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Abstract

The distribution of the gluon action density in mesonic systems is investigated at
finite temperature. The simulations are performed in pure SU(3) Yang-Mills gauge
theory for two temperatures below the deconfinement phase. The action-density
isosurfaces display a prolate-spheroid-like shape. The curved width profile of the
flux tube is found to be consistent with the prediction of the free bosonic string
model at large distances.

In the intermediate source separation distance, where the free string picture
poorly describes the flux tube width profile, we find the topological characteristics
of the flux tube converge and compare favourably with the predictions of the free
bosonic string upon reducing the vacuum action towards the classical instanton
vacuum. As a byproduct of these calculations, we find the broadening of the QCD
flux tube to be independent of the UV filtering at large distances. Our results exhibit
a linearly divergent pattern in agreement with the string picture predictions.

We investigate the overlap of the ground state meson potential with sets of
mesonic-trial wave functions. We construct trial states with non-uniform smearing
profiles in the Wilson loop operator at T = 0. The non-uniformly UV-regulated
flux-tube operators are found to optimize the overlap with the ground state.

The gluon flux distribution of a static three quark system has been revealed
at temperatures near the end of the QCD plateau, T/Tc ≈ 0.8, and another just
before the deconfinement point, T/Tc ≈ 0.9. The flux distributions at short dis-
tance separations between the quarks display an action-density profile consistent
with a rounded filled ∆ shape iso-surface. However the ∆ shape action iso-surface
distributions are found to persist even at large inter-quark separations. The action
density distribution in the quark plane exhibits a nonuniform pattern for all quark
separations considered. We systematically measure and compare the main aspects
of the profile of the flux distribution at the two considered temperature scales for
three sets of isosceles triangle quark configurations. The radii, amplitudes and rate
of change of the width of the flux distribution are found to reverse their behavior
as the temperature increases from the end of the QCD plateau towards the decon-
finement point. Remarkably, we find the mean square width of the flux distribution
shrinks and localizes for quark separations larger than 1.0 fm at T/Tc ≈ 0.8 which
results in an identifiable Y-shaped radius profile. Near the deconfinement point, the
action-density delocalizes and the width broadens linearly with the quark separation
at large quark separations.

We present a method to include the thermal effects into the junction width of the
baryonic string model. The profile of the baryonic gluonic distribution is compared
with the width of the string picture’s junction fluctuations. The comparison reveals
that the best fits to the junction fluctuations of the baryonic string are near the
Fermat point of the triangle made up by the quarks. This result supports the
underlying picture of Y-shaped string-like flux tubes connected at a junction.



Chapter 1

Quantum Chromodynamics

Quantum chromodynamics (QCD) is the current proposed theory of the strong in-
teractions. The strong force binds the quarks and gluons and is responsible for the
formation of hadrons such as protons and neutrons. The strong interaction mediates
the interactions between the hadrons themselves and is the fundamental force that
dominates the atomic nuclei. Although quarks and gluons have not been observed
as free states, an immense bulk of experimental data supports QCD as the true
theory of strong interactions. QCD is a nonlinear gauge theory that is practically
analytically unsolvable. A perturbative expansion gives accurate predictions in the
quantum field theory of QED which describes a much weaker force. Perturbative ex-
pansions, however, are constrained to short distance predictions in the case of strong
interactions. This has led to the introduction of non-perturbative approximations
that are based on discretising four-dimensional space-time into a lattice of points,
giving rise to the theory called lattice QCD, which can be simulated on computers.
Lattice QCD provides a first principles approach for determining the properties of
QCD. Alternative popular approaches to lattice QCD are the light-front formulation
of QCD [6, 7, 8, 9] and Schwinger-Dyson equations [10, 11, 12, 13] which are usually
employed in constructing QCD-based quark models.

The concept of colour arose during the phenomenological studies of the rapidly
growing abundance of newly discovered elementary particles in particle accelerators.
Gell Man and Zweig [14] found that the known hadrons can be grouped into octets
and decuplets representing multiplets of the SU(3) group. The Gell-Man [15] clas-
sification for hadrons resulted in non-trivial predictions which have been confirmed
experimentally, such as the prediction of the Ω− hyperon. This discovery happened
in a way reminiscent of the discovery of missing elements which filled out cells in
Mendeleev’s table.

Although in experiments we observe octets and decuplets, the particles belonging
to the fundamental representation of SU(3) and its conjugate (triplets and anti-
triplets) have not been observed in asymptotic states. These fundamental particles
have been called quarks. The existence of the quarks can be inferred based on purely
algebraic results of tensor products of several representations: 3 ⊗ 3̄ = 8 + 1 and
3⊗3⊗3 = 10+8+8+1. This leads to mesons which are bound states of a quark and
anti-quark, while baryons consist of three quarks. In the constituent quark model,
hadrons are formed as a bound state of quarks in a similar manner as the nuclei are
composed of nucleons.

14
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In order to explain the electric charges and other quantum numbers of the ob-
served hadrons, Gell-Man and Zweig postulated [14, 15] the existence of three dis-
tinct species (called flavours) of quarks: the up (u), down (d) and the strange (s)
quarks. In fact, the discovery of additional hadrons confirmed the existence of an-
other three flavours corresponding to new quantum numbers: charm(c), bottom(b)
and top(t). The fractional electric charges are then ascribed to the quarks eu = ec =
et = 2/3, ed = es = eb = −1/3. Spin S = −1 for the strange quark isospin=0, S = 0
and isospin=1/2 for up (u) and down (d) quarks.

Despite the phenomenological success of the flavour symmetry in classifying the
spectrum of elementary particles, the dynamics that binds the quarks could not
be explained within the framework of this symmetry. Apart from that, two main
difficulties in the constituent quark model were far from being resolved. The first
difficulty is that quarks do not exist in nature as free asymptotic states. The second,
on the other hand, has to do with the observation of bound states such as the ∆++-
isobar which according to the Pauli exclusion principle should not exist. According
to the constituent quark model this particular bound state consists of three u quarks
in S wave with the same spin orientation.

To restore the Pauli principle, the quark of each flavour (u, d, and s) has to occur
naturally in three colour forms. Thus, on top of the approximate SU(3) flavour
symmetry, there exists an exact SU(3) colour symmetry. The wave functions of
the baryons are in anti-symmetric form ǫijkqiqjqk (i, j, k = 1, 2, 3 are the colour
indices).

The field theory that encompasses the ideas of QCD is Yang-Mills theory [16, 17].
In this theory, the principle of local gauge invariance [18, 19, 20, 21] is generalized
to the non-Abelian gauge group [22, 23]. For the electromagnetic interaction, local
gauge invariance is the underlying principle for the observed electromagnetic dy-
namics in which the intermediate interaction proceeds via the exchange of massless
vector bosons (photons). The extension of the principle of local gauge invariance to
weak and strong interactions has encountered a remarkable success in constructing a
renormalizable quantum gauge field theory [24] free of the Landau-pole problem [25].
The strong interactions proceed via the exchange of massless vector particles “called
gluons” between the quarks. The gluons belong to the octet representation of the
SU(3) colour group and are self-interacting.

A full-fledged quantum field theory now exists that describes electromagnetic
(EM) weak and strong forces between elementary particles, the standard model (SM)
of particle physics. The SM, generalized for massive neutrinos, is in good agreement
with the current experimental tests. Quantum chromodynamics (the gauge field
theory that describes the strong interactions of coloured quarks and gluons) is the
SU(3) component of the SU(3)×SU(2)×U(1) standard model of particle physics.
The QCD lagrangian [17] is given by

LQCD =
∑

q

ψ̄q,a(iγ
µ∂µδab − gsγ

µtCabA
C
µ − mqδab)ψq,b −

1

4
FA

µνF
Aµν . (1.0.1)

The γµ are the Dirac γ-matrices. The ψq,a are quark-field spinors for a quark of
flavour q and mass mq, with a colour-index a that runs from a = 1 to a = Nc = 3
since the quarks come in three colours. Quarks are said to be in the fundamental
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representation of SU(3) colour group. The AC
µ corresponds to the gluon fields with

C running from 1 to N2
c − 1, thus there are eight kinds of gluon. Gluons are said to

be in the adjoint representation of SU(3) colour group. The tCab correspond to eight
3 × 3 matrices and are the generators of the SU(3) group. The gluon interactions
thus rotate the quark’s colour in SU(3) space. The quantity gs is the QCD coupling.
The field strength tensor FA

µν is given by

FA
µν = ∂µA

A
ν − ∂µA

A
µ − gsfABCAB

µ AC
ν , (1.0.2)

where the fABC are the structure constants of the SU(3) group. The fundamental
parameters of QCD are the coupling gs and the quark masses mq.

The calculations of the charge renormalization of this gauge theory indicated [26,
27] that the effective charge does not grow with momentum but rather decreases.
The decrease of the strength of coupling by decreasing the separation distance be-
tween quarks is a peculiar property of QCD that is referred to as asymptotic free-
dom. In the scale of small length, the quarks and gluons interact weakly and can
be considered as nearly free. The immediate consequence of this property is that
it is possible to perform perturbative calculations of the observables for phenom-
ena governed by small separation distances. The perturbative calculations of QCD
successfully accounts for the scaling violation [28, 29, 30] observed in deep inelas-
tic scattering between leptons and nucleons. However, in the infrared (IR) region
of the theory, the coupling is strong. The large value of the coupling renders the
perturbative calculations ineffective.

The two different regions of QCD are described by the running of the coupling.
This means that the coupling constant is a function of the length or momentum
scale. The renormalized coupling constant [31] is a scale dependent quantity with
the one-loop value given by

αs(k
2) =

αs(q
2)

1 + αs(q2)
(33−2 nf )

12π
ln(k2

q2 )
. (1.0.3)

The fine structure αs is related to the coupling as

αs(k
2) =

g2(k2)

4π
. (1.0.4)

Similarly, αs(q
2) is related to the coupling defined at the scale q2, and the two

parameters(αs and q2) are not independent from each other. However, the runing
coupling can be fixed for all momentum transfers by one parameter, with a relation
between the scale q2 and introduced scale ΛQCD such that

αs(q
2) =

12 π

(33 − 2 nf ) ln( −q2

Λ2
QCD

)
. (1.0.5)

The exact value of ΛQCD may be determined from experiment.
The fundamental property of the IR region of the QCD vacuum is that it confines

quarks. Quark confinement is a terminology which describes the fact that quarks
have never been observed in a free state in Nature. If one of the quarks in a given
hadron is pulled away from its neighbors, the colour-force field stretches between that
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quark and its neighbours. This causes a dramatic increase in the system’s energy.
This does not proceed to infinity. At a certain point the energy is high enough to
produce the mass of new quark pairs that are again assembled into confined states.

Confinement is a large distance phenomenon in which the perturbative approach
no longer gives precise calculations. Wilson [32] was the first to show that QCD
calculations can be made nonperturbatively by reformulating the theory on a lat-
tice instead of the whole continuous space-time and employing numerical methods.
Although numerical simulations of lattice gauge theory have confirmed [32] quark
confinement, neither a derivation of quark confinement from first principles has been
found, nor has any proposed scenario or mechanism of confinement generally been
accepted.

The confinement mechanism of quarks is still an outstanding problem in QCD.
There are many mechanisms that address the confinement of quarks via a spe-
cial class of gauge configurations such as instantons [33], merons [34, 35], abelian
monopoles [36], centre vortices [37], and dyons [38]. These topological objects dom-
inate the QCD vacuum in the infrared region and may play an important role in the
confinement mechanism, giving rise to a linearly rising potential. Technically, this
should correspond to a Wilson loop area law or exponential decay of Polyakov loop
correlators. The advent of new algorithms and lattice techniques made it possible
to study these objects and therefore directly scrutinize the proposed confinement
mechanism for each of these topological excitations.

Instantons [39] are topologically nontrivial solutions of the Yang-Mills equations
that absolutely minimize the energy functional. Instantons describe the quantum
tunnelling between degenerate vacuums in gauge theories, and can cause confinement
of the charges [40]. The instanton is believed to be composed of two merons. It can
be also shown [41, 42] that effective theories based on ensembles of merons can
produce confinement.

Dyons are gluon field configurations with asymptotic Coulomb-like chromo-electric
and magnetic fields, and are saddle points of the Yang-Mills partition function at
T 6= 0. In this mechanism, an ensemble of dyons, in particular the dual (magnetic)
gluons, will constitute a plasma which acquires a Debye mass. This will give rise to
an exponential decay of the Polyakov line correlations, or in other words, a linearly
rising potential [43, 44].

The maximal centre projected QCD is to perform a gauge-fixing condition that
preserves the centre symmetry of the gauge group. The centre vortices are the
topological objects that carry the centre of the group as a charge. Lattice simulations
show that these objects are linked to the so-called string tension and hence the
linearly rising potential between quarks. This is based on the observation that
the string tension vanished upon removal of centre vortices [45]. This phenomenon
is usually called centre dominance. Also, the suppression of these objects in the
deconfinement phase [46] supports the important role played by theses objects in
the confinement mechanism.

The dual superconductor model [47] is a scenario speculated in the 70s [47, 48,
49, 50, 51, 52] to conceive the phenomena of quark confinement in terms of the
dual theory of superconductivity in electromagnetism. The theoretical framework
of the theory of dual superconductivity is described by the dual Landau-Ginzburg
model [53] (equivalent to and sometimes called the dual Abelian Higgs model [54]).
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In the dual superconductor the role of electric and magnetic fields are exchanged.
The confinement mechanism in the dual superconductivity picture of the QCD vac-
uum [55, 56, 57, 58] proceeds in the same manner as the condensation of elec-
tric charges to Cooper pairs gives rise to superconductivity. In dual superconduc-
tors, the confinement mechanism is realized through the condensation of magnetic
monopoles [59] by the dual Meissner effect. The magnetic field lines are squeezed
into flux tubes by virtue of this effect. The quark–antiquark potential will linearly
rise since the energy contained in the tube is proportional to its length. According
to this picture, the quark-antiquark pair are doomed to be confined in a bound state.

In a similar fashion to the maximal centre gauge fixing, an abelian projection
to QCD [60] can be performed by gauge-fixing to the maximal abelian torus group.
Then QCD becomes a U(1)×U(1) abelian gauge theory with magnetic monopoles.
This idea is based essentially on the superconductivity scenario of confinement where
’tHooft conjectured [60] that the condensation of these abelian monopoles provides
the confinement mechanism in QCD. Lattice studies [61] show that the large distance
physics of QCD is contained in the abelian projected theory, in what is known as
abelian dominance at large distances.

Another model inspired from the superconductivity property of the QCD vac-
uum, which squeezes the colour field into a thin stringlike object, is the effective
string picture. This picture is expected to provide a good physical description of
confining gauge theories in the low energy regime. In this picture the two confined
colour charges are joined by a thin flux tube that fluctuates like a vibrating string.
The dynamics of the string’s worldsheet dynamics can be described based on an
effective action. In this effective description, quantitative predictions about the po-
tential between a confined quark-antiquark pair can be derived. These predictions
have remained speculative for a long period of time. However, recent precise lattice
simulations have measured [62, 63, 64, 65, 66] the properties of the static quark–
antiquark potential to a sub-leading order, and confirmed properties related to the
stringlike behaviour [67] of the QCD flux tube.

In addition to quark confinement, QCD exhibits another property which is chi-
ral symmetry breaking [68, 69, 70, 71, 72]. The QCD Lagrangian with Nf massless
flavours is known to possess a global symmetry under UR(Nf )×UL(Nf ), independent
rotations of left- and right-handed quark fields. This symmetry is called “chiral”.
Chiral transformations involve rotations of Weyl spinors as well as axial UA(Nf )
and vector UV (Nf ) rotations of the whole 4 component Dirac spinors. The UA(Nf )
mixes states with different parities; nevertheless, the experimental value of mass
splitting in the vector ρ and axial a1 meson for example is as large as 400 MeV. The
chiral symmetry of the QCD lagrangian is broken down spontaneously. According
to Goldstone’s theorem [73] this entails the existence of light (pseudo) Goldstone
pseudo-scalar hadrons. The lightest known hadrons to play this role are the pions.
The order parameter associated with chiral symmetry breaking is the so-called chiral
or quark condensate 〈ψ̄ψ〉. As a composite operator, the symmetry is said to be dy-
namically broken. The condensate defines a quark Green function taken at one point
which corresponds to a closed quark loop in momentum space. Chiral symmetry
breaking implies that massless quarks develop a non-zero dynamical mass [74].

The two main characteristics of the QCD vacuum are the confinement of quarks
and chiral symmetry breaking. Lattice studies [75, 76, 77, 78], however, have shown
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that for sufficiently high temperature, the low temperature hadronic phase of QCD
turns into a high temperature quark-gluon-plasma phase [79] in which quarks are
liberated and chiral symmetry is restored [80].

Among these features, an important and not yet fully understood property of
the confining flux-tubes concerns their thermal behaviour in the IR region. Lattice
simulations have indicated a decrease in the slope of the linearly rising potential
between a pair of colour sources with the increase in the temperature [81]. A natural
and fundamental question to QCD and confinement is what happens to the flux
tubes just before the deconfinement point? In fact the profiles of the flux tube for
temperatures close to the deconfinement point are unknown. The major goal in this
work is to reveal, based on first principles lattice QCD calculations, the profile of the
confining flux tube in mesonic and baryonic systems. The obtained results of the
gluonic distributions are then explained in the context of their stringlike behaviour.

The organization of this work is as follows. Chapter 2 will be devoted to a
brief introduction to lattice gauge theory (LGT) and the corresponding simulation
techniques. In Chapter 3, two approaches to reveal the colour field between colour
charges, i.e. the Wilson loop operator and Polyakov lines, are discussed. This chap-
ter also contains the basic principles of the lattice formulation of finite temperature
field theory. The predictions of the bosonic string model for the changes with the
temperature of the profile of the flux-tubes for both mesonic and baryonic systems
are reviewed in Chapter 4. The thermal effects are included in the baryonic string
model predictions. In Chapter 5, we introduce various noise reduction techniques
for the Polyakov line correlators and show to what extent every technique is suitable
and valid in extracting the correct physics.

In Chapter 6 and eventually Chapter 9, we present and discuss our finite tem-
perature results on various profiles of the flux-tube for the meson and the baryon,
respectively. The profile of the flux-tube at finite temperature is compared to the
predictions of the free bosonic string model. In Chapter 7, the role played by the
UV physics in the behaviour of the flux-tube is revealed and compared with the
bosonic string picture predictions. In Chapter 8, the zero temperature regime is
probed by using flux-tube profiles discovered at finite temperature at the end of
the QCD plateau where the action density profile is non-uniform. The flux-tube is
constructed by means of local smearing operators in the Wilson loop operator. The
overlap with the ground state for these trial states is measured. Finally in Chapter
10, a brief summary is provided.



Chapter 2

Lattice Gauge Theory

2.1 Outline

The basic ideas of lattice gauge theory are briefly reviewed in this chapter. In
addition to this, we discuss algorithms for generating a sequence of configurations
distributed according to a Boltzmann probability distribution governed by the SU(3)
Yang-Mills action which are used to measure the relevant observables in the the-
ory. We first describe an algorithm which is generally applicable to any system,
namely, the Metropolis algorithm. Then we describe the Hybrid heat bath/overre-
laxation algorithm which is an efficient scheme for generating Markov chains, and
is particularly suitable for pure non-Abelian gauge configuration generation.

2.2 Introduction

Lattice gauge theory [82, 83] is a framework to reduce the infinite number of degrees
of freedom of a quantum field theory to a finite number. In the lattice formulation,
the continuous space-time is replaced by a discrete mesh of points. The lattice has
a finite size in its total extent. The lattice spacing introduces a natural ultraviolet
regularization which preserves gauge-invariance. Lorentz invariance, nevertheless, is
destroyed by lattice discretisation. In the continuum limit, relativistic invariance is
restored and the renormalised quantities approach finite limits. The choice of the
lattice parameters in numerical simulations is based on a skilful and economic choice
between having a reasonably small lattice spacing and a large volume.

2.3 Path integral formulation

A field theory is solveable once all the relevant Green functions of the theory are
computed. The path integral formulation provides an elegant representation of green
functions,

〈Ω|φ1(x1)φ2(x2) · · · |Ω〉 =
1

Z

∫
[dφ] eiS[φ] φ1(x1)φ2(x2) · · · , (2.3.1)
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for generic fields (operators) φ, with

Z =

∫
[dφ] eiS[φ]. (2.3.2)

In order to carry out numerical techniques to extract the physical observables
from the field theory given by the representation Eq. (2.3.1), the integral in Minkowski
space has to be analytically continued to imaginary time (Euclidean space)

t −→ −it, (2.3.3)

iS[φ] −→ −S[φ]. (2.3.4)

The Euclidean path integral formulation allows application of techniques of sta-
tistical mechanics to the quantum fields on the lattice. The numerical evaluation
can be done by the use of Monte Carlo methods by importance sampling of the equi-
librium configurations of the classical fields corresponding to configurations chosen
with the probability

P (φ) =
1

ZE

e−SE [φ]. (2.3.5)

The evaluation of the path integral is then a sum over the equilibrium configu-
rations

〈Ω〈|φ1(x1)φ2(x2) · · · |Ω〉 ≈ 1

N

∑

N

φ1(x1)φ2(x2) · · · . (2.3.6)

In the next sections of this chapter, we will discuss the relevant algorithms for the
construction of such configurations.

2.4 Gauge field

The elements of the local gauge group G are associated with the lattice sites. These
parallel transporters are the elements describing the gauge fields. The link variable
Uµ(x) denotes the group element linking the site x to the site x + aµ, where aµ is a
vector in the µ direction.

The gluon field Aµ is related to the parallel transporter in continuum

Uµ(x) = P e
R x+µ̂

x
Aµ(z)dz. (2.4.1)

In QCD, the matrices Aµ(x) belong to the colour octet of the SU(3) Lie algebra, i.e
Aµ(x) =

∑
a=1,8 taAa

µ(x) with ta = λa/2 and λa are Gell-Mann matrices.
In the continuum, the gauge action in Euclidean space-time for QCD is given by

SG =
1

2

∫
d4xTr(Fµν(x)Fµν(x)). (2.4.2)

Fµν is the field strength tensor

Fµν = ∂µAν(x) − ∂νAµ + ig[Aµ, Aν ]. (2.4.3)

The parallel transporters transform under gauge transformation

Uµ → U g
µ(x) = G(x) Uµ(x) G†(x + aµ̂). (2.4.4)



22 CHAPTER 2. LATTICE GAUGE THEORY

This means that path-ordered products of links along any path through the lattice
will be only transformed by multiplying the matrices operating at ends of the paths
and the traced product of links along a closed loop will be gauge invariant.

The gauge action is constructed from an arbitrary Wilson loop,

Wµν =
1

Nc

P Tr

[
exp (−ig

∮

C
A(x). dx)

]
,

=P 1

Nc

Tr

[
1 − i g (

∮

C
A(x).dx) − g2

2
(

∮

C
A(x))2 + O(g3)

]
. (2.4.5)

For convenience, consider the Abelian case of Stokes’ theorem

∮

C
A(x) . dx =

∫ b

a

dxµdxν [DµAν(x + x0) − DνAµ(x + x0)]. (2.4.6)

Expanding around the centre point of Wilson loop x0 in the coordinate gauge,
A.x = 0, we get

∮

C
A(x) . dx =

∫ b

a

dxµ dxν [Fµν(x0) + (xµDµ + xνDν)Fµν(x0)+

1

2
(x2

µ D2
µ + x2

ν D2
ν)Fµ ν(x0) + O(a2g2, a4)]. (2.4.7)

Taking the contour to be simple plaquette, the integration bounds would then be
−a/2 ≤ xµ ≤ a/2,−a/2 ≤ xν ≤ a/2 respectively

∮

1×1

A(x).dx = a2Fµν(x0) +
a4

24
(D2

µD
2
ν)Fµν(x0) + O(a6, A2). (2.4.8)

The real part of the trace of Wµν gives the Wilson action

Pµν =
1

Nc

Tr

[
I − g2

2!

∮

C
(A(x). dx)2 + · · ·

]

=1 − g2

6
a4Tr(F 2

µν) −
g2

6

a6

12
Tr

(
Fµν(x0)(D

2
ν + D2

ν)Fµν(x0)
)

+ · · · . (2.4.9)

Using this expansion, the Wilson gluonic action is then

SWil = β
∑

x,ν>mu

(1 − Pµν) →
1

2

∫
d4xTr(F 2

νµ) + O(a2), (2.4.10)

provided β = 2Nc/g
2.

2.5 Fermion field

The continuum Dirac action is

S[ψ, ψ̄] =

∫
d4x ψ̄(x)(Dµγµ + m)ψ(x), (2.5.1)
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where Dµ is the covariant derivative. Replacing the derivative with symmetrized
difference operators

ψ̄ /Dψ =
1

2a
ψ̄

∑

µ

[Uµ(x)ψ(x + µ̂) − U †(x − µ̂)ψ(x − µ̂))], (2.5.2)

where µ̂ has length a. Expanding the gauge links, Uµ = 1 + iagA(x + µ̂/2) +O(g2).
The simplest naive lattice action for fermions is

S =
∑

x

[
mqψ̄(x)ψ(x) +

1

2a

∑

µ

ψ̄(x)γµ[Uµ(x)ψ(x + µ̂) − U †
µ(x − µ̂)ψ(x − µ̂)]

]
,

=
∑

x

ψ̄(x)M [U ]xyψ(y), (2.5.3)

where the fermion matrix, M [U ]xy is

Mij = mqδij +
1

2a

∑

µ

γµ[Uµ(x)δij−µ − U †
µ(x − µ̂)δij+µ̂]. (2.5.4)

The propagator is the inverse of the matrix M [U ]xy,

S(k) =[
i

a

∑

µ

γµ sin(kµa) + m]−1,

=
−i/a

∑
µ γµ sin(kµ) + m

∑
µ(1/a sin(kµa))2 + m2

. (2.5.5)

As a → 0, the propagator vanishes except at k = (0, 0, 0, 0) or any of the 15 other
points where one or more of the components of kµ equals π/a. In the vicinity of these
momenta, the propagator has a distribution function having the form resembling
that of a single particle propagator. These additional excitations are pure lattice
artifacts. In fact, in d-space the number would be 2d (0 and π/a for each dimension),
i.e. it doubles for each additional dimension.

The fermion doubling problem can be overcome by cancelling out the lattice
artifacts. This is done by introducing irrelevant operators at the expanse of an
explicit breaking of chiral symmetry even for mq → 0.

The naive lattice action for fermions can be modified by a term which vanishes
in the continuum limit. This fermion action is known as the Wilson fermion action.
It has O(a) errors and is defined as

SW [U, ψ̄, ψ] =
∑

x

[(mq + 4r)]ψ̄(x)ψ(x)

− 1

2

∑

µ

ψ̄(x)(r − γµ)Uµ(x)ψ(x + µ̂) (2.5.6)

+ ψ̄(x − µ̂)(r + γµ)U †
µ(x)ψ(x)]. (2.5.7)
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This equation can be rewritten as

SW [U, ψ̄, ψ] =
∑

xy

ψ̄(x)DW (x, y)ψ(y),

DW (x, y) = (mq + 4r)δx,y −
1

2

∑

µ

(r − γµ)Uµ(x)δy,x+µ̂ + (r + γµ)U †
µ(x − µ̂)δy,x−µ̂,

(2.5.8)

where r is the Wilson coefficient. The terms containing r are the irrelevant dimension
operators introduced to eliminate the fermion doubling problem. Here mq is the
lattice bare mass related to the hopping parameter κ via

κ =
1

2m + 8r
, mq ≡

1

2a
(
1

κ
− 1

κc

). (2.5.9)

κc is the critical value for the hopping parameter. κc = 1/8 when the gluonic
interactions are switched off (Uµ(x) ≡ I). However, in the presence of the gluonic
interaction, κc is defined as the value of κ at which the pion mass vanishes. In the
latter case, the critical value diverges away from the tree value of an eighth.

2.6 Correlation functions

We consider a correlation function of the generic form

〈O1(U, ψ, ψ̄)O2(U, ψ, ψ̄) · · · 〉 =
1

Z

∫
[dU ][dψ][dψ̄] e−SG[U ]−SF [U,ψ,ψ̄]

× ψ̄αψ̄β · · ·Γαβ···
α′β′···(U)ψα′ψβ′ · · · , (2.6.1)

α and β are Dirac indices. The fermionic part of the action SF is quadratic in the
quark fields

SF = ψ̄M [U ]ψ. (2.6.2)

where M is the fermion matrix. The fermion functional integral is over Grassmann
variables

〈O1(U, ψ, ψ̄)O2(U, ψ, ψ̄) · · · 〉 =
1

Z

∫
[dU ]e−SG[U ]det(M [U ])

× Tr [M−1[U ]M−1[U ] · · ·Γ]. (2.6.3)

Computing correlation functions proceeds first via constructing sets of equilib-
rium gauge field configurations chosen with a probability proportional to
exp (−SG[U ])det(M [U ]) or exp (−SG[U ]) in the pure Yang-Mills theory which is the
standard in the present work. Then the quark propagators M−1[U ] are calculated.
The final step is to average the hadron correlation function over the gauge field
configurations.

Let P (U ′, U) define the updating algorithm. Thermal equilibrium is equivalent
to requiring the condition of detailed balance

P (U ′, U) e−S(U) =
∑

U ′

P (U,U ′) e−S(U ′), (2.6.4)
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which is imposed at each step of the updating process. There are many algorithms in
common use for updating gauge fields such as the Metropolis algorithm, and pseudo-
heat bath algorithm [84]. In addition to those, there are also many algorithms for
including the fermion determinant such as pseudo-fermion Langevin [85] equation,
molecular dynamics [86] and hybrid methods [87].

The QCD vacuum admits topological features such as instantons, center vortices
and abelian monopoles. These objects play important roles in the confinement
mechanism and have become subject to direct investigation by lattice methods. In
the thermal regime, the current computational capabilities reached a level such that
it has become feasible to study the phase transition aspects such as the order of
the transition, transition temperature, screening lengths in the quark gluon plasma
phase and chiral symmetry restoration. The calculation of the vector currents on the
lattice is a particularly important method to understand the structure of the hadron.
In Appendix A we present our calculations of branching reactions of pseudo-scalar
to vector transition form factor.

2.7 Continuum limit

The lattice spacing removes the infinities of the quantum field theory and renders
the observables finite. This lattice regulator must be removed to approach the
continuum limit. The coupling g → 0 as the continuum limit is approached. To keep
the observables finite, however, the infinities are absorbed into the renormalization
parameters of the theory as is the case in the continuum field theory.

The lattice gauge theory is assumed to reproduce QCD in the continuum limit.
Nevertheless, there can be an infinite number of lattice theories that all correspond
to the same continuum field theory. The requirement that the lattice gauge theory
reproduces QCD in the continuum limit is necessary but not sufficient to ensure a
true realization of QCD [82]. This led to the consideration of the critical points
of the partition function in Eq. (2.6.1). At these points the lattice gauge theory is
expected to become blind to the details of the lattice structure itself.

The tuneable parameter in lattice gauge theory is the bare coupling constant
which by certain choice, say gc

0, will cause the correlation length, ξ, to diverge

ξ̂(g0) −−−→
g0→gc

o

∞. (2.7.1)

A lattice gauge theory that does not possess these critical points cannot be a re-
alization of the continuum field theory. This is because, at this critical parametric
subspace, the physical quantities should be finite in the limit of zero lattice spacing
a.

An observable on the lattice, Ô, will depend on the parameters of the theory. The
renormalized version of this observable is obtained via scaling with the corresponding
canonical dimension (

1

a

)d

Ô(g0(a)) = O(g0(a), a) (2.7.2)

The physical value of the observable, Ophys, has to be finite in the limit

lim
a→0

O(g0(a), a) = Ophys. (2.7.3)
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This means that g0 has to scale with a such that the critical coupling Eq. (2.7.1) is
approached

g0(a) → gc
0. (2.7.4)

The renormalization group equations (RGE) scale the bare coupling with the lat-
tice regulator such that physical quantities remain fixed. This is done at sufficiently
small lattice spacing. The RGE reads

[a
∂

∂a
− β(go)

∂

∂g0

]O(g0(a), a) = 0, (2.7.5)

with the Callan-Symanzik β-function defined as

β(g0) = −a
∂g0

∂a
. (2.7.6)

To find g0(a), we need to calculate β-function which cannot be calculated exactly.
However, the β function can be determined in perturbation theory. In two-loop
perturbation theory, it is given by

β(g0) = −β0g
3
0 − β1g

5
0 + O(g7

0), (2.7.7)

with the QCD coefficients [82]

β0 =
1

16π2
(
11

3
Nc −

2

3
nf ),

β1 =
1

(16π2)2
(
34

3
N2

c − 10

3
nfNc −

N2
c − 1

Nc

nf ), (2.7.8)

which are renormalization scheme independent. The positivity of the coefficients
gives rise to a negative β-function. This means a reduction in the coupling constant
as the lattice spacing decreases.

The explicit dependence of the coupling on the lattice spacing is obtained by
integrating the RGE

a =
1

λL

(β0g
2
0)

β1
2β2

0 e
1

−2β0 g2
0 , (2.7.9)

where λL an integration constant with the dimension of 1/a , which has to be de-
termined from simulation. This function has to be independent from the considered
observable. This is ensured if the system is well within the scaling region. Scal-
ing violation in this case amounts to the deviations from the RGE for finite lattice
spacing and dependence on the measured observable.

In order to obtain the physical values of observables, they need to be scaled
according to their dimension, with either the lattice spacing or λL, Eq. (2.7.9). We
should use at least one quantity to set the scale. In many cases, the ρ-mass or string
tension σ, or Sommer parameter r0 is considered [88]. The string tension is adopted
herein.

On the other hand, if it happened that the lattice spacing in certain simulations
was made small enough for the system to be deep in the scaling region, the physical
values can be directly extracted from the lattice without the need to perform the
continuum limit, as the O(a) or O(a2) errors of the action would be small.
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2.8 Quenched approximation

The integration of the fermionic variables in the path integral ends up with the
fermionic determinant which is a complicated non-local effective action depending
only on the gauge fields. The integration of the fermionic degrees of freedom amounts
to computing dynamical quark loops which are the quark loops generated from the
gluons. The computations of these loops can be performed in principle on the
lattice. However, the inclusion of dynamical quarks into the calculations increases
the computational time considerably.

For a large number of lattice sites, a popular approximation is performed by
equating the fermion determinant to 1, or in other words, all of dynamical fermion
loops are eliminated. The quenched approximation can be satisfactory in processes
which are dominated by heavy valence quarks. The quenching effects are nonper-
turbative effects and hence are not straightforward to estimate. For certain observ-
ables, however, the quenched approximation is a good approximation, for example,
the light meson spectrum can be determined within quenched QCD.

Quenched QCD differs from full QCD only in the relative weights of the back-
ground gauge configurations, and it exhibits all the important features of full QCD
including confinement, asymptotic freedom and spontaneous chiral symmetry break-
ing. The physical effect of quenching is the absence of all virtual quark loops. Certain
quantities and phenomena which are sensitive to the effects of these loops, like string
breaking [89], are not reproducible in the quenched approximation. The absence of
string breaking leads to a different qualitative behavior of the two theories at large
length scales.

In the present work we perform our analysis on quenched gauge configuration
since the pair production may occur before the long string limit of the hadronic
string is reached. Thus, in this case, the behavior of the pure Yang-Mills theory is
more relevant to string picture, which we will investigate in detail.

2.9 Numerical simulation errors

Two types of errors arise in numerical simulations on the discrete lattice, namely,
statistical and systematic errors. Statistical errors arise from the finite size of the
Monte Carlo sample. For configurations which are statistically independent, the
error on a measured observable will fall with

√
N , where N is the number of config-

urations used.

Lattice spacing also introduces systematic errors which arise from the discretiza-
tion of the continuum theory. These types of errors can be reduced by improving
the corresponding operators, usually by skilful strategic combination of loops, to
eliminate the corresponding effects associated with O(a) errors. In addition, errors
arise from uncertainties and approximations in the extrapolation to the continuum
limit.

One systematic error which we will study in detail in Chapter 3 is the isolation
of the ground state in the loop operators. This kind of error can be a source of
significant uncertainties in calculating the gluonic distribution. The problem arises
as a result of the practical constraints due to the limitation imposed by statistical
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fluctuation over the evolution in Euclidean time in the operators.

