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Abstract

I present a series of conjectures aiming to describe the general dynamics of the
Einstein equations of classical general relativity in the vicinity of extremal black
holes. I will reflect upon how these conjectures transcend older paradigms concerning
extremality and near-extremality, in particular, the so-called “third law of black hole
thermodynamics”, which viewed extremality as an unattainable limit, and the “over-
spinning/overcharging” scenarios, which viewed extremality as a harbinger of naked
singularities. Finally, I will outline some of the difficulties in proving these conjectures
and speculate on what it could mean if the conjectures turn out not to be true.

Keywords Extremal black holes - Stability - Einstein equations

Contents

I Introduction . . . . . . . . . ...
2 The tworeceived paradigms . . . . . . . ..
2.1 The third law paradigm: extremal black holes as the unattainable . . . . . . . .. .. ... ...
2.2 The overspinning/overcharging paradigm: extremal black holes as the harbinger of super-
extremal naked singularities . . . . . . . ... e
3 Questioning the paradigms? . . . . . . ... L
3.1 Thedeathofthethirdlaw . . . . . ... ... ... ... ... ... .. . .. . .. ...,
3.2 Status of the overspinning/overcharging paradigm . . . . . . . ... .. ... .. L.
3.3 A generalised third law paradigm? . . . . . . ...

5 Instabilities . . . . . . .. e
5.1 The Aretakis instability . . . . . . . . . ...
5.2 Weak stability for Reissner—Nordstrom . . . . . . . . . .. ..o
5.3 Nonlinear model problems on fixed extremal Reissner—Nordstrom backgrounds . . . . . .. ..
5.4 Extremal Kerr and higher azimuthal instabilities . . . . . .. ... ... ... ... .......

6 The stability conjecture for extremal black holes and the phase portrait of near extremal dynamics . .
6.1 Codimension-1 stability of extremal Kerr with horizon hair . . . . . . ... ... ... .....

B Mihalis Dafermos
dafermos @math.princeton.edu

Department of Mathematics, Fine Hall, Princeton University, Washington Road, Princeton, NJ
08544, USA

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce
Road, Cambridge CB3 OWA, UK

Published online: 18 March 2025 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10714-025-03394-1&domain=pdf

60 Page2of 20 M. Dafermos

6.2 The phase portrait of near extremal dynamics . . . . ... ... ... ... .0 0 L.

6.3 How would Conjecture 6.2 disprove “overspinning”™? . . . . . . ... ... ... ... .....

T Epilogue . . . ..

References . . . . . . . . L e

1 Introduction

General relativists have long made their peace with “normal” black holes, even highly
spinning ones. Extremal black holes, on the other hand, remain a source of extreme
uneasiness. Though their name arises from the fact that they are extreme in the literal
sense of the word, occupying the extreme end of the allowed parameter space, they
turn out to be so also in the figurative sense, exhibiting properties “extreme” even by
the standards of black hole physics, in particular instabilities. Indeed, both these two
facets of the word “extreme” will be essential to the story I want to tell, and in fact
it is precisely the coexistence of the two which is responsible for much of the story’s
rich complication—and the surrounding confusion. For, in this author’s view at least,
there is no object more misunderstood in classical general relativity than extremal
black holes!

In this short essay, accompanying a talk given at the “Black holes: inside and
out” conference held in August 2024 in Copenhagen, I will describe some recent
progress which has conditioned my own—still provisional'—expectations for the gen-
eral dynamics of the Einstein equations in a neighbourhood of extremal black holes,
and I will try to organise these in a set of precisely stated conjectures. I emphasise that
the conjectures may or may not be true (hence the word conjecture!), but they repre-
sent a mix of reasonable extrapolation from recently proven theorems with a dose of
sheer wishful thinking. In particular, I will also discuss the various ways in which the
conjectures may turn out to be false, a scenario which would be even more interesting
but also more complex than anything previously entertained. Nonetheless, I will stick
my head out and commit the conjectures to paper, because having a definite goal to
prove or disprove provides a useful starting point for further rational study. If they do
in fact turn out to be false, so much the better!

To set the “ground rules” of my discussion, let me say at the outset that I will remain
firmly within the confines of classical general relativity, indeed, much of what I say will
concern the Einstein vacuum equations alone, though sometimes it will be useful to also
invoke well-established classical matter models, like the Einstein—-Maxwell equations
governing electrovacuum. I will assume moreover that my reader is familiar with
the basic black hole solutions of these equations—those of Schwarzschild, Reissner—
Nordstrom, Kerr and Kerr—Newman, including their extremal cases—and will refer to
their standard properties without comment and without ever explicitly writing down
the metric. I will also assume the reader has at least nodding familiarity with the
fundamental principle that classical general relativity can be understood dynamically,
i.e. it has a well-posed initial value problem, where an appropriate notion of Cauchy (or
alternatively, characteristic) initial data gives rise to a unique solution of the equations
of motion. For all this, the reader may refer to standard textbooks, for instance [1].
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Of course, extremal black holes are important in considerations connected to
quantum gravity. Indeed, it is common in interactions with my high energy physics
colleagues that even before you finish your sentence they are conjuring up (in real
time!) quantum effects that will change whatever classical story you were about to tell
them. Let me appeal only for a little bit of the reader’s patience! I have no doubt that
other essays in this collection, reflecting the wide spectrum of talks at the Copenhagen
conference, will dedicate ample space for quantum speculations of various sorts. My
purpose here is simply to get the classical story right.

