in press as: S. Stieberger, T.R. Taylor, Strings on celestial sphere, Nucl. Phys. B (2018),
https://doi.org/10.1016/j.nuclphysb.2018.08.019

© 0O N O OO »h 0N =

46



© 0O N O 0o~ O N =

JID:NUPHB AID:14435 /FLA [m1+; v1.288; Prn:5/09/2018; 10:28] P.11 (1-24)
S. Stieberger, T.R. Taylor / Nuclear Physics B eee (eeee) eee—see 11

this is by converting the energy integral (3.15) into a complex integral over the Hankel contour.
Then

1, B) = 2n5<2,\ ) _zm) ZRess {( ) ﬂB(—s,1+;)}, 3.31)

m=1

where the delta function originates from the segment encircling w = 0 while the residues are due
to massive string poles at mass levels y/n/a’. Since

Res;—, {B(—s, 1+ ;)} _Iran) (3.32)

e

Eq. (3.31) reproduces Eq. (3.30).
4. World-sheet as celestial sphere

In the previous section, we stressed that the ultra-soft high energy behavior of string form-
factors ensures the convergence of energy integrals. The asymptotic form of the four-gluon open
string formfactor was exhibited in (3.12) by using Stirling’s formula. It is known that this behav-
ior can be also obtained by using the steepest descent (saddle point) method [17]. Recall that the
beta function appears in (3.10) as a result of integrating one vertex position x over the boundary

of string disk worldsheet.” For s <0 and u = —as <0 (a =r~! <0),
1
B(—s,1—u)= /x—l—S(l —x)* (4.1)
0

The range (0, 1) of integration is correlated with one particular color (Chan—Paton) factor. In
order to discuss the s — —oo limit, one writes

1
B(—s,1—u) =/x_le_sf(x)dx, f@x)=Inx —aln(l —x) 4.2)
0
and solves the stationary point equation

fl(x0) =0 = xo= (4.3)

1—a’
Note that for a < 0, xg is on the integration path, where the function reaches the maximum value
f(x0) =—(1 —a)In(l —a) — aln(—a). After applying Laplace’s formula, we obtain

2mwas

Fr(s,u) ~ (=a)* (1 —a)1=os (4.4)
(I1—-a)

which is exponentially suppressed at s — —oo with a < 0. The same result follows by applying

Stirling’s formula. It should be kept in mind that s < 0 and a = r~! = sin?(9/2) < 0 are in

the unphysical domain of imaginary center of mass energy and imaginary scattering angle. Note,
however, that the stationary point equation ties the world-sheet vertex position x to the kinematic

7 Three remaining vertex positions are fixed by SL(2, R) Mdbius invariance.
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cross ratio r, identifying a point on the worldsheet with a point on celestial sphere (modulo
SL(2, R)-transformation).

In the physical range of s > 0, u < 0, the asymptotic behavior (3.11) is slightly different from
(4.4). If one naively extrapolates (4.4) to the physical domain, one will miss the ratio of sines
containing the poles of massive string states. The reason is that the integral representation (4.1)
is not valid for s > 0. The integration path needs to be modified to the complex contour known
as Pochhamer contour, although for u < 0 it is sufficient to use any contour running through
x =1 and circling 0.> As far as the asymptotic behavior is concerned, however, the steepest
descent method can be used again, with the same stationary point equation (4.3) that yields
xo = (1 —a)~!, identifying x as a point on celestial sphere. Since now a > 0, xo > 1 and the
contour runs twice through the stationary point on two Riemann sheets, on its way out from and
back to x = 1. It is not difficult to see that these two contributions combine to the ratio of sines,
asin (3.11).

In celestial amplitudes (2.4), the energy dependence is integrated out through Mellin trans-
forms. Is there any limit in which vertex positions are tied to celestial sphere? We have already
shown that r — oo corresponds to the limit of low-energy massless theory. Now we will show
that the equivalent of high-energy “super-Planckian” limit is reached at A = Zi:l An — 00. To
see this, we rewrite (3.18) as:

1
1
I(r,B) = 5(—a)—ﬁ rda- ﬂ)/x—1e</f‘—1>g(X>dx 4 g(x)=In[—Inx +aln(l —x)].
0
4.5)
Since f = —iA /2, in order to discuss the limit of A — oo we can use the steepest descent method

again, now solving the stationary phase equation:

gx0)=0= xo= (4.6)

l—a
The stationary phase point is exactly at the same position as the saddle point (4.3) of the string
formfactor. We find

1. p)~T(1=p)(-a)” | T - i(—a) (1 — )] (4.7)
ra—1)

We conclude that the string world sheet becomes celestial in the limit of A = Zi:l Ap — 00. It
would be very interesting to establish a relation between the two underlying CFTs.