2.10 Markov chain

The direct numerical evaluation of the Euclidean formulated Feynman path integral

〈O1(U, ψ, ψ̄)O2(U, ψ, ψ̄)...〉E =
1

ZE

∫
[dU ][dψ][dψ̄] e−SE

G [U ]−SE
F [U,ψ,ψ̄]

× ψ̄αψ̄β......Γαβ
α′β′(U)ψα′ψβ′ ......, (2.10.1)

is time consuming and becomes practically impossible to calculate for large lattice
sizes. Not all the configurations, however, contribute significantly to Eq. (4.3.5). In
fact, most of them will have an action which is very large and one needs an efficient
importance sampling technique to compute such integrals with the most relevant
configurations. This amounts to calculating an ensemble average over a sequence of
uncorrelated field configurations with a probability distribution given by Boltzmann
factor e−SE

QCD . Configurations can be generated such that each configuration is an
element of a Markov chain. Let P (Uij) ≡ Pij be the probability of transition from
configuration Ui to Uj for a set of configurations {Uτi

} generated by Markov process
with recurrence time τi [90]. The ensemble average of an observable evaluated on
this set of states is

〈O〉 =
1

N

N∑

i=1

O(Uτi
). (2.10.2)

A Markov chain is said to be “irreducible” if any state is accessible from any
other state. The state is called “aperiodic” if returning to this state need not occur
at regular times. An irreducible, aperiodic and positive recurrent Markov chain is
said to be ergodic. For an ergodic Markov chain, the limit

lim
N→∞

PN
ij = πj,

exists and is unique [90], where

∑

j

πj = 1,

πj =
∑

i

πiPij. (2.10.3)

This defines the equilibrium state, the resultant configuration is completely un-
correlated from the initial configuration used to start the Markov process. Also the
system does not change after further updates with transition probabilities Pij. If
the chain is irreducible and its states are positive

τ 2
i ≡

∞∑

n=1

n2P n
ii < ∞, (2.10.4)
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then the time average approaches the ensemble average

〈O〉N =
1

N

N∑

i=1

πiO(Ui), (2.10.5)

with statistical uncertainty of order O( 1√
N

). For a Markov process to sample a prob-
ability distribution of the type that is found in lattice gauge theory, it is sufficient
to require the transition probability Pij to satisfy the detailed balance

exp (−S(Ui))P (Ui → Uj) = exp (−S(Uj))P (Uj → Ui). (2.10.6)

2.11 Metropolis algorithm

Let U be a configuration which is to be updated. The new updated configuration U ′

is suggested with a transition probability P0(U → U ′) which satisfies the condition

P0(U → U ′) = P0(U
′ → U). (2.11.1)

If the new suggested configuration is such that exp (−S[U ′]) > exp (−S[U ]) holds,
i.e. the action decreases then the configuration U ′ is accepted. On the other hand, if
the action increases, exp (−S[U ′]) < exp (S[U ]), then we accept U ′ with a probability
P (U ′) such that

P (U ′) =
exp (−S[U ′])

exp (−S[U ])
. (2.11.2)

This algorithm has been proposed by Metropolis et al [91] and it is applicable to
any system. The algorithm satisfies detailed balance and hence ensures the system
reaches equilibrium. The transition probability from the state U to the state U ′

is given by the probability of accepting the configuration times the probability of
suggesting this particular configuration P0(U → U ′)

P (U → U ′) = P (U ′)P0(U → U ′). (2.11.3)

For a decrease in the action, exp (−S[U ′]) > exp (−S[U ]), P (U ′) = 1 . Otherwise,
we have

P (U ′ → U) = P0(U
′ → U)

exp (−S[U ])

exp (−S[U ′])
. (2.11.4)

Since P0(U → U ′) = P0(U
′ → U), then it follows that detailed balance is satisfied

exp (−S[U ])P (U → U ′) = exp (−S[U ′])P (U ′ → U). (2.11.5)

Now, assume the action is increasing

exp (−S[U ′]) < exp (−S[U ]). (2.11.6)

Then
P (U → U ′) = P0(U → U ′) exp (−S[U ′] − S[U ]), (2.11.7)

P (U ′ → U) = P0(U
′ → U), (2.11.8)

which implies that detailed balance holds again.
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2.12 Hybrid heat bath/Overrelaxation

A combination of overrelaxation and heat bath steps is a standard simulation algo-
rithm convenient for pure gauge systems. The overrelaxation is non-ergodic micro-
canonical update to accelerate the decorrelations of the configurations [92]. Both
the heat bath and the microcanonical reflections (overrelaxations) are local updates.
The heat bath step is ergodic and satisfies detailed balance and hence ensures ther-
mal equilibrium.

2.12.1 Heat-bath algorithm

Generally speaking, it is not straightforward to find an efficient algorithm for gener-
ating the configurations of generic fields and actions over which the ensemble average
Eq. (2.10.5) is evaluated. A convenient scheme for non-abelian pure gauge theories
is the heat bath algorithm [84]. In this section, we discuss this algorithm for generat-
ing ergodic Markov chains for SU(2) non-abelian pure gauge theories and generalize
the discussion to SU(N).

Each new configuration update is chosen from the canonical distribution

P (U → U ′) ∝ exp (−S[U ′]). (2.12.1)

Here, we begin with an SU(2) theory. The SU(3) case can be connected to SU(2)
by updating corresponding subgroups and will be discussed later.

SU(2) heat bath

Consider an SU(2) theory with a Wilson gauge action. A heat bath update for local
SU(2) colour matrix defines a way to produce the distribution

dP (U ′) ∝ e
1
2
Tr(U ′Q†)dU ′. (2.12.2)

dU is the Haar measure, and Q is a real multiple of an Q̂ ∈ SU(2) or in other
words Q =

√
det Q Q̂. Since the Haar measure is invariant under left and right

multiplication with the gauge group elements, R can be considered as a scalar 1

dP (U ′Q̂) ∝ e
1
2

√
det Q Tr(U ′)dU ′.

The isomorphism ϕ between the group Q of normalized quaternions and SU(2)
is given below

U ′ = ϕ(a) =

(
a0 + ia3 ia1 − a2

ia1 + a2 a0 − ia3

)
.. (2.12.5)

1 ∫
dUf(U) =

∫
dUf(GUH−1), G,H ∈ SU(N), (2.12.3)

and it is normalized, ∫
dU = 1. (2.12.4)
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In the quaternionic representation of SU(2), we have 1
2
Tr(ϕ(a)) = a0. Hence, a

distribution exp(ca0)dµ(a) with dµ being the Haar measure on Q and it takes the
form

dµ(a) =
1

2π2
δ(a2 − 1)d4a. (2.12.6)

It is easy to see that δ(a2−1)d4a is proportional to (1−a2
0)

1/2da0dn, a0 ∈ [−1, 1]
and dn is a uniform measure on S2.

dP (U ′Q̂) ∝ 1

π2
δ(a2 − 1)e

√
det Q a0 da0d

3a.

(2.12.7)

Setting aj = nj

√
1 − a2

0 and η =
√

Q2
0 + QjQj it follows

dP (U ′Q̂) ∝ 1

π2
eηa0

√
1 − a2

0 da0dn. (2.12.8)

This entails generating a flat distribution in a0 and a uniform distribution on
S2. These produce a matrix U ′, which is, according to Eq. (2.12.7), to be multiplied
with Q̂ to obtain the new link variable. The n vector can be generated by a pair
(u1, u2) of numbers with a uniform distribution in [0,1) such that

n1 =1 − 2u1,

n2 =
√

1 − n2
1 cos(2πu2),

n3 =
√

1 − n2
1 sin(2πu2). (2.12.9)

Fabricius and Haan [93] and Kennedy and Pendleton [94] described an updating
algorithm. For a variable y with the distribution

P (y) ∝ exp(−y)
√

y θ(y). (2.12.10)

we set a0 = 1 − yη. The distribution of the generated a0 then is given by

P̄ (a0)da0 =P (y)dy,

⇒ P̄ (a0) =P (y(a0))
dy

da0

,

∝eηa0
√

1 − a0 θ(1 − a0). (2.12.11)

The factor
√

1 + a0 θ(1 + a0) can be accommodated by an acceptance step. The
proposal from Eq. (2.12.11) is then accepted if a flat random number c fulfills 2c2 ≤
1 + a0. This corresponds to a P1(c) = θ(2c2 − 1 − a0) and therefore

∫
dcP̄ (a0)P1(c) =

∫ √
(1−a0)/2

0

dc eηa0
√

1 − a0 θ(1 − a0)θ(1 + a0),

=eηa0
√

1 − a0 θ(1 − a0)

∝P (a0). (2.12.12)
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Two distributions can be combined to reproduce the desired one. In order to
create a value for a0, one generates a number a with a Gaussian distribution

P1(a) ∝ exp(−a2)θ(a), (2.12.13)

and a number b distributed like

P2(b) ∝ exp(−b)θ(b). (2.12.14)

Transforming the variables to y = a2 + b and z = a with the Jacobian

det
∂(a, b)

∂(y, z)
= 1. (2.12.15)

The covariant distribution of y and z is

P (y, z) =P1(a(y, z), b(y, z)) × P2(a(y, z), b(y, z)),

= exp(−z2)θ(z) × exp(−y + z2)θ(y − z2),

= exp(−y)θ(z)θ(
√

y − z). (2.12.16)

The resulting distribution of y is obtained by integrating over z,

P (y) =

∫
dzP (y, z) =

√
y exp(−y)θ(y). (2.12.17)

The distributions P1 is Gaussian. P2 can be generated from uniformly distributed
random numbers u by taking b = − log(1 − u).

SU(3) heat bath

The general form of the Wilson action is

S[U ] = −ℜTr
{
U(x, µ)Q†(x, µ)

}
+ · · · . (2.12.18)

The above action has two parts: one linearly proportional to the link variable
U(x, µ) ∈ SU(3) (N ≥ 3), which is updated, and the other part is independent.

The term Q(x, µ) is proportional to the sum of the six staples of the link

Q(x, µ) =
β

3

∑

ν 6=µ

{
U(x, ν)U(x + aν̂, µ)U †(x + aµ̂, ν)+

U †(x − aν̂, ν)U(x − aν̂, µ)U(x − aν̂ + aµ̂, ν)
}

. (2.12.19)

The sum of the staples need not be a real multiple of an element of the gauge
group. Factorizing the distribution for U into several flat distributions requires
an elaborate method. Cabibbo and Marinari generalized the heat bath algorithm
described above [95] by projecting into subgroups successively. The method for the
SU(3) group and can be applied to SU(N) groups.

In this method, a set F of SU(2) subgroups of SU(3) are selected such that no
subset of SU(3) is left invariant under left multiplication by F , except for the whole
group
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F = {SU(2)1, . . . , SU(2)m}, m ≥ 2. (2.12.20)

By successive multiplication of an SU(3) matrix with random matrices with the
desired distribution from these subgroups we can reach any other SU(3). The new
link in each step comes by applying to the one from the previous step a member
A(k) ∈ SU(2)k of a subgroup

U (k) = A(k)U (k−1). (2.12.21)

The matrices A(k) are selected according to the distribution

dP (Ak) = dA(k) exp{−S[A(k)U (k−1)]}∫
SU(2)k

dA exp{−S[AU (k−1)]} . (2.12.22)

The two subgroups of SU(3) can be selected such as

A1 =




a11 a12 0
a21 a22 0
0 0 1


, A2 =




1 0 0
0 a11 a12

0 a21 a22


, (2.12.23)

where a ∈ SU(2). Although the above stated condition implies only two subgroups,
one may employ, as we do, a third subgroup

A3 =




a11 0 a12

0 1 0
a21 0 a22


 . (2.12.24)

This may lead to better autocorrelation times than the minimum of two subgroups.
In our choice of subgroups, it is obvious that

S[A(k)U (k−1)] = −ℜTr(av), (2.12.25)

where v is the (i, j) ∈ {(1, 2), (2, 3), (1, 3)} submatrix of Γ = U †V ,

γ =

(
Γii Γij

Γji Γjj

)
. (2.12.26)

By using the quaternionic representation of ak and γ, we can recast this into the
form

S[A(k)U (k−1)] = −ℜTr(aγ)

= −ℜ (a0γ0 − ajqj)

= − 1

2
Tr(aq†), (2.12.27)

where q is a real multiple of an SU(2) matrix. Its quaternionic components are
given by

q0 =2ℜ γ0,

qj = − 2ℜ qj, (2.12.28)
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and explicitly by

q0 =ℜΓii + ℜΓjj,

q1 = −ℑΓij −ℑΓji,

q2 = −ℜΓii + ℜΓji,

q3 = −ℑΓii + ℑΓjj. (2.12.29)

Equation (2.12.27) shows that Eq. (2.12.22) can be obtained by applying the de-
scribed Fabricius-Haan algorithm for SU(2).

2.12.2 Overrelaxation

The overrelaxation steps amount to updating the new link variable such that the
action remains constant. This helps when we want to sweep quickly through the
configuration space and accelerate the decorrelation of physical observables. For a
pure SU(2) gauge theory with a Wilson-like action, where Q is the sum of elements
of the gauge group, we can update U → U ′ such that

Tr(U ′Q†) = Tr(UQ†), (2.12.30)

or equivalently

U ′ =
2

Tr(Q†Q)
QU †Q. (2.12.31)

For a general action of the form Eq. (2.12.18), in analogy to the heat bath case,
microcanonical updates can be performed on some SU(2) subgroups of the variable
in question. We obtain a new U ′ by applying matrices Ak in accord to Eq. (2.12.23)

U ′ = A3A2A1U. (2.12.32)

To ensure constant action, the condition over the SU(2) matrices, a, corresponding
to the Ak will be

Tr(aq†) = Tr(q†). (2.12.33)

In the quaterionic form this reads

a = −1 + 2
2q0

Tr(qq†)
q. (2.12.34)

A possible overflow in the implementation of these algorithms may arise due to
a potentially small value of Tr(qq†). A condition may be imposed during the imple-
mentation such that no reflection of the link variable occurs when the denominator
becomes smaller than a given value.

The Hybrid Overrelaxation combines the two parts described above. The update
step consists of one heat bath step followed by NOR microcanonical reflection steps.
NOR is a simulation parameter that can be tuned to reduce the autocorrelation times
and depends on lattice sizes.



Chapter 3

Systematic Uncertainties in
Wilson-loop

3.1 Outline

In this Chapter, the measurement technique for calculating the gluonic distribu-
tions is described. The gluonic field distribution is calculated as a correlation be-
tween the flux probe operator and the operator used to construct the static mesonic
and baryonic states. Wilson loops and Polyakov line operators correspond to two
methodologically different ways to construct infinitely heavy quark states. In this
chapter, we discuss both approaches to the problem of calculating the gluonic flux
distribution and the systematic uncertainties due to the bias inherent in the shape
of the Wilson loop. The basic elements of the field theory formulation at finite
temperature are introduced.

3.2 Introduction

Revealing the form of the gluonic field distributions among interacting quarks is
an active field of research. As a consequence of improvements in computational
resources and analysis techniques, tackling this problem by employing lattice QCD
techniques has become readily achievable. Several studies [2, 96, 97, 98, 99] have
been conducted to explore the shape of these distributions and some studies [2, 99]
have been devoted to improve the statistics. However, systematic effects due to the
bias by the source shape in the operators remain under investigation.

3.3 Flux distribution calculation

In order to reveal the distribution of the gluonic field, a source operator representing
the quark bound state has to be adopted. Wilson loop operators can account for
a gauge invariant, colour singlet, and an infinitely heavy quark state. Consider a
baryonic system which is constructed with a three quark Wilson loop [3, 100]. This
quark operator consists of three quarks connected by strings of gauge field links
which assume a particular shape. The generic form of the three-quark (3Q) Wilson
loop operators (Fig. 3.1) is given by

35
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Figure 3.1: The three-quark Wilson loop operator.

W3Q =
1

3!
εabc εa′b′c′ U

aa′
1 U bb′

2 U cc′
3 , (3.3.1)

with the path-ordered link variables

Uj = P exp {ig
∫

Γj

dxµ Aµ(x)}. (3.3.2)

After the construction of the baryonic state, subsequent measurement by a gauge-
invariant flux probe operator is taken at each point of the lattice. With the conve-
nient choice of the components of the field strength, one can measure action density,
energy density, chromo-electric or chromo-magnetic fields. The gluon flux density
distribution is calculated through a correlation of the form

C(~y, ~r1, ~r2, ~r3, t)) =
〈W3Q(~r1, ~r2, ~r3; t) S(y, t/2)〉
〈W3Q(~r1, ~r2, ~r3; t)〉 〈S(y, t/2)〉 , (3.3.3)

where 〈....〉 denotes averaging over configurations, and S(y, t/2) is a generic gauge-
invariant density observed at spatial coordinate ~y and Euclidean time t/2 measured
relative to the origin of the three-quark Wilson loop. C(~y) is a scalar field in three
dimensions. For values of ~y well away from the quark positions ~ri, there are no
correlations and C → 1. C is found [1] generally to be positive and less than 1 in
the interior of the heavy-quark baryon indicating expulsion of vacuum fluctuations
(Fig. 3.2).

3.4 Source-shape dependence

As discussed in the previous chapter, systematic errors are possible in all lattice
simulations, and these effects are obvious in the gluon-flux distribution calculations.
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Figure 3.2: Spatial points [1] where vacuum field fluctuations are maximally sup-
pressed in the three-quark system as measured by the correlation function C(~y).

Figure 3.3: The rendered gluonic field distribution via Eq. (3.3.3) mimics the form
of the spatial link configurations in Wilson loop [2].

  
                          NOTE:   
   This figure is included on page 37  
 of the print copy of the thesis held in  
   the University of Adelaide Library.
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The so-called source-shape dependence is the main systematic effect that is of con-
cern in these calculations. Given a fixed quark geometry, many different spatial-link
configurations can be adopted in the Wilson loop operator before evaluating the
correlation function Eq. (3.3.3). The rendered colour field distribution mimics the
form of the spatial links as illustrated in Fig. 3.3. This source-shape dependence is
a consequence of two underlying difficulties regarding lattice simulations. The first
difficulty concerns the isolation of the ground state, and the second is related to the
control of the statistical fluctuations. Isolating the ground state of the three-quark
colour source system is achieved by increasing the Wilson loop time t. As the time
evolves, the excited components drop faster than the ground state components in
the expectation values mentioned above. However, the ground state also decreases
exponentially; this is the source of the ground state isolation difficulty.

Usually, the isolation of the ground state problem is tackled by the enhancement
of the ground state through the use of smearing technique. One of the most popular
technique for smearing is the so-called APE smearing [101]. In this technique, the
link is iteratively updated by averaging it with its neighboring links via staples,
then projecting back to SU(3) by the Cabbibo Marinari [95] maximization of the
Tr(Uµ(x) U ′†

µ (x)) . The transformation takes the form

U ′
µ(x) =(1 − α)Uµ(x) +

α

4

∑

µ6=ν

Σ†
µν(x),

with the sum of the staples

Σ†
µν ={Uν(x)Uµ(x + ν̂)U †

ν(x + µ̂) + U †
ν(x − ν̂)Uµ(x − ν̂)Uµ(x + ν̂ − µ̂)}. (3.4.1)

The new link variable Uµ(x) is obtained from the link variable U ′
µ(x) via the projec-

tion P onto the SU(3) group

Uµ(x) = P U ′
µ(x). (3.4.2)

The above transformation defines a single APE smearing sweep. The APE smear-
ing is characterized by two parameters: α which determines the fraction of smearing
and nAPE which defines the number of smearing sweeps. The two parameters are
tuned so as to obtain the optimal enhancement of the ground state of the quark
system.

Smearing the spatial links in Wilson loop operators is justified by the fact that
the path of the links used to construct the three quark creation operator can not
affect the eigenvalues of the transfer matrix. Thus, the freedom in the choice of
the path links can be exploited in tunning the best states that enhance the ground
state overlap. The smearing technique does not affect the physics itself, and it can
be counted merely as a method for adopting the interpolating fields in the transfer
matrix formalism [99].

Dependence on the choice of the source operator indicates that non-ground state
contaminations contribute to the correlation function. On the other hand, enhancing
the ground state by gauge smoothing techniques alone [63, 101] will not overcome
the problem of biasing by the shape of the source [2, 99].
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Figure 3.4: The ground-state overlap of the 3Q system [3]. C0 =
〈W3Q(T )〉T+1/〈W3Q(T + 1)〉T , with the smeared link (upper data) and unsmeared
link (lower data) [3]. The horizontal axis has been taken as Lmin , with the minimal
length of the flux tubes linking the three quarks. For each 3Q configuration C0 is
largely enhanced as 0.8 < C0 < 1 by smearing.

This is due to the fact that isolating the ground state requires a large time
interval between the source and the sink as well as between the source and the sink
and the flux probe. Let us illustrate the above discussion further:
Consider the two-point correlation function at T > 0

〈Ω|O(T )O(0)|Ω〉 =
∑

n

e−EnT 〈Ω|O(0)|n〉 〈n|O(0)|Ω〉,

−−−→
T→∞

e−E0T 〈Ω|O(0)|0〉 〈0|O(0)|Ω〉. (3.4.3)

For the three-point function T > t

〈Ω|O(T )P (t)O(0)|Ω〉 =
∑

nn′
e−En(T−t)e−En′ t〈Ω|O(0)|n〉 〈n|P (0)|n′〉 〈n′|O(0)|Ω〉 ,

−−−→
T→∞

e−E0T 〈Ω|O(0)|0〉 〈0|P (0)|0〉 〈0|O(0)|Ω〉. (3.4.4)

The correlation function which gives the field distribution is

C(t) =
〈Ω|O(T )P (t)O(0)|Ω〉

〈Ω|O(T )O(0)|Ω〉 〈Ω|P (0)|Ω〉 ,

−−−→
T→∞

〈0|P (0)|0〉
〈Ω|P (0)|Ω〉 . (3.4.5)

The correlation function measures the ground state expectation value of the
operator P (0) to that of the vacuum, and the condition 0 ≪ t ≪ T is required to
isolate the ground state. This requires a time interval much larger than that needed
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for the two point function, which yields the potential, where one only needs T ≫ 0.
This clearly indicates that the dependence on the shape of the source operator in
simulations is due to non-ground state contributions.

Although the smearing of the spatial links can be effective in enhancing the over-
lap with the ground state [102], the flux distribution calculation is very noisy [99].
Attempts to improve the statistics have been made, for example, in Ref. [98, 99], a
maximal abelian projection has been used. The abelian projected theory is less noisy
and is believed to preserves the long distance behaviour of the Wilson loop [61]. In
other calculations [63], the noise reduction is achieved only via integrating out the
time links. In these calculations, the time links are replaced by the mean field value
which they take in the neighbourhood of the links that interact through the staples.
One should note that these calculations are performed for SU(2) lattice gauge the-
ory, where the noise level is much less than in the SU(3) case. In the calculations of
Ref. [2], a gauge-independent high statistics approach is used to improve the statis-
tics. This has been done by exploiting the lattice translational symmetries. That is,
the correlation is computed in every node of the lattice, averaging the results over
the four-volume. This is the only case where the time-oriented links have remained
untouched to preserve the correct static quark potential at all separations.

The correlation function can be calculated by studying the ground state ex-
pectation values of the ground state of the Wilson loop for large Euclidean times.
However, as mentioned above, this situation is not practically feasible. The numer-
ical signal is drowned in statistical noise for large times. On the other hand, the
adoption of Wilson loops imposes an inevitable choice on the string configuration
of the quark source operator, which due to the limitation over the time possible to
evolve the Wilson loop, would still affect the form of the calculated field distribution
(see Fig. 3.3). The success in improving the statistics was limited to the potential
calculations and this effect remained on the level of the flux distribution. Therefore,
a new approach is warranted.

3.5 Stringless operators

The immediate idea that can be proposed is to use a different set of stringless gauge-
invariant operators. There are particularly relevant types of gauge-invariant objects
that construct an infinitely heavy quark which is well-known as the Polyakov loop
or Wilson thermal line [103, 104]. The Polyakov line acquires its loop structure via
the lattice periodicity over the time direction; i.e. by the product of link variables
along loops winding around the time direction

P (x) = Tr

[
Nt∏

nt=1

U4(x, nt)

]
. (3.5.1)

The trace guarantees the gauge-invariance

P̃ (x) =Tr[G(x, 1) U4(x, 1) G†(x, 2) G(x, 2) U4(x, 2) G†(x, 3) · · ·
G(x,Nt) U4(x,Nt) G†(x,Nt + 1)]. (3.5.2)
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P̃ (x) = G(x, 1)

[
Nt∏

nt=1

U4(x, nt)

]
G†(x,Nt + 1) = P (x). (3.5.3)

because of the periodicity

G(x, 1) = G(x,Nt + 1). (3.5.4)

A physical meaning can be assigned to the Polyakov line by realizing an infinitely
heavy quark sitting at a given point x in space and only propagating in the time
direction. The Euclidean-Schrodinger equation is given by

∂tΨ
(Q) = iA0(x, t)Ψ(Q)(x, t). (3.5.5)

The time evolution operator S(t) is then

S(t) = P exp[i

∫ t

dτA0(x, τ)], (3.5.6)

which is the continuum version of the Polyakov line. It describes the propagation of
a static colour charge on the lattice.

Calculating the expectation value of the Polyakov line at finite temperature T ,
corresponds to the partition function of the system

〈P (x)〉 = ZQ = exp (−FQ/T ), (3.5.7)

with the free energy of the system FQ.
Let us find the form of the correlator which represents the creation at time

t = 0 of two static colour sources, and separated by spatial distance R. This
gauge-invariant colourless physical state can be represented by massive quark and
antiquark creation operators acting on a chromodynamical vacuum state |Ω〉,

|χ†(~x, , ~y; t = 0)〉 = ψ̄b(~y, t = 0) U ba(~x, t = 0; ~y, t = 0) ψa(~x, t = 0)|Ω〉 (3.5.8)

with

Uab(~x, t = 0, ~y, t = 0) = exp [ig

∫ ~y

~x

dziAi(~z)]. (3.5.9)

If the colour sources are propagated for time t and then annihilated, the corre-
lation between the two states becomes

G = 〈Ω|ψ̄a(~x, t) Uab(~x, ~y; t)×
ψb(~y, t)ψ̄b′(~y, t = 0) U b′a′(~y, t = 0; ~x, t = 0) ψa′(~x, t = 0)|Ω〉.

(3.5.10)

The quarks interact while propagating through time. Inserting a complete set of
eigenstates gives
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G(x, y, t) =
∑

n

〈Ω|χ(x, y, t)|n〉〈n|χ†(x, y, 0)|Ω〉. (3.5.11)

Making use of the translational invariance and evaluating eigenstates of the Hamil-
tonian

χ(x, y, t) = exp(−iHt)χ(x, y, 0) exp (iHt), (3.5.12)

the correlation is then

G(x, y, t) =
∑

n

λ2
n exp (−iEnt), (3.5.13)

where
λ2

n = |〈Ω|χ(x, y, 0)|n〉|2 . (3.5.14)

In a Euclidean space, t → −it and

G(x, y, t) =
∑

n

λ2
n exp (−Ent). (3.5.15)

En are the eigenstates of the Hamiltonian. It is the sum of kinetic, potential energy,
and self energy of the system. The last equation is the vacuum expectation value at
the hadronic level.

Consider Eq. (3.5.10) which has the formal path integral representation

G =
1

Z

∫
DADψ Dψ̄ exp(−iS)

ψ̄a(~x, t) Uab(~x, ~y; t)ψb(~y, t)ψ̄b′(~y, t = 0) U b′a′(~y, t = 0; ~x, t = 0)ψa′(~x, t = 0),

(3.5.16)

where the action is given by

S = SG[A] + SF [ψ, ψ̄, A], (3.5.17)

SG[A] = −1

2

∫
d4x Tr(FµνF

µν), (3.5.18)

SF [ψ, ψ̄, A] =

∫
d4x ψ̄(iγµDµ − M) ψ. (3.5.19)

Performing integration over Grassmann variables yields

G = − 1

Z

∫
DA [Sbb′(y, t, t = 0) U b′a′(~y, ~x, t = 0)Sa′a(~x, t = 0, t) Uab(~x, ~y, t)]

det(K[A]) eiSG+iSF , (3.5.20)

where
K[A] = (iγµDµ − M). (3.5.21)
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Figure 3.5: The static mesonic state is constructed via two Polyakov loops winding
around the time in opposite directions.

In the quenched approximation

det(K[A]) = 1. (3.5.22)

In contrast, the correlation function for the Polyakov loop correlator is

Gp = − 1

Z

∫
DA [Sbb((y,Nt), (y, 0)) Saa((x, 0), (x,Nt))]det(K[A]) exp(iSG + iSF ).

(3.5.23)
It is very important to note that despite the existence of a mathematical relation1,

the two correlators of Eq. (3.5.20) and Eq. (3.5.23) address different physics. While
the Wilson loop utilizes the overlap of the interpolating fields in the transfer matrix
formalism, the Polyakov loops correlator addresses physics of the free-energy of the
system.

For x0 > y0 the free propagator is

S((x, x0), (y, y0)) = P exp[ig

∫ y0

x0

dx0 A0(x)δ3(x − y)P+e−mq(x0−y0)].

(3.5.24)

For y0 > x0

S((x, x0), (y, y0)) = P exp[ig

∫ y0

x0

dy0 A0(x)δ3(x − y)P−e−mq(y0−x0)].

(3.5.25)

Substituting the propagators into Eq. (3.5.23) yields

Gp(x, y, t) = exp(−2mqNt)〈P (~y) P †(~x)〉, (3.5.26)

1Mathematically, the above correlation function can be related to Eq. (3.5.20) of the Wilson loop
by setting b = b′ and t = Nt and making use of the boundary condition over the time-coordinate

Uab(~x, ~y, t = 0)U⋆ba′(~y, ~x, t = Nt) = δaa
′

.
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Figure 3.6: (a) Average Polyakov loop over several successive Monte Carlo measure-
ments [4], below the transition temperature (in the confined phase), (b) above the
transition temperature.

with

〈P (y) P †(x)〉 =
1

Z

∫
DA exp(−SG)

[
P Tr [exp(ig

∫ Nt

0

dtA0(y))]P Tr [exp(−ig

∫ Nt

0

dtA0(x))]

]
.

(3.5.27)

On the lattice, P (x) is given by Eq. (3.5.1).
The above correlation function correlates two Polyakov loops with bases at ~y =

~ma and ~x = ~na with a lattice spacing, and having opposite orientations. This
correlator is the object that we wish to substitute in Eq. (3.3.3) instead of the
Wilson loop W, if we are going to calculate the gluonic field distribution for mesonic
systems.

One may follow a simple symmetry argument, regarding the centre symmetry,
to find the form of these correlators for mesonic as well as baryonic systems. The
lattice action as well as the above correlators Eq. (3.5.27) are invariant under the
centre symmetry transformation. This symmetry is necessary but not a sufficient
condition to ensure a non-vanishing value of the Polyakov correlator. Consider, for
example, the elements of SU(3) belonging to the centre C of the group. The centre
C of the group G consists of all the elements z for which zgz−1 = g, with g ∈ G
and they are given by exp(2πil/3) ∈ Z(3) where l = 0, 1, 2. The centre symmetry
transformation

Ũ4(x, nτ = 1) = C U4(x, nτ = 1) (3.5.28)

takes all time-like link variables in a hyperplane for some fixed time nτ = 1 and
transforms these links by a unitary 3 × 3 matrix Z belonging to the centre of the
gauge group.

Now, if the ground state of the quantum system respects the symmetry of the
classical action, then link configurations related by centre symmetry will occur with
the same probability, and the same number of configurations will yield the values
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Pl = e2πil/3 (l = 0, 1, 2) for one Polyakov loop. Since Σl exp(2πil/3) = 0, it follows
that the expectation value of the Polyakov loop must vanish. Therefore, the corre-
lators for baryonic systems must be necessarily invariant with respect to the centre
symmetry in order to fullfil the necessary condition of a non-vanishing expectation
value of the correlators. The form of the mesonic correlator is

ΓMesonic =〈P̃ (~x)P̃ †(~y)〉
=〈P (~x)P †(~y)〉. (3.5.29)

The three-loop correlator reads

ΓBaryonic =〈P̃ (~x)P̃ (~y)P̃ (~z)〉,
=〈e2iπlP (~x)P (~y)P (~z)〉,
=〈P (~x)P (~y)P (~z)〉. (3.5.30)

This correlator constructs an infinitely heavy baryon.
Correlation functions of Polyakov loops define the free energy of a heavy quark

and anti-quark. One generally considers the so-called colour averaged free energy

e−F (r,T )/T+C =
1

9
〈P (~x)P †(~y)〉, (3.5.31)

where P is the traced Polyakov loop defined in Eq. (3.5.1), and C is a renormalization
constant.

The idea of unravelling the gluon-flux distribution using Polyakov thermal loops
brings us to the regime of finite temperature QCD, where certain considerations
regarding the finite-temperature lattice QCD, such as determining the lattice tem-
perature, should be taken into account.

3.6 Lattice QCD at finite temperature

In order to employ statistical mechanics techniques in the path-integral representa-
tion of the field theory of the partition function

Z =

∫
[dφ]eiS[φ], (3.6.1)

the theory has to be formulated in Euclidean space-time. The Euclidean Lagrangian,

L
E
QCD =

nf∑

k=1

ψq,a(γ
E
µ Dµ + mq)abψ

k
b +

1

4

N2
c −1∑

a=1

F a
µν(x)F µν

a (x), (3.6.2)

is obtained from the Minkowski expression by rotation to imaginary time τ

t −→ −iτ. (3.6.3)
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The anti-commuting relations for the Euclidean γ matrices are

{γE
µ , γE

ν } = 2δµν . (3.6.4)

Finite temperature field theory is defined by the Matsubara formalism [105] for
finite temperature statistical systems. The temperature is defined through restrict-
ing the Euclidean time interval to [0, 1

T
]. The grand canonical partition function Z

can be written as

Z = Tr (e−H/T ) =

∫
[dφ]e−S[φ]. (3.6.5)

The thermodynamical expectation value of an operator O is

〈O(ψ̄, ψ; A)〉 =
Tr(O(ψ̄, ψ); A))

Z
. (3.6.6)

This expression is formally equivalent to the path-integral representation of the
expectation value of the operator O

〈O(ψ̄, ψ; A)〉 =
1

ZE

∫
DADψ̄DψO(ψ̄, ψ; A)e−SE

QCD . (3.6.7)

with the Euclidean action

SE
QCD(T, V ) =

∫ β=1/T

0

dτ

∫

V

d3xL
E
QCD (3.6.8)

and the partition function

ZE(T, V ) =

∫
DADψ̄Dψe−SE

QCD(T,V ). (3.6.9)

Therefore, one can calculate the expectation value of a given operator within
QCD at finite temperature by restricting the Euclidean time extension. Due to the
trace operation in Eq. (3.6.6), bosonic and fermionic fields must obey periodic and
anti-periodic boundary conditions in Euclidean time direction respectively.

Studying QCD at finite temperature in Monte Carlo simulation requires a careful
choice of the spatial and temporal extensions of the lattice to be used as the latter
determines the temperature. In general, these principles should be considered:

• The choice of the spatial volume should be large enough so as to ignore the
finite volume size effects.

• The bare coupling constant should be small enough to approximate the con-
tinuum physics. For a given number of lattice sites, the lattice extension will
depend on the lattice spacing, and consequently, on the value of the bare
coupling.

• To study QCD at high temperatures, the temporal extension is typically
smaller than the spatial one.
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• Varying the physical temperature can be done either by varying the number of
temporal slices Nt, or by varying the bare coupling g0. Changing the temper-
ature by varying β has the disadvantage that the volume (in physical units)
does change as well. The temperature can be changed without altering the
volume of the system V = (Nx)

3 in the former method. However, the disad-
vantage of this approach is that Nt is an integer. In addition, many lattice
gauge codes require even values of Nt, so that the variation possibilities of the
temperature 1

Nτ a
− 1

(Nτ+1)a
≃ 1

(Nτ )2a
= T

Nτ
may become coarse.
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Figure 3.7: g〈q̄σµνGµνq〉 plotted against temperature T from Ref. [5]. The vertical
dashed line denotes the critical temperature Tc = 280 MeV in quenched QCD.

In order to find the critical temperature at phase transition one studies the
temperature dependence of an order parameter such as a Polyakov loop or quark-
gluon condensate. . . etc. If the QCD coupling, 6/g2

0, is large enough, then the lattice
spacing is related to the bare coupling by

a =
1

λL

R(g0), (3.6.10)

with
R(g0) = (β0g

2
0)

−β1/2β2
0e−(1/2β0g2

0), (3.6.11)

where ΛL is a physical scale in terms of which dimensional quantities can be mea-
sured, and β0, β1 are given by

β0 =
1

16π2
(11 − 2

3
NF ), (3.6.12)
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β1 =
1

(16π2)2
(102 − 38

3
NF ), (3.6.13)

and the temperature is given by

T =
1

Nτa
=

λL

NτR(g0)
. (3.6.14)

Let gc be the critical coupling at which the phase transition takes place. Then the
critical temperature is given by

Tc =
λL

NτR(gc)
. (3.6.15)

In Ref. [106] the thermal effects on the quark-gluon mixed condensate g〈q̄σµνGµνq〉,
as well as 〈qq̄〉 are studied using SU(3)c lattice QCD with Kogut-Susskind [107]
fermions at the quenched level. The phase transition is signalled by a sharp de-
crease in both condensates observed at Tc = 280 MeV. Of particular note is that the
thermal effects below Tc are found to be weak. If the above calculated value of the
transition temperature is adopted, i.e. Tc = 280 MeV, then the number of lattice
slices would roughly be Nτ = 10, for a lattice spacing a = 0.1 fm.

3.7 Conclusion

The properties of colour flux tubes can be unravelled following the construction of
the static meson or baryon. Wilson loop and Polyakov lines operators correspond
to two distinct approaches to construct these heavy quark states. The Wilson loop
utilizes the overlap in the transfer matrix formalism, and the calculated flux distribu-
tion using this operator suffers from biasing by the shape of the interpolating fields.
On the other hand, the Polyakov loop correlators addresses the free energy of the
static meson or baryon and provide a set of unbiased operators to unravel the shape
of the gluonic distribution. However, these sets of operators suffer from a bad signal
to noise ratio and a suitable noise reduction technique, depending on the source
separation and temperature scale, has to be employed. This can be very expensive
in terms of the computational resources especially at low temperatures, as we will
discuss in Chapter 5. The loop operator is exponentially suppressed with the in-
crease of the separation distance between the sources and the temporal extent of the
lattice. The study of these gauge-invariant objects may still be practically feasible
for temperatures near the deconfinement phase of QCD. This has two advantages:
the first is that we can unravel the changes in the shape of the glue distribution due
to the changes in the temperature. The second is that the analysis near the end of
the QCD plateau may provide insights about the corresponding distribution at zero
temperature.



Chapter 4

Bosonic String Model

4.1 Outline

The dual superconductivity scenario of quark confinement implies the formation
of a stringlike flux tube between the quark–antiquark pair. An effective bosonic-
string description can be given for the colour-electric flux tube. The string picture
has measurable effects on both the levels of the quark anti-quark potential as well
as on the width of the field distribution. The picture also describes the thermal
dependence of both quantities. In this chapter, we review the expectations of the
string picture for both mesonic and baryonic systems. We also present a method
to include the thermal effects into the junction width, based on the baryonic string
model.