In a similar vein, I will also stay clear from any discussion of extremal or near
extremal black holes in real astrophysical environments. Though these of course lie
well within the domain of classical general relativity, astrophysics is messy and com-
plicated, whereas the Einstein vacuum equations are clean and simple(r), and much
more amenable to mathematical analysis. When it comes to issues of principle, the
point of view of the present essay is: the cleaner, the better! I will thus for now leave
aside speculation as to what implications the conjectural picture for the vacuum to be
described here would have for more realistic astrophysical settings.

Though I hope to eventually convince the reader that the conjectures stated here are
reasonable, indeed in some sense inevitable as the “minimalist” statements to hope
for, I want to emphasise at the outset that they in fact would completely contradict
two paradigms of how to think about extremality which have dominated the literature,
what I will call the third law paradigm and the overspinning/overcharging paradigm.
Indeed, I believe that these two—false, in my view !—paradigms have been the biggest
hindrance to understanding the problem of extremality, and—independently of the
truth of the conjectures I will propose in their place—in order to make further progress
we must transcend both these paradigms. Thus, I will in fact begin my discussion
already in Sect. 2 below from a description of these, followed in Sect. 3 by a critical
analysis.

Finally, though the present reflections are in my own words (and thus any errors
or unfortunate formulations here are mine alone!), the conjectured picture which I
will attempt to sketch is very much influenced by the work of others (especially some
surprising recent developments to be described in more detail below), and my own
understanding arose in the context of many years of discussion, indeed sometimes
vigorous debate, and collaboration. Let me mention, in addition to my own teacher
Demetrios Christodoulou, especially the influence of Yannis Angelopoulos, Stefanos
Aretakis, Dejan Gajic, Christoph Kehle, Jonathan Luk, Frans Pretorius, Harvey Reall,
Rita Teixeira da Costa, Ryan Unger, Bob Wald and Claude Warnick, all of who have
worked directly on aspects of this problem. I am of course greatly indebted to my
collaborators Gustav Holzegel, Igor Rodnianski and Martin Taylor and have adapted
Conjectures 6.1 and 6.2 from the discussion in Section IV.2 of our joint paper [2].

2 The two received paradigms
The study of extremal black holes over the last fifty years has been largely shaped

by two distinct paradigms which—implicitly and explicitly—have dominated the way
these objects are discussed in the literature. I believe that both these paradigms are
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wrong. In order to explain my expectations for the actual dynamics of the Einstein
equations in a neighbourhood of extremal black holes, the first order of business is to
describe these paradigms.

2.1 The third law paradigm: extremal black holes as the unattainable

The first paradigm, which I will dub the “third law paradigm”, goes back to the seminal
paper [3] of Bardeen, Carter and Hawking which explicitly initiated the thermody-
namic analogy in black hole physics. I will not discuss here the history of this analogy
(the first hints of which go back to Christodoulou’s work [4]) or its incredible suc-
cesses. [ will focus entirely on the final part of the analogy they propose, what they
call the third law of black hole mechanics, also known as the third law of black hole
thermodynamics.

I recall of course that in the analogy with classical thermodynamics, temperature
corresponds to surface gravity, which vanishes in the extremal case. Motivated by the
“unattainability” formulation of the third law of thermodynamics, the authors of [3]
put forth a conjectured “third law” for black holes, which in their own words read:

“It is impossible, by any procedure, no matter how idealized, to reduce [the
surface gravity] k to zero in a finite sequence of operations.”

The law was given a more precise formulation by Israel [5], who interpreted “finite
sequence of operations” to mean “finite affine time along the event horizon”, added
the stipulation that the matter model be reasonable, and, importantly, the condition
of regularity, because without the latter, there were already counterexamples, in fact,
counterexamples he himself had constructed! Indeed, Israel seems to have explicitly
related the existence of his “counterexamples” to failure of regularity—a point to
which I will return in Sect.3.1.

The interesting thermodynamic analogy aside, at first glance, the question of the
“third law” per se, namely, whether one can produce an exactly extremal black hole
in finite time, may seem like an academic one. After all, even if one could do this,
it is clearly something very exceptional (hence the explicit emphasis ‘“no matter how
idealized” in the formulation!), not only because one must obtain exact extremality,
but one then must keep the black hole at extremality for infinite time thereafter. The
point, however, is that the analogous procedure—exceptional and idealised though
it may be—is indeed theoretically realisable in the subextremal case, as one can see
from elementary examples. The significance of the unattainability of extremality in
finite time is thus best understood relative to the subextremal (fixed spin-to-mass or
charge-to-mass ratio) case. 1 shall return to this point in Sect.3.3 where I introduce
the “generalised third law paradigm”.

2.2 The overspinning/overcharging paradigm: extremal black holes as the
harbinger of super-extremal naked singularities

The second paradigm I will discuss can also be said to originate from a quote from
Bardeen, Carter and Hawking’s paper [3]:
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“Another reason for believing the third law is that if one could reduce k to zero
by a finite sequence of operations, then presumably one could carry the process
further; thereby creating a naked singularity.”

Wald was the first to entertain this possibility in his paper [6]. What Wald showed,
however, was that neither overspinning nor overcharging were possible in the “test
particle” approximation.

Let us note that the idea that overspinning or overcharging a black hole has anything
in principle to do with naked singularities in the first place arises from the fact that in
the global Penrose diagram of super-extremal Kerr or Reissner—Nordstrom, there is
indeed a naked singularity as in Fig. 1.

We will revisit this implicit connection later on in Sect.6.2.

The story could have ended with Wald’s work, but the idea of overspin-
ning/overcharging proved too tempting to be given up so easily! The idea was revived
in [7, 8], and more recently has been taken up again and again by many authors, the
scenarios becoming more and more elaborate and the approximations used harder and
harder to make sense of. I will not try to give a survey of these works, but distil from
these what I will dub the “overspinning/overcharging paradigm”, namely:

Near-extremal dynamics can indeed lead to the formation of a naked singular-
ity as in super-extremal Kerr or Reissner—Nordstrém via an overspinning or
overcharging mechanism.

