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Abstract

We use the AdS/CFT correspondence (the holographic duality of gauge/gravity
theory) to study exciton driven dynamical symmetry breaking in certain
(2+1)-dimensional defect quantum field theories. These models can be ar-
gued to be analogs of the electrons with Coulomb interactions which occur
in Dirac semimetals and the results our study of these model systems are
indicative of behaviours that might be expected in semimetal systems such
as monolayer and double monolayer graphene. The field theory models have
simple holographic duals, the D3-probe-D5 brane system and the D3-probe-
D7 brane system. Analysis of those systems yields information about the
strong coupling planar limits of the defect quantum field theories. We study
the possible occurrence of exciton condensates in the strong coupling limit
of single-defect theories as well as double monolayer theories where we find
a rich and interesting phase diagram. The phenomena which we study in-
clude the magnetic catalysis of chiral symmetry breaking in monolayers and
inter-layer exciton condensation in double monolayers. In the latter case, we
find a solvable model where the current-current correlations functions in the
planar strongly coupled field theory can be computed explicitly and exhibit
interesting behavior. Although the models that we analyze differ in detail
from real condensed matter systems, we identify some phenomena which can
occur at strong coupling in a generic system and which could well be rele-
vant to the ongoing experiments on multi-monolayer Dirac semimetals. An
example is the spontaneous nesting of Fermi surfaces in double monolayers.
In particular, we suggest an easy to observe experimental signature of this
phenomenon.

ii



Preface

This thesis contains achievements published by the author and appeared in
the Journal of High Energy Physics, and Physics Letter B. All the papers
are based on the one big project, finding a dual gravity model for double
monolayer semimetals.

A version of chapter 2 has been published : Gianluca Grignani, Namshik
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of the motion of the systems and double-checking and refining the numerical
results which my collaborators obtained.

A version of chapter 3 has been published : Namshik Kim and Joshua
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(2012) [54]. The thesis author contrived the critical idea to stabilize the
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and its visualization.
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Chapter 1

Introduction and Summary
of Results

VLADIMIR :
We’ll hang ourselves tomorrow. Unless Godot comes.
ESTRAGON :
And if he comes?
VLADIMIR :
We will be saved.

- Waiting for Godot by Samuel Beckett

1.1 Why AdS/CMT

Quantum field theory (QFT) is an important tool for understanding the
behavior of condensed matter systems. Interacting quantum field theories
are notoriously difficult to solve. In fact, there are very few if any exactly
solvable field theories which describe systems where the interactions between
particles are important. There are two main approaches to understanding
an interacting quantum field theory. One is numerical where the idea is
simply to solve the equations of motion by numerical means. This approach
has proven quite useful in many cases, however, it has severe limitations.
Because the complexity of many condensed matter problems requires pro-
hibitive amounts of computer power, there are also specific problems such
as descriptions of Fermi surface and finite density where the more powerful
techniques (e.g, Monte-Carlo simulations) cannot be used.

The other main approach is perturbative. It assumes that interactions
are small, and systematically takes them into account using time-dependent
perturbation theory. Of course, this can yield accurate results for many
systems where the interactions are indeed small. However, there are some
condensed matter systems where the interactions are much larger. Moreover,
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1.2. D-brane and statement of AdS/CFT conjecture

perturbation theory is not a reliable technique. These systems are said to
be strongly coupled.

A couple of intrinsically non-perturbative approaches to quantum field
theory using time dependent perturbation theory have been developed over
time. Perhaps the most exciting one is AdS/CMT. This approach uses
the duality between certain strongly interacting quantum field theories and
certain solutions of superstring theory to study the quantum field theory
in the strongly coupled regime. It holds the promise of providing us with
a way of solving interesting quantum field theories in the limit where their
interactions are very large. It also, in principle, gives a way of systematically
correcting this strong coupling limit.

There are two common approaches to AdS/CMT. Currently, the most
common one is bottom-up. It searches for phenomena occurring in strongly
coupled field theories which are so universal that they should be exhibited by
practically any strongly coupled systems with similar environmental factors.
The ultimate goal of this approach is to develop paradigms which enable
understanding and classification of strongly coupled systems.

The top-down approach, on the other hand, seeks quantum field theories
which have a resemblance to specific condensed matter systems, and which,
simultaneously, have a string theory dual. It, then, uses the techniques of
string theory to study the behavior of the field theory in the parametric
regime where the string theory is tractable. This is usually the strong cou-
pling regime of field theory. The top-down approach is the main one which
will be used in this thesis.

1.2 D-brane and statement of AdS/CFT
conjecture

The key to understanding AdS/CFT are D-branes, which are extended ob-
jects in string theory. Let us start from the dynamics of a string ,which are
governed by Polyakov action. Polyakov action is classically equivalent to
Nambu-Goto action, the action of a relativistic string which has length and
tension.

S = − 1

4πα′

∫
d2σ ∂αX · ∂αX (1.1)

2



1.2. D-brane and statement of AdS/CFT conjecture

Figure 1.1: The picture is obtained from [8] which is also a good reference for
AdS/CFT correspondence. (a) A single D-brane and a strings on it transforms in
U(1) representation. The length of the open string should be very short because
of the tension of it, so it is massless. (b)A stack of D-branes constitute U(1) ×
U(1)×U(1) · · · gauge group. (c)The distance between D-branes is proportional to
the mass of the open strings between D-branes. For the coincident N D-branes,
we obtain non-Abelian SU(N) gauge theory. The index of the gauge field in the
adjoint representation is obtained from labeling N D-branes on which open strings
end.

Xµ(σ, τ)1 We derive the equation of motion from the extrema of the action.
Let us consider the variation of the action from τi to τf .

δS = − 1

2πα′

∫ τf

τi

dτ

∫ π

0
dσ ∂αX · ∂αδX (1.2)

The total derivative term becomes as follows from an integration by part.∫ π

0
dσ Ẋ · δX|τfτi −

∫ τf

τi

dτ X ′ · δX|π0 (1.3)

To satisfy the equation of the motion, this total derivative term should

1σ, τ are worldsheet coordinates where a string sweeps out. For a periodic σ ∈ [0, 2π),
we have a closed string, and for σ ∈ [0, π] we have an open string.

3



1.2. D-brane and statement of AdS/CFT conjecture

all vanish. The first term is destroyed by requiring δXµ = 0 at τ = τi, τf .
To eliminate the second term of (1.3), we demand as follows :

∂σX
µδXµ = 0 at σ = 0, π (1.4)

There are various boundary conditions which satisfy the above equa-
tion. For example, Dirichlet boundary conditions, Xµ, fix end points of the
open string to lie on some hypersurface called a Dp-brane. Moreover, the
condition breaks Lorentz and translation symmetry. The ‘p’ in Dp-branes
indicates the number of spatial dimensions. Thus, Dp-branes are simply
p+1 dimensional hypersurfaces on which open strings are attached to begin
and end. When quantum fluctuation of an open string is taken into account,
the D-brane becomes a dynamical object.

In Fig. 1.1, we have used the terminology, representation. we want to
briefly introduce about it and others which will be useful in this thesis. A
representation of G (group) is a mapping, D of the element of G onto a
set of linear operator preserve the structure of group multiplications. If we
assume the group element depends on the continuous parameter, we can ex-
pand the linear operator of the representation, and can define the generator,
Ta, D(dα) = 1 + i dαaTa + . . . , where dα is an infinitesimal change of the
continuous parameter. The generators can have some commutation rela-
tions and if the structure constants from commutators themselves generate
a representation, then we call it an adjoint representation. The fundamental
representation can be understood as the representation for a spin. We can
define raising and lowering operators (or creation and annihilation oprera-
tors) from generators, and can define the highest spin eigenvalues. If we
want to interpret some quantum excitation as a spin or a gauge field. They
should transform in the proper representations. 2

Some readers would have been wondering what AdS is. Instead of de-
scribing AdS, here we will introduce its interesting properties. The curva-
ture of the space-time is constant and negative, so it exerts a repulsive force
against the boundary. In Minkowski space-time, the Hawking thermal ra-
diation from a black hole causes it to gradually evaporate. However, if you
put a black hole at Poincaré killing horizon of AdS space-time, the Hawk-
ing radiation comes back to the black hole. For example, AdS3 space-time
has a Poincaré killing horizon at r = 0 since it cannot cover all AdS with
the Poincaré patch, ds2 = r2(−dt2 + dx2) + dr2

r2 [14]. There is no tempera-
ture associated with it. However, if use AdS-Schwarzshild space-time, the

2For the better and more deeper understanding, see the book written by Howard
Georgi. It is not too abstract and easier to read for the physics majored.[7].

4



1.2. D-brane and statement of AdS/CFT conjecture

temperature is associated. By this mechanism, we can stabilize the embed-
ding. As a result, if we allow for the thermodynamic property of the black
hole, we can utilize the AdS space-time as a perfect box for thermodynamic
experiments.

A dual description of D-branes for AdS/CFT is one of the most suc-
cessful achievements in string theory. It is also a black brane solution of
supergravity or type II superstring theory. D3 branes are the most interest-
ing D-branes because the solution of gauge theory is more precise. D3 branes
provide N = 4 SYM in four dimensions. D3 branes extend in time and three
spatial dimensional directions. D3 branes have a mass per unit volume, and
they have a charge associated to a self-dual 5-form field strength. Its world-
brane has 3+1 dimensional Poincaré invariance, and has constant axion and
dilation fields, Dilaton fields Φ and axion C are solutions of Type II string
theory here. The dilaton-axion field τ ≡ C + i e−iΦ changes under a Moe-
bius transformation. τ → aτ+b

cτ+d , ad − bc = 1, a, b, c, d ∈ R. This property
will be important in AdS/CFT as the reflection of duality in N = 4 SYM
theory. See references [3–5] for more details. This means that D3-branes are
regarded as solutions of the ten-dimensional Einstein equations coupled to
the 5-form. When we consider a stack of N D3-branes, a factor of the string
coupling g from the genus and a factor of N from the Chan-Paton trace,
in string perturbation theory, are considered. Thus, perturbation theory
is good as gN � 1 and bad as gN � 1. g ≡ gstring = g2

YM . The black
branes and D-branes source the same Ramond-Ramond fluxes [13]. The
near horizon geometrical solution of a black 3-brane is AdS5 × S5 :

ds2
D3 =

r2

L2
(−dt2 + dx2 + dy2 + dz2) +

L2dr2

r2
+ L2dΩ2

S5
3. (1.5)

L is the curvature radius of AdS5 and S5, and L4 = 4πgsNα
′2 obtained

from the black brane solution. As gN � 1, L is large in string units, so the
low energy supergravity is nicely described, but as gN � 1, that is no more
effective. Therefore, these two perturbative prescriptions are complementary
in each limit.

D-branes have definite charges, and when a large number of D-branes
are put, they become massive and the black hole is expected. This gives
two approaches to the dynamics of the theory at the low energy limit. At
this limit, both gN � 1 and gN � 1 descriptions consist of massless strings
(open and closed). As gN � 1, only open strings remain interacting, and
closed strings are irrelevant and decoupled. The lowest energy excitations

3Sn ≡ {x ∈ Rn+1 : ||x|| = 1}.
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1.2. D-brane and statement of AdS/CFT conjecture

of the open strings are described by gauge fields. These provide a super-
symmetric Yang-Mills gauge theory, which lives on the world-volume of the
branes. As gN � 1, there are massive energy states in the curved geometry.
The low energy dynamics is supergravity in the AdS5 × S5, which is the
low energy limit of closed string theory. The degrees of freedom are fluctua-
tions of the supergravity fields about the black brane background and they
live in the bulk of ten dimensional space-time. There are some situations
where these two descriptions have an overlapping domain of validity. In
those cases, the same physical system is described by two different theories
which must therefore be dual to each other. Because the degrees of free-
dom in these theories live on spaces of different dimensions (bulk and its
boundary), it is a holographic principle – a property of string theories and
a supposed property of quantum gravity that describe the physics of a bulk
and can be encoded on a boundary.

The original conjectured statement of AdS/CFT [12] is that there is an
exact duality between N = 4 supersymmetric SU(N) Yang-Mills (SYM)
theory in flat 4D space-time (boundary of the AdS5) and the full quantum
type IIB string theory on AdS5 × S5. For the strongest conjecture, there
is an exact equivalence of the physical spectra at any value of the parame-
ters between two theories, including operator observables, states, correlation
functions and full dynamics, Wilson loop, thermal states, and so on, which
are also translated into the languages of strong theory in AdS. The weaker
form of a conjecture is that N = 4 supersymmetric SU(N) Yang-Mills the-
ory in flat 4D for t’Hooft limit, large fixed λ = g2

YMN and classical type IIB
supergravity on AdS5 × S5. Moreover, the λ−1/2 expansion on the gauge
theory corresponds to α′ expansion on gravity side. There are many good
reviews and original papers to introduce AdS/CFT correspondences. We
found [8]-[14] useful. More basic knowledge on string theory is available
in textbooks [3–5]. In addition, many videos and lectures on the personal
websites of physicists are useful study tools for beginners to quickly grasp
the whole picture.[6]

There is an equivalence of the physical spectra at any value of the pa-
rameters between two theories, including operator observables, states, cor-
relation functions and full dynamics, Wilson loop, thermal states, and so
on, which are also translated into the languages of string theory in AdS.
Thus, we can utilize the dictionary to convert the physical quantities from
one theory to the other [8].
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1.3. AdS/CFT dictionary

1.3 AdS/CFT dictionary

In this section, we will briefly review the application of AdS/CFT corre-
spondence : the mapping between contents of two corresponding theories.
We will introduce some mapping which will be used in the thesis. The
gravitational partition function is as follows :

ZAdS =

∫
φ0

Dφe−S(φ, gµν)

φ(t, xi, ; r =∞) = r∆−dφ0(t, xi) +
〈O〉

2∆− 4
r−∆ + · · · (1.6)

φ0 is the boundary value of the field in the gravity side. ∆ is a conformal
dimension. The concerned field is a scalar field in the equation, but we can
generalize it to have indices. ZAdS is simply a classical action of supergravity.
It is not difficult to obtain using perturbation.

These partition functions are exactly the same as

ZCFT = 〈e
∫
∂M φ0O〉

Thus, O is the corresponding operator of the source φ0 lives on the
asymptotic boundary. Because ZAdS = ZCFT , the one point function is
obtained as follows :

〈O〉 =
δ log ZAdS [φ]

δφ0
(1.7)

Similarly, the two point function can be acquired. We present one ex-
ample we will use in later chapters. Remember that the separation between
D-branes is proportional to the mass of the string connected between the
branes. For a D3-probe-D5 system, the model has SO(3)×SO(3) symmetry
and the non-zero separation breaks either of the SO(3) symmetries. That
corresponds to chiral symmetry breaking [76]. It occurs with an external
magnetic field. We will go through this subject thoroughly in later chapters.
In this section, let us accept this correspondence, and see how to utilize the
holographic duality.

For example, let us consider our probe D5 branes. The induced met-
ric of probe D5 branes without an external field provides the near horizon
geometry, AdS4 × S2.

ds2
D5 ∼ r2(−dt2 + dx2 + dy2) +

dr2

r2
+ dΩ2

S2 (1.8)
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1.4. Motivation

We expect Dirac fermionic fields and consider the action of the fields.
The relevant coordinate along the separation is ψ of S2 of S5 in 1.5. If ψ
is non-zero, the rotational U(1) symmetry perpendicular to D5 branes is
broken, and it is dual to U(1) chiral symmetry in the gauge theory side.
Here is the asymptotic expansion,

ψ(r) =
π

2
+
m

r
+

c

r2
+ · · · , r →∞ (1.9)

The length of the separations is r cos(ψ) which is asymptoticallym. m ∝ mq.
mq is the mass of the corresponding quark. By the equation 1.6, c is the
expectation value of the corresponding dual field operator and is linear to
chiral condensation, c ∝ 〈q̄q〉. O should be q̄q from the mass term of Dirac

Hamiltonian, mq̄q. ∆ = 1, 2 by ∆± = 1
2

(
d+
√
d2 + 4m2L2

)
. d = 3 for this

defect field theory. As expected, the source m and 〈q̄q〉 are encoded in the
asymptotic expansion of the scalar field.

1.4 Motivation

Graphene is a single 2+1 dimensional layer of carbon, packed in a hexagonal
lattice. Carbon hybridization forms three sp2 orbitals, one Pz orbital. Thus,
the sp2 orbitals arrange themselves in a plane at 120 angles, and the lattice
thus formed is the honeycomb lattice. It has been a subject of great interest
as a 2+1 dimensional material and the origin of several fascinating predic-
tions [98] since many decades ago. Recently, it has captured attentions in
condensed matter physics and even in other theoretical physics since Geim
and his collaborators acquired the material in laboratory [15]. A carbon
atom has four valence electrons. Three of these electrons form strong co-
valent σ-bonds with neighboring atoms. The fourth, π-orbital is un-paired.
This property of orbital bonding enables a honeycomb lattice structure in
2+1 D. The Hamiltonian is

H =
∑
~A,i

(t b†~A+~si
a ~A + t∗a†~A

b ~A+~si
), t ∼ 2.7ev, |~si| ∼ 1.4Å (1.10)

It is easy to find the energy dispersion of a single layer of graphene using
tight binding approximation. For the wave function of graphene, we take a
linear combination of Bloch functions for sublattices A and B.

a ~A = eiEt/~+i~k· ~Aa0, b ~B = eiEt/~+i~k· ~Bb0 (1.11)
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1.4. Motivation

Figure 1.2: This figure and captions are taken from [17]. (a) Crystal structure of
monolayer graphene with A (B) atoms shown as white (black) circles. The shaded
area is the conventional unit cell, a1 and a2 are primitive lattice vectors. (b) Recip-
rocal lattice of monolayer and double-layer graphene with lattice points indicated
as crosses, b1 and b2 are primitive reciprocal lattice vectors. The shaded hexagon
is the first Brillouin zone with Γ indicating the center, and K+ and K− showing
two non-equivalent corners. (c) Above and (d) side view of the crystal structure of
double-layer graphene. Atoms A1 and B1 on the lower layer are shown as white
and black circles, A2, B2 on the upper layer are black and grey, respectively. The
shaded area in (c) indicates the conventional unit cell.

As a result, we obtain two energy bands.

E(k) = ±t

√
(1 + 2 cos(

3kys

2
) cos(

√
3kxs

2
))2 + sin2(

3kys

2
) , (1.12)

where s is the distance of between sites. It is plotted in Fig. 1.3. We obtain
two bands which are degenerated at the K+ and K− points.

Graphene has unique properties that derive from its honeycomb-like lat-
tice structure such as the Dirac-like spectrum around the tip of the Dirac
cone. In other words, in the case of graphene, the low energy properties
near the Fermi energy can be described by Dirac equation by expanding the
energy dispersion around the K+ and K− points, and it is a direct conse-
quence of graphene’s crystal symmetry. Let us consider a wave vector for
valley K as q = K− k, and expand with |k| � 1. The Hamiltonian with
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1.4. Motivation

Figure 1.3: Energy dispersion with two bands for the pz electrons; red plane
indicates the Fermi level [18].

Fermi velocity, vg ≡ 3s|t|
2~ ∼ 106m/s4 is as following :

HΨ = vg

(
−~σ∗ � p 0

0 ~σ � p

)
Ψ, (1.13)

where the ~σ = (σx, σy) is a vector of Pauli matrices, and Ψ is a bi-spinor of
K-points of the first Brillouin zone. The corners of the Brillouin zone form
two inequivalent groups of K-points. Thus, Ψ = (ΨK+ ,ΨK−)T .

HΨ = c

(
−~σ∗ � p 0

0 ~σ � p

)
Ψ (1.14)

From the comparison with Dirac equation, (1.14), we can see that Fermi
velocity of the graphene, vg, behaves like the speed of light. This spinor is
called a pseudospin. QED phenomena inversely proportional to the speed
of light should be, in graphene, enhanced by a factor of c/vg ∼ 3005. This
relativistic behaviour of electrons in graphene in low energy could lead to
new possibilities for testing relativistic phenomena (e.g. Some QED effects
cannot be tested in particle physics such as perfect tunnelling of relativis-
tic electrons). The energy level is half-filled in the neutral graphene. The

4vg is obtained from understanding of the Fig. 1.3. The yellow circle around the valley,
K-point, provides Dirac-like spectrum around the tip of the Dirac cone, and we read the
velocity from comparison of the slope with Dirac cone.

5Fine structure constant with Gauss’ unit is e2

~c . Since vg behaves like speed of light,

the effective fine structure constant of our model should be e2

~ .

10



1.4. Motivation

Figure 1.4: As we look into the ~K point of Fig. 1.3, we find out the interactions
of electrons in graphenes are very strong. We will discuss about the energy band
and Fermi energy, EF , later in this section.

conduction band and valence band meet at he Dirac chemical point, and
graphene is a zero gap semimetal, which is a material with a small overlap
between the conduction band and the valence band. A semimetal or semi-
conductor is an insulator at 0 K. Since the energy gap is almost none, the
valence band is slightly populated at room temperature. In other words,
there can be small electrical conductivity in the semimetal at some finite
temperature.

Because of the strength and specificity of its covalent bonds, graphene
is one of the strongest materials in nature, with literally no extrinsic substi-
tutional impurities, yielding the highest electronic mobilities among metals
and semiconductors [15] [16]. Therefore, graphene is being considered for
many applications that range from conducting paints and flexible displays
to high speed electronics.

We model the 2+1 dimensional defect dual field theory in graphene dou-
ble monolayers separated by a dielectric barrier which controls the strength
of interactions between an electron on one layer and a hole on the other
layer. The double monolayer semimetal means two monolayers of semimet-
als, each of them would be a Dirac semimetal in isolation, and they are
separated by an insulator, so we ignore direct transfer of electric charge
between the layers. A double monolayer should be distinguished from bi-
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1.4. Motivation

Figure 1.5: Schematic illustration of a graphene double monolayers exciton con-
densate channel in which two single-layer graphene sheets are separated by a dielec-
tric (SiO2 in this illustration) barrier. We predict that electron and hole carriers
induced by external gates will form a high temperature exciton condensate. This
figure and captions are modified from the figure and caption in [66]

layer by whether allows hop or not between each monolayers, and hopping is
controlled by dielectric materials between double layers. Then, the system
has two conserved charges, the electric charge in each layer. The Coulomb
interaction between an electron in one layer and a hole in the other layer
is attractive. A bound state of an electron and a hole forms is called an
exciton. Exciton is a boson and, at low temperatures they can condense
to form a charge-neutral superfluid. We will call this an inter-layer exciton
condensate. To distinguish the condensate can occur on the same layer, we
will call it an intra-layer condensate.

Electric external gates on each layer adjust the chemical potentials of
each layer. For the weakly coupled system (Fig. 1.5), when biased by
external gates, the perfect nesting of the electron and hole Fermi surfaces
in each layer tend to form inter-layer exciton condensates6(EC) [65, 66]. In
condensed matter physics, Fermi energy is an internal chemical potential at
zero temperature. This is also the maximum kinetic energy of particles in
Fermi gas. Fermi-Dirac distribution is as follows :

〈ni〉 =
1

e(εi−µ)/kBT + 1
,

where 〈ni〉 is the mean occupation number, and µ is the Fermi energy. At

6The quantum coherent bound states of an electron on one layer and a hole on the
other layer. The bound states from the same monolayer form intra-layer EC.
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1.4. Motivation

T = 0 ,

〈ni〉 ≈

{
1 (εi < µ)

0 (εi > µ)

By Pauli exclusion principle, the number of the states below µ is exactly
the same as that of the energy level below µ. In momentum space, these
particles fill up a sphere of radius µ. The surface of the sphere is equivalent
to Fermi surface. In condensed matter physics, we can consider a Fermi
surface as a boundary in reciprocal space. It is very useful for predicting the
thermal, electrical, magnetic, and optical properties of metals, semimetals,
and doped semiconductors. The shape of the Fermi surface is derived from
the periodicity and symmetry of the crystalline lattice and from the occupa-
tion of electronic energy bands. The energy band shows the possible energy
range of electrons in the material. The presence of free electrons tells us if
the material is a metal, a semiconductor or an insulator.

because of the Pauli exclusive principle, electrons pack into the lowest
available energy states and build up a Fermi sea of electron energy states.
Fermi level is the highest energy of the electrons at zero temperatures. The
conduction band is the lowest range of vacant electronic states, and the
valence band is the lower band below the conduction band and the band
gap. Chemical potential is the required energy to add an electron in the
system, and it is same as the Fermi energy at zero temperature. Due to
Pauli exclusion principle, the adding electron should have a new highest
energy.

In conductors, electrons only partially fill the valence band and the va-
lence and conduction bands are very close or overlap, thus electrons become
conductive easily. On the other hand, insulators and semiconductors have
Fermi levels lying in the forbidden band gap and have full valence bands,
therefore insulators have electrons with nowhere to go or jump and semi-
conductors become conductive only at certain temperatures since for T > 0,
thermal excitation allow the particles to be found in the higher energy states.
The nesting condition with ~k = 0 requires only that the Fermi surfaces be
identical in area and shape. It does not require the two layers to have aligned
honeycomb lattices and hence aligned Brillouin-zones. At weak coupling, a
binding energy is maximized when the momenta are as ~p1 = −~p2, which

means the Fermi energies are nested, ε1 = ε2 =
~p2
1,2

2m . Similarly, it is observed
that a Cooper pair is destroyed when an external magnetic field is exerted
in the system since the Fermi energies are split by Zeeman effect.

These studies of inter-layer EC are very interesting for understanding
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1.4. Motivation

Figure 1.6: The energy band and Fermi level are very useful to see the physical
properties of solids. We can classify solids from the size of the gap and where the
gap and Fermi level are. These are related to the presence of the free electrons in
solids.

fundamental issues with quantum coherence over mesoscopic distance scales
and dynamical symmetry breaking. Moreover, the study accompanies nu-
merous interesting applications in electronic devices because the result of
mean field theory calculations expects a room temperature superfluid [66].
As a quantum phenomenon, the room temperature superfluid is intriguing.
It is known that superfluidity occurs at very low temperature and weak
coupling [2]. Let us consider a finite density ρ of non-relativistic bosons
interacting with a short ranged repulsive Mexican well potential. Then, a
spontaneous symmetry breaking occurs; and a gapless mode in the fluid of
bosons with linear dispersion, (ω ∝ ~k) yields superfluidity. A fluid flow-
ing down with a velocity v and mass m could lose its momentum by cre-
ating a momentum excitation : mv = mv′ + ~k. The energy becomes
1
2mv

2 ≥ 1
2mv

′2 + ~ω. By eliminating v′, we obtain the relation, v ≥ ω/k. In
other words, if the fluid is slower than that critical velocity vc = ω/k, it can-
not lose its momentum, and so it gains superfluidity. It can be understood
easily by comparing to a Fermi liquid having a continuum of gapless excita-
tions. Thus, we should lower the temperature of the weakly coupled system
to gain the superfluidity. If the interaction is strong enough, we could expect
the energy gap between the lowest state and an excited state to become big-
ger and might gain superfluidity with higher temperature. Therefore, it is
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Figure 1.7: Normal to superfluid phase diagram at weak coupling and caption
taken from [66]. The critical temperature Tc in Kelvin on distance is around room
temperature with nanoscale distances. It is obtained using a coupling constant
appropriate for a SiO2 dielectric.

important to check if the system has an energy gap, which results in exciton
condensates and superfluidity (and superconductivity). We can investigate
the superfluidity by checking the gap and correlation functions in strong
interacting systems.

In the model the temperature should be higher than that of usual Bose-
Einstein condensates or typical superconductors because condensation is
driven by Coulomb interactions over the fill band width, rather than by
phonon-mediated interactions among quasiparticles in a narrow shell around
the Fermi surface. In this sense, exciton condensation is more similar to
ferromagnetism, which is also driven by Coulomb interactions and appears to
be at high temperatures [66]. Besides, with an external gate, the model has
more carriers, and graphene layers are so thin that the Coulomb interaction
is not screened as much as in semiconductor quantum well bilayers. The
numerical estimation is shown in Fig. 1.7.

In fact, the potential applications of superfluids are not as exciting and
wide as those of superconductors. However, it is still useful for various areas.
The most interesting application from this model might be bilayer (or possi-
bly double monolayers) pseudo spin field-effect transistor (BiSFET) [112] by
using transitions between superfluid mode and non-superfluid mode, which
is researched by the author of [66] and his collaborators.

Moreover, there are some educational applications, showing how quan-
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tum effects can become macroscopic in scale under certain extreme con-
ditions as illustrated by Bose-Einstein condensates. Many bosons can be
condensed at the same time at the lowest level of quantum states by a
bosonization, which means it is quantum effect and can be seen in macro-
scopic level as do LASERs and superconductors. Superfluids have some
impressive and unique properties that distinguish them from other forms of
matter. As they have no internal viscosity, a quantum vortex formed within
one persists indefinitely and its angular velocity is quantized. A superfluid
has zero thermodynamic entropy and infinite thermal conductivity. Super-
fluids can also climb up and out of a container in a one-atom-thick layer if
the container is not sealed; this is called a capillary action and a creep phe-
nomenon. 7. This superfluid quantum liquid prevails gravity of the Earth on
the surface and is able to climb out of any container in a thin film moving up
to 35 cm per second. A conventional molecule embedded within a superfluid
can move with full rotational freedom, behaving like a gas. Other interest-
ing properties may be discovered and designed to be applied for electronics,
among others, in the future.

Despite the usefulness of this model, the theoretical analysis of the weak
interacting model is limited in fully understanding the system because the
Coulomb interaction at the distance (3nm) that causes room temperature
superfluid must be very strong. Therefore, the perturbation theory should
be re-summed in ad hoc way to take screening into account. We find non-
perturbative model of very strongly coupled multi-monolayer systems8. This
model is a defect quantum field theory which is the holographic AdS/CFT
dual of a D3-probe-D5/anti-D5-branes system and D3-probe-D7/anti-D7-
branes system.

We model defect quantum field theory in 2+1 dimensional space-time
with double monolayer defects. It is shown in Fig. 1.8. N = 4 SYM theory
lives in a 3+1 dimensional bulk and there can be U(1) charged fermionic
fields on defect. The interaction between them is mediated by N = 4 SYM
gauge fields in bulk. In order to consider a holographic gravity dual of the
semimetals, e.g. graphene, we use evidence that D7 brane model resembles
graphene in that it has relativistic fermions on defect. D7 branes share
the coordinates t, x, y with D3 branes, and intersect probe branes along z.

7Readers can watch the remarkable properties of liquid helium when cooled below the
lambda point (the superfluid state) through the hyperlink provided in [24]. It is video-
recorded in 1963 by Alfred Leitner

8 Graphenes interact by exchanging photons. The double monolayers in the model
interact by exchanging gluons of N = 4 supersymmetric Yang-Mills theory and truncate
to planar limit. We do not construct the lattice structure.
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Figure 1.8: The infinite parallel planar (2+1)-dimensional defects bi-secting (3+1)-
dimensional spacetime.

