
Designing Quantum Channels Induced by Diagonal Gates

by

Jingzhen Hu

Department of Mathematics
Duke University

Date:
Approved:

Robert Calderbank, Advisor

Kenneth Brown

Henry Pfister

Iman Marvian

Dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Mathematics
in the Graduate School of

Duke University

2023

ABSTRACT

Designing Quantum Channels Induced by Diagonal Gates

by

Jingzhen Hu

Department of Mathematics
Duke University

Date:
Approved:

Robert Calderbank, Advisor

Kenneth Brown

Henry Pfister

Iman Marvian

An abstract of a dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Mathematics
in the Graduate School of

Duke University

2023

Copyright © 2023 by Jingzhen Hu

All rights reserved

Abstract

The challenge of quantum computing is to combine error resilience with universal computa-

tion. Diagonal gates such as the transversal T gate play an important role in implementing

a universal set of quantum operations. We introduce a framework that describes the process

of preparing a code state, applying a diagonal physical gate, measuring a code syndrome,

and applying a Pauli correction that may depend on the measured syndrome (the average

logical channel induced by an arbitrary diagonal gate). The framework describes the inter-

action of code states and physical gates in terms of generator coefficients determined by the

induced logical operator. The interaction of code states and diagonal gates depends on the

signs of Z-stabilizers in the CSS code, and the proposed generator coefficient framework

explicitly includes this degree of freedom. We derive necessary and sufficient conditions for

an arbitrary diagonal gate to preserve the code space of a stabilizer code, and provide an

explicit expression of the induced logical operator. When the diagonal gate is a quadratic

form diagonal gate, the conditions can be expressed in terms of divisibility of weights in the

two classical codes that determine the CSS code. These codes find applications in magic

state distillation and elsewhere. When all the signs are positive, we characterize all possi-

ble CSS codes, invariant under transversal Z-rotation through π/2l, that are constructed

from classical Reed-Muller codes by deriving the necessary and sufficient constraints on

the level l. According to the divisibility conditions, we construct new families of CSS

codes using cosets of the first order Reed-Muller code defined by quadratic forms. The

generator coefficient framework extends to arbitrary stabilizer codes but the more general

class of non-degenerate stabilizer codes does not bring advantages when designing the code

parameters.

Relying on the generator coefficient framework, we introduce a method of synthesizing

CSS codes that realizes a target logical diagonal gate at some level l in the Clifford hierarchy.

The method combines three basic operations: concatenation, removal of Z-stabilizers, and

iv

addition of X-stabilizers. It explicitly tracks the logical gate induced by a diagonal physical

gate that preserves a CSS code. The first step is concatenation, where the input is a CSS

code and a physical diagonal gate at level l inducing a logical diagonal gate at the same

level. The output is a new code for which a physical diagonal gate at level l + 1 induces

the original logical gate. The next step is judicious removal of Z-stabilizers to increase

the level of the induced logical operator. We identify three ways of climbing the logical

Clifford hierarchy from level l to level l + 1, each built on a recursive relation on the Pauli

coefficients of the induced logical operators. Removal of Z-stabilizers may reduce distance,

and the purpose of the third basic operation, addition of X-stabilizers, is to compensate

for such losses. Our approach to logical gate synthesis is demonstrated by two proofs

of concept: the [[2l+1 − 2, 2, 2]] triorthogonal code family, and the [[2m,
(
m
r

)
, 2min{r,m−r}]]

quantum Reed-Muller code family.

v

Contents

Abstract iv

List of Tables viii

List of Figures ix

Acknowledgements x

1 Introduction 1

1.1 Classical Error Correction . 1

1.2 Quantum Computation based on Quantum Error Correcting Codes 3

1.3 Summary of this Dissertation . 8

2 Preliminaries 11

2.1 Classical Reed-Muller Codes . 11

2.2 The MacWilliams Identities . 13

2.3 The Clifford Hierarchy . 14

2.4 Stabilizer Codes and CSS Codes . 16

2.5 Quantum Channel . 22

3 Diagonal Gates and Generator Coefficient Framework 24

3.1 Generator Coefficients of a Diagonal Gate and a CSS Code 24

3.1.1 Transversal Z-Rotations with Angle θ 25

3.1.2 Quadratic Form Diagonal Gates . 29

3.2 Average Logical Channel . 33

3.2.1 The Kraus Representation . 33

3.2.2 Probability of Observing Different X-Syndromes 38

3.2.3 Generator Coefficients and State Distillations 44

vi

4 CSS Codes that Support Transversal Physical Diagonal Gates 48

4.1 CSS Codes preserved by Diagonal Gates . 48

4.2 CSS Codes Constructions from Classical Reed-Muller Codes 52

4.3 Extension to Stabilizer Codes . 59

5 Designing CSS Codes by Climbing the Clifford Hierarchy 63

5.1 Concatenations . 65

5.2 Removal of Z-stabilizers . 70

5.3 Addition of X-stabilizers . 78

6 Applications of Generator Coefficients 82

6.1 Generator Coefficients and Trigonometric Identities 82

6.2 Generator Coefficients and Quadratic Forms 86

7 Conclusion and Discussion 94

Bibliography 96

Biography 102

vii

List of Tables

3.1 Generator coefficients for transversal Z-Rotations with angle θ applied to
the Steane code . 28

3.2 Generator coefficients for transversal Z-rotations with angle θ of the [[4, 2, 2]]
code with all positive signs . 42

3.3 Generator coefficients for transversal Z-rotations with angle θ of the [[4, 2, 2]]
code with negative Z⊗4 stabilizer . 42

5.1 The splitting of generator coefficients for the induced logical C(l−1)Z 78

viii

List of Figures

1.1 Elementary gates in the diagonal Clifford hierarchy 6

3.1 Overview of generator coefficient framework 32

3.2 The Steane code: the logical angle θL in terms of physical angle θ, assuming
we observe the trivial syndrome. 37

3.3 The probability of observing the trivial syndrome for the Steane code under
transversal Z-rotations with varying physical angles θ. 41

3.4 The probability of observing the trivial syndrome for the initial encoded state
|00⟩ of the [[4, 2, 2]] code under transversal Z-rotations with varying angles θ 43

5.1 Three basic operations that can be combined to synthesize a CSS code . . . 63

5.2 Concatenation transforms an [[n, k, d]] CSS code preserved by a diagonal gate
at level l to a [[2n, k, d′]] CSS code preserved by a family of diagonal gates. . 66

5.3 Changes in generator coefficients when removing a Z-stabilizer 70

5.4 Admissible splits of Z-rotations . 72

5.5 Admissible splits from C(j−1)Z1/2l−1
to C(j)Z1/2l−1

for any fixed l ≥ 1 . . . 74

5.6 Changes in generator coefficients when adding a new X-stabilizer 79

6.1 The bridge between physical gate and induced logical gate on a CSS code . 88

6.2 Configuring outer and inner qubits so that transversal T † gate on outer qubits
induces a logical T gate on the inner qubit. 92

ix

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor Robert

Calderbank for his continuous guidance and support for all the decisions in my PhD journey.

Robert provided valuable advice all the time when I explored among different research

topics, prepared course materials for teaching, and wrote papers and thesis. He spent time

guiding me through hard times.

I would like to thank Kenneth Brown, Henry Pfister, and Iman Marvian for serving

on my dissertation committee. I enjoyed the discussions with Ken - he always pointed

me to the right resource, and provided insightful perspectives and comments on my work.

I appreciated Henry’s enthusiasm for research and teaching. I benefited immensely from

Iman’s courses quantum information science I & II.

Besides my advisor and my committee, I enjoyed the interactions with Robert’s group -

Narayanan Rengaswamy, Qingzhong Liang, Xinyu Tan, Ahmed Hareedy, Siyi Yang, Aygul

Galimova, and Ken’s group - Dripto Debroy, Shilin Huang, Eric Sabo, Theerapat Tan-

suwannont. Thanks for the stimulating discussions. In particular, Narayanan helped me

catch up the background concepts of quantum error correction when I first stepped into

the field.

I would like to thank ThomasWiteski for the opportunities he provided and the guidance

on my studies and life. I would like to thank Jack Bookman, Victoria Akin, Rann Bar-On,

and Sarah Schott for helping me improve my teaching skills. I would like to thank Kathy

Peterson, Laurie Triggiano, Julia Gruhot for all the administrative help.

I would like to thank all the teachers and mentors in my life. A special thanks goes to

Weihua Geng and Robert Krasny, who first introduced me to the research field and showed

their enthusiasm as role models.

I would like to thank my fellow students, Yishu Gong, Ruby Kim, Miao Gu, Langxuan

Su, Mo Zhou, Zibu Liu, Tao Tang, Hwai-Ray Tung, Yuqing Dai for all the discussions and

fun we had in the five years.

x

Last but not the least, I would like to thank my parents for their support all the way in

my life, both materially and spiritually. I would like to thank my husband for his constant

understanding and trust.

xi

Chapter 1

Introduction

1.1 Classical Error Correction

In the 1940s, Claude Shannon developed the first qualitative and quantitative model of a

communication system [Sha48], which paved the road toward the age of information tech-

nology. The model measures information by binary digits (bits) and formalizes the process

of transmitting the source information through a channel from a sender to a receiver. The

communication channel in practice, however, is noisy. As a result, the received information

has a chance to be flipped (from 0/1 to 1/0) or to be removed. For example, the Binary

Symmetry Channel (BSC) is a common memoryless model for a bit-flip error with prob-

ability p happening on a single bit. To reduce the effect of noise, the sender encodes the

source information by adding redundancy and applying invertible transformation before

the transmission. Then, the receiver decodes the obtained information properly to recover

the source information with a better probability (greater than (1− p)k, for k bits of source

information after the BSC).

Example 1 (The Classical Repetition Code). Let the source information be a single bit

{0, 1}. After encoding 0 as 000 and 1 as 111, the sender can send it through the BSC with

p = 0.01 = 1% (the raw bit-flipped error rate). The information obtained by the receiver

could be one of the elements in the set S={000,100,010,001,110,101,011,111}. Since p < 0.5,

if the received information contains more than two 0s, then it is more likely the source

information is 0 (due to majority votes). Similarly, if the received information contains at

most one 0, it is decoded into 1. Then, the bit-flip error happens after encoding/decoding

only when more than two bits are flipped during BSC, which has probability p′ = 3p2(1−

p) + p3 = 0.000298 ≈ 0.03%. The encoded error rate p′ is less than the raw error rate p.

1

There is an analogy between the maximal likelihood decoder of the classical repetition code

and the two out of three sets match. Both of them aim to amplify the difference and decide

the winner.

A binary linear classical error correcting code C is a k-dimensional subspace of Fn2 , the

n-dimensional vector space over the finite field F2 = {0, 1}. Each element in C is called

a codeword, which is a binary vector of length n in our case. The number of codewords

in C is denoted by |C| = 2dim(C), where dim(C) = k is the dimension of C over F2. The

repetition code in Example 1 has k = 1 and n = 3. The binary linear classical code C

can be described by a k × n generator matrix G such that C is the row space of G. Note

that the generator matrix G of C is not unique. An (n − k) × n parity check matrix H of

C is defined as Hc = 0 for all c ∈ C so that it filters out codewords and only leaves the

error syndrome, Hc′ = H(c+ e) = He for c′ ∈ Fn2 . The parity check matrix H of C is the

generator matrix of the dual code C⊥ of C. The dual code C⊥ consists of all vectors that

are orthogonal to every codeword in C with respect to bitwise inner product. If a code is

contained in its dual, C ⊂ C⊥, then it is a self-orthogonal code. If a code equals its own

dual, C = C⊥, then it is a self-dual code.