Of course, the formation of naked singularities—at least if their “nakedness” is
moreover stable to perturbation—would contradict another well-known conjecture,
Penrose’s weak cosmic censorship conjecture [9]. Some overspinning/overcharging
papers embrace the prospect of falsifying weak cosmic censorship, whereas others
present a failed attempt at overspinning/overcharging as more evidence for the validity
of the conjecture.

3 Questioning the paradigms?

In this section, I will attempt a first critical analysis of the two paradigms. Let me first
dispose of the third law, for which a very definitive theorem can now be stated:
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Fig.2 The third-law violating
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3.1 The death of the third law

There is in fact not much to say here, other than quote directly a remarkable recent
theorem of Kehle and Unger:

Theorem 3.1 (Kehle-Unger [10]). There exist regular one-ended Cauchy data for the
Einstein-Maxwell-charged scalar field system which undergo gravitational collapse
and form an exactly Schwarzschild apparent horizon, only for the spacetime to form
an exactly extremal Reissner-Nordstrom event horizon at a later advanced time.

Thus, initially subextremal black holes can become extremal in finite time after
all, evolving from regular initial data. The matter model is reasonable by all measures
(there is now in fact a similar construction for the Einstein—-Maxwell-charged Vlasov
system [11]), and the process is completely regular, meeting all of the requirements
of [5]. The “third law of black hole thermodynamics”, as formulated in [3, 5], is simply
false!

The Penrose diagram of the spacetimes constructed is given by Fig. 2.

I can’t do justice to the history of the third law here, but I do want to point out one
important point: In the Penrose diagram of Fig. 2, the thicker curve A’ represents an
outermost apparent horizon, and as noted, this is disconnected, the event horizon HT
containing an isolated component. Israel’s attempted proof in [5] had implicitly used
the global connectivity of an apparent horizon (here understood as a tube of marginally
trapped surfaces).

(By unfortunate coincidence, in previous singular “counterexamples” discussed
earlier, the existence of which indeed motivated Israel’s explicit added assumption of
regularity in [5], there were again discontinuities of the outermost apparent horizon
which occurred exactly when the singular matter shells crossed it. This may have
suggested that for sufficiently regular solutions, apparent horizons would necessarily
be connected, something which is not in fact true!)

3.2 Status of the overspinning/overcharging paradigm

At first glance, the fact that extremal black holes can indeed be created in finite time
may suggest that the overspinning/overcharging paradigm is all the more relevant.
After all, it was precisely the menace of overspinning which provided the authors
of [3] one of their motivations for proposing the third law in the first place.

Before discussing the status of the overspinning/overcharging paradigm, it may be
useful to emphasise the following point of logic in comparison to the status of the
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third law: The third law had claimed the impossibility of something. Thus, it would
have been potentially hard to prove (even had it been true, that is!), but was “easy” to
disprove (given that it was false), as it was falsifiable by providing a single example.
In contrast, overspinning/overcharging claims the possibility of something. Thus, the
situation is reversed. It would be proveable by providing a single example, but to
falsify one would require a very general kind of mathematical theorem, applying to
an infinite dimensional set of solutions of the full non-linear Einstein equations.

In the restricted context of spherical symmetry, one does actually have such aresult:

Theorem 3.2 ([12]). For any reasonable matter model in spherical symmetry
(e.g. charged scalar field [13], charged Viasov [11]), then if spacetime con-
tains at least one trapped or marginally trapped surface, then there are no naked
singularites.

It follows in particular from the above that one cannot create a naked singularity
by overcharging either an exactly extremal or near extremal black hole in an entirely
spherically symmetric process. (In particular, Theorem 3.2 can be thought to already
give a definitive answer, in the negative, to the attempts at overcharging described
in [7].)

As we shall see much later, the definitive disproof of overspinning in a very gen-
eral, fully nonlinear setting without symmetry assumptions would follow as a corollary
(Corollary 6.1) to a positive resolution of Conjecture 6.2, which I will propose in
Sect. 6. But even if that conjecture turns out to be false, I claim (see already Sect. 6.4)
that there is no sense that this could be reasonably interpreted as being due to “over-
spinning”! In any case, to arrive at these conjectures we essentially have to revisit the
problem of the near extremal dynamics of the Einstein equations with a fresh lens.

3.3 A generalised third law paradigm?

Before proceeding, however, let us return to the issue of the third law. Though Theo-
rem 3.1 definitively disproves the third law, one could wonder whether its “spirit”, as
captured in the last paragraph of Sect.2.1 by the idea of extremality as representing
“the (relative) unattainable”, might somehow live on. To humour this idea, let me
formulate what I will dub the “generalised third law paradigm”:

Forming extremal black holes (whether in finite or infinite time, and whether
starting from a subextremal black hole or directly in collapse) should somehow
be more difficult than forming a black hole of any other fixed subextremal spin-
to-mass or charge-to-mass ratio.

Though the remarkable paper [10] put an end to the third law itself, it does not
of course address the “generalised third law paradigm” above. Like with the over-
spinning/overcharging paradigm, such a statement can only be falsified by a general
mathematical theorem pertaining to general dynamics of the Einstein equations in a
neighbourhood of extremal Kerr, and no such statement is yet available. Indeed, I have
conjured up this generalised third law paradigm precisely in order to give the “spirit”
of the third law, as exemplified by the idea of “unattainability”, a second fighting
chance!
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Fig.3 Schwarzschild as a
Cauchy evolution of
characteristic initial data, taken
from [2]

I must warn the reader already, however, that one who is still betting for this gener-
alised third law paradigm does so at their own risk! In analogy with Theorem 3.2, there
is in fact already some evidence in plain view—coming from a pioneering numerical
study of Murata—Reall-Tanahashi [ 14]—that even this generalised third law paradigm
is again false, at least when restricted to spherical symmetry. I will discuss this work a
little bit later. Indeed, as with the overspinning/overcharging paradigm, a definitive dis-
proof of the generalised third law paradigm would in fact follow from Conjecture 6.1
to be discussed later.