This D7 brane model breaks supersymmetry so that it becomes a fermonic
theory. On the other hand, D5 brane has supermultiplet of fermions and
scalars on defect. Supersymmetry is not broken until an external magnetic
field is introduced. Low energy physics is governed by fermions. This is
known from research on intra-layer condensates which are seen in graphene.
As we mentioned earlier, graphenes interact by exchanging photons of U(1)
theory, whereas our model interactions exchange N = 4 super Yang-Mills
(SYM) gluons, and truncate to planar limit; N →∞, λ = g2

YMN →∞ and
gYM � 1. As we have discussed briefly, large number of D3-branes at low
energy limit cause the AdS background geometry, and we consider probe
D7 and D5 branes embedded on the background geometry. We also take
the no backreaction limit, N ≡ N3 � N5, N7. 9 The motivation of the
double layer Dirac Semimetals is well discussed in the later section, 5.1. We
recommend reading this introductory section before proceeding.

9If the mass of the sun is not heavy enough, it will be much more difficult to calculate
the motion of the earth because of the gravitational backreaction. We should consider the
movement of the sun at every moment. Similarly, we can fix the geometrical background
with the no-backreaction limit, N3 � N5, N7.
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1.5 Overview

The rest of the thesis is summarized as follows. We study a monolayer system
before studying a double monolayer system. We probe D5 branes on D3
branes AdS geometry background, AdS5×S5. Fig. 1.9 is the figure to show
this brane model. D5 branes span in AdS4 on AdS5. D3 and D5 branes are
in force equilibrium without an external magnetic field or charges, D5 branes
just stretch out toward a Poincaré killing horizon of D3 branes (Left figure of
Fig. 1.9). With an external magnetic field perpendicular to D5 branes, the
supersymmetry and conformal symmetry are both broken. Then, D5 branes
receive repulsive force from D3 branes, and the force becomes stronger as
closer as to the Poincaré horizon10, so the branes pinch off and truncate at
a finite AdS5-radius, before they reach the Poincaré horizon. This is called
Minkowski embedding (Right figure of Fig. 1.9). It can be considered as
dynamical symmetry breaking corresponding to intra-layer condensates in
single layer of graphene. This configuration has a charge gap. Charged
degrees of freedom are open strings which stretch from the D5 brane to
the Poincaré horizon. When, the D5 brane does not reach the Poincaré
horizon,the open string has a minimum length and therefore a mass gap.
It occurs at any value of an external magnetic field. This phenomenon
is elaborated to understand a quantum Hall ferromagnetism in [85] and
[77]. The quantum Hall system consists of a bunch of electrons moving in a
plane in the presence of an external magnetic field B perpendicular to the
plane. The magnetic field is assumed to be sufficiently strong so that the
electrons all have spin up, so they can be treated as spinless fermions. The
spinless electrons in a magnetic field have Landau quantized energy level.
The Coulomb interaction has generated a small energy gap. This gap breaks
some symmetry of the system. The phenomenon of interaction induced
gaps and broken symmetries at integer filling factors is known as quantum
Hall ferromagnetism. The four-fold degeneracy of graphene’s Landau levels
follows from approximate spin-degeneracy and from Bloch state degeneracy
between two inequivalent points in the honeycomb lattice Brillouin zone [86].
For D3/D5 branes model, the gap breaks SO(3) chiral symmetry and makes
the neutral state gapped.

When U(1) charge density is introduced, it becomes more interesting.
In this case, the tension of D3-D5 strings competes with D5 branes tension.
The tension of the strings is so greater than that of D5 branes that the

10In Fig. 1.9, r = 0 is the Poincaré horizon, and r = ∞ is an asymptotic boundary of
AdS5.
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Figure 1.9: Probe D5 branes on D3 branes background geometry without and with
an external magnetic field.

strings have zero length and the mass gap vanishes. If the ratio of charge
density to the magnetic field, filling fraction, qb

11 is bigger than some critical
value, the system restores the symmetry. In other words, D5 branes stretch
down to the horizon directly, and the chiral condensate term vanishes with a
vanished mass gap. On the other hand, if the filling fraction is smaller than
the critical value, the chiral symmetry is still broken without a mass gap.
This is called a Berezinski-Kosterlitz-Thouless-like (BKT) phase transition.
We have showed that an internal flux on the sphere of D5 branes also behaves
like the charge density. The newly defined parameter for the phase transition

is
√
f2 + ( qb )

2, where f is a constant factor proportional to the internal flux.

We present more detail in the chapter 2. Fig. 1.10 and Fig. 1.11 are the main
numerical results obtained in [92] and introduced in chapter 2 of this thesis.
We have found the solutions of systems in Fig. 1.10, which interpolate for the
Minkowski embedding with an external magnetic field and internal fluxes.
Fig. 1.11 is obtained from the data of multiple interpolate solutions as seen
in Fig. 1.10. m is a parameter of a fermonic mass, and c is a parameter
of an intra-layer chiral condensation in (1.9). We interpret it as a solution
with dynamical symmetry breaking, i.e., a chiral condensate with no bare
mass term.

In chapter 3, at last do we consider double layer probe branes. For
probe D5 brane on D3 brane background geometry, we have a symmetric

11q is rescaled charge density. b is rescaled magnetic field. f to be appeared below is a
rescaled internal flux on two sphere of five sphere.
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Figure 1.10: Fig. 2.1 in the chapter 2. The solutions of probe D5 branes model
with different internal fluxes with the parameter f and the external magnetic field.

Figure 1.11: Fig. 2.2 in the chapter 2. The graph of c versus v.
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trivial phase before breaking supersymmetries. Turning on the B-field, both
branes and anti-branes pinch off from the horizon and intra-layer exciton
transitions occur for each layer.

The each probe and anti probe brane have symmetries U(Nf ) and U(N̄f )
respectively. When the brane pair meets, symmetries of the pair are broken
to the symmetry of one set of branes geometrically down there. The Dirac
fermions lives on each probe brane and anti-probe brane. Thus, the sym-
metry breaking corresponds condensate of the fermions and anti-fermion.
Note that we do not consider the charge density yet. We have chronologi-
cally studied this joined U-shaped model before studying how to introduce
a charge density in the model. The readers might wonder why we do not
consider the factor of temperature. It is easy to introduce temperature in
the model by putting a black hole in AdS. AdS itself is a covariant box in
which we can put the black hole and do experiments on it. A black hole
pulls probe branes toward the horizon, so symmetry favors to be restored.
It is known as symmetry restoration by temperature. Since we know what
would happen when we introduce temperature in the model, without a loss
of generality, we would consider zero temperature in the model in the later
chapters than chapter 3. We also investigate the thermodynamics of brane
configurations and obtain a phase diagram of the configurations (symmetric
phase/broken symmetric phase), and have found phase diagrams. We load
multiple phase transition lines in Fig. 1.12 with respect to different fluxes,
α ≡ ζf√

f2+4

12. The dominant solution above any specific curve is given by

the two disconnected brane worldvolumes, i.e. the symmetric phase. The
joined solutions, the broken symmetry phase, dominates below the curve.
As a result, we newly see inverse magnetic catalysis in some range of internal
fluxes of probe branes. For example, see the curve with α = −0.5, upper
green solid line. The symmetric phase is favored as B increases.

In chapter 4, we study a holographic model of dynamical symmetry
breaking in 2+1-dimenisons, where a parallel D7-anti-D7 brane pair fuses
into a single object, corresponding to the U(1) × U(1) → U(1) symmetry
breaking pattern. It is slightly different from the model we have studied in
the chapter 2. Simply saying, this model is more symmetrical. Therefore,
we show that the current-current correlation functions can be computed
analytically and exhibit the low momentum structure that is expected when
global symmetries are spontaneously broken. Of interest is that we can
choose the U(1) as global or gauged by choice of boundary condition. We

12f is a constant proportional to internal flux on S2. ζ is a coefficient of an orientation.
See the detail in chapter 3.
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Figure 1.12: Fig. 3.10 in the chapter 3. Phase diagrams for the defect system
obtained from D3/probe D7 branes model with an external magnetic field and
internal fluxes. α ≡ ζf√

f2+4
. ζ is a parameter of an orientation, which are sign

factors +1/− 1 of Wess-Zumino term. See chapter 3 for the detail.

are able to see 3 different current-current two point functions from Dirchlet-
Dirichlet, Neumann-Neumann, and Dirchlet-Neumann boundary condition
pair. The most interesting case is that one is global U(1) and the other is
gauged (DN boundary condition pair). Then, the global U(1) symmetry is
spontaneously broken and its current has a pole in its correlation function.
The unbroken gauged U(1) has a massless pole corresponding to the photon.
It is seen in bilayer graphenes. We also find that these correlation (2-point)
functions have poles attributable to infinite towers of vector mesons with
equally spaced masses.

In chapter 5 and 6, we finalize the project we have discussed in the
section 1.4. Respectively, we study probe D5 branes in chapter 5, and study
probe D7 branes in chapter 6. A D5 brane and an anti-D5 brane are are
suspended with a distance L apart at the AdS5 asymptotic boundary, as
shown in Fig. 1.13. When the D5 brane and an anti-D5 brane are exposed
to a magnetic field, and if the field is strong enough, they can pinch off and
end before they join, Fig. 1.13. So far, it is not different from the model
of a single layer. However, the brane and anti-brane tend to join like a
particle-hole pair without an external magnetic field. The tendency to join
competes with the tendency to pinch off, and the competitions provide the
phase diagrams Fig. 1.15 and Fig. 1.16 in [100, 101] , which present the
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1.5. Overview

Figure 1.13: A D5 brane and an anti-D5 brane suspended in AdS5 without
an external magnetic field, both branes stretch to Poincaré horizon. When
turning on an external magnetic field, they can pinch off before join.

results of a thermodynamical preference between 3 possible phases in the
phase diagrams [100, 101].

Let us first see the phase diagram of probe D5 branes at Fig. 1.15.
Electric field in the field theory model would effectively change the electric
charge density. It is known that a doped bilayer graphene also has a band
gap. That is why non-zero charge q is needed for inter-layer phases in the
blue/green regions. For the degenerate gapless double monolayer graphene,
the Dirac point chemical potential is a non-zero. It is also in agreement with
D3/D5 phase diagram we obtained. For a fixed separation L, the red region
is gapless and no inter-layer condensation with non-zero charge density, and
it corresponds to Minkowski embedding. There are two dotted lines in the
phase diagram. One is for the first order phase transition between L = 1.357
and 1.7, and the other line is asymptote to the spot BKT transition of single
layer model between intra-layer phase and symmetric phase occurs when L
is infinite. For infinite separation, L, we can treat the system disconnected,
and then recover the behavior of a single layer. For small L, the branes are
connected at any value of a chemical potential. It is also notable that there
is no symmetric phase corresponds to the left figure in Fig. 1.13. It makes
sense because we turned on an external magnetic field for the system.

For the phase diagram of probe D7 branes, the vertical axis is layer
separation L in units of the inverse ultraviolet cutoff, R. The horizontal
axis is the charge density q in units of R2, where R4 = λα′2. The extremal
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1.5. Overview

Figure 1.14: When the D5 brane and an anti-D5 brane are suspended as shown,
their natural tendency is to join together.

black D3 brane geometry is given as follows :

ds2

R2
=
r2
(
−dt2 + dx2 + dy2 + dz2

)
√

1 +R4r4

+
√

1 +R4r4

(
dr2

r2
+ dψ2 + sin2 ψ

5∑
i=1

(dθi)2

)
(1.15)

where Σ5
i=1 (θi)2 = 1. Because R ∼ α1/2, 1/R can be regarded as a UV

cutoff. The main merit of using this geometry compared to AdS5 × S5 we
used for probe D5 branes is that we need an external magnetic field no
more in order to break the supersymmetry. The asymptotic large r limit is
Minkowski spacetime. In the near horizon limit, rR � 1, the geometry is
AdS5 × S5.

We can find a couple of differences below Fig. 1.15 with Fig. 1.16,
made by the cutoff factor. The most outstanding one is by cutoff. When
L is smaller than about R, inter-layer condensates never occur any more.
The brane pair is disconnected shown the red and white area in Fig. 1.16.
Moreover, there exists symmetric phase (white). The phase curve between
blue and green regions is also a bit different.

We have introduced chemical energy nesting in the weak interacting
model. The reader might ask what would happen at strong coupling, and
maybe, could expect no need of the perfect nesting. However, inter-layer
condensate occurs only if charge densities are balanced. It is sharper than in
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Figure 1.15: (color online)Phase diagram of the D3-probe-D5 brane system

the field theory. Moving away from nesting destroys the mass gap. We newly
found that when there is more than one species of fermions, nesting can occur
spontaneously. The tendency of interlayer condensate with perfect nesting is
the most, so even with unbalanced charges on each layer, they make a perfect
nesting at first, and the remaining charged probe branes have an intra-layer
condensate and the left non-charged probe branes remain symmetric. This
kind of perfect nesting is hard to achieve in the lab. Graphenes or semimetals
we concern have crystal structure, whereas our model assume the density of
the matter is uniform. Then it would be a bit difficult to match the atomic
structures of two layers in the lab. We need more work in this part.

It is interesting to think why the green and blue region extend to an
infinite separation, L→∞. It also agrees with weakly coupled systems. At
weak coupling, the Coulomb force is a long-range interaction. For example,
superfluidity can exist inside neutron stars. By analogy with electrons inside
superconductors forming Cooper pairs due to electron-lattice interaction, it
is expected that nucleons in a neutron star at sufficiently high density and
low temperature can also form Cooper pairs due to the long-range attractive
nuclear force and lead to superfluidity and superconductivity. From this
point of view we expect that the strong correlations to play an important
role in delimiting the magnitude of the pairing gap [68]. As we mentioned
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Figure 1.16: (color online)Phase diagram of the D3-probe-D7 brane system. We
have used charge density, q, instead of chemical potential, µ as an x-axis. If we use
chemical potential (x-axis), the diagram with L & 1 looks almost the same to Fig.

1.15. The q and L are rescaled with
√
2πB
λ1/4 = 1.

in the previous section, the balanced Fermi surface seems more crucial to
form condensates than the distance between layers. This also agrees with
weakly interacting theory.
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Chapter 2

D3-probe-D5 Holography
with Internal Flux

Three quarks for Muster Mark!
Sure he hasn’t got much of a bark
And sure any he has it’s all beside the mark.

- Finngans wake by James Joyce

The AdS/CFT duality of an appropriately oriented probe D5-brane em-
bedded in AdS5 × S5 space-time and a supersymmetric defect conformal
field theory is a well-studied example of holography [87]-[99]. In the limit of
large N and large radius of curvature, the D5-brane geometry is found as an
extremum of the Dirac-Born-Infeld action with appropriate Wess-Zumino
terms added. Its world-volume is the product space AdS4(⊂ AdS5)× S2(⊂
S5) which preserves an OSp(4|4) subgroup of the SU(2, 2|4) superconformal
symmetry of the AdS5 × S5 background. The superconformal field theory
which is dual to this D3-D5 system, and which is described by it in the strong
coupling limit, has a flat co-dimension one membrane that is embedded in
3+1-dimensional flat space. The bulk of the 3+1-dimensional space is occu-
pied by N = 4 supersymmetric Yang-Mills theory with SU(N) gauge group.
A bi-fundamental chiral hypermultiplet lives on the membrane defect and
its field theory is dual to the low energy modes of open strings connecting
the D5-branes and the D3-branes. These fields transform in the fundamen-
tal representation of the SU(N) bulk gauge group and in the fundamental
representation of the global U(N5), where N5 is the number of D5-branes (in
the probe limit, N5 << N and we will take N5 = 1). The defect field theory
preserves half of the supersymmetries of the bulk N = 4 theory, resulting
in the residual OSp(4|4) super-conformal symmetry. It is massless with a
hypermultiplet mass operator which breaks an SU(2) R-symmetry [89].

An external magnetic field has a profound effect on this system. In the
quantum field theory, the magnetic field is constant and is perpendicular to
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Chapter 2. D3-probe-D5 Holography with Internal Flux

the membrane defect. In the string theory, the magnetic field destabilizes
the conformal symmetric state to one which spontaneously breaks the SU(2)
R-symmetry and generates a mass gap for the D3-D5 strings [76]. The only
solution for the D5-brane embedding has it pinching off before it reaches
the Poincaré horizon of AdS5. As a result, the D3-D5 strings which, when
excited, must reach from the D5-brane to the Poincaré horizon, have a min-
imum length and an energy gap. This occurs for any value of the magnetic
field, in fact, since the theory has conformal invariance, the magnetic field
is the only dimensional parameter and there is no distinction between large
field and small field. A mass and a mass operator condensate for the D3-D5
strings can readily be identified (their conformal dimensions are protected
by supersymmetry) and there is simply no solution of the probe D5-brane
embedding problem with a magnetic field when both the mass and the con-
densate are zero. There can be a solution when one of those parameters
vanishes and the other does not vanish. Such a solution can be interpreted
as presence of a condensate in the absence of a mass operator, that is, as dy-
namical symmetry breaking. This phenomenon is regarded as a holographic
realization of the “magnetic catalysis” of chiral symmetry breaking that has
been studied in 2+1-dimensional quantum field theories [71]-[78] . The field
theory studies rely on weak coupling expansions and re-summation of Feyn-
man diagrams. Whether the phenomenon can persist at strong coupling is
an interesting question which appears to have an affirmative answer in the
context of this construction. It and many other aspects of the phase dia-
gram of the D5-brane have been well studied in what is by now an extensive
literature [36, 76, 99, 102].

This interesting behavior becomes more complex when a U(1) charge
density is introduced. The state then has a non-zero density of D3-D5
strings as well as a magnetic field. There is also a tuneable dimensionless
parameter, the ratio of charge density to the field, the “filling fraction”
ν = 2πρ

B . In this case, there is no charge gap. The D5-brane must necessarily
reach the Poincaré horizon. This is due to the fact that, to have a nonzero
charge density, there must be a density of fundamental strings suspended
between the D5-brane and the Poincaré horizon. However, the fundamental
string tension is always greater than the D5-brane tension [36] and such
strings would therefore pull the D5-brane to the horizon. The result is a
gapless state: the D3-D5 strings could have zero length, and therefore have
no energy gap. At weak coupling, the analogous process is the formation
of a fermi surface and a gapless metallic state when the charge density is
nonzero.

What is more, if the filling fraction is large enough, the state with no
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Chapter 2. D3-probe-D5 Holography with Internal Flux

mass term and mass operator condensate equal to zero exists and is stable.
In this state, the SU(2) R-symmetry is not broken. As the filling frac-
tion is lowered from large values where the system takes up this symmetric
phase, as pointed out in the beautiful paper [102], the system undergoes
a Berezinski-Kosterlitz-Thouless-like (BKT) phase transition. This phase
transition has BKT scaling and is one of the rare examples on non-mean
field phase transitions in holographic systems. When the filling fraction is
less than the critical value, again, even though the D5-brane world-volume
now reaches the Poincaré horizon, there is no solution of the theory unless
either the mass operator or mass operator condensate or both are turned
on.

In this chapter, we shall observe that, as well as density, there is a
second parameter which can drive the BKT transition. The parameter is
the value of a magnetic flux which forms a U(1) monopole bundle on the
D5-brane world-volume 2-sphere. The possibility of adding this flux was
suggested by Myers and Wapler [36]. They found that the idea could be
used to construct stable D3-D7 systems, in particular, and a modification
of their idea was subsequently used to study holography in D3-D7 systems
[37, 39, 54] In the limit where the string theory is classical, the problem of
embedding a D5-brane in the AdS5×S5 geometry reduces to that of finding
an extremum of the Dirac-Born-Infeld and Wess-Zumino actions,

S =
T5

gs

∫
d6σ

[
−
√
−det(g + 2πα′F ) + C(4) ∧ 2πα′F

]
(2.1)

where gs is the closed string coupling constant, which is related to the N = 4
Yang-Mills coupling by 4πgs = g2

YM , gab(σ) is the induced metric of the D5
brane, C(4) is the 4-form of the AdS5×S5 background, F is the world-volume
gauge field and T5 = 1

(2π)5α′3
. We shall use the metric of AdS5 × S5

ds2 = L2

[
r2(−dt2 + dx2 + dy2 + dx2) +

dr2

r2
+

+dψ2 + cos2 ψ(dθ2 + sin2 θdφ2) + sin2 ψ(dθ̃2 + sin2 θ̃dφ̃2)
]

(2.2)

Here the 5-sphere is represented by two 2-spheres fibered over the interval
ψ ∈ [0, π2 ]. The 4-form is

C(4) = L4r4dt ∧ dx ∧ dy ∧ dz + L4 c(ψ)

2
d cos θ ∧ dφ ∧ d cos θ̃ ∧ dφ̃ (2.3)

with ∂ψc(ψ) = 8 sin2 ψ cos2 ψ The radius of curvature of AdS is L and
L2 =

√
λα′ with λ = g2

YMN . The embedding of the D5-brane is mostly
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determined by symmetry. The dynamical variables are

{x(σ), y(σ), z(σ), t(σ), r(σ), ψ(σ), θ(σ), φ(σ), θ̃(σ), φ̃(σ)}

We look for a solution of the form

σ1 = x, σ2 = y, σ3 = t, σ4 = r, σ5 = θ, σ6 = φ, θ̃ = 0, φ̃ = 0 (2.4)

and the remaining coordinates depending only on σ4 = r, (z(r), ψ(r)).13

With this Ansätz, the D5-brane world-volume metric is

ds2 = L2

[
r2(−dt2 + dx2 + dy2) +

dr2

r2
(1 + r2ψ′

2
+ r4z′

2
) + cos2 ψ(dθ2 + sin2 θdφ2)

]
(2.7)

where prime denotes derivative by r and the world-volume gauge fields are

F =
L2

2πα′
a′(r) dr ∧ dt+

L2

2πα′
b dx ∧ dy +

L2

2πα′
f

2
d cos θ ∧ dφ (2.8)

Here, f is the strength of the monopole bundle.14 b is a constant magnetic
field which is proportional to a constant magnetic field in the field theory
dual. a(r) is the temporal world-volume gauge field which must be non-
zero in order to have a uniform charge density in the field theory dual. The
bosonic part of the R-symmetry is SU(2)×SU(2). One SU(2) is the isometry

13 This ansatz is symmetric under spacetime parity which can be defined for the Wess-
Zumino terms∫

d6σεµ1µ2...µ6∂µ1x(σ)∂µ2y(σ)∂µ3z(σ)∂µ4t(σ)r4(σ) ∂µ5Aµ6(σ) (2.5)∫
d6σεµ1µ2...µ6∂µ1 cos θ(σ)∂µ2φ(σ) ∂µ3 cos θ̃(σ)∂µ4 φ̃(σ)c(ψ)∂µ5 Aµ6(σ) (2.6)

in the following way. The world-volume coordinates transform as {σ′1, σ′2, . . . , σ′6} =
{−σ1, σ2, . . . , σ6} and the embedding functions as x′(σ′) = −x(σ), θ̃′(σ′) = π − θ̃(σ),
A′1(σ′) = −A1(σ) with all other variables obeying χ(σ′) = χ(σ). This is a symmetry of the
Wess-Zumino terms and the solution (2.4) is invariant. Charge conjugation flips the sign
of all gauge fields, A → −A and we augment it by {σ′1, . . . , σ′5, σ′6} → {σ1, . . . ,−σ5, σ6}.
The Wess-Zumino terms are invariant. The background field fd cos θ∧dφ is also invariant
once we choose σ5 = π

2
− θ. The fields a(r) breaks C and preserves P. b breaks C and P

and preserves CP.
14A monopole bundle has quantized flux. Here the number of quanta is very large in

the strong coupling limit nD ∼
√
λ, so that it is to a good approximation a continuously

variable parameter. b and q are related to the physical magnetic field and charge density

as b = 2π√
λ
B, q = 4π3

√
λN
ρ so that q

b
= π

N
2πρ
B
≡ π

N
ν where the dimensionless parameter ν is

the filling fraction. A Landau level would have degeneracy N . so filling fraction of a set of
N degenerate levels naturally scales like N to give order one b and q in the large N limit.
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of the S2 which is wrapped by the D5 brane (2.7) and is also a symmetry
of the background fields (2.8). The other is the rotation in the transverse
S2 ⊂ S5 with S5 coordinates θ̃, φ̃. This is a symmetry of the embedding
only when the former S2 is maximal, that is, when ψ(r) = 0 for all r. If
ψ(r) deviates from zero, it must choose a direction in the transverse space,
and the choice breaks the second SU(2). The hypermultiplet mass shows up
in the D5 brane embedding as

M ∼ m ≡ lim
r→∞

r sinψ(r) (2.9)

and deviation of ψ(r) from the constant ψ = 0 so that the parameter m is
nonzero is a signal of having switched on a hypermultiplet mass operator in
the dual field theory.

With (2.7) and (2.8), the action (4.5) is

S = N
∫
d3xdr

[
−
√

(f2 + 4 cos4 ψ)(b2 + r4)(1 + r2ψ′2 + r4z′2)− a′2 + fr4z′
]

(2.10)

where N = 2πT5L6

gs
=
√
λN

4π3 . The factor of 2π in the numerator comes from
half of the volume of the unit 2-sphere (the other factor of 2 is still in the
action). The Wess-Zumino term gives a source for z(r).

Now, we must solve the equations of motion for the functions ψ(r), a(r)
and z(r) which result from (2.10) and the variational principle. The variables
a(r) and z(r) are cyclic and they can be eliminated using their equations of
motion,

d

dr

δS

δz′(r)
= 0 →

√
(f2 + 4 cos4 ψ)(b2 + r4)r4z′√

1 + r2ψ′2 + r4z′2 − a′2
− fr4 = pz (2.11)

d

dr

δS

δa′(r)
= 0 →

√
(f2 + 4 cos4 ψ)(b2 + r4)a′√
1 + r2ψ′2 + r4z′2 − a′2

= −q (2.12)

where pz and q are constants of integration. If these equations are to hold
near r → 0, we must set pz = 0. q is proportional to the charge density in
the field theory dual. Then, we can solve for z′ and a′,

z′ =
f
√

1 + r2ψ′2√
4 cos4 ψ(b2 + r4) + f2b2 + q2

(2.13)

a′ =
−q
√

1 + r2ψ′2√
4 cos4 ψ(b2 + r4) + f2b2 + q2

(2.14)
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We must then use the Legendre transformation

R = S −
∫
a′(r)

∂L

∂a′(r)
−
∫
z′(r)

∂L

∂z′(r)

to eliminate z′ and a′. We obtain the Routhian

R = N
∫
d3xdr

√
4 cos4 ψ(b2 + r4) + b2f2 + q2

√
1 + r2ψ′2 (2.15)

which must now be used to find an equation of motion for ψ(r),

ψ̈

1 + ψ̇2
+ ψ̇

[
1 +

8r4 cos4 ψ

4(b2 + r4) cos4 ψ + f2b2 + q2

]
+

8(b2 + r4) cos3 ψ sinψ

4(b2 + r4) cos4 ψ + f2b2 + q2
= 0

(2.16)

where the overdot is the logarithmic derivative ψ̇ = r ddrψ.
First, we note that, if ψ(r) is to be finite at r → ∞, its logarithmic

derivatives should vanish. Then, the only boundary condition which is com-
patible with the equation of motion is ψ(r →∞) = 0.

If we set b = 0, f does not appear in the Routhian (2.15) or in the
equation of motion (2.16). ψ(r) which is then f -independent. In fact, the
constant solution, ψ = 0 is a stable solution of (2.16). z(r) is f and r-
dependent. Equation (2.13) has the solution z(r) =

∫
dr f√

4r4+f2
. The

worldvolume metric is still that of AdS4 × S2,

ds2 = L2

[
r2(−dt2 + dx2 + dy2) +

dr2

r2

(
1 +

f2

4

)]
+ L2

[
dθ2 + sin2 θdφ2

]
(2.17)

where, now, the radii of the two spaces differ, the S2 still has radius L

whereas AdS4 has radius L

√
1 + f2

4 . The field theory dual of this system was

discussed in reference [36]. It has a planar defect dividing three dimensional
space into two half-spaces with N = 4 Yang-Mills theory with gauge group
SU(N + nD) on one side of the defect and N = 4 Yang-Mills theory with
gauge group SU(N) on the other side. Here nD is the number of Dirac
monopole quanta in f . The r-dependence of the embedding function z(r)
can be viewed as an energy-scale dependent position of the defect in the
field theory.

When b is not zero, scaling r →
√
br, removes b from most of equation

(2.16), the dependence which remains is only inthe parameter f2 +
( q
b

)2
.

If this parameter is large enough, the solution ψ(r) = 0 is still a stable
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Figure 2.1: We integrate equation (2.16) with q = 0, f2 = 0.01 and f2 = 100.
The solution interpolates between the correct asymptotic values, ψ(r = ∞) = 0
and ψ(r = 0) = π

2 . With larger f2, it clearly has a slower approach to ψ = π
2 . The

AdS radius r is measured in units of 1/
√
b.

solution of (2.16). The BKT phase transition found in reference [102] was
driven by the change in behavior of the equation for ψ(r) in the small r
region and, in that paper, it was found by adjusting q

b (they had f = 0)

with the critical value being
( q
b

)2∣∣∣
crit.

= 28. At that point, the symmetric

solution ψ = 0 becomes unstable. This is easily seen by looking at solutions
of the linearized equation which, at small r, must be ψ ∼ c1r

ν+ +c2r
ν− with

ν± = −1
2 ±

1
2

√
1− 32/

(
4 + f2 + q

b

)2
and the instability sets in when the

exponents become complex, that is, at
[
f2 +

( q
b

)2]
crit.

= 28. The complex

exponents are due to the fact that, in the r ∼ 0 regime, the fluctuations
obey a wave equation for AdS2 with a mass that violates the Breitenholder-
Freedman bound. Since, in the stable regime, f2 +

( q
b

)2
> 28 both of the

exponents in the fluctuations are negative, deviation from ψ(r) = 0 is not
allowed, it is an isolated solution. We can find this solution and the phase
transition even when q

b vanishes by varying f , stability where f2 > 28 and
the phase transition at f2

crit = 28. In particular, this allows us to study the
theory in the charge neutral state where q = 0. From the point of view of the
space-time symmetry, the flux f is charge conjugation symmetric, whereas
the finite charge density state is not. In fact f itself does not violate any
2+1-dimensional spacetime symmetries associated with Lorentz, C, P or T
invariance.
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Figure 2.2: The constants c versus m are plotted for a sequence of embeddings
of the D5-brane in the region where the constant ψ solutions are unstable. Here
f2 = .01. Note that there is a special value of the condensate c where m = 0.
We interpret this as a solution with dynamical symmetry breaking, i.e. as a chiral
condensate with no bare mass term.

When the symmetric solution ψ = 0 is unstable, we must find another
solution of equation (2.16) for ψ(r), where we now assume that it depends
on r. ψ = 0 was an isolated solution, there are no other solutions closeby.
As soon as it depends on r, if ψ(r) is to remain finite in the small r region,
it must go to the other solution of (2.16) at small r, ψ(r → 0) = π

2 .
When either or both of q and f are nonzero, the D5-brane must reach the

Poincaré horizon. Otherwise, the charge density q and magnetic monopole
flux f would have to have sources on the D5-brane worldvolume. q would
be sourced by a uniform density of fundamental strings and the magnetic
monopole flux f by nD D3-branes which are suspended between the world-
volume and the Poincaré horizon. However, as in the case of fundamental
strings, it is possible to show that the D3-brane tension is always greater than
the D5-brane tension. Like the fundamental string, a suspended D3-brane
would drag the D5-brane to the horizon. The D5-brane world-volume could
still reflect this behavior with a spike or funnel-like configuration. When
there are both suspended fundamental strings and D3-branes, it is interest-

ing that the embedding problem depends on the combination
√
f2 +

( q
b

)2
,

reminiscent of bound states of F-strings and D-branes. We then expect to
find solutions of (2.16) which interpolate between ψ = 0 at r →∞ to ψ = π

2
at r → 0. Indeed, for generic asymptotic behavior, such solutions are easy
to find by a shooting technique. Examples are given in figure 2.1.
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Figure 2.3: The function r sin(ψ(r)) is plotted versus r for some embeddingspa-
rameterized by the asymptotic m and c, including the one which is close the solution
with m = 0 which is associated with dynamical symmetry breaking.