4.2 Introduction

With the proliferation of the newly discovered particles in particle accelerators and
cosmic rays in the 1960s, regularities were soon found among particles properties.
The Chew-Frautschi plots of the angular momentum J vs M2 yielded parallel lines
now well known as Regge trajectories. Venziano [108] proposed a simple formula
for scattering which accounted for Regge trajectories. This motivated the proposal
of the hadronic string theory, where the hadrons are explained as excitation of
relativistic strings.

Though the hadronic string theory encountered a success in accounting for Regge
trajectories as well as the Veneziano formula, it ran quickly into difficulties. The
consistency with quantum mechanics and Lorentz invariance requires the space time
dimension to be 26. In addition to that, the spectrum of string theories includes
massless spin 2 particles which are not hadrons. String theories had lost their appeal
as candidate theories of hadrons. Instead they were proposed with a supersymmetric
extension in the context of unification of all known forces including gravitation.

In conjunction with these developments, the quark model emerged, with the dis-
covery of SU(3) colour symmetry as an exact symmetry. The model was eventually
expanded into a fully-fledged relativistic quantum field theory in which the analogue
of photons are the gluons which belong to the 8 dimensional adjoint representation
of the colour group.

49
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Quantum chromodynamics has a very peculiar property, that of quark confine-
ment. The quarks do not exist in Nature as asymptotic states. Until now, it is
not clear how the quark confinement could be physically realized. The dual su-
perconductor model of the QCD vacuum [52, 49, 109] is one of the classic pictures
which provides a confinement scenario based on the formation of a thin stringlike
colour-electric flux tube.

In fact, the formation of stringlike defects is not a peculiar property of the
QCD flux tubes, and is realized in many physical phenomena such as vortices in
superfluids [110], flux tubes in superconductors [111], vortices in Bose Einstein con-
densates [112], Nielsen-Olesen vortices of field theory [47], and cosmic strings [113].
The physical parameters of each of these models fix the properties of this stringlike
object.

However, quantum mechanical effects become relevant in certain phases of the
model, giving rise to interesting measurable effects. To find a consistent quantum
description within the quantization scheme used in bosonic string theories, we en-
counter the difficulty that this is only possible in 26 dimensions.

Shortly after Nambu [114] suggested a formal relation between gauge-invariant
loops and strings. Lüscher and Weisz [67] developed their effective string description.
They showed that there is universal long distance correction to the confining linear
potential [115]

V (R) = σR − (D − 2) π

24

1

R
. (4.2.1)

This should be distinguished from the non-universal Coulomb term at short dis-
tances, which depends on the details of the gauge group.

The stringy signatures of the flux tubes can be investigated in lattice gauge theo-
ries by measuring average values of Wilson loops or Polyakov loop correlators. In the
former approach one uses a transfer matrix interpretation in studying configurations
with a static pair of a quark and an antiquark.

Early attempts to verify Lüscher predictions on the lattice occured in the 1980s
when Ambjorn and De Forcrand [116, 117] reported having measured the Lüscher
term in numerical simulations, although these measurements have been criticized
for being not very accurate. Lüscher and Weiss developed the Multi-level algorithm
which enables exponential noise reduction [118]. The Lüscher term has now been
measured with unprecedented accuracy in SU(3) gauge theory [119]. Even so, this
does not provide a clear indication of the type of true QCD string theory. A va-
riety of string theories with different boundary conditions give rise to the Lüscher
term was shown by Dietz and Filk [120]. Naik [121] also showed that AdS/CFT
correspondence yields a Lüscher term. On the other hand, non-bosonic strings were
ruled out by Lucini et al [122].

Polchininski and Strominger [123] suggested to handle such string-like defects by
an effective string theory. This proceeds in a similar fashion to the effective field
description of the low energy dynamics of pions and nucleons wherein one retains
the symmetry features of QCD, like chiral symmetry, but otherwise relax other
constraints like the renormalizability of the allowed action.
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4.3 Mesonic string

4.3.1 Quark–antiquark potential

The correlation function of two Polyakov loops on the lattice determines the inter-
action potential between the colour sources

〈P (0) P †(R)〉 =

∫
d[U ] P (0) P †(R) exp(−Sw),

= exp(−V (R, T )/T ). (4.3.1)

Sw is the plaquette action and T is the physical temperature. The self-interactions of
the glue exchanged between two color sources in QCD can result in the squeezing of
the glue into a thin one-dimensional stringlike object. The immediate consequence
of this string picture is that a functional form can be ascribed to the Polyakov-
loop correlators, namely, the partition function of the string. The correlators are
expressed as functional integrals over all the world sheet configurations swept by the
string,

〈P (0) P †(R)〉 =

∫

C
[D X] exp(−S(X)). (4.3.2)

The vector Xµ(ζ1, ζ2) maps the region C ⊂ R
2 into R

4, with a Dirichlet boundary
condition X(ζ1, ζ2 = 0) = X(ζ1, ζ2 = R) = 0, and a periodic boundary condition
along the time direction X(ζ1 = 0, ζ2) = X(ζ1 = LT = 1

T
, ζ2), and S is the string

action and can be chosen to be proportional to the surface area, i.e., the Nambu-
Goto action,

S[X] = σ

∫
dζ1

∫
dζ2

√
g, (4.3.3)

where gαβ is the two-dimensional induced metric on the world sheet embedded in
the background R

4

gαβ =
∂X

∂ζα

· ∂X

∂ζβ

, (α, β = 1, 2),

g = det(gαβ).

Gauge fixing is required for the path integral of Eq. (4.3.2) to be well defined
with respect to Weyl and reparametrization invariance. The physical gauge X1 =
ζ1, X

4 = ζ2 would restrict the string fluctuations to transverse directions to C. At the
quantum level, Weyl invariance is broken in four dimensions; however, the anomaly
is known to vanish at large distances [124]. The action after gauge fixing reads

S[X] = σ

∫ L

0

dζ1

∫ R

0

dζ2 ( 1 + (∂ζ1X⊥)2 + (∂ζ2X⊥)2)
1
2 . (4.3.4)

Expanding the square root in powers of σRLT

S[X] = σ R LT +
σ

2

∫ LT

0

dζ1

∫ R

0

dζ2(∇X⊥)2 + ....., (4.3.5)
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the action decomposes into the classical configuration and fluctuation part, and the
string higher-order self interactions. A leading-order approximation can be made by
neglecting the self-interaction terms; the path integral Eq. (4.3.5) is then

〈P (0) P †(R)〉 = e−σR LT [det(−1

2
∇2)]−1. (4.3.6)

The determinant of the Laplacian on the cylinder has been regulated using a
lattice regulator in Ref. [117]. The potential is obtained in closed form for a length
scale comparable to the thermodynamic scale in [125]. The effective potential is

V (R, T ) =

(
σ − π

3
T 2 +

2

3
T 2 tan−1(

1

2 R T
)

)
R

−
(

π

12
− 1

6
tan−1(2 R T )

)
1

R

− T

2
log(1 + (2R T )2) + µ. (4.3.7)

In the zeta function regularization scheme, the potential in four dimensions is
given by

V (R) = 2 T log η

(
i

2TR

)
+ σR + µ(T ), (4.3.8)

with the Dedekind eta function

η(τ) = q
1
24

∞∏

n=1

(1 − qn); q = e−2 π
T R , (4.3.9)

and µ(T ) is a renormalization parameter. The limit of large string length [117]
entails taking the temperature-dependent string tension to be

σ(T ) = σ − π

3
T 2. (4.3.10)

The free-string model predicts a temperature-dependent quark–antiquark po-
tential that is featured by the existence of a logarithmic term in addition to a
leading-order decrease in the string tension by an amount π

3
T 2.

4.3.2 Width of the string

The vibration modes of the stringlike object render an effective width for the flux
tube. A well known prediction made by Lüscher, Münster and Weisz [126], based
on the effective bosonic string model, has shown that the mean-square width of the
vibrating flux tube at the centre plane grows logarithmically as a function of the
interquark separation in four dimensions

w2 ∼ 1

πσ
log(

R

λ
), (4.3.11)

where λ is an ultra-violet scale. With the increase of the temperature, higher order
gluonic degrees of freedom are present and the effective width of the corresponding
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string is expected to manifest an intricate behaviour involving both the distance and
the temperature. The mean square width of the string is defined as

W 2(ξ; τ) = 〈X2(ξ; τ) 〉,

=

∫
C [D X] X2 exp(−S[X])∫

C[D X] exp(−S[X])
, (4.3.12)

where ξ = (ξ1, iξ2) is a complex parametrization of the world sheet, such that ξ1 ∈
[−R/2, R/2], ξ2 ∈ [−LT /2, LT /2], with τ = LT

R
being the modular parameter of the

cylinder, and LT = 1/T is the temporal extent governing the inverse temperature.
Casselle et al. [65] and Gliozi [127] have worked out the delocalization of the

string for all the planes transverse to the line joining the quark pair by the corre-
sponding Green function. This technique proceeds by removing the divergence in
the quadratic operator in Eq. (4.3.12) by the use of the Schwinger [128] point-split
regularization, then taking the limiting action for the Nambu-Goto model as that
of the corresponding Gaussian model. The quadratic operator is then the correlator
of the free bosonic string theory in two dimensions

〈X2(ξ; τ)〉 =(ξ) · X(ξ + ǫ)〉,
=G(ξ, ξ + ǫ). (4.3.13)

This Green function is the solution of the Laplace equation on the cylinder with a
Dirichlet boundary condition,

G(ξ, ξ0) =
−1

2π
log

∣∣f(ξ, ξ0)
∣∣. (4.3.14)

The conformal map reads [129],

f(ξ, ξ0) =
θ1[π(ξ − ξ0)/R; τ ]

θ2[π(ξ − ξ0)/R; τ ]
, (4.3.15)

where the Jacobi θ functions are

θ1(ξ; τ) = 2
∞∑

n=0

(−1)nqn(n+1)+ 1
4 sin((2n + 1) ξ),

θ2(ξ; τ) = 2
∞∑

n=0

qn(n+1)+ 1
4 cos((2n + 1)ξ), (4.3.16)

with q = e
−π
2

τ . The expectation value of the mean square width would then read

W 2(ξ1, τ) =
D − 2

2πσ
log(

R

R0

) +
D − 2

2πσ
log

∣∣ θ2(π ξ1/R; τ))

θ′1(0; τ)

∣∣. (4.3.17)
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This expression converges for modular parameters close to 1, and contains, in
addition to the logarithmic divergence term, a correction term that encodes the
dependence of the width at different transverse planes on the modular parameter
of the cylinder. At finite temperature, this term is contributing to the width at all
the planes. Figure 4.1 is a plot of the mean-square width calculated at ξ1 values via
Eq. (4.3.17). The plot shows the profile for several modular parameters and fixed
separation between the two Polyakov loops.
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Figure 4.1: The mean-square width, Eq. (4.3.17), of the flux tube evaluated at
all planes ξ1 perpendicular to the quark–antiquark line. The separation distance
between the pair is R a−1 = 10.

The string model predicts an increase in the width with the increase of the
temperature. The increase in the width is maximum at the central plane which is
seen as an increase in the curvature in the profile of the string fluctuations. At
zero temperature LT → ∞, Eq. (4.3.17) converges well, and the second term in
Eq. (4.3.17) still contributes to the whole shape of the fluctuations at all planes
except the middle; and the contribution of this term at zero temperature is

D − 2

2π
log

∣∣cos(
πξ1

R
)
∣∣, (4.3.18)

which is seen from the plot of Fig. 4.1 to be subtle in the middle region and have
more pronounced effects on the width near the quark positions.

4.4 The Baryonic string picture

The Y-ansatz for the flux-tube shape can be derived from the strong coupling ap-
proximation [130, 131, 132] and is consistent with the dual superconducting picture
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Figure 4.2: Fluctuating flux tubes of three static color sources Q. The junction
position φ is measured relative to the classical location which minimizes the total
strings length (Fermat point).

of QCD. The Y-shaped string is the most relevant to the IR region and amounts to
three squeezed flux tubes that meet at a junction.

In the baryonic string model, the quarks are connected by three strings that meet
at a junction as in Fig. 4.2. The classical configuration is the one that minimizes
the area of the string world sheets. The position of the junction is thus determined
by the requirement of the minimal total string length (Fermat point). Each string’s
worldsheet (blade) consists of a static quark line and the worldline of the fluctuating
junction as illustrated in Fig. 4.3.

The parameters s and t (time) label the position on string world-sheet (blade) i.
The position of the junction is given by s = Li + ei.ϕ(t), where Li is the length of
the blade and the scalar product ei.ϕ(t) of the 4-vector ϕ(t) and the unit directional
vectors as illustrated in Figs. 4.3 and 4.4. The label i denotes the blades.
From continuity, the boundary conditions for the transverse fluctuations ξi(t, s) is

ξi(t, Li + ei · ϕ(t)) = ϕ⊥i(t) , (4.4.1)

where, ϕ⊥i ≡ ϕ−ei(ei ·ϕ). The transverse fluctuations ξi(t, s) vanish at the location
of the quarks (s = 0), and are periodic in the time t, with period LT .

In this model, the junction is assumed to have a finite mass m. This results in
a static energy and a kinetic energy term. Expanding the NG action around the
equilibrium configuration yields

S = S‖ +
σ

2

∑

i,j

∫

Γi

d2ζ
∂ξi

∂ζj

· ∂ξi

∂ζj

+ m

(
LT +

1

2

∫ LT

0

dt |ϕ̇|2
)

, (4.4.2)

where again ζ1, ζ2 are world sheet parameters and

S‖ = σ
∑

i

(
LiLT +

∫
dt ei · ϕ(t)

)
= σLY LT . (4.4.3)



56 CHAPTER 4. BOSONIC STRING MODEL

Figure 4.3: World sheet spanned by one of the strings during time evolution up to
the junction.

where, LY =
∑

i Li above denotes the total string length.
The system’s partition function is given by

Z = e−(σLY +m)LT

∫
Dϕ exp

(
−m

2

∫
dt |ϕ̇|2

) 3∏

i=1

Zi(ϕ) . (4.4.4)

Here Zi(ϕ) denotes the partition function for the fluctuations of a given blade that
is bounded by the junction worldline ϕ(t):

Zi(ϕ) =

∫
Dξi exp

(
−σ

2

∫
|∂ξi|2

)
. (4.4.5)

The string partition functions Zi(ϕ) are Gaussian functional integrals and can
be calculated according to

Zi(ϕ) = e−
σ
2

R

|∂ξmin,i|2| det(−△Γi
)|−(D−2)/2 , (4.4.6)

where ξmin,i is the minimal-area solution for given ϕ(t). △Γi
denotes the Laplacian

acting on the domain (blade) Γi. ξmin,i(t, s) is harmonic and satisfies the boundary
conditions Eq. (4.4.1) [133].

The world sheets Γa are general domains that can be conformally mapped into
rectangles:

fa(z) = z +
1√
LT

∑

ω=0

ei.ϕω

sinh(ωLi)
eωz + O(ϕ2). (4.4.7)
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Jahn and de Forcrand [133] calculated the Casimir energy for the baryonic poten-
tial Vqqq. This has been done by evaluating the determinant of the Laplacian in
Eq. (4.4.6) by conformally mapping the resulting domains to rectangles. The bary-
onic potential Vqqq then reads

Vqqq(L1, L2, L3) =σ
∑

i

Li + V‖ + V⊥ + O(L−2
i ) ,

with

V‖ = − π

24

∑

i

1

Li

+

∫ ∞

0

dw

2π
ln

[
1

3

∑

i<j

coth(wLi) coth(wLj)

]
,

V⊥ = − π

24

∑

i

1

Li

+

∫ ∞

0

dw

2π
ln

[
1

3

∑

i

coth(wLi)

]
. (4.4.8)

4.4.1 Width of the junction

The thickness of the fluctuating baryonic junction can be calculated based on the
bosonic string model. This entails evaluating the expectation value

〈ϕ2〉 =

∫
Dϕϕ2e−S

∫
Dϕe−S

. (4.4.9)

The string width can be decomposed into perpendicular contributions 〈ϕ2
⊥〉 to the i-

th quark world sheet, and 〈ϕ2
‖〉 are the mean-square width of the parallel fluctuations

within the plane of the quarks, as illustrated in Fig 4.2:

〈ϕ2〉 = 〈ϕ2
⊥〉 + 〈ϕ2

‖〉. (4.4.10)

Leading-order approximation

The action S is defined in Eq. (4.4.2) and can also be read from the partition function
Eq. (4.4.4). The thickness of the string [134] at the junction can be calculated by
taking the expectation value of ϕ2 [see Eq. (4.4.2)]

〈ϕ2〉 =

∫
Dϕϕ2e−S

∫
Dϕe−S

. (4.4.11)

To do this, we have to consider integrals

Z ≡
∑

i

Zi(ϕ) =

∫
Dϕ exp(−m

2

∫ LT

0

dt |ϕ̇|2 +
∑

i=1

(−σ

2

∫
d2ζ

∑

α

∂ξmin,i

∂ζα

· ∂ξmin,i

∂ζi

+
D − 2

24π

∑

w

w3 coth(wLi)|ei · ϕw|2)).

(4.4.12)

The integral over ϕ is decomposed in Eq. (4.4.12) using |ϕw,⊥i|2 = |ϕw|2 − |ϕw · ei|2
into parallel and perpendicular components to the plane of the quarks. The mean-
square value of the perpendicular fluctuations is
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〈ϕ2
⊥〉 =

2

LT

∑

w>0

1

m w2 + σw
∑

i coth(w Li)
, (4.4.13)

with w = 2πn/LT . The parallel fluctuations read

〈ϕ2
‖〉 =

1

σπ

∑

w>0

1

w

m̃w + (1 − aw2)C1

m̃2w2 + 2m̃w(1 − aw2)C1 − 4aw2 (C1)
2 + 4

3
(1 + aw2)2C2

(4.4.14)

where

m̃ =
2

3

m

σ
, a =

2

12πσ
, (4.4.15)

C1 =
1

3

∑

i

coth(wLi) , (4.4.16)

C2 =
1

3

∑

i<j

αij coth(wLi) coth(wLj) , (4.4.17)

with the geometrical coefficients

αij = sin2

(
2π

(i − j)

n

)
. (4.4.18)

In contrast to the perpendicular fluctuations, the mean-square width of the parallel
fluctuations does depend on the geometrical setup of the quarks.

Convolution of the junction fluctuations

Here, we present a method for the inclusion of the thermal effects into the mean-
square width of the baryonic junction. The mean-square width of the fluctua-
tions in the mesonic limit does not account for the temperature effects. Evidently,
Eq. (4.4.13) does not reproduce equation Eq. (4.3.17). Moreover, Eq. (4.4.13) and
Eq. (4.4.14) indicates a decrease in the junction width with the increase of the
temperature.

In the limit LT → ∞, for general n string system of identical lengths L = Li,
the perpendicular contribution reads

〈ϕ2
⊥〉 =

D − n

πn

∫ ∞

0

dw
1

mw2 + nσw coth(wL)
. (4.4.19)

In the leading order, the integral simplifies to

〈ϕ2
⊥〉 =

D − n

nπσ
ln

L

L0

. (4.4.20)

The arbitrary constant is contained in L0 which generally will depend on the di-
mension and the number of strings and the ultraviolet properties of the correspond-
ing gauge model [135]. This indicates that the width of the junction, orthogonal to
the plane swept by the quarks, grows logarithmically with the distance.
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The above equation is consistent with the mesonic string fluctuations of Eq. (4.3.17).
This can be shown by first considering the limit LT → ∞. Then Eq. (4.3.17) becomes

W 2(ξ1, τ) =
D − 2

2πσ
log(

R

R0

) +
D − 2

2πσ
log

∣∣cos(
πξ1

R
)
∣∣. (4.4.21)

The mean-square width, W 2
0 , determined at the symmetry point of the string

world sheet depends only on the first term

W 2
0 =

(D − 2)

2πσ
ln

R

R0

. (4.4.22)

By dividing the string connecting a quark and an antiquark into two parts of equal
length connected in the middle by a junction, L = 2L′ = 2R, see Fig. 4.4, one can
relate Eq. (4.4.22) and (4.4.20). These equations coincide provided that the con-
stants are identified as L0 = 2R0. The parameter m which has been absorbed into
L0, therefore, scales linearly with the parameter R0. Nevertheless, the mean-square
width of the fluctuations in the mesonic limit does not account for the temperature
dependent effects. Evidently, Eq. (4.4.13) does not reproduce equation Eq. (4.3.17)
unless we assume a temperature dependence for the mass of the junction. One there-
fore should consider the higher-order terms in the conformal mapping Eq. (4.4.7) in
the calculation scheme.

To keep the form of the formulas as simple as possible, the temperature depen-
dence in the higher-order terms of the conformal mapping from a fluctuating blade
to a rectangular one can be accounted for by assuming a smoothing scalar function
ψ such that ϕ →

∫ ∞
−∞ φ(τ)ψ(t− τ)dτ . The form of this function can be found from

the mesonic limit. The integration over Fourier modes of the fluctuating junction φ
can be performed in a similar way as detailed in Ref. [134].

The general domains Γa describing the world sheet of each blade can now be
conformally mapped into rectangles using the convoluting scalar function ψ

fi(z) = z +
1√
LT

∑

ω=0

ek.ϕωψ(ω,Li)

sinh(ωLi)
eωz. (4.4.23)

The mean-square width of the perpendicular fluctuation of the junction acquires
a simple modification after solving for the position of the junction ξmin,i for each
blade

ξmin,i =
1√
LT

∑

w

ϕw,⊥i
sinh(ws)

sinh(wLi)
eiwt + O(ϕ2), (4.4.24)

with the convoluted position

ξmin,i =
1√
LT

∑

w

ϕw,⊥i ψ(w,Li)
sinh(ws)

sinh(wLi)
eiwt . (4.4.25)

Following the same procedure as Ref. [134] for the calculation of the thickness of
the junction, this results in a simple modification for the perpendicular fluctuations
of Eq. (4.4.13) to
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Figure 4.4: The world sheets of the strings in a baryon and a meson. The string
in the static meson is modelled as being composed of two strings connected by a
junction in the middle.

〈ϕ2
⊥〉 =

2

LT

∑

w>0

1

mw2 + σw
∑

i coth(wLi)ψ(w,Li)
. (4.4.26)

The form of this convoluting scalar can be derived from the mesonic limit. At the
centre point between the quark and anti-quark we have ψ(w,Li) = ψ(w,Lj). The
mesonic string picture at finite temperature, Eq. (4.3.17), implies the mean-square
width at the symmetry point of the string is given by

w2(ξ1, τ) =
1

πσ
log(

R

R0

) +
1

πσ
log

∣∣ χ(τ)
∣∣, (4.4.27)

with χ(τ) =
θ2(0; τ)

θ′1(0; τ)
. Equating both expressions of Eq. (4.4.26) and Eq. (4.4.27),

with R = 2Li = L, expanding the logarithm in the right hand side and solving for
ψ(w,Li) yields the following expression

ψ(w,Li) =
−kw

2σ coth(wLi)
− (wLT − π)

2wLT coth(wLi)

(
2Li χ(τi) + 1

2Li χ(τi) − 1

)w LT /π−1

. (4.4.28)

As indicated above, the parameter m shifts the mean-square width of the fluc-
tuations by a constant. The parameter m can be chosen such that R0 cancels out
from both sides of Eqs. (4.4.26) and (4.4.27).

A similar procedure can be applied to the mean-square width of the parallel
fluctuations, Eq. (4.4.14). This results in the following expression
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〈ϕ2
‖〉 =

1

σπ

∑

w>0

1

w

m̃w + (1 − aw2)C1

m̃2w2 + 2m̃w(1 − aw2)C1 − 4aw2 (C1)
2 + 4

3
(1 + aw2)2C2

,

(4.4.29)

where

m̃ =
2

3

m

σ
, a =

2

12πσ
, (4.4.30)

C1 =
1

3

∑

i

coth(wLi) ψ(w,Li) , (4.4.31)

C2 =
1

3

∑

i<j

αij coth(wLi) ψ(w,Li) coth(wLj) ψ(w,Lj) , (4.4.32)

which includes thermal effects into the solutions worked out in detail in Ref. [134]
for the junction fluctuations at zero temperature.

In fact, the thermal effects on the level of three-quark potentials has been dis-
cussed by Andreev [136] from the gauge-string duality perspective. The consid-
eration of the multi-quark potentials using collective coordinates for the junction
allowed for the calculations of baryonic potentials for the SU(N) gauge group as
well as the pseudo-potentials at finite temperature. To the best of our knowledge,
these pseudo-potentials, in addition to the above prediction of the baryonic string
model for the width of the junction, remain to be investigated on the lattice.

Nevertheless, the first test of the baryonic string model predictions with the
lattice data for the potential of three static quarks at zero temperature has been
reported in Ref. [137]. The Y-ansatz has been discussed in detail for different three-
quark geometries. Moreover, the precise numerical measurements of the 3-state
Potts model in these calculations made it possible to verify the subleading Lüscher-
like corrections that come from Eq. (4.4.8). These numerical simulations present
an indication that when the separation between any two quarks is large, the flux-
tubes behave as a system of a three strings that meet at a junction. In addition,
these calculations confirmed the universal (gauge-group independent) Lüscher-like
correction, 1/LY = π

24

∑
i

1
Li

, to the Y-ansatz, and hence the validity of the baryonic
string picture at zero temperature and large distances.

In the strong coupling regime of gauge theories in D = 3 or D = 4, the flux tube
between a quark–antiquark pair has a constant width at large source separations.
The flux-tube undergoes a roughening transition with the decrease of the coupling
constant. The rough phase of the flux-tube is characterized by strong fluctuations
of the collective coordinates describing the position of the underlying string. In this
phase the width of the flux tube is no longer constant and increases logarithmically
with the increase of the inter-quark separation [126].

At zero temperature, the string model assumptions are valid in the rough phase of
the LGT where collective coordinates for the flux tube are used [119, 63, 64, 65, 66].
Near the deconfinement point, the mesonic results are indicating [135, 129, 138,
139, 140] a linear growth of the flux tube width in agreement with string model
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predictions. This must mean that at high the temperatures, near the deconfinement
point, the string model assumptions are still working.

In the case of baryon, on the other hand, the strong coupling results, as well
as lattice results, are indicating a Y-ansatz at large sources separation distances at
zero temperature. The use of the collective co-ordinates for the junction in this
Y-shape string model is thus a good assumption at zero temperature. In addition
to that, the mesonic results near the deconfinement point indicate that the use of
collective co-ordinates for the flux tube itself is successful in predicting the large
distance features of the flux-tubes. The Y-shaped string model is then expected to
be a working picture at high temperatures, and the observed features of the gluonic
distribution are expected to arise as a result of the vibration of this underlying
Y-shaped string system.

Figure. 4.5 illustrates two possible baryonic string configurations that can give
rise to two different types of ∆-shaped action density distribution. In the first
baryonic picture, Fig. 4.5. (a), a string connecting each pair of quarks forms. At
large quark separations, the vibrations of each of the individual strings in this model
is expected to give rise to an energy distribution analogous to the quark–antiquark
pair at the edges of the triangle. The width profile of this system is related to the
properties of the flux tube of the corresponding mesonic system. As we will see
in Chapter 9, the lattice data at a temperature near the end of the QCD plateau
indicate shrinking in the width profile, and this shrinking cannot be realized in this
string picture, since the lattice data at the same temperature do not indicate this

(a) (b)

Figure 4.5: The ∆ and Y baryonic strings configurations. The delocalization of the
junction in the Y-shaped string system trace a filled ∆ shaped energy distribution
with maximal effect at the junction of the system. The ∆ string configuration
implies an energy distribution of maximum effect at the edges.
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behaviour in the mesonic case of Chapter 6.
The validity of the Y-shaped 3-string model at finite temperature is based mainly

on the analysis of the lattice data [141] reported in Chapter 9. In Chapter 9, the
action density distribution of three static-quark system is not of the shape of tubes
that form around the perimeter of the three-quark system indicating a direct sum
of qq̄ forces and hence implying the baryonic string picture of Fig. 4.5 (a). In fact,
the lattice data [141] of Chapter 9 indicate a filled ∆ shape where the maximal
effect on the action density is at the centre of the three-quark system, not at the
edges. Moreover, for the temperatures at the end of the QCD plateau, the flux-tube
radius profile shows an underlying Y-shape. We note that the width profile is not
related to the iso-surface profile; the width is the quantity of direct relevance to the
predictions of the string model.

The analysis of the radius profile of the flux tube exhibits an underlying Y-shape
as well as a maximal vacuum suppression near the Fermat point. This provide
solid ground to interpret the observed filled ∆-shape as coming about through the
delocalization of the Y-junction, tracing out a filled ∆ shape, and hence justifies the
need to generalize the 3-string Y-shaped baryonic string model.

Apart from the numerical lattice data, a mechanism that suggests a possible
transition or switching between the two baryonic string arrangements, i.e a ∆-
shape string configuration to a Y-shape string configuration, has been ruled out
in Ref. [142] on purely phenomenological grounds.

The justifications for generalizing the string model formulas to include the tem-
perature dependence can be summarized in the following main points:

• The strong coupling results [130, 131, 132] as well as the lattice results [137]
at zero temperature support the Y-shaped string picture for the flux tubes
in the baryon. In addition to this, the success of the string model near the
deconfinement point in the meson indicates that the assumptions of the rough
phase of Yang-Mills theory still holds, which implies the use of the collective
co-ordinates for the flux-tubes that has been observed at zero temperature.

• Observation of a filled ∆-shape gluonic distribution with maximum expulsion
of the vacuum fluctuations localized near the Fermat Point of the triangular
configuration [141].

• The analysis of the gluonic field distribution in the baryon shows that the
aspect ratio between the parallel and perpendicular mean-square width to
the quark planes is greater than unity [141] (as we will see in Chapter 9),
this indicates a strong restoring force in the quark plane of the three string
system. This supports that the filled ∆-shape profile comes from the vibration
of a Y-shaped string system.

• Theoretical difficulties [142] in the mechanisms that show switching from the
Y-shape string model to the ∆-shape string model exist and this has not been
observed on the lattice.

In addition to the above points there are also the following reasons that are in
support of the Y-shaped string model at finite temperature



64 CHAPTER 4. BOSONIC STRING MODEL

• The abelian projected theory shows a Y-shaped underlying current at T/Tc =
0.8 [143].

• Multi-junction systems are expected to appear for quark systems greater than
three or number of strings greater than three [134].

• The ∆-shaped spatial links do not define a gauge-invariant state in the 3Q
Wilson loop operator.

• As we will see in Chapter 9, the above generalized model is successful in
accounting for the width profile of the junction.

4.5 Summary and Conclusion

In this chapter we presented a detailed overview of the predictions of the bosonic
string model for both the mesonic and baryonic systems. The free string model
predicts a temperature-dependent quark anti-quark potential that is featured by a
leading-order decrease in the string tension by an amount π

3
T 2. The string model

predicts an increase in the width with the increase of the temperature and a subse-
quent increase in the curvature in the profile of the string fluctuations. The mean-
square width of the thin string-like flux tube turns from logarithmic growth at T = 0
into linear growth with the increase of source separation at high temperature. The
formula of the baryonic string model for the width of the junction has been extended
to a high temperature regime by convoluting the leading-order junction fluctuations
with a smoothing function whose form can be found from the mesonic limit.

The major goal in the next chapters will be to confront the bosonic string pre-
dictions for the thermal delocalizations of the flux tube for both static mesons and
baryons as well as the qq̄ force with lattice gauge theory results.



Chapter 5

Noise Reduction in Loop
Correlators

5.1 Outline

Throughout this investigation, we study the gluonic field strength after constructing
static mesons and baryons with the use of Polyakov loop operators. Polyakov loops
are an unbaised set of operators that are known to suffer from a bad signal to
noise ratio. Four-dimensional smearing or cooling of the gauge field can be used
to enhance the signal to noise ratio. However, these methods have the problem
of the associated loss of short distance physics. In this chapter, we study this
noise reduction technique in detail, such that it can be used to extract the correct
physics in a systematic and controlled manner. We report the effects of smearing
on the static qq̄ potential and find that associated effects become subtle for source
separations greater than the diameter of smearing. In the remainder of this chapter
we discuss the link-integration method which is an effective technique for noise
reduction at small quark separations. Also we describe the Multi-level algorithm
which is the most effective technique for noise reduction at low temperatures.

5.2 Four-dimensional smearing of the gauge field

As it was discussed in the last chapter, the translational-invariance through the
lattice hyper-torus can be exploited to decrease the statistical errors by computing
the correlations of Eq. (3.3.3) on every node of the lattice, and averaging the results
over the volume of the four-dimensional torus. To further improve the signal to
noise ratio in the gluonic correlation function, local action reduction by smearing
the gauge links can be performed on the whole four-dimensional lattice. Although
smearing the gauge field results in the elimination of the short distance physics, the
main focus in this investigation is to resolve the nature of the flux distributions in
the infrared (IR) region of the theory.

In this chapter, we show that the effects on the large distance correlations can
be kept minor with the appropriate choice of smearing levels. Similar techniques
have been adopted in Ref. [144] in the determination of the large distance QQ̄ force
in vacuum with different levels of HYP smearing. In Sec. IV-A, we show that for a

65
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given distance scale, the measured quark–antiquark force at large distances can be
left with negligible changes for a range of smearing levels. Alternatively to Ref. [145]
where the Cabbibo-Marinari cooling has been employed, we choose to smear the
gauge field by an overimproved stout-link smearing algorithm [146]. The use of this
algorithm should ensure that the four-dimensional smearing has a minimal effect on
the topology of the gauge field [146]. In standard stout-link smearing [147], all the
links are simultaneously updated. Each sweep of update consists of a replacement
of all the links by the smeared links

Ũµ(x) = exp(iQµ(x)) Uµ(x) , (5.2.1)

with

Qµ(x) =
i

2
(Ω†

µ(x) − Ωµ(x))

− i

6
Tr(Ω†

µ(x) − Ωµ(x)) ,

and

Ωµ(x) =

(
∑

ν 6=µ

ρµνΣ
†
µν(x)

)
U †

µ(x) ,

where Σµν(x) denotes the sum of the two staples touching Uµ(x) which reside in
the µ − ν plane. The scheme of over-improvement requires Σµν(x) to be replaced
by a combination of plaquette and rectangular staples. This ratio is tuned by the
parameter ǫ [146]. In the following we use a value of ǫ = −0.25, with ρµ = ρ = 0.06.
We note that for a value of ρ = 0.06, the over-improved stout-link algorithm is
roughly equivalent, in terms of UV filtering, to the standard stout-link smearing
algorithm with the same ρ = 0.06.

5.2.1 Smearing and cooling

In the literature there are different naming conventions of smearing and cooling.
Based on the dimensionality, the term ‘cooling’ can be used to mean the 4D iteration.
The term ‘smearing’ is excluded to mean only 3D iterations on the spatial links
of the interpolating fields used in the transfer matrix formalism. However, some
authors [146, 148, 149, 147] distinguish between cooling and smearing based on the
way the iteration updates proceed. The term cooling refers to an update of a single
link based on its neighbours, effectively one at a time as one sweeps across the
lattice. On the other hand, smearing is defined as a simultaneous update of all
link variables based on neighbours at the previous iteration. The dimensionality of
smearing can be 3D where only the spatial links are smeared, or 4D where temporal
links are involved. Throughout this work we adopt the later nomenclature.

5.2.2 Smearing radius

In the standard APE smearing [101], a smearing sweep consists of a replacement
of the link-variable Uµ(x) (µ = 1, 2, 3, 4) by the SU(3)c projected link Ūµ(x) that
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maximizes the trace

Re Tr{Ūµ(x)U †
s,µ(x)}, (5.2.2)

where

Us,µ(x) =(1 − α) Uµ(x) +
α

6

∑

µ6=ν

{Uν(x)Uµ(x + ν̂)

U †
ν(x + µ̂) + U †

ν(x − ν̂)Uµ(x − ν̂)Uµ(x + ν̂ − µ̂)}, (5.2.3)

and α is the smearing parameter. Consider by analogy, a scalar field φ(r; n + 1)
similar to the (n + 1)-th smeared gauge link in the µ direction. It is related to the
scalar field ϕ(r; n) at the n smearing time by correspondence to Eq. (5.2.3) via

φ(r; n + 1) = (1 − α) φ(r; n) +
α

6

∑

ν 6=µ

(
φ(r + aν̂; n)

+ φ(r − aν̂; n)
)
. (5.2.4)

Introducing a smearing time τ = n aτ with a spacing aτ , the finite difference smearing
operator can be approximated by ∆n ≃ aτ∂τ . Applying this operator into Eq. (5.2.4)
yields

∂τφ(r; τ) ≃ a

aτ

α

6

∑

ν 6=µ

(
∂νφ(r; τ) + ∂νφ(r − aν; τ)

)
.