5. Four-gluon amplitudes in heterotic superstring theory

In heterotic superstring theory, similarly to type I, the four-gluon amplitude is related to the
Yang-Mills amplitude (3.4) by a simple rescaling,

MH(_s_s +, +)=M(_7_7 +, +) FH(S»M) ) (51)

with the heterotic formfactor [28]

8 Itis an open contour because it returns to 1 on a different Riemann sheet.
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I'(—a’ '’ INCH I'(—s) T'(=1t) I'(—

For(s. ) = — (—a'sp) Dla'sos) Plas3) - T(=s) T(=1) T(zw) ’ (5.2)
[(a’s12) I'(—a's23) I'(—a's31) [(s) () I'(w)

where s = a's12, t = —(1 — a)s, u = —as, with a = r=1of Eq. (3.2). In the physical domain,

§s>0,1<0,u<0,ae0,1). Ats — o0,

Fos.u) ~2 sin(iras) .sin[n(l —a)s] y az‘”(l B a)Z(l—a)s ’ (53)
sin(7rs)

i.e. the formfactor is exponentially suppressed, except at the singular points associated to massive
string modes propagating in the s-channel.

Recall that the formfactor appears as a result of integrating one of four vertex position over the
closed string world-sheet — the Riemann sphere which is usually mapped into a complex plane.’
It originates from the following complex integral:

Fr(s,u) = —%/dzz 22— A=) (5.4)
C
Note that this integral converges for s < 0, u < 0 only, while Eq. (5.2) represents its analytic
continuation to all complex s and u.
The computation of heterotic celestial amplitude corresponding to (5.1) proceeds in the same
way as in the open string case. The amplitude Ay can be cast in the same form as (3.16), but
now with 7 (r, B) replaced by

o ¢} 4
X )
H(r,f) = E/w_ﬁ_lFH(rw,—w)dw, E_% > (5.5)
0 n=1

We use the integral representation (5.4) and, after switching the orders of integration, we obtain:

r d*z p-1
Hr, ) =-I'(l-pB) — %[rlnzz—lnl—zz] . 5.6
B =T =p) o= [ = [rinleP —njt—z (5.6)
C
Next, we use the binomial expansion as in (3.19), to generate a series expansion in the powers of
r~1. The first term contains the complex analog of (3.20):

= [ L ey s Y0 (5.7
27 ) |zP(1—2) y ") '
C n=1
To see this, note that in polar coordinates z = pe’?, the angular integral of (5.7) becomes
! 2
: 1, O0<p<l1
— [dp (1 —pe?)t=1" ’ 5.8
2n/¢( pe'®) 0. p>1. (5.8)
0
leaving
1 d 4
2'“[—” (—Inp)f~' =27 5(2%) : (5.9)
0 L n=1

9 Here again, three vertex positions are fixed by SL(2, C) symmetry of the sphere.

Please cite this article in press as: S. Stieberger, T.R. Taylor, Strings on celestial sphere, Nucl. Phys. B (2018),

https://doi.org/10.1016/j.nuclphysb.2018.08.019

© O N O o » WO N =



© 0 N o 0o~ O N =

A A A B B B DB OWOW W W W W W W W WN NN DNDDNDNDND N NN S S s S s d S A
N o o0 A WM 2 O © 0N OO O A WM 2+ O O 0o N o g B~ ON =+ O © 0o N o g M~ W NN =+ O

JID:NUPHB AID:14435 /FLA [m1+; v1.288; Prn:5/09/2018; 10:28] P.14 (1-24)
14 S. Stieberger, T.R. Taylor / Nuclear Physics B eee (eeee) see—see

which is exactly the same field-theoretical delta function as in (3.20). The remaining terms in
the binomial expansion of (5.6) are complex integrals of the form very similar to Nielsen’s poly-
logarithms (3.23), with single-valued integrands (without branch points), so it is appropriate to
consider them as generalized single-valued Nielsen’s polylogarithms:

(_1)n+k—1 d2

¢ (H=——— 1—2 ' " z)? k1 =z 5.10
k(1) n(n—l)!k‘ ||2( 7 Iz Inf 1 — ] (5.10)
We also define:
S¢(n, k) := Sﬁ,k(l) . (5.11)
At the end, we obtain:
4
H(r,,B):ZnS(ZAn>
n=1
i 1 4 1 i 4
+7(—r)ﬁlsinh<§ZAn> Z(—r)kSc<—§ZAn—k—l,k+l>.
n=1 k=0 n=1
(5.12)

Again, the integrals (5.11) can be determined by an explicit computation, e.g.

SSL B =(=DP [1+(=D1c(1+p4) , Re(B)>—1, (5.13)

which may be computed by using Gegenbauer decomposition, cf. Appendix B. Furthermore, for
the k = O-term in the sum (5.12) we have'?:

2, 2\8-2
SCB-1,1)=-TB-D"'z7! d’z (ZInjz)™" In|l —z?
|z|2 1—z
C

Sz d?z (—lnlzl N2 | & T
_ _(_1\B _ 1 1
- nhre-nT [ 2 R ;( =)

lzl<1 n=

=[1-(=DP1zB) , Re(B)>1. (5.14)

Let us compare the above result (5.12) with its type I open superstring analogue (3.26). The
starting points for both expressions are the string formfactors F; of Eq. (3.10) and Fy of Eq.
(5.2). These are related by the single-valued projection'! [20]:

Fy(s,u)=sv Fi(s,u) . (5.15)

Recall that this relation holds at the level of o’-expansions, which are expansions in the powers of
s and u. In the next step, these functions are integrated as in Egs. (3.15) and (5.5). We expect that,
at least in some region of parameters r and 8, the relation (5.15) survives Mellin transformations:

H(r,p)=svI{rp). (5.16)
10" To evaluate this integral we have introduced polar coordinates z = pe'® and used the integral % f02” d T’j)—'ﬁ; =

P 0<p<l.
11" For a detailed account on this projection we refer the reader to Appendix A.
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For the leading string correction, this entails

S¢B—1,)=sv(B), (5.17)

and more generally:
Sc(ﬁ—k—l,l+k):sv§(,3—k,{l}k) L k=1,2,.... (5.18)
In fact, putting (3.24) and (5.14) together gives rise to

SB—1,D=[1—=DHSE-1,)=[—-(=D1¢PB), (5.19)

which for integer B (with 8 > 1) reduces to (5.17). Although for generic B € C (with B £k + 1)
it may be difficult to give a rigorous proof of the relation (5.18), we will present some more
supporting arguments in the Appendix B.

In any case, while Nielsen’s polylogarithms (3.23) seem to be the natural objects for de-
scribing open string amplitudes on celestial sphere (cf. (3.26)), their single-valued version (5.10)
appear in closed string amplitudes (cf. (5.12)). This is reminiscent of the periods S, , appearing
in the a’-expansion of the open string form factor (3.10) through the relation [25]

1 agrtp—1
S = T it B Taur s S| (5.20)
which in turn as consequence of (5.15) implies for the periods (5.11)
S¢(n, p) =— ! gt ! Fy(s,u) (5.21)
’ (n—D'p! ds"—1our s "o

with the formfactor Fy given in (5.2), respectively.
6. Mixed gauge-gravitational amplitudes

We proceed to mixed amplitudes involving gauge bosons and gravitons. In Einstein—Yang—
Mills (EYM) quantum field theory, these scattering processes are due to minimal couplings of
gauge bosons to gravitons. The simplest amplitude involving one graviton and three gluons [29]
is

(12)* wloy 212234214
= =r wy .