The ability to detect and correct errors depends on the minimal distance among code-

words. The common metric to measure the distance is the Hamming distance, which is

defined as the number of components in which two codewords differ, d(x,y) = wH(x− y)

for x,y ∈ Fn2 . Here, wH(x) is the Hamming weight of a binary vector x, counting the

number of non-zero components in the vector. The (minimum) distance of C (with |C| ≥ 2)

is the minimum of d(x,y) over all distinct pairs of codewords x,y ∈ C. A classical code

with distance d can correct up to ⌊(d − 1)/2⌋ bit-flip errors. For example, the repetition

code in Example 1 has distance 3 and can correct any single bit-flip error.

An [n, k, d] classical code C encodes k bits of source information into a subspace of Fn2

with distance d. For a binary linear code, the distance is the same as the minimum weight of

a non-zero codeword. The MacWilliams Identities [Mac63] connect the weight properties

of a linear code C with those of the dual code C⊥. We introduce more details of the

2

MacWilliams Identities in Chapter 2.2 and apply the tools from the proofs in the following

chapters. To be specific, we take advantage of the divisibility properties of the weights in

classical codes to construct Quantum Error-Correcting Codes (QECCs) in Chapter 4.2 and

Chapter 6.2. The defining property of a classical divisible code [War01] is that codeword

weights share a common divisor greater than one. Divisible codes appear in signal design for

wireless communication, in coded radar and sonar, and in the generation of pseudorandom

sequences for stream ciphers and for secure authentication (see [GG05] for more details).

There is also extensive literature on classical codes with two or three weights (see [Del73,

CK86, Koh07, DD15, KK20, Kur21]).

For an [n, k, d] code, there is a trade-off between the rate (k/n) and distance (d).

The intuition behind designing the codes is analogous to sphere packing, arranging non-

overlapping equal-sized spheres within a fixed containing space. The number of spheres is

inversely proportional to the size of the spheres. The perfect codes optimize the balance

between the rate (amount) and the distance (size). The Hamming code [Ham50] and the

Golay code [Gol49] are examples of the perfect codes. The perfect code could be defined

as the case that the balls centered on codewords with Hamming radius r exactly contain

all possible vectors in the space.

1.2 Quantum Computation based on Quantum Er-

ror Correcting Codes

The quantum information and particles are measured in the unit of quantum-bit (qubit).

A qubit shares the two-state properties as the classical bit (0 as |0⟩ and 1 as |1⟩ with more

details introduced in Chapter 2.3), but adds the superposition property to include all the

normalized complex vectors (a|0⟩+b|1⟩ for complex numbers a, b satisfying |a|2+|b|2 = 1) in

a Hilbert space. The Hilbert space for several qubits is the tensor product of Hilbert spaces

for individual qubits, which enables the dimension of Hilbert space to grow exponentially

with the number of qubits. If one more layer of uncertainty is introduced to an ensemble

of quantum states, a density operator is introduced to describe the system. The density

3

operator is a positive semi-definite, Hermitian matrix with trace one (see more details in

Chapter 2.5). Quantum states can evolve with any unitary operator (U = eiH for some

Hermitian matrix H in the Schrödinger equation) until they collapse into one of the basis

states after a measurement. Projective measurements are formulated by a resolution of

identities. It is a collection of projectors that are pairwise orthogonal and sum to the

identity operator. The probabilities of obtaining different basis states follows Born’s rule

[Bor26]. In addition to superposition, the entanglement phenomenon is also one of the

main differences between bits and qubits. Quantum mechanics enables quantum states to

be entangled with each other, which produces correlations between two qubits and their

measurements.

Taking advantage of the quantum phenomena such as superposition, measurement, and

entanglement, universal quantum computers are able to speed up processing exponentially,

solving certain types of problems much faster than the most efficient known classical algo-

rithm. For example, Shor’s algorithm [Sho94, Sho99] is a quantum algorithm for finding

the prime factors of an integer N , that can crack RSA encryption [RSA78] in polynomial

time. The quantum advantages also come with difficulties in quantum error correction.

Nielsen and Chuang [NC11] discuss three obstacles and their solutions:

• Since a qubit lives in a Hilbert space, quantum errors on a single qubit are continuous.

The infinite error space requires infinite precision to determine which error happened

before correcting it. Fortunately, the n-qubit Pauli matrices (see Chapter 2.3 for

more details) form an orthonormal basis for the vector space of N × N complex

matrices (CN×N) under the normalized Hilbert-Schmidt inner product ⟨A,B⟩ :=

Tr(A†B)/N [Got97]. This statement means that any error can be written as a linear

combination of Pauli operators, which leads to the the discretization of errors in

quantum computing and communication [EM96].

• The no-cloning theorem [WZ82] states that there is no unitary (quantum operation)

that can map |ϕ⟩ to |ϕ⟩ ⊗ |ϕ⟩ for all quantum states |ϕ⟩. Although it is impossible

to duplicate an arbitrary quantum state with no prior knowledge, QECCs usually

4

only encode the basis states of the logical qubits. Then, the linearity of the encoding

maps take the superpositions of the basis state to the corresponding superpositions

of encoded states.

• Measurement generally destroys the quantum information, making it impossible to

recover. To solve this issue, QECCs encode the protected information into the fixed

subspace/eigenspace such that measurements only capture the error syndromes with-

out contaminating the encoded quantum information.

An [[n, k, d]] QECC encodes k qubits source information into n physical qubits such that

the smallest undetectable error is on at least d (among the n) physical qubits. If an n-qubit

physical gate preserves an [[n, k, d]] QECC, then a logical gate is induced on the k-qubit

logical information.

Stabilizer formalism [Ste96b, CS96, CRSS97, CRSS98, Got97] designs a resolution of

identity such that the measurements derived from its stabilizer only detect errors and do

not reveal the protected information in the codespace. A r-dim stabilizer group S is a

commutative subgroup of the Pauli group and the corresponding resolution of identity has

2r elements according to different choice of signs. The stabilizer code is a subspace invariant

under all the stabilizers with dimension n− r. CSS code is a special case of the stabilizer

codes in which X and Z generators can be decoupled. It can be built from two classical

codes C1 and C2 such that C2 is contained in C1. Elements in C2 are associated with the X

stabilizers while those in the dual space of C1 are associated with the Z stabilizers. The

design of CSS codes enables the applications of tools in classical coding theory to the design

of quantum codes [Ren20, Sab22, ABD+22, TRC22].

The modern challenge of quantum computing is to combine error resilience with univer-

sal computation using reasonable resources. In order to realize general quantum algorithms,

one needs the universal quantum computation, which has the abilities of preparing arbitrary

quantum states, applying any unitary operation, and measuring all possible outcomes of

the final system state. One approach to realize quantum computing is through fault toler-

ant implementation of a universal set of gates. There are many finite sets of gates that are

5

universal, and a standard choice is to augment the set of Clifford gates by a non-Clifford

unitary [BMP+99] such as the Z1/4 = T gate (π/8 rotation).

Gottesman and Chuang [GC99] introduced the Clifford hierarchy of unitary opera-

tors. The first level is the Pauli group. The second level is the Clifford group, which

consists of unitary operators that normalize the Pauli group. The l-th level consists of

unitary operators that map Pauli operators to the (l − 1)-th level under conjugation. The

teleportation model of quantum computation introduced in [GC99] is closely related to

the structure of the Clifford hierarchy (for details, see [ZCC08, BS10, BBCH14, AJO16,

CGK17, RCP19, PRTC20]). For l ≥ 3, the operators at level l are not closed under matrix

multiplication. However, the diagonal gates at each level l of the hierarchy do form a group

[ZCC08, CGK17], and the gates Z1/2l−1
, C(i)Z1/2j with i + j = l − 1 generate this group

[ZCC08] (see Chapter 2.3 for details of C(i)Z1/2j). The generators at the next level l+1 can

be obtained by taking a square root
(
Z1/2l−1 → Z1/2l

)
or adding one more layer of control(

C(i)Z1/2j → C(i+1)Z1/2j
)
as shown in Figure 1.1. Their diagonal entries are 2l-th roots of

unity raised to some polynomial function of the qubit state. Cui et al. [CGK17] determined

the level of a diagonal gate in the Clifford hierarchy in terms of l and the degree of the

polynomial function. Quadratic form diagonal (QFD) gates are a family of diagonal gates

associated with quadratic forms. The class of QFD gates includes transversal Z-rotations

through π/2l, and encompasses all 2-local gates in the hierarchy [RCP19].

lth: Z
1

2l−1 , CZ
1

2l−2 , . . . , C(l−1)Z

3rd: T = Z
1
4 , CP , CCZ

2nd: P =
√
Z, CZ

1st: Z

Figure 1.1: Elementary gates in the diagonal Clifford hierarchy.

It is essential that a set of gates be both universal and fault-tolerant. A transversal

gate [Got97] is a tensor product of unitaries on individual code blocks. Fault-tolerance of

6

transversal gates follows from the observation that uncorrelated errors remain uncorrelated

in code blocks. The Eastin-Knill Theorem [EK09, ZCC11] reveals that no QECC can

implement a universal set of logical gates through transversal gates alone. However, several

approaches have been developed to overcome this no-go theorem.

Magic state injection circumvents this restriction by consuming magic states to imple-

ment non-Clifford gates. State injection [GC99, ZLC00] is usually accomplished through

magic state distillation (MSD) [BK05, Rei05, BH12, ACB12, CAB12, LC13, CH17, HH18,

KT19, VB22], which synthesizes high-fidelity magic states from multiple low-fidelity states.

MSD protocols employ CSS codes where a diagonal physical gate induces a fault-tolerant

non-Clifford logical gate [GC99]. In this context, Bravyi and Haah [BH12] introduced the

class of triorthogonal codes, where a transversal physical T gate induces a transversal log-

ical T gate up to some logical Clifford gates. Analysis of more general pairings of physical

and logical gates has been investigated, for example the hybrid codes introduced by Vasmer

and Kubica [VK22].

The set of logical operators induced by transversal circuits on two different codes can be

universal, and this motivates methods of switching fault-tolerantly between the two code

spaces. Hill et al. [HFWH13] proposed switching between the 5-qubit stabilizer code and

the Steane code, while Anderson et al. [ADCP14] proposed switching between the Steane

code and Reed-Muller codes. An alternative perspective on code switching is to implement

the logical operator by fixing gauges on subsystem codes (see Paetznick and Reichardt

[PR13], and Bomb́ın [Bom15]), where gauge qubits are required to do intermediate error

corrections).

Jochym-O’Connor and Laflamme [JOL14] proposed implementing a universal set of

logical gates on a concatenated code by combining non-transversal physical gates with

fault-tolerant recovery operations. Although the gates are not transversal on the concate-

nated code, the component codes do need to realize a complementary logical gate through

transversal gates. For example, the [[105, 1, 3]] concatenated code achieves the fault-tolerant

controlled-Not and T gates by assembling 7 blocks of 15 qubits based on the 7-qubit Steane

7

and 15-qubit Reed-Muller codes.

Knill et al. [KLZ96] introduced a fault-tolerant controlled-Phase gate on the Steane

code [Ste96a] by decomposing a non-transversal circuit into pieces, and performing rounds

of intermediate error correction to ensure fault-tolerance. Yoder et al. [YTC16] extended

this idea of pieceable fault-tolerance to general codes, using the Toffoli and Controlled-

Controlled-Z gates to assemble a universal set of gates. They were able to introduce

error correction by decomposing the non-transversal circuit, identifying the stabilizer group

corresponding to the intermediate states, and measuring the stabilizers.

1.3 Summary of this Dissertation

QECCs protect information as it is transformed by logical gates. The aim of fault tolerance

motivates designing QECCs that implement logical gates through transversal physical gates.