(5.2.5)

It follows that

∂τφ(r; τ) = D∇2φ(r; τ),

with the diffuseness

D ≡ α

6

a2

aτ

. (5.2.6)

The unsmeared field corresponds to source

φ(r; n = 0) = δ(r). (5.2.7)

The solution of the above intial value problem Eq. (5.2.6) and Eq. (5.2.7) is a
Green function of the heat PDE equation. This gives the evolution of the scalar
field in the smearing time

G(r; τ) =
1

(4πDτ)
3
2

exp
[
− r.r

4Dτ

]
. (5.2.8)

The diffused field is Gaussian distributed through a sphere with a characteristic
radius

Rs ≡
(∫

d3rG(r; τ)r2

∫
d3rG(r; τ)

)1/2

,

=a
√

α n. (5.2.9)



68 CHAPTER 5. NOISE REDUCTION IN LOOP CORRELATORS

5.2.3 Calibration of smearing algorithms

Calibrating different smearing algorithms can proceed via comparing the respective
number of smearing sweeps in each smearing scheme with respect to a certain thresh-
old [149]. The reconstructed action-density [150] normalized to a single instanton
action S/S0 is the threshold adopted here. Fig. 5.1 shows the relative number of
smearing sweeps for different values of the stout-link smearing parameter ρ com-
pared to that at ρ = 0.06 in the improved stout-link smearing algorithm [146], with
ǫ = −0.25. Assuming that the number of smearing sweeps scales with the smearing
parameter as

ns(ρ2)

ns(ρ1)
=

(
ρ1

ρ2

)δ

, (5.2.10)

the fit of the logarithm of both sides in Eq. (5.2.10) to straight line yields a slope
δ = 1 as it is depicted in Fig. 5.1. The number of sweeps in the improved stout-link
smearing, therefore, scales inversely with the smearing parameters. The standard
APE smearing shows also the same scaling behavior [149] and both algorithms can
be calibrated through

α nape(α)

ρ ns(ρ)
= c. (5.2.11)

Calibration with respect to APE smearing at α = 0.7 yields the proportionality
constant c = 6.15(3). Using Eq. (5.2.9), Rs = a

√
ρ cns.

5.2.4 Quark–antiquark potential

Throughout this investigation, the technique adopted to enhance the signal to the
noise ratio in the correlation function which characterizes the gluon flux involves
smearing the gauge links by the over-improved stout-link smearing algorithm de-
scribed above. In this section we study the limitations of this method.

we consider 500 configurations of a 363 × 10 lattice at β = 6. The whole four
dimensional torus is smeared for the consecutive levels of smearing corresponding to
20, 40, 60, and 80 sweeps, forming four data set of smeared-gauge configurations.

The choice of the appropriate data set (smeared-configuration) for the numerical
evaluation of the expectation values in Eq. (3.3.3) at each distance scale, should
be based on a compromise to simultaneously achieve two tasks, namely that the
smearing level has a minimal effect on the physical observables, and a significant
error reduction is gained. The larger the separation distance between the quark pair,
the higher the smearing level required to gain good signal to noise in the correlations
in Eq. (3.3.3). However, smearing has an effect on the observables similar to the
increase of the lattice space-time cutoff, and a large enough number of smearing
sweeps will result in a subsequent loss of the physics on the short distance scale.

The physical observable of direct relevance to the properties of the gluonic flux
tube is the quark–antiquark potential. For each level of smearing, we numerically
evaluate the quark anti-quark potential and the corresponding force. At fixed tem-
perature T , the Monte Carlo evaluation of the quark–antiquark potential at each R



5.2. FOUR-DIMENSIONAL SMEARING OF THE GAUGE FIELD 69

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 95  100  105  110  115  120  125

n(
ρ=

0.
06

)/
n(

ρ)

n(ρ)

(a)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

-1.2 -1 -0.8 -0.6 -0.4 -0.2  0  0.2

ln
(n

(ρ
=0

.0
6)

/n
(ρ

))
 

ln(ρ/0.06)

(b)

Figure 5.1: (a) Plot of the logarithm of the average value of n(ρ = 0.06)/n(ρ)
versus ln(ρ/0.06). The line corresponds to a fit to a straight line passing through
the origin.
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is calculated through the Polyakov-loop correlators according to

V (R, T ) =
−1

T
log(〈P (0)P †(R)〉). (5.2.12)

The jackknife error analysis for the data shows a significant decrease in the
uncertainties associated with Polyakov-loop correlators on a short distance scale
when measurements are taken after 20 sweeps of smearing. For large distances, a
subsequent increase of 20 sweeps would provide error reduction by factors of 1.3 ≤
x ≤ 1.5 for the corresponding distances 0.6 fm ≤ R ≤ 1 fm. Table 5.1 summarizes
the factors of error reduction for the Polyakov-loop correlator after each incremental
increase of 20 sweeps of smearing. It is worth noting that by the use of a link
integration method [151], one would not expect a factor of error reduction that can
be more than x ≃ 1.1 in the middle region. For larger distances, however, the link
integration method would be beneficial only if supplemented by a large number of
measurements.

Table 5.1: The error reduction factor in the Polyakov-loop correlator, Eq. (3.5.29),
by the increase of the number of 20 smearing sweeps for each smeared data set.

No. sweeps 20 − 40 40 − 60 60 − 80

R = 6 a 1.3 1.1 1.1
R = 8 a 1.4 1.2 1.2
R = 10 a 1.5 1.3 1.2

To test the validity of the gauge-smearing approach, or equivalently, to determine
the levels of smearing for which the physics is left intact, one is tempted to set a
reference scale which signifies how the smeared data would behave with respect to
it. Here, we set this reference to be the string model parametrization of Eq. (4.3.7).
This approach of referencing the data to the string model is justified by the fits
previously reported in Ref. [81], which has returned good χ2 and shown stability to
the fit range at large distances.

The numerical data obtained for the quark–antiquark potential, Eq. (5.2.12),
on every smeared gauge configuration is fitted to the string picture qq̄ potential of
Eq. (4.3.7). The effects of smearing are expected to be more pronounced at short
distances. For this reason the minimal fit distances are taken as large as possible,
R > 0.7 fm for T = 0.8 Tc, and R > 0.9 fm for T = 0.9 Tc. The string tension has
been taken as a fitting parameter. The fits are returning good χ2 for all the smeared
data sets considered.

The quark–antiquark potential and the corresponding fits are shown in Fig. 5.2.
The fits to the data show almost equal slopes for all smearing levels. This is also man-
ifest in Table 5.2, where the string tensions are measured in accord with Eqs. (4.3.7)
and (4.3.10). Within the standard deviations of the measurement, the returned
string tensions for all levels of smearing are equal. At temperature T = 0.9 Tc, our
measurements for the string tension agree for all the data sets. Moreover, this value
is in agreement with that reported in Ref. [81].
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Figure 5.2: The quark–antiquark potential measured at each depicted smearing
level. The lines correspond to fits of the potential obtained from the string picture
of Eq. (4.3.7) for each data set as described in the text. The upper plot is at
T = 0.8 Tc while the lower plot is at T = 0.9 Tc.
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Table 5.2: The string tension measured on all data sets corresponding to various
levels of link smearing. The measurements are obtained from the fits to Eqs. (4.3.7)
and (4.3.10).

No. sweeps σa2 Fit range n = R/a

T = 0.8 Tc

20 0.047(3) 8-12
40 0.050(2) 8-12
60 0.0493(9) 8-12
80 0.0478(6) 8-12

T = 0.9 Tc

40 0.0385(8) 10-13
60 0.0377(9) 10-13
80 0.0373(8) 10-13
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Figure 5.3: The qq̄ force measured for all the smearing levels up to a distance of
1.4 fm. The temperature is T = 0.8 Tc , and β = 6. The line denotes the force as
predicted by the string model at finite temperature, Eq. (4.3.7).
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The factors of error reduction at higher temperature at R = 1 fm after 40 sweeps
of smearing compares to the corresponding one at T = 0.8 Tc after 80 sweeps. The
noise tends to decrease with the increase of the temperature. This analysis shows
that for the qq̄ separation distance R ≥ 1.0 fm as depicted in Table 5.2, all of the
smeared configurations are appropriate for revealing the gluonic field.

On the other hand, it is clear that the data points for R ≤ 0.8 fm shift upwards
with the increase in the number of smearing sweeps. The removal of short distance
physics is manifest here. The difference in the regularization brought about by the
increasing of the space-time cutoff introduced by smearing, shifts the qq̄ potential
by a renormalization constant in Eq. (5.2.12). To illustrate the effect of smearing on
the qq̄ potential, the potential Eq. (5.2.12) has not been normalized. The qq̄ force,
however, can be calculated to eliminate these constant shifts. With the definition
of the derivative on the lattice taken as in Refs. [62, 88], the force is computed as

F (r − a

2
) =

V (r) − V (r − a)

a
. (5.2.13)
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Figure 5.4: The diameter of smearing 2Rs versus the number of sweeps ns for the
improved stout-link algorithm with ρ = 0.06 as in Eq. (5.2.9).

Figure 5.3 shows the force calculated for all smearing levels for distances up to
1.4 fm. The force from the string picture, Eq. (4.3.7), with a fit parameter measured
at 60 sweeps in Table 5.2 is illustrated. Inspection of Figs. 5.2 and 5.3 enables one
to estimate a distance scale beyond which effects of smearing are negligible. For
example, the results for 40 sweeps and 60 sweeps of smearing agree for R ≥ 0.76 fm
in Fig. 5.3. Similar comparisons of 40 and 60 sweeps or 60 and 80 sweeps provide
the results, RF , depicted in Table 5.3.

This also can be read in conjunction with the radius of Brownian motion or the
so-called smearing radius. For the standard APE smearing [101], this quantity can
be calculated analytically [3], and may then be calibrated [149] to the improved
stout-link smearing algorithm used here. This gives a smearing radius of

Rs =
√

c ρ ns a, (5.2.14)
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Table 5.3: The characteristic radii Rs and RF at each smearing level.

Number of sweeps RF (fm) Rs(fm) 2 Rs(fm)

40 0.65 0.38 0.76
60 0.75 0.47 0.94
80 0.95 0.54 1.04

where ns denotes the number of smearing sweeps and c = 6.15(3) is the calibration
constant calculated above. In Fig. 5.4 the smearing radius is plotted versus the
number of smearing sweeps. Rs describes the characteristic scale of smearing, within
which the gluon action density has been suppressed. Values for Rs are compared
to RF in Table 5.3, where the radius threshold for agreement of the qq force, RF ,
lies close to the smearing diameter 2Rs which is the minimal distance between two
diffuse links in Polyakov-loop correlators. Therefore, a conservative range of trust for
distance scales—where the essential features of the confinement remain unchanged
for a given level of gauge-field smearing— can be provided by

γ = 2 Rs. (5.2.15)

5.3 Link integration

The key idea of the link integration [152] is to reduce the statistical noise by sub-
stituting the link operator by an expression giving the same mean values with less
variance. Let O1 be an observable with variance proportional to 〈O2

1〉. We find
another variable O2 such that

〈O1〉 =〈O2〉,
〈O2

1〉 ≫〈O2
2〉. (5.3.1)

To apply this to correlation functions, the variables have to be mutually inde-
pendent. Because of the locality of the action, this condition can be easily met in
the case of Polyakov loop correlators because each link variable U which belongs to
the P loops are mutually independent for separation distance greater than two. The
link integration method can then be stated as

〈
∏

i∈p

U(i)
∏

i′∈p′

U(i′)〉 = 〈
∏

i∈p

Ū(i)
∏

i′∈p′

Ū(i′)〉. (5.3.2)

We replace the temporal link variables U in the Polyakov loops with the new link
variable

Ū =

∫
dUUe−Tr(QU†+UQ†)

∫
dUe−Tr(QU†+UQ†)

, (5.3.3)

where Q is the sum of the staples associated with the link U .
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Heat bath method may be used to numerically evaluate the above integral. Al-
though the result of the integration should not depend on the number of heated
hits N , the statistical fluctuations decrease with N to a plateau value. However,
fast numerical evaluation of an SU(3) link integration, through the evaluation of
the one-link integral expressed as contour integrals [151], is more feasible from the
practical point of view. The one-link integral is associated with

Z(Q) =

∫
dU exp[−Tr(QU † + U Q†)]. (5.3.4)
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Figure 5.5: The Polyakov loop correlators measured using the heatbath integration
(above), and fast link integration (below).

This defines an integral over one SU(3) matrix. The value of the integration
depends on the neighboring links through the so-called source R. As discussed above,
the integral can be evaluated through the heat-bath method. In this evaluation
scheme, N heated hits are necessary to reduce statistical errors. This consumes
large CPU time (one order of magnitude more than the Monte Carlo updating)
and renders the method inefficient in some applications such as the calculations of
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Table 5.4: The values of Polyakov loop correlators using the link integration method
and the corresponding measured lattice spacing for various qq̄ separations R. The
table summarizes the obtained values using the heatbath algorithm with Nup = 10,
Nmeas = 90, and the fast link integration method.

Heatbath integration Fast integration
R < P P † > a < P P † > a

6 0.0045(4) 0.10 0.0053(4) 0.10
7 0.0031(4) 0.10 0.0031(2) 0.10
8 0.0018(3) 0.09 0.0018(1) 0.10
9 0.0014(3) 0.10 0.00109(9) 0.10

gluon flux. The above integral can be expressed in terms of contour integrals [151]
involving Bessel functions and then evaluated numerically. The integrated SU(3)
link reads

Z(Q) =

∮
dx

2πi
ex L

(
x

P (x)

)1/2

I1

(√
2 P (x)

x

)
, (5.3.5)

where L = det(Q)+det(Q)† and P (x) = det(1+xQQ†), and Ik are Bessel functions
of the second kind. The first moment would give the link averaged link

Ū =
∂

∂Q† (log Z(Q)) , (5.3.6)

with

∂Z

∂Q† = det(Q†)(Q∗−1) ×
∮

dx

2πi
x ex L

(
x

P (x)

)1/2

I1

(
(
2 P (x)

x
)1/2

)

+

∮
dx

2πi

ex Q

P (x)
I2(

2 P (x)

x
)1/2.

(5.3.7)

The integrals are evaluated numerically using Gaussian quadrature along a circle
centered at the origin. The radius of the contour circle is chosen such that the
asymptotic expansion of Bessel functions,

Iν(z) = ez/
√

2πz[1 − (4ν2 − 1)/8 z + (4ν2 − 1)(4ν2 − 9)/2!(8 z)2 − ..], (5.3.8)

is a good approximation. Clever tuning is required to minimize the round off errors
and at the same time the length of the asymptotic expansion. Using the Gauss-
Kronrod quadrature formula, we reported an accuracy estimate of 10−6 for the lattice
parameters considered here. Fig. 5.5 shows Polyakov loop correlators calculated
using the heatbath and fast integration schemes. Saturation in the statistical noise
using the heatbath method is reached after N = O(10) heated hits which increases
the time of evaluations. The values of error reduction and measured lattice spacing
are depicted in Table 5.4.
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5.4 Multi-level algorithm

In non-abelian pure gauge theories, the expectation value of a product of Polyakov
loops is notorious for being difficult to compute because the signal to noise ratio
rapidly decays with the increase of the loop size. The link integration method
discussed above will not be efficient when simulations are extended to the low tem-
perature region of the theory. The multi-level scheme of integration exploits the
locality of the theory, and results in an exponential suppression of the standard
errors in the correlators. The expectation value of a product of Polyakov loops is

〈Γ 〉 =
1

z

∫
D[U ] Γ e−S[U ]. (5.4.1)

The factorization property of this functional integral is a result of the local struc-
ture of the theory and leads to the possibility of a multilevel simulation algorithm.
The key objects in this factorizing are the tensor products of link variables. In the
case of two Polyakov loops this will be the two-link operator

T(t0)αβγδ = U(x, t0)αβU †(x + R, t0)γδ, (5.4.2)

with T ∈ 3∗ ⊗ 3 representation of SU(3).

The Multiplication law of the tensors T reads

T(t0)αλγǫT(t0 + a)λβǫδ = Mαβγδ. (5.4.3)

The product of two Polyakov lines can be represented as a multiplication of the
two-link operator as

P (x) P †(x + R) = (T(t0)T(t0 + a) · · ·T(T − a)T(T ))αβγδδαβδγδ.

=Mααγγ . (5.4.4)

The locality of the action

S[U ] = 1
g2

∑
x,µ,ν Tr{1 − Uµ(x)Uν(x + aµ̂)U †

µ(x + aν̂) U †
ν(x)}

(5.4.5)

allows integrations to be performed on the level of sublattices with the spatial links
on the boundaries held fixed. The sublattice expectation value reads

[T(t0) · · ·T(t0+ma)] =
1

Zsub

∫
D[U ] T(t0) T(t0+a) · · · T(t0+ma) e−S[U ]sub . (5.4.6)

The sublattice integrals are a function of the links at the boundaries. The links
in the interior, however, are dynamical degrees of freedom to be integrated over.
This results in the hierarchical integration formula

〈P (x)P †(x + R)〉 = 〈[[T(t0][T(t0 + a)]] · · · [[T(T − a)][T(T )]]ααγγ〉. (5.4.7)
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By virtue of the action locality, the integration

[T(x0)T(x0 + a)] = [[T(x0)][T(x0 + a)]], (5.4.8)

is equivalent. The tensor [T(t0)]nup is integrated over with the updates in the time
slice [t0, t0 + a], the tensor [T(t0 + a)]nup is accordingly averaged for updates nup

within the time slice [t0 + a, t0 + 2a], and so on.

[[T(t0 + a)]nup [T(x0)]nup ]Nup = [T(x0 + a)T(x0)]. (5.4.9)

The multi-level algorithm proceeds through the following steps:

• A sequence of gauge field configurations is first generated using a hybrid heat-
bath overrelaxation link updates.

• The product [T(t0)T(t0 + 2 a)] is estimated by updating the gauge field in the
interior of the time-slice [t0, t0 + 2a] a number of times followed by averaging
T(t0)T(t0 + a) over these configurations.

• Finally, we integrate the trace of the products in Eq. (5.4.7) via the lower level
estimates calculated in the second step. That is, by averaging first within
the level and then multiplying the averaged results, one gains a significant
increase in the number of statistical samples as “cross terms” between levels
in the averaging process contribute.

While the link integration method [152] provides efficient noise reduction at small
quark separations for the expectation values of Polyakov loops in Eq. (5.2.12), noise
remains problematic at large separations. The method is expected to be efficient
for the QQ̄ source separation range R ≤ 0.5 fm [151] but has to be supplemented
with a large number of measurements for the calculations of the larger distance qq̄
potential [81]. The number of measurements has to be increased significantly for
the corresponding 3Q potential calculations with a three point correlator (as we will
discuss in Chapter 9). On the other hand, the action density calculations are even
more challenging in both cases [135].

The exponential reduction of noise provided by the leveling approach of the
Lüscher Weiss (LW) requires the hierarchical integration to be carried out over
time sub-slices larger than the deconfinement temporal extent tsub > 1/Tc [118].
For the temperatures considered here, the division of measurements into binned
sub-measurements resembles a one level implementation of the LW method, with
updating of the last time slice.

5.5 Conclusion

A combination of a large number of Monte Carlo updates followed by link averaging
can be performed similarly to that performed in Ref. [81] to evaluate the qq̄ potential
for a range of temperatures above and below the confinement phase. This involves a
large number of updating sweeps and measurements which makes it rather expensive
in terms of the CPU time. Memory requirements have prevented an analysis of
the baryon potential to date. This is even more problematic for the evaluation
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of the gluonic flux distribution, since this evolves the Monte Carlo evaluation of
not only the Polyakov-loop correlator, but also the three-point (four point in the
case of baryon) correlation function in the numerator of Eq. (3.4.5). Throughout
this work, four-dimensional gauge smearing is chosen as a fast and effective method
for revealing the general topological features of the flux distribution which can be
confronted with the predictions of the string model. We have been able to show in
this chapter the ranges of the validity of this approach, through the measurements
of the physical observables that have been previously reported in [81], i.e, the qq̄
potential and the string tension. The combination of link integration and multi-
level methods provides effective methods for probing the flux distribution at low
temperatures. This is outside the scope of the present thesis, but is of merit for
future work as computing resources allow.



Chapter 6

Gluonic Profile of Static Mesons

6.1 Outline

The distribution of the gluon action density in mesonic systems is investigated at
finite temperature. The simulations are performed in pure SU(3) Yang-Mills gauge
theory for two temperatures below the deconfinement phase. Unlike the gluonic
profiles displayed at T = 0, the action-density isosurfaces display a prolate-spheroid-
like shape. The curved width profile of the flux tube is found to be consistent with
the prediction of the free bosonic string model at large distances.

6.2 Introduction

In the flux-tube model, the linearly rising potential between a pair of static colour
sources is believed to be due to the formation of a thin gluonic flux tube of a
constant cross-section. At high temperatures, lattice simulations on pure SU(3)
gauge fields [81] have indicated a decrease of the effective string tension for the
quark–antiquark potential with the rise of the temperature. The QCD vacuum
structure around the sources is then expected to exhibit gluonic profiles with widths
variant to the zero temperature case. The detailed geometry of the gluonic field
at finite temperature and whether it holds the constant cross-section property is an
interesting topic that has not yet been explored in lattice quantum chromodynamics.

The low-energy dynamics of the flux tubes in the infrared region of a confining
gauge theory can be described in terms of an effective bosonic string. The thin flux
tube between two widely separated static color sources fluctuates like a massless
string. The linearly rising part of the potential arises from the classical configuration
which corresponds to the flat world sheet of the string. The quantum fluctuations
of the string lead to a universal subleading correction to the potential well known
as the Lüscher term [67]. Lattice simulations for several gauge theories [63, 64, 65,
66, 119] have supported the existence and the universality of the string’s subleading
effect. At high temperatures, the gluonic modes come into play and the effective
string description of the temperature-dependent quark–antiquark potential has been
worked out in Refs. [117, 125]. A further comparison with SU(3) Monte Carlo
lattice data for temperatures beginning from T = 0.8 Tc [81] has shown a good
parametrizing behaviour to the string picture formula for a minimal distance of

80
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R T = 0.5. On the other hand, there have been numerical indications that the
inclusion of the higher-order string effects beyond the Gaussian approximation, e. g,
the NLO string’s self-interaction term in the Nambu-Goto effective string action, has
reproduced the correct temperature-dependent string tensions up to a temperature
scale of T = 0.5 Tc in the three-dimensional gauge Z2 model [153].

The string model predictions of a logarithmic broadening [126] for the width
of the string delocalization have also been observed in several lattice simulations
corresponding to different gauge groups [63, 65, 138, 154]. As the temperature
increases, substantial deviations from the logarithmic behaviour are expected, and
the broadening turns eventually into a linear growth for large distances before the
deconfinement is reached from below [129]. Apart from the peculiar features in
the broadening of the flux tube when the temperature is raised, the string picture
predicts an effect which is rather interesting from the geometrical point of view. The
width calculated at each corresponding transverse plane to the line joining the two
quarks is found to differ from that at the central plane by an amount that increases
with the rise of the temperature. In other words, the mesonic string picture is
implying a curvature in the gluonic profile that becomes more pronounced as higher
temperatures are approached. The string self-interaction with the quark line causes
a noticeable difference in the delocalizations beyond the central transverse plane
and these aspects remain to be ascertained in lattice quantum chromodynamics.
Moreover, revealing the whole profile of the glue at finite temperature provides a
particularly interesting source of knowledge regarding the true geometry of the flux
tube, since, naturally, at finite temperature one need not hold to any particular
assumption for the shape of the gluonic source-wave functions in the relevant gauge-
invariant objects representing the quark states. Probing the transverse profile of the
glue might even be of relevance to the modeling of ground-state sector of the theory
where the exact geometry of the flux tube seems to be not yet settled [155].

In this work, we investigate the distributions of the colour field inside a static
meson at two temperatures below the deconfinement phase, T ≃ 0.9 Tc, and T ≃
0.8 Tc. Since the bosonic string predictions are expected to be more relevant to pure
Yang-Mills theories with static colour sources (rather than QCD with dynamical
sea quarks where string breaking occurs), the lattice simulations are performed on
the SU(3) gauge group in the quenched approximation. The field strength inside
the corresponding quark system will be revealed by correlating an improved action-
density operator [150] to the mesonic state. The static mesonic state is accounted for
by means of Polyakov-loop correlators. Gauge four-dimensional smearing [146, 147],
in addition to a high statistics gauge-independent approach [2], will be employed to
enhance the signal to the noise in the flux correlation function. This noise-reduction
approach is variant to other approaches that utilize Abelian gauge-fixing [143] to
reduce the noise. The obtained profile of the action density will then be compared
to the prediction of the mesonic string models at several distances for the highest
temperature near the deconfinement point T ≃ 0.9 Tc.
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6.3 Colour field measurements

In this investigation we have taken our measurements on 500 quenched QCD gauge-
field configurations for each set of lattice parameters considered. The gauge con-
figurations were generated using the standard Wilson gauge action on lattices with
spatial volume of 363. We chose to perform our analysis with lattices as fine as
a = 0.1 fm by adopting a coupling of value β = 6.00, with temporal extents of
Nt = 8, and Nt = 10 slices, which correspond to temperatures T ≃ 0.9 Tc, and
T ≃ 0.8 Tc, respectively. The gluonic gauge configurations were generated with a
pseudo-heat bath algorithm [93, 94] updating the corresponding three SU(2) sub-
group elements [95]. Each update step consists of one heat bath and 4 microcanonical
reflections. The measurements are taken after each 2000 of updating sweeps.

The static mesonic state is constructed by means of a pair of Polyakov loops
corresponding to an infinitely heavy quark–antiquark pair,

P2Q(~r1, ~r2) = P (~r1)P
†(~r2),

where the Polyakov loop is given by

P (~ri) =
1

3
Tr

[
Nt∏

nt=1

Uµ=4(~ri, nt)

]
, (6.3.1)

and the vectors ~ri define the positions of the quarks. The measurements that charac-
terize the colour field are taken by a gauge-invariant action-density operator S(~ρ, t)
at spatial coordinate ~ρ of the three-dimensional torus corresponding to a Euclidean
time t. The measurements are repeated for each time slice and then averaged,

S(~ρ) =
1

Nt

Nt∑

nt=1

S(~ρ, t). (6.3.2)

The action-density operator is calculated via a highly improved O(a4) three-
loop improved lattice-field-strength tensor [150]. A dimensionless scalar field that
characterizes the gluonic field can be defined as

C(~ρ;~r1, ~r2) =
〈 P2Q(~r1, ~r2)〉 〈S(~ρ)〉 − 〈P2Q(~r1, ~r2) S(~ρ) 〉

〈 P2Q(~r1, ~r2) 〉 〈S(~ρ) 〉 , (6.3.3)

where < ...... > denotes averaging over configurations and lattice symmetries, and
the vector ~ρ refers to the spatial position of the flux probe with respect to some
origin. Cluster decomposition of the operators leads to C → 0 away from the
quarks.

6.4 Action density

6.4.1 Tube profile (qualitative picture)

The lattice operator which characterizes the gluonic field is usually taken as the cor-
relation between the vacuum action density S(~ρ, t), and a gauge-invariant operator
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(a) R = 5 a (b) R = 6 a

(c) R = 7 a (d) R = 8 a

Figure 6.1: The flux-distribution C(~ρ, ~r1, ~r2) as given by the characterization
Eq. (6.3.3) in the plane of the quark–antiquark pair ~ρ(x, y, z = z0), for separa-
tion distances R (a) 0.5 fm, (b) 0.6 fm, to (d) 0.8 fm at T = 0.8 TC . The spheres
refer to the positions of the quark and antiquark.
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representing the quark states. At finite temperature this must be a pair of Polyakov
lines.

The action-density operator is calculated through an O(a4) improved lattice
version of the continuum field-strength tensor. Discretization errors are reduced by
combining several clover terms complemented by tadpole improvement [150]. We
take our measurements with a three-loop field-strength tensor given by

F Imp
µν =

3∑

i=1

wi C
(i,i)
µν , (6.4.1)

where C(i,i) is a combination of Wilson loop terms corresponding to loops with
lattice extent i used to construct the clover term and wi are weights [150]. The
reconstructed action-density

S(~ρ) = β
∑

µ>ν

1

2
Tr(F Imp

µν )2, (6.4.2)

is accordingly measured on 20 sweeps of four-dimensional stout-link smearing. This
has the effect of the removal of the divergence in the action density in the neighbor-
hood of the quark positions. It is, however, very beneficial in obtaining a good signal
to noise to display the flux strength. The correlation function Eq. (6.3.3) provides
C(~ρ) > 0, and C ≃ 0 away from the quark position. The scaled flux distribution
C(~ρ) = 1 − C(~ρ) in the plane of the qq pair is plotted in Fig. 6.1, for several qq
separation distances R = | ~r1 − ~r2 |, at temperature T = 0.8 Tc. The Polyakov-loop
correlator is measured on 40 sweeps of link smearing. The distribution shows a peak
in the middle point between the qq pair at small separation distance R = 0.5 fm. As
the two quarks are pulled apart, the distribution C(~ρ) decreases rapidly, the peak
behaviour diminishes and the distribution is almost constant at R = 0.8 fm. The
qualitative description of these density plots suggests a two-dimensional Gaussian-
like behaviour, however, as we will see in the next section, careful measurements of
the widths at each perpendicular plane to the qq line, yield different widths for large
distances.

The behaviour of the flux distribution around the outer edges of the density
profile does depend on finite volume [156]. As a byproduct of performing the simu-
lations on large lattice sizes to gain high statistics in a gauge-independent manner,
the two lattices employed in this investigation are of a typical spatial size of 3.63fm3

which does minimize the volume effect.
The curvature in the flux lines is manifesting itself as is evident from the flux-

contour plots in Fig. 6.2. The contour plots reveal the form of the flux tube just
before the deconfinement phase T = 0.9 Tc, for qq sources separated by R = 0.9 fm
and R = 1 fm, respectively. A similar plot of the action-density isosurface at
R = 0.9 fm in Fig. 6.3 displays a three-dimensional version of Fig. 6.2 (prolate-
spheroid-like shape) for the flux tube. This geometrical form of the density plot
manifests itself at temperature = 0.8 Tc which is known to be near the end of the
plateau of the QCD-phase diagram [5].

It is worth noting, nevertheless, that at zero temperature, the correlation of the
action density with the Wilson loop taken as a mesonic operator does not reveal
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(a) R = 9 a

(b) R = 10 a

Figure 6.2: The flux-contour-line distribution in the plane of the quark–antiquark
pair z0, for separation distances of (a) 0.9 fm, (b) 1.0 fm. The spheres denote the
positions of the qq pair, T = 0.9 TC .
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this curvature of the flux lines in the inner region between the qq pair at large
separation distance [63]. Thus we have illustrated the action-density correlations
using Polyakov loops at finite temperature.

The ground-state source-wave functions in the Wilson-loop operator are trial-
wave functions, and the state adopted is the one which maximizes the overlap
with the ground state, usually by smearing the string of the glue connecting the
quarks [63, 155]. Moreover, the calculations of gluonic distribution are plagued by
systematic errors due to biasing by the shape of the source, and the corresponding
limitations imposed by the statistical fluctuations upon the Euclidean-time evolution
in the loop operator [2, 157].

Figure 6.3: The flux iso-surface passing through the quarks, plotted together with
a surface plot for the density distribution in the qq plane (inverted). The measure-
ments are taken on 80 sweeps of smearing for separation distance R = 9 a, and
T = 0.8 Tc. The lattice spatial extent is 363 at β = 6, a = 0.1 fm.

Tube profile (quantitative aspects)

Usually studies carried out on the flux tube features of growth focus their measure-
ments on the central plane transverse to the qq line. At T = 0, Wilson loops results
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indicate a tube that has a uniform energy-density profile for large qq separations [63].
Nevertheless, at high temperature where the string tension is reported to decrease
by a value around 10% at T = 0.8 Tc [81], our calculations of the flux chromostrength
inside the meson (Figs. 6.1, and 6.2) display a nonuniform action-density pattern
around the whole qq line.

At high temperature, one would expect higher modes relevant to the collective
degrees of freedom of the stringlike object to give rise to new, interesting measurable
effects, which seem not only to be related to the properties of the growth of the
tube’s width [129], but also to the width’s profile itself. The string model’s solution,
Eq. (4.3.17), informs us about how the tube would behave behind its symmetry
point in the middle, and together with the observed chromofield profile (Figs. 6.1-
6.2), one is tempted to investigate this string effect and establish a quantitative
comparison between the model and the glue profile in QCD. This is the aim of this
section.
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Figure 6.4: The density distribution C(~ρ) for separation distance of R = 12 a,
T = 0.9 Tc, plotted for the transverse planes x = 1, x = 3, and x = 6. The lines
correspond to the Gaussian fits to the density in each plane ~ρ(xi, y, z0).

Different possible components of the field-strength tensor in Eq. (6.4.1) can sepa-
rately measure the chromoelectric and magnetic components of the flux. The action
density, however, is related to the chromofields via 1

2
(E2 − B2) and is the quantity

of direct relevance to the comparison with the string fluctuations [Eq. (4.3.17)].
The width of the flux tube may be then estimated through fitting the density

distribution C(~ρ) [Eq. (6.3.3)], in each selected transverse plane ~ρ(xi, y, z0) to a
Gaussian [65, 126]. The width of the tube is defined as

W 2(xi) =

∫
d2 η η2 e−(η2/W 2)

∫
d2 η e−(η2/W 2)

. (6.4.3)
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The flux calculations with Polyakov lines as a mesonic operator are well known
to be distorted by statistical noise. To take reliable measurements to reveal the
tube’s fine structure, we choose to perform our analysis on the tube’s width at the
highest temperature T = 0.9 Tc where the scalar field C(~ρ) has smaller jackknife
error bars, even at very large distances. To further increase the signal to noise ratio,
the number of measurements has been increased by a factor of 4. This has been
done by updating each raw gauge configuration 3 times each separated by 70 sweeps
of Monte Carlo updates as described in Sec. II.

Table 6.1: The width of the flux tube at each consecutive transverse planes xi from
the quark to the middle of the qq line. The measurements for sources separation
distances R = 6 a to R = 10 a, for the temperature T = 0.9 Tc.

Plane x = 1 x = 2 x = 3 x = 4
n = R/a W 2a−2 W 2a−2 W 2a−2 W 2a−2

6 14.6(5) 14.4(5) 14.4(5)
7 15.8(6) 15.6(4) 15.7(5)
8 16.9(6) 17.0(5) 17.1(5) 17.2(5)
9 17.9(6) 18.2(6) 18.6(6) 18.8(6)

η is the set of vectors perpendicular to the qq line in the xi plane.
To avoid artificial reduction of the error bars, each set of four configurations

(original configuration together with three new ones) has been included in the same
jacknife subensemble, such that the variances are calculated with respect to decorre-
lated bins (see also Refs. [81, 151]). The density distributions have been symmetrized
around all the symmetry planes of the tube; the resultant average density C(~ρ) is
fit to a Gaussian of the form A(xi) e−(y−y0)2/W 2

, with y0 on the qq line (see. e.g.,
Fig. 6.4). The Gaussian fits to the data are for several transverse planes between
two sources separated by a distance of R = 12 a.

Table 6.2: Similar to Table. 6.1, the widths of the flux tube are measured at each
consecutive transverse planes xi from the quark to the middle of the qq line. The
measurements for sources separation distances R = 10 a to R = 13 a.

Plane x = 1 x = 2 x = 3 x = 4 x = 5 x = 6
n=R/a W 2a−2 W 2a−2 W 2a−2 W 2a−2 W 2a−2 W 2a−2

10 18.8(7) 19.4(6) 20.0(6) 20.4(6) 20.6(6)
11 19.4(7) 20.3(7) 21.3(7) 22.0(7) 22.3(8)
12 19.7(7) 21.0(7) 22.4(7) 23.4(8) 23.9(8) 24.1(9)
13 19.5(6) 21.0(7) 22.9(7) 24.4(8) 25.4(9) 25.8(9)

Tables 6.1, 6.2 and Table 6.3 summarize the measurements on both the widths
W 2(xi) and the amplitudes A(xi) of the flux tube, in accord to these Gaussian fits
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Figure 6.5: The width difference δW 2 = W 2(xi) − W 2(x0) for qq separations
(a) 0.7 fm, (b) 0.8 fm, (c) 0.9 fm, and (d) 1 fm, , β = 6, T = 0.9 TC for
each depicted smearing level. The line denotes the width difference δW 2 as pre-
dicted by the string model Eq. (4.3.17). The lowest smearing level provides the best
estimate of the width difference.
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Figure 6.6: Similar to Fig. 6.5, the change in width is plotted for qq separations
(a) 1.1 fm, (b) 1.2 fm, (c) 1.3 fm, and (d) 1.4 fm.
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at each transverse plane xi to the qq line. The coordinates xi are lattice coordinates
(lattice units) and are measured from the quark position x = 0. The uncertain-
ties in width measurements at each transverse plane are the standard asymptotic
errors in the Gaussian fits and are correlated. The flux-density measurements at
each source separation are taken on all smeared sets of configurations. We will be
mainly discussing results for the set of configurations corresponding to 40 sweeps of
smearing. According to Sec. IV-A, this level of gauge-field smearing leaves the qq
potential and force with insignificant effects for R > 0.6 fm. We also discuss the
effects of smearing on the gluonic profile.

Table 6.3: The amplitude of the flux tube at each of the consecutive transverse
planes xi from the quark to the middle of the qq line. The measurements for sources’
separation distances R = 6 a to R = 10 a, for the temperature T = 0.9 Tc.

Plane x = 1 x = 2 x = 3 x = 4
n=R/a A A A A

6 0.160(3) 0.191(3) 0.202(3)
7 0.165(3) 0.199(3) 0.218(4)
8 0.165(3) 0.199(3) 0.221(4) 0.229(4)
9 0.162(3) 0.195(3) 0.217(4) 0.228(4)

For a fixed source separation, the measured values in Table 6.1 and 6.2 (taken
on 40 smearing sweeps) are indicating, generally speaking, changes in the tube
width along the qq̄ line. The maximum width is measured at the tube’s symmetry
point in the middle. At relatively small separations R < 0.9 fm, the change in
tube width along the planes is subtle. The variation in the tube’s width, however, is
more pronounced at large source separation distances (see, e.g., Table 6.2) in general
qualitative agreement with the predictions of the string picture Fig. 4.1. The growth
in width with the increase of the source separation is also maximum at the tube’s
center point.