4 The Schwarzschild case: a blueprint for extremal Kerr?

To get a first glimpse of the conjectured picture of near extremal dynamics which I
will describe in Sect. 6, it is useful to first examine the other “extremal” member of
the Kerr family, namely Schwarzschild (extremal now only in the literal “boundary”
sense as described in the opening paragraph of this essay, characterised by the rotational
parameter taking its minimum possible modulus, i.e. vanishing!).

Concerning thus near-Schwarzschild dynamics, it is of course a truism that one can
perturb Schwarzschild into the Kerr family by adding a little bit of angular momentum.
Thus, Schwarzschild is not asymptotically stable in the strict sense, i.e. if we view
Schwarzschild as the Cauchy evolution of “Schwarzschild initial data” prescribed say
on two null cones V = 1 and U = —1 (here U, V are global double null coordinates
covering Schwarzschild) as in Fig. 3, then the generic small perturbation of the data
will evolve under the Einstein vacuum equations

Ric(g) =0 ey

to a spacetime which will not settle back down to a Schwarzschild metric. What is
then the best asymptotic stability statement that can be true about the Schwarzschild
family?

It turns out that at the linear level, one can explicitly identify “Kerr perturbations”
as a 3-dimensional subfamily [15], spanned by a set of three quantities with fixed
spherical harmonic frequency £ = 1. (Note that the dimension is 3 and not 1 because to
parametrise smoothly the moduli space near Schwarzschild, one must also encode the
unique symmetry axis of a # 0 Kerr solutions.) Given a linear perturbation for which
these three quantities vanish, then it was proven in [15] that the perturbation decays
as time goes to infinity to a pure gauge solution, and moreover, gauge normalisations
may be chosen (“teleologically”, i.e. from the future!) so that this pure gauge solution
in fact vanishes identically. This can be recast as the following statement:
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In the infinite dimensional space of all linear vacuum perturbations around
Schwarzschild, after suitable teleological double null gauge normalisations,
there is a unique codimension-3 subspace such that all linear perturbations
lying in this space in fact decay to zero as time goes to infinity.

The best fully nonlinear asymptotic stability statement concerning the
Schwarzschild family that could be expected under evolution by (1) would then be an
analogous nonlinear codimension-3 asymptotic stability statement. This is precisely
the main result proven in [2]:

Theorem 4.1 [2] For all vacuum characteristic initial data prescribed on cones as in
Fig. 3, assumed sufficiently close to Schwarzschild data with mass Mini; and lying on
a codimension-3 “submanifold” Mwple of the moduli space M of initial data, the
arising vacuum solution (M, g) satisfies the following properties:

(i) (M, g) possesses a complete future null infinity I, and in fact the future boundary
of J=(Z") in M is a regular, future affine complete event horizon H™.
(ii) The metric g remains close to the Schwarzschild metric with mass Miy in J = (Z7).
(iii) The metric g asymptotes, inverse polynomially, to a Schwarzschild metric with
mass Mgnal ~ Minis as u — oo and v — oo, in particular along T and H™,
where u and v are suitably normalised null coordinates.

Statement (i) asserts the absence of naked singularities, statement (ii) asserts “orbital
stability”, while statement (iii) is the statement of asymptotic stability, all for data
on NMiaple-

We note that, unlike linear theory, where the codimension-3 subspace is explicit
(characterised by vanishing Kerr perturbations), the codimension-3 “submanifold”
Mstable above is itself only teleologically determined (as is the exact value of the final
Schwarzschild mass Mgna and the location of the event horizon ). This is reminis-
cent of the fact mentioned earlier that already in linear theory, the gauge normalisations
necessary to obtain decay were themselves determined only teleologically.

For discussion of stability results for Reissner—Nordstrom as a solution of Einstein—
Maxwell, see [16]. For the fate of data as in Theorem 4.1 but not lying on MMgaple
above—as expected, they settle down to a very slowly rotating (i.e. |a| < M) Kerr
exterior—see [17]. See also [18] for nonlinear stability for black holes in the A > 0
case.

5 Instabilities

Could the above picture of Theorem 4.1 carry over directly to the extremal Kerr
case a = M, i.e. can we simply replace Schwarzschild above by extremal Kerr?
Before entertaining this issue, we have to deal with the elephant in the room, related
to the other—figurative—meaning of the word “extreme”, mentioned in the opening
paragraphs of this essay: Extremal black holes are characterised by extreme behaviour,
in particular, by the presence of several well-known instabilities.
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5.1 The Aretakis instability

The Aretakis instability [19] is a remarkable very general property which can be
associated to any extremal Killing horizon. It already applies to the linear massless
wave equation

Uy =0, 2

but more generally applies to the linearised Einstein vacuum equations and Einstein—
Maxwell equations, around extremal Kerr and extremal Reissner—Nordstrom respec-
tively [20, 21]. According to this instability, translation-invariant transversal first
derivatives of v (say 9,) along the horizon H™ fail to decay, while second derivatives
blow up polynomially

17 (r, v) — o0 3)

as advanced time v goes to infinity along H*. (Here (r,v) denote Eddington—
Finkelstein type coordinates regular through H*.) The seed of the instability is an
exact conservation law along the horizon H*, which turns out to have a similar origin
to the Newman—Penrose constants at null infinity Z (see [22]).