It is also possible to find solutions that can be interpreted as chiral
symmetry breaking, although the D5-brane still reaches the Poincaré horizon
and we expect that the D3-D5 strings are still gapless. In the region of large
r, the linearized equation for ψ(r) is solved by

ψ(r) =
m

r
+

c

r2
+ . . .

The two asymptotic behaviors have power laws associated with the ultravi-
olet conformal dimension of the mass and the chiral condensate in the dual
field theory. These are the same as their classical dimensions since they are
protected by supersymmetry. A symmetry breaking solution would have
one of these equal to zero (and the other one interpreted as a condensate).
Indeed, it is easy to find a family of solutions of (2.16) which, as we tune
m, still exists and has nonzero c in the limit where m goes to zero. The
c versus m behavior of this family of solutions is shown in figure 2.2. The
behavior if r sin(ψ(r)) which can be interpreted as the separation of the D5
and D3-branes is plotted in figure 2.3 for some values of m and c.

As an extension of our results here, it would be interesting to analyze
the electromagnetic properties of the solution with finite f and q = 0. This
is a charge neutral state and it has a mass operator condensate. It is pos-
sible to study Maxwell equations for fluctuations of the worldvolume gauge
field and though it is difficult to obtain an analytic solution, it is relatively
straightforward to show that they have no solution when the field strength
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is a constant. This implies that the charged matter is still gapless and pro-
vides the singularities in response functions which make the theory singular
at low energy and momentum.
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Chapter 3

Dynamical Symmetry
Breaking with Charged
Probe Pair

But you’ve ceased to believe in your theory already,
what will you run away with?

- Crime and Punishment by Fydor Dostoevsky

3.1 Introduction

The AdS/CFT correspondence [12], and holographic duality in general, is
a powerful, conjectured technique for the analysis of strongly coupled field
theories. While originally pursued to address questions about low-energy
QCD, it has expanded to include studies of a variety of strongly coupled
field theories in diverse dimensions.15

Of much interest in recent years has been the study of defect theories and
the interaction of defects. Such defects can be constructed holographically
by the intersection of different stacks of D-branes, one of the earliest known
examples being the supersymmetric (2 + 1)-dimensional intersection of the
D3/D5 system [89], a defect in the ambient (3+1)-dimensional N = 4 super
Yang-Mills native to the D3 worldvolume. A common technique for studying
these systems is to consider the quenched approximation of the field theory,
where one stack, say of Dp-branes, has parametrically more branes than the
other, say of Dq-branes. The gravity description of this scenario can then
be reliably computed at strong coupling by using a probe Dq-brane action
in the near-horizon region of a classical p-brane supergravity solution [26].

15For older review articles see [8, 14], while [19, 21] are more recent with an emphasis
on applications for condensed matter.
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The full dual field theory lives at the asymptotic boundary of this spacetime
and the defect theory lives where the probe brane intersects the boundary.

Multiple defects may be studied by allowing several stacks of Dq-branes
to intersect the boundary. As discussed first in [27, 28], a coherent state of
spatially separated defects can be achieved by a continuous probe brane con-
figuration with a multiply connected intersection with the boundary. Since
the boundary components must have opposite orientation in this scenario,
it can be understood as brane/anti-brane recombination. In the scenario
of [27, 28], the defect degrees of freedom were d = 3 + 1 chiral fermions,
with those on the brane component of opposite chirality from those on the
anti-brane. The coherent state where the worldvolumes join in the bulk thus
describes chiral symmetry breaking. In [30, 31], this scenario was general-
ized to allow for intersections of other dimension and brane species as well as
for the joining process to occur dynamically.16 Further generalizations have
included adding external magnetic and electric fields as well as chemical
potential [29, 32–34].

In this chapter, we consider scenarios of bulk brane/anti-brane recombi-
nation in AdS5 × S5,

ds2 ∼ r2
(
−dt2 + dx2 + dy2 + dz2

)
+
dr2

r2
+ dΩ2

5 . (3.1)

As an additional ingredient to previous studies, we consider probes which
are electrically charged under the background F5 Ramond-Ramond field.
The probe branes form two stacks, each spanning some cycle in S5, the non-
compact directions (t, x, y) and some curve z(r). The stacks have opposite
orientation and are separated in the z direction along the boundary.

An uncharged probe brane – such as in the studies cited above – expe-
riences no force in the non-compact directions from the F5. For such a case
there are then two qualitative classes of solutions, depicted in Fig. 3.1. The
first solution is the so-called “black hole embedding” which reaches all the
way down to the spacetime horizon. These embeddings are “straight” in the
sense that dz

dr = 0. The second solution is a joined embedding which has two
disconnected boundaries of opposite orientation although the entire world-
volume is a simply connected and oriented manifold. Only these solutions
have dz

dr 6= 0. Note that since there is no Ramond-Ramond force, the brane
orientation does not play a role.

On the other hand, if the probe branes are charged under the spacetime
Ramond-Ramond field, the situation is somewhat different. This can occur

16In [27, 28], topological considerations force the branes to join while in [30, 31] and later
works there are multiple consistent solutions and only the minimum energy one dominates.
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3.1. Introduction

Figure 3.1: Straight embeddings and a joined embedding where there is no force
from the background Ramond-Ramond flux. The arrows represent worldvolume
orientation. There would be no change in the embedding if the arrows were reversed.

either because the probe itself is a D3-brane, or the charge could be induced
by worldvolume fluxes on the probe. The D3/D5 system where the D5
brane carries q unit of D3-brane charge was first introduced in [87]. In
[36], black-hole embeddings of D5 and D7 probe branes with induced D3-
brane charge were studied in AdS5 × S5. Additional D7 brane embeddings
carrying D3 charge were introduced in [37] and studied further in [38, 39].
These probes are affected by the background F5 and even the black hole
embeddings have dz

dr 6= 0. In Fig. 3.2, we see such a black-hole embedding.
The brane orientation plays a major role in this situation; an oppositely
oriented probe would bend in the opposite z-direction.

These electrically charged probe branes have a richer space of joined
solutions than their uncharged cousins. Due to the force in the z-direction,
the qualitative features of the solution depend strongly on the orientation,
specifically the left-right ordering of the boundary components. The choice
of orientation gives rise to the classes of solutions seen in Fig. 3.3. The top
left figure pictures a brane/anti-brane pair which tend toward each other
despite not actually connecting, while the top right figure pictures a joined
pair. These two solutions have the same boundary conditions and so it is
a dynamical question which has the lower energy and is therefore stable.
The figures in the bottom row also depict solutions with the same boundary
conditions, but with the worldvolume orientations all opposite of the figures
above. Note the surprising feature in the bottom right figure, where the
joined embedding becomes wider in the bulk than at the boundary. We
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3.1. Introduction

Figure 3.2: A D3-charged probe brane in (finite-temperature) AdS5 × S5.
The probe bends in the z-direction as it descends from the boundary (the
solid line at the top) to enter the horizon represented by the dotted line at
the bottom. The arrow represents the orientation of the D3 charge. An
oppositely oriented brane would bend in the opposite z-direction.

will call these joined solutions “chubby” and conversely the more typical
solutions in the top right (which are widest at the boundary) we will call
“skinny.”

There are multiple perspectives on what these brane systems are holo-
graphically dual to. Firstly, the (2 + 1)-dimensional intersection of a probe
brane with the boundary is conventionally associated with a defect in N = 4
super-Yang-Mills gauge theory. The field content of the defect is given by
the lowest level open string modes which are localized at the D-brane inter-
section. For a D5-brane probe, the defect theory is supersymmetric since
the intersection is #ND = 4; this is the spectrum studied in [89]. For the
D7-brane probe, the intersection is #ND = 6 and the spectrum is simply
massless fermions [40], in fact T-dual to the D4/D8 intersections of the
Sakai-Sugimoto model [27, 28]. As a caveat, it should be mentioned that it
is not clear if this picture of the spectrum still holds when internal fluxes
exist on the probe, but is often nonetheless used to guide intuition.

A defect dual to a stack of N branes or anti-branes is associated with
a U(N) global flavor symmetry inherited from the gauge field living on the
brane worldvolume. Thus the recombination of an equal number of branes
and anti-branes describes a breaking of symmetry U(N) × U(N) → U(N).
Since the defects are separated in space, the duals of these scenarios can
be considered interacting (2 + 1)-dimensional defect bi-layer systems or as
discussed in [31], (2 + 1)-dimensional effective field theories with non-local
interactions.
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3.1. Introduction

Figure 3.3: The top row pictures possible solutions of a brane/anti-brane pair in
the presence of a Ramond-Ramond force. Note that the branes bend toward each
other as they extend into the bulk even if they don’t join. If the orientations are
reversed, we have instead the bottom set of solutions. These always bend away
from each other when initially leaving the boundary even if they eventually join in
the bulk.
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The dual interpretation above holds for probes with or without D3-
charge. However, for D3-charged probes there are some other interesting
properties of these solutions. A D3-charged probe brane – even a higher
dimensional brane with an induced D3 charge – contributes to the overall
Ramond-Ramond flux of the system. This flux is in turn related by the
AdS/CFT dictionary to the rank of the dual gauge group. Therefore a
defect of D3-charge k forms a domain wall in the dual gauge theory with
SU(N) gauge symmetry on one side and SU(N + k) on the other [36]. A
cartoon representation of this situation is depicted in Fig. 3.4. Once the
probe enters the horizon, it is effectively parallel to the original stack of
D3-branes sourcing the geometry, adding to the overall D3-brane charge as
measured by a Gaussian surface outside the horizon. This is interpreted
as a larger gauge symmetry existing in the region to the left. It follows
that if there are multiple D3-charged defects, that we have a spatially non-
trivial pattern of symmetry breaking in the dual theory, with a gauge group
between the defects which is different from that outside. Thus the joined
solutions should be considered dual to finite-width domain walls.

In this chapter, we will study the thermodynamics of these domain walls,
mostly from the bulk perspective. In Section 2, we introduce a class of D3-
charged probe branes and derive a one-dimensional effective particle me-
chanics action that describes the entire class. The solutions of the equation
of motion of this effective action are studied in Section 3 and a renormal-
ized free energy computed in Section 4. Finally, in Section 5, we examine
the phase diagram of this system in the space of external magnetic field and
asymptotic separation with some comments on the phenomenon of magnetic
catalysis.

3.2 D3-charged probes in AdS5 × S5

Consider the background IIB supergravity solution thermal AdS5×S5, the
near-horizon geometry of N3 D3-branes at finite temperature. The line-
element is given by

L−2ds2 = r2
(
−h(r)dt2 + dx2 + dy2 + dz2

)
+

dr2

h(r)r2
+ dΩ2

5 . (3.2)

The S5 line element is represented as a bundle over S2 × S2,

dΩ2
5 = dψ2 + sin2 ψdΩ2

2 + cos2 ψdΩ̃2
2 , (3.3)
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3.2. D3-charged probes in AdS5 × S5

Figure 3.4: A cartoon representation of a probe brane (dashed line) carrying D3-
charge k bending to become parallel with the stack of N3 D3-branes sourcing the
AdS geometry, represented by the solid lines at the bottom. The arrows represent
brane worldvolume orientation. The dual gauge group is SU(N3) towards the right
while it is enhanced to SU(N3 + k) to the left.

where ψ ∈
(
0, π2

)
and

dΩ2
2 = dθ2 + sin2 θdφ2 , (3.4)

is the line-element for a unit S2. The blackening function is

h(r) = 1−
r4
h

r4
. (3.5)

At zero-temperature, rh = 0. However, any non-zero value of rh can be
rescaled by a coordinate transformation. Therefore, for finite temperature,
we can choose without loss of generality rh = 1. The scale of the geometry
is related to the microscopic string theory parameters via

L4 = 4πgsN3(α′)2 . (3.6)

There is also a self-dual five-form Ramond-Ramond flux

F5 =
4L4

gs

(
r3dt ∧ dx ∧ dy ∧ dz ∧ dr + ω5

)
. (3.7)

Here ω5 is the volume form on the unit five-sphere

ω5 = sin2 ψ cos2 ψdψ ∧ ω2 ∧ ω̃2 , (3.8)
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3.2. D3-charged probes in AdS5 × S5

where ω2 = sin θdθ ∧ dφ is the S2 volume form. We encode this flux with
the four-form potential

gs
L4
C4 = r4h(r)dt ∧ dx ∧ dy ∧ dz +

1

2
c (ψ)ω2 ∧ ω̃2 . (3.9)

The function c (ψ) is

c(ψ) = ψ − 1

4
sin (4ψ) + c0 (3.10)

where c0 is an arbitrary constant, a residual ambiguity due to the gauge
symmetry of the Ramond-Ramond field. A similar constant could be added
to the coefficient of dt ∧ dx ∧ dy ∧ dz, but we have chosen to partially fix
the gauge by requiring that the first term in C4 vanish at the horizon. This
ensures that the term is well-defined on the Euclidean section of (3.2) which
simplifies the treatment of the Wess-Zumino terms.

We will now consider the following set of branes

t x y z r ψ Ω2 Ω̃2

D3′ − − − − · · · ·
D3 − − − ∼ ∼ · · ·
D5 − − − ∼ ∼ · − ·
D7 − − − ∼ ∼ · − −

(3.11)

The D3′ row refers to the large stack of D3 branes which source the AdS
geometry while the other rows record the configurations of the probes. A
dash indicates the brane is extended in that direction, with support over
the entire range of the coordinate. A dot indicates the respective brane
is completely localized in that coordinate. Finally the ∼ symbols indicate
that the brane traces a curve in those directions. For example, the D5-brane
extends along the non-compact (t, x, y) directions, wraps one of the two S2

factors in the S5, is localized in ψ and on the other S2, and finally, lies along
a curve in the (z, r) space.

These probes all intersect the boundary on some 2 + 1 dimensional sub-
space at a fixed value of z (although for the D3 probes, this will turn out
to be z = ±∞). In order to induce D3-brane charge,17 the probe D5 and
D7-branes will carry internal flux topologically supported on one or both
S2 factors, respectively. We will also allow for magnetic field in the three
dimensional defect on the boundary, i.e. a non-zero Fxy component. In [37],

17Such flux is actually required to stabilize the D7 probe at a non-trivial value of ψ at
the AdS boundary [37].
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3.2. D3-charged probes in AdS5 × S5

D7 branes with a more general ansatz were studied. However, our focus will
be a class of solutions with different boundary conditions.

The D5 and D7 probes outlined above have 3+1 non-compact directions
and wrap some compact cycles. If one imagines integrating over these cycles,
one would obtain an effective 3 + 1 dimensional object which carries D3
charge in AdS5. In other words, the higher-dimensional D3-charged branes
act as effective D3-branes. These effective branes are much like excited
states of a proper D3, they carry D3 charge but the effective tension is
greater than the charge. This will become clearer in the next few sections.
First, we will calculate an effective action for a D3 probe with the ansatz
(3.11). We will then see that D5 and D7 probes will yield an effective action
of the same form.

3.2.1 D3-brane probe

First, let us introduce a D3-brane probe as a model system. The action
comprises the familiar DBI and Wess-Zumino terms

S3 = −T3

∫
d3+1ξe−φ

√
−det (g + 2πα′F )− T3

∫
C4 . (3.12)

The three-brane tension is

T3 =
1

(2π)3

1

α′2
. (3.13)

We choose a static gauge where ξa = {t, x, y, r} are brane coordinates and
the embedding is given by the function z(r). The induced metric is thus

ds2
3

L2
= r2

(
−hdt2 + dx2 + dy2

)
+
(
1 + r4hż2

) dr2

r2h
, (3.14)

where a dot indicates differentiation by r. We also allow a magnetic field
normalized as

2πα′

L2
F = Bdx ∧ dy . (3.15)

This information is sufficient to compute the Born-Infeld term

SDBI = N3

∫
dr
√

(r4 +B2) (1 + r4hż2) , (3.16)

where the overall constant is

N3 =
T3L

4V2+1

gs
, (3.17)
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3.2. D3-charged probes in AdS5 × S5

with V2+1 the infinite volume factor of the (t, x, y) directions.
To compute the Wess-Zumino term we also need to specify an orienta-

tion, which we encode via an orientation parameter ζ = ±1. Evaluating,∫
C4 = V2+1ζ

∫
r4hżdr . (3.18)

Note that while orientation is an invariant geometric feature intrinsic to
the entire D-brane worldvolume, the parameter ζ is partly an artifact of
the coordinates we use. Therefore ζ may take different values on separate
branches of the same continuous brane. For example, in a brane/anti-brane
recombination, the left branch has ζ = 1 and the right branch ζ = −1, yet
the worldvolume is continuous.

Putting together the terms above – and dropping an overall constant
factor – yields an effective particle mechanics Lagrangian

L3 =
√

(r4 +B2) (1 + r4hż2) + ζr4hż . (3.19)

We will find similar effective Lagrangians for the D5 and D7 probes, differing
only in the coefficient of the second term. Here that coefficient is of unit
magnitude since physically it is the D3-brane charge per tension.

3.2.2 D5 probes

The probe action for D5-branes is

S5 = −T5

∫
d5+1ξe−φ

√
−det (g + 2πα′F )− 2πα′T5

∫
C4 ∧ F , (3.20)

where the tension is

T5 =
1

(2π)5

1

α′3
. (3.21)

We choose a static gauge with coordinates ξa = {t, x, y, r, θ, φ} and embed-
ding function z(r). The induced metric is

ds2
5

L2
= r2

(
−hdt2 + dx2 + dy2

)
+
(
1 + r4hż2

) dr2

r2h
+ sin2 ψdΩ2

2 . (3.22)

The ansatz for worldvolume flux is

2πα′

L2
F = Bdx ∧ dy +

f

2
ω2 . (3.23)
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3.2. D3-charged probes in AdS5 × S5

The magnetic field is a continuous quantity but the flux on the compact
sphere is, of course, quantized

f =
2πα′

L2
n , n ∈ Z . (3.24)

Substituting all this into the action yields

S5 = −N5

∫
dr

[√
(r4 +B2)

(
f2 + 4 sin4 ψ

)
(1 + r4hż2) + ζfr4hż

]
,

(3.25)
with the normalization

N5 =
2πT5L

6V2+1

gs
, (3.26)

and once again we have introduced an orientation parameter ζ = ±1. Our
ansatz is for constant ψ but we see that ψ has a potential. The ψ equation
of motion is

d

dψ

√
f2 + 4 sin4 ψ = 0 , (3.27)

yielding18

ψ =
π

2
. (3.28)

We insert this back into the D5 action. Up to an overall constant we again
obtain an effective particle Lagrangian for z(r),

L5 =
√

(r4 +B2) (1 + r4hż2) +
ζf√
f2 + 4

r4hż . (3.29)

The only difference from the D3 is in the coefficient of the second term, the
effective D3-brane charge per unit tension. The magnitude of this ratio is
less than unity here, in keeping with the picture that this D5 probe is a
D3-brane in an excited state.

3.2.3 D7 probes

The D7-brane action is

S7 = −T7

∫
d7+1ξe−φ

√
−det (g + 2πα′F )− (2πα′)2

2
T7

∫
C4∧F∧F , (3.30)

18Another solution is ψ = 0 but it is physically trivial since the brane volume is then
exactly zero.
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with tension

T7 =
1

(2π)7

1

α′4
. (3.31)

In a static gauge with coordinates ξa =
{
t, x, y, r, θ, φ, θ̃, φ̃

}
, we describe the

embedding with the function z(r). The induced metric is

ds27
L2

= r2
(
−hdt2 + dx2 + dy2

)
+
(
1 + r4hż2

) dr2
r2h

+sin2 ψdΩ2
2 +cos2 ψdΩ̃2

2 . (3.32)

For the worldvolume flux we use the ansatz

2πα′

L2
F = Bdx ∧ dy +

f1

2
ω2 +

f2

2
ω̃2 . (3.33)

The fluxes on the S2 factors are quantized

fi =
2πα′

L2
ni , ni ∈ Z . (3.34)

The DBI portion of the action is

SDBI = −N7

∫
dr
√

(r4 +B2)
(
f21 + 4 sin4 ψ

)
(f22 + 4 cos4 ψ) (1 + r4hż2) (3.35)

with

N7 =
4π2T7L

8V2,1

gs
. (3.36)

The Wess-Zumino term is given by

S = −N7ζf1f2

∫
drr4hż , (3.37)

with ζ the orientation parameter. We minimize the ψ potential

d

dψ

√(
f2

1 + 4 sin4 ψ
) (
f2

2 + 4 cos4 ψ
)

= 0 , (3.38)

yielding the implicit equation19

f2
2 sin2 ψ − f2

1 cos2 ψ + 4 cos2 ψ sin2 ψ
(
cos2 ψ − sin2 ψ

)
= 0 . (3.39)

19While this can be solved for general fi, it can be seen that fluctuations δψ around the
solution can violate the BF bound [42, 43]. In particular, for absolutely no internal fluxes
fi = 0, the D7 will be unstable [44]. See [37] for more discussion of stabilizing this D7
brane embedding.
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Substituting this back into the action yields, up to an overall constant, an
effective particle Lagrangian for the D7-brane

L7 =
√

(r4 +B2) (1 + r4hż2) +
ζf1f2√(

f21 + 4 sin4 ψ0

)
(f22 + 4 cos4 ψ0)

r4hż , (3.40)

where ψ0 is a constant that solves (3.39). This again takes the form of the
effective D3 Lagrangian with a charge per tension smaller than unity.

3.3 Solutions to effective Lagrangian

We found that all three of the D3-charged probes under consideration are
described by an effective particle Lagrangian of the form

Seff =

∫
dr
√
r4 +B2

√
1 + r4hż2 + α

∫
drr4hż . (3.41)

The parameter α is the effective D3-brane charge per tension and is given
by

α =


ζ D3−brane

ζf√
f2+4

D5−brane

ζf1f2√
(f2

1 +4 sin4 ψ0)(f2
2 +4 cos4 ψ0)

D7−brane

(3.42)

with ψ0 solving (3.39) in the case of the D7. Note that |α| < 1 for both the
D5 and D7 probes.

The equation of motion derived from (3.41) can be immediately inte-
grated since the variable z(r) is cyclic

P ≡
√

r4 +B2

1 + r4hż2
r4hż + αr4h = constant . (3.43)

Define the intermediate function

g(r) =
P

r4h
− α , (3.44)

then solve for ż to obtain

ż =
g(r)√

r4 +B2 − r4hg(r)2
. (3.45)

The full profile z(r) is obtained by integration. This cannot be done analyt-
ically in general, but for any choice of B, P and α the integration of (3.45)
is easily evaluated numerically.
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These solutions are completely specified by the integration constant P .
For any brane profile that enters the black hole horizon, substituting r = 1
into (3.43) shows that P must vanish since h (r = rh = 1) = 0,

P = 0 for solutions with support at r = 1 (3.46)

In keeping with the literature we call these solutions black hole embeddings.
Since P = 0, we have g(r) = −α. Thus, we see from (3.45) that for the
black hole embeddings z(r) is single-valued and monotonic.

The other possibility is that the profile has a minimum value of r. With-
out loss of generality, we can choose this minimum to be located at z = 0.
The signal of a minimum would be ż diverging at some r = r0. This yields
the expression for the integration constant

P = r4
0

√
h0

(√
1 +

B2

r4
0

sign (ż0) + α
√
h0

)
, (3.47)

where h0 = h(r0) and ż0 = ż(r → r0). The presence of an absolute minimum
requires that the brane bends back up to the boundary. This other leg of the
brane will have opposite orientation parameter ζ so this solution is a joined
brane/anti-brane pair. We thus call the P 6= 0 solutions joined embeddings.

The magnitude of the first term in the parentheses of (3.47) is greater
than unity while that of the second term is less than unity. Therefore

sign (ż (r → r0)) = sign (P ) . (3.48)

However, ż → −∞ when approaching from the left of the minimum while
ż → +∞ when approaching from the right. Furthermore, the orientation pa-
rameter ζ changes sign from one branch to the other. Therefore, P changes
sign as well,20 with P < 0 for z < 0 and P > 0 for z > 0 (see Fig. 3.5).
The joined configuration is clearly symmetric under parity z → −z, so we
can without loss of generality focus our attention to a single branch. We
will therefore restrict our attention to P ≥ 0, which includes the black hole
embedding and the “right branch” with ż0 > 0 of the joined solutions.

At the boundary

sign (ż (r →∞)) = −sign (α) , (3.49)

20The reader may find this disconcerting, since P is playing the role of a conserved
quantity. The resolution lies in the multi-valuedness of the function z(r). P need only
be constant on a given single-valued branch. The minimum is precisely where the single-
valued parameterization z(r) breaks down and so consequently does the definition of P .
That the magnitude of P is constant follows from the continuity of the embedding.
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3.3. Solutions to effective Lagrangian

Figure 3.5: The sign of the integration constant P is the same as that of ż as r0
is approached and flips accordingly as the minimum at z = 0 is crossed.

indicating that the direction in which the brane bends initially on its descent
from infinity is given entirely by the sign of the D3-brane charge. Comparing
(3.48) and (3.49) we see there are thus two qualitative classes of joined
solutions, given by the relative sign of P and α. For sign(P ) = −sign(α),
the sign of ż remains the same throughout the branch, i.e. each branch
of the brane is separately monotonic. On the other hand, for sign(P ) =
sign(α) even a given branch is not monotonic. We call these two possibilities
“skinny” and “chubby,” respectively. See Fig. 3.6.

Figure 3.6: “Skinny” and “chubby” joined embeddings.

Physically, we know that the brane and anti-brane have an attraction
due to exchange of gravitons and Ramond-Ramond quanta. Further, the
background F5 also deflects branes and anti-branes in opposite directions.
In the skinny solutions, the background F5 pushes the two stacks together
while in the chubby solutions the Ramond-Ramond field forces them apart.
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3.3. Solutions to effective Lagrangian

3.3.1 Asymptotics

The asymptotic separation in z of a joined brane/anti-brane pair is not
independent of r0. Define L as

L(r0) = 2

∫ ∞
r0

ż(r) , (3.50)

where the factor of two arises since the integral is only over one branch of
the brane system. For a joined solution, i.e. any solution with r0 > 1, L is
the asymptotic separation in the z direction of the two ends of the solution.
For r0 = 1 however, the brane and anti-brane are disconnected black hole
embeddings. In this case the asymptotic separation is truly a free parameter
and L(r0 = 1) simply records (twice) the range in z that each branch of the
embedding spans.

The probe branes for generic α have the large r behavior

ż (r � 1) = − α√
1− α2

1

r2
+O

(
1

r6

)
, (|α| < 1) . (3.51)

The case |α| = 1 is non-generic. Indeed, expanding (3.45) in yields

ż (r � 1) = − α√
1 +B2 + 2αP

+O

(
1

r4

)
, (|α| = 1) . (3.52)

It follows that L converges for |α| < 1 and diverges for |α| = 1, which
means that |α| = 1 branes (i.e. D3-brane probes) do not intersect the AdS
boundary at finite z while those with generic α do. The impossibility of the
D3 probe to intersect the AdS boundary at finite z may be a symptom of
the open string tachyon present at weak coupling at the (2 + 1)-dimensional
intersection of D3-branes.21 Whatever the explanation, we will now restrict
our attention to D5-branes and D7-branes so that we can study probes
which intersect the boundary at a finite location.

The right-hand side of (3.50) is a complicated function of r0 since ż
depends on it through the integration constant P . We do not have an
analytic expression but can plot it numerically. As an example, see Fig. 3.7,
which plots L(r0) for a D7-brane probe with B = 0 and f1 = f2 = 1√

2
.

Note that L(r0) is not monotonic and has a maximum. Therefore, when the
brane/anti-brane pair are sufficiently separated at the boundary (with an
L & 1.3) there are no joined solutions, only black hole-embeddings. Further,

21Since such a system has #ND = 2. See [40].
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3.4. Free energy

due to the maximum there is a range of L where there are two r0, that is
two solutions with the same boundary condition.

Another feature worth noting is the abrupt end of the curve at r0 = 1.
The r0 = 1 solution is a black-hole embedding and L(1) is (twice) the ∆z
spanned by a single branch of that embedding. The curve L(r0) does not
continue past this point.

Figure 3.7: Asymptotic brane separation L of a joined solution (α = − 1
3 and no

magnetic field) as a function of minimum radius r0.

There is a class of unphysical solutions lurking within the family that
we have been discussing. Some of the non-monotonic branches, i.e. those
with sign (P ) = sign (α), will turn out to have negative L. Qualitatively
these solutions appear as in Fig. 3.8. Note that they have the same bound-
ary conditions as a “skinny” solution. These solutions are clearly unstable
to brane reconnection at the intersection point and will not be considered
further.

3.4 Free energy

Now that we have classified the solutions, we investigate the phases of a pair
of brane/anti-brane probes. The dynamical problem is to find the solution in
a given ensemble, with given boundary conditions, which has the lowest free
energy. This solution will dominate and be thermodynamically stable. In
the present case, the boundary conditions are given by the asymptotic brane
positions and orientations and the values of the fluxes, including magnetic
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3.4. Free energy

Figure 3.8: An unphysical solution with negative L.

field. Without loss of generality, we can assume22 that the center of the
pair is at z = 0, i.e. if they join, they join at z = 0. Then the boundary
conditions are given by L, B, and α.

The free energy is conventionally given as the negative of the on-shell
action. This is, up to a positive constant, simply the effective action (3.41)

F (r0) =

∫ ∞
r0

dr
{√

(r4 +B2) (1 + r4hż2) + αr4hż
}
, (3.53)

This is the free energy of a single leg of the brane/anti-brane system. In
the case of r0 = 1, (3.53) is the energy of one entire worldvolume, from
horizon to boundary. For r0 > 1, it computes the free energy of one half of
the joined brane/anti-brane system. In all cases since the other branch is
obtained by symmetry, the true free energy is just twice (3.53). Substituting
in the general solution (3.45) we get

F (r0) =

∫ ∞
r0

dr

√
r4 +B2

1− r4

r4+B2hg2

(
1 +

r4

r4 +B2
αhg

)
,

=

∫ 1
r0

0

du

u4

1 +B2u4 + αh
(

1
u

)
g
(

1
u

)√
1 +B2u4 − h

(
1
u

)
g
(

1
u

)2 , (3.54)

where we changed integration variables to u = r−1 in the second line.

22Due to translation invariance in the z direction.
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3.4. Free energy

Figure 3.9: The renormalized free energy as a function of r0 for B = 0 and
α = − 1

3 .