We classify and unify the theory of diagonal gates for the purpose of logical computation.

We analyze the interaction of a general diagonal physical gate UZ with the code states of a

stabilizer code, by preparing an initial code state, applying a physical gate, then measuring

a code syndrome µ, and finally applying a correction based on µ. For each syndrome, we

expand the induced logical operator in the Pauli basis to obtain the generator coefficients

that capture state evolution. Intuitively, the diagonal physical gate preserves the code space

if and only if the induced logical operator corresponding to the trivial syndrome is unitary.

With the generator coefficient framework, we derive an explicit expression for the logical

channel induced by a diagonal physical gate (Chapter 3.2, (3.43) describes the induced

logical operator for each syndrome µ and (3.65) describes the probability of observing µ).

We quantify the correlation between initial code state and measured syndrome by separating

the probability of observing a given syndrome into two components, one depending on the

generator coefficients, the other on the choice of initial state (Chapter 3.2.2). We analyze

the [[4, 2, 2]] code to show that each component depends strongly on the choice of signs in

the stabilizer code, and that we can choose signs to create a embedded decoherence free

8

subspace [KBLW01].

We describe the design space that is available between the effectiveness and the thresh-

old of distillation through a running example in Chapter 3.2.3. The effectiveness of magic

state distillation (MSD) depends on the probability of observing a given syndrome, and

it is possible to combine syndrome measurement with a decoder (see Krishna and Tillich

[KT19] for an example). Generator coefficients provide a framework for investigating this

balance.

We derive necessary and sufficient conditions for an arbitrary diagonal physical gate to

preserve the codespace of a CSS code with arbitrary signs (Chapter 4.1, Theorem 8), and

describe the logical operator that results (Chapter 4.1, Remark 9 and Chapter 6.2, Theorem

31). These conditions simplify and generalize earlier conditions found by Rengaswamy et

al [RCNP20] for transversal Z-rotation through π/2l, which are treated in Chapter 6.1.

We further simplify the necessary and sufficient conditions for a QFD gate to preserve the

code space of a CSS code (Chapter 4.1, Theorem 10). These conditions govern divisibility

of Hamming weights in the classical codes that determine the CSS codes. In the case of

transversal Z-rotation through π/2l applied to CSS codes with positive signs, we show the

necessity of divisibility conditions derived in [LC13, VB22].

We characterize all CSS codes with positive signs, invariant under transversal Z-rotation

through π/2l, that are constructed from classical Reed-Muller (RM) codes (and their deriva-

tives obtained by puncturing or removing the first coordinate). We derive necessary and

sufficient conditions that relate l to the parameters of the component RM codes (Chapter

4.1, Theorem 15 and Remark 16). We also consider applying the classical code components

constructed by the using cosets of the first order Reed Muller code defined by quadratic

forms, which leads to the design of stabilizer code in layers (Chapter 6.2), with N1 inner

qubits and N2 outer qubits, with the aim of assembling a universal set of fault tolerant

gates on the inner qubits. However, the overhead of current layer designs is higher than

using the [[15, 1, 3]] triorthogonal code in MSD.

We extend the generator coefficient framework to stabilizer codes (Chapter 4.3). This

9

extension shows that given an [[n, k, d]] non-degenerate stabilizer code preserved by a diag-

onal gate UZ , we can construct an [[n, k, dZ ≥ d]] CSS code preserved by UZ with the same

induced logical operator. Note that dZ (the minimum weight of any nontrivial Z-logical

Pauli operator) is the relevant distance for MSD. Recall that an [[n, k, d]] stabilizer code is

non-degenerate if the weight of every stabilizer element is at least d.

We also introduce three climbing techniques that can be combined together to design

CSS codes for some non-Clifford diagonal logical gates. The three steps are concatena-

tion (Chapter 5.1), removal of Z-stabilizers (Chapter 5.2), and addition of X-stabilizers

(Chapter 5.3). Concatenation aims to first allow a higher-level physical gate to realize a

lower-level logical gate so that it is possible to reach a higher-level logical gate by remov-

ing some admissible Z-stabilizers. The distance of a code can be reduced when removing

some Z-stabilizers, and addition of admissible X-stabilizers could balance this (decrease the

number of logical qubits in order to obtain a larger distance). Our approach to logical gate

synthesis is demonstrated by two proofs of concept: the [[2l+1 − 2, 2, 2]] triorthogonal code

family, and the [[2m,
(
m
r

)
, 2min{r,m−r}]] quantum Reed-Muller code family. It remains open

to develop a computational-friendly algorithm based on these three climbing techniques

and to search for more CSS codes that realize non-Clifford logical diagonal gates.

The dissertation is organized as follows. Chapter 2 introduces notation and provides

the necessary background. Chapter 3 introduces the generator coefficients that describe

how a diagonal gate acts on a CSS code through the average logical channel. Chapter 4

establishes necessary and sufficient conditions for a CSS code to support a diagonal physical

gate, and derives the induced logical operator. This leads to the divisibility conditions and

the RM constructions. We further extend the generator coefficient framework to general

stabilizer codes. Chapter 5 introduces three climbing techniques to design CSS codes that

target some non-Clifford logical diagonal operators. Chapter 6 discusses how the generator

coefficient framework simplifies and connects to previous literature. Chapter 7 concludes

the dissertation and discusses possible future directions.

10

Chapter 2

Preliminaries

2.1 Classical Reed-Muller Codes

Let F2 = {0, 1} denote the binary field. Let m ≥ 1, and let x1, x2, . . . , xm be binary

variables (monomials of degree 1). Monomials of degree r can be written as xi1xi2 · · ·xir

where ij ∈ {1, 2, . . . ,m} are distinct. A boolean function with degree r is a binary linear

combination of monomials with degrees at most r. There is a one-to-one correspondence

between boolean functions h and evaluation vectors h = [h(x1, x2, · · · , xm)](x1,x2,...,xm)∈Fm
2
.

The degree 0 boolean function corresponds to the constant evaluation vector 1 ∈ F2m
2 .

For 0 ≤ r ≤ m, the Reed-Muller code RM(r,m) is the set of all evaluation vectors h

associated with boolean functions h(x1, x2, · · · , xm) of degree at most r,

RM(r,m) := {h ∈ F2m

2 | h ∈ F2[x1, x2, · · · , xm], deg(h) ≤ r}. (2.1)

The length of the RM(r,m) code is 2m, the dimension is given by k =
∑r

j=0

(
m
j

)
, and

the minimal distance is 2m−r. Let ⊕ be the bitwise exclusive-or operation. The dual of

RM(r,m) is RM(m−r−1,m), and we can construct the RM codes by recursively observing

[MS77]

RM(r,m+ 1) = {(u,u⊕ v) | u ∈ RM(r,m),v ∈ RM(r − 1,m)}. (2.2)

The weights of codewords in a classical divisible code share a common divisor larger than

one. Classical Reed-Muller codes are prototypical divisible codes. Note that all weights

in RM(r,m) are multiples of 2⌊(m−1)/r⌋ [Ax64, McE71, MS77], and the highest power of 2

that divides all weights of codewords in RM(r,m) is exactly 2⌊(m−1)/r⌋ [Bor13].

Codewords in the first order Reed-Muller code RM(1,m) are evaluation functions

[ϵ1 ⊕ La(x)]x∈Fm
2

where ϵ ∈ {0, 1} and La(x) = a1x1 ⊕ · · · ⊕ amxm is the linear func-

tion determined by a non-zero vector a ∈ Fm2 . RM(1,m) is a [2m,m + 1] code, and if we

11

puncture on the coordinate x = 0, we obtain the [2m − 1,m] simplex code C(m), with all

non-zero weights equal to 2m−1.

Codewords in the second order Reed-Muller code RM(2,m) are evaluation functions

[ϵ1 ⊕ La(x) ⊕QR(x)]x∈Fm
2

where ϵ ∈ {0, 1}, La(x) = axT is a linear function and QR(x)

is a quadratic form. The property that defines a quadratic form is

QR(x⊕ y) = QR(x)⊕QR(y)⊕ xRyT , (2.3)

where R is a binary symmetric matrix with zero diagonal (binary symplectic matrix). Note

that if we write R = U + UT , where U is strictly upper triangular, then we may set

QR(x) = xUxT . Observe that if La(x) is a linear function, then QR(x) + La(x) is a

quadratic form corresponding to the same binary symplectic matrix R.

The weight distribution of the coset RM(1,m)+[QR(x)]x∈Fm
2
depends only on the rank

of the binary symplectic matrix R (see for [MS77] a proof using Dickson normal form).

Lemma 1 provides an alternative derivation based on the observation that QR(x) is linear

on the null space of R.

Lemma 1. wtH

(
[La(x) +QR(x)]x∈Fm

2

)
= 2m−1 or 2m−1 ± 2m−h−1.

1. All weights in the coset C(m) + [QR(x)]x∈Fm
2 ,x̸=0 are divisible by 2m−h−1.

2. All weights in the coset C(m) + [QR(x)]x∈Fm
2 ,x̸=0 + 1 are congruent to 2m−h−1 − 1

modulo 2m−h−1.

Proof. We calculate the weight distribution wtH

(
[La(x) +QR(x)]x∈Fm

2

)
as La(x) ranges

over the space of linear functions. Note that Rank(R) = 2h is even. Observe that the

restriction of QR(x) to the (m− 2h)-dimensional space VR = {x ∈ Fm2 |xR = 0} is a linear

map. Hence

Sa :=
∑
x∈VR

(−1)La(x)+QR(x) =

 2m−2h, if La(x) = QR(x) for all x ∈ VR,

0, otherwise.
(2.4)

12

Let wa = wH

([
La(x) +QR(x)

]
x∈Fm

2

)
be the corresponding Hamming weight. Then

2m − 2wa =: Ta =
∑
x∈Fm

2

(−1)La(x)+QR(x). (2.5)

We square Ta to obtain

T 2
a =

∑
x∈Fm

2

∑
y∈Fm

2

(−1)QR(x)+QR(y)+La(x)+La(y)

=
∑
x∈Fm

2

∑
y∈Fm

2

(−1)QR(x⊕y)+La(x⊕y)+xRyT
. (2.6)

We change variables and sum over z = x⊕ y and y. Note that xRxT = 0 for all x ∈ Fm2

since R has zero diagonal. Then

T 2
a =

∑
z∈Fm

2

(−1)QR(z)+La(z)
∑
y∈Fm

2

(−1)(y⊕z)RyT
= 2mSa. (2.7)

Hence Ta = 0 or Ta = ±2m−h, and wa ∈ {2m−1, 2m−1 ± 2m−h−1}. Parts 1) and 2) follow

from the observation that La(0) = QR(0) = 0, so puncturing on the zero coordinate does

not change the weight.

2.2 The MacWilliams Identities

Let ı :=
√
−1 be the imaginary unit. We denote the Hamming weight of a binary vector v

by wH(v). The weight enumerator of a binary linear code C ⊂ Fm2 is the polynomial

PC(x, y) =
∑
v∈C

xm−wH(v)ywH(v). (2.8)

The MacWilliams Identities [Mac63] relate the weight enumerator of a code C to that of

the dual code C⊥, and are given by

PC(x, y) =
1

|C⊥|
PC⊥(x+ y, x− y). (2.9)

Given an angle θ ∈ (0, 2π), we make the substitution x = cos θ2 and y = −ı sin θ
2 , and define

Pθ[C] := PC

(
cos

θ

2
,−ı sin θ

2

)
=
∑
v∈C

(
cos

θ

2

)m−wH(v)(
−ı sin θ

2

)wH(v)

. (2.10)

13

2.3 The Clifford Hierarchy

Any 2× 2 Hermitian matrix can be uniquely expressed as a real linear combination of the

four single qubit Pauli matrices/operators

I2 :=

1 0

0 1

 , X :=

0 1

1 0

 , Z :=

1 0

0 −1

 , and Y :=

 0 −ı

ı 0

 = ıXZ. (2.11)

The operators satisfy X2 = Y 2 = Z2 = I2, XY = −Y X, XZ = −ZX, and Y Z = −ZY.