5.2 Weak stability for Reissner-Nordstrom

An important aspect of the Aretakis instability is that it is weak. The blow-up (3)
along H is still compatible with good decay properties away from the horizon H* , and
moreover, the amplitude of v itself (and its tangential derivatives, say 9, ) may still
decay along H itself. Indeed, in the case of (2) on Reissner—Nordstrom, Aretakis [23,
24] already showed precisely such stability statements, complementing (3). For the
full linearised Einstein-Maxwell system around extremal Reissner—Nordstrém, such
weak stability statements, as well as upper bounds for the growth of the unstable,
transversal quantities, were shown recently by Apetroaie [25].

5.3 Nonlinear model problems on fixed extremal Reissner-Nordstrom
backgrounds

Of course, it is not clear at all whether weak stability results at the linear level are
sufficient to ensure nonlinear stability. For instance, Aretakis has shown [26] that for
nonlinear (“‘semilinear’’) wave equations of the form (forn > 1)

Og¥r = 2" + (3¥)™ + (3,9 4

on fixed extremal Reissner—Nordstrom backgrounds, arbitrarily small spherically sym-
metric data lead to solutions which blow up in finite advanced time on the horizon
HT, whereas it follows from [27] that in the subextremal case, for sufficiently high n,
such solutions exist for all time on the black hole exterior, up to and including the hori-
zon. (In (4), coordinate derivatives are again with respect to Eddington—Finkelstein
coordinates (v, r) regular across H™.)
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The equation (4) is not so good a model, however, for the nonlinearities occurring
in the Einstein vacuum equations (1). A better model would perhaps be a nonlinear
(again “semilinear”) equation of the form

Oe¥ = AW, x) g*P8u ¥ 3p, ®)

where A (0, x) is potentially nonzero and the nonlinearity is quadratic in first derivatives
of ¥. In a remarkable series of works [28, 29], it was shown that solutions of (5)
arising from sufficiently small initial data exist globally in the black hole exterior
of extremal Reissner—Nordstrém, up to and including the horizon H™, despite the
Aretakis instability (3).

We note that, even in the case where A (¥, x) vanishes for large x, the results of [29]
depend on the fact that it is precisely the expression g*# 9,y dg Y which appears in (5),
and not some other quadratic combination of second derivatives of . (This is again
in contrast to the subextremal Reissner—Nordstrom or Kerr case where, for such A,
global existence holds replacing g®# 9, v dgy with a general quadratic expression; see
for instance [30].) The importance of structure for the quadratic terms is analogous
to the well known fact that, if A does not vanish for large x, say if A(¥,x) = 1
identically, then even if g denotes the Minkowski metric, while small data solutions
of (5) indeed exist globally (as first observed by Nirenberg), replacing g*# 9,y gy
with say (9;y)? leads to blow up [31]. We will return to this point in Sect.6.4.

5.4 Extremal Kerr and higher azimuthal instabilities

Turning to extremal Kerr, however, the situation is much less clear. Whereas restrict-
ing to axisymmetric solutions of (2), one has results analogous to that of extremal
Reissner—Nordstrom (see [32]), a recent theorem of Gajic [33] proves that for fixed
higher azimuthal m-mode solutions, worse instabilities arise, confirming a previous
heuristic study by Casals, Gralla and Zimmerman [34]. Even for such fixed higher m-
modes, however, it is not known whether weak stability statements analogous to those
of [32] hold. Indeed, the only general statement presently known is so-called “mode
stability”, recently shown in the extremal case by Teixeira da Costa [35]. The situation
for general data, which would concern the sum over infinitely many m-modes, is even
more unclear. Thus, even the question of whether all solutions of the linear homoge-
neous scalar wave equation (2) on extremal Kerr, arising from regular localised initial
data, remain bounded for all time (cf. [36-38] where this is shown in the general
subextremal case |a| < M for the wave and Teukolsky equations, respectively), even
when one restricts considerations to a region well outside the horizon, remains very
much open!

6 The stability conjecture for extremal black holes and the phase
portrait of near extremal dynamics

The current uncertainty regarding linear theory on extremal Kerr described above
might make it feel a bit premature to conjecture anything at the nonlinear level. Indeed,
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Fig.4 Extremal Kerr as a Q.
Cauchy evolution of b
characteristic initial data ™

precisely for this reason, in our [2], we shied away from any such conjecture, prefer-
ring to volunteer a conjecture only for the Einstein—-Maxwell theory around extremal
Reissner—Nordstrom (see Conjecture IV.2 of [2] and the subsequent paragraph), for
which, as described in Sect. 5.2, the linear theory is better understood. Nonetheless, I
will here state the analogous conjectures in the extremal Kerr case.

6.1 Codimension-1 stability of extremal Kerr with horizon hair

As with Schwarzschild, we may view extremal Kerr as the Cauchy evolution of charac-
teristic initial data posed on two null cones. Refer to Fig. 4. Unlike in the Schwarzschild
case, however, when parametrising linear perturbations around extremal Kerr, non-
extremal Kerr perturbations are spanned by a single quantity, not 3. Thus, if one
wishes to show asymptotic stability of extremal Kerr, the natural conjecture would
now be a codimension-1 nonlinear stability statement. At the same time, the instabil-
ities described in Sects.5.1 and 5.4 must at the very least also somehow appear. The
most optimistic scenario is then:

Conjecture 6.1 For all vacuum characteristic initial data prescribed on cones as in
Fig. 4, assumed sufficiently close to extremal Kerr data with mass Minix = ainir and
lying on a codimension-1 “submanifold” Mgpie of the moduli space I of initial
data, the arising vacuum solution (M, g) satisfies the following properties:

(i) (M, g) possesses a complete future null infinity I, and in fact the future boundary

of I~ (") in M is a regular, future affine complete event horizon H™.