Note that (3.54) is generically infinite. Indeed, placing a cut-off at the
lower end of the u integral yields

F (r0) =

∫
ε

du

u4

1 +B2u4 + αh
(

1
u

)
g
(

1
u

)√
1 +B2u4 − h

(
1
u

)
g
(

1
u

)2 ∼
√

1− α2

3ε3
+ finite . (3.55)

Since this divergence is independent of r0, the difference in free energy be-
tween any two embeddings will be finite and numerically computable. We
will thus compute a renormalized free energy

∆F (r0) ≡ F (r0)− F0 , (3.56)

with F0 the divergent free energy of the black hole embedding with r0 = 1,

F0 =

∫ 1

0

du

u4

√
1 +B2u4 − α2h

(
1

u

)
. (3.57)

When ∆F < 0, the joined solution has less energy than the black hole
embeddings and so it dominates, indicating flavor symmetry breaking in the
bi-layer description.

In Fig. 3.9 we plot the renormalized free energy as a function of r0 for the
case B = 0 and α = −1

3 . This is the same set of solutions whose asymptotic
separation versus r0 is plotted in Fig. 3.7. The only joined solutions with
negative free energy are those with r0 & 1.19 which corresponds to L . 1.2.
For any larger L, the black hole embedding is less energetic or the joined
embedding does not exist.
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3.5. Phase diagram and discussion

Figure 3.10: Phase diagrams for the defect system. Above any fixed α curve,
the dominant solution is given by the two disconnected brane worldvolumes, i.e.
the symmetric phase. The joined solutions, the broken symmetry phase, dominates
below the curve.

3.5 Phase diagram and discussion

In Fig. 3.10, we plot the phase diagram of the brane/anti-brane system in
the L-B plane. Each curve is at fixed α, above the curve being the flavor
symmetric phase where the stacks do not join while below the curve the
symmetry is broken to the diagonal subgroup by brane recombination. We
can see that for α negative, the stacks always join at small enough L. This
is quite intuitive since the background F5 assists the native attraction of
the brane and anti-brane so there is no effect to prevent their joining. On
the other hand, we see that for large enough positive α, the stacks do not
join at small L unless there is also a strong enough external magnetic field.
Intuitively, the force from the background F5 is strong enough to overcome
the brane/anti-brane attraction even at arbitrarily small separation.

In these types of studies, there is a general expectation of magnetic catal-
ysis, that an external magnetic field favors the breaking of flavor symmetry.
This effect has been seen both in perturbative and large-N calculations in
quantum field theory [48]. It is also known to be a common feature in
holographic scenarios of various dimensional brane intersections [29, 53, 76].
However, in [51] the Sakai-Sugimoto model was studied at finite chemical
potential and magnetic field and an inverse magnetic catalysis was found in a
certain region of the phase diagram, i.e. at zero temperature and fixed finite
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3.5. Phase diagram and discussion

chemical potential, an increase in magnetic field can prompt a transition to
a symmetric state.

We see in Fig. 3.10 both catalysis and inverse catalysis, depending on
the value of α and the region of the curve in question. One can see that
all positive α embeddings exhibit catalysis, i.e. all of the chubby solutions.
In these cases, it appears that external magnetic field always enhances the
attraction of the brane/anti-brane pair. However, for 0 & α & −.2 the
curves are similar to positive α so the sign of the induced D3 charge is
not sufficient to determine the behavior with respect to magnetic field. For
α ≈ −.2, we see a maximum, indicating a region of inverse catalysis for small
B. This region expands as α is decreased until there is inverse catalysis for
all B.

It is not clear from the point of view of the field theory what dictates
whether the system exhibits catalysis or inverse catalysis. We will refrain
from speculating on the exact mechanism here and leave this question to
future work.
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Chapter 4

D7-anti-D7 Double
Monolayer : Holographic
Dynamical Symmetry
Breaking

Now they have beaten me, he thought.
I am too old to club sharks to death.
But I will try it as long as I have the oars
and the short club and the tiller

- The Old Man and the Sea by Ernest Hemingway

Note that the title of the original paper was Bilayer instead of Dou-
ble Monolayers. Double monolyer should be distinguished from bilayer by
whether allows hop or not between each monolayers.

In weakly coupled quantum field theory, spontaneous symmetry break-
ing is a familiar paradigm. It is based on formation of a condensate, usually
an order parameter obtaining a nonzero expectation value and the resulting
features of the spectrum such as goldstone bosons and a Higgs field. String
theory holography has given an alternative picture of dynamical symmetry
breaking in terms of geometry. Particularly with probe branes, the sym-
metry breaking corresponds to the branes favoring a less symmetric world-
volume geometry over a more symmetric one. This is seen in the Sakai-
Sugimoto model of holographic quantum chromodynamics [27]. There, chi-
ral symmetry breaking corresponds to the fact that a D8-D8 brane pair
prefer to fuse into a cigar-like geometry, rather than remaining in a more
symmetric independent configuration. In this chapter, we shall study a
model which is close in spirit to the Sakai-Sugimoto model, the D7-D7 sys-
tem which has a 2+1-dimensional overlap with a stack of D3-branes. It can
be considered a toy model of chiral symmetry breaking in strongly coupled
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Chapter 4. D7-anti-D7 Double Monolayer : Holographic Dynamical Symmetry Breaking

Figure 4.1: Two parallel 2-dimensional spaces, depicted by the vertical dark
lines, are inhabited by fundamental representation fermions which interact
via fields of N = 4 supersymmetric Yang-Mills theory in the bulk. The
Yang-Mills theory in the region between the layers has a different rank gauge
group than that in the regions external to the double monolayer.

2+1-dimensional quantum field theories containing fermions and it is explic-
itly solvable. The symmetry breaking pattern is U(N)×U(N)→ U(N) and,
at least in principle, it is possible to gauge various subgroups of the global
symmetry group and to study the Higgs mechanism at strong coupling. In
the following we shall concentrate on the case U(1) × U(1) → U(1) which
displays the essential features of the mechanism.

Before analyzing the D7-D7 system, let us discuss its quantum field
theory dual, the double monolayer system depicted in figure 4.1. Massless
relativistic 2+1-dimensional fermions are confined to each of two parallel but
spatially separated layers. They are two-component spinor representations
of the SO(2,1) Lorentz group with a U(1) global symmetry for the fermions
inhabiting each layer. The overall global symmetry is thus U(1) × U(1).
The 3+1-dimensional bulk contains N = 4 supersymmetric Yang-Mills the-
ory. The fermions transform in the fundamental representation of the gauge
groups of the Yang-Mills theories. As shown in figure 1, the rank of the
Yang-Mills gauge groups differ in the interior and exterior of the double
monolayer by an integer k which arises from the worldvolume flux in the
D7-D7 system. The D-brane system which we shall discuss studies this the-
ory in the strong coupling planar limit where, first, the Yang-Mills coupling
gYM is taken to zero and N to infinity while holding λ ≡ g2

YMN fixed and,
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D7 D7
boundary (r=infinity)

horizon (r=0)

z

r

b)

Figure 4.2: The z-position of the D7-branes depends on AdS-radius and with the
appropriate orientation the branes would always intersect.

subsequently, a strong coupling limit of large λ is taken. The field theory
mechanism for the symmetry breaking which we shall analyze is an exciton
condensate which binds a fermion on one layer to an anti-fermion on the
other layer and breaks the U(1)× U(1) symmetry to a diagonal U(1).

There has been significant recent interest in graphene double monolayer
systems where formation of an exciton driven dynamical symmetry breaking
of the kind that we are discussing has been conjectured [12]. The geome-
try is similar, with the layers in figure 4.1 replaced by graphene sheets and
the space in between with a dielectric insulator. In spite of some differences:
graphene is a relativistic electron gas with a strong non-relativistic Coulomb
interaction, whereas what we describe is an entirely relativistic non-Abelian
gauge theory, there are also similarities and perhaps lessons to be learned.
For example, we find that the exciton condensate forms in the strong cou-
pling limit even in the absence of fermion density whereas the weak coupling
computations that analyze graphene need nonzero electron and hole densi-
ties in the sheets to create an instability. We also find “coulomb drag”,
where the existence of an electric current in one layer induces a current in
the other[47]. In the holographic model, the drag would vanish in the ab-
sence of a condensate, whereas it is large when a condensate is present. The
correlator between the electric current in the two sheets (from (4.10) below)
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Figure 4.3: Joined configuration.

is

< ja(k)j̃b(`) >=
4λ(1 + f2)|k|

(2π)2 sinh 2|k|ρm

(
δab −

kakb
k2

)
δ(k + `) (4.1)

where |k| =
√
~k2 − ω2/v2

F , there is a factor of 4 from the degeneracy of

graphene, vF is the electron fermi velocity and λ and f2 are parameters and
ρm, given in (A.5), is proportional to the interlayer spacing. Aside from
the superfluid pole at k2 = 0, this correlator has an infinite series of poles
at k2 = (nπ/ρm)2, n = 1, 2, ... due to vector mesons. Parameters partially
cancel in the ratio of the current-current correlator in (4.1) to the single
layer correlator, < jj̃ > / < jj >= csch2|k|ρm.

Symmetry breaking in the D7-D7 system has already been studied in
reference [54]. The mechanism is a joining of the D7 and D7 worldvol-
umes as depicted in figure 4.3. The D7 and D7 are probe branes [87] in
the AdS5 × S5 geometry which is the holographic dual of 3+1-dimensional
N = 4 supersymmetric Yang-Mills theory. A single probe D7-brane is stable
when it has magnetic flux added to its worldvolume [37]. Its most symmet-
ric configuration is dual to a defect conformal field theory [37][39] where
the flux (f in the following) is an important parameter which determines,
for example, the conformal dimension of the fermion mass operator. The
D7-D7 pair would tend to annihilate and are prevented from doing so by
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Chapter 4. D7-anti-D7 Double Monolayer : Holographic Dynamical Symmetry Breaking

boundary conditions that contain a pressure (the parameter P in the fol-
lowing) which holds them apart. The problem to be solved is that of finding
the configuration of the D7 and D̄7 in the AdS5 × S5 background, subject
to the appropriate boundary conditions. We shall impose the parity and
time-reversal invariant boundary conditions that were discussed in reference
[39]. We differ from reference [54] in that we use the zero temperature limit,
a simplification that allows us to obtain our main result, explicit current-
current correlation functions for the theory described by the joined solution
(4.11)-(4.13). The AdS5 × S5 metric is

ds2 = R2[r2(−dt2 + dx2 + dy2 + dz2) +
dr2

r2

+dψ2 + sin2 ψdΩ2
2 + cos2 ψdΩ̃2

2] (4.2)

where dΩ2
2 and dΩ̃2

2 are metrics of unit 2-spheres and ψ ∈ [0, π2 ]. The radius
of curvature is R2 =

√
4πgsNα

′, where gs is the closed string coupling
constant and N the number of units of Ramond-Ramond 4-form flux of the
IIB string background. The holographic dictionary sets g2

YM = 4πgs, and N
becomes the rank of the Yang-Mills gauge group. The embedding of the D7
in this space is mostly determined by symmetry. We take the D7 and D7
embeddings to wrap (t, x, y), S2 and S̃2 and to sit at the parity symmetric
point ψ = π

4 . To solve embedding equations, the transverse coordinate z
must depend on the radius r. At the boundary of AdS5 (r → ∞), we
impose the boundary condition that the D7 is located at z = −L/2 and D7
at z = L/2. The worldvolume metric of one of the branes is then

dσ2 = R2[r2(−dt2 + dx2 + dy2) +
dr2

r2
(1 + r4ż(r)2)

+
1

2
dΩ2

2 +
1

2
d̃Ω2

2] (4.3)

where ż = dz/dr. The field strength of the world-volume gauge fields are

F =
R2

2πα′
f

2
Ω2 +

R2

2πα′
f

2
Ω̃2 (4.4)

where Ω2 and Ω̃2 are the volume forms of the unit 2-spheres. The flux
forms two Dirac monopole bundles with monopole number nD =

√
λf2.

Stability and other properties of the theory [37][39] require that 23/50 <
f2 < 1, otherwise it is a tunable parameter. The embedding is determined
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by extremizing the Dirac-Born-Infeld plus Wess-Zumino actions,

S = −T7N

gs

∫
d8σ

[√
−det(g(σ) + 2πα′F )

∓(2πα′)2

2
F ∧ F ∧ C4

]
(4.5)

T7 = 1/(2π)7α′4 is the brane tension, C4 is the Ramond-Ramond 4-form of
the IIB string background and the ∓ refer to the D7 and D7, respectively.
With our Ansatz, this reduces to a variational problem with Lagrangian

L = (1 + f2)r2
√

1 + r4ż(r)2 ∓ f2r4ż(r) (4.6)

z(r) is a cyclic variable whose equation of motion is solved by z±(r) =
±L

2 ∓
∫∞
r drż+(r) is the position of the brane to the right (upper sign) or

left (lower sign) of z = 0 and ż±(r) = ± f2r4+P

r2
√

(r4−P )((1+2f2)r4+P )
. P is an

integration constant proportional to the pressure needed to hold the branes
with their asymptotic separation L. When they are not joined, they do not
interact, at least in this classical limit, and P must be zero. Then z±(r) =

±L
2 ∓

f2√
1+2f2 r

as depicted in figure 4.2. When they are joined, as depicted

in figure 4.3, P must be nonzero and they are joined at a minimum radius

r0 = P
1
4 and L and P are related by LP

1
4 = 2

∫∞
1 dr f2r4+1

r2
√

(r4−1)((1+2f2)r4+1)
.

The joined solution will always be the lower energy solution when the
branes are oriented as in figures 4.2 and 4.3. They are also stable for any
value of L when the brane and antibrane are interchanged, the “chubby
solutions” discussed in reference [54], only when 23/50 ≤ f2 . .56. When
f2 > .56 the chubby solutions are unstable for any L. (As noted in ref-
erence [54], there can be a much richer phase structure when temperature,
density or external magnetic fields are introduced.) For the chubby solution,
the gauge group ranks N and N + k in figure 4.1 trade positions.

A simple diagnostic of the properties of the fermion system in the strongly
coupled quantum field theory which is dual to the joined branes is the
current-current correlation function. It is obtained by solving the classi-
cal dynamics of the gauge field on the world-volume of the branes with the
Dirichlet boundary condition. The quadratic form in boundary data in the
on-shell action yields the current-current correlator. Here, the brane geome-
try is simple enough that, to quadratic order, AdS components of the vector
field decouple from the fluctuations of the worldvolume geometry, as well as
from those components on S2, S̃2. To find them, we simply need to solve
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Maxwell’s equations on the worldvolume,

∂A
[√
ggBCgDE(∂CAE − ∂EAC)

]
= 0

where the worldvolume metric is given in equation (4.3) above and the gauge
fields have indices A,B... = (t, x, y, r). In the Ar = 0 gauge,

∂r(∂aAa) = 0 , ∂2
ρAa + ∂b(∂bAa − ∂aAb) = 0 (4.7)

where indices a, b, ... = (t, x, y) and we have redefined the radial coordinate
as ρ =

∫∞
r

dr
r2

√
1 + r4ż2. In the simpler case of a single D7-brane, say the

brane which originates on the right in figure 4.2, whose geometry is AdS4,
these equations are solved by [39]

Aa(ρ, k) = Aa(k) cosh |k|ρ+
1

|k|
A′a(k) sinh |k|ρ

where Aa(k, ρ) =
∫
d3xeikxAa(x, ρ), kaAa(k) = 0 = kaA

′(k) and |k| =√
~k2 − k2

0. Regularity at the Poincare horizon (ρ → ∞) requires A′a(k) =

−|k|Aa(k). Moreover, with the on-shell action,

S = −N(f2 + 1)

4π2

∫
d3k|k|Aa(−k)

(
δab − kakb/k2

)
Ab(k) + . . .

e−S is a generating function for current-current correlators in the dual con-
formal field theory where the U(1) symmetry is global, (ja(k) = gYMδ/δAa(−k))

< ja(k)jb(`) >=
λ(f2 + 1)

2π2
|k|
(
δab − kakb/k2

)
δ(k + `) (4.8)

Alternatively, if instead of the Dirichlet boundary conditions used above, we
impose the Neuman boundary condition that ∂ρAa(k, ρ) approaches A′a(k)
as ρ → 0, we can write the on-shell action as a functional of A′(k) and it
generates correlators of the gauge field in a different conformal field theory
where the U(1) symmetry is gauged and the gauge field is dynamical. It
yields the Landau gauge 2-point function of the photon field in that theory
[56] (aa(k) = δ/δA′(−k)),

< aa(k)ab(`) >=
N(f2 + 1)

2π2

1

|k|
(
δab − kakb/k2

)
δ(k + `)

The momentum dependence of these correlation functions is consistent with
conformal symmetry.
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To analyze the joined configuration, we note that in that case ρ reaches
a maximum

ρm =
L

2

∫ 1
0

dx(1+f2)√
(1−x4)((1+2f2)−x4)∫ 1

0
dx(f2+x4)√

(1−x4)((1+2f2)−x4)

(4.9)

We use a variable s = ρ for the left branch and s = 2ρm − ρ for the right
branch of figure 4.3. With the Dirichlet boundary conditions Aa(s = 0, k) =
Aa(k) and Aa(s = 2ρm, k) = Ãa(k) the on-shell action is

S̃ = −N(f2 + 1)

4π2

∫
d3k

[
(|Aa(k)|2 + |Ãa(k)|2) coth 2|k|ρm

−2Aa(−k)Aa(k)csch2|k|ρm] + . . . (4.10)

The current-current correlation functions can are diagonalized by j+ ≡ j+ j̃,
j− ≡ j − j̃, so that

< ja+jb− > = 0 (4.11)

< ja+jb+ > =
λ(f2 + 1)

2π2
k tanh kρm

(
δab −

kakb
k2

)
(4.12)

< ja−jb− > =
λ(f2 + 1)

2π2
k coth kρm

(
δab −

kakb
k2

)
(4.13)

At large Euclidean momenta, (4.12) and (4.13) revert to the conformal field
theory correlators in (4.8). At time-like momenta the correlator < ja−jb− >
has a pole at k2 = 0 which is the signature of dynamical breaking of a
diagonal U(1) subgroup of the U(1) × U(1) symmetry and gives rise to
superfluid linear response. On the other hand, the correlator < ja+jb+ >∼
k2 for small k, which indicates that the system is an insulator in the channel
which couples to the other diagonal U(1) subgroup with current ja+. In
addition, both correlators have an interesting analytic structure. They have
no cut singularities. < ja+jb+ > has poles at the (Minkowski signature)
energies

k2
0 = k2

1 + k2
2 +

(
π(2n+ 1)

2ρm

)2

, n = 0, 1, . . . (4.14)

and < ja−jb− > has poles at

k2
0 = k2

1 + k2
2 +

(
πn

ρm

)2

, n = 0, 1, . . . (4.15)
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indicating two infinite towers of massive spin-one particles. These would be
narrow bound state resonances with decay widths that vanish as N →∞, as
one expects in the large-N limit that we are studying here [57]. The current
operators create these single-particle states from the vacuum. Their creation
of multi-particle states, which would normally result in cut singularities, is
suppressed in the large N planar limit. The resonances are simply the tower
of vector mesons whose masses (4.14) and (4.15) occur at eigenvalues of
−∂2

s with Dirichlet boundary conditions on the interval s ∈ [0, 2ρm]. The
fact that currents create either even or odd harmonics is due to L → −L
reflection symmetry.

In the above, we used Dirichlet boundary conditions for the worldvolume
gauge field. It is possible, alternatively, to select Neumann boundary con-
ditions by choosing ∂sAa rather than Aa on the asymptotic boundary. The
result is dual to a field theory where the U(1) symmetries are gauged and
the on-shell action generates photon correlation functions [56]. Most rele-
vant are mixed Neuman and Dirichlet boundary conditions. For example,
in graphene, a diagonal electromagnetic U(1) is gauged whereas the orthog-
onal U(1) is a global symmetry. This is obtained by applying the Dirichlet
condition to A(s = 0, k) − A(s = 2ρm, k) and the Neuman condition to
∂sA(s = 0, k)− ∂sA(s = 2ρm, k). In this case, the correlation functions are

< jaab > = 0 (4.16)

< jajb > =
λ(f2 + 1)

4π2
k coth kρm

(
δab −

kakb
k2

)
(4.17)

< aaab > =
N(f2 + 1)

4π2

1

k
coth kρm

(
δab −

kakb
k2

)
(4.18)

The global U(1) symmetry is spontaneously broken and its current ja has a
pole in its correlation function. The unbroken gauged U(1) has a massless
pole corresponding to the photon. In addition, the two towers of interme-
diate states have the same masses with values (4.15). There is a family of
more general mixed boundary conditions which are interesting and which
will be examined in detail elsewhere.
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Chapter 5

Holographic D3-probe-D5
Model of a Double Layer
Dirac Semimetals

I have ugly lips.
It was all my fault.
I sobbed standing next to the coat left behind.
None of the laughs could raise my heavy heart.
I want to forget the tavern.
There is none like you in this world.
I lost my love in that narrow place.

- In Front of the House by Ki, Hyung-do

5.1 Introduction and Summary

The possibility of Coulomb drag-mediated exciton condensation in dou-
ble monolayer graphene or other multi-layer heterostructures has recently
received considerable attention [63]-[106]. The term “double monolayer
graphene” refers to two monolayers of graphene23, each of which would be a
Dirac semi-metal in isolation, and which are brought into close proximity but
are still separated by an insulator so that direct transfer of electric charge
carriers between the layers is negligible. The system then has two conserved
charges, the electric charge in each layer. The Coulomb interaction between
an electron in one layer and a hole in the other layer is attractive. A bound
state of an electron and a hole that forms due to this attraction is called an
exciton. Excitons are bosons and, at low temperatures they can condense to
a form a charge-neutral superfluid. We will call this an inter-layer exciton

23 It should be distinguished from bilayer graphene where electrons are allowed to hop
between the layers.
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5.1. Introduction and Summary

condensate. Electrons and holes in the same monolayer can also form an
exciton bound state, which we will call this an intra-layer exciton and its
Bose condensate an intra-layer condensate.

Inter-layer excitons have been observed in some cold atom analogs of
double monolayers [107]-[109] and as a transient phenomenon in Gallium
Arsenide/ Aluminium-Gallium-Arsenide double quantum wells, albeit only
at low temperatures and in the presence of magnetic fields[109]-[111]. Their
study is clearly of interest for understanding fundamental issues with quan-
tum coherence over mesoscopic distance scales and dynamical symmetry
breaking. Recent interest in this possibility in graphene double layers has
been inspired by some theoretical modelling which seemed to indicate that
the exciton condensate could occur at room temperature [66]. A room tem-
perature superfluid would have interesting applications in electronic devices
where proposals include ultra-fast switches and dispersionless field-effect
transistors [112]-[117]. This has motivated some recent experimental studies
of double monolayers of graphene separated by ultra-thin insulators, down
to the nanometer scale [118][119]. These experiments have revealed inter-
esting features of the phenomenon of Coulomb drag. However, to this date,
coherence between monolayers has yet to be observed in a stationary state
of a double monolayer.

One impediment to a truly quantitative analysis of inter-layer coher-
ence is the fact that the Coulomb interaction at sub-nanoscale distances is
strong and perturbation theory must be re-summed in an ad hoc way to
take screening into account [105][120]. In fact, inter-layer coherence will
likely always require strong interactions. The purpose of this chapter is
to point out the existence of an inherently nonperturbative model of very
strongly coupled multi-monolayer systems. This model is a defect quantum
field theory which is the holographic AdS/CFT dual of a D3-probe-D5 brane
system. It is simple to analyze and exactly solvable in the limit where the
quantum field theory interactions are strong. External magnetic field and
charge density can be incorporated into the solution and it exhibits a rich
phase diagram where it has phases with inter-layer exciton condensates.

It might be expected that, with a sufficiently strong attractive electron-
hole interaction, an inter-layer condensate would always form. One of the
lessons of our work will be that this is not necessarily so. In fact, it was
already suggested in reference [94] that, when both monolayers are charge
neutral, and in a constant external magnetic field, there can be an inter-layer
or an intra-layer condensate but there were no phases where the two kinds
of condensate both occur at the same time. What is more, the inter-layer
condensate only appears for small separations of the monolayers, up to a
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5.1. Introduction and Summary

critical separation. As the spacing between the monolayers is increased to
the critical distance, there is a phase transition where an intra-layer con-
densate takes over. Intra-layer condensates in a strong magnetic field are
already well known to occur in monolayer graphene in the integer quantum
Hall regime [124]-[128]. They are thought to be a manifestation of “quantum
Hall ferromagnetism” [129]-[134] or the “magnetic catalysis of chiral sym-
metry breaking” [71]-[83] which involve symmetry breaking with an intra-
layer exciton condensate. It has been argued that the latter phenomenon,
intra-layer exciton condensation, in a single monolayer is also reflected in
symmetry breaking behaviour of the D3-probe-D5 brane system [84]-[85].

Another striking conclusion that we will come to is that, even in the
strong coupling limit, there is no inter-layer exciton condensate unless the
charge densities of the monolayers are fine-tuned in such a way that, at weak
coupling, the electron Fermi surface on one monolayer and the hole Fermi
surface in the other monolayer are perfectly nested, that is, they have iden-
tical Fermi energies. In this particle-hole symmetric theory, this means that
the charge densities on the monolayers are of equal magnitude and opposite
sign. It is surprising that this need for charge balance is even sharper in the
strong coupling limit than what is seen at weak coupling, where the infrared
singularity from nesting does provide the instability needed for exciton con-
densation, but where, also, there is a narrow window near perfect nesting
where condensation is still possible [65]. In our model, at strong coupling,
there is inter-layer condensate only in the perfectly nested (or charge bal-
anced) case. This need for such fine tuning of charge densities could help to
explain why such a condensate is hard to find in experiments where charged
impurities would disturb the charge balance.

When the charge densities of the monolayers are non-zero, and when they
are balanced, there can be an inter-layer condensate at any separation of the
monolayers. The phase diagram which we shall find for the D3-probe-D5
brane system in a magnetic field and with nonzero, balanced charge densities
is depicted in figure 5.1. The blue region has an inter-layer condensate and
no intra-layer condensate. The green region has both inter-layer and intra-
layer condensates. The red region has only an intra-layer condensate. From
the vertical axis in figure 5.1 we see that, in the charge neutral case. the
inter-layer condensate exists only for separation less than a critical one.

It has recently been suggested [101] that there is another possible be-
haviour which can lead to inter-layer condensates when the charges of the
monolayers are not balanced. This can occur when the material of the mono-
layers contain more than one species of fermions. For example, graphene has
four species and emergent SU(4) symmetry [98]. In that case, the most sym-
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Figure 5.1: Phase diagram of the D3-probe-D5 brane system with balanced charge
densities. Layer separation is plotted on the vertical axis and the chemical potential
µ for electrons in one monolayer and holes in the other monolayer is plotted on

the horizontal axis. The units employed set the length scale

√ √
λ

2πB equal to one.
The blue region is a phase with an inter-layer condensate and with no intra-layer
condensate. The green region is a phase with both an inter-layer and an intra-layer
condensate. The red region has only an intra-layer condensate. In that region, the
chemical potential is too small to induce a density of the massive electrons ( µ is
in the charge gap) and the charge densities on both of the monolayers vanishes.
The electrons and holes are massive in that phase due to the intra-layer exciton
condensate. The dotted line, separating a pure inter-layer from a pure intra-layer
condensate, is a line of first order phase transitions. The solid lines, on the other
hand, indicate second order transitions.

metric state of a monolayer has the charge of that monolayer shared equally
by each of the four species of electrons. Other less symmetric states are
possible.

Consider, for example, the double monolayer with one monolayer having
electron charge density Q and the other monolayer having hole density Q̄
(or electron charge density −Q̄), with Q > Q̄ > 0. On the hole-charged
monolayer, some subset, which must be one, two or three of the fermion
species could take up all of the hole charge density, Q̄. Then, in the electron
monolayer, the same number, one, two or three species of electrons would
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5.1. Introduction and Summary

take up electron charge density Q̄ and the remainder of the species will take
electron charge density Q−Q̄. The (one, two or three) species with matched
charge densities will then spawn an inter-layer exciton condensate. The
remaining species on the hole monolayer is charge neutral. A charge-neutral
monolayer will have an intra-layer condensate. The remaining species in the
electron monolayer, with charge density Q − Q̄, would also have an intra-
layer condensate and it would not have a charge gap (all of the fermions
are massive, but this species has a finite density and it does not have a
charge gap). A simple signature of this state would be that one of the
monolayers is charge gapped, whereas the other one is not. The implication
is that perfect fine-tuning of Fermi surfaces is not absolutely necessary for
inter-layer condensation. We will show that, in a few examples, this type of
spontaneous nesting can occur. However, some important questions, such as
how unbalanced the charge densities can be so that there is still a condensate
are left for future work.

D5

r =∞AdS5

r = 0

r

xy
t

z

Figure 5.2: A D5 brane is embedded in AdS5 × S5 where the metric of AdS5 is

ds2 =
√
λα′[dr

2

r2 + r2(dx2 + dy2 + dz2 − dt2)] and the D5 brane world-volume is an
AdS4 subspace which fills r, x, y, t and sits at a point in z. The AdS5 boundary is
located at r = ∞ and the Poincarè horizon at r = 0. The D5 brane also wraps
a maximal, contractible S2 subspace of S5 of the AdS5 × S5 background. The
internal bosonic symmetries of the configuration are SO(3) of the wrapped S2 and
a further SO(3) symmetry of the position of the maximal S2 in S5.
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Figure 5.3: When the D5 brane is exposed to a magnetic field, it pinches off before
it reaches the Poincarè horizon. It does so for any value of the magnetic field, with

the radius at which it pinches off proportional to
√

2πB√
λ

. In this configuration, the

embedding of the S2 ⊂ S5 depends on the AdS5 radius. It is still the maximal one
which can be embedded in S5 at the boundary, but it shrinks and collapses to a
point at the radius where the D5 brane pinches off.

We will model a double monolayer system with a relativistic defect quan-
tum field theory consisting of two parallel, infinite, planar 2+1-dimensional
defects embedded in 3+1-dimensional Minkowski space. The defects are
separated by a length, L. Some U(1) charged degrees of freedom inhabit the
defects and play the role of the two dimensional relativistic electron gases.
We can consider states with charge densities on the monolayers. As well, we
can expose them to a constant external magnetic field. We could also turn
on a temperature and study them in a thermal state, however, we will not
do so in this chapter.

The theory that we use has an AdS/CFT dual, the D3-probe-D5 brane
system where the D5 and anti-D5 branes are probes embedded in the AdS5×
S5 background of the type IIB superstring theory. The AdS5×S5 is sourced
by N D3 branes and it is tractable in the large N limit where we si-
multaneously scale the string theory coupling constant gs to zero so that
λ ≡ gsN/4π = g2

YMN is held constant. Here, gYM is the coupling constant
of the gauge fields in the defect quantum field theory. The D5 and anti-
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D5 branes are semi-classical when the quantum field theory on the double
monolayer is strongly coupled, that is, where λ is large. It is solved by em-
bedding a D5 brane and an anti-D5 brane in the AdS5 × S5 background.
The boundary conditions of the embedding are such that, as they approach
the boundary of AdS5, the world volumes approach the two parallel 2+1-
dimensional monolayers. The dynamical equations which we shall use are
identical for the brane and the anti-brane. The reason why we use a brane-
anti-brane pair is that they can partially annihilate. This annihilation will
be the string theory dual of the formation of an inter-layer exciton conden-
sate.