Let A ⊗ B denote the Kronecker product (tensor product) of two matrices A and B.

Let n ≥ 1 and N = 2n. Given binary vectors a = [a1, a2, . . . , an] and b = [b1, b2, . . . , bn]

with ai, bj = 0 or 1, we define the operators

D(a, b) := Xa1Zb1 ⊗ · · · ⊗XanZbn , (2.12)

E(a, b) := ıab
T mod 4D(a, b). (2.13)

We somtimes abuse notation and write a, b ∈ Fn2 , though entries of vectors are some-

times interpreted in Z4 = {0, 1, 2, 3}. Note that D(a, b) can have order 1, 2 or 4, but

E(a, b)2 = ı2ab
T
D(a, b)2 = ı2ab

T
(ı2ab

T
IN) = IN . The n-qubit Pauli group is defined as

PN := {ıκD(a, b) : a, b ∈ Fn2 , κ ∈ Z4}, (2.14)

where Z2l = {0, 1, . . . , 2l − 1}. The n-qubit Pauli matrices form an orthonormal basis for

the vector space of N×N complex matrices (CN×N) under the normalized Hilbert-Schmidt

inner product ⟨A,B⟩ := Tr(A†B)/N [Got97].

We use the Dirac notation, |·⟩ to represent the basis states of a single qubit in C2.

For any v = [v1, v2, · · · , vn] ∈ Fn2 , we define |v⟩ = |v1⟩ ⊗ |v2⟩ ⊗ · · · ⊗ |vn⟩, the standard

basis vector in CN with 1 in the position indexed by v and 0 elsewhere. We write the

Hermitian transpose of |v⟩ as ⟨v| = |v⟩†. We may write an arbitrary n-qubit quantum

state as |ψ⟩ =
∑

v∈Fn
2
αv|v⟩ ∈ CN , where αv ∈ C and

∑
v∈Fn

2
|αv|2 = 1. The Pauli matrices

act on a single qubit as X|0⟩ = |1⟩, X|1⟩ = |0⟩, Z|0⟩ = |0⟩, and Z|1⟩ = −|1⟩.

The symplectic inner product is ⟨[a, b], [c,d]⟩S = adT +bcT mod 2. Since XZ = −ZX,

we have

E(a, b)E(c,d) = (−1)⟨[a,b],[c,d]⟩SE(c,d)E(a, b). (2.15)

14

The Clifford hierarchy of unitary operators was introduced in [GC99]. The first level of

the hierarchy is defined to be the Pauli group C(1) = PN . For l ≥ 2, the levels l are defined

recursively as

C(l) := {U ∈ UN : UPNU † ⊂ C(l−1)}, (2.16)

where UN is the group of N × N unitary matrices. The second level is the Clifford

Group, C(2), which can be generated (up to overall phases) using the elementary unitaries

Hadamard, Phase, and either of Controlled-NOT (CX) or Controlled-Z (CZ) defined re-

spectively as

H :=
1√
2

1 1

1 −1

 , P :=

1 0

0 ı

 , (2.17)

CXa→b := |0⟩⟨0|a ⊗ (I2)b + |1⟩⟨1|a ⊗Xb, (2.18)

CZab := |0⟩⟨0|a ⊗ (I2)b + |1⟩⟨1|a ⊗ Zb. (2.19)

Note that Clifford unitaries in combination with any unitary from a higher level can be

used to approximate any unitary operator arbitrarily well [BMP+99]. Hence, they form a

universal set for quantum computation. A widely used choice for the non-Clifford unitary

is the T gate in the third level defined by

T :=

1 0

0 e
ıπ
4

 = Z
1
4 ≡

e− ıπ
8 0

0 e
ıπ
8

 = exp
(
− ıπ

8
Z
)

(2.20)

Let DN be the N × N diagonal matrices, and C(l)
d := C(l) ∩ DN . The diagonal gates

at each level in the hierarchy form a group, but for l ≥ 3, the gates in C(l) no longer

form a group. Note that C(l)
d can be generated using the elementary unitaries C(0)Z

1

2l ,

C(1)Z
1

2l−1 , . . . ,C(l−2)Z
1
2 , C(l−1)Z [ZCC08], where C(i)Z

1

2j =
∑

u∈Fi+1
2

|u⟩⟨u| + e
ı π

2j |1⟩⟨1|

and 1 ∈ Fi+1
2 denotes the vector with every entry 1. In general, the length of 1 can change

and should be clear in the context.

15

2.4 Stabilizer Codes and CSS Codes

We define a stabilizer group S to be a commutative subgroup of the Pauli group PN , where

every group element is Hermitian and no group element is −IN . We say S has dimension r

if it can be generated by r independent elements as S = ⟨νiE(ci,di) : i = 1, 2, . . . , r⟩, where

νi ∈ {±1} and ci,di ∈ Fn2 . Since S is commutative, we must have ⟨[ci,di], [cj ,dj]⟩S =

cid
T
j + dic

T
j = 0 mod 2.

Given a stabilizer group S, the corresponding stabilizer code is the fixed subspace

V(S) := {|ψ⟩ ∈ CN : g|ψ⟩ = |ψ⟩ for all g ∈ S}. We refer to the subspace V(S) as an

[[n, k, d]] stabilizer code because it encodes k := n− r logical qubits into n physical qubits.

The minimum distance d is defined to be the minimum weight of any operator inNPN
(S)\S.

Here, the weight of a Pauli operator is the number of qubits on which it acts non-trivially

(i.e., as X, Y or Z), and NPN
(S) denotes the normalizer of S in PN defined by

NPN
(S) := {ıκE (a, b) ∈ PN : E (a, b)SE (a, b) = S, κ ∈ Z4}

= {ıκE (a, b) ∈ PN : E (a, b)E (c,d)E (a, b) = E (c,d)

for all E (c,d) ∈ S, κ ∈ Z4}. (2.21)

Note that the second equality defines the centralizer of S in PN , and it follows from the

first since Pauli matrices either commute or anti-commute.

The action of a unitary U on a state |ψ⟩ is equivalent to U conjugating the stabilizers

of |ψ⟩. For |ψ⟩ ∈ V(⟨E(c,d)⟩),

U |ψ⟩ = UE(c,d)|ψ⟩ = (UE(c,d)U †)U |ψ⟩, (2.22)

which implies that

U |ψ⟩ ∈ V(⟨UE(c,d)U †⟩). (2.23)

For any Hermitian Pauli matrix E (c,d) and ν ∈ {±1}, the operator IN+νE(c,d)
2 projects

onto the ν-eigenspace of E (c,d). Thus, the projector onto the codespace V(S) of the

16

stabilizer code defined by S = ⟨νiE (ci,di) : i = 1, 2, . . . , r⟩ is

ΠS =

r∏
i=1

(IN + νiE (ci,di))

2
=

1

2r

2r∑
j=1

ϵjE (aj , bj) , (2.24)

where ϵj ∈ {±1} is a character of the group S, and is determined by the signs of the

generators that produce E(aj , bj): ϵjE (aj , bj) =
∏
t∈J⊂{1,2,...,r} νtE (ct,dt) for a unique

J .

Let |α⟩L, α ∈ Fk2 be the protected logical state. We define the generating set {XL
j , Z

L
j ∈

P2k : j = 1, . . . k = k1 − k2} for the logical Pauli operators by the actions

XL
j |α⟩L = |α′⟩L, where α′

i =

 αi, if i ̸= j,

αi ⊕ 1, if i = j,
(2.25)

and ZLj |α⟩L = (−1)αj |α⟩L. Let X̄j , Z̄j be the n-qubit operators which are physical repre-

sentatives of XL
j , Z

L
j for j = 1, . . . , k. Then X̄j , Z̄j commute with the stabilizer group S

and satisfy

X̄iZ̄j =

 Z̄jX̄i, if i ̸= j,

−Z̄jX̄i, if i = j.
(2.26)

Remark 2. A stabilizer code determines a resolution of the identity with the different

subspaces fixed by different signings of the stabilizer generators. When we correct stochastic

and independent Pauli errors, different signings of stabilizer generators lead to quantum

codes with identical performance. However, when we consider correlated errors such as

the coherent errors (rotations of Z axis for any angle θ), the signs of stabilizers play an

important role [Ouy21, HLRC22, DEN+21].

Example 2 (3-qubit bit flip code with negative signs). Consider the stabilizer code defined

by the group S = ⟨−Z1Z2, Z2Z3⟩, which differs from the stabilizer group of the 3-qubit bit

flip code, S ′ = ⟨Z1Z2, Z2Z3⟩, just by the sign of Z1Z2. The encoding circuit of V(S ′)

consists of CX1→2 and CX1→3 gates, which map |0⟩L to |000⟩ and |1⟩L to |111⟩. Since

XZX† = −Z, the encoding circuit of V(S) has an extra X gate on the first qubit, which

has |0̄⟩ = |100⟩ and |1̄⟩ = |011⟩. Moreover, the physical representation of logical Pauli X

and Z for S is X1X2X3 and Z1 respectively, i.e., X̄ = X1X2X3, Z̄ = −Z1.

17

A CSS (Calderbank-Shor-Steane) code is a particular type of stabilizer code with gen-

erators that can be separated into strictly X-type and strictly Z-type operators. Con-

sider two classical binary codes C1, C2 such that C2 ⊂ C1, and let C⊥
1 , C⊥

2 denote the dual

codes. Note that C⊥
1 ⊂ C⊥

2 . Suppose that C2 = ⟨c1, c2, . . . , ck2⟩ is an [n, k2] code and

C⊥
1 = ⟨d1,d2 . . . ,dn−k1⟩ is an [n, n− k1] code. Then, the corresponding CSS code has the

stabilizer group

S = ⟨ν(ci,0)E (ci,0) , ν(0,dj)E (0,dj)⟩i=k2; j=n−k1i=1; j=1

= {ϵ(a,0)ϵ(0,b)E (a,0)E (0, b) : a ∈ C2, b ∈ C⊥
1 },

where ν(ci,0), ν(0,dj), ϵ(a,0), ϵ(0,b) ∈ {±1}. The CSS code projector can be written as the

product:

ΠS = ΠSX
ΠSZ

, (2.27)

where

ΠSX
:=

k2∏
i=1

(IN + ν(ci,0)E(ci,0))

2
=

∑
a∈C2 ϵ(a,0)E(a,0)

|C2|
, (2.28)

and

ΠSZ
:=

n−k1∏
j=1

(IN + ν(0,dj)E(0,dj))

2
=

∑
b∈C⊥

1
ϵ(0,b)E(0, b)

|C⊥
1 |

. (2.29)

Each projector defines a resolution of the identity, and we focus on ΠSX
since we consider

diagonal gates. Note that any n-qubit Pauli Z operator can be expressed as E(0, b)E(0,γ)

E(0,µ) for a Z-stabilizer representation b ∈ C⊥
1 , a Z-logical representation γ ∈ C⊥

2 /C⊥
1 ,

and a X-syndrome representation µ ∈ Fn2/C⊥
2 . For µ ∈ Fn2/C⊥

2 , we define

SX(µ) :=
{
(−1)aµ

T
ϵ(a,0)E(a,0) : a ∈ C2

}
, (2.30)

ΠSX(µ) :=
1

|C2|
∑
a∈C2

(−1)aµ
T
ϵ(a,0)E(a,0). (2.31)

Then, we have

ΠSX(µ)ΠSX(µ′) =

 ΠSX(µ), if µ = µ′,

0, if µ ̸= µ′,
and

∑
µ∈Fn

2 /C⊥
2

ΠSX(µ) = I2n . (2.32)

18

If C1 and C⊥
2 can correct up to t errors, then S defines an [[n, k1 − k2, d]] CSS code with

d ≥ 2t + 1, which we will represent as CSS(X, C2;Z, C⊥
1). If G2 and G⊥

1 are the generator

matrices for C2 and C⊥
1 respectively, then the (n− k1 + k2)× (2n) matrix

GS =

 G2

G⊥
1

 (2.33)

generates S.