M(——, — +,+) = = = -
(23)(34)(42)  w3w4 723234242 712234213

6.1)

In order to obtain the corresponding celestial amplitude, we apply the Mellin transform as in
(2.4). The result is:

- ir ir i(A+23) /2 i(A2+23)
Aemombn=aae - (27 (2) 7 (22) 7 (2
212 212 213 223 (6 2)

214234

x 0 —1r’———Jpi
212234213
with the energy integral:
oo
Jpi— / iR g (6.3)
0
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The above integral is linearly divergent in the ultra-violet. Under conformal SL(2, C), it trans-
forms in the same way as a)‘lﬁ"k, where A = Zi: 1 An. Taking this into account, it is easy to see
that the amplitude (6.2) has the transformation properties of a four-point correlation function of

primary conformal fields with weights

1 I - 3 i
hi=—=+=-M hi==+=A,
2 2 2 2
i - I
hy = =42, hy =14 A2,
2 l. l. 2 (6.4)
h3=1+4 =23, h3 = —A3,
3 +23 3 23
I - i
hy =14 =4, hy = =\g,
4 +24 4 24

in agreement with A, =1+ iA,, J1=-2, b =—1and J3 = Jy = +1.

The amplitude with one graviton and three gauge bosons is also present in heterotic super-
string theory, where it incorporates the effects of all massive closed string excitations. Similarly
to the case of four gluons, it is related to EYM amplitude by a simple rescaling [29,30]

Mp(=—, =+ +) =M(——, — +,+) Fr(s,u), (6.5)
where Fpg is exactly the same heterotic formfactor (5.2) as in the pure Yang—Mills case. This
means that its celestial transform has the same form as (6.2), with Jg; of Eq. (6.3) replaced by:

o0
Jui = /wgwm“aw Fr(s,u) dws . (6.6)
0

Unlike in quantum field theory, this integral is perfectly convergent because the string formfactor
is exponentially suppressed at high energies, see (5.3). The heterotic celestial amplitude can be
cast into a form of a four-point CFT correlator:

4 - _
- _1 _ L -
Ap(——, =+, P =42 8¢ -7 00 —1) (]‘[zﬁj 'z} )

i (6.7)
1328 1-28
xr—& (r=1)7¢ H(@pB),
with:
1 o0 . 4
Hi(r,B) = 3 / wh=3 Fg(rw, —w)dw, B= —% An . (6.8)
0 n=1

The above integral is the same as the heterotic gauge integral (5.5) with the shifted parameter
B—B—1.ie.

Hi(r,p)=Hrp—1). (6.9)
Its expansion in the inverse powers of r has the same form as (5.12), although without the field-
theoretical delta function because its argument is empty. The first term is of order O (r? _%) and

contains $¢(8 — 3, 1) =[1 — (—1)F=31 (B — .
The amplitudes with two gravitons and two gauge bosons can be discussed in a similar way.
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7. Four-graviton amplitudes in heterotic superstring theory

Over the last thirty years many intriguing connections have been discovered between gauge
and gravitations forces. Some of the most interesting ones stem from the classic KLT relations
[11] which allow expressing multi-graviton amplitudes as linear combinations of products of
pure gauge amplitudes weighted by kinematic factors. KLT relations were originally derived in
the framework of heterotic superstring theory. Since the o’ — 0 limit of the heterotic theory is
described by a minimally coupled Einstein—Yang—Mills quantum field theory, the graviton am-
plitudes of Einstein’s theory can be expressed in terms of pure Yang—Mills (partial) amplitudes.
We are interested in the four-graviton MHV amplitude which can be written as

M(——, ——, ++,+H) =M(—, —, +,H) s M'(—, —, +,4) , (7.1)

where M(—, —, 4+, +) is the Yang—Mills amplitude of (3.4) and the prime indicates 3 <> 4 trans-
position with respect to the canonical (1, 2, 3, 4) particle ordering. In terms of the energy and
celestial coordinates, this becomes:

Ml = ) = 02 |214]%]234 ] <r Z]2234>2 72)
B NETE 712234
The corresponding celestial amplitude is
j(__ A —480—F) (@)“ﬂ (Zﬁ>ikz<zﬁ>i(k1+h)<Zﬁ>i()~2+)»3)
N 212 212 213 223
2 2,
O(r — 1)r4|214| |234] Z;2Z§4 - (7.3)

lzi31* 23,23,
with the gravitational energy integral
o0
Jg = /wi+:‘(x1+xz+xs+x4) dos . (7.4)
0

which is now quadratically divergent in the ultra-violet. The above amplitude has the transfor-
mation properties of a CFT correlation function of four primary fields with the weights:

h=—stia =2

1= ) 21 1—2 21,
I i - 3 i

hy=—=+=A hy =>4 =12,

2 2+22 2 2+22 as)
3 i - | '

hy==+ -1 hy=—=+ =

3 2—1-23 3 24—23

ha=2+ fa=—stin

4—2 24, 4= 5 24-

In heterotic superstring theory, four-graviton amplitude is related to Einstein’s amplitude by a
simple rescaling,