The phase diagram of a single D5 brane or a stack of coincident D5
branes is well known [99], with an important modification in the integer
quantum Hall regime [84],[85]. In the absence of a magnetic field or charge
density, a single charge neutral D5 brane takes up a supersymmetric and
conformally invariant configuration. The D5 brane world-volume is itself
AdS4 and it stretches from the boundary of AdS5 to the Poincarè horizon,
as depicted in figure 5.2. It also wraps an S2 ⊂ S5. This is a maximally
symmetric solution of the theory. It has a well-established quantum field
theory dual whose Lagrangian is known explicitly [87]-[90]. The latter is
a conformally symmetric phase of a defect super-conformal quantum field
theory 24.

Now, let us introduce a magnetic field on the D5 brane world volume.
This is dual to the 2+1-dimensional field theory in a background constant
magnetic field. As soon as an external magnetic field is introduced, the
single D5 brane changes its geometry drastically [76]. The brane pinches off
and truncates at a finite AdS5-radius, before it reaches the Poincarè horizon.
This is called a “Minkowski embedding” and is depicted in figure 5.3. This

24Of course a supersymmetric conformal field theory is not a realistic model of a
semimetal. Here, we will use this model with a strong magnetic field. It was observed in
references [84], [85] that the supersymmetry and conformal symmetry are both broken by
an external magnetic field, and that the low energy states of the weakly coupled system
were states with partial fillings of the fermion zero modes which occur in the magnetic
field (the charge neutral point Landau level). The dynamical problem to be solved is that
of deciding which partial fillings of zero modes have the lowest energy. It is a direct analog
of the same problem in graphene or other Dirac semimetals. It is in this regime that D3-
D5 system exhibits quantum Hall ferromagnetism and other interesting phenomena which
can argued to be a strong coupling extrapolation of universal features of a semimetal in
a similar environment. It is for this reason that we will concentrate on the system with a
magnetic field, with the assumption that the very low energy states of the theory are the
most important for the physics of exciton formation, and that this situation persists to
strong coupling. There have been a number of works which have used D branes to model
double monolayers [54]-[96].
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5.1. Introduction and Summary

configuration has a charge gap. Charged degrees of freedom are open strings
which stretch from the D5 brane to the Poincarè horizon. When, the D5
brane does not reach the Poincarè horizon, these strings have a minimum
length and therefore a mass gap. This is the gravity dual of the mass
generation that accompanies exciton condensation in a single monolayer.

D5 D5

r =∞AdS5

r = 0

L

Figure 5.4: A D5 brane and an anti-D5 brane are are suspended in AdS5 as shown.
They are held a distance L apart at the AdS5 boundary.

Let us now consider the double monolayer system. We will begin with
the case where both of the monolayers are charge neutral and there is no
magnetic field. We will model the strong coupled system by a pair which
consists of a probe D5 brane and a probe anti-D5 brane suspended in the
AdS5 background as depicted in figure 5.4. Like a particle-hole pair, the
D5 brane and the anti-D5 brane have a tendency to annihilate. However,
we can impose boundary conditions which prevent their annihilation. We
require that, as the D5 brane approaches the boundary of the AdS5 space,
it is parallel to the anti-D5 brane and it is separated from the anti-D5 brane
by a distance L. Then, as each brane hangs down into the bulk of AdS5,
they can still lower their energy by partially annihilating as depicted in
the joined configuration in figure 5.4. This joining of the brane and anti-
brane is the AdS/CFT dual of inter-layer exciton condensation. The in
this case, when they are both charge neutral, the branes will join for any
value of the separation L. In this strongly coupled defect quantum field
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theory, with vanishing magnetic field and vanishing charge density on both
monolayers, the inter-layer exciton condensate exists for any value of the
inter-layer distance.

D5 D5

r =∞AdS5

r = 0

L

Figure 5.5: When the D5 brane and an anti-D5 brane are suspended as shown,
their natural tendency is to join together. This is the configuration with the lowest
energy when L is fixed. It is also the configuration which describes the quantum
field theory with an inter-layer exciton condensate.

If we now turn on a magnetic field B so that the dimensionless param-
eter BL2 is small, the branes join as they did in the absence of the field.
However, in a stronger field, as BL2 is increased, there is a competition
between the branes joining and, alternatively, each of the branes pinching
off and truncating, as they would do if there were isolated. The pinched off
branes are depicted in figure 5.6. This configuration has intra-layer exciton
condensates on each monolayer but no inter-layer condensate. We thus see
that, in a magnetic field, the charge neutral double monolayer always has
a charge gap due to exciton condensation. However, it has an inter-layer
condensate only when the branes are close enough.

Now, we can also introduce a charge density on both the D5 brane and
the anti-D5 brane. We shall find a profound difference between the cases
where the overall density, the sum of the density on the two branes is zero
and where it is nonzero. In the first case, when it is zero, joined configura-
tions of branes exist for all separations. Within those configurations, there
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D5 D5

r =∞AdS5

r = 0

L
~B

Figure 5.6: When the D5 brane and an anti-D5 brane are exposed to a magnetic
field, and if the field is strong enough, they can pinch off and end before they join.
This tendency to pinch off competes with their tendency to join and in a strong
enough field they will take up the phase that is shown where they pinch off before
they can join.

are regions where the exciton condensate is inter-layer only and a region
where it is a mixture of intra-layer and inter-layer. These are seen in the
phase diagram in figure 5.1. The blue region has only an inter-layer exciton
condensate. The green region has a mixed inter-layer and intra-layer con-
densate. In the red region, the chemical potential is of too small a magnitude
to induce a charge density (it is in the charge gap) and the phase is iden-
tical to the neutral one, with an intra-layer condensate and no inter-layer
condensate.

In the case where the D5 and anti-D5 brane are not overall neutral,
they cannot join. There is never an inter-layer condensate. They can have
intra-layer condensates if their separation is small enough. However, there is
another possibility, which occurs if we have stacks of multiple D5 branes. In
that case, there is the possibility that the D5 branes in a stack do not share
the electric charge equally. Instead some of them take on electric charges
that matches the charge of the anti-D5 branes, so that some of them can join,
and the others absorb the remainder of the unbalanced charge and do not
join. At weak coupling this would correspond to a spontaneous nesting of the
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5.2. Geometry of branes with magnetic field and density

Fermi surfaces of some species of fermions in the monolayers, with the other
species taking up the difference of the charges. At weak coupling, as well
as in our strong coupling limit, the question is whether the spontaneously
nested system is energetically favored over one with a uniform distribution
of charge. We shall find that, for the few values of the charge where we have
been able to compare the energies, this is indeed the case.

In the remainder of the chapter, we will describe the quantitative analysis
which leads to the above description of the behaviour of the D3-probe-D5
brane system. In section 2 we will discuss the mathematical problem of
finding the geometry of probe D5 branes embedded in AdS5 × S5 in the
configurations which give us the gravity dual of the double monolayer. In
section 3 we will discuss the behaviour of the double monolayer where each
layer is charge neutral and they are in a magnetic field. In section 4 we will
discuss the double monolayer in a magnetic field and with balanced charge
densities. In section 5 we will explore the behaviour of double monolayers
with un-matched charge densities. Section 6 contains some discussion of the
conclusions.

5.2 Geometry of branes with magnetic field and
density

We will consider a pair of probe branes, a D5 brane and an anti-D5 brane
suspended in AdS5 × S5. They are both constrained to reach the boundary
of AdS5 with their world volume geometries approaching AdS4 × S2 where
the AdS4 is a subspace of AdS5 with one coordinate direction suppressed
and S2 is a maximal two-sphere embedded in S5. What is more, when
they reach the boundary, we impose the boundary condition that they are
separated from each other by a distance L.

We shall use coordinates where the metric of the AdS5×S5 background
is

ds2 =
dr2

r2
+ r2

(
−dt2 + dx2 + dy2 + dz2

)
+ dψ2 + sin2 ψd2Ω2 + cos2 ψd2Ω̃2

(5.1)
where d2Ω2 = dθ2 + sin2 θdφ2 and d2Ω̃2 = dθ̃2 + sin2 θ̃dφ̃2 are the metrics of
two 2-spheres, S2 and S̃2. The world volume geometry of the D5 brane is for
the most part determined by symmetry. We require Lorentz and translation
invariance in 2+1-dimensions. This is achieved by both the D5 and the anti-
D5 brane wrapping the subspace of AdS5 with coordinates t, x, y. We will
also assume that all solutions have an SO(3) symmetry. This is achieved
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5.2. Geometry of branes with magnetic field and density

when both the D5 and anti-D5 brane world volumes wrap the 2-sphere
S2 with coordinates θ, φ. Symmetry requires that none of the remaining
variables depend on t, x, y, θ, φ. For the remaining internal coordinate of
the D5 or anti-D5 brane, it is convenient to use the projection of the AdS5

radius, r onto the brane world-volume. The D5 and anit- D5 branes will
sit at points in the remainder of the AdS5 × S5 directions, z, ψ, θ̃, φ̃. The
points z(r) and ψ(r) generally depend on r and these functions become the
dynamical variables of the embedding (along with world volume gauge fields
which we will introduce shortly). The wrapped S2 has an SO(3) symmetry.
What is more, the point ψ = π

2 where the wrapped sphere is maximal has
an additional SO(3) symmetry25. The geometry of the D5 brane and the
anti-D5 brane are both given by the ansatz

ds2 =
dr2

r2

(
1 + (r2z′)2 + (rψ′)2

)
+r2

(
−dt2 + dx2 + dy2

)
+sin2 ψd2Ω2 (5.2)

The introduction of a charge density and external magnetic field will require
D5 world-volume gauge fields. In the ar = 0 gauge, the field strength 2-form
F is given by

2π√
λ
F = a′0(r)dr ∧ dt+ bdx ∧ dy (5.3)

In this expression, b is a constant which will give a constant magnetic field
in the holographic dual and a0(r) will result in the world volume electric
field which is needed in order to have a nonzero U(1) charge density in the
quantum field theory. The magnetic field B and temporal gauge field A0

are defined in terms of them as

b =
2π√
λ
B , a0 =

2π√
λ
A0 (5.4)

In this Section, we will use the field strength (5.3) for both the D5 brane
and the anti-D5 brane.

The asymptotic behavior at r →∞ for the embedding functions in (5.2)
and the gauge field (5.3) are such that the sphere S2 becomes maximal,

ψ(r)→ π

2
+
c1

r
+
c2

r2
+ . . . (5.5)

25At that point where S2 is maximal, sinψ = sin π
2

= 1 and cosψ = 0, that is, the

volume of S̃2 vanishes. The easiest way to see that this embedding has an SO(3) symmetry
is to parameterize the S5 by (x1, ..., x6) with x2

1 + . . . x2
6 = 1. S2 is the space x2

1 +x2
2 +x2

3 =
sin2 ψ and S̃2 is x2

4 + x2
5 + x2

6 = cos2 ψ. The point cosψ = 0 with x4 = x5 = x6 = 0
requires no choice of position on S̃2 and it thus has SO(3) symmetry. On the other hand,
if cosψ 6= 0 and therefore some of the coordinates (x4, x5, x6) are nonzero, the symmetry
is reduced to an SO(2) rotation about the direction chosen by the vector (x4, x5, x6).
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and the D5 brane and anti-D5 brane are separated by a distance L,

z(r)→ L

2
− f

r5
+ . . . (5.6)

for the D5 brane and

z(r)→ −L
2

+
f

r5
+ . . . (5.7)

for the anti-D5 brane. The asymptotic behaviour of the gauge field is

a0(r) = µ− q

r
+ . . . (5.8)

with µ and q related to the chemical potential and the charge density, re-
spectively. There are two constants which specify the asymptotic behavior
in each of the above equations. In all cases, we are free to choose one of the
two constants as a boundary condition, for example we could choose c1, q, f .
Then, the other constants, c2, µ, L, are fixed by requiring that the solution
is non-singular.

In this chapter, we will only consider solutions where the boundary con-
dition is c1 = 0. This is the boundary condition that is needed for the Dirac
fermions in the double monolayer quantum field theory to be massless at
the fundamental level. Of course they will not remain massless when there
is an exciton condensate. In the case where they are massless, we say that
there is “chiral symmetry”, or that c1 = 0 is a chiral symmetric boundary
condition. Then, when we solve the equation of motion for ψ(r), there are
two possibilities. The first possibility is that c2 = 0 and ψ = π

2 , a constant
for all values of r. This is the phase with good chiral symmetry. Secondly,
c2 6= 0 and ψ is a non-constant function of r. This describes the phase with
spontaneously broken chiral symmetry. The constant c2 is proportional to
the strength of the intra-layer chiral exciton condensate the D5 brane or the
anti-D5 brane. The constant f instead is proportional to the strength of the
inter-layer condensate.

To be more general, we could replace the single D5 brane by a stack
of N5 coincident D5 branes and the single anti-D5 brane by another stack
of N̄5 coincident anti-D5 branes. Then, the main complication is that the
world volume theories of the D5 and anti-D5 branes become non-Abelian in
the sense that the embedding coordinates become matrices and the world-
volume gauge fields also have non-Abelian gauge symmetry. The Born-
Infeld action must also be generalized to be, as well as an integral over
coordinates, a trace over the matrix indices. For now, we will assume that
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the non-Abelian structure plays no significant role. Then, all of the matrix
degrees of freedom are proportional to unit matrices and the trace in the
non-Abelian Born-Infeld action simply produces a factor of the number of
branes, N5 or N̄5 (see equation (5.9) below). We will also take N5 = N̄5

and leave the interesting possibility that N5 6= N̄5 for future work. (This
generalization could, for example, describe the interesting situation where a
double monolayer consists of a layer of graphene and a layer of topological
insulator.) We also have not searched for interesting non-Abelian solutions
of the world volume theories which would provide other competing phases
of the double monolayer system. Some such phases are already known to
exist. For example, it was shown in references [84] and [85] that, when
the Landau level filling fraction, which is proportional to Q/B, is greater
than approximately 0.5, there is a competing non-Abelian solution which
resembles a D7 brane and which plays in important role in matching there
integer quantum Hall states which are expected to appear at integer filling
fractions. In the present work, we will avoid this region by assuming that
the filling fraction is sub-critical. Some other aspects of the non-Abelian
structure will be important to us in section 5.

The Born-Infeld action for either the stack of D5 branes or the stack of
anti-D5 branes is given by

S = N5

∫
dr sin2 ψ

√
r4 + b2

√
1 + (rψ′)2 + (r2z′)2 − (a′0)2 (5.9)

where

N5 =

√
λNN5

2π3
V2+1

with V2+1 the volume of the 2+1-dimensional space-time, N the number
of D3 branes, N5 the number of D5 branes. The Wess-Zumino terms that
occur in the D brane action will not play a role in the D5 brane problem.

The variational problem of extremizing the Born-Infeld action (5.9) in-
volves two cyclic variables, a0(r) and z(r). Being cyclic, their canonical
momenta must be constants,

Q = − δS

δA′0
≡ 2πN5√

λ
q , q =

sin2 ψ
√
r4 + b2a′0√

1 + (rψ′)2 + (r2z′)2 − (a′0)2
(5.10)

Πz =
δS

δz′
≡ N5f , f =

sin2 ψ
√
r4 + b2r4z′√

1 + (rψ′)2 + (r2z′)2 − (a′0)2
, (5.11)

80



5.2. Geometry of branes with magnetic field and density

Solving (5.10) and (5.11) for a′0(r) and z′(r) in terms of q and f we get

a′0 =
qr2
√

1 + r2ψ′2√
r4 (b2 + r4) sin4 ψ + q2r4 − f2

(5.12)

z′ =
f
√

1 + r2ψ′2

r2
√
r4 (b2 + r4) sin4 ψ + q2r4 − f2

(5.13)

The Euler-Lagrange equation can be derived by varying the action (5.9).
We eliminate a′0(r) and z′(r) from that equation using equations (5.12) and
(5.13). Then the equation of motion for ψ reads

rψ′′ + ψ′

1 + r2ψ′2
−
ψ′
(
f2 + q2r4 + r4

(
b2 + 3r4

)
sin4 ψ

)
− 2r3

(
b2 + r4

)
sin3 ψ cosψ

f2 − q2r4 − r4 (b2 + r4) sin4 ψ
= 0

(5.14)
This equation must be solved with the boundary conditions in equation
(5.5)-(5.8) (remembering that we can choose only one of the integration
constants, the other being fixed by regularity of the solution) in order to find
the function ψ(r). Once we know that function, we can integrate equations
(5.12) and (5.13) to find a0(r) and z(r).

Clearly, ψ = π
2 , a constant, for all values of r, is always a solution

of equation (5.14), even when the magnetic field and charge density are
nonzero. However, for some range of the parameters, it will not be the most
stable solution.

5.2.1 Length, Chemical Potential and Routhians

The solutions of the equations of motion are implicitly functions of the inte-
gration constants. We can consider a variation of the integration constants
in such a way that the functions ψ(r), a0(r), z(r) remain solutions as the
constants vary. Then, the on-shell action varies in a specific way. Consider
the action (5.9) evaluated on solutions of the equations of motion. We call
the on-shell action the free energy F1 = S[ψ, z, a0]/N5. If we take a variation
of the parameters in the solution, here, specifically µ and L, while keeping
c1 = 0, and assuming that the equations of motion are obeyed, we obtain

δF1 =

∫ ∞
0

dr

(
δψ

∂L
∂ψ′

+ δa0
∂L
∂a′0

+ δz
∂L
∂z′

)′
= −qδµ+ fδL (5.15)

The first term, with δψ vanishes because δψ ∼ δc2/r
2. We see that F1 is a

function of the chemical potential µ and the distance L and the conjugate
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5.2. Geometry of branes with magnetic field and density

variables, the charge density and the force needed to hold the D5 brane and
anti-D5 brane apart are gotten by taking partial derivatives,

q = −∂F1

∂µ

∣∣∣∣
L

, f =
∂F1

∂L

∣∣∣∣
µ

(5.16)

When the dynamical system relaxes to its ground state, with the parameters
µ and L held constant, it relaxes to a minimum of F1.

There are other possibilities for free energies. For example, the quan-
tity which is minimum when the charge density, rather than the chemical
potential, is fixed, is obtained from F1[L, µ] by a Legendre transform,

F2[L, q] = F1[L, µ] + qµ (5.17)

If we formally consider F2 off-shell as an action from which, for fixed q and
f , we can derive equations of motion for ψ(r) and z(r),

F2 =
S

N5
+

∫
qa′0dr =

∫
dr

√
sin4 ψ(r4 + b2) + q2

√
1 + (rψ′)2 + (r2z′)2

(5.18)
where we have used

a′0 =
q
√

1 + r4z′2 + r2ψ′2√
(b2 + r4) sin4 ψ + q2

obtained by solving equation (5.10) for a′0. The equation of motion for ψ(r),
equation (5.14), can be derived from (5.18) by varying ψ(r). Moreover, we
still have

f =
sin2 ψ

√
r4 + b2r4z′√

1 + (rψ′)2 + (r2z′)2 − (a′0)2
=

√
(b2 + r4) sin4 ψ + q2 r4z′√

1 + r4z′2 + r2ψ′2
(5.19)

which was originally derived from (5.9) by varying z and then finding a first
integral of the resulting equation of motion. It can also be derived from
(5.18).

Once the function ψ(r) is known, we can solve equation (5.19) for z′(r)
and then integrate to compute the separation of the D5 and anti-D5 branes,

L = 2

∫ ∞
r0

dr z′(r) = 2f

∫ ∞
r0

dr

√
1 + r2ψ′2

r2
√
r4 (b2 + r4) sin4 ψ + q2r4 − f2

(5.20)
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5.2. Geometry of branes with magnetic field and density

where ψ(r) is a solution of (5.14) and r0 is the turning point, that is the
place where the denominator in the integrand vanishes. This turning point
depends on the value of ψ(r0). When ψ is the constant solution ψ = π/2,

r0 =

4

√√
(b2 + q2)2 + 4f2 − b2 − q2

4
√

2
(5.21)

and the integral in (5.20) can be done analytically. It reads

L = 2f

∫ ∞
r0

dr
1

r2
√
r4 (b2 + r4) + q2r4 − f2

=
f
√
πΓ
(

5
4

)
2F1

(
1
2 ,

5
4 ; 7

4 ;− f2

r08

)
2r0

5Γ
(

7
4

)√
b2 + q2

(5.22)
For b = q = 0, f = r4

0, we get

L =
2
√
πΓ
(

5
8

)
r0Γ

(
1
8

)
in agreement with the result quoted in reference [94] .

Analogously, the chemical potential is related to the integral of the gauge
field strength on the brane in the (r, 0) directions, (5.12),

µ =

∫ ∞
r0

a′0(r) dr = q

∫ ∞
r0

dr
r2
√

1 + r2ψ′2√
r4 (b2 + r4) sin4 ψ + q2r4 − f2

(5.23)

When ψ is the constant solution ψ = π/2 the integral in (5.23) can again
be done analytically and reads

µ = q

∫ ∞
r0

dr
r2√

r4 (b2 + r4) + q2r4 − f2
=
q
√
πΓ
(

5
4

)
2F1

(
1
4 ,

1
2 ; 3

4 ;− f2

r08

)
r0Γ

(
3
4

)
(5.24)

Through equations (5.20) and (5.23), L and µ are viewed as functions
of f and q, this equations can in principle be inverted to have f and q as
functions of L and µ.

We can now use (5.12) and (5.13) to eliminate a′0 and z′ from the action
(5.9) to get the expression of the free energy F1

F1[L, µ] =

∫ ∞
r0

dr
(
b2 + r4

)
sin4 ψ

r2
√

1 + r2ψ′2√
r4 (b2 + r4) sin4 ψ + q2r4 − f2

(5.25)

this has to be thought of as a function of L and µ, where f and q are consid-
ered as functions of L and µ, given implicitly by (5.20) and (5.23). Note that
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5.3. Double monolayers with a magnetic field

we do not do a Legendre transform here since we need the variational func-
tional which is a function of L and µ the D5 brane separation and chemical
potential that are the physically relevant parameters.

Using (5.13) to eliminate z′ in the Routhian (5.18), we now get a function
of L and q

F2[L, q] =

∫ ∞
r0

dr
((
b2 + r4

)
sin4 ψ + q2

) r2
√

1 + r2ψ′2√
r4 (b2 + r4) sin4 ψ + q2r4 − f2

(5.26)
The Routhian (5.26) is a function of L through the fact that it is a function
of f and f is a function of L given implicitly by (5.20). Of course had we
performed the Legendre transform of the Routhian also with respect to L,
the result would be

F3[f, q] = F2[L, q]−
∫
fz′dr =

∫ ∞
r0

dr

√
1 + r2ψ′2

r2

√
r4 (b2 + r4) sin4 ψ + q2r4 − f2

(5.27)

which is the variational functional appropriate for variations which hold
both q and f fixed.

Note that, for convenience, from now on we shall scale the magnetic field
b to 1 in all the equations and formulas we wrote: This can be easily done
implementing the following rescalings

r →
√
br , f → b2f , q → b q , L→

√
bL , µ→ µ√

b
, Fi → b3/2Fi .

(5.28)

5.3 Double monolayers with a magnetic field

In reference [94] the case of a double monolayer where both of the monolayers
are charge neutral was considered with an external magnetic field. In this
section, we will re-examine their results within our framework and using our
notation. The equation of motion for ψ(r) in this case is

rψ′′ + ψ′

1 + r2ψ′2
−
ψ′
(
f2 + r4

(
1 + 3r4

)
sin4 ψ

)
− 2r3

(
1 + r4

)
sin3 ψ cosψ

f2 − r4 (1 + r4) sin4 ψ
= 0

(5.29)
There are in principle four type of solutions for which c1 = 0 in (5.5) [94]:

1. An unconnected, constant solution that reaches the Poincaré horizon.
An embedding of the D5 brane which reaches the Poincaré horizon
is called a “black hole (BH) embedding”. Being a constant solution,
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5.3. Double monolayers with a magnetic field

this corresponds to a state of the double monolayer where both the
intra-layer and inter-layer condensates vanish.

2. A connected constant ψ = π
2 solution. Since this is a connected so-

lution, z(r) has a non trivial profile in r and its boundary behaviour
is given by equation (5.7) with f non-zero. This solution corresponds
to a double monolayer with a non-zero inter-layer condensate and a
vanishing intra-layer condensate.

3. An unconnected solution with zero force between the branes, with
f = 0 and z(r) constant functions for both the D5 brane and the anti-
D5 brane, but where the branes pinch off before reaching the Poincaré
horizon. An embedding of a single D brane which does not reach the
Poincaeé horizon is called a “Minkowski embedding”. Since ψ(r) must
be r-dependent, its asymptotic behaviour is given in (5.5) with a non-
vanishing c2. This embedding corresponds to a double monolayer with
a non-zero intra-layer condensate and a vanishing inter-layer conden-
sate.

4. A connected r-dependent solution, where both z(r) and ψ(r) are non-
trivial functions of r. This solution corresponds to the double mono-
layer with both an intra-layer and an inter-layer condensate.

This classification of the solutions is summarized in table 5.1.

f = 0 f 6= 0

c2 = 0

Type 1 Type 2

unconnected, ψ = π/2 connected, ψ = π/2

BH, chiral symm. inter

c2 6= 0

Type 3 Type 4

unconnected, r-dependent ψ connected, r-dependent ψ

Mink, intra intra/inter

Table 5.1: Types of possible solutions, where Mink stands for Minkowski embed-
dings and BH for black hole embeddings.

For type 2 and 4 solutions the D5 and the anti-D5 world-volumes have
to join smoothly at a finite r = r0. For these solution the charge density on
the brane and on the anti-brane, as well as the value of the constant f that
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5.3. Double monolayers with a magnetic field

gives the interaction between the brane and the anti-brane, are equal and
opposite.

Consider now the solutions of the type 3, types 1 and 2 are just ψ = π/2.
The equation for ψ (5.29) with f = 0 simplifies further to

rψ′′ + ψ′

1 + r2ψ′2
−
ψ′r

(
1 + 3r4

)
sin4 ψ − 2

(
1 + r4

)
sin3 ψ cosψ

r (1 + r4) sin4 ψ
= 0 (5.30)

In this case it is obvious from (5.13) that z(r) is a constant. Solutions of
type 3 are those for which ψ(r) goes to zero at a finite value of r, rmin, so
that the two-sphere in the world-volume of the D5 brane shrinks to zero at
rmin.

A solution to (5.30) of this type can be obtained by a shooting technique.
The differential equation can be solved from either direction: from rmin or
from the boundary at r = ∞. In either case, there is a one-parameter
family of solutions, from rmin the parameter is rmin, from infinity it is the
value of the modulus c2 in (5.5), which can be used to impose the boundary
conditions at r →∞ with c1 = 0. The parameters at the origin rmin and at
infinity can be varied to find the unique solution that interpolates between
the Poincaré horizon and the boundary at r =∞.

Consider now the solution of equation (5.29) of type 4. In this case we
look for a D5 that joins at some given r0 the corresponding anti-D5. At
r0, z′(r0)→∞ and r0 can be determined by imposing this condition, that,
from (5.13) with q = 0 and b scaled out, reads

f2 − r4
0

(
1 + r4

0

)
sin4 ψ(r0) = 0 (5.31)

which yields

ψ(r0) = sin−1

(
4

√
f2

r4
0

(
1 + r4

0

)) (5.32)

The lowest possible value of r0 is obtained when ψ =
π

2
and is given by

r0,min(f) =

4

√√
1 + 4f2 − 1

4
√

2

Note that r0,min grows when f grows.
Using (5.32) we can derive from the equation of motion (5.29) the con-

dition on ψ′(r0), it reads

ψ′(r0) =

(
r4

0 + 1
)√√r4

0+1

f − 1
r2
0

2r4
0 + 1

(5.33)
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To find the solution let us fix some r̄ between r0 and r = ∞. Start with
shooting from the origin with boundary conditions (5.32) and (5.33). (5.32)
leads to z′(r0) → ∞, but for a generic choice of r0 the solution for ψ(r)
does not encounter the solution coming from infinity that has c1 = 0, we
then need to vary the two parameters r0 and c2 in such a way that the two
solutions, coming from r0 and from r =∞ meet at some intermediate point.

For ψ and ψ′ given by (5.32) and (5.33) at the origin, integrate the
solution outwards to r̄ and compute ψ and its derivative at r̄. For each
solution, put a point on a plot of ψ′(r̄) vs ψ(r̄), then do the same thing
starting from the boundary, r = ∞, and varying the coefficient c2 of the
expansion around infinity. Where the two curves intersect the r-dependent
solutions from the two sides match and give the values of the moduli for
which there is a solution.

5.3.1 Separation and free energy

There are then four types of solutions of the equation of motion (5.29)
representing double monolayers with a magnetic field, of type 1, 2, 3 and 4.
Solutions 1 and 3 are identical to two independent copies of a single mono-
layer with B field solution, sitting at a separation L. The brane separation
for the solutions of type 2 and 4 is given in (5.20) (for q = 0 in this case) and
it is plotted in fig. 5.7, the blue line gives the analytic curve (5.22), keeping
into account that also r0 is a function of f through equation (5.21). For the
r-dependent solution, green line, instead, r0 is defined as a function of f by
equation (5.31), once the solution ψ(r) is known numerically.

We shall now compare the free energies of these solutions as a function
of the separation to see at which separation one becomes preferred with
respect to the other.

Since we want to compare solutions at fixed values of L the correct
quantity that provides the free energy for each configuration is given by the
action evaluated on the corresponding solution

F1[L] =

∫ ∞
r0

dr
(
1 + r4

)
sin4 ψ

r2
√

1 + r2ψ′2√
r4 (1 + r4) sin4 ψ − f2

. (5.34)

Note that this formula is obtained from (5.25), by setting q = 0 and per-
forming the rescaling (5.28). The dependence of F1 on L is implicit (recall
that we can in principle trade f for L). This free energy is divergent since
in the large r limit the argument of the integral goes as ∼ r2. However, in
order to find the energetically favored configuration, we are only interested
in the difference between the free energies of two solutions, which is always
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Figure 5.7: The separation of the monolayers, L, is plotted on the vertical axis
and the force parameter f is plotted on the horizontal axis. The branch indicated
by the blue line is for the constant connected (type 2) solution. (It is a graph of
equation (5.22).) The green line is for the r-dependent connected (type 4) solution.

finite. We then choose the free energy of the unconnected (f = 0) constant
ψ = π/2 solution, type 1, as the reference free energy (zero level), so that
any other (finite) free energy can be defined as

∆F1(ψ; f) = F1(ψ; f)−F1(ψ = π/2; f = 0) =∫ ∞
r0

dr

((
1 + r4

)
sin4 ψ

r2
√

1 + r2ψ′2√
r4 (1 + r4) sin4 ψ − f2

−
√

1 + r4

)

− r0 2F1

(
−1

2
,
1

4
;
5

4
;−r0

4

)
. (5.35)

where the last term is a constant that keeps into account that the ψ =
π/2 disconnected solution reaches the Poincaré horizon, whereas the other
solutions do not. It turns out that, in this particular case where the D5
brane and the anti-D5 brane are both charge neutral, the solutions of type 1
and 4 always have a higher free energy than solutions 2 and 3. By means of
numerical computations we obtain for the free energy ∆F1 of the solutions
2, 3 and 4, the behaviours depicted in Figure 5.8. This shows that the
dominant configuration is the connected one with an inter-layer condensate
for small brane separation L and the disconnected one, with only an intra-
layer condensate, for large L. The first order transition between the two
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phases takes place at L ' 1.357 in agreement with the value quoted in
reference [94].