General Encoding Map for CSS codes

Given an [[n, k, d]] CSS(X, C2;Z, C⊥
1) code with all positive signs, let GC1/C2 be the gener-

ator matrix for all coset representatives for C2 in C1 (note that the choice of coset rep-

resentatives is not unique). The canonical encoding map e : Fk2 → V(S) is given by

e(|α⟩L) := 1√
|C2|

∑
x∈C2 |αGC1/C2 ⊕ x⟩. Note that the signs of stabilizers change the fixed

subspace by changing the eigenspaces that enter into the intersection. Thus, the encoding

map needs to include information about nontrivial signs.

B := {z ∈ C⊥
1 |ϵz = 1}

C⊥
1

D := {x ∈ C2|ϵx = 1}

C2

We capture sign information through character vectors y ∈ Fn2/C1, r ∈ Fn2/C⊥
2 (note that

the choice of coset representatives is not unique) defined for Z-stabilizers and X-stabilizers

respectively by

B = C⊥
1 ∩ y⊥, equivalently, B⊥ = ⟨C1,y⟩, (2.34)

D = C2 ∩ r⊥, equivalently, D⊥ = ⟨C⊥
2 , r⟩. (2.35)

Then, for ϵ(a,0)ϵ(0,b)E (a,0)E (0, b) ∈ S, we have ϵ(a,0) = (−1)ar
T
and ϵ(0,b) = (−1)by

T
. In

Example 2, we may choose the character vectors r = 0 (character vector of X-stabilizers)

and y = [1, 0, 0] (character vector of Z-stabilizers).

The generalized encoding map ge : |α⟩L ∈ Fk2 → |α⟩ ∈ V(S) is defined by

|α⟩ := 1√
|C2|

∑
x∈C2

(−1)xr
T |αGC1/C2 ⊕ x⊕ y⟩. (2.36)

19

To verify that the image of the general encoding map ge is in V(S), we show that for

ϵ(a,0)ϵ(0,b)E (a,0)E (0, b) ∈ S (that is a ∈ C2, ϵ(a,0) = (−1)ar
T
, b ∈ C⊥

1 , and ϵ(0,b) =

(−1)by
T
),

ϵ(a,0)ϵ(0,b)E (a,0)E (0, b) |α⟩

= ϵ(a,0)ϵ(0,b)E (a,0)E (0, b)
1√
|C2|

∑
x∈C2

(−1)xr
T |αGC1/C2 ⊕ x⊕ y⟩

=
1√
|C2|

∑
x∈C2

(
ϵ(a,0)(−1)xr

T
ϵ(0,b)(−1)b(αGC1/C2⊕x⊕y)T |αGC1/C2 ⊕ a⊕ x⊕ y⟩

)
=

1√
|C2|

∑
x∈C2

(−1)ar
T
(−1)xr

T
(−1)by

T
(−1)by

T |αGC1/C2 ⊕ a⊕ x⊕ y⟩

=
1√
|C2|

∑
x∈C2

(−1)(a⊕x)rT |αGC1/C2 ⊕ a⊕ x⊕ y⟩

= |α⟩. (2.37)

General Logical Pauli Operators for CSS codes

Given the choice ofGC1/C2 , there exists a unique set of vectors {γ1, · · · ,γk ∈ C⊥
2 : GC1/C2γi =

ei for all i = 1, . . . , k}, where {ei}i=1,...,k is the standard basis of Fk2. If γi is the i-the row

of generator matrix GC⊥
2 /C⊥

1
, then

GC1/C2G
T
C⊥
2 /C⊥

1
= Ik. (2.38)

Assume we have

GC1/C2 =



w1

w2

...

wk


, GC⊥

2 /C⊥
1
=



γ1

γ2

...

γk


. (2.39)

20

Thus, we have for i = 1, . . . , k

E(wi,0)|α⟩ = E(wi,0)
1√
|C2|

∑
x∈C2

(−1)xr
T |αGC1/C2 ⊕ x⊕ y⟩

=
1√
|C2|

∑
x∈C2

(−1)xr
T |αGC1/C2 ⊕wi ⊕ x⊕ y⟩

=
1√
|C2|

∑
x∈C2

(−1)xr
T |(XL

i α)GC1/C2 ⊕ x⊕ y⟩

= X̄i|α⟩, (2.40)

and

(−1)γiy
T
E(0,γi)|α⟩ = (−1)γiy

T
E(0,γi)

1√
|C2|

∑
x∈C2

(−1)xr
T |αGC1/C2 ⊕ x⊕ y⟩

=
1√
|C2|

(∑
x∈C2

(−1)xr
T⊕γiy

T⊕γi(αGC1/C2⊕x⊕y)T |αGC1/C2 ⊕ x⊕ y⟩
)

=
1√
|C2|

∑
x∈C2

(−1)xr
T
(−1)γi(vGC1/C2)

T

|αGC1/C2 ⊕ x⊕ y⟩

=
1√
|C2|

∑
x∈C2

(−1)xr
T
(−1)αeTi |αGC1/C2 ⊕ x⊕ y⟩

= Z̄i|α⟩, (2.41)

where the second to last step follows from (2.38). Thus we can choose

X̄i = E(wi,0) and Z̄i = ϵ(0,γi)E(0,γi), (2.42)

where wi,γi are the i-th rows of the above coset generator matrices GC1/C2 , GC⊥
2 /C⊥

1
respec-

tively.

Remark 3. Applying appropriate Pauli operators takes care of different signs in the sta-

bilizer group and changes the sign of logical Pauli operators. Although the sign for a single

logical Pauli operator is not observable, a general logical operator is a linear combination

of logical Pauli operators, which may bring the global sign into some local phase.

Example 3 (The basis state and logical Pauli operators of the [[4, 2, 2]] code). Consider

the CSS(X, C2;Z, C⊥
1) code with C2 = C⊥

1 = {0,1}. We may choose the generator matrices

21

of C1/C2 and C⊥
2 /C⊥

1 as

GC1/C2 =

0 1 1 0

0 0 1 1

 , GC⊥
2 /C⊥

1
=

0 0 1 1

0 1 1 0

 . (2.43)

The encoded basis states and logical Pauli operators for two choices of the signs are given

below. If S = ⟨X⊗4, Z⊗4⟩ (r = y = 0), we have

|00⟩ = 1√
2
(|0000⟩+ |1111⟩) , |01⟩ = 1√

2
(|0011⟩+ |1100⟩) ,

|10⟩ = 1√
2
(|0110⟩+ |1001⟩) , |11⟩ = 1√

2
(|0101⟩+ |1010⟩) ,

X̄1 = X2X3, X̄2 = X3X4, Z̄1 = Z3Z4, Z̄2 = Z2Z3.

When S ′ = ⟨X⊗4,−Z⊗4⟩ (r′ = 0, y′ = [0, 0, 0, 1]), we have

|00⟩ = 1√
2
(|0001⟩+ |1110⟩) , |01⟩ = 1√

2
(|0010⟩+ |1101⟩) ,

|10⟩ = 1√
2
(|0111⟩+ |1000⟩) , |11⟩ = 1√

2
(|0100⟩+ |1011⟩) ,

X̄1 = X2X3, X̄2 = X3X4, Z̄1 = −Z3Z4, Z̄2 = Z2Z3.

2.5 Quantum Channel

The quantum states defined in Section 2.3 are called pure states. When a system contains

multiple pure states |ψx⟩ with probabilities px, the ensemble {px, |ψx⟩}, is described by a

density operator ρ given by

ρ :=
∑
x

px|ψx⟩⟨ψx| ∈ CN×N . (2.44)

Every density operator is Hermitian, positive semi-definite, with unit trace. Conversely,

any operator with these three properties can be written in the form (2.44). Every en-

semble determines a unique density operator but a density operator can describe different

ensembles.

Suppose we measure the density operator ρ with a finite set of projectors {Πj}j forming

a resolution of the identity. If the initial state in the ensemble is |ψx⟩, then we observe the

22

outcome j with probability

p(j|x) = ⟨ψx|Πj |ψx⟩ = Tr(Πj |ψx⟩⟨ψx|) (2.45)

and obtain the reduced state
Πj |ψx⟩√
p(j|x)

. From the perspective of density operators, we observe

the outcome j with probability pj =
∑

x pxp(j|x) = Tr(Πjρ) and the density operator

evolves to be
ΠjρΠj

pj
. Thus, after measurement, we have a ensemble of ensembles described

by a new density operator ρ′ given by [Wil13]

ρ′ =
∑
j

pj
ΠjρΠj
pj

=
∑
j

ΠjρΠj . (2.46)

A quantum channel is linear, completely-positive, and trace-preserving, and can be

characterized by a Kraus representation [NC11, Wil13]. A map Φ : H → G is linear,

completely-positive, and trace-preserving if and only if there exists a finite set of operators

{Bk}k (from H to G) such that for any ρ ∈ H

Φ(ρ) =
∑
k

BkρB
†
k. (2.47)

The operators {Bk}k are called Kraus operators and satisfy

∑
k

B†
kBk = I2dim(H) (2.48)

and

|{Bk}k| ≤ dim(H) dim(G). (2.49)

Note that the Kraus representation of a quantum channel is not unique.

23

Chapter 3

Diagonal Gates and Generator Coefficient
Framework

3.1 Generator Coefficients of a Diagonal Gate and

a CSS Code

Starting from the general encoding map and logical Pauli operators of CSS codes introduced

in Chapter 2.4, we study gates interacting with these codes. We consider quantum gates

for which the Pauli expansion consists only of tensor products of Pauli Z’s (or Pauli X’s).

We partition Fn2 into cosets of the Z-stabilizers (or X-stabilizers), and define generator

coefficients that take advantage of the structure of the stabilizer group. The framework of

generator coefficients [HLC22b] provides insight into the average logical channel, which is

discussed in the following. It also leads to the necessary and sufficient conditions for a CSS

code to be invariant under a diagonal gate with the induced logical operator in Chapter 4.1.

The extension of generator coefficient framework to general stabilizer codes is in Chapter

4.3.

Consider a 2n × 2n unitary matrix (quantum gate) UZ =
∑

v∈Fn
2
f(v)E(0,v), where

f(v) ∈ C. Since

I = UZU
†
Z =

∑
v∈Fn

2

f(v)E(0,v)

 ∑
v′∈Fn

2

f(v′)E(0,v′)


=
∑
w∈Fn

2

∑
v∈Fn

2

f(v)f(v ⊕w)

E(0,w), (3.1)

we have ∑
v∈Fn

2

f(v)f(v ⊕w) =

 1, if w = 0,

0, if w ̸= 0.
(3.2)

We define the generator coefficients [HLC22b] for UZ acting on a given CSS code as follows.