Since we focus here on comparing the tube geometry to the string profile rather
than the feature of the growth, we measure the change in the width of the tube at
each corresponding plane with respect to the central plane x0,

δW 2 = W 2(xi) − W 2(x0). (6.4.4)

This can provide a measure on how rounded or squeezed the flux tube would be
compared to the width of the string fluctuations. Figure 6.5 shows the change in
the tube width calculated for separation distance R = 0.7 fm to R = 0.9 fm, with
uncertainties taken such that the standard errors in the Gaussian fits are correlated,
i.e. | e(xi) − e(x0) |. In addition to that, the measured values of R0 depend on the
corresponding plane at which the lattice data is fitted to Eq. (4.3.17). The value
of the fit parameter R0 can be fixed for each plane using the lattice data at very
large separations. The changes in R0 it self from the central plane value is found to

scale as, − 1
2πσ

log
∣∣ θ2(π ξ1/R; τ))

θ′1(0; τ)

∣∣, (the second term in Eq. (4.3.17)), for R > 1.2 fm.
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Thus, before comparing Eq. (4.3.17) with the corresponding change in flux tube’s
width one should take into account this change in R0 [158], see also Table 6.4. This
will be discussed in detail in the next chapter.

In contrast with the predictions of the string model, the tube has an almost
constant width at R ≤ 0.8 fm. The measured changes in width at the plane x = 1
deviate from that of the model at R = 0.9 fm by a large value of 75%. The deviations
decrease as the sources are pulled apart to 50% at R = 1.0 fm, 25% at R = 1.2 fm,
and good agreement between both profiles is reached at R = 1.3 fm and R = 1.4 fm
as can be seen in Fig. 6.6. The change of the width measured at the inner-transverse
planes, however, agrees with the model at shorter distances, R = 1.2 fm for the plane
x = 2 and x = 3. In general, the four plots in Fig. 6.6 show significant improvement
with respect to the model predictions compared to the four plots at shorter distances
in Fig. 6.5. The flux tube shows an almost constant cross-section for R = 0.8 fm
in disagreement with the string picture. At distances 0.8 < R < 1.1 fm, the Lattice
gluonic-distribution profile is, geometrically speaking, more squeezed than the free-
string picture would imply. As the sources are pulled farther apart, the disagreement
decreases gradually and the profiles of the glue and the string both compare well for
sources’ separations R & 1.2 fm.

To show the effects of smearing on the tube profile, the data corresponding to all
smearing levels are included in Figs. 6.5 and 6.6. The lattice data indicate similar
topology for the flux tube for the analysis on 20 and 40 sweeps of smearing at distance
R = 0.7 fm. For smearing levels of 40 and 60 sweeps, the measurements are revealing
the same topology for R & 0.9 fm. All smearing levels are yielding the same flux
tube structure as can be seen in Fig. 6.6 for distance scales R & 1.1 fm. This is
consistent with our earlier assertion of a general distance scale, γ = 2 Rs, which
commences at 2 times the radius of the Brownian motion Eq. (5.2.14), as a range
which is free of smearing effects. For source separations where the tube geometry
is clearly affected by smearing, as can be seen in Fig. 6.5, the largest deviations
from the model predictions do occur at the lowest level of smearing where the short
distance physics is best preserved. The increase in agreement between the model
prediction and lattice data at short distances 0.6 ≤ R ≤ 1.0 fm for measurements
taken on highly smeared gauge configurations is, however, an interesting observation
in its own right with physical implications that will be studied in detail in the next
chapter.

The thermal effects are manifest in the gluonic profile, giving rise to nonuniform
widths. The string picture can parametrize these profiles only at large distances. At
short distances on the other hand, the free-string picture does not model the gluonic
interactions on the scale of short distances which may become even more relevant
in the thermal regime.

6.4.2 Tube growth in width

The measured values in Tables 6.1 and 6.2 indicate a growth in the tube’s mean-
square width at all transverse planes xi as the colour sources are pulled apart. The
growth in flux tube width at each selected transverse plane can be compared to
the corresponding growth in the string fluctuation Eq. (4.3.17); this comparison can
be performed by fitting the formula of Eq. (4.3.17) to the tube measured widths.
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Figure 6.7: The width W 2(xi) for qq separations R = 6 a to R = 13 a at four
consecutive planes (a) x = 1, (b) x = 2, (c) x = 3, and (d) x = 4. β = 6,
T = 0.9 TC . The line denotes the string model, Eq. (4.3.17), fit of R0 to the data as
described in the text.
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Table 6.4: The resultant measurements of the scale R0×100 for the first four consec-
utive transverse planes xi in accord to the fits of the tube width to the string model
formula Eq. (4.3.17). The values of the fit parameter, R0, and the corresponding
χ2

dof are presented for variety of fit ranges.

Plane x = 1 x = 2 x = 3 x = 4
Range R0a

−1 χ2
dof R0a

−1 χ2
dof R0a

−1 χ2
dof R0a

−1 χ2
dof

6-10 0.0155(3) 4.3 0.028(5) 5.9 0.033(5) 5.5
6-13 0.0126(2) 5.9 0.022(4) 8.9 0.027(4) 9.2
7-13 0.0108(1) 3.1 0.019(3) 5.7 0.023(4) 7.1
8-13 0.0093(8) 1.2 0.017(2) 2.4 0.019(3) 3.1 0.020(3) 4.7
9-13 0.0086(5) 0.4 0.014(1) 0.9 0.017(2) 1.7 0.018(3) 2.9
10-13 0.0081(2) 0.1 0.0129(6) 0.3 0.015(1) 0.7 0.015(1) 1.2

Table 6.4 summarizes the resultant measurements of the fit parameter and the cor-
responding χ2

dof at four consecutive transverse planes x = 1 to x = 4. The fits show
strong dependency on the fit range if the points at small sources’ separations are
included. The highest value of χ2 is returned when fits include the whole range of
sources separations, i.e., R = 6 a to R = 13 a. With the first four points excluded
from the fit, the returned χ2

dof is smaller, indicating that only the data points at
large source separation are parametrized by the string model formula. The value of
the χ2

dof gradually decreases as we exclude points at short distance separations, and
stability in the fit is reached for widths measured for the plane x = 1 at sources’
separations R > 0.7 fm, and at R > 0.8 fm for the plane x = 2. The fits are
returning good χ2

dof values for fits at the planes x = 3, 4 for sources’ separations
R ≥ 0.9 fm. In the regions where the fits are returning good χ2

dof , the values of the
fit parameters are almost equal for the planes in the middle, x = 2, 3, 4. However,
at the closest plane to the sources, x = 1, the value of the returned parameter,
unsurprisingly, deviates from the corresponding one at other planes. This is another
manifestation of the above observed deviations in the change in tube widths at this
plane compared to the central plane as emphasized in the discussion surrounding
Figs. 6.5 and 6.6.

Figure 6.7 shows data points and the corresponding best fits to the string model
at each plane; the string model at finite temperature poorly describes the lattice
data at short distances. The plots depict the fact that the flux tube observed in
LGT has a more suppressed profile than the fluctuations of the free string would
imply at short distances. On the other hand, the growth of the flux tube diameter
is manifest in the lattice data.

6.5 Conclusion

The gluonic distribution inside the static meson has been revealed at finite temper-
ature. The Monte Carlo simulations have been performed on the SU(3) gauge group
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for temperatures T ≃ 0.8 Tc and T ≃ 0.9 Tc. Noise reduction has been achieved
by a gauge-independent high statistics approach, in addition to the employment of
adequate levels of gauge-field smoothing that preserve the relevant physics at large
distances. The flux tube, characterized as a correlation between the action density
and the mesonic operator (Polyakov lines), has been displayed up to distances of 1.4
fm. The flux isolines and isosurfaces display a curved profile along the tube. The
profile is showing a nonuniform action-density pattern unlike that observed using
Wilson’s loop as a mesonic operator at T = 0.

The flux-tube width profile is compared to the corresponding mean-square width
of the free bosonic string fluctuations at all planes between the colour sources. For
source separation distances R > 0.8 fm, measurements of the tube cross-section at
each selected transverse plane show a nonconstant width for the tube, with maximum
width at the symmetry point of the tube. At small qq̄ source separations 0.8 <
R < 1.1 fm, the tube is seen to yield a more compact (squeezed) form than the
string model would predict. The deviations of the tube width profile from the
corresponding string profile decrease gradually as the source separation increases.
The profiles commence to compare well at R ⋍ 1.2 fm.

The gluonic width profiles displayed in this investigation are geometric manifes-
tations of thermal effects on the qq̄ potential (the measured decrease in the string
tension). Moreover, the squeezed gluonic profile in comparison to the rounded string
fluctuations provides a geometrical interpretation for the deviations of the predicted
string tension based on the free string picture from the corresponding lattice results
[81].

This study is motivating further investigations of the energy-density and chro-
moelectromagnetic distributions with methodological improvements that minimize
the number of smearing sweeps and increase the number of measurements. It would
also be interesting to confront these profiles with the bosonic string profiles in the
context of string self-interactions. The string’s geometrical effects (curved profiles)
ought to be addressed in other gauge groups. Work is progressing in these directions.
The detailed investigation of the thermal hadronic gluonic distributions by straight
forward generalizations of the action density calculations to the static baryon will
be presented in this thesis in Chapter 9.



Chapter 7

Bosonic Strings and the UV
Filtering of QCD

7.1 Outline

The gluonic action density is calculated in static mesons at finite temperature just
below the deconfinement point. Our focus is to elucidate the role of vacuum UV
fluctuations which are filtered using an improved smearing algorithm. In the inter-
mediate source separation distance, where the free string picture poorly describes
the flux tube width profile, we find the topological characteristics of the flux tube
converge and compare favorably with the predictions of the free bosonic string upon
reducing the vacuum action towards the classical instanton vacuum. This result
establishes a connection between the free string action and vacuum gauge fields and
reveals the important role of UV fluctuations in understanding the lattice data at
this temperature scale. As a byproduct of these calculations, we find the broaden-
ing of the QCD flux tube to be independent of the UV filtering at large distances.
Our results exhibit a linearly divergent pattern in agreement with the string picture
predictions.

7.2 Introduction

The string conjecture [62] follows as an intuitive realization of the squeezed color
field (due to the dual superconductive medium). The major objective of the string
formulation is to derive the leading and subleading properties of the flux tube in the
infrared region of confining gauge theories. This effective description is expected to
hold on distance scales larger than the intrinsic thickness of the flux tube 1/Tc [65]
in the rough phase of lattice gauge theories (LGT). The linearly rising potential part
arises from the classical configuration of the string, and the quantum fluctuations of
the string lead to the presence of a long distance c/r term in the qq potential well
known as the Lüscher term. The existence of the subleading term has been verified in
high precision measurements of Polyakov loop correlators in the SU(3) gauge group
at zero temperature [119]. The fluctuations of the string render an effective width
for the flux-tube which grows logarithmically [126] as the color sources are pulled
apart. The logarithmic divergence has been verified in many lattice simulations

96
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corresponding to a variety of confining gauge models [63, 65, 139, 154].

At high temperature, higher-order gluonic modes are present. The corresponding
free bosonic string predicts a new set of measurable thermal effects. These include a
decrease in the effective string tension [125, 117, 159], a change in the pattern of the
tube’s growth in width from a logarithmic divergence into a linear divergence [129],
and a non-constant width profile [129, 158] along the qq line.

Unlike the situation at zero temperature, where also the lattice data linking
perturbation theory with the string behavior has been reported in Ref. [160]. The
thermal behavior of the free string manifests only at source separation distance
scales larger than what one expects normally in the zero temperature regime [81,
129, 158]. The fact that the lattice data are poorly described by the free theory
in the intermediate distance regime has been a subject of analytic and numerical
studies which include higher-order terms of the effective string’s action [161, 162]
into the corresponding partition function. The consequences of such an approach
have been studied on the level of the qq potential [153, 163] and, recently, extended
to the flux tube width profile [138, 139, 140].

Apart from the linearly rising potential, the interesting physics of the effective
confining string is mainly due to its quantum fluctuations. As we will see, remarkable
features arise when the UV part of the fluctuations of the string-like flux tube is
filtered out for intermediate quark separations at high temperatures. As it is not
yet clear, at this distance scale, whether the deviations from the string picture are
due to a non-Nambu-Goto action or the fact that a stringlike behavior has not yet
set in, it seems interesting to address this problem in a variant context by reporting
an observation regarding the role played by the UV fluctuations of vacuum in these
discrepancies. We do this by tracking the response of the QCD vacuum which is
subject to UV fluctuations filtering to the presence of external static color sources.
This work extends the region for which the free string picture is of utility.

In the following we measure the gluonic action-density distribution by correlating
an action density operator to Polyakov loop correlators. Measurements are taken on
a set of SU(3) pure gauge configurations. The configurations are generated using
the standard Wilson gauge action Sw on two lattices of a spatial volume of 363 and
temporal extents of Nt = 10 and Nt = 8, corresponding to temperatures T ≈ 0.8 Tc

and T ≈ 0.9Tc respectively. The simulations are performed for coupling value β =
6.00, at this value the lattice spacing is a = 1.0 fm to reproduce the standard value of
the string tension

√
σ = 440 MeV [164]. The Monte Carlo updates are implemented

with a pseudo-heatbath algorithm [95] using Fabricius-Haan and Kennedy-Pendelton
(FHKP) [93, 94] updating. Each update step consists of one heat bath and 5 over-
relaxations. The measurements are taken on 500 bins separated with 2000 updating
sweeps. Averaging inside each bin is performed on 5 measurements separated by
70 updating sweeps. This leads to a hierarchical integration, that is apart from
updating the last time slice, similar to implementing a one-level Lüscher Weisz
(LW) algorithm [118].

The measurements are taken after smearing the gauge field by an over-improved
stout-link smearing algorithm [146]. Smearing the gauge field reduces the action
towards the action minimum or the classical instanton solution [165]. The UV effects
of smearing can be calibrated using a family of ultraviolet filtered topological charge
densities. The topological density can be formally obtained [166] from the trace of
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the overlap Dirac operator

q(x) = −Tr[γ5 (1 − a

2
D(0; x, x))]. (7.2.1)

The spectral representation of the above overlap Dirac operator can be used to
label the ultraviolet filtered topological charge densities labeled by λcut [167]. It can
be shown [148] that the above family of densities is well represented by the gluonic
topological charge density after an appropriate number of iterations of stout-link
smearing. In this way, smearing can be considered as a UV filter, removing UV
modes 1 of the Dirac operator.

In this chapter we use the value of the stout-link smearing parameters of ǫ =
−0.25 and ρµ = ρ = 0.06 that we used in the last chapter. The measurements are
taken on sets of smeared gauge configurations with increasing levels of smearing.
This way we are able to investigate the limit where the QCD vacuum response to
the presence of an external static color sources asymptotically approaches the low
energy free effective theory behavior.

7.3 Quark–antiquark potential

At fixed temperature T , the Monte Carlo evaluation of the quark–antiquark poten-
tial at each R is calculated through the Polyakov loop correlators

P2Q =

∫
d[U ] P (0) P †(R) exp(−Sw),

= exp(−V (R, T )/T ). (7.3.1)

In the string picture, the Polyakov loop correlator assumes the functional form
of the partition function of the two-dimensional bosonic string and the quark anti-
quark potential is given by Eq. (4.3.8).

The numerical evaluation of the quark anti-quark potential, Eq. (7.3.1), using a
four dimensional smearing scheme leads to a systematic ambiguity in regard to the
transfer matrix interpretation which allows one to identify the expectation values of
the Polyakov loop correlators with exp(−V (R)/T ). We recourse, instead, to three
dimensional smearing keeping the temporal-links unsmeared. The same smearing
parameters as above are used.

Our approach is as follows:

• We start with 500 configurations. Each configuration is smeared only altering
the spatial directions of the links, as depicted in Fig. 7.1

• For every 3D smeared configuration, an update sweep is applied. It consists of
a heat-bath step and four overrelaxation steps on the lattice. The hit proceeds
as an update of every single link based on its neighbours, effectively one at a
time as one sweeps across the lattice in all four directions.

1In this thesis, we will often use the terminology Ultraviolet (UV) modes to refer to high-energy
fluctuations on the lattice which are removed in the process of smearing. The smearing operation
will be referred to as UV filtering.
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Figure 7.1: (a) The temporal link U4 is updated based on the neighboring links.
The shaded area represents the 3D spatial smeared lattice. The heat bath starts
from links of a low action configuration. The overrelaxation or reflection steps starts
updates the time links based on action minimal

• The update sweep and measurement is repeated three more times on each
configuration. This results in four measurements out of each of the original
configurations.

The measurements proceed as follows:

• The temporal links in each of theses newly created configurations are then
integrated out using a source Q sum of staples. The temporal link vari-
ables Ut are replaced with the new link variable Ūt using the link-integration
method [152, 151]

Ū =

∫
dUUe−Tr(QU†+UQ†)

∫
dUe−Tr(QU†+UQ†)

. (7.3.2)

• Finally, the Polyakov loop correlators are calculated on each of the four gen-
erated configurations. The result is averaged and binned as a single jackknife
entry to avoid artificial error reduction. The 500 decorrelated bins are then
averaged.

The Monte Carlo update step starts from a low action configuration in the spatial
directions due to smearing. The above described update procedure brings in a newly
updated time-link such that the local action reduction that was only in the spatial
torus takes place in the four-dimensional lattice. In this way, the UV filtering is
implemented as systematic integration over the path integral (7.2), thus, preserving
the transfer matrix interpretation.

In Fig. 7.2 the value of the potential measured on various levels of spatially
smeared configurations, normalized to its value at R = 12 a, are plotted. Fig. 7.2 (a)
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Figure 7.2: (a) The quark–antiquark potential measured at each depicted smearing
level for 3 dimensional smearing (above) and 4 dimensional smearing (below). The
lines correspond to the string picture predictions of Eq. (4.3.8). The standard value
of the string tension is used.
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shows the numerical behaviour of the data using the above described 3D smeared
heat bath/overrelaxation driven updates. On the other hand, Fig. 7.2 (b) shows
the corresponding numerical behaviour of the data measured on standard four-
dimensional smeared configurations. The data corresponding to the unsmeared
lattice and the string model predictions of Eq. (4.3.8) at T = 0.9 Tc are also in-
cluded.

The discrepancies between the unsmeared lattice data and the free string model
occur in the intermediate distances 0.5 ≤ R ≤ 1 fm. The numerical results for
the quark–antiquark potential evaluated on the 3D smeared updated configurations
show an interesting behaviour with respect to the number of smearing sweeps (see
Fig. (7.2)(a)). The data at large distances show no response to the filtering of the
UV fluctuations of the gauge field. The data at intermediate separation distance
converge for a large number of smearing sweeps. Moreover, the data approach the
free string model predictions.

It is interesting to compare these results to those obtained from the four-dimensional
smearing illustrated in Fig. 7.2 (b), where 20 and 100 sweeps of smearing are com-
pared. The results for 100 sweeps of smearing coincide very well with the convergence
toward the string model predictions observed in Fig. 7.2. Thus, the four dimensional
smearing (4D) approach can be used as an efficient method for exploring the more
demanding three-point functions required to determine the distribution of gluon
flux, and this is used in the following. Similar results are observed at T = 0.8 Tc.

7.4 The Gluonic profile

The transverse degrees of freedom of the stringlike flux tube render an effective width
for the tube. The mean-square width of the free bosonic string in D dimensions [129,
138] reads

W 2(ξ1, τ) =
D − 2

2πσ
log

(
R

R0

)
+

D − 2

πσ
log

∣∣ η2(π ξ1/R; τ)

η′
1(0; τ)

∣∣. (7.4.1)

One can easily see that the above formula is equivalent to Eq. 4.3.17 through the
standard relation between η and θ Jacobi elliptic functions. This solution gives
the mean square width at all the planes transverse to the quark-antiquark line,
and hence, is describing the topological shape of the fluctuating flux tube and its
dependence on the temperature as well as its evolution with the increase of color
source separation. Using a modular transform τ → 1/τ [129, 138], Eq. (7.4.1), at
R >> 1

T
, in four dimensions [140] becomes

W 2(R/2) =
1

πσ
log

(
Tc

T

)
+

1

2σ
TR − 1

πσ
e−2πRT , (7.4.2)

which indicates linear growth of the tube’s width at large distance.

The width of the action density of the free bosonic string can be compared to
the width of the action density of the corresponding flux tube of the lattice gauge
theory. In the calculations of the gluonic profile through out this section, we adopt
the usual four-dimensional smeared configurations.
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After constructing the color-averaged infinitely-heavy static-mesonic state,

P2Q = P (~r1)P
†(~r2),

with the Polyakov loop given by Eq. (6.3.1)
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Figure 7.3: Plot of the density distribution C(~ρ) in the middle plane for source
separation R = 9 a , T = 0.9 Tc.

Subsequent measurement by an action density operator 1
2
(E2 − B2) is taken

at each point of the three-dimensional torus at each corresponding Euclidean time
slice for every source configuration. The action density operator is constructed
via a highly-improved O(a4) three-loop improved lattice field-strength tensor [150].
The measurements taken are averaged over the time slices. A scalar field that
characterizes the gluonic action-density distribution field can be then measured using
the definition [2]

C(~ρ;~r1, ~r2) =
〈P2Q(~r1, ~r2) S(~ρ) 〉

〈 P2Q(~r1, ~r2) 〉 〈S(~ρ) 〉 , (7.4.3)

where < ...... > denotes averaging over configurations and lattice symmetries, and
the vector ~ρ refers to the spatial position of the flux probe with respect to some
origin. To further suppress the statistical fluctuations, the density distributions
have been symmetrized around all the symmetry planes of the tube.
A measurement of the width of the flux-tube’s action density may be taken through
fitting the density distribution C(~ρ) , Eq. (7.4.3), in each selected transverse plane
~ρ(xi, y, z0) to the Gaussian of the form

C(y) = 1 − a1e
−y2/W 2(xi). (7.4.4)

xi = 0 denotes the position of the quark.
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Figure 7.4: The mean square width of the flux tube W 2
n(R/2) in the middle plane

between the quarks. The lattice data, corresponding to the action density minimiza-
tion, approach the string model predictions at short distances. At large distances
the predicted linear divergence of the flux tube width is manifest in lattice data.

The decrease in C(y) with the increase of the smearing sweeps is depicted in
Fig. 7.3. The action-density asymptotically converges to a minimum for values
around nsw = 80 to 100 sweeps of smearing.

The mean square width of the flux tube is measured via the second moment of
the flux density with respect to the central plane given by Eq. (6.4.3). The measured
values of the mean square width in the middle plane R/2 of the tube versus the source
separation are plotted in Fig. 7.4. Similar plots at three consecutive transverse planes
x = 2, x = 3, and x = 4 to the line joining the two color sources are illustrated in
Figs. 7.5 and 7.6.

To unambiguously identify the tube broadening pattern, the second term of
Eq. (7.4.1) has to be isolated. The width is defined normalized with respect to the
ultraviolet cutoff R0 (Eq.(7.4.1)) which does scale with smearing

W 2
n = W 2 +

1

π σ
log(R0). (7.4.5)

In plotting Fig. 7.4, R0 has been measured for each smearing level by fitting
Eq. (7.4.1) to the last five data points corresponding to R > 1 fm where good χ2 is
obtained.

At large distances, in the middle plane of the flux tube, the tube shows a width
broadening pattern for increasing R that does not depend strongly on the corre-
sponding smearing level. The data at large distances is increasing linearly in agree-
ment with the string model predictions [138, 139, 140]. The UV effects, on the other
hand, are manifest in the data points at shorter distances. The width of the flux
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Figure 7.5: The normalized width of the flux tube W 2
n(xi) versus qq separations

measured in the planes (a) x = 2, (b) x = 3, (c) x = 4. β = 6 , T = 0.9 TC .
The coordinates xi are lattice coordinates (lattice units) and are measured from the
quark position x = 0. The line denotes the one parameter string model, Eq. (7.4.1),
fit to lattice data for R ≥ 1 fm. The numbers in the legend denote the number of
smearing sweeps.
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Table 7.1: The returned χ2
dof by the fit of lattice data for measurement on the

flux tube width in the middle plane between quark–antiquark to the effective string
model predictions Eq. (7.4.1), the lattice data correspond to smearing levels from
nsw = 40 to nsw = 120.

No.sweeps 40 60 80 100 120
χ2

dof 3.2 1.6 1.20 0.98 0.96

tube measured on the lowest smearing level, where the short distance physics is best
preserved, is poorly described by the free bosonic string model at short distances.
As higher smearing levels are considered, the subsequent removal of the short dis-
tance physics from the gauge sector regulates the fast rate of growth of the flux
tube width. However, this does not continue uncontrollably. The data ultimately
converge near 100 sweeps of smearing, in accord with the saturation in the action
density of Fig. 7.3. Moreover, the UV-filtered results converge to the free string
predictions.

Table 7.1 summarizes the measured χ2
dof for fits of Eq. (7.4.1) for the fit range

R ≥ 0.5 fm. With the increase of the number of smearing sweeps the returned values
of the χ2

dof improves and becomes stable near the action saturation of approximately
100 sweeps.

 18

 20

 22

 24

 26
 28
 30

 35

 5  6  7  8  9

W
n2  a

-2

R a-1

60
120
140

Figure 7.6: The normalized width of the flux tube W 2
n(xi) versus qq separations

measured in the plane x = 3. The temporal links have not been smeared in the
evaluation of Polyakov loops, rather the temporal links have been integrated out.
This time, the Polyakov loops are taken from the unsmeared configurations and
correlated with the smeared action density. The legend denotes the number of
smearing sweeps of the QCD vacuum.

To clarify this point further, we investigate the response of the QCD vacuum
to the presence of infinitely heavy sources that are not constructed using smeared
temporal links. Instead, the Polyakov lines are evaluated in the calculations of the
flux strength, Eq. (7.4.3), using the link integration procedure of Refs. [152] and [151]
for noise reduction. For our analysis performed on 500 configurations, we observe
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that the data corresponding to the width profile of the flux tube measured on high
levels of vacuum UV filtering do display similar behavior to the results in Fig. 7.5.
Fig. 7.6 presents results for the plane x = 3. Again systematically converge with a
large number of smearing sweeps and approach the string model predictions. Note
that the evaluation of the correlation function using this method involves a three
point correlation function which becomes noisy at large distance.
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Figure 7.7: The change of the tube’s width δW 2 = W 2(xi)−W 2(x0) measured from
the central plane for the depicted qq separations. The smearing level of the lattice
data is illustrated. β = 6 , T = 0.9 TC . The line denotes the width difference
δW 2 as predicted by the string model Eq. (7.4.1).

The topological aspects of the fluctuating free string are contained mainly in the
second term of Eq. (7.4.1) and can be isolated by considering the difference in
the mean square width at a given plane with respect to the central plane, δW 2 =
W 2(xi)−W 2(x0). The measured value of R0, however, depends on the corresponding
plane at which the lattice data is fitted to Eq. (7.4.1). The value of the fit parameter
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Figure 7.8: The measured change in the ultraviolet cutoff R0 along the flux tube
normalized by a factor (πσ)−1.

R0 is fixed for each plane using lattice data at large separations R = 1.1fm and
R = 1.2 fm, a comparison of the second term of Eq. (7.4.1) with the corresponding
change in flux tube’s width on the lattice obtained from fits of , Eq. (7.4.3), is shown
in Fig. 7.7 for a source separation in the intermediate distance R = 0.8 fm and at
large distance R = 1.2 fm. The changes in R0 with respect to the central plane is
plotted separately in Fig. 7.8. Taking into account the changes in R0 [158].

Lattice data for each gauge-field smoothing level is depicted in Fig. 7.7. The
jackknife uncertainties associated with the change in the mean squared width of
the tube reveal correlated errors between the adjacent planes. Only subtle changes
are observed in the tube’s width along the transverse planes with respect to the
central plane for the analysis performed on smeared gauge configurations of the
lowest smearing level nsw = 40 sweeps. The tube tends to exhibit larger curvatures
as higher levels of gauge-field smoothing are considered. At large values of UV
fluctuations filtering, the tube profile converges and approaches the geometrical
shape of the free-Bosonic string. At large distances, on the other hand, the flux
tube displays a curved width profile which compares well with the bosonic string
profile and is not affected by smearing, as is evident in Fig. 7.7 at R = 1.2 fm.

7.5 Conclusion

The presence of a pair of static external sources in the QCD vacuum induces the
response of an effective free bosonic string for source separations in the intermediate
separation region, provided the short distance vacuum fluctuations are filtered out.
The flux tube, measured as a correlation between the mesonic operator and the
vacuum action density is found to exhibit a broadening pattern with increasing
R and a transverse structure similar to the free Bosonic string for measurements
taken near the saturation in action density minimization under smearing even at
intermediate distances. At large distances, the short distance fluctuations do not
affect the tube growth, which exibits a linear divergent pattern consistent with the
string model predictions.

To systematically study the effects of UV filtering of the QCD vacuum on the
quark–antiquark potential, we introduced a novel method that avoids the ambigui-
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ties that might arise due to smearing the temporal links, i.e, preserving the trans-
fer matrix interpretation. Instead, three-dimensional spatial smearing is combined
with single pseudo-heat bath driven updates. This means that the Polyakov loop
correlators are evaluated after applying a Monte Carlo update on lattices with the
three-dimensional spatial links smeared.

There are many observations on the behaviour of the numerical data when eval-
uating the Polyakov loop correlator using this method:

1. The time links have not been smeared. Heat-bath updates are more systematic
and allow us to identify the Polyakov loop correlator as exp(−V/T ). The
UV filtering is complemented by a systematic integration in the path integral
Eq. (7.3.1).

2. The data corresponding to the quark–antiquark potential at large distances
do not show a dependence on the UV physics, as expected.

3. The data at short distances converge at large number of smearing sweeps
displaying little sensitivity to the precise number of sweeps of smearing. This
merit is not obtained with standard 4D smearing smearing.

4. The data approach the string model predictions at short distances.

While the consideration of smeared temporal links in Polyakov lines is often crit-
icized, the results obtained with our novel 3D smearing method are similar to those
obtained from traditional four dimensional smearing. Any ambiguities associated
with smeared temporal links are subtle. 4D smearing is acceptable for revealing
long distance physics and is used in the flux-tube calculations using the correlator
Eq. 7.4.3.

The analysis performed at short distances provides an extension of the QCD
vacua where the free string picture is of utility. The infrared large distance part of
the physics in the intermediate distance region can be described merely on the basis
of a free string picture. This fact is relevant and complements recent investigations
including higher-order self interactions to match lattice results.



Chapter 8

On The Ground State of
Yang-Mills Theory

8.1 Outline

We investigate the overlap of the ground state meson potential with sets of mesonic-
trial wave functions corresponding to different gluonic distributions. We probe the
transverse structure of the flux tube through the creation of non-uniform smearing
profiles for the string of glue connecting two color sources in Wilson loop opera-
tor. The non-uniformly UV-regulated flux-tube operators are found to optimize the
overlap with the ground state and display interesting features in the ground state
overlap.

8.2 Introduction

A fundamental property of the non-perturbative regime of confining pure-gauge
theories is the linear increase in the ground state potential between a pair of static
color sources. In addition to that, lattice gauge simulations have recently confirmed
the existence of a sub-leading non-Coulombic long range correction to the mesonic
ground-state potential in Yang-Mills theory [64, 65, 66, 119]. These features are con-
nected with the underlying gluonic picture and the subsequent energy distribution
profile. Although the properties of the ground state potential have been unambigu-
ously measured to a subleading order in the infrared region of the non-abelian gauge,
the geometrical aspects of the associated energy density profile at low temperatures
remains to be completely resolved.

Lattice calculations of the gluon-field distribution in static mesons using Wilson
loop operators reveal uniform energy and action density profiles along the line join-
ing the static qq pair at large distances [63]. These measurements, however, may be
vulnerable to systematic errors associated with excited-state contamination [157].
The non-ground state components manifest themselves in the revealed gluonic pro-
files as a bias reflecting the form of spatial links of the Wilson loop operator. The
bias by the geometry of spatial links in the L shape baryon operator provides a
clear example where the flux distribution mimics the source [2, 157]. The height
and the width of the distribution also depend on the ultraviolet properties of the

109
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gauge links in the source [2]. Apart from the arbitrariness in adopting the source
that best approximates the ground state, the statistical fluctuations impose a prac-
tical constraint on the Euclidean time evolution in the loop operator to isolate the
physically interesting energy-density profile of the ground state. The excited-state
contamination is more challenging in the case of field distribution calculations which
involve three-point correlations rather than the potential which is extracted in the
large time limit of a two point correlation [157].
In the finite-temperature regime, the static meson can be constructed using a pair of
Polyakov lines. These hadronic operators provide a systematically unbiased string-
less gauge-invariant objects in the calculations of field-distribution correlations. This
means that one need not adopt specific geometric or UV properties for the gluonic
string between the color sources.

Current investigations of the flux-tube profile in the finite-temperature regime
of QCD have revealed action-densities of non-uniform distribution along the flux-
tube [158]. The action density displays a two dimensional Gaussian-like profile and
isosurfaces of a curved prolate spheroid-like shape [158] in the intermediate source
separation distance region 0.6 ≤ R ≤ 1 fm. This has been observed near the de-
confinement point T ≈ 0.9 Tc and remain manifest at the temperature T ≈ 0.8 Tc

close to the end of the plateau region of the QCD phase diagram [5]. The measure-
ments of the tube’s mean square width profile indicate, however, almost constant
width 7.6(a,b,c). Variation in the amplitude give rise to curved isosurfaces. At
larger distances, the tube changes width along the qq plane and this width profile
is predictable on accord with a free bosonic string picture [158]. The gluonic distri-
butions obtained at finite temperature by correlating two Polyakov lines constitute
an interesting source of knowledge for investigating the possibility that non-uniform
densities provide the true geometry of the ground state in the static meson. The
viability of considering finite temperature results as an indication for the field distri-
bution of the system’s ground state can be justified by arguing also that the change
in the string tension is small [81, 135] at T ≈ 0.8Tc.

In addition to this observation, it has been found recently that a model of
Coulombic trial states provides a good overlap with the ground state in the con-
tinuum limit [155]. Moreover, the free bosonic string model predicts observable
edge-effects at zero temperature for the width profile of the tube given by Allais and
Caselle [129]

1

πσ
log

∣∣cos(
πξ

R
)
∣∣, ξ ∈ [−R/2, R/2]. (8.2.1)

The above term describes the geometrical shape of the flux tube and it indicates
subtle changes in the tube’s mean square radius in the middle of the tube and more
pronounced changes near the quark positions. The success of the string picture
in accounting for the flux-tube curvature at high temperature at large distances is
remarkable, and one may investigate such effects at zero temperature. Apart from
the string’s width effects, a non-uniform action density amplitude pattern along
the tube has been observed at finite temperature whether the tube exhibits a non-
constant width profile or not [158]. The bag model is also another scheme that
predicts an ellipsoidal-like [168] shape for the tube in the infrared region.

At zero temperature, correlating a pair of Polyakov lines with an action density
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operator is very noisy and requires substantial numerical simulations using special
techniques such as the Multi-level algorithm [118]. Nevertheless, standard Wilson
loop operators do not exhaust the possibility of investigating the transverse structure
of the field distribution. We can introduce the non-uniformity by employing the idea
of constructing the flux-tube operator as a product of locally smeared links with
varying smearing extents. This corresponds to imposing a local transverse cutoff on
the lattice parallel transporters between the fermionic fields. By extending the space
of mesonic states constructed in Wilson loop this way, we investigate the existence
of states such that the overlap with the ground state is maximized. This is the
objective of the present report.

8.3 Wilson loop operator

In the mesonic Wilson loop, a mesonic state is described by fermionic fields connected
by the parallel transporters G that is an element of the corresponding local gauge
group G

|Ψ〉 = ψ̄(x2)Gψ(x1) |Ω 〉. (8.3.1)

The spectral expansion of the Wilson loop operator reads

〈W (R, t)〉 =
∑

n

Cn(R)e−Vn(R)t. (8.3.2)

The overlaps, Cn(R), obey the normalization condition

∑

n

Cn(R) = 1. (8.3.3)

For large t, the so-called overlap with the system ground state can be measured as

C0(R) =
〈W (R, t)〉t+1

〈W (R, t + 1)〉t . (8.3.4)

The mesonic state with an infinitesimally thin flux tube operator between quarks

G = P exp
[ ∫ x1

x2

dz .A(z)
]
, (8.3.5)

is poorly overlapping with the ground state in the continuum [155]. Analogy with
an Abelian analytically solvable case [169] shows that the infinitesimal thickness of
the gauge links corresponds to the removal of UV cutoff on the transverse direction
of the tube causing a vanishing overlap with the ground state.