0.5 1.0 1.5 2.0 2.5

-0.8

-0.6

-0.4

-0.2

L

∆F1

Figure 5.8: Double monolayer in a magnetic field, where each monolayer is charge
neutral. The regularized free energy ∆F1 is plotted on the vertical axis, and the
inter-layer separation L (in units of 1/

√
b), which is plotted on the horizontal axis.

The blue line corresponds to the connected solution (type 2), the red line to the
unconnected solution (type 3) and the green line to the connected r-dependent
solutions (type 4). All solutions are regulated by subtracting the free energy of the
constant unconnected solution of type 1. The latter is the black line at the top of
the diagram. The type 1 and type 4 solutions exist but they never have the lowest
energy. For large L, the type 3 solution is preferred and small L the type 2 solution
is more stable. This reproduces results quoted in reference [94].

5.4 Double monolayer with a magnetic field and
a charge-balanced chemical potential

We shall now study the possible configurations for the D5-anti D5 probe
branes in the AdS5 × S5 background, with a magnetic field and a chemical
potential. The chemical potentials are balanced in such a way that the
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5.4. Double monolayer with a magnetic field and a charge-balanced chemical potential

chemical potential on one monolayer induces a density of electrons and the
chemical potential on the other monolayer induces a density of holes which
has identical magnitude to the density of electrons. Moreover, the chemical
potentials are exactly balanced so that the density of electrons and the
density of holes in the respective monolayers are exactly equal. Due to the
particle-hole symmetry of the quantum field theory, it is sufficient that the
chemical potentials have identical magnitudes. The parameters that we keep
fixed in our analysis are the magnetic field b, the monolayer separation L
and the chemical potential µ.

In order to derive the allowed configurations we have to solve equa-
tion (5.14) for ψ as well as equation (5.12) for the gauge potential a0 and
equation (5.13) for z. In practice the difficult part is to find all the solutions
of the equation of motion for ψ, which is a non-linear ordinary differential
equation. Once one has a solution for ψ it is straightforward to build the
corresponding solutions for z and a0, simply by plugging the solution for ψ
into the equations (5.12)-(5.13) and integrating them.

It should be noted that any solution of the equation (5.12) for the gauge
potential a0(r) always has an ambiguity in that a0(r)+constant is also a so-
lution. The constant is fixed by remembering that a0(r) is the time compo-
nent of a vector field and it should therefore vanish at the Poincaré horizon.
When the charge goes to zero, a0 =constant is the only solution of equation
(5.12) and this condition puts the constant to zero. Of course, this is in
line with particle-hole symmetry which tells us that the state with chemical
potential set equal to zero has equal numbers of particles and holes. The
results of the previous section, where µ and q were equal to zero, care a
special case of what we will derive below.

5.4.1 Solutions for q 6= 0

Now we consider the configurations with a charge density different from
zero. The differential equation for ψ in this case is

rψ′′ + ψ′

1 + r2ψ′2
−
ψ′
(
f2 + q2r4 + r4

(
1 + 3r4

)
sin4 ψ

)
− 2r3

(
1 + r4

)
sin3 ψ cosψ

f2 − q2r4 − r4 (1 + r4) sin4 ψ
= 0 .

(5.36)
As usual, we shall look for solutions with c1 = 0 in equation (5.5). We

can again distinguish four types of solutions according to the classification of
table 5.2. The main difference between the solutions summarized in table 5.2
and those in table 1 are that the type 3 solution now has a black hole, rather
than a Minkowski embedding. This is a result of the fact that, as explained
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in section 1, the world-volume of a D5 brane that carries electric charge
density must necessarily reach the Poincaré horizon if it does not join with
the anti-D5 brane. The latter, where it reaches the Poincaré horizon, is an
un-gapped state and it must be so even when there is an intra-layer exciton
condensate. It is, however, incompatible with an inter-layer condensate.

f = 0 f 6= 0

c2 = 0

Type 1 Type 2

unconnected, ψ = π/2 connected, ψ = π/2

BH, chiral symm. inter

c2 6= 0

Type 3 Type 4

unconnected, r-dependent ψ connected, r-dependent ψ

BH, intra intra/inter

Table 5.2: Types of possible solutions for q 6= 0.

Type 1 solutions are trivial both in ψ and z (they are both constants).
They correspond to two parallel black hole (BH) embeddings for the D5
and the anti-D5. This configuration is the chiral symmetric one. In type 2
solutions the chiral symmetry is broken by the inter-layer condensate (f 6=
0): In this case the branes have non flat profiles in the z direction. Solutions
of type 3 and 4 are r-dependent and consequently are the really non-trivial
ones to find. Type 3 solutions have non-zero expectation value of the intra-
layer condensate and they can be only black hole embeddings, this is the
most significant difference with the zero charge case. Type 4 solutions break
chiral symmetry in both the inter- and intra-layer channel. For type 2 and
4 solutions the D5 and the anti-D5 world-volumes have to join smoothly at
a finite r = r0.

Now we look for the non-trivial solutions of equation (5.36). We start
considering the solutions of type 4. We can build such a solution requiring
that the D5 profile smoothly joins at some given r0 the corresponding anti-
D5 profile. The condition that has to be satisfied in order to have a smooth
solution for the connected D5/anti-D5 world-volumes is z′(r0)→∞ which,
from (5.13) (with b scaled to 1), corresponds to the condition

f2 − r4
0

[
q2 +

(
1 + r4

0

)
sin4 ψ(r0)

]
= 0 . (5.37)
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From this we can determine the boundary value ψ(r0)

ψ(r0) = arcsin

(
4

√
f2 − q2r4

0

r4
0

(
1 + r4

0

)) . (5.38)

Note that the request that 0 ≤ sinψ(r0) ≤ 1 fixes both a lower and an upper
bound on r0

r0,min(f, q) =

4

√√
(1 + q2)2 + 4f2 − 1− q2

4
√

2
, r0,max(f, q) =

√
f

q
.

Using (5.32) we can derive from the equation of motion (5.36) the condition
on ψ′(r0), which reads

ψ′(r0) =

(
r4

0 + 1
) (
f2 − q2r4

0

)√√ r4
0+1

f2−q2r2
0
− 1

r2
0

f2
(
2r4

0 + 1
)
− q2r8

0

(5.39)

We can then build such solutions imposing the conditions (5.38) and (5.39)
at r0, where r0 is the modulus. With the usual shooting technique we then
look for solutions that also have the desired behavior at infinity, i.e. those
that match the boundary conditions (5.5) with c1 = 0. It turns out that in
the presence of a charge density there are solutions of type 4 for any value
of q, in this case, however, these solutions will play an important role in the
phase diagram.

Next we consider the solutions of type 3. These solutions can be in
principle either BH or Minkowski embeddings. However when there is a
charge density different from zero only BH embeddings are allowed. A charge
density on the D5 world-volume is indeed provided by fundamental strings
stretched between the D5 and the Poincaré horizon. These strings have a
tension that is always greater than the D5 brane tension and thus they pull
the D5 down to the Poincaré horizon [104]. For this reason when q 6= 0 the
only disconnected solutions we will look for are BH embedding. Solutions
of this kind with c2 6= 0 can be built numerically along the lines of ref. [92].
Note that because of the equation of motion they must necessarily have
ψ(0) = 026.

26Actually also the condition ψ(0) = π/2 is allowed by the equation of motion, but this
would correspond to the constant solution with c2 = 0, namely the type 1 solution.
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5.4. Double monolayer with a magnetic field and a charge-balanced chemical potential

5.4.2 Separation and free energy

The brane separation is given in (5.20) and for the solutions of type 2 and 4
is plotted in fig. 5.9 for q = 0.01, the blue line gives the curve (5.22), keeping
into account that also r0 is a function of f through equation (5.21). For the
r-dependent solution instead r0 is defined as a function of f by equation
(5.37), once the solution ψ(r) is known numerically. The r-dependent con-
nected solution, green line, has two branches one in which L decreases with
increasing f and the other one in which L increases as f increases. It is clear
from the picture that when q → 0 one of the branches of the green solution
disappears and fig. 5.9 will become identical to fig. 5.7.

1 2 3 4
f

0.5

1.0

1.5

2.0

L

Figure 5.9: The separation of the monolayers, L, is plotted on the vertical axis
and the force parameter f is plotted on the horizontal axis, in the case where
the monolayers have charge densities and q = 0.01. The branch indicated by the
blue line is for the constant connected (type 2) solution. The green line is for the
r-dependent connected (type 4) solution.

Once we have determined all the possible solutions, it is necessary to
study which configuration is energetically favored. We shall compare the
free energy of the solutions at fixed values of L and µ, since this is the most
natural experimental condition for the double monolayer system. Thus the
right quantity to define the free energy is the action (5.25), which after the
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5.4. Double monolayer with a magnetic field and a charge-balanced chemical potential

rescaling (5.28) is given by

F1[L, µ] =

∫ ∞
r0

dr
(
1 + r4

)
sin4 ψ

r2
√

1 + r2ψ′2√
r4 (1 + r4) sin4 ψ + q2r4 − f2

(5.40)

As usual we regularize the divergence in the free energy by considering the
difference of free energies of pairs of solutions, which is really what we are
interested in. So we define a regularized free energy ∆F1 by subtracting to
each free energy that of the unconnected (f = 0) constant ψ = π/2 solution,

∆F1(ψ; f, q) ≡ F1(ψ; f, q)−F1(ψ = π/2; f = 0, q̂). (5.41)

As we already noticed, the free energy (5.40) and consequently ∆F1 are
implicit functions of L and µ, via f and q, which are the parameters that
we really have under control in the calculations. Thus when computing the
regularized free energy ∆F1 we have to make sure that the two solutions
involved have the same chemical potential.27 This is the reason why in the
definition of ∆F1 (5.41) we subtract the free energy of two solutions with
different values of q: the q̂ in (5.41) is in fact the value of the charge such that
the chemical potential of the regulating solution (ψ = π/2; f = 0) equals
that of the solution we are considering (ψ; f, q). To be more specific, for
a solution with chemical potential µ, which can be computed numerically
through (5.23) (or through (5.24) for the ψ = π/2 case), q̂ must satisfy

µ(ψ = π/2; f = 0, q̂) ≡
4Γ
(

5
4

)2
q̂

√
π(1 + q̂2)1/4

= µ

and therefore it is given by

q̂ =

√
J +

√
J (J + 4)

2
, J ≡ π2µ4(

2Γ
(

5
4

))8 .
For the type 2 solution the regularized free energy density can be com-

27In principle we also have to make sure that the two solutions have the same L. How-
ever this is not necessary in practice, since in ∆F1 we use as reference free energy that
of an unconnected solution, which therefore is completely degenerate in L. Indeed the
unconnected configuration is given just by two copies of the single D5 brane solution with
zero force between them, which can then be placed at any distance L.
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5.4. Double monolayer with a magnetic field and a charge-balanced chemical potential

puted analytically. Reintroducing back the magnetic filed, it reads

∆F1[L, µ] =

∫ ∞
r0

dr
(
b2 + r4

) r2r2
0√(

r4 − r4
0

) (
f2 + r4r4

0

) − 1√
b2 + q̂2 + r4


−
∫ r0

0
dr

b2 + r4√
b2 + q̂2 + r4

=

√
πΓ
(
−3

4

)
16r0

4
√
b2 + q̂2Γ

(
3
4

) [ 4
√
b2 + q̂2

(
2r4

0 2F1

(
−3

4
,
1

2
;
3

4
;−f

2

r8
0

)
−3
(
b2 + r4

0

)
2F1

(
1

4
,
1

2
;
3

4
;−f

2

r8
0

))
+
√

2r0

(
2b2 − q̂2

)]
(5.42)

where r0 is given in (5.21).
A comparison of the free energies of the various solutions for L = 1.5

and L = 5 is given in figure 5.10. The chirally symmetric solution would
be along the µ-axis since it is the solution we used to regularize all the
free energies. It always has a higher free energy, consequently, the chirally
symmetric phase is always metastable.
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Figure 5.10: Plots of the free energies as a function of the chemical potential:
type 2 (blue line), type 3 (red-line) and type 4 (green line) solutions for
L = 1.5 and L = 5.
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5.4. Double monolayer with a magnetic field and a charge-balanced chemical potential

5.4.3 Phase diagrams

Working on a series of constant L slices we are then able to draw the phase
diagram (µ,L) for the system. For the reader convenience we reproduce
the phase diagram that we showed in the introduction in fig. 5.11 (here the
labels are rescaled however). We see that the dominant phases are three:

• The connected configuration with c2 = 0 (type 2 solution) where the
flavor symmetry is broken by the inter-layer condensate (blue area);

• The connected configuration with c2 6= 0 and f 6= 0 (type 4 solution
with q 6= 0) where the chiral symmetry is broken by the intra-layer
condensate and the flavor symmetry is broken by the inter-layer con-
densates (green area);

• The unconnected Minkowski embedding configuration with c2 6= 0
(type 3 solution with q = 0) where the chiral symmetry is broken by
the intra-layer condensate (red area);

Note that in all these three phases chiral symmetry is broken.
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Figure 5.11: Phase diagram of the D3-probe-D5 branes system with balanced
charge densities. Layer separation is plotted on the vertical axis and chemical
potential µ for electrons in one monolayer and holes in the other monolayer is
plotted on the horizontal axis. The units are the same as in figure 5.1.
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5.4. Double monolayer with a magnetic field and a charge-balanced chemical potential

0 0.5 1 1.5 2 2.5 3 3.5
10−1

100

101

102

103

intra
q = 0

intra/inter

inter

µ

L

Figure 5.12: Phase diagram for large separation between the layers.

As expected, for small enough L the connected configuration is the dom-
inant one. We note that for L . 1.357, which, as we already pointed out,
is the critical value for L in the zero-chemical potential case, the connected
configuration is always preferred for any value of µ. When 1.357 . L . 1.7
the system faces a second order phase transition from the unconnected
Minkowski embedding phase – favored for small values of µ – to the con-
nected phase – favored at higher values of µ. When L & 1.7 as the chemical
potential varies the system undergoes two phase transitions: The first hap-
pens at µ ' 0.76 and it is a second order transition from the unconnected
Minkowski embedding phase to the connected phase with both condensates.
Increasing further the chemical potential the system switches to the con-
nected phase with only an intra-layer condensate again via a second order
transition.

Therefore it is important to stress that, with a charge density, a phase
with coexisting inter-layer and intra-layer condensates can be the energeti-
cally preferred state. Indeed, it is the energetically favored solution in the
green area and corresponds to states of the double monolayer with both the
inter-layer and intra-layer condensates.

The behavior of the system at large separation between the layers is given
in fig. 5.12. For L→∞ the phase transition line between the green and the
blue area approaches a vertical asymptote at µ ' 2.9. The connected solu-
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5.5. Double monolayers with un-matched charge densities

tions for L → ∞ become the corresponding, r-dependent or r-independent
disconnected solutions. Thus for an infinite distance between the layers we
recover exactly the behavior of a single layer [99] where at µ ' 2.9 the
system undergoes a BKT transition between the intra-layer BH embedding
phase to the chiral symmetric one [102].

It is interesting to consider also the phase diagram in terms of the brane
separation and charge density fig. 5.14. In this case the relevant free en-
ergy function that has to be considered is the Legendre transformation of
the action with respect to q, namely the Routhian F2[L, q] defined in equa-
tion (5.26). For the regularization of the free energy we choose proceed in
analogy as before: For each solution of given q and L we subtract the free
energy of the constant disconnected (type 1) solution with the same charge
q, obtaining the following regularized free energy

∆F2[L, q] ≡ F2[L, q]−F2(ψ = π/2; f = 0)[q]. (5.43)

In fig. 5.14 the phase represented by the red region in fig. 5.11, is just given
by a line along the q = 0 axis. By computing the explicit form of the free
energies as function of the brane separation L, it is possible to see in fact
that the r-dependent connected solution has two branches. These branches
reflect the fact that also the separation L has two branches as a function of
f , as illustrated in fig. 5.9. In the limit q → 0 one of these branches tends to
overlap to the r-dependent disconnected solution and for q = 0 disappears.
This is illustrated in fig. 5.13 where one can see that in the q → 0 limit the
free energy difference as a function of L goes back to that represented in
fig. 5.8.

5.5 Double monolayers with un-matched charge
densities

We now consider a more general system of two coincident D5 branes and
two coincident anti-D5 branes, with total charges Q = q1 + q2 > 0 and −Q̄
where Q̄ = q3 + q4 > 0. Then, unlike before, this corresponds to a double
monolayer with unpaired charge on the two layers. For such a system we
are interested in determining the most favored configuration, i.e. to find out
how the charges Q and Q̄ distribute among the branes and which types of
solutions give rise to the least free energy for the whole system. Since the
parameter that we take under control is the charge, and not the chemical
potential, we shall use the free energy F2, defined in equation (5.17), in
order to compare the different solutions.
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Figure 5.13: Free energy difference ∆F2 as a function of L for q = 0.01, the two
branches of the r-dependent connected solution, green line, tend to become just the
one of fig. 5.8.

What we keep fixed in this setup are the overall charges Q and Q̄ in
the two layers, while we let the charge on each brane vary: Namely the qi
vary with the constraints that Q = q1 + q2 and Q̄ = q3 + q4 are fixed. Then
we want to compare configurations with different values for the charges qi
on the single branes. For this reason we must choose a regularization of
the free energy that does not depend on the charge on the single brane,
and clearly the one that we used in the previous section is not suitable.
The most simple choice of such a regularization consists in subtracting to
the integrand of the free energy only its divergent part in the large r limit,
which is r2. We denote this regularized free energy as ∆F2,r.

Without loss of generality we suppose that Q > Q̄. Then for simplicity
we fix the values of the charges to Q = 0.15 and Q̄ = 0.1 and the separation
between the layers to L = 1. There are two possible cases.

(i) A configuration in which the D5 brane with charge q1 is described
by a black hole embedding whereas the D5 brane with charge q2 is
connected with the anti-D5 brane with charge q3, so that q2 = q3.

99



5.5. Double monolayers with un-matched charge densities

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

intra/inter

inter

intra

q

L

Figure 5.14: Phase diagram in terms of the brane separation L and the charge
density q.

Then we have

q2 = q3 = Q̄− q4 , q1 = Q− q2 = Q− Q̄+ q4

The free energy of this solution as a function of the parameter q4 is
given by the plot in fig. 5.16 for Q = 0.15 and Q̄ = 0.1.

From fig. 5.16 it is clear that the lowest free energy is achieved when
q4 = 0 which corresponds to the fact that one anti-D5 brane is repre-
sented by a Minkowski embedding.

(ii) Then we can consider the configuration in which all the branes are
disconnected. In this case

q1 = Q− q2 , q3 = Q̄− q4

In fig. 5.17 we give the free energy of the D5 branes, and of the the
anti-D5 brane. It is clear from fig. 5.17 that the lowest free energy
configuration is when both branes on the same layer have the same
charge. The free energy of the complete configuration will be then the
sum of the free energy of the D5 and of the anti-D5 layers each with
charge evenly distributed over the branes. For the case considered we
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r =∞

r = 0

q2 = q3 = Q̄
q1 = Q− Q̄

q4 = 0

q1 q2 −q3 −q4

Q −Q̄

Figure 5.15: Energetically favored solution for unpaired charges when Q > Q̄.
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Figure 5.16: Free energy of the solutions when one brane is disconnected and two
branes are connected

obtain a free energy ∆F2,r ' 3.26, which however is higher then the
free energy of the configuration (i).

In the special case in which Q and Q̄ are equal, e.g. Q = Q̄ = 0.15, there
are four possible configurations: Either the branes are all disconnected, or
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Figure 5.17: Free energy of the solutions when all the branes are disconnected:
The energetically favored solution is when they have the same charge.

the two pairs branes are both connected, or a brane and an anti-brane are
connected and the other are black hole embeddings, or, finally, a brane and
an anti-brane are connected and have all the charges Q and Q̄, so the rest
are Minkowski embeddings.

When they are all disconnected the physical situation is described in
item ii and the energetically favored solution is that with the same charge.
When they are all connected the configuration has the following charges.

q1 = Q− q2 , q3 = q1 , q2 = q4 , q3 = Q̄− q4 = Q− q2

Fig. 5.18 shows the free energy of the system of branes and anti-branes when
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Figure 5.18: Free energy of the solutions when all the branes are connected, the
energetically favored solution is when the charge is distributed evenly between the
branes and anti-branes.

they are all connected, clearly the energetically most favored solution is that
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5.6. Discussion

with the charge distributed evenly. This solution has a lower free energy with
respect to the one of all disconnected branes and charges distributed evenly
and also with respect to a solution with one brane anti-brane connected
system and two black hole embeddings. Since the connected solutions for
L . 1.357 and q = 0 are always favored with respect to the unconnected
ones, also the solution with two Minkowski embeddings and one connected
solution has higher free energy with respect to the one with two connected
pairs.

Summarizing for Q = Q̄ the energetically favored solution is the one
with two connected pairs and all the charges are evenly distributed q1 =
q2 = q3 = q4 = Q/2.

5.6 Discussion

We have summarized the results of our investigations in section 1. Here,
we note that there are many problems that are left for further work. For
example, in analogy with the computations in reference [65] which used
a non-relativistic Coulomb potential, it would be interesting to study the
double monolayer quantum field theory model that we have examined here,
but at weak coupling, in perturbation theory. At weak coupling, and in
the absence of magnetic field or charge density, an individual monolayer is
a defect conformal field theory. The double monolayer which has nested
fermi surfaces should have an instability to pairing. It would be interesting
to understand this instability better. What we expect to find is an inter-
layer condensate which forms in the perfect system at weak coupling and
gives the spectrum a charge gap. The condensate would break conformal
symmetry and it would be interesting to understand how it behaves under
renormalization.

The spontaneous nesting deserves further study. It would be interesting
to find a phase diagram for it to, for example, understand how large a charge
miss-match can be.

Everything that we have done is at zero temperature. Of course, the
temperature dependence of various quantities could be of interest and it
would be interesting (and straightforward) to study this aspect of the model.

It would be interesting to check whether the qualitative features which
we have described could be used to find a bottom-up holographic model of
double monolayers, perhaps on the lines of the one constructed by Sonner
[93].
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Chapter 6

Holographic D3-probe-D7
Model of a Double Layer
Dirac Semimetals

On the rumbling bus, somewhere,
I saw a white notice board on the street.
It is written with clear letters that
You are leaving away the county of Mujin.
Good bye.

I was heavily ashamed.

- Record of a Journey to Mujin by Seung-Ok Kim

The possibility that an inter-layer exciton condensate can form in a dou-
ble monolayer of two-dimensional electron gases has been of interest for a
long time [64]. A double monolayer contains two layers, each containing an
electron gas, separated by an insulator so that electrons cannot be trans-
ferred between the layers. Electrons and holes in the two layers can still
interact via the Coulomb interaction. The exciton which would condense
is a bound state of an electron in one layer and a hole in the other layer.
This idea has recently seen a revival with some theoretical computations
for emergent relativistic systems such as graphene or some topological in-
sulators which suggested that a condensate could form at relatively high
temperatures, even at room temperature [15]. A room temperature super-
fluid would have applications in electronic devices where proposals include
ultra-fast switches and dispersionless field-effect transistors [112].

An exciton condensate might be more readily achievable in a double
monolayer with relativistic electrons due to particle-hole symmetry and the
possibility of engineering nested Fermi surfaces of electrons in one layer and
the holes in the other layer. This nesting would enhance the effects of the
attractive Coulomb interaction between an electron and a hole. Even at very
weak coupling, it can be shown to produce an instability to exciton conden-
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sation [65]. However, in spite of this optimism, an inter-layer condensate
has yet to be observed in a relativistic material, even in experiments using
clean graphene sheets with separations down to the nanometer scale [118].
The difficulty with theoretical computations, where the Coulomb interac-
tion is strong, is the necessity of ad-hoc inclusion of screening, to which the
properties of the strongly coupled system have been argued to be sensitive
[120].

In this chapter we will study a model of a double monolayer of relativistic
two-dimensional electron gases. This model has a known AdS/CFT dual
which is easy to study and it can be solved exactly in the strong coupling
limit. We shall learn that, in this model. the only condensates which form
are excitons, bound states of electrons with holes in the same layer (intra-
layer) or bound states of electrons in one layer with holes in the other layer
(inter-layer). Moreover, even though at very strong coupling, the idea of a
Fermi surface loses its meaning, we find that the tendency to form an inter-
layer condensate is indeed greatly enhanced by the charge balance which, at
weak coupling, would give nested particle and hole Fermi surfaces. We shall
see that, in the strong coupling limit, and when the charges are balanced, an
inter-layer condensate can form for any separation of the layers. As well as
the inter-layer condensate, such a strong interaction will also form an intra-
layer condensate. We find that a mixture of the two condensates is favoured
for small charge densities and larger layer separations. For sufficiently large
charge densities, on the other hand, the only condensate is the inter-layer
condensate. These results for charge balanced layers are summarized in
figure 6.1. When the charges are not balanced, so that at weak coupling
the Fermi surfaces would not be nested, no inter-layer condensate forms,
regardless of the layer separation. This dramatic difference is similar to and
even sharper than what is seen at weak coupling [65] where condensation
occurs in only a narrow window of densities near nesting.

However, even in the non-nested case, we can find a novel symmetry
breaking mechanism where an inter-layer condensate can form. If each elec-
tron gas contains more than one species of relativistic electrons (for example,
graphene has four species of massless Dirac electrons and some topologi-
cal insulators have two species), the electric charge can redistribute itself
amongst the species to spontaneously nest one or more pairs of Fermi sur-
faces, with the unbalanced charge taken up by the other electron species.
Then the energy is lowered by formation of a condensate of the nested elec-
trons, the others remaining un-condensed. To our knowledge, this possibility
has not been studied before. The result is a new kind of symmetry break-
ing where Fermi surfaces nest spontaneously and break some of the internal
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Figure 6.1: (color online) Phase diagram of the charge balanced double monolayer
(exactly nested Fermi surfaces). The vertical axis is layer separation L in units of
the inverse ultraviolet cutoff, R. The horizontal axis is the charge density q in units
of R−2. The green region has both inter- and intra-layer condensates. The blue
region has only an inter-layer condensate. The red region has only an intra-layer
condensate. The white region has no condensates.

symmetry of the electron gas in each layer. We demonstrate that, for some
examples of the charge density, this type of condensate indeed exists as the
lowest energy solution.

The model which we shall consider is a defect quantum field theory con-
sisting of a pair of parallel, infinite, planar 2+1-dimensional defects in 3+1-
dimensional Minkowski space and separated by a distance L. The defects are
each inhabited by NF species of relativistic massless Dirac Fermions. The
Fermions interact by exchanging massless quanta of maximally supersym-
metric Yang-Mills theory which inhabits the surrounding 3+1-dimensional
bulk. In the absence of the defects, the latter would be a conformal field
theory. The interactions which it mediates have a 1/r fall-off, similar to the
Coulomb interaction and, in the large N planar limit which we will con-
sider, like the Coulomb force, the electron-hole interaction is attractive in
all channels.
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The field theory action is

S =

∫
d4x

1

g2
YM

Tr

[
−1

2
FµνF

µν −
6∑
b=1

DµΦbDµΦb + . . .

]

+

∫
d3x

2∑
a=1

NF∑
i=1

ψ̄ai
[
iγµ∂µ + γµAµ + Φ6

]
ψai (6.1)

The first term is the action of N = 4 supersymmetric Yang-Mills theory
where Aµ is the Yang-Mills gauge field and Φ6 is one of the scalar fields and
the second term is the action of the defect Fermions. In the second term, the
subscript a labels the defects and i the Fermion species. The action includes
all of the marginal operators which are compatible with the symmetries. It
has a global U(1) symmetry which we associate with electric charge.

The defect field theory (6.1) is already interesting with one layer. It
is thought to have a conformally symmetric weak coupling phase for 0 ≤
λ ≤ λc. When λ > λc, chiral symmetry is broken by an intra-layer exciton
condensate [69]. Near the critical point, the order parameter is thought
to scale as

〈
ψ̄1iψ1i

〉
∼ Λ2 exp

(
−b/
√
λ− λc

)
where Λ is an ultraviolet (UV)

cutoff. In the strong coupling phase, the condensate and therefore the charge
gap are finite only when the coupling is tuned to be close to its critical value.
The holographic construction examines this theory in the strong coupling
limit, where λ� λc. In that limit, it is cutoff dependent and it can only be
defined by introducing a systematic UV cutoff. We will find a string-inspired
way to do this, tantamount to defining the model (6.1) as a limit of the IIB
string theory which is finite and resolves the singularities. It will allow us to
study the strong coupling limit using the string theory dual of this system.

When there are two monolayers, the field theory (6.1) can also have an
inter-layer exciton condensate with order parameter

〈
ψ̄1iψ2i

〉
. The results of

reference [65] suggest that, with balanced charge densities and nested Fermi
surfaces, the inter-layer condensate occurs even for very weak coupling. Not
much is known as to how it would behave at strong coupling. It is the strong
coupling limit of this model which we will now solve using its string theory
dual.

The string theory dual of the defect field theory is the D3-probe-D7 brane
system of IIB string theory[70]. A monolayer is a single stack of NF D7 co-
incident branes. A double monolayer has two parallel stacks, one of NF D7
branes and another of NF anti-D7 branes separabilityted by a distance L.
In both cases, the D7 brane stacks overlap N >> NF coincident D3 branes.
With the appropriate orientation, the lowest energy states of open strings
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which connect the D3 to the D7 branes are massless two-component relativis-
tic Fermions that propagate on 2+1-dimensions and are the defect fields in
(6.1). In the large N and strong coupling limits, the D3 branes are replaced
by the AdS5 × S5 background and solving the theory reduces to extrem-
izing the classical Born-Infeld action S ∼ NFTD7

∫
d8σ
√
−det(γ + 2πα′F )

for the D7 brane embedded with world-volume gauge field strength F and
metric γab in AdS5 × S5. However, there is an immediate problem with
this setup. Any D7 brane geometry which approaches the appropriate D7
brane boundary conditions at the boundary of AdS5 is unstable. This is
a reflection of the fact that the strong coupling limit of the quantum field
theory on a single D7 brane is not conformally symmetric. We shall use a
suggestion by Davis et.al. [44] who regulated the D7 brane by embedding it
in the extremal black D3 brane geometry, with metric

ds2

R2
=
r2
(
−dt2 + dx2 + dy2 + dz2

)
√

1 +R4r4

+
√

1 +R4r4

(
dr2

r2
+ dψ2 + sin2 ψ

5∑
i=1

(dθi)2

)
(6.2)

where
∑5

i=1(θi)2 = 1. and R4 = λα′2. The asymptotic, large r limit of this
metric is 10-dimensional Minkowski space. It has a horizon at r = 0. In the
near horizon limit, which produces the IIB string on AdS5 × S5, rR � 1,
it approaches the Poincaré patch of AdS5 × S5. Since R contains the string
scale α′, 1/R can be regarded as a (UV) cutoff.