24

Definition 4 (Generator Coefficients for UZ). Let CSS(X, C2;Z, C⊥
1) be an [[n, k1 − k2, d]]

stabilizer code defined by the stabilizer group S = {ϵ(a,0)ϵ(0,b)E (a,0)E (0, b) : a ∈ C2, b ∈

C⊥
1 } and the character vector y ∈ Fn2/C1 for Z-stabilizers. Let µ ∈ Fn2/C⊥

2 be any X-

syndrome and γ ∈ C⊥
2 /C⊥

1 be any Z-logical. Then, for any pair µ, γ, we define the generator

coefficient Aµ,γ corresponding to the diagonal unitary gate UZ =
∑

v∈Fn
2
f(v)E(0,v) by

Aµ,γ :=
∑

z∈C⊥
1 +µ+γ

ϵ(0,z)f(z), (3.3)

where ϵ(0,z) = (−1)zy
T
.

Note that given a CSS code with not all positive signs, the character vector y is unique

up to an element of C1. A different choice of the coset representatives of C1 in Fn2 only

changes the signs of Aµ,γ , and leads to a global phase in the logical quantum channel

induced by UZ , which is given in Chapter 3.2.

By partitioning Fn2 into cosets of C⊥
1 , we gain insight into the interaction of syndromes

and logicals. The code projector is ΠS = ΠSX
ΠSZ

, and we have

ΠSZ
UZ =

1

2n−k1

∑
b∈C⊥

1

ϵ(0,b)E(0, b)
∑
v∈Fn

2

f(v)E(0,v)

=
1

2n−k1

∑
v∈Fn

2

f(v)
∑
b∈C⊥

1

ϵ(0,b)E(0, b⊕ v)

=
1

2n−k1

∑
v∈Fn

2

ϵ(0,v)f(v)
∑

u∈C⊥
1 +v

ϵ(0,u)E(0,u)

=
1

2n−k1

∑
µ

∑
γ

Aµ,γ

∑
u∈C⊥

1 +µ+γ

ϵ(0,u)E(0,u). (3.4)

In the above summations, µ ∈ Fn2/C⊥
2 and γ ∈ C⊥

2 /C⊥
1 , and Aµ,γ is given by (3.3). We now

study the generator coefficients associated with two different types of quantum gate UZ .

3.1.1 Transversal Z-Rotations with Angle θ

There are two reasons to study how RZ (θ) :=
(
exp

(
−ı θ2Z

))⊗n
=
(
cos θ2I − ı sin θ

2Z
)⊗n

acts

on the states within a quantum error-correcting code, where n is the number of physical

25

qubits (depending on the context). The first is that when θ is not a multiple of π
2 , RZ (θ)

may realize a non-Clifford logical gate, and the second is that coherent noise can be modeled

as {RZ (θ)}θ∈(0,2π). The Pauli expansion of RZ (θ) is

∑
v∈Fn

2

(
cos

θ

2

)n−wH(v)(
−ı sin θ

2

)wH(v)

E(0,v). (3.5)

As f(v) =
(
cos θ2

)n−wH(v) (−ı sin θ
2

)wH(v)
, we substitute it in (3.3), and obtain the generator

coefficients of RZ (θ),

Aµ,γ (θ) :=
∑

z∈C⊥
1 +µ+γ

ϵ(0,z)

(
cos

θ

2

)n−wH(z)(
−ı sin θ

2

)wH(z)

. (3.6)

We now compute the generator coefficients for the [[7, 1, 3]] Steane code.

Example 4 (Generator Coefficients for RZ (θ) applied to the [[7, 1, 3]] Steane code). The

Steane code is a perfect CSS(X, C2;Z, C⊥
1) code with all positive signs and generator matrix

GS =

 H

H

 , (3.7)

where H is the parity-check matrix of the Hamming code:

H =


1 1 1 1 0 0 0

1 1 0 0 1 1 0

1 0 1 0 1 0 1

 . (3.8)

Then, we have C1/C2 = C⊥
2 /C⊥

1 = {0,1}, where 0,1 are the vectors of all ones and all zeros

respectively. If we compute the generator coefficients directly from (3.6), then we need

the weight enumerators of all cosets of C⊥
1 . We may simplify these calculations using the

MacWilliams Identities. Consider for example the case µ = 0 and γ = 1, where we may

write

A0,1(θ) =
∑

z∈C⊥
1 +1

(
cos

θ

2

)7−wH(z)(
−ı sin θ

2

)wH(z)

= Pθ[⟨C⊥
1 ,1⟩]− Pθ[C⊥

1], (3.9)

26

where Pθ[C] is defined in (2.10). We apply the MacWilliams Identities to Pθ[C⊥
1] to obtain

Pθ[C⊥
1] =

1

|C1|
PC1

(
cos

θ

2
− ı sin

θ

2
, cos

θ

2
+ ı sin

θ

2

)
=

1

|C1|
∑
z∈C1

(
e−ı

θ
2

)n−2wH(z)
. (3.10)

We simplify the term P [⟨C⊥
1 ,1⟩] in the same way,

Pθ[⟨C⊥
1 ,1⟩] =

1

|⟨C⊥
1 ,1⟩|

∑
z∈⟨C⊥

1 ,1⟩⊥

(
e−ı

θ
2

)n−2wH(z)

=
2

|C1|
∑

z∈C1∩1⊥

(
e−ı

θ
2

)n−2wH(z)
. (3.11)

It follows from (3.9), (3.10), and (3.11) that

A0,1(θ) =
1

|C1|
∑
z∈C1

(−1)1·z
T
(e−ı

θ
2)7−2wH(z) (3.12)

=
1

8

(
−ı sin 7θ

2
+ 7ı sin

θ

2

)
, (3.13)

where (3.13) is obtained from (3.12) by substituting in the weight enumerator of C1

PC1(x, y) = x7 + 7x4y3 + 7x3y4 + y7.

We compute all the generator coefficients for the Steane code in Table 3.1. We return to

this data in Chapter 3.2.1 to provide more insight into the logical channel determined by

RZ (θ), and in Chapter 3.2.2 to calculate the probabilities of observing different syndromes.

Before introducing the Kraus decomposition of RZ (θ) acting on a CSS code, we provide

an alternative definition of generator coefficients which simplifies calculations. We first

write Aµ,γ (θ) as a linear combination of weight enumerators, then apply the MacWilliams

Identities.

Lemma 5 (Simplified Definition of Generator Coefficients). Consider a CSS(X, C2;Z, C⊥
1)

code, where y is the character vector for the Z-stabilizers
(
ϵ(0,z) = (−1)zy

T
)
. Then, the

generator coefficients Aµ,γ (θ) defined in (3.6) can be written as

Aµ,γ (θ) =
1

|C1|
∑

z∈C1+y

(−1)(µ⊕γ)(z⊕y)T
(
e−ı

θ
2

)n−2wH(z)
. (3.14)

27

Table 3.1: Generator coefficients Aµ,γ (θ) for RZ (θ) applied to the Steane code.
Each column corresponds to a Z-logical. The first row corresponds to the trivial
X-syndromes, and second row represents the seven non-trivial syndromes (they have
equivalent behaviour due to symmetry).

γ = 0 γ = 1

µ = 0 1
8

(
cos 7θ

2 + 7 cos θ2
)

ı
8

(
7 sin θ

2 − sin 7θ
2

)
µ ̸= 0 − ı

8

(
sin 7θ

2 + sin θ
2

)
1
8

(
cos 7θ

2 − cos θ2
)

Remark 6. The original definition (3.6) requires a sum over the weights of every coset

C⊥
1 . The alternative definition (3.14) requires a sum over a single coset C1 + y, where the

syndrome µ and logical γ determine the hyperplane that specifies the signs in the sum.

proof of Lemma 5. Setting B = {z ∈ C⊥
1 | ϵ(0,z) = 1}, we have B⊥ = ⟨C1,y⟩. Setting

Sp =
∑

z∈B+µ+γ

(
cos

θ

2

)n−wH(z)(
−ı sin θ

2

)wH(z)

, (3.15)

and

Sn =
∑

z∈C⊥
1 +µ+γ

(
cos

θ

2

)n−wH(z)(
−ı sin θ

2

)wH(z)

, (3.16)

we may rewrite (3.6) as

(−1)(µ⊕γ)yT
Aµ,γ (θ) = 2Sp − Sn. (3.17)

Since B + µ+ γ = ⟨B,µ⊕ γ⟩ \ B and C⊥
1 + µ+ γ = ⟨C⊥

1 ,µ⊕ γ⟩ \ C⊥
1 , we have

(−1)(µ⊕γ)yT
Aµ,γ (θ) = 2(Pθ[⟨B,µ⊕ γ⟩]− Pθ[B])− (Pθ[⟨C⊥

1 ,µ⊕ γ⟩]− Pθ[C⊥
1]). (3.18)

We may apply the MacWilliams Identities to obtain

Pθ[⟨B,µ⊕ γ⟩] = 1

|B⊥ ∩ (µ⊕ γ)⊥|
PB⊥∩(µ⊕γ)⊥

(
cos

θ

2
− ı sin

θ

2
, cos

θ

2
+ ı sin

θ

2

)
=

1

|B⊥ ∩ (µ⊕ γ)⊥|
∑

z∈B⊥∩(µ⊕γ)⊥

(
cos

θ

2
− ı sin

θ

2

)n−2wH(z)

=
2

|B⊥|
∑

z∈B⊥∩(µ⊕γ)⊥

(
e−ı

θ
2

)n−2wH(z)
, (3.19)

28

and similarly

Pθ[B] =
1

|B⊥|
∑
z∈B⊥

(
e−ı

θ
2

)n−2wH(z)
. (3.20)

We combine (3.19) and (3.20) to obtain

Pθ[⟨B,µ⊕ γ⟩]− Pθ[B] =
2

|B⊥|
∑

z∈B⊥∩(µ⊕γ)⊥

(
e−ı

θ
2

)n−2wH(z)
− 1

|B⊥|
∑
z∈B⊥

(
e−ı

θ
2

)n−2wH(z)

=
1

|B⊥|

 ∑
z∈B⊥∩(µ⊕γ)⊥

(
e−ı

θ
2

)n−2wH(z)
−

∑
z∈B⊥\(µ⊕γ)⊥

(
e−ı

θ
2

)n−2wH(z)


=

1

|B⊥|
∑
z∈B⊥

(−1)(µ⊕γ)zT
(
e−ı

θ
2

)n−2wH(z)
. (3.21)

Similarly,

Pθ[⟨C⊥
1 ,µ⊕ γ⟩]− Pθ[C⊥

1] =
1

|C1|
∑
z∈C1

(−1)(µ⊕γ)zT
(
e−ı

θ
2

)n−2wH(z)
. (3.22)

Since B⊥ \ C1 = C1 + y, it follows from (3.18), (3.21), (3.22) that

(−1)(µ⊕γ)yT
Aµ,γ (θ)

=
2

|B⊥|
∑
z∈B⊥

(−1)(µ⊕γ)zT
(
e−ı

θ
2

)n−2wH(z)
− 1

|C1|
∑
z∈C1

(−1)(µ⊕γ)zT
(
e−ı

θ
2

)n−2wH(z)

=
1

|C1|
∑

z∈C1+y

(−1)(µ⊕γ)zT
(
e−ı

θ
2

)n−2wH(z)
, (3.23)

which completes the proof.

3.1.2 Quadratic Form Diagonal Gates

Rengaswamy et al. [RCP19] considered diagonal unitaries of the form

τ
(l)
R =

∑
v∈Fn

2

ξvRvT mod 2l

l |v⟩⟨v|, (3.24)

where l ≥ 1 is an integer, ξl = e
ı π

2l−1 , and R is an n× n symmetric matrix with entries in

Z2l , the ring of integer modulo 2l. Note that the exponent vRvT ∈ Z2l . When l = 2 and R

is binary, we obtain the diagonal Clifford unitaries. QFD gates defined by (3.24) include

29

all 1-local and 2-local diagonal unitaries in the Clifford hierarchy, and they contain RZ (θ)

for θ = π
2l−1 , where l ≥ 1 is an integer.