(ii) The metric g remains close to the extremal Kerr metric with mass Minic in J ~(Z7).

(iii) The metric g asymptotes, inverse polynomially, to an extremal Kerr metric with
mass Mfinal = Afinal ~ Minit as u — 00 and v — 00, in particular along It and
H+, where u and v are suitably normalised null coordinates.

(iv) For generic initial data conditioned to lie on Mgaple, then suitable quantities asso-
ciated to derivatives of the metric grow without bound ( “horizon hair”) along H™
as v — 00.

The statement is thus in complete analogy with Theorem 4.1, except for the addi-
tional weak instability statement (iv). For near extremal Kerr black holes with fixed
spin-to-mass ratio, one would again expect a similar codimension-1 stability statement
(without of course the instability part (iv)). In particular, the codimension in moduli
space 21 of the set Mple Of spacetimes evolving to extremal Kerr would be exactly
the same as those evolving to nearby fixed subextremal spin-to-mass ratio Kerrs. In
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Fig.5 The Kerr family as Cauchy evolutions of a smooth family characteristic initial data: the subextremal,
extremal and superextremal cases, respectively

this sense, it would be no more difficult to form an extremal black hole than it would
be a subextremal black hole of some other fixed spin-to-mass ratio. Thus, according to
the above, there would be no saving even the “generalised” third law paradigm from
the fate of the original third law.

In addition to the semilinear problem (4) discussed in Sect. 5.3, which concerned
a fixed extremal Reissner—Nordstrom background, there is in fact a nonlinear self-
gravitating model problem (i.e. where the spacetime is itself dynamical) where a
much simplified analogue of the above conjecture can already be studied, namely the
Einstein-Maxwell-scalar field system under spherical symmetry. Indeed, a numerical
study of this system was conducted by Murata—Reall-Tanahashi [14], and the results
reported are entirely consistent with a statement analogous to Conjecture 6.1. Proving
these numerical results for the spherically-symmetric system would be an important
first step towards a proof of the far more ambituous Conjecture 6.1. See also [39].
(Note added: A proof of the analogue of Conjecture 6.1 for the above spherically
symmetric system has in fact just been announced (see the upcoming [40]).)

6.2 The phase portrait of near extremal dynamics

If Conjecture 6.1 is indeed true, then it makes sense to ask what nearby solutions
not lying on this codimension-1 hypersurface Mgple €volve to (cf. the comments
after Theorem 4.1). It is instructive to first understand the Kerr family itself from the
point of view of this initial value problem. Indeed, when we realise the Kerr family
(through extremality!) as a smooth family of solutions evolving from initial data as in
Conjecture 6.1, then we see that as we approach extremality, the event horizon and the
“outgoing” component of the inner horizon coalesce into the extremal event horizon,
which then disappears once we pass into the superextremal range. See Fig. 5. Note
that the superextremal case has no naked singularity in the domain of development of
the characteristic initial data depicted (see already Fig. 8 for the relation of this region
to the global Penrose diagram). In this case, the solution lies entirely in J ~(Z ), but
I+ is now incomplete, since after finite Bondi time observers see the final sphere of
the initial ingoing cone.

I claim that the “minimalist” expectation consistent with what we know would be
the following:
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Fig.6 The moduli space 91 of
characteristic initial data near
extremal Kerr partitioned as in
the statement of Conjecture 6.2
mtstable

msubextremal
9:nnoncollapse

Fig.7 A scenario where a
chaotic region of the moduli
space 90t opens up from extremal

Kerr, with alternating regions mnaked
including a set Myaxeq of data
leading to naked singularities
msubextremal
mtnoncollapse

Conjecture 6.2 Under the assumptions of Conjecture 6.1, the codimension-1 “sub-
manifold” Mgaple is in fact a regular hypersurface which separates the moduli space
M into two open regions, each with boundary Mgaple - the set of initial data Mgybextremal
evolving to subextremal black holes and the set of initial data Mnoncollapse N0t collaps-
ing in the domain of dependence of the data, i.e. such that the domain of dependence
of the data is entirely contained in J~ (L) (but with incomplete ™).

The structure of the moduli space 9 according to the above conjecture is depicted
schematically in Fig. 6.

Let us note that a necessary condition for the above to hold is that for all data
lying on Mgiable, there is no (strictly) trapped surface in the domain of dependence
of the data. For otherwise, by Cauchy stability any nearby solution would necessarily
also have such a trapped surface, and thus, by Penrose type monotonicity arguments
involving the Raychaudhuri equation (see for instance [1]), could not lie entirely in
J=@M).

Note how the three Kerr spacetimes in Fig. 5 provide explicit examples of data lying
on Msubextremal» Mstable and Mioncollapse, respectively. According to Conjecture 6.2,
whereas for data lying in Mgypexremal, the above development includes a complete
null infinity Z™, and in this sense describes the complete future of far away observers,
in the case of data lying in Mponcollapse, Null infinity Z7 is incomplete. This is not
because there is anything singular in the evolution, but simply because, just as for
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superextremal Kerr itself, the ingoing cone of the data themselves is incomplete, yet
no horizon formed to shield the end of this cone from J ~(Z). These solutions would
in fact be smoothly extendible beyond a complete outgoing null cone emanating from
the final sphere of the initial ingoing null cone.