Applying a smearing operator on a gauge link in a certain local gauge group
would alter its UV properties. Smearing introduces a transverse UV regulator into
the flux-tube operator and this results in the enhancement of the overlap with the
ground state. Define a smearing operator S : ⊕xG → ⊕xG. A standard APE [101]
smearing sweep (SU)µ(x) consists of a replacement of the spatial link-variable Uµ(x)
(µ = 1, 2, 3) with the angular part of

Us,µ(x) =(1 − α) Uµ(x) +
α

4

∑

µ6=ν

{Uν(x)Uµ(x + ν̂)

U †
ν(x + µ̂) + U †

ν(x − ν̂)Uµ(x − ν̂)Uµ(x + ν̂ − µ̂)}, (8.3.6)
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Figure 8.1: Schematic representation of link-blocking

where α is the smearing parameter as illustrated Fig. 8.1. In QCD, this corresponds
to the projected link Ūµ(x) ∈ SU(3)c that maximizes

ℜTr{Ūµ(x)U †
s,µ(x)}. (8.3.7)

The geometrical characteristics of smearing can be described by analogy to the
Brownian motion associated with a diffusing scalar field [3]. Given a scalar field
φ(r; n + 1) similar to the (n + 1)-th smeared gauge link in the µ direction, and
a smearing time τ = naτ with a spacing aτ . The smearing operation will then
correspond to the three-dimensional version of the diffusion initial value problem
[Eq. (5.2.6) and Eq. (5.2.7)]. In three dimension, the characteristic radius of the
Gaussian distributed field

G(r; τ) =
1

(4πDτ)
exp

[
− r.r

4Dτ

]
, (8.3.8)

is given by

r ≡
(∫

d3rG(r; τ)r2

∫
d3rG(r; τ)

)1/2

= 2 a
√

α n, (8.3.9)

and the amplitude

A =
1

(4πDτ)
. (8.3.10)

Applying the local smearing operator S at each spatial link in Wilson loop op-
erator

G = (Sn1U)(x1) (Sn2U)(x1 + a) · · · . (8.3.11)

The sequence of numbers of smearing sweeps applied at each link {n1, n2, n3, ..., nN}
fixes the gluonic distribution along the spatial links in Wilson loop. This sequence
of numbers maps into the geometrical space of the corresponding radii r(xi) and
the amplitudes A(xi) given by Eqs. (8.3.9) and (8.3.10). For a mesonic state ni or
r(xi), the projection on the system’s ground state is measured as,

〈Ψ0|Ψ{n}〉 = 〈Ψ0|ψ̄(x2)Gψ(x1)|Ω〉. (8.3.12)

The mesonic state constructed by operators corresponding to a rectanglar shape
given by a constant sequence {ri} has been considered to provide a good approxima-
tion for the potential ground state [63]. The understanding of the geometry of the
flux-tube, nevertheless, would be increased by constructing trial states without this
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Figure 8.2: Schematic representation of smearing the spatial links in the Wilson
loop. Each spatial link Uµ(x), µ 6= 4 is smeared with the operators (Sn)U . The
temporal links are left unsmeared. While not indicated in the figure, the links U †

at the top of the figure are also smeared.

Figure 8.3: Schematic diagram of the smearing profile. h is the minimum number
of smearing sweeps applied at the last link giving rise to smearing radius L1. n is
the maximum number of smearing sweeps in the middle resulting in the radius L2.
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constraint. We expect based on the results in Refs. [155, 158] that the best possible
approximation of the ground state may be approached this way.
For a Wilson loop with N spatial links, we consider a class of distributions charac-
terized by the radii r = f(x) + L1, with an ellipsoidal constraint

f 2(xi)

b2
+

x2
i

a2
= 1. (8.3.13)

The abscissa x are lattice coordinates and are measured from the middle plane
between the two quarks x = 0. The shape is fixed by the minimum number of
smearing sweeps at the last spatial link nN = h and the maximum number of sweeps
at the middle links nN/2 = n. The shape consists of a base defined by the family of

rectangles of height L1 ∝
√

h and ellipsoidal caps with a = R/2 and b2 ∝ (n − h),
thus, the radius at middle link is L2 = b + L1. This parametrizes the geometrical
shape schematically represented in Fig. 8.3. Among a variety of heuristic shapes, this
particular prescription is found to be especially useful for maximizing the overlap
with the ground state by variations of the tuning parameters h and n.

8.4 Numerical results and discussions

We take our measurements on 200 SU(3) pure-gauge configurations. The configu-
rations are generated as described in Chapter 6 for lattice volume of 363 × 32 with
the same coupling value of β = 6.00.

The APE smearing operation Eq. (8.3.6) and Eq. (8.3.7) is locally applied on
spatial links of the Wilson loop with smearing parameter α = 0.7. That is, the
number of smearing sweeps at each link as one moves from the quark to the anti-
quark is not necessarily equal. The smeared links are drawn from sets of smeared
configurations corresponding to 1 to 40 sweeps of APE smearing. The spatial links
in the Wilson loop are drawn from theses sets.

For noise reduction, the Wilson loop is calculated at each node of the lattice and
then averaged over the 4-volume of the hypertoroid. The overlap with the ground
state C0 of Eq. (8.3.4) is measured using Wilson loops of temporal extent of 2 and
3 slices for source separations R = 10 a and R = 12 a.

The sequence of the numbers of smearing sweeps applied at each link defines
a trial state. Here, we consider measurements of C0 for states in the parameter
space {5 ≤ n ≤ 40, 1 < h < 30}. The state is uniquely determined by n and h.
The number of sweeps at each link in between is obtained from Eqs. (8.3.13) and
(8.3.9). The smearing profile is symmetric with respect to the middle point between
the quarks.

Figure 8.4 indicates the measurements of the overlap of the ground state for
three selected lines in the parametric space correspond to {n, h = 1}, {n, h = 5},
{n, h = 13}. The shape is elliptic with the quark source at the end of the ellipse for
h = 1 (one smearing sweep at the last link). The values of C0 are small for ellipses
with number of sweeps in the middle 5 ≤ n ≤ 17. With further increase in the
height n, the value of C0 increases and lies approximately in the range [0.80, 0.85]
for n ≥ 17. However, if the height of the rectangular shape in the base increases
to h = 5 in terms of sweeps, the overlap with the ground state is in the range
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0.90 < C0 < 0.93 for n = 19 to n = 33. Further increase of h causes subtle increases
in the value of C0 until an optimum value for h ≃ 13 is reached.
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Figure 8.4: The overlap with the ground state C0, the distance between the quark
anti-quark source is R = 10 a, β = 6.

The flux tube modeled as an ellipsoid with the color source at the far end of the
prolate shaped gluonic bag does not provide the optimal overlap with the ground
state in static mesons. The subsequent increase in the ground state overlap value
C0 observed by introducing this rectangular base of height h can be understood by
considering a model of an elliptic-like shaped flux tube in which the quark posi-
tions are shifted from the edges to the inside. The bag model, for example, leads
to an ellipsoidal approximation for the gluonic field distribution around the color
source [168]. The above result would indicate that the ground state gluonic bag
would have the position of quarks not exactly at the edges. Indeed the elliptical
shapes revealed at small quark separations in Ref. [2] contained the quarks.

The retrieved values of the overlap for parameter values corresponding to the
two lines {n, h = 15, 18} are illustrated in Fig. 8.5. The overlap with the ground
state exhibts a pronounced oscillatory behavior versus n for h > 13. Nevertheless,
the measured data are not randomly scattered in the graph.

The data are seen to arrange themselves to lie ultimately within what resembles
a band structure. This branching is more evident when plotting a denser region
of the parametric space as in Fig. 8.6 for sweeps n > 25. The data appear to line
up into five bands with the continous variation of n indicating that this observed
oscillatory behavior by changing n for a given h as in Fig. 8.5 may not be arbitrary.
This is likely to arise from the discrete nature of ni and h in constructing the source
and the sink, and the inclusion of spatial link configurations which systematically
probe excited states of the glue.

There is, however, a variety of states of interest that maximize the overlap value



116 CHAPTER 8. ON THE GROUND STATE OF YANG-MILLS THEORY

at C0 ≈ 0.94. These states line up in the first band from above as in Fig. 8.6. The
form of the corresponding operators for four of these parametric states are shown in
Fig. 8.7.
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Figure 8.5: The overlap with the ground state C0, for R = 1 fm. The lines con-
nect the states corresponding to variation of the ellipse semi-major axis for each
rectangular base corresponding to sweeps h = 15 and h = 18.

It is evident that the states with very large values of h, for example, (h = 24, n =
32) tend to assume a more flat shape rather than the clear difference in amplitude
along the tube as in the state (h = 13, n = 34). Nevertheless, the four operators
overlap with the ground state equivalently.

For comparison, the values of C0 corresponding to the uniformly smeared (flat)
states, n = h, is also depicted in Fig. 8.6. In this case, C0 is a smoothly varying
function of n. In addition, the curve interestingly crosses through the states of the
second band from above. Inspection of Fig. 8.6 shows that states constructed by
non-uniformly smeared links can maximize the overlap with the ground state in a
comparative way to the mesonic states with uniform flux tubes {n = h}.

In general, we observe that neither smearing approach can overlap optimally
higher with the ground state for all the variables of the considered parametric spaces.
In the far region (large values of n or h), however, there exists many states belonging
to the highest band in Fig. 8.6 for which the overlap with the ground state, C0,
is higher than the corresponding flat smearing. This observation indicates that
smearing near the quark anti-quark pair, for sweeps greater than 30, increases the
excited-state contamination. The links near the quark positions exhibit different UV
behavior from the links at the middle with respect to the ground state overlap. The
measured data provide an explanation why the usual flat APE smearing decreases
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Figure 8.6: Comparison between non-uniformly smeared profiles n 6= h and flat
states n = h represented by the smooth line. The quark source separation distance
R = 1.0 fm.
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Figure 8.7: The flux tube operator Eq. (8.3.8). Each operator consists of a family
of five Gaussians. The operators correspond to the states (h = 13, n = 34), (h =
15, n = 32), (h = 20, n = 34) and (h = 24, n = 33). Theses states maximize the
value of the overlap with the ground state. The source separation distance R = 1.0
fm.
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Figure 8.8: Same as Fig. 8.6, for quark-antiquark separation distance R = 1.2 fm.
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quark–antiquark separation distance of R = 1.2 fm is considered here.



8.5. CONCLUSION 119

the overlap with the ground state for large number of smearing sweeps.

Recalling that the local smearing operator SnU not only alters the width of the
fat link at each locus which is proportional to

√
n, but also decreases the amplitude

as indicated in Eq. (8.3.10). We see that some of these states that maximize the
ground state overlap show in addition to the variation in the amplitude a sensible
variation in the amplitude of the flux tube operator near the quark source.
At larger source separation R = 1.2 fm, the collection of C0 in branching bands
is less obvious as can be seen in Fig. 8.8. The observable difference between the
overlaps value at R = 1.2 fm in Fig. 8.8 and for R = 1.0 fm in Fig. 8.5 is that the
states {h = 24, n > 32}, having a flatter and more uniform profile, do not optimize
the overlap with the ground state.

We replot the points in the parametric space which correspond to a fixed ratio
between the radii at the end and middle points of the flux tube L1/L2 in Fig. 8.9.
The lines pass through trial states that approximately have the same non-trivial
topology for the case L1 6= L2. The flat states, L1 = L2, are smoothly varying in
comparison to the non-uniformly smeared states which in general assume the same
behavior except for an obvious existence of fluctuation along each curve. These arise
due to the fact that non-uniform states, because of the lattice structure, do not have
exactly the same non-trivial topology in comparison to the flat states.

The optimization of the ground state overlap with the nonuniformly smeared
flux-tube operators suggests a similarity between the effects observed at the end of
the plateau in the QCD phase diagram and at zero temperature. Nevertheless, this
does not weaken the conclusions we have made in the earlier chapters on the finite
temperature effects. Indeed, there are significant differences in the flux-tube width
profile between the results at T = 0.8 Tc at the end of the plateau in the QCD phase
diagram and at T = 0.9 Tc just below the phase transition. This is where the finite
temperature effects are manifest. The suggestion made in this chapter is that very
little happens between T = 0.8 Tc and T = 0. This is further supported by the
similarity of the string tension observed at the end of the plateau in the QCD phase
diagram and at zero temperature. 1

8.5 Conclusion

The overlap with ground state static mesons has been measured for a variety of
trial mesonic states corresponding to non-uniform gluonic distributions. An optimal
ground state overlap for non-uniform flux-tube operators as well as flat smeared
operators has been found. This supports the possibility that the true ground state
flux tube is not uniform but rather has a curved flux strength profile larger in the
middle with higher action-density suppression. Such a result resembles the profile
revealed at finite temperature near the end of the QCD plateau. The findings of
this work motivate the use of a Multi-level approach to explore the action-density
profile of a static meson at zero temperature. This is the focus of the forthcoming

1This suggested similarity between both profiles, at T = 0 and at the end of the plateau of
QCD phase diagram, is understood in the context of small changes in the width along the tube
and an observed nonuniform profile due to changes in the amplitude of the Gaussian shape along
the flux tube (see for example Figs. 6.3 and 6.4).
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investigation. It is remarkable that highly non-uniform trial states produce values
of C0 equally as good as the traditional uniform smearing approach. This result
indicates that it is the smearing extent is the most critical in obtaining optimal
overlap with the ground state. However, it is important to note that the shape of
the non-uniform sources is critical to obtaining large values for C0. Our investigation
of other source shapes complementary to Fig. 8.3 did not produce values for C0 as
large as favorable case studied here in detail.



Chapter 9

Gluonic Profile of Static Baryons

9.1 Outline

The gluon flux distribution of a static three quark system has been revealed at finite
temperature in the pure SU(3) Yang-Mills theory. An action density operator is cor-
related with three Polyakov loops representing the baryonic state at temperatures
near the end of the QCD plateau, T/Tc ≈ 0.8, and another just before the decon-
finement point, T/Tc ≈ 0.9. The flux distributions at short distance separations
between the quarks display an action-density profile consistent with a rounded filled
∆ shape iso-surface. However the ∆ shape action iso-surface distributions are found
to persist even at large inter-quark separations. The action density distribution in
the quark plane exhibits a nonuniform pattern for all quark separations considered.
This result contrasts with the Y-shaped uniform action density gluonic-flux profile
obtained using the Wilson loop as a quark source operator at zero temperature. We
systematically measure and compare the main aspects of the profile of the flux dis-
tribution at the two considered temperature scales for three sets of isosceles triangle
quark configurations. The radii, amplitudes and rate of change of the width of the
flux distribution are found to reverse their behavior as the temperature increases
from the end of the QCD plateau towards the deconfinement point. Remarkably, we
find the mean square width of the flux distribution shrinks and localizes for quark
separations larger than 1.0 fm at T/Tc ≈ 0.8 which results in an identifiable Y-
shaped radius profile. Near the deconfinement point, the action-density delocalizes
and the width broadens linearly at large quark separations.

The profile of the baryonic gluonic distribution is compared with the width of
the string picture’s junction fluctuations. Despite the observation that the gluonic
flux is always ∆ shaped even at large distances, the comparison reveals that the
best fits to the junction fluctuations of the baryonic string are returned when the
profile of the flux-tube junction is near the fermat point of the triangle made up by
the quarks as the distance of one quark from the other two is varied. This result
supports the underlying gluonic picture of Y-shaped string-like flux tubes connected
at a junction whose position is such that the total string length is minimized.

121
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9.2 Introduction

Revealing the colour field distribution in the nucleon is a subject of fundamental
importance to quantum chromodynamics (QCD) and confinement. Lattice QCD
simulations provide a first principle source of knowledge about how the energy dis-
tribution manifests itself among a system of three static quarks (3Q). This has to do
with the relevant ansatz that accurately parametrizes and models the non-abelian
force that binds the nucleon. The colour distribution due to a 3Q system has been
of a problem of reviving interest of lattice simulations and has been revisited with a
variety of lattice techniques [2, 157, 143, 170]. However, an important aspect of this
problem yet remains to be thoroughly investigated. That is, the energy distribution
associated with the 3Q system at finite temperature. Tackling the problem of the
gluonic distribution from this perspective involves the employment of a methodolog-
ically different set of unbiased hadronic operators. In addition to this, revealing the
changes of the gluonic profile of the (3Q) system under various temperature condi-
tions would certainly contribute to our perception of the underlying gluonic picture
and the associated gluon dynamics. In fact, the distribution of gluonic fields in the
baryon at high temperature, before quantum chromodynamics (QCD) undergoes a
phase transition, is unknown in detail and has not yet been scrutinized by the lattice
approach.

Most of our current understanding of the (3Q) confining force is based on anal-
ysis at zero temperature [3, 100, 171, 172, 173, 174, 175]. The parametrization
which provides the best possible fits of the lattice data of the measured 3Q system
potentials has been controversial for a long period of time [171, 176, 177, 100]. How-
ever, recent lattice QCD findings regarding the three quark potential are settled to
support the so-called ∆-ansatz parametrization for small quark separation distances
of R < 0.7 fm and the Y-ansatz for 0.7 < R < 1.5 fm [100]. The ∆-ansatz accounts
for a confining potential built up as a sum of two-body forces; the string tension is
half that in the corresponding QQ system and the confining part of the baryonic
potential is in proportion to the perimeter of the triangle set up by the 3Q system.
On the other hand, if the confining potential is proportional to the sum of the dis-
tances from the quarks to the Fermat point with a string tension the same as that
in the QQ̄ system, then due to its shape, this potential is known as the Y-ansatz,
giving rise to a three-body term relevant to a genuine interaction channel of the
non-abelian force.

Ambiguities are known to arise, however, in the calculations of the gluonic dis-
tribution in the 3Q system at zero temperature. The energy distribution may be
vulnerable to systematic errors associated with excited-state contamination [157]
when constructing the static baryon using a Wilson loop operator. The configura-
tion of the spatial links that best minimize the potential has to be adopted before
hand. Associated with this arbitrariness in tuning the ground state operator are the
excited state potentials which manifest themselves in the revealed gluonic profiles as
a bias reflecting the form of spatial links of the Wilson loop operator [157]. The L
shape baryon operator provides a pronounced evidence where the flux distribution
mimics the source [2].

The isolation of the ground state is challenging in the case of field-distribution
calculations which involve four-point correlations rather than the ground state po-
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tential which is extracted in the large time limit of a three-point correlation [157].
For example, Euclidean time evolution in the 3-quark Wilson loop operator results
in observable broadening of the junction in the Y-shaped configuration [2]. Statisti-
cal noise, nevertheless, imposes a practical constraint on any further increase in the
exponentially decaying operator.

In this investigation, the static baryonic states are accounted for by means of
Polyakov loops. This provides a gauge invariant operator which acquires a method-
ological importance [143] due to the ability to construct an unbiased 3-quark oper-
ator without recoursing to a particular assumption regarding the form of the con-
figuration of the spatial links in Wilson loops or the ultraviolet properties of these
parallel transporters [178]. While carrying out energy density calculations into the
zero temperature regime requires substantial numerical simulations with regard to
the CPU time as well as the memory storage, the use of these stringless hadronic
operators for revealing the energy distribution at finite temperature is still an at-
tractive idea from the practical feasibility point of view. This can be studied in
conjunction with the thermal effects.

At finite temperature, pure Yang-Mills SU(3) lattice simulations for the action
density in the mesonic sector display a flux distribution with a vibrating string-
like shape. The density distribution shows a non-uniform pattern with an almost
constant cross section in the intermediate distance region 0.5 ≤ R ≤ 1 fm and
non-constant cross section at larger quark separations [158]. The non-uniformity of
the action density coincides with only a small decrease in the QQ effective string
tension σ [81] suggesting the ground state may also display a nonuniform action
density distribution [178].

In this chapter, we generalize this analysis to the distribution of the colour field
inside the baryon. We consider one temperature near the end of the QCD plateau
region at T/Tc ≈ 0.8, and other just before the deconfinement point at T/Tc ≈ 0.9.
The three infinitely heavy quarks are accounted for by means of Polyakov loops of
the same time orientation. The field strength inside the corresponding quark system
is revealed by correlating an improved action density operator [150] to these gauge-
invariant hadronic operators. Gauge-field smoothing [147], in addition to a high
statistics gauge-independent [2] averaging is employed to enhance the signal to the
noise. This noise reduction approach can be employed in a controlled and systematic
manner that has been proved effective in keeping the physics intact in the case of
the static meson [158]. The analysis on either the QQ̄ force or the action density
shows that smearing leaves no effect on the corresponding measurements taken for
quark source separation distance scales greater than the diameter of the Brownian
motion of a diffused link, i.e. the characteristic diameter of smearing. Moreover, the
systematic effects associated with this UV filtering procedure on the gluonic profile
has been reported in detail in Ref. [135].

The analysis on the smearing effects is revisited in this work for the 3Q force.
The relevant distance scale where the physics is preserved is established. After
identifying this scale, the characteristics of the action density profile are presented
for selected 3Q configurations and contrasted at the two considered temperatures.

The map of this chapter is as follows: In Section 9.3 and Section 9.4, the details
of the simulations and noise reduction techniques are described. The force in the
3Q system for selected configurations is evaluated in Section 9.5. In Section 9.6,
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the main aspects of the gluonic profile of the baryonic action density is analyzed
and contrasted at the two temperatures. In the last Section 9.7, we compare the
junction profile with the predictions of the string model derived in Chapter 4.

9.3 Measurements

The infinitely heavy quark state is constructed by means of Polyakov loop correla-
tors. As discussed in chapter(3) the baryonic correlator reads,

〈P3Q(~r1, ~r2, ~r3)〉 = 〈P (~r1)P (~r2)P (~r3)〉 ,

where the Polyakov loop is given by Eq. (6.3.1). The above correlator corresponds
to three Polyakov lines all in the same time direction.
After the construction of the gauge-invariant colour-averaged quark states, subse-
quent measurement by a gauge-invariant action density operator S(~ρ, t) is taken at
the spatial coordinate ~ρ of the three dimensional torus corresponding to each Eu-
clidean time slice. The action density operator is calculated, in the usual way used
in the previous chapters, via a highly-improved O(a4) three-loop improved lattice
field strength tensor [150].
A scalar field that characterizes the gluonic field can be defined as

C(~ρ, ~r1, ~r2, ~r3) =
〈P3Q(~r1, ~r2, ~r3) S(~ρ)〉
〈P3Q(~r1, ~r2, ~r3)〉 〈S(~ρ)〉 , (9.3.1)

for baryonic systems, where < ...... > denotes averaging over configurations and
lattice symmetries, the vectors ~ri define the positions of the quarks and ~ρ the position
of the flux probe. Cluster decomposition implies C −→ 1 away from the quarks.

In this investigation, we have taken 10, 000 measurements at temperature T/Tc =
0.8, and 6, 000 measurements at temperature T/Tc = 0.9. The measurements are
taken on hierarchically generated configurations. The gauge configurations are gen-
erated using the standard Wilson gauge action on lattices with a spatial volume of
363. Gauge configurations are generated with a coupling value of β = 6.00. The
lattice spacing at this coupling is a = 0.1 fm [164]. After each 1000 updating sweeps,
nsub = 20 or 12 measurements separated by 70 sweeps of updates are taken for the
two lattices corresponding to T/Tc ≈ 0.8 and T/Tc ≈ 0.9 respectively. These sub
measurements are binned together in evaluating Eq. (9.3.1). The total measure-
ments are taken on 500 bins.

The gluonic gauge configurations are generated with a pseudo-heat bath algo-
rithm [95]. As has been done in the previous chapters, the heat bath is implemented
by (FHKP) [93, 94] updating on the corresponding three SU(2) subgroups. Each
update step consists of one heat bath sweep and 4 micro-canonical reflections.

9.4 Statistics

In the same way as described in the last chapters, gauge-independent noise reduction
can be employed by making use of the space-time translation invariance of the hyper-
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toroid. Also, local action reduction by cooling the gauge field with an over-improved
stout-link (4D-smearing) algorithm [146], as described in Chapter 4, is employed.

Local action reduction by smearing the gauge links has been performed on the
whole four-dimensional lattice. This procedure can be applied for correlating opera-
tors with Polyakov loops. For example, the correlations with the topological charge
has been studied in Ref. [145] using the Cabbibo-Marinari cooling. Smearing the
gauge field can be particularly helpful in reducing the statistical noise associated
with evaluating the Polyakov loop correlators.

However this step may result in the elimination of short distance physics and one
has to be careful with regard to the number of smearing sweeps and the relevant
distance scale where the physical observables are extracted. In the next section, we
extend the study of Chapter 4 of the effects of gauge field four-dimensional smearing
to the 3Q force and determine the distance scale and corresponding smearing level
where the physical observables are left intact. We smear the gauge field with an
over-improved stout-link four-dimensional smearing algorithm [146], with the same
parameters used in the measurement setup of the Chapters 6 and 7.

9.5 Forces in the static baryon

Unlike the force which is extracted from a three point correlator, the flux charac-
terization Eq. (9.3.1), involves a four-point correlation function in the numerator
presenting additional challenges with respect to the signal to noise level. The lat-
tice space-time and configuration space symmetries can be auxiliary in enhancing
the signal to noise ratio; however, a four dimensional gauge smoothing has to be
employed to obtain a signal.

The force in the 3Q system is a physical observable of direct relevance to the
properties of the underlying energy distribution. In the following we consider the
effects of the gauge smoothing procedure on the force experienced by a test colour
charge. This can give indications on the relationship between source separation
distance and the number of smearing sweeps where the changes in physics is min-
imal. Similar techniques have been adopted in Ref. [144] in the determination of
the large distance QQ force in vacuum with different levels of hyperbolic (HYP)
smearing [158]. In the following, we consider the evaluation of the force via three
Polyakov loop correlators.

For several levels of smearing corresponding to nsw = {20, 40, 60, 80}, we nu-
merically evaluate the force on a test colour charge, assuming the transfer matrix
interpretation is preserved as justified in Ref. [135], the 3Q potential can be identified
via a three loop correlator as

〈P3Q〉 = 〈P(~r1)P(~r2)P(~r3)〉
= exp(−V3Q(~r1, ~r2, ~r3)/T ).

The force on the third quark Q3 for the isosceles triangle configuration illustrated in
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Figure 9.1: Schematic diagram for the isosceles configuration of the 3Q system. The
large spheres represent the motion of the diffused field of characteristic smearing
radius of Rs centred at the quarks (small spheres).

Fig. 9.1 is measured through the definition of the derivative on the lattice [88, 119]

FQ3 = − ∂V (R; A)

∂R
|R+a

2

=
1

2 aT
log

( 〈P (0, 0) P (0, A) P (R,A/2)〉
〈P (0) P (0, A) P (R + 1, A/2)〉

)
. (9.5.1)

The numerical values of the force measured on smeared configurations are re-
ported in Fig. 9.2 for three isosceles bases, A = 0.6, 0.8 and 1.0 fm. The repeated
measurements on the data sets corresponding to increasing smearing levels indicate,
in general, invariance of the force experienced by the test charge Q3 under smearing
at large distances. The loss of short distance physics is pronounced at small values
of R which decreases as we increase the length of the isosceles base quark config-
uration. In the following, our consideration of different isosceles 3Q configurations
enable a systematic identification of the distance scale beyond which a given level
of smearing has little effect on the physical observables.

We define RF (nsw) to be the minimal distance beyond which a smearing sweeps
up to nsw does not affect the force Eq. (9.5.1). The values of RF can be read from
Fig. 9.2. Table 9.1 summarizes the values of RF for each isosceles configuration and
smearing level. Since the effects of smearing relate also to the length of the isosceles
base, we list for comparison the values of the corresponding effective range, BF ,
defined as BF =

√
R2

F + A2/4, and also the distance from a quark at the base of
the triangle to the Fermat point of the triangle LF (see Fig. 9.1).

Clearly the range RF is decreasing with the increase of the length of the isosceles
base, A, indicating that smearing around the charges residing on the isosceles base
decreases the force exerted on the colour test charge Q3 as the charges Q1 and Q2

become closer as in Fig. 9.1. Inspection of the corresponding values of the above
defined BF , on the other hand, show that the decrease of RF with the increase of A
is such that the length of BF is approximately constant. To gain an insight to what
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 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.4  0.6  0.8  1  1.2

F
 (

fm
-2

)

R (fm)

β = 6.0,T =0.9 Tc
nsw=20
nsw=40
nsw=60
nsw=80

(c) A = 1.0 fm

Figure 9.2: The force for the isosceles 3Q configurations with base lengths (a)
A = 0.6 fm, (b) A = 0.8 fm and (c) A = 1.0 fm, respectively. The x-axis denotes
the position R of the third quark. Smearing effects are manifest for R < 0.95 fm,
R < 0.85 fm and R < 0.75 fm for A = 0.6 fm, A = 0.8 fm, and A = 1.0 fm. Only
subtle smearing effects remain beyond these distance scales.
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Table 9.1: The characteristic radii BF =
√

R2
F + A2/4 for the baryonic system at

each smearing level for each configuration of Fig. 9.2.

Config A = 0.6 A = 0.8 A = 1.0
LF = 0.35 LF = 0.46 LF = 0.58

nsw RF BF RF BF RF BF

40 0.65 0.63 0.55 0.68 0.45 0.67
60 0.75 0.80 0.65 0.76 0.55 0.74
80 0.85 0.90 0.75 0.85 0.65 0.82

these observations may imply, we study the characteristics of the Brownian motion
of the diffused field, and also the analogous values of smearing threshold RF (nsw)
measured for the QQ̄ system.

The diffuse field is Gaussian distributed [3] through a ball centered at position r
whose evolution with a smearing time τ , in a four-dimensional smearing scheme [158]
is given by Eq. (5.2.9)

The diffused field characteristic radius is defined as

Rs =a
√

ρ c nsw. (9.5.2)

The proportionality constant c scales the number of smearing sweeps nsw in the
improved stout-link smearing algorithm defined above with respect to APE four-
dimensional smearing as defined for instance in Refs. [2, 178]. The calibration
proceeds via comparing the respective number of smearing sweeps in each smearing
scheme with respect to a given threshold [149] (the reconstructed action-density [150]
normalized to a single instanton action S/S0). This yields a value of c = 6.15(3) [158]
(see also Chapter 6). With ρ = 0.06, the number of smearing sweeps in the improved
stout-link smearing algorithm scales as half the number of the corresponding smear-
ing sweeps in APE smearing with the smearing parameter α = 0.7.

After identifying this characteristic smearing range, the values of Rs(nsw) are
compared to the corresponding values of RF (nsw) for the QQ̄ system [158] in Ta-
ble 5.3. Inspection of the values reported for the mesonic force unveils that RF is
roughly equivalent to twice the smearing radius Rs. This suggests that the mesonic
force is invariant under the smearing operation applied on the whole four dimen-
sional lattice as long as the fuzzed balls centred at the quark source links are non-
overlapping. Similar analysis on the action density shows that the region free of
smearing effects obeys the same invariance criterion [158].

The distance BF describes the minimal distance from the quarks Q1,2 to Q3 for
which the measured force is invariant under a given number of smearing sweeps.
The values of BF in Table 9.1 compare favourably with the values calculated for
the quark–antiquark system in Table 5.3. This indicates that the smearing effects
are immaterial as long as the length of the isosceles side is such that the fuzzed
balls around any of the colour charges Q1,2 and that around the test charge Q3 are
non-overlapping.

For the smearing radii considered here, a slight overlap of the fuzzed ball around
each quark Q1,2 on the base of the isosceles is seen to have no observable effect on
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the force experienced by the test charge Q3. This observation does not exclude the
possibility of the three body channel of the interaction in the (3Q) system. The
locus of the center of interaction may still be outside the two overlapping spheres in
the base of the triangle.

In Table 9.1, the distance from the quarks Q1,2 to the Fermat point is indicated
for each configuration. Simple variation calculus shows that for an isosceles triangle,
the position of the Fermat point does not depend on the height of the triangle, R,
and the locus is fixed merely by the length of the base of the triangle such that,
xF = A/(2

√
3).

In summary, for the quark position geometry considered in this work, the above
analysis on the measured values of the force among a system of three quarks for each
smeared data set of configurations suggest a conservative distance scale γ beyond
which the confining force on a given source is unchanged to be

γ = 2 Rs. (9.5.3)

This restricts the number of smearing sweeps to be such that the characteristic
diameter of smearing does not exceed the distance between at most two quarks.
To take into account the distance between other sources, an additional conservative
measure will be to keep the distance to the Fermat point from any of the quarks of a
given configuration outside the radius of smearing. However, in the present case this
may be immaterial since the differences in the force measurements are well within
the statistical errors. Equation (9.5.3) indicates the distance scales where a specific
characteristic of the action density might be affected by gauge field smoothing. The
corresponding effects of gauge field smoothing on the revealed gluonic profile will be
discussed also on several occasions below.

9.6 Action Density

9.6.1 Flux iso-surface profile

The flux strength is measured as the correlation between the vacuum action-density,
S(~ρ, t), and a gauge-invariant operator representing the quark states as provided by
Eq. (9.3.1). The action density operator

S(~ρ) = β
∑

µ>ν

1

2
Tr(F Imp

µν )2, (9.6.1)

is calculated through the O(a4) improved lattice version of the continuum field-
strength tensor [150]

F Imp
µν =

3∑

i=1

wi C
(i,i)
µν . (9.6.2)

where C
(i,i)
νµ are i × i link products in the νµ plane and wi are coefficients selected

to remove O(a2) and O(a4) errors. The evaluation of this operator on smeared
configurations filters out the UV divergences around the quark positions. The origin
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(a) R = 0.6 fm, nsw = 60.

(b) R = 0.8 fm, nsw = 60. (c) R = 1.0 fm, nsw = 80.

Figure 9.3: Surface plot (inverted) of the flux distribution C(~ρ) of Eq. (9.3.1)
evaluated in the plane of the (3Q) system ~ρ(x, y, 0), for isosceles configuration of
base length A = 0.4 fm and separation distances (a) R = 0.6 fm, (b) R = 0.8 fm
and (c) R = 1.0 fm, at T = 0.8 TC . The spheres refer to the positions of the quarks.
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Figure 9.4: The flux action iso-surface at the quark positions, plotted together with
a surface plot for the density distribution C(~ρ), in the 3Q plane at temperature
T = 0.9 Tc, for equilateral triangular configuration R = 1.1 fm and A = 1.0 fm.
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(a) R = 0.4 fm, nsw =
40.

(b) R = 0.5 fm, nsw =
40.

(c) R = 0.6 fm, nsw =
60.

(d) R = 0.7 fm, nsw =
60.

(e) R = 0.8 fm, nsw =
60.

(f) R = 0.9 fm, nsw =
80.

(g) R = 1.0 fm, nsw =
80

(h) R = 1.1 fm,
nsw = 80

Figure 9.5: Surface plot in the plane of the 3Q system ~ρ(x, y, z = 0) and iso-surface
of the flux distribution C(~ρ;~r1, ~r2, ~r3) for the isosceles configuration with A = 1 fm
and the third quark separation distance R as indicated. T = 0.8 TC .
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(a) T = 0.8Tc. (b) T = 0.9Tc.

Figure 9.6: Comparison of the flux contour lines of the density distribution in the
3Q plane C for triangular base A = 1.0 fm and third quark separation R = 0.9 fm
at (a)T = 0.8 Tc and (b) T = 0.9 Tc, in the z = 0 plane. As illustrated in Fig. 9.3,
the maximal effect is near the Fermat point.

of the co-ordinate system is placed at the middle between the two quarks Q2,3 on
the y axis at positions ~ρ(0,±A

2
, 0) and at distance R from the third quark, Q3, at

~ρ(x = R, 0, 0). The quarks reside on the plane ~ρ(x, y, 0).
On calculating Eq. (9.3.1), we find C(~ρ) < 1, and C ≃ 1 away from the quark

positions. The density distribution in the plane of the quarks is plotted in Fig. 9.3.
In general, the action density distribution is non-uniformly distributed as revealed
in Fig. 9.3 through 9.5. The distribution C(~ρ(x, y, z = 0)) has an action density
maximal curve along the middle line ~ρ(x, y = 0, z = 0) between the two quarks
Q1,2. With the increase of source Q3 separation, the peak point along the maximal
curve C(~ρ(x, y = 0, z = 0)) shows only subtle movement, remaining near the Fermat
point of the triangle. These results contrast with the Wilson loop results at large
separations [2] where the action density assumes a constant amplitude along each
arm of the Y-shaped profile. A convex curvature in the contour plot of flux density
is manifest in Fig. 9.4(b). This also contrasts with the density plots obtained using
the Wilson loop where the flux density assumes a concave curvature.

Figure 9.4 discloses the flux surface plot of C in the 3Q plane and associated
iso-surface for an isosceles configuration corresponding to a base A = 1.0 fm at
the temperature T/Tc = 0.9. The flux iso-surface displays a clear filled ∆ shape
distribution. By moving the third quark further away, i.e. by increasing R, the ∆
shape is found to persist. The sequence of frames in Fig. 9.5 displays similar results,
this time at T = 0.8 Tc. It is important to note that this geometrical form of the
density plot manifests itself at a temperature near the end of the plateau of the
QCD-phase diagram [5] where the string tension has been reported to decrease only
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by a value around 10% [81].

The contour lines and iso-surface of the flux do not exhibit a significant change
with the temperature scale. Similarly, the effects of smearing do not cause de-
formations of the iso-surface profile outside of smoothing the interpolation of the
flux-lines. This has been observed [179] at relatively short distances employing the
link integration for evaluating Polyakov lines in the flux strength characterization
(9.3.1). Even though the number of smearing sweeps selected for each graph are
larger than the limits set by the invariance of the force analysis of the last sections,
the rendered graphs are not sensitive to increased levels of smearing.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-10 -5  0  5  10

C
- (y

)

y

x=1
x=2
x=3
x=4
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Figure 9.7: The density distribution C′(~ρ) for the isosceles configuration with the
base, A = 1.0 fm, and height R = 0.8 fm at T/Tc = 0.8 (nsw = 60 sweeps). Data
are plotted for the transverse planes x = 1 to x = 6. The lines correspond to the
Gaussian fits to the density in each plane ~ρ(xi, y, 0). The highest amplitude lies
close to the Fermat point plane x = 2.88 of this 3Q configuration.

The flux distribution acquires a non-trivial transverse structure along the lines
perpendicular to the x-axis. The fits of the transverse distribution along the lines
~ρ(xi, y, 0) is returning good χ2 for a Gaussian distribution with varying amplitudes
and widths from the third quark Q3 position, R, to the y-axis as shown for instance
in Figs. 9.3 or 9.6. This symmetry about the y-axis in the x− y plane also exists in
the perpendicular z direction.