Recall that N×N Pauli matrices form an orthonormal basis for unitaries of size N with

respect to the normalized Hilbert-Schmidt inner product ⟨A,B⟩ := Tr(A†B)/N . Hence,

|v⟩⟨v| =
∑

a,b∈Fn
2

Tr(|v⟩⟨v|E(a, b))

N
E(a, b)

=
1

2n

∑
b∈Fn

2

(−1)bv
T
E(0, b), (3.25)

and the Pauli expansion of a QFD gate becomes

τ
(l)
R =

1

2n

∑
u∈Fn

2

f(u)E(0,u), (3.26)

where

f(u) =
∑
v∈Fn

2

ξvRvT mod 2l

l (−1)uv
T
. (3.27)

Example 5. If n = 1, l = 3, ξ3 = eı
π
4 , R = [1], then we have f(0) = 1+eı

π
4 , f(1) = 1−eı

π
4 ,

and τ
(2)
R = 1

2

(
1 + eı

π
4

)
E(0, 0) + 1

2

(
1− eı

π
4

)
E(0, 1) = T.

Example 6. Consider n = 2, and R =

0 1

1 0

. If l = 2, then ξ2 = eı
π
2 = ı and

τ
(2)
R = CZ := 1

2 (E(0,0) + E(0, 01) + E(0, 10)− E(0,1)) . If l = 3, then ξ3 = eı
π
4 and

τ
(3)
R = CP := 1

4((3− ı)E(0,0) + (1 + ı)E(0, 01) + (1 + ı)E(0, 10)− (1 + ı)E(0,1)).

We substitute (3.27) in (3.3), and obtain the generator coefficients for QFD gates

Aµ,γ(R, l) :=
1

2n

∑
z∈C⊥

1 +µ+γ

ϵ(0,z)
∑
v∈Fn

2

ξvRvT mod 2l

l (−1)zv
T
. (3.28)

Let y ∈ Fn2/C1 be the character vector
(
ϵ(0,z) = (−1)zy

T
)
. Changing the order of summa-

tion, we have

Aµ,γ(R, l) =
1

2n

∑
v∈Fn

2

py(v,µ,γ)ξ
vRvT mod 2l

l , (3.29)

30

where

py(v,µ,γ) =
∑

z∈C⊥
1 +µ+γ

(−1)zy
T
(−1)zv

T
= (−1)(µ⊕γ)(y⊕v)T

∑
u∈C⊥

1

(−1)u(y⊕v)T

=

 |C⊥
1 |(−1)(µ⊕γ)(y⊕v)T , if y ⊕ v ∈ C1,

0, otherwise.
(3.30)

Substituting (3.30) in (3.29), we obtain

Aµ,γ (R, l) =
1

|C1|
∑

v∈C1+y

(−1)(µ⊕γ)(y⊕v)T ξvRvT

l . (3.31)

When R = In, we obtain the transversal Z-rotation RZ
(
2π
2l

)
up to a global phase. We now

use (3.31) to calculate generator coefficients of the [[4, 2, 2]] code.

Example 7 (Generator Coefficients of CZ and CP for the [[4, 2, 2]] code). The [[4, 2, 2]]

code is a CSS code with C⊥
1 = C2 = {0,1}. The Z-logical γ ∈ ⟨[0, 0, 1, 1], [0, 1, 1, 0]⟩ and the

X-syndrome µ ∈ ⟨[1, 0, 0, 0]⟩. Assume all the stabilizers have positive signs (the character

vector y = 0). Set

R =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


. (3.32)

Setting l = 2, we list the generator coefficients for CZ⊗2 on the [[4, 2, 2]] code with all

positive signs as follows,

Aµ=0,γ=0(R = X, l = 2) =
1

2
, Aµ=0,γ=[0,0,1,1](R = X, l = 2) = −1

2
,

Aµ=0,γ=[0,1,1,0](R = X, l = 2) = Aµ=0,γ=[0,1,0,1](R = X, l = 2) =
1

2
,

Aµ=[1,0,0,0],γ∈{0,[0,0,1,1],[0,1,1,0],[0,1,1,0]}(R = X, l = 2) = 0. (3.33)

Note that CZ and CP shared the same symmetric matrix R but the level l is different.

Setting l = 3, we list the generator coefficients for CP⊗2 on the [[4, 2, 2]] code with all

31

{0}

C2

C1

Fn2

k2

k1

{0}

C⊥
1

C⊥
2

Fn2
µ

γ
2n

−
k
1
w
ay
s
to

a
ss
ig
n
th
e
si
g
n
s
o
f
Z
-s
ta
b
il
iz
er
s

2k2 different syndromes µ ∈ Fn2/C⊥
2 of X-stabilizers

...
...

...

· · ·

· · ·

· · ·
ρ1

ρ2

ρ3

ρ4

UZ

P (syndrome = µ)

correct
ion

Bµ

syndrome µ

Z-logicals γ ∈ C⊥
2 /C⊥

1

Figure 3.1: The 2n−k1 rows of the array are indexed by the [[n, k1−k2, d]] CSS codes
corresponding to all possible signings of the Z-stabilizer group. The 2k2 columns of
the array are indexed by all possible X-syndromes µ. The logical operator Bµ is
induced by (1) preparing any code state ρ1; (2) applying a diagonal physical gate UZ
to obtain ρ2; (3) using X-stabilizers to measure ρ2, obtaining the syndrome µ with
probability pµ, and the post-measurement state ρ3; (4) applying a Pauli correction to
ρ3, obtaining ρ4. The generator coefficients Aµ,γ are obtained by expanding the logical
operator Bµ in terms of Z-logical Pauli operators ϵ(0,γ)E(0,γ), where ϵ(0,γ) ∈ {±1}.

positive signs as follows,

Aµ=0,γ=0(R = X, l = 2) =
2 + ı

4
, Aµ=0,γ=[0,0,1,1](R = X, l = 2) =

−2 + ı

4
,

Aµ=0,γ=[0,1,1,0](R = X, l = 2) = Aµ=0,γ=[0,1,0,1](R = X, l = 2) = − ı

4
,

Aµ=[1,0,0,0],γ∈{0,[0,0,1,1],[0,1,1,0],[0,1,1,0]}(R = X, l = 2) =
1

4
. (3.34)

32

3.2 Average Logical Channel

We investigate the effect of UZ acting on a CSS codespace V(S) by considering the following

steps:

1. Choose any initial density operator ρ1 in the CSS codespace V(S). Then, we have

ρ1 = ΠSρ1ΠS .

2. After applying UZ physically, the system evolves to

ρ2 = UZρ1U
†
Z = UZΠSρ1ΠSU

†
Z . (3.35)

3. Measure with X-stabilizers to obtain the syndrome µ ∈ Fn2/C⊥
2 . It follows from (2.46)

that the system evolves to

ρ3 =
∑

µ∈F2/C⊥
2

ΠSX(µ)
ρ2ΠSX(µ)

=
∑

µ∈F2/C⊥
2

(
ΠSX(µ)

UZΠS

)
ρ1

(
ΠSU

†
ZΠSX(µ)

)
(3.36)

4. Based on the syndrome µ, we apply a Pauli correction to map the state back to V(S).

This correction may introduce some logical operator ϵ(0,γµ)E(0,γµ). The final state

ρ4 is in the CSS codespace.

Generator coefficients describe the average logical channel resulting from UZ acting on a

CSS codespace (steps 1-4) as described in Figure 3.1. We extend our approach to arbitrary

stabilizer codes in Chapter 4.3.

3.2.1 The Kraus Representation

Kraus operators describe the logical channels obtained by averaging the action of UZ over

density operators in V(S). Generator coefficient appear as the coefficients in the Pauli

expansion of Kraus operators. We use generator coefficients to simplify the term UZΠS in

33

(3.35). It follows from (3.4) that

UZΠS =
1

2n−k1+k2

∑
µ∈Fn

2 /C⊥
2

∑
γ∈C⊥

2 /C⊥
1

Aµ,γ

 ∑
u∈C⊥

1 +µ+γ

ϵ(0,u)E(0,u)

∑
a∈C2

ϵ(a,0)E(a,0)


=

1

2n−k1+k2

∑
µ∈Fn

2 /C⊥
2

∑
γ∈C⊥

2 /C⊥
1

Aµ,γ

∑
a∈C2

(−1)aµ
T
ϵ(a,0)E(a,0)

 ∑
u∈C⊥

1 +µ+γ

ϵ(0,u)E(0,u)


=

∑
µ∈Fn

2 /C⊥
2

ΠSX(µ)

∑
γ∈C⊥

2 /C⊥
1

Aµ,γ q(µ,γ),

= UZΠSZ
ΠSX

(3.37)

where ΠSX(µ) =
1

|C2|
∑

a∈C2(−1)aµ
T
ϵ(a,0)E(a,0) as described in (2.30), and

q(µ,γ) :=
1

2n−k1

∑
u∈C⊥

1 +µ+γ

ϵ(0,u)E(0,u). (3.38)

Since the projectors {ΠSX(µ)}µ∈Fn
2 /C⊥

2
are pairwise orthogonal, it follows from that for any

fixed µ0 ∈ Fn2/C⊥
2 , we have

ΠSX(µ0)
UZΠS = ΠSX(µ0)

∑
γ∈C⊥

2 /C⊥
1

Aµ0,γ q(µ0,γ). (3.39)

Since ρ1 describes an ensemble of states in the codespace V(S), it follows from that for

fixed γ0 ∈ C⊥
2 /C⊥

1 , we have

q(µ0,γ0)ρ1q(µ0,γ0) = Kρ1K, (3.40)

where K := ϵ(0,µ0⊕γ0)E(0,µ0 ⊕ γ0). Thus, we may write ρ3 as

ρ3 =
∑

µ∈Fn
2 /C⊥

2

ΠSX(µ)
K1ρ1K1 (3.41)

where K1 :=
∑

γ∈C⊥
2 /C⊥

1
Aµ,γ ϵ(0,µ⊕γ)E(0,µ ⊕ γ). Although the sign ϵ does not matter

here, we carry it along for consistency with the logical Pauli Z operators derived in (2.42).

Based on the syndrome µ, the decoder applies a correction and maps the quantum state

back to the codespace V(S). This correction might induce some undetectable Z-logical

ϵ(0,γµ)E(0,γµ) with γ0 = 0. Hence, the final state after step 4 becomes

ρ4 =
∑

µ∈Fn
2 /C⊥

2

Bµρ1B
†
µ, (3.42)

34

where

Bµ := ϵ(0,γµ)E(0,γµ)
∑

γ∈C⊥
2 /C⊥

1

Aµ,γ ϵ(0,γ)E(0,γ)

=
∑

γ∈C⊥
2 /C⊥

1

Aµ,γ ϵ(0,γ⊕γµ)E(0,γ ⊕ γµ), (3.43)

is the effective physical operator corresponding to syndrome µ. It follows from (2.42)

that for γ ∈ C⊥
2 /C⊥

1 , ϵ(0,γ⊕γµ)E(0,γ ⊕ γµ) is a logical Pauli Z, and (3.42), (3.43) can be

considered just in the logical space.

Note that the evolution described in (3.42) works for any initial code state ρ1 in step

1. The interaction between the diagonal gate UZ and the structure of CSS code in step 2

is captured in the generator coefficients Aµ,γ . The syndrome of the measurement in step

3 is reflected by the sum in (3.42), and the decoder chosen in step 4 is expressed by some

logical Pauli Z determined by γµ for each syndrome.