In order to determine what happens “next” to far away observers in spacetimes
evolving from data lying in 9Myoncollapse, ON€ must “complete” the initial data. An
even more ambitious conjecture, due to Kehle and Unger, considers the “larger” mod-
uli space 9 consisting now of the set of one-ended (complete) asymptotically flat
initial data. Their conjecture asserts the existence of a codimension-1 submanifold
M ritical C m consisting of data evolving to spacetimes settling down to extremal
black holes such that mcritical locally separates )T into data evolving to spacetimes
settling down to subextremal black holes and data evolving to spacetimes (M, g) with
a complete Z* and no horizon, i.e. with M = J~(Z™1), such that g moreover asymp-
totically settles down to the Minkowski metric. Thus, according to Kehle and Unger’s
conjecture, extremal black holes can arise at the threshold between black hole for-
mation and dispersion. The authors dub this “extremal critical collapse”, in analogy
with the more familiar threshold naked singularity solutions which have been studied
numerically in the “critical collapse” literature [41, 42], solutions which presumably
lie on a separate codimension-1 submanifold of 90T with a similar local separation
property. We emphasise, however, that not all extremal black holes are threshold
solutions! The data Mnoncoltapse in Conjecture 6.2 can also be suitably completed as
one-ended asymptotically flat data in 9JT so as to themselves evolve to black hole
spacetimes, where the horizon H™ however does not lie in the domain of dependence
of Muoncollapse- In this case, crossing the submanifold Mieaple from Mgubextremal to
Mioncollapse Would correspond not to the horizon H* disappearing but to the location
of the horizon “jumping”. For more details, see [11].

6.3 How would Conjecture 6.2 disprove “overspinning”?

As we have pointed out already, just as in Theorem 4.1, the set 9,p1e of Conjecture 6.2
depicted in Fig. 6 would only be teleologically defined. Thus, in general one would
not know which “side” of the 9,p1e hypersurface an initial data set lies on without
evolving the data to the future. There would however be an obvious sufficient condition
on initial data that ensures that the data indeed lie in Mgypextremal Y Mstable, Namely
the existence of at least one trapped or marginally trapped surface. This is because by
Penrose type monotonicity arguments mentioned already in Sect. 6.2, such a surface
could not lie in the past of Z*. Thus, we may infer from a positive resolution of
Conjecture 6.2 the following Corollary:

Corollary 6.1 (Given Conjecture 6.2). Consider a vacuum solution that contains a
Cauchy hypersurface with a marginally trapped surface such that outside that surface,
the spacetime is close to extremal Kerr in a suitable sense. Then the spacetime has
a black hole bounded by a regular event horizon H™ and with complete null infinity
I+. In particular, no naked singularity forms.
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To say it more colloquially, no matter what small incoming gravitational radiation
one tries to “throw” into an initially exactly extremal or slightly subextremal black
hole, one can in particular never produce a naked singularity. The spacetime will settle
back down to a subextremal or extremal black hole. Thus, Corollary 6.1, if indeed
true, can be viewed as definitively disproving the “overspinning” paradigm.

An analogous statement to Corollary 6.2 replacing Kerr with Kerr—Newman, and
the vacuum equations with those of a suitable self-gravitating charged matter model,
would thus similarly definitively disprove “overcharging” scenarios. (One can also of
course consider overspinning more generally for Einstein-matter systems, where the
analogous statement can again be conjectured, but we emphasise that overspinning,
unlike overcharging, is an issue which may be studied for the vacuum equations (1).)

One might ask what about “large perturbations” of extremal Kerr? Remember,
however, that in nonlinear theories, large perturbations are no longer “perturba-
tions”! If there is some self-gravitating system which collapses to form a naked
singularity, then it will presumably still form a naked singularity if the whole sys-
tem is “thrown” into a large extremal black hole. This would have nothing to do with
overspinning/overcharging.

6.4 What if Conjectures 6.1 and 6.2 are not true?

Already Conjecture 6.1 is based on two pieces of wishful thinking: Firstly, that the
linear instabilities of extremal Kerr described in Sect. 5.4, though known to be stronger
than those of extremal Reissner—Nordstrom, are still in some sense weak, and in
particular are still complemented by stability statements away from the horizon (and,
for tangential quantities, along the horizon). And secondly, that the nonlinearities in the
Einstein vacuum equations (1) near the horizon are indeed well modelled by (5). The
worse the linear behaviour around extremal Kerr turns out to be, the more compensating
the nonlinear structure of (1) near the horizon would have to be for there to be any
hope to prove Conjecture 6.1.

In view of the fact that there is a lot of uncertainty as to all of the above, we should
already also entertain the possibility that Conjectures 6.1 and 6.2 may turn out to be
false. What could the situation look like in that case?

Perhaps the most exciting possibility to entertain is that the linear instabilities
described in Sect.5.4 indeed lead in the full nonlinear theory to the formation of
naked singularities.

In this case, we may further distinguish two scenarios: (i) the case where such naked
singularities occur only for an exceptional non-generic set of data, in which case “weak
cosmic censorship” would be saved and in fact a modified version of Conjecture 6.2
could still hold, with a codimension-1 submanifold $hreshold in place of Mgiaple, NOW
containing both all data Mexremal €volving to extremal Kerr but also all data Myaked
leading to naked singularities, and (ii) the case where these naked singularities are in
fact stable and thus the set 9Tyaxeq Of data leading to naked singularities would have
non-empty interior in 91.

Indeed, scenario (ii) would be the even more exciting one, as it would in particular
falsify weak cosmic censorship. One can for instance imagine a picture of the moduli
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Fig.8 The evolution of the Q.«
initial data of Fig. 5 in the S >,
superextremal case, = O
superimposed on the spacetime =
of Fig. 1 & 0
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space 9 as depicted in Fig. 7. Here, a chaotic region “opens up” from the extremal
Kerr solution, containing infinitely many disconnected components of g pextremal
and Mponcollapse alternating with a (possibly disconnected) set Mpakeq of open interior
consisting of data evolving to naked singularities (depicted say as the lightest shaded
regions), all surrounded by a complicated residual set Mexremar Of data evolving to
extremal Kerr.