In a mesonic system, the width of the flux distribution is cylindrically symmetric
around the line joining the two quarks. However, the existence of a third quark away
from the y-axis breaks the symmetry of the width profile and the measured widths
perpendicular to the plane of the quarks do indeed differ from the widths in the quark
plane. In the forth coming section, we focus on dissecting the profile properties of
the flux distribution within the quark plane, while the asymmetry aspect ratios are
reported separately in the last section.
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5 Table 9.2: The amplitude, Hy(xi) (scaled by a factor of 101) of the flux distribution at each consecutive transverse plane xi from the
quarks forming the base, A, of an isosceles triangle. The measurements for base source separation distance A = 0.6, 0.8 and 1.0 fm
for the temperature T/Tc = 0.8 are indicated as a function of the third quark position, Q3.

Plane x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x = 10 x = 12 x = 13
Q3 = R/a

A=0.6 fm
07 4.12(2) 4.34(1) 4.28(1) 3.97(2) 3.48(2) 2.84(2)
08 4.24(2) 4.53(2) 4.56(2) 4.36(3) 4.00(3) 3.49(3) 2.85(3)
09 4.31(2) 4.63(3) 4.73(3) 4.63(4) 4.37(4) 3.99(4) 3.49(4) 2.85(3)
10 4.35(3) 4.67(5) 4.82(5) 4.79(6) 4.62(6) 4.33(5) 3.95(4) 3.46(3) 2.83(2)
11 4.36(5) 4.66(7) 4.84(7) 4.85(8) 4.74(8) 4.53(7) 4.24(5) 3.86(4) 3.39(3) 2.80(3)
12 4.35(6) 4.6(1) 4.7(1) 4.8(1) 4.8(1) 4.59(9) 4.35(7) 4.06(4) 3.72(4) 3.29(3) 2.73(3)
13 4.30(7) 4.4(1) 4.6(1) 4.7(1) 4.7(1) 4.5(1) 4.3(1) 4.06(6) 3.81(4) 3.53(4) 3.14(4) 2.64(3)

A=0.8 fm
07 4.71(5) 4.92(3) 4.80(1) 4.40(2) 3.80(3) 3.07(3)
08 4.79(5) 5.08(3) 5.06(3) 4.78(3) 4.31(4) 3.71(4) 3.01(3)
09 4.83(5) 5.14(4) 5.22(4) 5.03(4) 4.68(5) 4.22(4) 3.66(4) 2.98(3)
10 4.84(5) 5.13(5) 5.27(5) 5.18(5) 4.93(6) 4.58(5) 4.13(4) 3.60(4) 2.95(4)
11 4.84(5) 5.06(5) 5.24(5) 5.23(6) 5.08(6) 4.80(5) 4.44(4) 4.02(5) 3.51(6) 2.88(6)
12 4.84(5) 4.92(5) 5.12(5) 5.18(6) 5.12(6) 4.92(5) 4.61(3) 4.23(6) 3.8(1) 3.4(1) 2.75(9)
13 4.84(5) 4.70(4) 4.88(3) 5.00(3) 5.04(5) 4.92(5) 4.64(2) 4.27(8) 3.9(1) 3.5(1) 3.1(1) 2.6(1)

A=1.0 fm
07 5.17(9) 5.43(6) 5.33(3) 4.86(1) 4.15(2) 3.31(2)
08 5.22(9) 5.56(7) 5.58(5) 5.25(2) 4.69(1) 3.99(2) 3.19(3)
09 5.2(1) 5.58(9) 5.72(7) 5.53(5) 5.11(3) 4.55(2) 3.89(4) 3.14(4)
10 5.2(1) 5.5(1) 5.8(1) 5.71(9) 5.43(7) 4.99(6) 4.45(6) 3.82(7) 3.08(7)
11 5.26(1) 5.3(1) 5.7(1) 5.8(1) 5.7(1) 5.3(1) 4.9(1) 4.3(1) 3.7(1) 3.0(1)
12 5.4(1) 5.1(1) 5.5(1) 5.7(1) 5.8(1) 5.6(1) 5.1(1) 4.6(1) 4.0(1) 3.4(1) 2.7(1)
13 5.7(1) 4.7(1) 5.0(1) 5.4(1) 5.6(1) 5.7(1) 5.3(1) 4.6(1) 4.0(1) 3.4(1) 2.9(1) 2.4(1)
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Table 9.3: The squared width, r2
y, in lattice units, of the flux distribution as in Table 9.2.

Plane x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x = 10 x = 12 x = 13
Q3 = R/a

A=0.6 fm
07 9.7(1) 9.6(0) 9.3(0) 9.0(1) 8.6(1) 8.2(1)
08 10.0(1) 9.9(1) 9.7(1) 9.5(1) 9.2(1) 8.7(1) 8.2(1)
09 10.2(1) 10.3(1) 10.2(1) 10.0(1) 9.7(2) 9.3(2) 8.8(2) 8.2(1)
10 10.6(1) 10.8(2) 10.6(2) 10.5(2) 10.3(2) 9.9(2) 9.4(2) 8.8(2) 8.0(1)
11 10.9(2) 11.5(3) 11.2(3) 11.1(3) 10.9(3) 10.6(3) 10.2(2) 9.5(2) 8.6(1) 7.8(1)
12 11.3(2) 12.5(5) 12.1(4) 11.8(4) 11.6(4) 11.3(4) 11.0(3) 10.3(2) 9.4(2) 8.4(2) 7.7(1)
13 11.7(3) 13.9(7) 13.2(6) 12.7(6) 12.4(6) 12.3(6) 12.1(5) 11.5(3) 10.4(2) 9.2(2) 8.3(2) 7.9(2)

A=0.8 fm
07 12.2(2) 11.9(1) 11.3(0) 10.8(1) 10.2(1) 9.5(2)
08 12.4(2) 12.2(1) 11.7(1) 11.2(1) 10.6(1) 10.0(2) 9.2(2)
09 12.8(2) 12.6(1) 12.1(1) 11.6(1) 11.1(2) 10.5(2) 9.7(2) 8.8(2)
10 13.2(2) 13.1(2) 12.5(2) 11.9(2) 11.4(2) 10.9(2) 10.2(2) 9.3(2) 8.2(2)
11 13.6(2) 13.6(2) 12.8(2) 12.1(2) 11.5(2) 11.0(2) 10.4(1) 9.6(2) 8.5(3) 7.5(3)
12 14.1(2) 14.0(2) 12.9(2) 12.1(2) 11.3(2) 10.8(2) 10.3(1) 9.6(2) 8.6(4) 7.6(4) 6.8(4)
13 14.8(2) 14.2(2) 12.7(1) 11.4(1) 10.6(2) 10.1(1) 9.8(1) 9.3(3) 8.5(5) 7.6(6) 6.9(6) 6.4(6)

A=1.0 fm
07 15.4(4) 14.6(3) 13.7(1) 12.9(0) 12.2(1) 11.4(2)
08 15.7(4) 14.8(3) 13.8(2) 13.0(1) 12.3(0) 11.5(1) 10.6(2)
09 16.1(5) 15.0(4) 13.8(3) 12.9(2) 12.1(1) 11.5(1) 10.6(2) 9.5(2)
10 16.6(5) 15.1(5) 13.7(4) 12.6(3) 11.7(2) 11.0(2) 10.4(2) 9.4(3) 8.1(4)
11 17.0(6) 14.9(6) 13.3(6) 12.0(5) 10.9(4) 10.2(4) 9.6(5) 9.0(6) 7.9(6) 6.6(6)
12 17.2(7) 13.9(5) 12.2(5) 10.8(5) 9.7(7) 8.9(7) 8.3(8) 7.8(9) 7(1) 6(1) 5(1)
13 17.1(9) 12(1 ) 10(1) 9(1) 8(1) 7(1) 6(1) 6(1) 6(1) 5(1) 5(1) 4(1)
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7 Table 9.4: The amplitude, Hy(xi) (scaled by a factor of 101), of the flux distribution at each consecutive transverse plane xi from the
quarks forming the base, A, of an isosceles triangle. The measurements for base source separation distance A = 0.6, 0.8 and 1.0 fm
for the temperature T/Tc = 0.9 are indicated as a function of the third quark position, Q3.

Plane x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x = 10 x = 12 x = 13
Q3 = R/a

A=0.6 fm
07 2.73(1) 2.83(1) 2.77(1) 2.58(1) 2.27(2) 1.88(2)
08 2.71(1) 2.79(0) 2.75(1) 2.62(1) 2.42(2) 2.14(2) 1.79(2)
09 2.68(0) 2.73(0) 2.67(0) 2.56(0) 2.41(1) 2.24(1) 2.01(2) 1.71(1)
10 2.64(0) 2.64(1) 2.55(1) 2.43(0) 2.30(0) 2.19(1) 2.06(1) 1.89(1) 1.63(1)
11 2.59(0) 2.55(2) 2.42(2) 2.27(1) 2.14(0) 2.05(0) 1.99(1) 1.91(1) 1.77(1) 1.56(1)
12 2.53(1) 2.45(3) 2.29(3) 2.10(2) 1.95(2) 1.86(1) 1.83(1) 1.81(0) 1.77(1) 1.67(1) 1.49(1)
13 2.46(2) 2.35(3) 2.15(3) 1.93(3) 1.76(3) 1.66(3) 1.63(2) 1.64(1) 1.64(0) 1.63(1) 1.56(2) 1.43(1)

A=0.8 fm
07 2.88(2) 2.93(1) 2.85(0) 2.64(0) 2.33(1) 1.94(1)
08 2.84(2) 2.86(2) 2.79(0) 2.63(0) 2.41(1) 2.14(1) 1.81(1)
09 2.80(3) 2.77(3) 2.68(1) 2.52(0) 2.35(0) 2.18(1) 1.97(1) 1.70(1)
10 2.74(2) 2.66(4) 2.53(3) 2.36(1) 2.20(0) 2.07(0) 1.96(1) 1.82(1) 1.60(1)
11 2.67(2) 2.54(5) 2.38(4) 2.18(3) 2.00(2) 1.89(1) 1.83(0) 1.78(1) 1.69(1) 1.51(2)
12 2.59(1) 2.44(5) 2.23(4) 2.00(4) 1.81(3) 1.69(2) 1.64(1) 1.64(0) 1.63(1) 1.58(2) 1.46(2)
13 2.51(1) 2.35(4) 2.11(4) 1.85(4) 1.64(4) 1.50(3) 1.45(2) 1.46(1) 1.50(1) 1.52(2) 1.50(3) 1.42(3)

A=1.0 fm
07 2.85(5) 2.84(4) 2.78(2) 2.59(0) 2.31(0) 1.96(0)
08 2.79(6) 2.74(5) 2.68(3) 2.52(1) 2.33(0) 2.10(0) 1.82(1)
09 2.72(6) 2.61(6) 2.52(4) 2.36(2) 2.20(1) 2.06(0) 1.91(0) 1.69(1)
10 2.64(6) 2.46(7) 2.33(5) 2.15(3) 1.99(2) 1.89(0) 1.83(0) 1.74(1) 1.58(1)
11 2.55(6) 2.31(7) 2.14(6) 1.93(5) 1.75(3) 1.66(1) 1.63(0) 1.63(0) 1.60(1) 1.48(1)
12 2.46(5) 2.19(7) 1.98(6) 1.73(5) 1.54(4) 1.43(2) 1.41(1) 1.44(0) 1.49(1) 1.49(1) 1.43(2)
13 2.39(5) 2.12(7) 1.86(6) 1.59(5) 1.38(4) 1.25(3) 1.21(2) 1.25(1) 1.32(1) 1.39(2) 1.43(3) 1.38(4)
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Table 9.5: The squared width, r2
y, in lattice units, of the flux distribution as in Table 9.3.

Plane x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x = 10 x = 12 x = 13
Q3 = R/a

A=0.6 fm
07 13.2(1) 12.8(1) 12.5(0) 12.0(1) 11.4(2) 10.9(3)
08 13.5(1) 13.0(1) 12.9(0) 12.6(1) 12.1(1) 11.4(2) 10.7(3)
09 13.8(1) 13.2(1) 13.2(0) 13.0(0) 12.7(1) 12.1(2) 11.4(2) 10.6(3)
10 14.2(1) 13.3(2) 13.4(1) 13.4(0) 13.2(0) 12.8(1) 12.2(2) 11.3(2) 10.5(3)
11 14.6(1) 13.3(2) 13.5(2) 13.6(1) 13.6(1) 13.4(1) 13.0(1) 12.2(2) 11.2(2) 10.2(3)
12 15.1(2) 13.3(3) 13.5(2) 13.7(2) 13.9(2) 13.9(1) 13.7(1) 13.1(1) 12.1(2) 10.9(2) 9.8(2)
13 15.6(2) 13.2(3) 13.4(3) 13.7(3) 14.0(3) 14.3(3) 14.3(2) 13.9(1) 13.1(1) 11.9(2) 10.5(2) 9.3(2)

A=0.8 fm
07 16.6(4) 15.8(3) 15.1(1) 14.3(0) 13.3(2) 12.4(3)
08 16.9(4) 16.1(3) 15.6(1) 14.9(0) 14.0(1) 13.0(2) 12.0(3)
09 17.3(4) 16.3(4) 15.9(2) 15.4(1) 14.7(0) 13.8(1) 12.7(2) 11.7(3)
10 17.9(5) 16.5(5) 16.2(3) 15.8(2) 15.4(1) 14.7(1) 13.7(2) 12.5(2) 11.3(3)
11 18.5(5) 16.7(5) 16.4(4) 16.2(3) 15.9(2) 15.5(1) 14.7(1) 13.5(2) 12.2(3) 10.9(3)
12 19.3(5) 16.8(6) 16.7(5) 16.6(4) 16.5(3) 16.2(2) 15.7(2) 14.7(1) 13.4(2) 11.8(3) 10.5(3)
13 20.0(5) 17.0(6) 17.0(5) 17.0(5) 17.0(4) 16.9(4) 16.6(3) 15.9(2) 14.7(2) 13.1(3) 11.4(3) 9.9(3)

A=1.0 fm
07 21.4(9) 20.1(7) 18.8(3) 17.4(0) 15.9(1) 14.5(3)
08 21.9(9) 20.4(8) 19.3(5) 18.1(2) 16.7(0) 15.2(2) 13.8(3)
09 22(1) 20.7(9) 19.7(6) 18.7(3) 17.5(1) 16.1(1) 14.5(2) 13.0(3)
10 23(1) 21(1) 20.2(7) 19.3(5) 18.3(2) 17.1(1) 15.6(1) 13.9(2) 12.4(3)
11 24(1) 22(1) 20.7(9) 19.9(6) 19.1(4) 18.1(2) 16.8(1) 15.1(2) 13.4(3) 11.7(3)
12 25(1) 22(1) 21.4(1) 20.8(7) 20.1(5) 19.2(4) 18.1(3) 16.5(2) 14.7(2) 12.8(3) 11.2(4)
13 27(1) 23(1) 22.4(1) 22.0(8) 21.4(7) 20.7(5) 19.7(4) 18.2(3) 16.4(3) 14.3(3) 12.3(4) 10.5(4)
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9.6.2 Flux radius profile
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Figure 9.8: The radius profile of the flux-tube measured in the plane of the quarks
for each isosceles configuration with base A = 6 a, A = 8 a and A = 10 a (a = 0.1
fm), at two temperatures T/Tc = 0.8 (above) and T/Tc = 0.9 (below). The legend
(in the upper right corner graph) signifies the third quark’s position.

At large quark separation, the revealed flux tube profile using the 3Q Wilson
loop operator at zero temperature exhibits a uniform tube amplitude with a radius
that is only slightly increasing up to the position of the junction [2]. Although
the bias of the energy distribution by the shape of the configurations of the spatial
links [2, 157] leaves these rendered energy distributions somewhat uncertain, this
flux distribution has been considered consistent with the parametrization of the 3Q
ground state potential with a Y -ansatz at large distance [171]. The Y-shaped gluonic
distribution has also been considered in consonance with the dual superconductivity
picture [49, 52, 109] of the QCD vacuum. The flux is squeezed into a thin region
dual to the Abrikosov vortex [180] resulting in the formation of Y-shaped string-like
flux tube [181, 182, 183, 184].

At finite temperature, on the other hand, one intuitively would expect the quan-
tum vibrations of the underlying three string system [133, 134, 185] to give rise to
a nonuniform action density distribution in a similar fashion to the results revealed
in the meson [158]. The thin string-like Y-shaped flux tube may delocalize away
from its classical configuration and span the whole region though out the bulk of
the triangular 3Q configuration, giving rise to a rounded concentric family of ∆
action iso-surfaces (equi-action surfaces of Fig. 9.4). Each surface is weighted by a
temperature-dependent amplitude intensity distribution. In this non-uniform action
density context, the radius topology is not fixed merely based on the distribution
of equi-action surfaces, as there can be an infinite number of iso-surface topologies



140 CHAPTER 9. GLUONIC PROFILE OF STATIC BARYONS

of the action density that all correspond to the same measured square root of the
second moment of the distribution.

The second moment, r2
y(x), and the amplitude, Hy(x), of the flux density at

each line ~ρ(xi, y, 0) is measured by means of Gaussian fits to the complementary
distribution C′ = 1 − C

C′(~ρ(xi, y, 0)) = Hy(xi) e−y2/2r2

(9.6.3)

The fits to this Gaussian form are illustrated in Fig. 9.7. The mean square width
in the 3Q plane at position, xi, is measured via

r2
y(xi) =

∫
d y y2 C′(~ρ(xi, y, 0))∫
d y C′(~ρ(xi, y, 0))

, (9.6.4)

eliminating dependence on , Hy(xi). The values of the measurements of , Hy(xi)
and ry(xi) are listed in Tables 9.2 through 9.5. The radius profile in the quark plane,
z = 0, is measured at each lattice co-ordinate xi. The data points corresponding
to radii along the x-axis for a given quark configuration are interpolated with a
continuous line up to the third quark, Q3, with position ~ρ(R, 0, 0) as in Fig. 9.8.

The first row of graphs in Fig. 9.8 correspond to radii measurements at the
temperature T/Tc = 0.8 with base length running from A = 0.6 fm to A = 1.0 fm.
For A = 0.6 fm, the radius profile draws almost constant lines with small declination
indicating a subtle decrease along the x-axis up to the third quark position. The
difference in radii between the very first planes and the planes close to the third quark
Q3 becomes more pronounced with the increase of the third quark Q3 separation R
as well as the increase of the distance between the two quarks Q1,2 in the base.

At the same temperature scale T/Tc = 0.8 and small isosceles base A = 0.6 fm,
the tube’s radius, ry(xi), at a given point broadens slowly with the increase of the
quark separation Q3. This behaviour changes as the length of the isosceles base A
becomes wider. The change in radius along the x-axis with R approaches near a
stagnation in the broadening for A = 0.8 fm indicating an inflection point.

This is evident from the profile at the widest base length A = 1.0 fm. The radius
at a given point typically decays with the increase of the third quark Q3 separation
R. The geometrical area spanned by the triangle made up by the 3Q system becomes
significantly large as the third quark Q3 steps farther away. In response, the gluonic
energy condenses in narrower extents around the x-axis. In fact, we see a clearly
identifiable Y-shaped profile of the gluon flux emerging at R = 1.3 fm as well as at
R = 1.2 fm.

For illustration, the action contours and radius profile have been superimposed
in Fig. 9.9. The action contours are concentric convex ∆-shaped action isolines,
and the corresponding radii measured along the x-axis are not coinciding with any
of the action isolines and have a convex Y-shaped-like profile. Variation of the
amplitude, Hy, hides the underlying Y-shape revealed through the consideration
of ry. We see from the corresponding last graph of the bottom row in Fig. 9.8
that the contour lines and the radius profile have similar concave curvatures at the
temperature T/Tc = 0.9.

This analysis may render the widely used terms such as the Y and ∆ shaped
gluon flux linguistically ambiguous if their usual usage is brought to the regime
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Figure 9.9: The radius profile of the flux-tube displaying a Y-shape like profile for
quark configurations of base A = 1.0 fm and the third quark position R = 1.3 fm
at temperature T/Tc = 0.8. In the background are the corresponding flux action-
density contours.
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Figure 9.10: Same as Fig. 9.8 for isosceles configuration bases of A = 0.6 fm, and
A = 1.0 fm. The upper and lower figures compare the measured radius profile for
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of non-uniform action density profiles with position-dependent (local) amplitudes
distribution, Hy. One can speculate that the observation of the simultaneous co-
existence of both the Y and the ∆ aspects of the profile opens the possibility that
the ground-state baryon state may exhibit a similar action isosurface behaviour even
with the success of the Y-ansatz in the parametrization of the large distance poten-
tial. This may be sound plausible especially if we take into account the fact that the
gluonic junction broadens with the evolution of Euclidean time in the Wilson loop
operator [2]. In addition, non-uniformly UV regulated Wilson loop operators have
optimized the ground state overlap at zero-temperature in the mesonic sector [178].
At the same time, and along the line of the above argument, the observation of
a Y-shape current distribution following abelian gauge fixing [143] at T/Tc = 0.8
should not be taken by as contradictory to the ∆-shaped action density in QCD
observed without gauge fixing.

Inspection of the bottom row of the graphs in Fig. 9.8 reveals how thermal effects
on the tube’s radius profile take place as we get closer to the deconfinement point at
T/Tc = 0.9. In general, there is an increase in the radius of the flux with the increase
of the temperature. The tube’s topology is almost the same, with an expansion of
the size as we get to wider triangular bases. The radii flatten out through the planes
x ≤ 6 for large quark separations. The change in radius along the x-axis increases
also with the increase of the temperature for small quark separations. Minimum
growth in the radius for increasing R is noticeably manifesting near the Fermat point
of the configurations x = 1.7, 2.3 and 2.9 for the isosceles bases A = 0.6, 0.8 and
1.0 fm, respectively. Another distinguishable feature for the profile at T/Tc = 0.9 is
that the radius shows no sign of squeezing at any quark configuration. The increase
in energy resulting from the increase of the temperature is now large enough to
accommodate the corresponding enlargement in the geometrical area of the triangle
set up by the quarks. We focus on detailed aspects of the flux broadening patterns
separately in Sec. D.

In addition to the force measurements in Sec. 9.5 taken as a guiding analysis
to set a trusted distance scale for each level of smearing, we now report the effects
of smearing on the radius profile of the action density along the tube. Fig. 9.10
compares the radii of the flux at each plane x measured on 60 and 80 sweep smeared
gauge configurations. The values of the measured radii do not change at distant
planes from the isosceles base. Smearing causes a subtle shifting rather than lensing
effect on the radius at the planes near the quarks in the base Q1,2. An increment
of 20 sweeps of smearing from 60 sweeps to 80 sweeps causes a maximum increase
of the radius by a subtle factor of 1.04. This effect diminishes as we consider far
planes x > 6 from the Q1,2 quarks on the base.

9.6.3 Flux amplitude profile

At zero temperature, the revealed vacuum structure inside the static baryon con-
structed via the Wilson loop operator has a maximum vacuum suppression at the
center of the triangle made up by the 3Q system at small separations [2]. At large
distances, the Wilson loop operator of the minimum spatial string length has been
found to minimize the potential [2], indicating a junction position at the Fermat
point of the configuration. However, a peak in the action density at zero temper-



9.6. ACTION DENSITY 143

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  2  4  6  8  10  12

H
y(

x)

x

T=0.9Tc, A=6a

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  2  4  6  8  10  12

H
y(

x)

x

T=0.9Tc, A=8a

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  2  4  6  8  10  12

H
y(

x)

x

T=0.9Tc, A=10a

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0  2  4  6  8  10  12

H
y(

x)

x

T=0.8Tc, A=6a

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0  2  4  6  8  10  12

H
y(

x)

x

T=0.8Tc, A=8a

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 2  4  6  8  10  12  14

H
y(

x)

x

T=0.8Tc, A=10a
R=7a
R=8a
R=9a

R=10a
R=11a
R=12a

Figure 9.11: The profile of the action density amplitude, Hy(xi) (scaled by a factor
of 101) for each isosceles configuration with base A = 0.6 fm, A = 0.8 fm and A = 1.0
fm, for the two temperatures T/Tc = 0.8 (upper), T/Tc = 0.9 (lower). The legend
signifies the third quark position.

ature does not manifest but rather the distribution assumes a constant amplitude.
The analysis performed here for the density distributions using Polyakov lines as
hadronic operators, nevertheless, reveals density amplitude peaks which manifest at
short as well as large source separation distances. In this section, the amplitude
profile is investigated and contrasted for the two considered temperatures.

Tables 9.2 and 9.4 summarize the measured amplitudes, Hy(x), in accord with
the Gaussian fits of Eq. (9.6.3). The corresponding plots are shown in Fig. 9.11, for
the isosceles configurations with base A = 0.6 fm, A = 0.8 fm and A = 1.0 fm at
two temperatures T/Tc = 0.8 (top row) and T/Tc = 0.9 (bottom row), respectively.
At all considered planes, the height of the distribution Hy(x) decreases with the
increase of the temperature, which reciprocates the changes of the radius of the flux
with the temperature. The decrease of the distribution height together with the
associated increase in the distribution moment indicates the spread of the gluonic
energy with the increase of the temperature.

At T/Tc = 0.8, the amplitude also increases at most planes when moving the
third quark Q3 farther from the base of the isosceles configuration. Recalling the
corresponding decrease in the radii along the x-axis, one infers the gluonic behaviour
undergoes a localization rather than a decay of the flux tube. The amplitudes
at T/Tc = 0.9 show similar increase up to small quark separation. However, a
noticeable turnover to decreasing amplitude with the increase of the third quark Q3

separation manifests for R ≥ 10 a. The behaviour of the amplitude and radius at
T/Tc = 0.8 resembles, respectively, the behaviour of the radius and amplitude at
T/Tc = 0.9. The analysis of the flux amplitude shows different qualitative behaviour
as we transit from the end of the QCD plateau to just before the deconfinement point



144 CHAPTER 9. GLUONIC PROFILE OF STATIC BARYONS

and this behaviour is reciprocal to the radius profile, indicating a delocalization of
the gluonic distribution with the increase of the temperature and the subsequent
decrease in the string tension.

In addition to the position of the amplitude maximum along the x-axis at y = 0
and the corresponding trigonometric aspects of the triangular setup. The maxima
localize around the second and third planes x = 2, x = 3, for third quark Q3

separations R < 10 a. However, this localization of the maxima of the vacuum
suppression around the Fermat points ceases as the third quark is pulled away
further. The density maximum moves in the same direction of third quark at T/Tc =
0.8 and moves in the opposite direction (towards the triangle base) for the higher
temperature T/Tc = 0.9.

9.6.4 The broadening of the flux width

In this section, we focus on the broadening aspects of the mean-square width of the
flux. We restrict our analysis to the mean square width in the 3Q plane at the two
considered temperature scales. The lattice data for the mean square width, r2

y(xi), at
planes xi along the x-axis are summarized in Tables 9.3 and 9.5. For convenience, we
have considered the tube’s width for an analysis performed on gauge configurations
of 80 sweeps of smearing, where we obtain the best signal to noise ratio with only a
relatively small elimination of short distance points which are affected by smearing.

In the last section, we reported the effects of gauge-smoothing on the radius of
the gluon flux. Smearing shifts the width by a subtle constant near the base of the
isosceles triangle, as in Fig. 9.12. This shift diminishes at distant planes from the
base. To further examine the rate of broadening of the flux distribution, we fit the
mean square width to the simple linear ansatz

r2
y(R; xi) = b1(xi) R + b2(xi) (9.6.5)

Table 9.6: The slope of the growth in the mean square width, r2
y, measured for

isosceles base A = 1.0 fm on two levels of link smearing. The measurements are
obtained from the fits to the linear form Eq. (9.6.5).

nsw b1 Fit range Ra−1

x=2
60 0.76(4) 4-13
80 0.83(3) 4-13

x=7
60 2.3(1) 8-13
60 2.8(2) 10-13
80 2.2(1) 8-13
80 2.5(1) 10-13

The returned values of the slope of the growth in the flux width with the increase of
the isosceles height, R, display small systematic errors associated with the selection
of parameters as indicated in Table 9.6.
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The profile of the broadening of the glue at various planes, the for isosceles base,
A = 0.8 fm, is plotted in Fig. 9.13 with a similar plot for, A = 1.0 fm, in Fig. 9.14,
respectively. Each set of data describes how the width of the gluonic flux vary at a
given plane xi for the triangle base as the third quark Q3 moves to larger values of
R. Evidently, the increase of the temperature dramatically increases the rate of the
broadening of the glue at all planes.
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Figure 9.12: The squared flux distribution width at the depicted planes, xi = 2, 3
and 7, are compared for two smearing levels. The isosceles configuration base length
is A = 1.0 fm at temperature T/Tc = 0.9. Smearing merely shifts the profile by a
constant. The broadening pattern is not affected.

Apart from the pronounced thermal effects near the deconfinement point, we see
the rates of broadening at T/Tc = 0.8 are decreasing as one proceeds to the more
distant planes from the base of the triangle. Moreover, the wider the base of the
isosceles triangle, the more pronounced is the corresponding decrease in the width,
indicating that the gluonic tend to become more localized as the geometrical area
enclosed by the quarks positions becomes larger.

The shrinking of the width of the flux tube is a peculiar property of certain
geometrical configurations of the Multi-quark system. The decrease in the width
with the increase of the inter-quark separation has never been observed in the me-
son either using Polyakov lines at finite temperature [158] or Wilson’s loop at zero
temperature [63]. The analysis of the Wilson loop based energy distribution at zero
temperatures does not seem to indicate shrinking of the width of the flux tube [2].

Near the deconfinement point, the broadening of the mean square width, r2
y,

exhibits a clear linear divergence at distant planes from the base of the isosceles tri-
angle for large separations, R > 1.0 fm of the third quark Q3. This result resembles
the observed linear growing in the flux distribution width at the same temperature
in the meson [135]. The slope of the growing width at distant planes from the base,
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Figure 9.13: The squared flux-tube width at the depicted planes for the isosceles
configuration A = 0.8 fm compared at two temperatures T/Tc = 0.8 (top) and
T/Tc = 0.9 (bottom). The plane coordinates are indicated in the legend.
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Figure 9.14: Same as Fig. 9.13 for a larger isosceles base length of A = 1.0 fm.
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Figure 9.15: Comparison of the mean square width of the flux distribution at three
distinct planes, x = 2, 3, and 7, for two isosceles bases A = 0.6 fm and A = 0.8
fm. The upper graphs show the comparison at T/Tc = 0.9 whereas the lower are at
T/Tc = 0.8.

x > 6, from plane to plane show only subtle changes. This indicates that the effects
of the boundary and the junction fluctuations decays away by proceeding to large
quark separations. Fig. 9.15 displays the effects of increasing the distance between
the two quarks Q1,2 on the rate of change of the width versus the motion of the
source Q3. At T/Tc = 0.9 the wider the base the faster the rate of growth. This
behaviour is the reciprocal of the corresponding one at T/Tc = 0.8.

9.6.5 Planes aspect ratio

The gluonic flux in the 3Q system does not exhibit a symmetry between the width
measured in the quark plane and that in the perpendicular direction. This is related
to the underlying gluonic structure and the associated fluctuations. For example,
the string picture indicates an asymmetry in the mean square width between the
two planes [134]. We report for completeness the general qualitative features of this
ratio of the action density in the two perpendicular planes. The width of the tube
in the perpendicular direction is measured through Gaussian fits as

r2
z(xi) =

∫
d z z2 C′(~ρ(xi, 0, z))∫
d z C′(~ρ(xi, 0, z))

. (9.6.6)

We measure the ratio between the width in the quark plane and that in the perpen-
dicular plane to the quarks

α(xi) ≡
r2
x(xi)

r2
z(xi)

. (9.6.7)
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It is interesting to consider this quantity since the predictions of the string model
at zero temperature indicate asymmetric width pattern near the junction [134]. In
a similar way to the characteristics of the flux that we have studied in the previous
sections, we plot in Fig. 9.16 the aspect ratio at the two temperatures for the same
quark position configurations.

Generally, the value of the aspect ratio indicates that the fluctuations in the
quark plane are always larger than the perpendicular fluctuations for both tem-
peratures. Further inspection of Fig. 9.16 shows only subtle dependence on the
temperature for the small isosceles bases. The aspect ratio is changing slowly as we
move through the planes up to the third quark position for the smallest isosceles
bases. However, at larger bases the asymmetry throughout the gluonic cone becomes
pronounced. The results of the aspect ratio indicate greater restoring forces for the
gluonic distribution in the perpendicular direction to the quark plane. This effect
diminishes as we consider planes away from the Fermat point of the triangle quark
configuration. Near the deconfinement point T/Tc = 0.9, the aspect ratio increases
with the base length showing only a subtle dependency on R. This behaviour is
reversed at the lower temperature T/Tc = 0.8 for large quark separation. Indeed we
see at T/Tc = 0.8, for the bases A = 0.8 fm and A = 1.0 fm, a decrease in the aspect
ratio at all planes with the increase of the third quark separation R > 1.0 fm.
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Figure 9.16: Comparison of the ratio, α (Eq. (9.6.7)), of the mean squared width of
the flux distribution parallel and perpendicular to the quark plane for three isosceles
bases A = 0.6 fm, A = 0.8 fm and A = 1.0 fm. The upper graphs show comparison
at T/Tc = 0.8 whereas the lower are at T/Tc = 0.9.

Within the underlying gluonic picture of three squeezed string-like flux tubes
meeting at a junction and assuming a Y-shaped form, the predictions of this string
model for the ratio of the mean square width of the flux distribution in the quark
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planes and the perpendicular direction at position of the junction has been worked
out in Ref. [134]. However, one should carefully consider the geometrical aspects of
the configuration and take into account any remnant (T/Tc = 0.8) or pronounced
(T/Tc = 0.9) thermal effects before pursuing a complete confrontation with the pre-
dictions of the baryonic bosonic string models. We included the thermal effects [186]
into the predictions that have been worked out earlier in Ref. [134]. However, this
comparison of the lattice data with the predictions of the models lies beyond the
scope of the present presentation of the gluonic profile, and will be reported in details
elsewhere [187].

Finally, it is worth noting that the flux strength distribution revealed with the
action density using the Wilson loop does not appear to produce an asymmetric
gluonic pattern. For instance, in Ref. [2] the radius of the tube is calculated with
cylindrical coordinates assuming a cylindrical symmetry of the tube. The analysis
provided here for the aspect ratio of the mean-square width provides another distinct
feature of the glue, as revealed by Polyakov loops rather than a manifestation of
temperature effects.

9.7 Delocalization of the junction

The strong coupling results [130, 131, 132] indicate that the Y-ansatz is the most
relevant in the IR region. This is also consistent with the dual superconductivity
picture of the QCD vacuum. Three strings with a junction whose equilibrium posi-
tion is at the Fermat point are preferred. The consequence of this picture has been
elucidated at both the level of the potential [133] and the mean square width of the
delocalized junction at zero temperature [134]. The relevant string effects in the
baryon at finite temperature are yet to be investigated.

At zero temperature, a gluonic Y-shaped profile is formed with a ground state
configured such that the length of the flux tube [2] is minimal. In contrast, the
revealed flux distribution for the considered planar configurations, at finite temper-
ature, did not exhibit a formation of three separate flux tubes of almost constant
width and uniform density profile that meet at a junction whose position is deter-
mined by the requirement of minimizing the total flux-tube length. The observation
of a filled delta-shaped gluonic distributions with non-uniform density distribution
(varying amplitudes), nevertheless, do not necessarily exclude or contradict that
the true underlying gluonic picture might consist of three string-like flux tubes con-
nected at the Fermat point. For example, in the last section we found that the radius
of the tube in the quark plane shows an underlying Y -shape for some quark con-
figurations which is characteristic of the zero temperature Y shapes. This strongly
suggests that the observed ∆ shapes of the action iso-surface come about through
the vibration of an underlying Y -shaped Baryonic string. Indeed, Fig. 9.17 exposes
the underlying Y-shape rather well.

In Chapter 4 we rederived an expression for the junction’s perpendicular and
parallel profiles for a system of three bosonic strings whose classical configuration
coincides with the ground state of the corresponding zero temperature three quark
system. The thermal effects have been included using a consistency framework be-
tween two string actions; the string action which represents one whole complete
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string and string action that is obtained by dividing the string into two with a junc-
tion mass in the middle. This resulted in expressions for the junction fluctuations
in the quark plane. In particular, parallel fluctuations give rise to the mean-square
width of Eq. (4.4.29).

In this section, the broadening of the flux tube with the increase of the source
separation is compared to the corresponding string model predictions of Eq. (4.4.29).
This can provide a first indication of the compatibility of our proposed finite-
temperature baryonic string model with the measured LGT junction profile, the
position of the junction and its proposed insight.

The analyzed lattice gauge data for the flux tube mean square width in the
3Q plane for isosceles triangle configurations display the property of having a fixed
position of the Fermat point (the point that minimize the length of the flux tube)
and is given by R = A/(2

√
3). The position of the Fermat point is fixed by the

length of the base of the isosceles triangle and is not affected by the height of the
triangle, i.e. the position of the third quark. Considering this planar quark set up
results in a great simplification the study of the baryonic junction on the lattice. As
illustrated in Fig. 9.18, the baryonic blades of length L1, L2, L3 are measured from
the position of the junction.

As we have discussed in Chapter 4, the string model parameter introduces a
constant shift to the profile of the flux-tube mean square width. For convenient
optimization, we have provided Eq. (4.4.26) and Eq. (4.4.29) in a two parameter
form

〈ϕ2
‖〉 → 〈ϕ2

‖〉 + µ1,

〈ϕ2
⊥〉 → 〈ϕ2

⊥〉 + µ2, (9.7.1)

by shifting the parameter m → k. The formulas of Eq. (4.4.26) and Eq. (4.4.29)
account for the tube’s mean-square width in the parallel and perpendicular directions
to the 3Q plane, respectively. In the present work we restrict our analysis to the
width parallel to the 3Q plane. The measured lattice data are fit to the string model
formula Eq. (4.4.29). The position of the Fermat point for isosceles configurations
A = 6 a is xF = 1.7, xF = 2.3 for that of a base length A = 8 a. Assuming the
junction lies at the Fermat point of the configuration, this entails taking the length
of the blade L3 related to the third quark position as L3 = R − xF . We fit the
string model formula Eq. (4.4.29) to the measured mean square width at the three
planes x = 1, x = 2 and x = 3. The returned value of the fit parameters k and µ1

in addition of the corresponding values of the χ2 are summarized in Tables 9.7, 9.8
and 9.9.