MH(__v ] ++9 ++) = M(__v ] ++? ++) FH(S’ u) ) (7'6)

where Fp is the same formfactor (5.2) as in the four-gluon case. As a result, we obtain the
following celestial amplitude:
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0 n=

Note that the above integrand is square integrable. Once again, we obtain the heterotic integral
(5.5), now shifted by 8 — B — 1, i.e.

Gr,p)=Hr,p-1). (7.9)

Its expansion in the inverse powers of r has the same form as (3.26) but now, due to the
shift, the field theoretical delta function is absent. The first term contains S¢(8 — 2,1) =
[1+ (=1)#] ¢(B — 1). The series begins at O(r#~2) order. Note that at large r, the r-dependent

10
prefactor in (7.7) grows like 3, therefore four-graviton celestial amplitude blows up in the
forward scattering limit of » — oo.

8. Conclusions

In this work, we transformed traditional four-point, tree-level scattering amplitudes of gauge
bosons and gravitons, describing transitions between their momentum eigenstates, into confor-
mal correlation functions of primary fields on the celestial sphere. In this new representation, the
Lorentz group is realized as the conformal symmetry of the sphere. We considered such ampli-
tudes in type I open string theory and in closed heterotic superstring theory, which in the zero
slope limit (¢’ — 0) are described by minimally coupled Einstein—Yang—Mills systems. This
framework ensured ultraviolet finiteness of Mellin transforms of all amplitudes, including the
amplitudes involving gravitons that suffer from uncontrollable growth in Einstein’s theory while
in superstring theory they become supersoft, exponentially suppressed at high energies.

In the momentum space, four-particle amplitudes depend on two kinematic variables that can
be chosen to be the center of mass energy and the scattering angle. The scattering angle depen-
dence remains on the celestial sphere as the dependence on one cross-ratio r of the four insertion
points of the primary fields; r is constrained to be a real number as expected by the planarity
of four-particle scattering processes. On the other hand, particle energies are transformed into
the Mellin—dual energy parameters corresponding to the imaginary parts A, of the dimensions
A, =141ik, of primary fields. It is remarkable that after extracting conformal prefactors, the
amplitudes depend only on the total dual energy A = Zi:l An, SO the celestial amplitudes de-
pend on two parameters only, the same number as the usual amplitudes. Actually, this total energy
turns out to be zero for pure Yang—Mills amplitudes, as a consequence of the four-dimensional
conformal symmetry (scale-invariance) that holds in Yang—Mills theory at the tree-level. There
are no such constraints for gravitational amplitudes or for superstring amplitudes, but even in
Yang-Mills theory, A = 0 is not expected to hold beyond the tree approximation.

One interesting feature of celestial superstring amplitudes is their trivial dependence of the
string parameter &’ which is reduced to an overall power factor. In traditional amplitudes, o’ —
0 is considered as the field theory limit, in which the heavy string modes decouple from the
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massless spectrum. In celestial amplitudes, all string excitations participate at the same footing.
There is, however, a limit in which gauge boson amplitudes approach the Yang—Mills limit. It
is r — 00, which corresponds to forward scattering, a process dominated by the exchanges of
massless particles. In the presence of gravitons, however, this limit is singular.

The celestial superstring amplitudes were presented as series in the inverse powers of r, that
is as small scattering angle expansions, with the coefficient determined by the periods (special
values) of Nielsen polylogarithms (3.21) and their complex generalizations (5.10). The latter can
be interpreted as single-valued descendants of the real Nielsen polylogarithms. We explained
how the single-valued projection, that relates heterotic and open string amplitudes order by order
in their o’ expansions, is implemented at the level of celestial amplitudes.