The D7 and anti-D7 world-volumes are almost entirely determined by
symmetry. They have 2+1-dimensional Poincaré invariance and wrap (t, x, y).
The model (6.1) has an SO(5) R-symmetry. The D7’s must therefore wrap
(θ1, . . . , θ5) to form an S4. For the remaining world-volume coordinate, we
use the radius r in (6.2). The dynamical variables are then ψ(r) and the
positions z1(r) and z2(r) of D7 and anti-D7, which by symmetry can only
be functions of r. ψ = π

2 is a point of higher symmetry, corresponding to
parity in the defect field theory with massless Fermions. ψ(r) = π

2 + c
r2 + . . .

is required to approach π
2 at r → ∞ and, if it becomes r-dependent at all

(c 6= 0), parity is broken by an intra-layer condensate. Parity can be re-
stored if pairs of branes have condensates of opposite signs. This would
break flavour symmetry when NF is even, U(NF )→ U(NF /2)× U(NF /2).
Whether this sort of flavour symmetry breaking or parity and time reversal
breaking takes place is an interesting dynamical question which will be stud-
ied elsewhere. Finally, it will turn out that, either z1,2(r) are constants, or
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the D7 and anti-D7 meet and smoothly join together at a minimum radius,
r0. Asymptotically, z1,2(r) = ±L/2∓Rr4

0/r
4 + . . ..

We have performed numerical computations to determine the lowest en-
ergy embeddings of the D7 (and anti-D7) branes as a function of the charge
density (q) and the brane-anti-brane separation L. In the following we
outline the results of these computations. The formalism for studying the
embeddings of the probe D branes is already well-known in the literature
and we refer the reader there for details. Examples for double monolayers
can be found in references [54, 91, 93–96, 100]

When we suspend a single D7 brane in the black D3 brane metric (6.2),
we find that the lowest energy solution truncates before it reaches the hori-
zon. This is called a “Minkowski embedding”. The function ψ(r) moves
from ψ = π

2 at r ∼ ∞ to ψ = 0 or ψ = π at the r where the brane pinches
off. The S4 which the world-volume wraps shrinks to a point there and this
collapsing cycle is what makes the truncation smooth. This brane geometry
is interpreted as a charge-gapped state. The lowest energy charged exci-
tation is a fundamental string which would be suspended between the D7
brane and the horizon. In this case, that string has a minimum length and
therefore a mass gap.

We can introduce a charge density q on the single monolayer. When
the D7 brane carries a charge density, its world volume must necessarily
reach the horizon. This is called a “black hole embedding”. Charge in the
quantum field theory corresponds to D7 brane world-volume electric field
Er ∼ q. This hedgehog-like electric field points outward from the centre
of the brane. The radial lines of flux of the electric field can only end if
there are sources. Such sources would be fundamental strings, suspended
between the D7 brane and the horizon. However, the strings have a larger
tension than the D7 brane and they pull the the D7 brane to the horizon
resulting in a gapless state. This is confirmed by numerical solutions of the
embedding equation of a single brane and, indeed, we find that the S4 which
is wrapped by the world volume shrinks to a point as it enters the horizon.
This state no longer has a charge gap. Even in the absence of a charge gap,
we find that, for small charge densities, there is still an intra-layer exciton
condensate. Our numerical studies show that it persists up to a quantum
phase transition at a critical density qcrit. ≈ 0.0377/R2. At densities greater
than the critical one, ψ = π

2 , is a constant.
Now, consider the double monolayer with D7 and anti-D7 branes. A D7-

anti-D7 pair of branes would tend to annihilate. We prevent this annihilation
by requiring that they be separated by a distance L as they approach the
boundary at r → ∞. When their world volume enters the bulk, they can

109



Chapter 6. Holographic D3-probe-D7 Model of a Double Layer Dirac Semimetals

still come together and annihilate – their world volumes fusing together at a
minimal radius r0. This competes with the tendency of a monolayer brane
to pinch off at some radius. Indeed, when the charge density is zero, we
see both behaviours. When the stacks of branes are near enough, that is,
L < Lc ' 2.31R is small enough, they join. This state has an inter-layer
condensate. When they are farther apart, they remain un-joined. Instead,
they pinch off to form Minkowski embedding, corresponding to a state with
intra-layer condensates.

When we introduce balanced charges q and −q on the D7 and anti-D7,
respectively, there are four modes of behaviour which are summarized in
table 6.1. Each of these behaviours occurs in the phase diagram in figure
6.1. Type 1 solutions are maximally symmetric with ψ = π

2 and z1,2 =

z2 − z1 = L, const. z2(r)− z1(r)→ 0 at r0

c = 0

Type 1 Type 2

un-joined, ψ = π
2 joined, ψ = π

2

BH, no condensate inter

c 6= 0

Type 3 Type 4

un-joined, ψ(r) r-dependent joined, ψ(r) r-dependent

Mink (q = 0) intra intra+inter

BH (q 6= 0) intra only when q 6= 0

Table 6.1: Types of possible solutions for the balanced charge (q,−q) case,
where (Mink,BH) stand for (Minkowski,black-hole) embeddings.

±L/2. They occur in the white region of figure 6.1. They have no exciton
condensates at all. Type 3 solutions occur in the red region. They have ψ(r)
a nontrivial function, but z1,2 = ±L/2. The branes do not join. They are
Minkowski embeddings when q = 0 and black hole embeddings when q 6= 0.
Type 3 has an intra-layer exciton condensate only. There is a quantum phase
transition between type 1 and type 3 solutions at qc = 0.0377. Both type
1 and type 3 solutions occur only for very small layer separations, or order
the UV cutoff. Type 2 solutions occupy the blue region. They have ψ = π

2 ,
constant, z1,2(r) are nontrivial functions. The D7 and anti-D7 branes join
at a radius, r0 6= 0. The intra-layer condensate vanishes and there is a non-
zero inter-layer condensate. In type 4 solutions, both ψ(r) and z1,2(r) have
nontrivial profiles. The D7 and anti-D7 branes join and ψ(r) also varies
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with radius. This phase has both and inter- and intra-layer condensate.
This solution exists only when q is nonzero and, then, only for small values
of q. For r0 ' 0 we have q < 0.0377, when r0 grows, the allowed values of q
decrease.

Consider a double monolayer with un-balanced charges, Q > 0 on the
D7 and −Q̄ < 0 on the anti-D7 brane. The same argument as to why a
single charged D7 brane must have a Minkowski embedding applies and,
on the face of it, it is impossible for the branes to join before they reach
the horizon. There is, however, another possibility which arises when there
are more than one species of Fermions on each brane, that is, NF > 1.
In that case, one or more of the Fermion species can nest spontaneously,
with the deficit of charge residing in the other species. This would break
internal symmetry. For example, if Q > Q̄ > 0, k branes take up charge
Q̄ and the remaining NF − k take up the remainder Q − Q̄, this would
break U(NF )×U(NF )→ U(NF −k)×U(k)×U(NF −k)×U(k). Then the
branes with matched charges (Q̄) would join, further breaking the symmetry
U(NF − k)×U(k)×U(NF − k)×U(k)→ U(NF − k)×U(k)×U(NF − k).
Then, NF−k charged D7 branes and NF−k uncharged anti-D7 branes either
break parity or some of the remaining U(NF − k) × U(NF − k) symmetry.
The uncharged branes must take up a Minkowski embedding. We have
computed the energies of some of these symmetry breaking states for the
case where NF = 2. We find a range of charge densities where spontaneous
nesting is energetically preferred. The implications of this idea for double
monolayer physics is clear. The Fermion and hole densities of individual
monolayers would not necessarily have to be fine tuned in order to nest the
Fermi surfaces. It could happen spontaneously.

The intra-layer and inter-layer condensates discussed here have not been
seen in graphene to date (with a possible exception [97]), presumably be-
cause the coupling is not strong enough. Our results show that the inter-
layer condensation is extremely sensitive to Fermi surface nesting, even in
the strong coupling limit. It would be interesting to better explore spon-
taneous nesting, since creating favourable conditions for it could be a way
forward with graphene.
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Conclusion

P.S. please if you get a chanse put some flowers
on Algernons grave in the bak yard

- Flowers for Algernon by Daniel Keyes

In this thesis, we introduced why we need to study AdS/CFT correspon-
dence and the key idea of the conjecture. We also showed how to apply the
holographic duality to the concerned dual field theory, and presented the
motivation of our project during the PhD program. I will summarize the
previous chapters by exhibiting the research procedures and how and what
we achieved as follows.

The first candidate we considered for dual model of double monolayer
graphene is D3-probe-D7 model based on [37]. Because supersymmetry and
conformal symmetry are completely broken for this model, the embedding is
not stable. We turn on the internal fluxes to stabilize the model, and turn on
an external magnetic field as well. I led the research to seeking a condition of
stability of the double layer model and simulating and analyzing behaviors
of the model. We finally analyzed magnetic catalysis and inverse magnetic
catalysis for double monolayers [54]. This is presented in the chapter 3

This set-up in [54, 91] itself is very interesting, and recently it inverse
magnetic catalysis research in QCD is active. However, there is a critical
weak point that the model cannot contain intra-layer EC at all for our
semimetal perspective. Thus, we leave the research for the future work.
Instead, we employ an extremal black D3-brane geometry instead of AdS to
imbed D7-branes [101]. It is presented in the chapter 6 and the appendix B.

We also introduce an external magnetic field28 on the D3-probe-D5-
branes to break supersymmetry and conformal symmetry and make fermion
defects probe branes. D3 and probe D5-branes are no more in the BPS

28The dual field theory does not contain an external magnetic field. We could regard
it as two form B gauge field in the supergravity background. They are equivalent in DBI
action of the probe branes.
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states, they act repulsive forces each other. The strength grows toward
the Poincaré Killing horizon, D5-branes pinch off somewhere (Minkowski
embedding). This has a mass gap. This is the gravity dual of the mass gen-
eration that accompanies intra-layer EC in a single monolayer. In the Fig.
1.15, the electric external gates would change the effective charge density.
It is also known that a doped bilayer graphene also has a band gap. In a
single monolayer to have a nonzero charge density, there must be a density
of fundamental strings suspended between the D5-brane and the Poincaré
horizon. However, the fundamental string tension is always greater than
the D5-brane tension and such strings would therefore pull the D5-brane to
the horizon(BH embedding). The result is a gapless state. For an infinite
distance L between the layers in the phase diagram, we recover exactly the
behavior of a single layer [102] where at µ ∼ 2.9(Asymptotic dotted line in
the Fig. 1.15) the system undergoes a BKT transition between the intra-
layer BH embedding phase to the chiral symmetric one. Note that the other
dotted line is where the 1st order phase transition occurs. It is presented in
the chapter 5.

We had studied how to introduce the charge density in the single mono-
layer model [102] and we present it in the appendix C. We showed the effect
of internal fluxes are interestingly similar to that of charge density. It is pre-
sented in the chapter 2. It was essential to study the content in the chapter
5.

In the chapter 4 and the appendixB, we considered a holographic model
of dynamical symmetry breaking in 2+1-dimenisons, where a parallel D7-
anti-D7 brane pair fuse into a single object, corresponding to the U(1) ×
U(1)→ U(1) symmetry breaking pattern. We show that the current-current
correlation functions can be computed analytically and exhibit the low mo-
mentum structure that is expected when global symmetries are sponta-
neously broken. We also find that these correlation functions have poles
attributable to infinite towers of vector mesons with equally spaced masses.
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Appendix A

Some Calculations for
Chapter 4.

The Lagrangian we are intrested in is

L = (1 + f2)r2
√

1 + r4ż(r)2 ∓ f2.r4ż(r) (A.1)

z(r) is a cyclic variable, and the equation of the motion is

d

dr

[
(1 + f2)r6ż√

1 + r4ż(r)2
∓ f2r4

]
. = 0 (A.2)

The solution for the equationA.2 is

z±(r) = ±L
2
∓
∫ ∞
r

drż+(r).

This z± is the position of the brane to the right (+) or left (-) of z = 0, and
ż± is

ż±(r) = ± f2r4 + P

r2
√

(r4 − P )((1 + 2f2)r4 + P )
.

P is an integration constant proportional to the pressure needed to hold the
branes with their asymptotic separation L.

(1 + f2)r6ż√
1 + r4ż(r)2

∓ f2r4 = ±P (A.3)

When they are not joined, they do not interact, at least in this classical
limit, and P must be zero. When they are joined, P must be nonzero and

they are joined at a minimum radius r0 = P
1
4 and L and P are related by

LP
1
4 = 2

∫ ∞
1

dr
f2r4 + 1

r2
√

(r4 − 1)((1 + 2f2)r4 + 1)

=
π3/2

(
3f2

2F1

(
1
4 ,

1
2 ; 3

4 ; 1
−2f2−1

)
+ 2F1

(
1
2 ,

5
4 ; 7

4 ; 1
−2f2−1

))
4
√

2 + 4f2Γ
(

3
4

)
Γ
(

7
4

) (A.4)
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Figure A.1: ρm as a function of f2.

We have redefined the radial coordinate as

ρ =

∫ ∞
r

dr

r2

√
1 + r4ż2

To analyze the joined configuration, we note that in that case ρ reaches
a maximum

ρm =
(1 + f2)

r0

∫ 1

0

dx√
(1− x4)((1 + 2f2)− x4)

(A.5)

=

√
π
(
f2 + 1

)
Γ
(

5
4

)
2F1

(
1
4 ,

1
2 ; 3

4 ; 1
−2f2−1

)
r0

√
2f2 + 1Γ

(
3
4

) (A.6)

=
L

2

∫ 1
0

dx(1+f2)√
(1−x4)((1+2f2)−x4)∫ 1

0
dx(f2+x4)√

(1−x4)((1+2f2)−x4)

(A.7)

=
3L
(
f2 + 1

)
2

(
2F1

(
1
2
, 5
4

; 7
4

; 1
−2f2−1

)
2F1

(
1
4
, 1
2

; 3
4

; 1
−2f2−1

) + 3f2

) (A.8)

A plot of eq.(A.6) is given in Fig.A.5.
The regularized energy can be computed as the difference between the

on-shell actions of the joined solution and that of the disjoined one. It is
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Figure A.2: Regularized energy, it is always negative, the joined solution has
always lower energy.

given by

Sreg =

∫ ∞
r0

dr

( (
2f2 + 1

)
r6 − f2r2r40√

(r4 − r40) ((2f2 + 1) r4 + r40)
−
√

2f2 + 1r2

)
−
∫ r0

0

dr
√

2f2 + 1r2

This can be computed exactly

Sreg = −
π3/2r3

0

(
3f2

2F1

(
1
4 ,

1
2 ; 3

4 ; 1
−2f2−1

)
+ 2F1

(
1
2 ,

5
4 ; 7

4 ; 1
−2f2−1

))
18
√

4f2 + 2Γ
(

3
4

)2
and from its plot in Fig.A.2 it seems smooth and always negative for 23/50 <
f2 < 1.

From these results it is simple to compute the energy as a function of L,
which is simply given by the confining potential

Sreg = −P
6
L (A.9)
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Appendix B

The Phase Diagram of
D3-probe-D7 System

We present the detail numerical procedure to obtain the phase diagram 6.1
in the chapter 6.

B.1 Geometry of branes

We consider a pair of probe branes, a D7 brane and an anti-D7 suspended
in the asymptotically flat D3-brane solution. We use coordinates where the
metric background is

ds2 =

(
1 +

R4

r4

)−1/2 (
−dt2 + dx2 + dy2 + dz2

)
+

(
1 +

R4

r4

)1/2 (
dr2 + r2d2Ω5

)
(B.1)

and
d2Ω5 = dψ2 + sin2 ψd2Ω4 (B.2)

where we have written the geometry to display the directions the D3 lie in
(t, x, y, z). We then introduce the coordinates

ρ = r sinψ , l = r cosψ

so that the metric (6.2) becomes

ds2 =

(
1 +

R4

(ρ2 + l2)2

)−1/2 (
−dt2 + dx2 + dy2 + dz2

)
+

(
1 +

R4

(ρ2 + l2)2

)1/2 (
dρ2 + dl2 + ρ2d2Ω4

)
(B.3)

We make an ansatz for the D7 brane and anti-D7 brane geometries where
they both fill the directions x, y, t, ρ and wrap the S4 ⊂ S5 according to

t x y z ρ l θ1 θ2 θ3 θ4

D3 × × × ×
D7/D7 × × × z(ρ) × l(ρ) × × × ×

(B.4)
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They sit at points in the remainder of the directions z, l and the points
z(ρ), l(ρ) generally depend on ρ. The wrapped S4 has an SO(5) symmetry.
The geometry of the D7 brane and anti-D7 brane are both given by the
ansatz

ds2 =

(
1 +

R4

(ρ2 + l2)2

)−1/2 (
−dt2 + dx2 + dy2

)

+

(
1 +

R4

(ρ2 + l2)2

)1/2

dρ2

1 + l′(ρ)2 +
z′(ρ)2

1 +
R4

(ρ2 + l2)2

+ ρ2d2Ω4


(B.5)

The introduction of a charge density requires D7 world-volume gauge
fields. In the aρ = 0 gauge, the field strength 2-form F is given by

2πl2sF = a′0(ρ)dρ ∧ dt (B.6)

In this expression, a0(ρ) will result in the world volume electric field which
is needed in order to have a nonzero U(1) charge density in the quantum
field theory. The temporal gauge field A0 are defined in terms of it as

a0 = 2πl2sA0 (B.7)

In this Section, we will use the field strength (B.6) for both the D7 brane
and the anti-D7 brane.

The asymptotic behavior at ρ→∞ for the embedding functions in (B.5)
is

l(ρ)→ m+
c

ρ3
+ . . . (B.8)

and the D7 brane and anti-D7 brane are separated by a distance L,

z(ρ)→ L

2
− ρ4

0

ρ4
+ . . . (B.9)

for the D7 brane and

z(ρ)→ −L
2

+
ρ4

0

ρ4
+ . . . (B.10)

for the anti-D7 brane. The asymptotic behavior of the gauge field (B.6) is

a0(ρ) = µ− q

ρ4
+ . . . (B.11)
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with µ and q related to the chemical potential and the charge density, re-
spectively.

There are two constants which specify the asymptotic behavior in each
of the above equations. In all cases, we are free to choose one of the two
constants as a boundary condition, for example we could choose m, q, ρ0.
Then, the other constants, c, µ, L, are fixed by requiring that the solution is
non-singular.

We will only consider solutions where the boundary condition is m = 0.
This is the chiral symmetric boundary condition. Its equivalent in the dual
gauge theory is obtained by specifying that the hypermultiplet is massless
and the theory has chiral symmetry. Then, when we solve the equation of
motion for l(ρ), there are two possibilities. First c = 0 and l(ρ) = 0, a
constant for all values of ρ. This is the chirally symmetric phase. Secondly,
c 6= 0 and l is a non-constant function of ρ. This describes the phase with
spontaneously broken chiral symmetry. The constant c is proportional to
the intra-layer chiral condensate

〈
ψ̄1ψ1

〉
for the D7 brane and

〈
ψ̄2ψ2

〉
for

the anti-D7 brane.
To be more general, we will consider consider a stack of Nf D5-branes

and Nf anti-D7 branes. The Born Infeld action for either the stack of D7
or anti-D7 branes is given by

S = N7

∫
dρρ4

√(
1 +

R4

(l2 + ρ2)2

)
(1− a0

′2 + l′2) + z′2 (B.12)

where

N7 =
Nf

48π5l8sgs
V2+1

with V2+1 the volume of the 2+1-dimensional space-time, ls the string
length, gs the string coupling and NF the number of D7 branes. The Wess-
Zumino terms that occur in the D brane action will not play a role in the
D7 brane problem.

The variational problem of extremizing the Born-Infeld action (B.12)
involves two cyclic variables, a0(ρ) and z(ρ). Being cyclic, their canonical
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momenta must be constants,

Q = − δS
δa′0
≡ 2πl2sN7q , q =

ρ4a0
′ (2ρ2l2 + l4 + ρ4 +R4

)
(l2 + ρ2)2

√
(2ρ2l2+l4+ρ4+R4)(1−a0

′2+l′2)

(l2+ρ2)2 + z′2

(B.13)

Πz =
δS

δz′
≡ N7ρ

4
0 , ρ4

0 =
ρ4z′√

(2ρ2l2+l4+ρ4+R4)(1−a0
′2+l′2)

(l2+ρ2)2 + z′2
, (B.14)

Solving (B.13) and (B.14) for a′0(ρ) and z′(ρ) in terms of q and ρ0 we
get

a′0 = −
q
(
l2 + ρ2

)√
1 + l′2√

l2 (l2 + 2ρ2)
(
ρ8 + q2 − ρ8

0

)
+ q2ρ4 +

(
ρ8 − ρ8

0

)
(ρ4 +R4)

(B.15)

z′ =
ρ4

0

(
l4 + 2l2ρ2 + ρ4 +R4

)√
1 + l′2

(l2 + ρ2)
√
l2 (l2 + 2ρ2)

(
ρ8 + q2 − ρ8

0

)
+ q2ρ4 +

(
ρ8 − ρ8

0

)
(ρ4 +R4)

(B.16)
We can now use the Legendre transformed action to find l(ρ) for fixed ρ0

and fixed charge q, eliminating a′0(ρ) and z′(ρ) using equations (B.15) and
(B.16).
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After scaling out the parameter R, (ρ, l, z, a0)→ R(ρ, l, z, a0), such a Routhian reads

R =
S

N7
− ρ4

0

∫
dρz′(ρ)− q

∫
dρa′0(ρ)

=

∫
dρ

√
(1 + l′2)

(
l4
(
ρ8 + q2 − ρ8

0

)
+ 2l2ρ2

(
ρ8 + q2 − ρ8

0

)
+ q2ρ4 + (ρ4 + 1)

(
ρ8 − ρ8

0

))
l2 + ρ2

(B.17)

The Euler-Lagrange equation for l(ρ) can be derived by varying the Routhian (B.17) and reads(
l2 + ρ2

)
l′′
(
l2
(
l2 + 2ρ2

) (
ρ8 + q2 − ρ8

0

)
+ q2ρ4 +

(
ρ4 + 1

) (
ρ8 − ρ8

0

))
+ 2

(
1 + l′2

) (
ρl′
(
2l2ρ6

(
l4 + 3l2ρ2 + 3ρ4 + 1

)
+ 2ρ12 + ρ8 + ρ8

0

)
+ l
(
ρ8 − ρ8

0

))
= 0 (B.18)

This equation must be solved with the boundary conditions in equation (B.8)-(B.11) (recalling that we can choose
only one of the integration constants, the other being fixed by regularity of the solution) in order to find the
function l(ρ). Once we know that function, we can integrate equations (B.15) and (B.16) to find a0(ρ) and z(ρ).

Clearly, l = 0, a null constant, for all values of ρ, is always a solution of equation (B.18), even when ρ0 and the
charge density are nonzero. However, for some range of the parameters, it will not be the most stable solution.

Using the asymptotic behavior (B.8) with m = 0 and c = c, the solution, up to the order 23 in the 1
ρ expansion,

has the form

l(ρ) =
c

ρ3
− 2c

7ρ7
+
c
(
189c2 − 21q2 + 21ρ80 + 22

)
154ρ11

−
c
(
807c2 − 86q2 + 31ρ80 + 44

)
495ρ15

+
c
(
2525985c4 + c2

(
−561330q2 + 561330ρ80 + 930444

)
+ 31185q4 − 2q2

(
31185ρ80 + 48241

)
+ 31185ρ160 + 20032ρ80 + 32648

)
526680ρ19

−
c
(
2476927215c4 − 174c2

(
3057600q2 − 2010225ρ80 − 2193536

)
+ 7

(
4086075q4 − 2q2

(
2508030ρ80 + 2776603

)
+ 929985ρ160 + 798676ρ80 + 1403864

))
211988700ρ23

+ O

((
1

ρ

)27)

in terms of the modulus c.
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B.2. Double monolayers without charge density

B.2 Double monolayers without charge density

The equation of motion for l in this case is(
l2 + ρ2

)
l′′
(
l2
(
l2 + 2ρ2

) (
ρ8 − ρ8

0

)
+
(
ρ4 + 1

) (
ρ8 − ρ8

0

))
+ 2

(
1 + l′2

) (
ρl′
(
2l2ρ6

(
l4 + 3l2ρ2 + 3ρ4 + 1

)
+ 2ρ12 + ρ8 + ρ8

0

)
+ l
(
ρ8 − ρ8

0

))
= 0

(B.19)

There are in principle four type of solutions for which m = 0 in (B.8):

1. Unconnected, constant l = 0 solution that reaches the Poincaré hori-
zon, l = 0 and ρ = 0, i.e. a black-hole (BH) embedding.

2. A connected constant l = 0 solution.

3. A ρ-dependent unconnected solution with ρ0 = 0, where the brane
pinches off (ρ = 0) before reaching the Poincaré horizon, i.e. a Minkowski
embedding.

4. A connected ρ-dependent solution.

These solutions are summarized in the following table. We look for solution
with m = 0 in (B.8). We can distinguish four types of solutions according
to the classification of table B.1.

ρ0 = 0 ρ0 6= 0

c = 0

Type 1 Type 2

unconnected, l = 0 connected, l = 0

BH, chiral symm. Mink, inter

c 6= 0

Type 3 Type 4

unconnected, ρ-dependent l connected, ρ-dependent l

Mink, intra Mink, intra/inter

Table B.1: Types of possible solutions, where Mink stands for Minkowski
embeddings and BH for black-hole embeddings.

Type 1 solutions are trivial both in l and z (they are both constants).
They correspond to two parallel black hole (BH) embeddings for the D7
and the anti-D7. This configuration is the chiral symmetric one. However,
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B.2. Double monolayers without charge density

by studying the fluctuations around this solution we will show in the next
section that it is unstable,

In type 2 solutions the chiral symmetry is broken by the inter-layer con-
densate (ρ0 6= 0). In this case the branes have non flat profiles in the z
direction. Solutions of type 3 and 4 are the really non-trivial ones to find.
Type 3 solutions have non-zero expectation value of the intra-layer conden-
sate and there are only Minkowski (Mink) embeddings. Type 4 solutions
break chiral symmetry in both the inter- and intra-layer channel. For type 2
and 4 solutions the D7 and the anti-D7 world-volumes have to join smoothly
at a finite ρ = ρ0. These are indeed connected solutions and of course they
are Minkowski embeddings.

Let’s consider the solutions of the type 3, types 1 and 2 are just l = 0.
The equation for l (B.19) with ρ0 = 0 simplifies further to

l′′ + 2
(
l′2 + 1

) (2l2 (l4 + 3l2ρ2 + 3ρ4 + 1
)

+ 2ρ6 + ρ2
)
l′ + lρ

ρ (l2 + ρ2) (l4 + 2l2ρ2 + ρ4 + 1)
= 0 (B.20)

In this case it is obvious from (B.16) that z(ρ) is a constant. Solutions of
type 3 are those for which l(ρ) goes to a constant, l0, at ρ = 0 so that the
four-sphere in the world-volume of the D7-brane shrinks to zero.

A solution to (B.20) of this type can be obtained by a shooting technique.
The differential equation can be solved from either direction: from ρ = 0
or from the boundary at ρ = ∞. In either case, there is a one-parameter
family of solutions, from ρ = 0 the parameter is l0, from infinity it is the
value of the modulus c in (B.19), which can be used to impose the boundary
conditions at ρ→∞ with c = 0.

To find the solution fix some ρ̄ in the middle (say ρ̄ = 2). Start with
shooting from the origin. For constant values of l at the origin ρ = 0,
integrate the solution outwards to ρ̄ and compute l and its derivative at ρ̄.
For each solution, put a point on a plot of l′(ρ̄) vs. l(ρ̄) (the red curve in
Figure B.1). Then, do the same thing starting from the boundary at ρ =∞,
and varying the coefficient c of the expansion around infinity. This is given
by the blue curve in Figure B.1.

To find a condition on the derivative at ρ = 0 we found an asymptotic
expansion of the solution around the origin, the first few terms read

l(ρ) = l0 −
ρ2

5l0
(
l40 + 1

) +

(
375l80 + 325l40 + 46

)
ρ4

1750l30
(
l40 + 1

)3 +O
(
ρ6
)

(B.21)

When the two solutions, coming from ρ = 0 and from ρ =∞ meet at the
intermediate point, then there is a solution. The only value of l0 at which

135



B.2. Double monolayers without charge density
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Figure B.1: Unconnected solution for ρ0 = 0, there is a unique solution when the
blue and red curves cross.

this happens is l0 ' 0.254 and for the parameter c we get c ' 0.051. With
these values l(ρ̄ = 2) = 0.00628566, l′(ρ̄ = 2) = −0.00921382. The precision
of these numbers could easily be improved by scanning the region around
the point where the two curves meet. The solution is plotted in Figure B.2.

0.5 1.0 1.5 2.0 2.5 3.0
Ρ

0.05

0.10

0.15

0.20

0.25

lHΡL

Figure B.2: Unconnected solution for ρ0 = 0 and q = 0.

Consider now the solution of equation (B.19) of type 4. In this case we
look for a D7 that joins at some given ρ0 the corresponding anti-D7. At
ρ0, z′(ρ0) → ∞. At ρ = ρ0 we choose l′(ρ0) = 0 and l(ρ0) = l0 and we
use l0 for the shooting technique at the turning point ρ0. At infinity we use
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B.2. Double monolayers without charge density

the expansion (B.19) with q = 0 to define the boundary conditions. The
shooting technique provides a unique solution for each value of ρ0.

B.2.1 Fluctuations

Consider first the constant disconnected solution, the fluctuation around it
can be easily found by writing l(ρ) = εδl(ρ) and expanding eq.(B.20) at the
first order in ε. We get

ρ
(
ρ
(
ρ4 + 1

)
δl′′ +

(
4ρ4 + 2

)
δl′
)

+ 2δl = 0

whose general solution reads

δl = a1ρ
1
2
i(
√

7+i)
2F1

(
−1

8
+
i
√

7

8
,
5

8
+
i
√

7

8
; 1 +

i
√

7

4
;−ρ4

)

+a2ρ
− 1

2
i(
√

7−i)
2F1

(
−1

8
− i
√

7

8
,
5

8
− i
√

7

8
; 1− i

√
7

4
;−ρ4

)
(B.22)

for small ρ this solution goes like

δl ∼ a1ρ
− 1

2
+ i
√

7
2 + a2ρ

− 1
2
− i
√

7
2

the complex exponents is a sign of the instability of the solution l = 0 for
q = ρ0 = 0.

When ρ0 is non zero instead, we can show, with a similar argument,
that the constant connected solution is actually stable. The equation for
the fluctuation now is

2δl
(
ρ8

0 − ρ8
)
− ρ

((
ρ5 + ρ

)
δl′′
(
ρ8 − ρ8

0

)
+ 2δl′

(
2ρ12 + ρ8 + ρ8

0

))
= 0

which expanded around ρ0 becomes

4 (ρ− ρ0) δl + ρ2
0

(
1 + ρ4

0

) (
δl′ + 2 (ρ− ρ0) δl′′

)
= 0

The general solution of this equation is

δl = a1
4
√

4ρ− 4ρ0J 1
4

 √
2ρ√

ρ2
0

(
ρ4

0 + 1
) − √

2ρ0√
ρ2

0

(
ρ4

0 + 1
)


+a2
4
√

4ρ− 4ρ0Y 1
4

 √
2ρ√

ρ2
0

(
ρ4

0 + 1
) − √

2ρ0√
ρ2

0

(
ρ4

0 + 1
)
 (B.23)
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B.2. Double monolayers without charge density

whose expansion around ρ0 gives

δl ∼ a1

[
const

√
ρ− ρ0 +O

(
(ρ− ρ0)5/2

)]
+a2

[
const + const

√
ρ− ρ0 +O

(
(ρ− ρ0)2

)]
thus it is always possible to take a linear combination of these solutions that
has a derivative with a correct behavior, i.e the solution with integer powers
of ρ− ρ0. Thus when ρ0 6= 0 the solution l = 0 is stable.