Would any of the above scenarios vindicate the original generalised third law
paradigm or the overspinning/overcharging paradigms?

Concerning the generalised third law paradigm, if the scenario was indeed some-
thing as depicted in Fig. 7, then, clearly the “residual” set 9exiremal Of data evolving
to extremal black holes would have a very different geometry from the analogous set
for fixed subextremal spin-to-mass ratio. It isn’t clear, however, even in this scenario,
whether MMeyiremal Would be “smaller” (in the sense of codimension) than the set of
analogous subextremal fixed spin-to-mass ratio ones. It could of course indeed be
smaller, but, in principle, it could even be that 9%exremal 18 in fact larger, filling part of
the darker shaded region, say as a fractional codimension subset.

Concerning the overspinning paradigm, whereas according to Fig. 7, naked singu-
larities would indeed occur in an arbitrary small neighbourhood of extremal Kerr, these
naked singularities would have nothing to do with the naked singularities of superex-
tremal Kerr, and in fact, they would not arise from “overspinning” but precisely from
trying to preserve extremality as closely as possible.

Indeed, the connection of “overspinning” with the “naked singularity” of Fig. 1
in the first place was always based on what I believe is simply a misreading of the
Penrose diagram, and it is perhaps useful to elaborate some more on this point. If the
“overspinning” scenario really envisions a “quasistationary” transition from subex-
tremal to superextremal, then the only relevant regions would be the regions of Fig. 5,
as these are the domain of dependence of the relevant initial data. (See also Fig. 8
where this region is superimposed on Fig. 1 in the superextremal case.) For as long
as the solution indeed remains near the Kerr family in this domain, the monotonicity
of Raychaudhuri’s equation would clearly exclude such a transition, just as in the
proof of Corollary 6.1. One often reads that, if a naked singularity were to form, one
cannot apply this monotonicity, hence evading the argument. For this, however, long
before this purported naked singularity has formed, one would have to have evolved
far from the Kerr family, thus thwarting the premise of this having anything to do with
“overspinning” in the first place.

But to humour “overspinning” even more, let us even suppose that the Einstein
equations didn’t happen to enjoy the monotonicity of the Raychaudhuri equation, and
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something like a quasistationary transition were indeed possible from subextremal to
superextremal. For instance, redefine the energy momentum tensor of a usual matter
model to be its negative and consider the resulting Einstein-matter system, and assume
the validity of Conjecture 6.2. Corollary 6.1 would not now follow, and indeed, initial
data with a marginally trapped surface could in principle now be contained in the
set Muoncollapse ©f Conjecture 6.2. This in turn could mean that at the final outgoing
cone emanating from the data, the solution would be close to an outgoing cone of
superextremal Kerr. (Refer again to Fig. 5 or Fig. 8.) This would indeed represent
in some sense successful “overspinning”! But what of it? This would be in no sense
inconsistent with the solution subsequently dispersing in the future, or recollapsing
later to a sub-extremal (or even exactly extremal!) black hole, as angular momentum
can happily radiate to infinity (cf. the fate of initially superextremal data in [11]). Thus,
even in the absence of the Einstein equations’ monotonicity properties, in no scenario
is there a “mechanism” by which the naked singularity of Fig. 8 becomes relevant for
the evolution of data as in Conjectures 6.1 and 6.2.

In summary, even if it turns out that, in the complexity of Fig. 7, extremal black
holes are indeed “more exceptional” than fixed spin-to-mass subextremal ones, or
that naked singularities do arise in a neighbourhood of extremality, the considerations
leading to this would be entirely different from those underlying the generalised third
law and the overspinning/overcharging paradigms.

So as not to end on such a note of criticism, however, and lest I give the impression
that I believe the legacy of these two received paradigms to be entirely negative, let
me say one important thing in their favour: Both these paradigms, in their slightly
contradictory ways, did succeed nonetheless in drawing attention early on to the
importance—and the potential complications—of near extremal dynamics, in a period
where the stability considerations of black holes in general, even subextremal ones,
were not yet well understood. This is unquestionably a positive historical legacy,
despite whatever confusion accompanied it. As should be clear, however, going for-
ward, I don’t find the paradigms particularly useful any more, and the considerations
that led to their formulation are in my view completely transcended by the consid-
erations discussed in Sect.5. Indeed, irrespectively of whether one is “rooting” for
Conjectures 6.1 and 6.2, or one is attracted to the more complicated alternative sce-
narios described in this section, I hope that I have convinced the reader that the
fundamental issue which will determine what is true can be nothing other than the
precise analysis of the interaction between the instabilities of Sects. 5.2 and 5.4 and
the nonlinearities of the Einstein equations.

7 Epilogue

I opened this article remarking how the two natures of the word “extreme”, its literal
and its figurative sense, are both central to the story of extremal black holes. I hope
the conjectural picture of Sect. 6 succeeded in describing a scenario where these two
facets of extremality may “peacefully” coexist, Conjecture 6.2 capturing its literal
“boundary” aspect, while the instability statement (iv) of Conjecture 6.1 (the “horizon
hair”) capturing one figurative aspect of these black holes’ extreme behaviour. We
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must not forget, however, that this is the optimistic scenario. The “coexistence” might
turn out to be a lot more chaotic, and Fig. 7 gives just one idea of what we might
have to come to terms with if these conjectures turn out to be false. While I hope the
conjectures described here provide a fruitful framework for further study, given the
surprising twists and turns of the story of extremal black holes so far, it is extremely
unlikely that anything written here will end up being the last word!
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