Another interesting property of celestial superstring amplitudes is revealed in the A — oo
limit. In this limit, the dominant contributions can be analyzed by using the stationary phase
approximation, in a way similar to the saddle point approximation used for extracting the asymp-
totic “super-Planckian” behavior of standard amplitudes. The amplitudes involve integrating over
the positions of string vertex operators on the world-sheet, more precisely just one vertex position
left after the positions of three remaining ones are fixed by the world-sheet conformal invariance.
In the stationary phase approximation, this integral is dominated by the position determined by
r, therefore the world-sheet can be identified with the celestial sphere. This raises an interesting
question whether CFT on celestial sphere is related in some way to free CFT on the world-sheet.

Hopefully, the properties of celestial scattering amplitudes will be helpful in extracting more
information about the underlying CFT on celestial sphere.
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Appendix A. The single-valued projection

Power expanding the string formfactors F; of Eq. (3.10) and Fg of Eq. (5.2) w.r.t. small o’
gives:

Fr(s,u)=1—20(2) su—¢3) su (s +u)— % ()% su (s> + %su +u?)+0@?),

Fy(,u)=1-2¢03) su (s+u)+(’)(o/5), (A.1)

respectively. Note, that with the relations (5.20) and (5.21) the coefficients in the powers series
expansions (A.1) are given by Nielsen’s polylogarithms (3.23) and their complex analogs (5.10),
respectively. Moreover, in Ref. [19] it has been observed that the second series can be obtained
from the first series by applying the following map:
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Je@n+1)—~2¢@n+1), n>1,

SV : (2> 0. (A.2)

This map represents the single-valued projection sv introduced in (5.15). It is called projection
since, e.g. ¢{(2)-terms are projected out. More generally, sv represents a morphism acting on
the space of MZVs (3.25) mapping the latter to a subspace of MZVs, namely the single-valued
multiple zeta values (SVMZVs) [18]

Lov(ny,....ny) €R. (A3)

The numbers (A.3) can be obtained from the MZVs (3.25) by generalizing the map (A.2) to the
full space of MZVs [18]:

svit(ny,...,n) = Lov(ny,...,np). (A4)

The map (A.4) has been constructed'”> by Brown in Ref. [18], where also SVMZVs have been
studied from a mathematical point of view. For instance, we have (s (5,3) = sv(¢(5, 3)) =
—10£(3)¢(5) and &y (7,3) = sv(£(7, 3)) = =282 (3)£ (7) — 124 (5)*.

Generically, in the o’-expansion of open superstring tree-level amplitudes the whole space of
MZVs (3.25) enters [31,32], while closed superstring tree-level amplitudes exhibit only the sub-
set (A.3) of SVMZVs in their o’-expansion [31,19]. The relation between open and closed string
amplitudes through the single-valued projection (A.4) has been observed in [19] and established
in [20].

Appendix B. Single-valued Nielsen’s polylogarithms

The Nielsen’s generalized polylogarithms (3.23) can be expressed in terms of harmonic poly-
logarithms L,,. The latter are specified by a word w of letters ep and e as

X X
Ly (1) Ly (1)
Leow(x):/w— s Lelw(x):/w— s
t 1—1t
0 0
with
1 ="
Ly(x)=—1In"x , Lakx)= =D In" (1 —x),
0 n! 1 n!

and L1 =1 with 1 being the empty word. There is also an expression in terms of Goncharov
polylogarithms, which are recursively defined through the iterated integral [33]

t

dxl
G(ay,...,an;t) = G(ay,...,an;x1) . (B.1)
X1 —ai

In terms of Goncharov polylogs we have:

G(0y;x) =Len(x) G(ysx) = (=" Len(x) .

12 Strictly speaking, the map sv is defined in the Hopf algebra  of motivic MZVs ¢™. In this algebra H the ho-
momorphism sv : H — HY, with (" (ny, ..., np) > Lnng, ..., ny) and ¢ (2) = 0 can be constructed, cf. [18] for
details.
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The Nielsen’s generalized polylogarithms are expressed as [34]:

Sn,p(@) = (=D G0y, 1p;2) = Lint1,1,..1(z, 1,..., 1) . (B.2)
In particular we have:
G, p):=Snp(H) =D G0, 1,; ) =¢(m+1,1,....1). (B.3)