There are then three types of solutions of the equation of motion (B.19)
representing bi-layers. Solutions of type 2, 3 and 4.

B.2.2 Free energy

We want now to compare the energies of these solutions for fixed separations
of the layers. By setting the asymptotic behavior of z(ρ) (B.9) and (B.10)
we implicitly defined the layer separation for a connected solution as

L = 2

∫ ∞
ρ0

dρz′ = 2

∫ ∞
ρ0

dρ
ρ4

0

√
l4 + 2l2ρ2 + ρ4 + 1

√
1 + l′2

(l2 + ρ2)
√
ρ8 − ρ8

0

(B.24)

for zero charge density. This separation is plotted in Fig.B.3 for the con-
stant connected and the ρ-dependent connected solutions. The first has two
branches and a minimum at ρ0 ' 0.84 where L ' 1.166, the latter does not
exist for ρ0 > 0.265, but joins with the constant connected at that point.

The energy of the solutions at fixed separation L is given by the on shell
action (B.12), S/N7 where we plug in the three possible solutions we found.

E(l; ρ0) =

∫ ∞
ρ0

dρρ8

√
1 +

1

(l2 + ρ2)2

√
1 + l′2

ρ8 − ρ8
0

(B.25)

This energy is divergent since in the large ρ limit the argument of the in-
tegral goes as ∼ ρ4. However, in order to find the energetically favored
configuration, we are only interested in the difference between the energy
of two solutions, which is always finite. We then choose the energy of the
unconnected (ρ0 = 0) constant l = 0 solution, type 1, as the reference energy
(zero energy level), so that any other (finite) energy density can be defined
as ∆E(l; ρ0) = E(l; ρ0)−E(l = 0; ρ0 = 0). The solution of type 1 always has
a higher energy with respect to solutions 2, 3 and 4 and indeed it is always
unstable.

By means of numerical computations we obtain for the energy density
∆E of the solutions 2, 3 and 4, the behaviors depicted in Figure B.4. At
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Figure B.3: Brane separation L as a function of ρ0, which in this case represents the
distance from the Poincarè horizon reached by the brane. The blue line corresponds
to the connected solution (type 2) and the green line to the connected non constant
solution (type 4).

small separation, at variance with the D5-D̄5 case, the configuration which
is energetically favored is the Minkowski embedding disconnected solution.
At L = 1.1674 the constant connected becomes energetically favored with
a jump in energy. Then, up to L = 2.31 the constant connected solution
with an inter-layer condensate is preferred. For larger separation L > 2.31
the disconnected configuration is preferred and the condensation is in the
intra-layer channel.

The green lines in the figures show the value of the energy and separation
for the connected solution with non zero z(ρ) and l(ρ). These configurations
have both intra and inter layer condensates. As can be seen from Fig.5.8
they are never energetically favored.

B.3 Double monolayers with charge density

Now we consider the configurations with a charge density different from zero.
The equation of motion in this case is given by the most general equation
(B.18).
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Figure B.4: Regularized energy density ∆E as a function of the brane separation
L. The blue line corresponds to the connected solution (type 2), the red line to the
unconnected one (type 3) and the green line to the connected non constant solution
(type 4). All the solutions are regulated with respect to the constant unconnected
solution of type 1.

We look for solution with m = 0 in (B.8). We can distinguish four types
of solutions according to the classification of table B.2.

Type 1 solutions are trivial both in l and z (they are both constants).
They correspond to two parallel black hole (BH) embeddings for the D7
and the anti-D7. This configuration is the chiral symmetric one. In type 2
solutions the chiral symmetry is broken by the inter-layer condensate (ρ0 6=
0): In this case the branes have non flat profiles in the z direction. Solutions
of type 3 and 4 are the really non-trivial ones to find. Type 3 solutions have
non-zero expectation value of the intra-layer condensate and they can be only
black hole embeddings, this is the true difference with the zero charge case,
where this type of solutions were Minkowski embeddings, when the charge
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B.3. Double monolayers with charge density

ρ0 = 0 ρ0 6= 0

c = 0

Type 1 Type 2

unconnected, l = 0 connected, l = 0

BH, chiral symm. Mink, inter

c 6= 0

Type 3 Type 4

unconnected, ρ-dependent l connected, ρ-dependent l

BH, intra Mink, intra/inter

Table B.2: Types of possible solutions, where Mink stands for Minkowski embed-
dings and BH for black-hole embeddings.

density is non-zero only BH embeddings are allowed. A charge density on
the D7 world-volume is indeed provided by fundamental strings stretched
between the D7 and the Poincaré horizon. These strings have a tension that
is always greater than the D7-brane tension and thus they pull the D7 down
to the Poincaré horizon. For this reason when q 6= 0 the only disconnected
solutions we will look for are BH embedding.

Type 4 solutions break chiral symmetry in both the inter- and intra-layer
channel. For type 2 and 4 solutions the D7 and the anti-D7 world-volumes
have to join smoothly at a finite turning point ρ = ρt. These are indeed
connected solutions and of course they are Minkowski embeddings.

We now state what we have found, we will then provide support to our
statements.

1. The constant l = 0 disconnected solution ρ0 = 0, when a charge is
present, is stable, this can be shown by an analysis of the fluctuations
about it.

2. The constant l = 0 connected solution with ρ0 6= 0 joins at the point
ρt where z′(ρ) in (B.16) diverges. This is given by the real solution of

q2ρ4 +
(
ρ8 − ρ8

0

) (
ρ4 + 1

)
= 0 (B.26)
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which is

ρt =

1

6

 2 3
√

2
(
−3q2 + 3ρ8

0 + 1
)

3

√√
4
(
3q2 − 3ρ8

0 − 1
)3

+
(
9q2 + 18ρ8

0 − 2
)2

+ 9q2 + 18ρ8
0 − 2

+22/3 3

√√
4
(
3q2 − 3ρ8

0 − 1
)3

+
(
9q2 + 18ρ8

0 − 2
)2

+ 9q2 + 18ρ8
0 − 2− 2

)]1/4

(B.27)

as can be checked numerically for any value of q and ρ0.

For this solution the brane separation L, as a function of ρ0, has a
minimum and two branches, as for the blue line in the q = 0 case of
Fig.B.3, a branch where it decreases for increasing ρ0 and a branch
where it increases for increasing ρ0. Consequently the energy, mea-
sured with respect to the constant disconnected solution, has a form
similar to the one of the energy for q = 0, i.e. the blue line in Fig.B.4.

3. The BH-embedding solution, which is non-constant and has ρ0 = 0,
exists only for q < 0.038, as can be show by means of the shooting
technique described in the previous section.

4. The connected non-constant solution joins at the point ρt where z′(ρ)
in (B.16) diverges. This is given by the real solution of

l2
(
l2 + 2ρ2

) (
ρ8 + q2 − ρ8

0

)
+ q2ρ4 +

(
ρ8 − ρ8

0

) (
ρ4 + 1

)
= 0 (B.28)

which in turn depends on the solution l itself.

This solution exists only for small values of q. For ρ0 ' 0 we have
q < 0.038, when ρ0 grows, the allowed values of q decrease.

B.3.1 Fluctuations

The equation of motion for disconnected solutions with charge density is
given by (B.18) with ρ0 = 0, namely(

l2 + ρ2
) (
l2
(
l2 + 2ρ2

) (
ρ8 + q2

)
+ ρ12 + ρ8 + q2ρ4

)
l′′

+
((

2l2
(
3ρ2l2 + l4 + 3ρ4 + 1

)
+ 2ρ6 + ρ2

)
l′ + ρl

) (
l′2 + 1

)
= 0 (B.29)
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B.3. Double monolayers with charge density

Clearly l = 0 is a solution and fluctuations around it can be easily found by
writing l(ρ) = εδl(ρ) and expanding at the first order in ε. The equation for
δl(ρ) reads

2ρ3δl′ + 2ρ2δl + q2δl′′ = 0

whose general solution is

δl = a1 1F1

(
1

4
;
3

4
;− ρ4

2q2

)
+ a2ρ 1F1

(
1

2
;
5

4
;− ρ4

2q2

)
For small ρ this goes like

δl ' a1 − a1
ρ4

6q2
+ a2ρ+O

(
ρ5
)

Being all the power of ρ non negative integers, we only have normalizable
modes and this shows that the l = 0 solution becomes stable when there is
a charge density.

When ρ0 is non vanishing, i.e. when considering connected solutions
with a non trivial profile in the z direction, the equation for the fluctuations
around the l = 0 solution reads

−2δl
(
ρ8 − ρ8

0

)
−ρ
(
2
(
2ρ12 + ρ8 + ρ8

0

)
δl′ + ρδl′′

(
q2ρ4 +

(
ρ4 + 1

) (
ρ8 − ρ8

0

)))
= 0

Expanded around ρ0 it becomes

4
(
ρ4

0 + 1
)
ρ4

0

(
2(ρ− ρ0)δl′′ + δl′

)
+ 16ρ2

0δl(ρ− ρ0)− q2ρ0δl
′′ = 0

and this has a solution for ρ ' ρ0 of the form

δl = a1+a2(ρ−ρ0)+
2a2ρ

3
0

(
ρ4

0 + 1
)

(ρ− ρ0)2

q2
+

8ρ0(ρ− ρ0)3
(
a1q

2 + 3a2

(
ρ4

0 + 1
)2
ρ5

0

)
3q4

+O
(
(ρ− ρ0)4

)
in terms of integer powers of ρ−ρ0 and two moduli. The l = 0 connected

solution therefore is stable.

B.3.2 Black Hole embedding ρ dependent solution

The black hole embedding ρ-dependent profile is a solution of Eq.(B.29) and
it can be found by means of the usual shooting technique. The boundary
conditions that can be imposed for ρ→∞ are defined by the expansion in
(B.19) where the modulus c can be varied to match the solution coming from
ρ = 0. The latter can be obtained imposing boundary conditions derived
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B.3. Double monolayers with charge density

by expanding the solution around ρ ∼ 0 and demanding that l(ρ) → 0 for
ρ→ 0. The first terms of this expansion up to ρ17 are

l(ρ) =αρ− αρ5

5 (α2 + 1) q2
+
ρ9
(
−5α9q2 − 20α7q2 − 30α5q2 − 20α3q2 + 11α3 − 5αq2 + 8α

)
90 (α2 + 1)3 q4

+
ρ13
(
385α9q2 + 1450α7q2 + 2040α5q2 + 1270α3q2 − 343α3 + 295αq2 − 184α

)
3510 (α2 + 1)4 q6

+
ρ17α

5967000 (α2 + 1)7 q8

(
131625α18q4 + 1184625α16q4 + 4738500α14q4

+50α12q2
(
221130q2 − 20173

)
+ 50α10q2

(
331695q2 − 111499

)
+50α8q2

(
331695q2 − 255263

)
+ 25α6

(
442260q4 − 619044q2 + 21209

)
+25α4

(
189540q4 − 418766q2 + 50213

)
+ α2

(
1184625q4 − 3739750q2 + 931552

)
+25

(
5265q4 − 21994q2 + 8464

))
+O

(
ρ21
)

(B.30)

The expansion is written in terms of the modulus α which is the parameter
that can be varied to adjust the shooting technique.

A typical solution is presented in Fig.B.5, where it is clear that it reaches
the Poincarè horizon at l = ρ = 0 Some examples of the results of the

1 2 3 4 5
Ρ

0.05

0.10

0.15

lHΡL

Figure B.5: Black hole embedding solution for q = 1/100, it clearly reaches the
Poincarè horizon.

shooting technique are given in Figs.B.6, B.7, B.8 B.9.
It is quite clear from these graphs that the solution tends to disappear

increasing the charge q, we checked that for q > 0.0377 the curves coming
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Figure B.6: Shooting technique for q = 1/50
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Figure B.7: Shooting technique for q = 1/30

from infinity and from zero meet only at l(2) = l′(2) = 0, which corresponds
to the trivial chirally symmetric solution.

Energy of the ρ-dependent black hole embedding solution

We can now compute the energy of the ρ-dependent black hole embedding
solutions that we have found by varying the value of the charge. This is
given by the Routhian in (B.17) with ρ0 = 0, computed on the solutions
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Figure B.8: Shooting technique for q = 1/28
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Figure B.9: Shooting technique for q = 2/53 ' 0.0377

found numerically.

R =
S

N7
− q

∫
dρa′0(ρ)

=

∫
dρ

√
(1 + l′2) (l4 (ρ8 + q2) + 2l2ρ2 (ρ8 + q2) + q2ρ4 + (ρ4 + 1) ρ8)

l2 + ρ2

(B.31)
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Again this energy is divergent and has to be regulated by subtracting to it
the energy of the constant l = 0 disconnected solution with the same charge,
namely

∆E =

∫ ∞
0

dρ


√(

1 + l′2
) (
l4
(
ρ8 + q2

)
+ 2l2ρ2

(
ρ8 + q2

)
+ q2ρ4 +

(
ρ4 + 1

)
ρ8
)

l2 + ρ2
−
√
q2 +

(
ρ4 + 1

)
ρ4


(B.32)

This quantity is plotted in Fig.B.10 as a function of the charge q. It is clear
from this plot that the energy of the ρ-dependent black-hole embedding
solution is always lower then its ρ-independent counterpart. For q ' 0.0377
the two solutions actually merge, so that for higher values of the charge the
only existing solution is the chirally symmetric one.

0.005 0.010 0.015 0.020 0.025 0.030 0.035
q

-0.0025

-0.0020

-0.0015

-0.0010

-0.0005

DE

Figure B.10: Energy of the ρ-dependent black-hole embedding solution, red line,
measured with respect to the energy of the constant chirally symmetric solution,
blue line.

B.4 Connected solutions

When ρ0 in (5.13) is non zero there is a non trivial profile in the z direction
and it is possible to construct connected solutions even when there is a
charge density. In this case the inter-layer condensate is stable only when
the layers have charge densities of equal magnitude and opposite sign, so
that the total system is charge neutral.

According to the classification shown in table B.2 we can distinguish two
types of connected solutions, i.e. type 2 and type 4. Let us consider first
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B.4. Connected solutions

the type 2 solutions. These have a flat profile in the l direction, l = 0, and
thus for such solutions we can easily write the brane separation as

L = 2

∫ ∞
ρt

dρ
ρ4

0

(
ρ4 + 1

)
ρ2
√
q2ρ4 +

(
ρ8 − ρ8

0

)
(ρ4 + 1)

(B.33)

where ρt is given in (B.27).
Since we want the energy of the solution as a function of the layer sepa-

ration L and the charge q we need to perform a Legendre transform of the
action S only with respect to the charge, namely

Rq =
S

N7
− q

∫
dρa′0(ρ) =

∫
dρ

(
l2
(
l2 + 2ρ2

) (
ρ8 + q2

)
+ ρ4

(
ρ8 + ρ4 + q2

))
l2 + ρ2√

l′2 + 1

l2 (l2 + 2ρ2)
(
ρ8 + q2 − ρ8

0

)
+ q2ρ4 + (ρ4 + 1)

(
ρ8 − ρ8

0

) (B.34)

This needs to be regularized and we do it with respect to the constant
disconnected solution with the same charge. For the l = 0 solution then we
get

∆E =

∫ ∞
ρt

dρ

 ρ2
(
ρ8 + ρ4 + q2

)
√
q2ρ4 +

(
ρ4 + 1

) (
ρ8 − ρ80

) −√ρ8 + ρ4 + q2

− ∫ ρt
0

dρ

√
ρ8 + ρ4 + q2 (B.35)

There exist also a ρ-dependent connected solution that corresponds to
the existence of both intra-layers and inter-layers condensates. These are
non trivial solutions of the most general equation of motion (B.18) with the
additional condition that there must be a point ρt that solves the equation
(B.28) where z′(ρ) in (B.16) diverges. Thus to find this solution we impose
the boundary condition that l is at ρt a solution of (B.28), namely it is given
by

l(ρt) =

√√√√√ ρ8
0 − ρ8

t

q2 − ρ8
0 + ρ8

t

− ρ2
t (B.36)

ρt has a maximum value that is given by (B.27), namely it is reached when
l = 0, i.e. for the constant connected solution. Then we can get the boundary
condition on the first derivative of l, l′, computing the equation of motion
at ρt and using (B.36) to get the value of l at ρt. This reads

l′(ρt) =

(
ρ8
t − ρ8

0

)√√ q2

q2−ρ8
0+ρ8

t
− 1− ρ2

t

2q2ρ7
t

√
ρ8

0−ρ8
t

(q2−ρ8
0+ρ8

t )
3/2 + ρ8

0ρt − ρ9
t

(B.37)
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Then these boundary conditions can be used to apply the shooting technique
by varying the parameter ρt in order to match the solution coming from
infinity, where the value of the chiral condensate (c in (B.19)) is the modulus
that must be varied to obtain the matching.

Solutions of this type exist only for small charges q < 0.0377 exactly
the same value we found as a threshold for the existence of the black-hole
embedding solution. When the charge decrease the range of values of ρ0 for
which the solution exists, increases.

The brane separation L for this solution is defined by twice the integral
of z′ in (B.16)

L = 2

∫ ∞
ρt

dρ
ρ4

0

(
l4 + 2l2ρ2 + ρ4 + 1

)√
1 + l′2

(l2 + ρ2)
√
l2 (l2 + 2ρ2)

(
ρ8 + q2 − ρ8

0

)
+ q2ρ4 +

(
ρ8 − ρ8

0

)
(ρ4 + 1)

(B.38)
The energy is given by (B.34) computed on the solution and again we regu-
larize it by subtracting the contribution of the constant disconnected solu-
tion with the same charge.

Figure B.11 shows the behavior of the brane separation as a function of
the parameter ρ0 for both type 2 and type 4 solutions when the charge is
fixed to q = 0.001. The solution of type 2 has two branches as in the zero
charge case. The solution of type 4 instead as a different behavior compared
to the neutral case. Analogous figures can be obtained for different values of
the charge, provided q < 0.0377, increasing the charge the growing branch
in the green solution becomes smaller and the range of allowed ρ0 for this
solution decreases.

The energy of the connected solutions can be compared to that of the
corresponding black-hole solution with the same charge. The q = 0.001 case
is represented in Fig.B.12 and B.13 where the region around the transition
point is enhanced.

From Fig.B.13 it is clear that for L < 1.16 the lowest energy solution
is the black-hole embedding one with only an inter-layer condensate, at
L = 1.16 there is a jump in energy to the constant connected which has
only an inter-layer condensate and for L > 2.2 the energetically favored
solution becomes the connected ρ-dependent with both inter and intra layer
condensates.

We finally have performed this analysis also for other charges and this
has allowed us to finally draw the the phase diagram in chapter 6.
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Figure B.11: Brane separation as a function of ρ0. The blue line is obtained from
the constant solution, the green line from the ρ-dependent one.
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Figure B.12: Energy as a function of L. The blue line is obtained from the constant
solution, the green line from the ρ-dependent one and the red line the black hole
embedding solution with the same charge q = 0.001.
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Figure B.13: Close around the transition point in Fig. B.12
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Appendix C

BKT Quantum Phase
Transition

This chapter is the review of the part of the paper [102] about BKT transi-
tion. We will start from the Lagrangian, the equation (2.10).

L̃ ∼ L− ∂L

∂a′0
a′0 −

∂L

∂z′
z′, (C.1)

where ′ = d
dr .

u ≡
√
r2 + l(r)2

The equation of motion with respect to z(r) is :

∂L̃

∂z′
=

√
(r4 + f2u4)(1 + H2

u4 ) + d2

√
1 + l′2 + u4z′2

u4z′ + fu4 (C.2)

=

(√(r4 + f2u4)(1 + H2

u4 ) + d2

√
1 + l′2 + u4z′2

z′ + f

)
u4 = const. ≡ C (C.3)

z′2 =
(1 + l′2)(C − fu4)2

u4

(
u4((r4 + f2u4)(1 + H2

u4 ) + d2)− (C − fu4)2

) (C.4)

z′ =
(C − fu4)

√
1 + l′2

u2
√
u4((r4 + f2u4)(1 + H2

u4 ) + d2)− (C − fu4)2
(C.5)

L̃ =
√

1 + l′2

√
(r4 + f2u4)(1 +

H2

u4
) + d2 − (C − fu4)2

u4
(C.6)

C should be zero, because of regularity at r = 0 and r =∞. Then,

L̃ =
√

1 + l′2

√
r4(1 +

H2

u4
) + f2H2 + d2 (C.7)
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Without Wess-Zumino (WZ) term, the Lagrangian was:

L̃′ =
√

1 + l′2

√
(r4 + f2u4)(1 +

H2

u4
) + d2 (C.8)

As the result of [103] , it gives

m2 = − 2H2

d2 +H2 +H2f2
(C.9)

at at IR, r � 1, and BF bound is violated as

d2

H2
+ f2 < 7 (C.10)

By this result, even for d = 0, violation condition is provided. We compare
this with our Rauthian with the WZ term. The Lagrangian up to quadratic
order of l(r),

L ∼ −
√
r4 + d2 +H2(1 + f2)

l′2

2
+

H2√
r4 + d2 +H2(1 + f2)

l2

r2
. (C.11)

The equation of motion is:

0 = ∂r(
√
r4 + d2 +H2(1 + f2)l′) +

H2√
r4 + d2 +H2(1 + f2)

2l

r2

=
√
r4 + d2 +H2(1 + f2)l′′+

2r3l′√
r4 + d2 +H2(1 + f2)

+
H2√

r4 + d2 +H2(1 + f2)

2l

r2

We are interested in IR, r � 1. Then the equation of motion is:

√
d2 +H2(1 + f2)l′′ +

H2√
d2 +H2(1 + f2)

2l

r2
= 0 (C.12)

l′′ +
2H2

d2 +H2(1 + f2)

l

r2
= 0 (C.13)

This equation of motion gives the result of [103] without WZ term. For the
deeper understanding, let us confirm the result without WZ term.

L ∼ −
√

1 + l′2

√
(r4 + f2u4)(1 +

H2

u4
) + d2 (C.14)
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Expand up to quadratic order of l(r),

L ∼ −(1 +
l′2

2
)

(
(1 + f2)(r4 +H2) + d2 + 2l2(f2r2 − H2

r2
)

)1/2

(C.15)

L ∼ −
√

(1 + f2)(r4 +H2) + d2
l′2

2
− (f2r2 −H2/r2)l2√

(1 + f2)(r4 +H2) + d2
. (C.16)

Let us check it carefully with the equation of motion. The equation of
motion is:

0 = ∂r(
√

(1 + f2)(r4 +H2) + d2l′)− 2(f2r2 −H2/r2)l√
(1 + f2)(r4 +H2) + d2

=
√

(1 + f2)(r4 +H2) + d2l′′+
2(1 + f2)r3l′√

(1 + f2)(r4 +H2) + d2
− 2(f2r2 −H2/r2)l√

(1 + f2)(r4 +H2) + d2

The same result as above is obtained at IR.

√
d2 +H2(1 + f2)l′′ +

H2√
d2 +H2(1 + f2)

2l

r2
= 0 (C.17)

On the other hand, UV limited case presents different results between
with or without WZ term. Without WZ, if r � 1, the equation of motion
is: √

1 + f2r2l′′ + 2
√

1 + f2rl′ − 2f2l√
1 + f2

= 0 (C.18)

√
1 + f2rl′′ + 2

√
1 + f2l′ − 2f2√

1 + f2

l

r
= 0 (C.19)

(�AdSp+2 −m2)
l

r
=

1√
−g

∂µg
µν√−g∂ν

l

r
−m2 l

r
=

1

rp
∂rr

p+2∂r(
l

r
)−m2 l

r

= rl′′ + pl′ − p

r
l −m2 l

r
= 0 (C.20)

29

29We will explain in more detail in the later section
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Thus, for p = 2, The mass of this scalar particle, l/r on AdS4 is:

m2 = −2 +
2f2

1 + f2
=
−2

1 + f2
≥ −2 (C.21)

The mass varies by changing S2 flux, but is larger than -2, which never
violates the Breitenlohner-Freedman (BF) bound. With WZ, it is simpler
and m2 = −2 as f = 0.

To check C = 0 case, consider the blackhole embedding at finite temper-
ature.

ds2
D5 =

w2

L2
(−gtdt2 + gxdx

2 + gxdy
2) +

L2

w2
(dρ2 + ρ2dΩ2

2 + dl2 + l2ρ2dΩ̃2
2)

where

gt :=
(w4 − w4

0)2

2w4(w4 + w4
0)
, gx :=

w4 + w4
0

2w4
, (C.22)

We required this modified metric to keep SO(3) × SO(3) isometry. With
profiling ansatz, l := l(r), z := z(r) and dΩ̃ = 0,

ds2
D5 =

w2

L2
(−gtdt2+gxdx

2+gxdy
2)+(

L2

w2
+
L2l′(ρ)2

w2
+
w2

L2
z′(ρ)2)dρ2+

L2ρ2

w2
dΩ2

2

w2 = ρ2 + l2,

L = LWZ + LDBI

∼ −f(
w4 + w4

0

w2
)
2
z
′ − (1−

w4
0

w4
)
√

1 + l′2 + (w4 + w4
0)z′2

√√√√(ρ4 + f2w4)(
1

w4 + w4
0

+
w4 + w4

0

w4
) +

w4

w4 + w4
0

d2

The equation of motion with respect to cyclic z, ∂z′L = const.

−f(
w4 + w4

0

w2
)
2 − (1−

w4
0

w4
)

√√√√(ρ4 + f2w4)(
1

w4 + w4
0

+
w4 + w4

0

w4
) +

w4

w4 + w4
0

d2
(w4 + w4

0)z′√
1 + l′2 + (w4 + w4

0)z′2

= const. = −4w4
0f

The consistent constant at the horizon is −4w4
0f , thus

z′ = −f(
w4 − w4

0

w2
)2

√√√√ 1 + l′2

(1− w4
0

w4 )b(w4 + w4
0)2 − f2(w4 + w4

0)(
w4−w4

0
w2 )4

b := (ρ4 + f2w4)(
1

w4 + w4
0

+
w4 + w4

0

w4
) +

w4

w4 + w4
0

d2
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Now take w0 = 0, then above constant C = 0, and z′ is the same as above
zero temperature case.

Consider f 6= 0(f > 0), H 6= 0. The Lagrangian is:

L ∼ −
√

1 +
H2

u4

√
r4 + f2u4

√
1 + l′2 + u4z′2 − fu4z′ (C.23)

The equation of motion with respect to l(r), ∂r(
∂L
∂l′ ) = ∂L

∂l is following. We
plugged z′ by using the equation for C = 0 into the equation of motion of
l(r).

∂r(
√
r4 + f2u4

√
1 +

H2

u4
l′√

1 + l′2 + u4z′2
) = 2u2l

(
(r4+f2u4)(−H

2

u8
)

√
1 + l′2

r4 +H2(f2 + r4

u4 )

+

√
1 + l′2

r4 +H2(f2 + r4

u4 )
f2(1 +

H2

u4
) +

√
r4 +H2(f2 + r4

u4 )

1 + l′2
f2(

1 + l′2

r4 +H2(f2 + r4

u4 )
)

−2f2

√
1 + l′2

r4 +H2(f2 + r4

u4 )
= −2r4l

u6
H2

√
1 + l′2

r4 +H2(f2 + r4

u4 )
< 0

WZ term is generic if we consider S2 flux, and it cancels the attractive
effect from DBI term. If H = 0, the Chern-Simons (CS) term cancels all
nonzero forces by flux term. For H 6= 0, it also vanishes all attraction by
flux.

Let us start with d 6= 0, H 6= 0 and l = l(r). Then the rescaled and
Legendre transformed Lagrangian is:

L ∼ −
√

1 + l′2

√
r4(1 +

1

(r2 + l2)2
) + d2, (C.24)

and it can be expanded up to the quadratic order as

L ∼ 1

2

√
1 + r4 + d2l′2 − l2

r2
√

1 + r4 + d2
(C.25)

The equation of motion is:

∂r(
√

1 + r4 + d2l′) +
2l

r2
√

1 + r4 + d2
= 0 (C.26)
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√
1 + r4 + d2l′′ +

2r3l′√
1 + r4 + d2

+
2l

r2
√

1 + r4 + d2
= 0 (C.27)

For AdS metric, the mass opeartor with scalar field is defined as:

�AdSp+2φ =
1√
−g

∂µg
µν√−g∂νφ = r2∂2

r + (p+ 2)r∂rφ+ . . . (C.28)

At r � 1, the equation of motion (45) is:

r2l′′ + 2rl′ +
2l

r4
= r2l′′ + 2rl′ + O(

1

r4
) = 0, (C.29)

and it is the same as the equation of motion of the AdS4 scalar field l
r .

(�AdSp+2 −m2)
l

r
=

1√
−g

∂µg
µν√−g∂ν

l

r
−m2 l

r
=

1

rp
∂rr

p+2∂r(
l

r
)−m2 l

r

= rl′′ + pl′ − p

r
l −m2 l

r
= 0

For p = 2, and m2 = −2 both equations correspond. At r � 1, the equation
of motion is:

l′′ +
2r3l′

1 + d2
+

2

1 + d2

l

r2
= 0, (C.30)

and it corresponds to the equation of motion for p = 0, and m2 = − 2
1+d2 .

To see the critical phenomena, let us see the solution of the equation of
motion with CS term.

l(r) ∼ c+g+ + c−g− (C.31)

ν =
d

H
√

1 + f2
; d2 +H2(1 + f2) = H2(1 + f2)(1 + ν2)

g± = (H2(1+f2)(1+ν2))
− 1

8 (1∓
√
−7+ν2+f2(1+ν2)

(1+f2)(1+ν2)
)
r

1
2 (1∓

√
−7+ν2+f2(1+ν2)

(1+f2)(1+ν2)
)

2F1[x±, y±, z±, w]

x± =
1

8
(1∓

√
−7 + ν2 + f2(1 + ν2)

(1 + f2)(1 + ν2)
)

y± =
1

8
(3∓

√
−7 + ν2 + f2(1 + ν2)

(1 + f2)(1 + ν2)
)
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z± = 1∓ 1

4

√
−7 + ν2 + f2(1 + ν2)

(1 + f2)(1 + ν2)

w = − r4

H2(1 + f2)(1 + ν2)

It seems more appropriate than the Rauthian without CS in [103].

α =

√
d2c − d2

H2(1 + f2)(1 + ν2)
; dc = H

√
7− f2; δ = (

1

H2(1 + f2)(1 + ν2)
)1/4; u = δr

Using the convention of [103], our g± is:

g± = u
1±α

2 2F1[
1± iα

8
,
3± iα

8
, 1± iα

4
,−u4] (C.32)
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