The returned values of the χ2
dof for the isosceles base A = 0.6 a indicate the

acceptable fits to the string model formula are for plane quark separations R ≥ 0.6
fm for each corresponding plane. The string model formula fits the lattice data well
for distances R ≥ 0.6 fm reflecting the applicability of the string picture only at large
quark separations. Recalling that the Fermat point of this particular configuration
lies at x ≈ 1.7, this is the only plane where Eq. (4.4.29) can be expected to describe
the data well. We conclude that the string picture of the formation of three thin flux
tubes that meet at the point that minimize the length of the flux tube is compatible
with the lattice data at T = 0.9 Tc.
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Figure 9.17: Surface plot of the flux density surface in the quark plane, ρ(x, y, z = 0),
together with contour lines. The contour lines are projected onto the surface plot.
The density of the contour lines increases near the edges in accord with the gradient
of the density scalar field along the x-axis. The flux contours of the maximum value
are the inner most lines inside the triangle. As the density plot illustrates, the flux-
tube configuration is a filled ∆-shape with maximum action expulsion inside the
triangle near the Fermat point of the configuration. These measurements are taken
for an isosceles quark geometry of base A = 0.8, height R = 1.2 fm and temperature
T = 0.9 Tc.
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Figure 9.18: Schematic diagram for the isosceles configuration of the 3Q system.
L1, L2 and L3 are distances from the Fermat point to the quark positions.

Table 9.7: The returned fit parameters of formula Eq. (4.4.29) and the corresponding
χ2

dof for the width of the flux tube of the isosceles 3Q configuration with the base
A = 6 a, at the plane x = 1, T = 0.9 Tc. The fit range describes the values of the
third quark position, R, considered in the fit.

Fit range χ2 χ2
dof k µ1

4-09 10.3 2.57 0.0110 2.061
4-10 24.14 4.82 0.0113 2.104
4-11 58.47 9.74 0.0112 2.225
4-13 140.76 17.59 0.0111 2.397
6-13 117.24 19.54 0.0105 2.638
7-13 92.47 18.49 0.0103 2.801
8-13 67.49 16.87 0.0101 2.979

Table 9.8: The same as Table 9.7 for base A = 6 a, and plane x = 2, T = 0.9 Tc.

Fit range χ2 χ2
dof k µ1

4-9 9.11 2.27 0.01092 1.602
4-10 10.65 2.13 0.01106 1.587
4-11 11.30 1.88 0.01109 1.587
4-13 11.45 1.43 0.01110 1.588
6-13 7.02 1.17 0.01103 1.639
7-13 2.65 0.53 0.01079 1.740
8-13 0.83 0.21 0.01345 1.400
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Table 9.9: Same as above tables for base A = 6 a, and plane x = 3, T = 0.9 Tc.

Fit range χ2 χ2
dof k µ1

4-9 23.09 5.77 0.11745 1.194
4-10 37.56 7.51 0.01165 1.297
4-11 45.20 7.53 0.01158 1.351
4-13 50.05 6.25 0.01153 1.393
6-13 28.98 4.83 0.01082 1.651
7-13 13.01 2.60 0.01052 1.811
8-13 4.05 1.01 0.01031 1.951

Table 9.10: Same as above tables for base A = 8 a, and plane x = 1, T = 0.9 Tc.

Fit range χ2 χ2
dof k µ1

4-13 47.85 5.98 0.0117 5.614
6-13 41.71 6.95 0.0111 5.824
7-13 33.81 6.76 0.0110 6.076
8-13 24.47 6.11 0.0107 6.381

Table 9.11: Same as above tables for base A = 8 a, and plane x = 2, T = 0.9 Tc.

Fit range χ2 χ2
dof k µ1

4-09 4.04 1.01 0.00316 6.815
4-10 5.12 1.03 0.00370 6.598
4-11 6.23 1.04 0.00419 6.405
4-13 8.92 1.12 0.00511 6.070
5-09 1.19 0.39 0.01295 3.896
5-10 1.74 0.44 0.01279 3.937
5-11 2.42 0.48 0.01264 3.976
5-13 4.90 0.70 0.01234 4.070
6-13 3.65 0.61 0.01168 4.259
7-13 1.97 0.39 0.01121 4.457
8-13 0.98 0.25 0.01089 4.626
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Table 9.12: Same as above tables for base A = 8 a, and plane x = 3, T = 0.9 Tc.

Fit range χ2 χ2
dof k µ1

5-9 20.54 6.84 0.01331 2.899
5-10 29.75 7.44 0.01314 2.935
5-11 39.37 7.87 0.01326 2.965
5-13 69.97 9.99 0.01179 3.464
6-13 44.44 7.41 0.01126 3.899
7-13 21.03 4.21 0.01088 4.301
8-13 7.907 1.98 0.01272 3.034

Tables 9.10, 9.11 and 9.12 summarize the returned fit parameters for the isosce-
les configuration with base A = 8 a. The values indicate also the smallest χ2

dof occurs
at the plane x = 2 which is the closest plane to the Fermat point of this configu-
ration i.e xF = 2.3. With the larger base A = 0.8 fm, smaller values of R provide
acceptable fits. This time R = 0.4 fm is acceptable.

9.8 Conclusion

The gluon flux distribution of a three quark system in pure SU(3) Yang-Mills vacuum
has been revealed at finite temperature. This analysis is an extension of the calcu-
lations of the action density correlations obtained recently for the QQ̄ [158] system
to three quark systems. The infinitely heavy baryonic state has been constructed by
three Polyakov loops. The gluon flux is measured as a correlation between the action
density operator and three traced (gauge-invariant) Polyakov lines. Measurements
have been taken near the end of QCD phase diagram, T/Tc ≈ 0.8 and just before
the deconfinement point T/Tc ≈ 0.9.

We have revealed the characteristics of the flux action-density measured for three
sets of geometrical 3-quark configurations and the corresponding changes on the be-
haviour due to the temperature. Each set corresponds to isosceles triangle bases
of length A = 0.6 fm, A = 0.8 fm and A = 1.0 fm. The characteristics of the
isosurface, the radius and the amplitude profiles of the action density correlations,
in addition to the broadening (or the shrinking) pattern of the flux distribution, can
be summarized in the following main points:

A. The iso-surface of the flux action-density displays a family of concave ∆ shapes
at small as well as large quark separations. These ∆-shaped gluonic distributions
persist and do not change into a Y-shape as the distances between the quark sources
are increased. The density plots in the quark plane display a nonuniform distribu-
tion at all distance separations. This contrasts with the Wilson loop results at zero
temperature which exhibit uniform action density along each arm of the Y-shaped
profile. A remarkable feature of the revealed map of the contour lines of the flux
strength is that the shape of the contour lines do not show significant sensitivity to
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the temperature for the two temperatures considered here.

B. The radius profiles give indications on the spread of the energy inside the
baryon. At the lowest temperature near the end of the plateau, T/Tc = 0.8, the
measurements of the radius indicate localization of the action density in narrow re-
gions for quarks separations greater than 1.0 fm. The radius of the tube decreases
and draws a Y-shaped like profile even though the action isosurface and isolines are
∆ shaped. Near the deconfinement point, on the other hand, the energy tends to
spread as we see the radius increases at all considered distance scales.

C. The amplitude profile analysis of the flux density shows a maximum vac-
uum fluctuations suppression at the plane nearest to the Fermat point of the planar
three-quark configurations for intermediate separation distances. The distribution’s
peak ceases localizing around the Fermat point of the 3Q isosceles configurations
when the height, R, is greater than 1.0 fm. The peak shifts to the outside of the
triangle made at T/Tc ≈ 0.9 and shifts in the reverse direction to the inside of the
triangle for T/Tc ≈ 0.8. That is, the amplitude gets higher when the radius shrinks
at T/Tc ≈ 0.8 and the reverse is manifest at T/Tc ≈ 0.9.

D. The flux mean-square width does not always broaden with the increase
of the quark source separation as is the case in the meson. For the lowest tempera-
ture, T/Tc ≈ 0.8, the flux distribution shrinks in width for large quark separations.
The change in the width of the flux tube shows a non-broadening aspect which is a
property of certain configurations of the multi-quark system. The width, however,
grows linearly near the deconfinement point, T/Tc ≈ 0.9, with the increase of the
height of the triangle. In general, the slope of the decrease or increase in the width,
at both temperatures, depends on the length of the triangle base. The wider the
base of the triangle set up by the quarks positions, the lower or higher is the slop
at temperatures T/Tc = 0.8 and T/Tc = 0.9, respectively.

E. The aspect ratio between the mean square width of the flux distribution in
the quark plane and the width in the perpendicular plan exhibits an asymmetry.
The gluonic fluctuations in the plane of the quarks are greater than that in the
perpendicular directions around Fermat point, indicating a greater restoring force
for the system in the plane of the quarks. The ratio between the two components
of the mean square width decreases as we consider planes further from the locus
of the Fermat point of the quark configuration. The temperature dependence for
the aspect ratio is more pronounced at large quark separations while we see almost
the same profiles for small isosceles bases. The deviation of the aspect ratio from
unity is implied by the predictions of the string models and does not manifest using
Wilson loop operator in the action correlations.

F. The profile of the junction
We compared the growth of the mean square width of the flux tube measured on
the lattice with our finite-temperature extension of the baryonic string model for
the width of the baryonic junction. The string model formula fits the lattice data
well for the mean square width in the plane of the quarks for transverse planes near
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the Fermat point of the considered configurations.

Future work
To the best of our knowledge, this is the world’s first work presenting a detailed
investigation of the flux distribution of the 3Q system at finite temperature. There
are many promising avenues of investigation remaining. For example, additional
quark configurations could be examined in detail. Lower temperatures remain to
be investigated. We compare [187] the growth of the mean square width of the
flux distribution measured on the lattice with finite-temperature extensions of the
baryonic string model [186, 187] for the width of the baryonic junction [134]. We
can also study the relevant ansatz for the measured potentials at each temperature.
Methodological improvements based on increasing the number of measurements and
decreasing the number of gauge smoothing sweeps are always desirable. The method
pursued here may prove effective in a calculation framework that includes the effects
of the dynamical quarks.



Chapter 10

Summary and Conclusion

In this work, I studied the profiles of the gluonic flux distribution in both mesons
and baryons in pure Yang-Mills theory at finite temperature. The obtained lattice
gauge theory results are then compared to predictions of bosonic string models for
the flux-tube profile at finite temperature.

As introductory material for this investigation, the theory of measurements for
the gluonic distributions and the consequent construction of the quark states by
means of Wilson loop and Polyakov line operators have been reviewed. The use of
the Wilson loop approach introduces systematic errors due to the bias of the shape
of the gluonic source. Polyakov loop correlators provide an unbaised set of operators
that can be used to construct static mesons and baryons. Polyakov loop correlators
are well known, however, to suffer from a bad signal to noise ratio. The loop operator
is exponentially suppressed with the increase of the separation distance between the
sources and the temporal extent of the lattice. This brings us inevitably to study
the gluonic distribution in lattices of short temporal extents. Consequently, this
leads to the study of the thermal effects on the profile of the glue.

The low-energy dynamics of the flux-tubes in the infrared region of a confining
gauge theory can be understood in terms of an effective bosonic string. The thin
flux-tube between two widely-separated static color sources fluctuates like a mass-
less string. The predictions from bosonic string models for the mean square width
of the flux tube and the potential on both the baryonic and mesonic levels have
been reviewed. The extension of the baryonic string model for the mean-square
width of the baryonic junction to finite temperature is proposed. The string model
predicts a temperature-dependent string tension and hence a decrease of the slope
of the linearly rising potential. Also, the string model predictions of a logarithmic
broadening for the width of the string delocalization dramatically changes into a
linear growth for large separation distances before the deconfinement temperature
is reached from below.

The string picture predicts geometrical effects on the profile of the flux tube.
The mesonic string picture implies a curvature in the gluonic profile that becomes
more pronounced as higher temperatures are approached. The string self-interaction
with the quark line causes a noticeable difference in the delocalizations beyond the
central transverse plane. The focus of this thesis is to ascertain these features using
the lattice approach.

Link smearing techniques can be used to enhance the signal to noise ratio in the
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gluonic flux strength function. Nevertheless, link smearing results in a loss of short
distance physics and one has to be careful when extracting the correct physics at
each distance scale. We have been able to show the ranges of validity of this noise
reduction technique by studying the effects of gauge field smearing on Polyakov loop
correlators. We find that the physical observables are left intact for measurements
carried out on distance scales larger than the diameter of the Brownian motion
of a diffused link. Link-integration is also a popular method for noise reduction
that is powerful at short distance scales. Link integration methods have, however,
the advantage of preserving the transfer matrix interpretation which allows one to
identify the Polyakov loop correlators as the exponential function of the potential.
This method has been employed when studying the effects of filtering out the UV
fluctuations of the gauge theory on the quark–antiquark potential. Through this
work, gauge-field smearing is chosen as a cheap and effective method to reveal the
general topological features of the flux distribution which can be compared with the
predictions of the string model. The distance scales for which this approach is valid
has been studied, through the measurements of the physical observables on the level
of the potential and also the action density.

The distribution of the gluon action density in mesonic systems is revealed at
finite temperature. The simulations are performed in pure Yang-Mills theory for two
temperatures below the deconfinement phase. Unlike the gluonic profiles displayed
at T = 0, the action density iso-surfaces display a prolate-spheroid like shape. The
flux tube, characterized as a correlation between the action-density and the mesonic
operator (Polyakov-lines), has been displayed up to distances of 1.4 fm. The flux iso-
lines and iso-surfaces display a curved profile along the tube. The profile is showing
a non-uniform action-density pattern unlike that observed using Wilson’s loop as a
mesonic operator at T = 0. At T = 0.9 Tc the flux tube width profile is compared
to the corresponding mean-square width of the free bosonic string fluctuations at
all planes between the color sources. For source separation distances R > 0.8 fm,
measurements of the tube cross-section at each selected transverse plane show a
non-constant width for the tube, with maximum width at the symmetry point of
the tube. At qq source separations 0.8 fm < R < 1.1 fm, the tube is seen to yield a
more compact (squeezed) form than the string model would predict. The deviations
of the tube width profile from the corresponding string profile decrease gradually
as the source separation increases. The profiles compare well at R ≥ 1.2 fm. The
curved width profile of the flux-tube is found to be consistent with the prediction of
the free bosonic string model at large distances and finite temperature.

In the intermediate source separation distance, the free string picture poorly
describes the flux tube width profile. Our focus is to elucidate the role of high-
energy vacuum fluctuations which are filtered using an improved smearing algorithm.
We find that the topological characteristics of the flux-tube converge and compare
favourably with the predictions of the free bosonic string upon reducing the vacuum
action towards the action minimum or the classical instanton vacuum. This result
establishes a connection between the free string action and vacuum gauge fields and
reveals the important role of higher energy fluctuations in understanding the lattice
data at this temperature scale. As a byproduct of these calculations, we find the
broadening of the QCD flux tube to be independent of the UV filtering at large
distances. Our results exhibit a linearly divergent pattern in agreement with the
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string picture predictions. The analysis performed at short distances provides an
extension of the QCD vacua where the free string picture is of utility. This result
complements the recent research [138, 139, 140] which includes effects of higher
order-self interactions to the free action to match lattice results.

The investigation of the flux-tube profile in the finite-temperature regime of QCD
has revealed action-densities of non-uniform distribution along the flux-tube. The
action density displays a two dimensional Gaussian-like profile and isosurfaces of
a curved prolate spheroid-like shape in the intermediate source separation distance
region 0.6 ≤ R ≤ 0.9 fm. This has been observed near the deconfinement point
T ≈ 0.9Tc and remains manifest at the temperature T ≈ 0.8Tc close to the end
of the plateau region of the QCD phase diagram. The measurements of the tube’s
mean square width profile indicate, however, only a small variation in the width.
Variation in the amplitude gives rise to curved isosurfaces. At larger distances, the
tube changes width along the qq plane and this width profile is predicted by the free
bosonic string picture.

The gluonic distributions obtained at finite temperature by correlating two Polyakov
lines constitute an interesting source of knowledge for investigating the possibility
that non-uniform densities provide the true geometry of the ground state in the
static meson at T = 0. The viability of considering finite temperature results as an
indication for the field distribution of the system’s ground state can be justified by
arguing also that the change in the string tension is small, about 10% at T ≈ 0.8 Tc.
Moreover, the free bosonic string model predicts observable edge-effects at zero tem-

perature for the width profile of the tube of
1

πσ
log

∣∣cos(
πξ

R
)
∣∣, ξ ∈ [−R/2, R/2]. The

success of the string picture in accounting for the flux-tube curvature at high tem-
perature at large distances is remarkable, and one may investigate such effects at
zero temperature.

Apart from the string’s width effects, a non-uniform action density amplitude
pattern along the tube has been observed at finite temperature, whether the tube
exhibits a non constant width profile or not. This leads us to investigate the overlap
of the ground state meson potential with sets of mesonic-trial wave functions corre-
sponding to a variety of gluonic distributions with transverse profile. We probe the
transverse structure of the flux tube through the creation of non-uniform smearing
profiles for the string of glue connecting two color sources in Wilson loop operator
at T = 0. The non-uniformly UV-regulated flux-tube operators are found to also
provide strong overlap with the ground state. These results support the possibility
that the true ground state flux-tube is not uniform but rather has a curved flux
strength profile larger in the middle with greater action-density suppression.

Extending the analysis to the static baryon reveals a delocalization of the bary-
onic node in the Y-shape gluonic configuration observed at zero temperature. At
finite temperature, filled delta-shaped action iso-surfaces are observed, even at large
distances. The density distribution in the 3Q system shows non-uniformity of the
action density and a variation in the amplitude of the flux along each arm. This
result does not manifest in the current zero temperature calculations using the Wil-
son loop operator. There, only a small variation in the tube width is observed in
moving from a quark up to the junction. The gluonic flux is thus Y-shaped from
the width profile point of view. The study of the broadening of the flux-tube in the
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baryon shows a linearly growing pattern for large quark separation distances near
the deconfinement point. The profile of the baryonic junction as predicted by the
baryonic string model is compared to the measured lattice data for the junction.
The lattice data are found to compare well with the predictions of the string model
at large distances.

This study is motivating further investigations of the energy-density and chromo-
electromagnetic distributions with methodological improvements that minimize the
number of smearing sweeps and increase the number of measurements. It would
also be interesting to confront these profiles with the bosonic string profiles in the
context of the string’s self-interactions. The findings of this work motivate also the
use of a multi-level approach to explore the action-density profile of the static meson
and static baryon at low and zero temperature. The gauge-field smearing method
for noise reduction provides a suitable method for the rapid generalization of the
calculations presented here to include the dynamical quarks QCD.



Appendix A

Transition Form Factors

A.1 Introduction

The recent available high-precision experimental data, and the forthcoming measure-
ments on hadrons form factors and structure functions, impose a challenge to the
theoretical efforts to explain these fine structures from the basic principles of QCD.
This comparison with the experimental data would introduce research opportunities
to the lattice QCD to create new knowledge and explore the lattice techniques as
well.

An interesting and important source of exploring the structure of hadrons, is to
study the electromagnetic transition processes between a pseudo-scalar and a vector
meson. Even more, understanding these reaction may be important in analyzing
certain reaction mechanisms [188]. As is well known, studying these reactions within
the lattice QCD framework is motivated by the need to consider the quarks’ bound-
state effects, and the non-perturbative character of the transition form factors. The
first lattice QCD study of the rho to pi transition reaction has been conducted by
Edwards [188], a hybrid calculation with domain wall valence quarks and improved
staggered (Asqtad) sea quarks has been used. However, it is still interesting to use
different lattice techniques to study the same reaction, and compare the results to the
experimental data [189]. Since the determinations of light hadron physics properties
has become of considerable interest to experimental labs such as the Jefferson Lab, it
would be also important to conduct lattice QCD calculation for different transition
reactions channels. In the following, the phenomenological formalism for extracting
the transition form factors from the correlation function is described. This work
provides a framework for studying pseudo-scalar to vector meson electromagnetic
transition reactions. The calculations can be applied to transition channels such as
Kγ∗ → K∗,K+γ∗ → Ko, Koγ∗ → K− and πγ∗ → ρ reactions. .

A.2 The Vector-current-Hadron vertex function

The momentum-space three point function is defined by [190]

〈Gµ
ν
[AB]
(π→ρ)(t2, t1, ~p2, ~p1)〉 =

∑

~x1,~x2

e−i~p2.~x2ei( ~p2− ~p1). ~x1〈Ω| χ̂B
ν (x2) Ĵµ(x1) φ̂†A(0) , |Ω〉
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(A.2.1)

where Ĵµ is the vector current operator, φ̂†(0) and χ̂ν(x2) are the operators of the
interpolating fields of the pseudoscalar and vector meson, respectively. The brackets
〈........〉 denote the ensemble average, the indices A,B(L, S) indicate that the oper-
ator can either be L (local) or S smeared.

The momentum representation of the operators is achieved by projecting on to
complete sets of relativistically-normalized pseudo-scalar and vector mesonic inter-
mediate states

I =
∑

i

∑

~pπ

1

2E
(i)
~pπ

|i, ~pπ〉〈i, ~pπ| ,

I =
∑

k

∑

~pρ

∑

s

1

2E
(k)
~pρ

|k, ~pρ, s〉〈k, ~pρ, s|. (A.2.2)

These two subsets of eigen-states span the whole Hilbert space.

The energy tower of the final multi-particle excited states is constrained by

E
(k)
~pρ

=
√
|~pρ|2 + m2

ρ,k, (A.2.3)

with mρ,k the energy of the zero-momentum k th-particle eigenstate. This constraint
corresponds to a hyperboloid of one particle states and a grid of multi-particle ex-
cited states bounded from below by the hyperboloid of the two-particle states. The
same constraint holds on the pseudo-scalar channel.

The correlation function after insertion of the intermediate states is

Gµ
ν
[AB]
(π→ρ)(t2, t1, ~p2, ~p1)〉 =

∑

~x2 ~x1

∑

~pρ ~pπ

∑

i,k

∑

s

1

4 E
(k)
~pρ

E
(i)
~pπ

e−i~p2.~x2e−i(~p2−~p1).~x1

〈Ω| χ̂A
ν |k, ~pρ, s〉〈k, ~pρ, s| Ĵµ |i, ~pπ〉〈i, ~pπ| φ̂†B(0) |Ω〉.

(A.2.4)

Using the rule of changing the field operators under spatial and temporal translations

Ô(x) = eiĤt e−i ~̂P.~x Ô(0) e−iĤt ei ~̂P.~x, (A.2.5)

where ~̂P is the operator of total momentum of the system.
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The correlation function now reads

〈Gµ
ν
[AB]
(π→ρ)(t2, t1, ~p2, ~p1)〉 =

∑

~x2 ~x1

∑

~pρ ~pπ

∑

i,k

∑

s

1

4 E
(k)
~pρ

E
(i)
~pπ

e−iE
(k)
pρ t2eiE

(k)
pρ t1e−iE

(i)
pπ t1×

ei(~p2−~p1− ~pρ+ ~pπ).~x1e−i(~p2−~pρ).~x2 〈Ω| χ̂A
ν |k, ~pρ, s〉 〈k, ~pρ, s| Ĵµ |i, ~pπ〉〈i, ~pπ| φ̂†B(0)|Ω〉.

(A.2.6)

Performing summation over ~x2

〈Gµ
ν
[AB]
(π→ρ)(t2, t1, ~p2, ~p1)〉 =

∑

~x1

∑

~pρ ~pπ

∑

i,k

∑

s

1

4 E
(k)
~pρ

E
(i)
~pπ

e−iE
(k)
pρ t2eiE

(k)
pρ t1e−iE

(i)
pπ t1 e−i(~p1− ~pπ).~x1δ ~p2 ~pρ

〈Ω|χ̂B
ν |k, ~pρ, s〉〈k, ~pρ, s|Ĵµ|i, ~pπ〉〈i, ~pπ|φ̂A†|Ω〉.

(A.2.7)

Similarly, summing over ~x1, then the momenta yields

〈Gµ
ν
[AB]
(π→ρ)(t2, t1, ~p2, ~p1)〉 =

∑

i,k

∑

s

1

4E
(k)
~p2

E
(i)
~p1

e
−iE

(k)
~p2

t2e
iE

(k)
~p2

t1e
−iE

(i)
~p1

t1

× 〈Ω|χ̂B
ν |k, ~p2, s〉〈k, ~p2, s|Ĵµ|i, ~p1〉〈i, ~p1|φ̂†A|Ω〉.

(A.2.8)

Since any eigenstate of the Hamiltonian with a definite-momentum can be written
as a boost of some zero-momentum eigenstate

〈i, ~p1|φ†(0)|Ω〉 = 〈i, ~p1 = 0|U †(Λ) φ̂†(0) U(Λ) |Ω〉 ,

= 〈i, ~p1 = 0|φ†(0) |Ω〉,
= Z(i)

π . (A.2.9)

|Z(i)
π |2 is the field strength renormalization, which depends only on the mass of the

eigenstate, and the smearing of the operator and corresponds to the probability for
creating or annihilating an eigenstate of the Hamiltonian. The above relation is a
consequence of the Lorentzian invariance of the vacuum and the operator φ̂†(0),

U †(Λ) φ̂†(0) U(Λ) = φ̂†(0) (A.2.10)

The vector field does not transform trivially under Lorentz transforms

〈Ω|χ̂ν(0)|k, ~p2, s〉 = 〈Ω|U †(Λ) χ̂ν(0) U(Λ) |k, ~p2 = 0, s〉
= 〈Ω|U †(Λ) χ̂ν(0) U(Λ)|k, ~p2 = 0, s〉
= (Λα

ν )−1 〈Ω| χ̂α(0) |k, ~p2 = 0, s〉
= Z(k)

ρ
∗ (Λα

ν )−1 ǫα(k, ~p2 = 0, s)

= Z(k)
ρ

∗ ǫν(p2, s) (A.2.11)
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In a finite sample, however, imperfect discrete symmetry [191] would lead to a non-
vacuum contaminations in the Z factors. In the following formalism, therefore,
we will have to indicate whether the averaging is done over a finite sample of N
configurations, or the ensemble average N → ∞, where we expect the restoration
of the space-time symmetries of the continuum Euclidean field theory. That is,

〈O〉 = lim
N→∞

〈O〉N ,

= lim
N→∞

1

N

N∑

i=1

Oi. (A.2.12)

thus, a momentum dependence in the Z factors will be assumed as long as finite
sample averaging is considered.

〈i, ~p|φ†A|Ω〉N = Z
(i)
(π)

A(~p), (A.2.13)

〈Ω|φA|i, ~p〉N = Z̃
(i)
(π)

B(~p). (A.2.14)

For A ≡ B ≡ L,

Z̃L(~p) = ZL∗(~p), (A.2.15)

In the ensemble average,

lim
N→∞

ZL(~p) = ZL, (A.2.16)

lim
N→∞

Z̃L(~p) = ZL∗. (A.2.17)

Similarly in the vector case,

〈k, ~p, s|χ†B|Ω〉N = Z
(k)
(ρ)

B(~p)ǫ∗ν(p, s), (A.2.18)

〈Ω|χB|k, ~p, s〉N = Z̃
(k)
(ρ)

B(~p)ǫν(p, s). (A.2.19)

Plugging the Z factors of Eqs. A.2.11 and Eq. A.2.12 into the correlation function
of Eq. A.2.8, and analytically continuing to Euclidean space-time, the three point
correlation function reads

〈Gµ
ν
[AB]
(π→ρ)(t2, t1, ~p2, ~p1)〉N =

∑

k,i

1

4 E
(k)
~p2

E
(i)
~p1

e
−E

(k)
~p2

t2 e
E

(k)
~p2

t1 e
−E

(i)
~p1

t1×

Z̃(k)
ρ

B(~p2)ǫν(p2, s) 〈k, ~p2, s|Ĵµ|i, ~p1〉Z(i)
π

A(~p1),

(A.2.20)
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Similar calculations give for the three-point function with the vector meson (four-
momentum p2 ) in the input channel

〈Gµ
ν
[AB]
(ρ→π)(t2, t1, ~p1, ~p2)〉N =

∑

i,k

∑

s

1

4E
(k)
~p2

E
(i)
~p1

e
−E

(i)
~p1

t2e
E

(i)
~p1

t1e
−E

(k)
~p2

t1×

〈Ω|φ̂B
ν |i, ~p1〉〈i, ~p1|Ĵµ|k, ~p2, s〉〈k, ~p2, s|χ̂†A|Ω〉

(A.2.21)

or equivalently

〈Gµ
ν
[AB]
(ρ→π)(t2, t1, ~p1, ~p2)〉N =

∑

k,i

1

4 E
(k)
~p2

E
(i)
~p1

e
−E

(k)
~p1

t2 e
E

(k)
~p1

t1 e
−E

(i)
~p2

t1×

Z̃(i)
π

A(~p1) 〈i, ~p1|Ĵµ|k, ~p2, s〉Z(k)
ρ

B(~p2)ǫ
∗
ν(p2, s).,

(A.2.22)

A.2.1 Transition form factors

The formal structure of the electromagnetic transition matrix γ∗π → ρ and γ∗ρ →
π can be deduced by collecting all linearly independent possible combinations of
contracted tensors that give rise to the vector current and encoding the functional
dependence on the scalars (which is only the four-momentum transfere q2) into the
so-called form factors. Choosing the physically relavant combinations by imposing
the requirements of Gauge invarince (Ward identy), the transition matrix then takes
the form

〈p2, s|Ĵµ|p1〉 = −i e F (Q2) εµβησ Hβσ ǫ∗η . (A.2.23)

Here, ǫ is the polarization vector of the meson, εµνησ the Levi-Civita tensor because
of the pseudo-scalar nature of the pion and Hνσ is the hadronic tensor defined by

Hβσ = Pβqσ , (A.2.24)

where, Pβ = (p1,β + p2,β), and qσ = (p2,σ − p1,σ) is the momentum transfer of the
off-shell photon, q2 = −Q2.

The vector-current operator is hermitian,

〈p1| Ĵµ |p2, s〉 = −i eF (Q2) εµβησ Hβσ ǫη , (A.2.25)

with qσ = (p1,σ−p2,σ). This transition form factor contains the complete information
about the response of the transit mesonic system to the external electromagnetic
field.
Decomposing the hadronic tensor into its symmetric and anti-symmetric parts,

Hβσ = Sβσ + Aβσ,

Sβσ = (p1,βp1,σ − p2,βp2,σ),

Aβσ = (p2,βp1,σ − p1,βp2,σ) , (A.2.26)
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only the anti-symmetric part of the hadronic tensor survives in the transition current
matrix, because of the Levi-Civita anti-symmetric tensor

〈p2, s|Ĵµ|p1〉 = −i e F (Q2) εµηβσ ǫ∗η Aσβ. (A.2.27)

Now, we will show how to extract the transition form factors from correlation func-
tions. Substituting the electromagnetic transition matrix Eq. A.2.15 into the three
point function Eq. A.2.12

〈Gµ
ν
[AB]
(π→ρ)(t2, t1, ~p2, ~p1)〉N = − e

∑

k,i

∑

s

1

4 E
(k)
~p2

E
(i)
~p1

e
−E

(k)
~p2

t2e
E

(k)
~p2

t1e
−E

(i)
~p1

t1

× Z̃(k)
ρ

B(~p2) Z(i)
π

A(~p1) ǫν ǫ∗η εµηβσ Aσβ F (Q2).

(A.2.28)

Summing over the spin of the vector meson and making use of the compeleteness
relation of the polarization vectors

∑

s

ǫν(p, s)ǫ
∗
η(p, s) = −(gνη −

pνpη

m2
) , (A.2.29)

the correlation now is

〈Gµ
ν
[AB]
(π→ρ)(t2, t1, ~p2, ~p1)〉N = e

∑

k,i

1

4E
(k)
~p2

E
(i)
~p1

e
−E

(k)
~p2

t2 e
E

(k)
~p2

t1 e
−E

(i)
~p1

t1

×Z̃(k)
ρ

B(~p2) Z(i)
π

A(~p1) Υµ
ν (p2, p1) F (Q2) ,

(A.2.30)

where we have collected all of the Lorentzian indexed quantities in one term

Υµ
ν (p2, p1) = gνη εµηβσ Aσβ − 1

m2
ρ

εµηβσ p2,ν p2,η Aσβ . (A.2.31)

Analogously, the correlation G(ρ→π) is,

〈Gµ
ν
[AB]
(ρ→π)(t2, t1, ~p1, ~p2)〉N = e

∑

k,i

1

4E
(k)
~p2

E
(i)
~p1

e
−E

(i)
~p1

t2 e
E

(i)
~p1

t1 e
−E

(k)
~p2

t1

×Z(k)
ρ

B(~p1) Z̃(i)
π

A(~p2) Υµ
ν (p1, p2) F (Q2) .

(A.2.32)

In the above equation,

Υµ
ν (p1, p2) = −Υµ

ν (p2, p1) (A.2.33)
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A.2.2 The ratio method

The 3 to 2 point function ratio is a convenient and conventional method for the
removal of the time exponents and the Z factors from the correlation functions. In
a form similar to the one used by J.Hedditch [192] for vector mesons, the ratio for
t1, t2 → ∞, can be defined as

R
[1]
[µν,αβ] =

√√√√〈G[AB]µ
ν (π→ρ)(t2, t1, ~p2, ~p1)〉N〈G[CD]µ

ν (ρ→π)(t2, t1, ~p1, ~p2)〉N
θ 〈G[CB]

(ρ) αβ(t2, ~p2)〉N〈G[AD]
(π) (t2, ~p1)〉N

(A.2.34)

where θ = ±1. The vector and pseudo-scalar meson two-point functions in the de-
nominator are

〈G(ρ)
[CB]
αβ (t2, ~p2)〉N =

∑

k,s

1

2 E
(k)
~p2

e
−E

(k)
~p2

t2〈Ω|χC
ν |k, ~p2, s〉〈k, ~p2, s|χ†B

ν |Ω〉,

=
∑

k,s

1

2 E
(k)
~p2

e
−E

(k)
~p2

t2Z̃(k)
ρ

C(~p2)Z
(k)
ρ

B(~p2)ǫ
∗
ν(p2, s)ǫν(p2, s),

=
∑

k

−1

2 E
(k)
~p2

e
−E

(k)
~p2

t2Z̃(k)
ρ

C(~p2)Z
(k)
ρ

B(~p2)(gαβ − p2,αp2,β

m2
ρ,k

),

(A.2.35)

and

〈G[AD]
(π) (t2, ~p1)〉N =

∑

i

1

2 E
(i)
~p1

e
−E

(i)
~p1

t2〈Ω|φD|i, ~p1〉〈i, ~p1|φ†A|Ω〉,

=
∑

i

1

2 E
(i)
~p1

e
−E

(i)
~p1

t2Z(i)
π

A(~p1)Z̃
(i)
π

D(~p1), (A.2.36)

(A.2.37)

respectively.

Subistituting Eqs. A.2.23, A.2.25, A.2.28, and Eq. A.2.29, into the ratio Eq. A.2.27

R
[1]
[µν,αβ] =

√√√√e−E~p2
t2 eE~p2

t1 e−E~p1
t1e−E~p1

t2 eE~p1
t1 e−E~p2

t1ZC
ρ (~p2)Z̃B

ρ (~p2) Z̃D
π (~p1) ZA

π (~p1)

θe−E~p2
t2e−E~p1

t1 ZC
ρ (~p2) Z̃B

ρ (~p2) ZA
π (~p1)Z̃D

π (~p1)(−gαβ +
p2,αp2,β

m2
ρ,k

)
,

× e

2
√

Ep1Ep2

(Υµ
ν )F (Q2),

=
e

2
√

θ Ep1Ep2 (−gαβ +
p2,αp2,β

m2
ρ

)
Υµ

νF (Q2).

(A.2.38)
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In the last equation we have dropped the multi-particle eigenstates label, since we
assume the dominance of the ground state in the limit of large Euclidean time.

Now, let us find the ratio R[1] in the frame where, p1 = (mπ, 0, 0, 0) and p2 =
(Ex, px, 0, 0), since the only non-vanishing Lorentzian terms Υν

µ are

Υ3
2 = −Υ2

3 = ε32σβAσβ,

= (pρ,1pπ,0 − pπ,1pρ,0),

= 2 mπ px. (A.2.39)

In the following, the form factors in terms of the R ratio for µ = 3, ν = 2, and
different values of α and β are evaluated. The sign factor θ is chosen such that the
quantity under the square root is positive.

• α = 0, β = 0,

e F (Q2) =
(R

[1]
[32,α=0β=0])

mρ mπpx

√
Ex(2m2

ρ − p2
x), (A.2.40)

• α = 1, β = 1,

e F (Q2) =
(R

[1]
[32,α=1β=1])

mρ mπpx

√
mπEx(2m2

ρ + p2
x), (A.2.41)

• α = 2, β = 2,

e F (Q2) =
(R

[1]
[32,α=2β=2])

mπpx

√
mπEx, (A.2.42)

• α = 3, β = 3,

e F (Q2) =
(R

[1]
[32,α=3β=3])

mπpx

√
mπEx, (A.2.43)

• α = 0, β = 1,

e F (Q2) =
(R

[1]
[32,α=0β=1])

mπpx

√
mπ/mρExpx. (A.2.44)
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