The relation (B.2) is derived by first applying shuffle relations as follows:
1

dt 1 1
S.p(2) = (1P~ /— GO,....0:0 G, ... Lip)
t —— Z Z
0 n—1 —
p
: d
t
=(—1 n+p—1 — . — (— n+p—1 .
-1 ft Y Gwin=(-1) Y GOw )
0 we{0} OI {1/z} we{0} OI{1/z}
= (=)’ GO,....0,1,....1:2) . (B.4)
—_—— ———

n P

In the last step, shuffle relations as G(ay, a2, ...,a1-1,0;z) = G(ay,az2,...,a;—-1;2)G(0; ) —
G(ay,az,...,0,a;-1;2)...—G(ay,az,...,0,a12,a1-1;2)—...— G0, a1, a,...,a;—1; z) are
applied to eliminate any term with a; = 0 and eventually apply the scaling relation.

Multiple polylogarithms L, (z) can be combined with their complex conjugates L, (Z) to
remove branch cuts at 0, 1 and oo and obtain a single-valued function on CP!/{0, 1, oo}. The
single-valued multiple polylogarithms (SVMPS) have been introduced by Brown [35]. They are
entirely constructed from holomorphic and anti-holomorphic harmonic polylogarithms as real
analytic functions on the punctured complex plane C/{0, 1}. There exists a unique family of
SVMPS L, (z), each of which is a linear combination of the functions L1 (z) L2 (z), with w;
and wy words in eg and e and they fulfil the following differential equations

d Ly(z) 0 Ly(z)
—Legw = . —Le = ) B.5
5z e () . 32 1w (2) 7, (B.5)
such that £1(z) =1 and
1
Ly@=—In"|z, (B.6)
n!

and lir% Ly(z) =0 if w is not of the form efj. Besides, the functions £, (z) fulfill the shuffle
—

relations. Furthermore, we have:
(=D"
n!
In terms of (B.6) and (B.7) the numbers S¢(n, p) defined through (5.10) and (5.11) as
S¢(n, p) = Sﬁ’p(l) read

Lon(2) = In" 1 —z>. (B.7)

c -1 (_1)n+p—1 dzz —1 3.n—=1,12 1P 2
S (n,p)—rr m W(l—Z) In |z|* InP |1 — z|
C

2
=71 (=1)"! / |dz—|§ (1= Lp1(2) Ly (@) (B.8)
C
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whose integrand is manifestly single-valued. The complex integral (B.8) can be performed by
Gegenbauer technique, which uses the expansion [21]

1 > Cp (cos ) r, O<r<l,
n=0
—_— = (B.9)
_ 2 o0
11—zl ) C,ga)(cosé) prT2e e
n=0

with Gegenbauer polynomials C,(la) and z = re'?. With the latter method we directly compute,
e.g.

d2
S¢(1,1) = -1 f—z In|z)?
I1—z%z
C

5 2w 0 1 (%)
=—;/d9 > cP(coso) e /dr r”lnr+/drr_"_21nr =0,
0 n=0 0 1

X d?z
sy =n" /m Inz* In|1 -z
2 12z

20 & 1 T
=———[db ZC,(IQ)(COSO)C‘_IP fdr rInr + f dr r" "2 Iny
T 0o
0 n=0 0 1 ol

in agreement with (5.13) and (5.14), respectively. In fact, these integrals are just the single-valued
projection of the corresponding real Nielsen polylogarithms (3.23), i.e. S¢(1,1) =sv S1.1(1) =
sv¢(2) =0,and S¢(2, 1) =sv 82.1(1) =sv ¢(3) = 2¢(3), respectively. Furthermore, in the same
way we easily verify:

S¢(1,2p—1)=— (In|1 —z»*~ ' =0,

1 / d?z
7Rp—1D!J |z2I2(1—-2)
C

S¢(1,2p) = (In|1 —z»)?? (B.10)

1 / d?*z
w(2p)! J lzI> (1 =2)

=2¢@p+D=sve(2.077") L p=1.
Alternatively, the complex integrals (B.8) may be computed by the residue theorem [36] yielding:
SC(n, p) = sv Sn,p(l)zsvg(nﬂ,{l}!’—l) . (B.11)

This relation can be proven for integer n, p > 1 and (5.17) should be read as analytic continuation
of the relation (B.11).
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