To show {Bµ}µ∈F2/C⊥
2
is the set of Kraus operators, we need to verify that∑

µ∈Fn
2 /C⊥

2

B†
µBµ = I. (3.44)

We may simplify the summation as∑
µ

B†
µBµ =

∑
µ

∑
γ

|Aµ,γ |2I +
∑
µ

∑
γ ̸=γ′

Aµ,γAµ,γ′ ϵ(0,γ⊕γ′)E(0,γ ⊕ γ′)

=
∑
η

ϵ(0,η)

(∑
µ

∑
γ

Aµ,γAµ,η⊕γ

)
E(0,η), (3.45)

where the new variable η = γ ⊕ γ′ ∈ C⊥
2 /C⊥

1 . In Theorem 7, we verify (3.44) by showing

that the coefficient of E(0,0) = I is 1 and that the coefficients of E(0,η), η ̸= 0 are all

zero. Theorem 7 describes a property of generator coefficients, which follows from the fact

that quantum gates are unitary transformations.

Theorem 7. Suppose that a Z-unitary gate UZ =
∑

v∈Fn
2
f(v)E(0,v) induces generator

coefficients Aµ,γ on a CSS(X, C2;Z, C⊥
1) code. If η ∈ C⊥

2 /C⊥
1 , then

∑
µ∈Fn

2 /C⊥
2

∑
γ∈C⊥

2 /C⊥
1

Aµ,γAµ,η⊕γ =

 1, if η = 0,

0, if η ̸= 0.
(3.46)

35

Proof. If η = 0, then

Aµ,γAµ,η⊕γ = |Aµ,γ |2 =

 ∑
z∈C⊥

1 +µ+γ

ϵ(0,z)f(z)

 ∑
z′∈C⊥

1 +µ+γ

ϵ(0,z′)f(z
′)


=
∑

w∈C⊥
1

ϵ(0,w)

 ∑
z∈C⊥

1 +µ+γ

f(z)f(z ⊕w)

 . (3.47)

Therefore, we have

∑
µ∈Fn

2 /C⊥
2

∑
γ∈C⊥

2 /C⊥
1

|Aµ,γ |2 =
∑

µ∈Fn
2 /C⊥

2

∑
γ∈C⊥

2 /C⊥
1

∑
w∈C⊥

1

ϵ(0,w)

 ∑
z∈C⊥

1 +µ+γ

f(z)f(z ⊕w)


=
∑

w∈C⊥
1

ϵ(0,w)

 ∑
µ∈Fn

2 /C⊥
2

∑
γ∈C⊥

2 /C⊥
1

∑
z∈C⊥

1 +µ+γ

f(z)f(z ⊕w)


=
∑

w∈C⊥
1

ϵ(0,w)

∑
z∈Fn

2

f(z)f(z ⊕w)


= ϵ(0,0) = 1, (3.48)

where the last step follows from (3.2).

We conclude that one set of the Kraus operators describing the action of UZ on a CSS

code are given by (3.43).

When UZ = RZ (θ), the generator coefficients Aµ,γ take the form (3.6). Consider now a

one-logical-qubit system, where one of the pair (Aµ=0,γ=0(θ), Aµ=0,γ ̸=0(θ)) is real and the

other is pure imaginary. Since there is only one logical qubit, γ is either zero or non-zero.

It then follows from (76) and (77) that the effective physical operator corresponding to the

syndrome µ = 0 is

Bµ=0 = Aµ=0,γ=0E(0,0) +Aµ=0,γ ̸=0E(0,γ ̸= 0). (3.49)

Thus, if we observe the trivial syndrome, then the induced logical portion is

ULZ (µ = 0) = Aµ=0,γ=0IL +Aµ=0,γ ̸=0ZL =

A0,γ=0 +A0,γ ̸=0 0

0 A0,γ=0 −A0,γ ̸=0

 .
(3.50)

36

Since we also assume that one of the pair (Aµ=0,γ=0, Aµ=0,γ ̸=0) is real and the other is pure

imaginary, we can consider ULZ (µ = 0) as a Z-rotation with angle θL up to some logical

Pauli ZL:

ULZ (µ = 0) =

 cos(θL/2)IL + ı sin(θL/2)ZL = RZ(θL) if Aµ=0,γ=0 is real

ı sin(θL/2)IL + cos(θL/2)ZL = ZLRZ(θL) if Aµ=0,γ ̸=0 is real
. (3.51)

Then the logical qubit is rotated with angle θL and we can express θL in terms of the

physical rotation angle θ [DEN+21] as

θL(θ) = 2 tan−1

(
ı
Aµ=0,γ ̸=0(θ)

Aµ=0,γ=0(θ)

)
. (3.52)

We again take the Steane code as an example, substitute the values from Table 3.1 and

obtain the logical rotation angle

θL(θ) = 2 tan−1

(
sin 7θ

2 − 7 sin θ
2

cos 7θ
2 + 7 cos θ2

)

= −28

15
θ3 +O(θ5). (3.53)

Figure 3.2 plots θL(θ) displaying third-order convergence about θ = 0. Note that θL
(
π
4

)
=

−π
4 . We now compute all Kraus operators induced by RZ (θ) acting on the Steane code.

Figure 3.2: The Steane code: the logical angle θL in terms of physical angle θ,
assuming we observe the trivial syndrome.

37

Example 8. We take the data in Table 3.1 and substitute θ = π
4 to obtain

A0,0

(π
4

)
=

3

4
cos

π

8
, A0,1

(π
4

)
=

3

4
ı sin

π

8
,

Aµ ̸=0,0

(π
4

)
= −1

4
ı sin

π

8
, Aµ ̸=0,1

(π
4

)
= −1

4
cos

π

8
. (3.54)

We assume γµ = 0 for all µ, and use these generator coefficients to compute the Kraus

operators

Bµ=0

(π
4

)
=

3

4
cos

π

8
Ī +

3

4
ı sin

π

8
Z̄ ≡ 3

4
T̄ †, (3.55)

Bµ ̸=0

(π
4

)
= −1

4
ı sin

π

8
Ī − 1

4
cos

π

8
Z̄ ≡ 1

4
Z̄T̄ †. (3.56)

The average logical channel corresponds to the transversal T gate. Reichardt [Rei05] dis-

cussed use of the [[7, 1, 3]] Steane code in magic state distillation. The computed average

logical channel makes it clear that we can choose proper corrections based on syndromes

(γµ = Z̄ for µ ̸= 0) to obtain the logical operator T † from all the syndromes (see more

details in Chapter 3.2.3).

When UZ is a QFD gate, the Kraus operators can be derived in the same way. The

generator coefficients in (3.33) in Example 7 implies that the [[4, 2, 2]] code is preserved by

CZ⊗2 and that the induced logical operator is ZL1 ◦ CZL.

3.2.2 Probability of Observing Different X-Syndromes

The Kraus operators derived in Chapter 3.2.1 describe logical evolution conditioned on

different outcomes from stabilizer measurement, and it is natural to calculate the probability

of observing different syndromes µ. Generator coefficients provide a means of calculating

these probabilities that illuminates dependence on the initial state, and we will provide

examples where the initial state and the outcome of syndrome measurement are entangled.

Consider a CSS(X, C2;Z, C⊥
1) code with codespace V(S). For any fixed |ϕ⟩ ∈ V(S) ,

we first apply UZ , and then measure with projectors {ΠSX(µ)
}µ∈Fn

2 /C⊥
2
, where ΠSX(µ)

=

1
|C2|
∑

a∈C2(−1)aµ
T
ϵ(a,0)E(a,0). Then the probability of obtaining a syndrome µ ∈ Fn2/C⊥

2

38

is

pµ (|ϕ⟩) = ⟨ϕ|U †
ZΠSX(µ)UZ |ϕ⟩. (3.57)

It follows from equation (3.4) that

UZ |ϕ⟩ = UZΠSZ
|ϕ⟩ =

∑
µ

∑
γ

Aµ,γ ϵ(0,µ⊕γ)E(0,µ⊕ γ)|ϕ⟩, (3.58)

and similarly

⟨ϕ|U †
Z = ⟨ϕ|ΠSZ

U †
Z = ⟨ϕ|

∑
µ

∑
γ

Aµ,γ ϵ(0,µ⊕γ)E(0,µ⊕ γ). (3.59)

For any fixed µ0 ∈ Fn2/C⊥
2 , since ΠSX(µ0)ΠSX(µ0) = ΠSX(µ0), we have

pµ0 = ⟨ϕ|ΠSZ
U †
ZΠSX(µ0)ΠSX(µ0)UZΠSZ

|ϕ⟩. (3.60)

Note that

ΠSX(µ0)UZΠSZ
|ϕ⟩

=
1

|C2|
∑
a∈C2

(−1)aµ
T
0 ϵ(a,0)E(a,0)

∑
µ∈Fn

2 /C⊥
2

∑
γ∈C⊥

2 /C⊥
1

Aµ,γϵ(0,µ⊕γ)E(0,µ⊕ γ)|ϕ⟩

=
1

|C2|
∑
µ

∑
γ

Aµ,γϵ(0,µ⊕γ)E(0,µ⊕ γ)
∑
a∈C2

(−1)a(µ+µ0)T ϵ(a,0)E(a,0)|ϕ⟩

=
1

|C2|
∑
µ

∑
γ

Aµ,γϵ(0,µ⊕γ)E(0,µ⊕ γ)
∑
a∈C2

(−1)a(µ⊕µ0)T |ϕ⟩, (3.61)

where the last step follows from the fact ϵ(a,0)E(a,0) ∈ S.

It follows from (3.61) and (3.60) that

ΠSX(µ0)UZΠSZ
|ϕ⟩

=
1

|C2|
∑
a∈C2

(−1)aµ
T
0 ϵ(a,0)E(a,0)

∑
µ∈Fn

2 /C⊥
2

∑
γ∈C⊥

2 /C⊥
1

Aµ,γϵ(0,µ⊕γ)E(0,µ⊕ γ)|ϕ⟩

=
1

|C2|
∑
µ

∑
γ

Aµ,γϵ(0,µ⊕γ)E(0,µ⊕ γ)
∑
a∈C2

(−1)a(µ+µ0)T ϵ(a,0)E(a,0)|ϕ⟩

=
1

|C2|
∑
µ

∑
γ

Aµ,γ ϵ(0,µ⊕γ)E(0,µ⊕ γ)s(a)|ϕ⟩, (3.62)

39

where s(a) :=
∑

a∈C2(−1)a(µ⊕µ0)T . Note that since a ∈ C2 and µ⊕µ0 ∈ Fn2/C⊥
2 , the inner

summation is nonzero only when µ = µ0 so that

ΠSX(µ0)UZΠSZ
|ϕ⟩ =

∑
γ∈C⊥

2 /C⊥
1

Aµ0,γ ϵ(0,µ0⊕γ)E(0,µ0 ⊕ γ)|ϕ⟩. (3.63)

Similarly, we have

⟨ϕ|ΠSZ
U †
ZΠSX(µ0) = ⟨ϕ|

∑
γ∈C⊥

2 /C⊥
1

Aµ0,γ ϵ(0,µ0⊕γ)E(0,µ0 ⊕ γ). (3.64)

Thus, the probability of observing the syndrome µ can be written as

pµ (|ϕ⟩) = ⟨ϕ|
∑

γ,γ′∈C⊥
2 /C⊥

1

Aµ,γAµ,γ′ϵ(0,µ⊕γ)E(0,µ⊕ γ)ϵ(0,µ⊕γ′)E(0,µ⊕ γ′)|ϕ⟩

=
∑
γ

|Aµ,γ |2 +
∑
γ ̸=γ′

Aµ,γAµ,γ′⟨ϕ|ϵ(0,γ⊕γ′)E(0,γ ⊕ γ′)|ϕ⟩. (3.65)

Note that only the second term depends on the initial state. If some |ϕi⟩ ∈ {|+⟩, |−⟩} in the

initial state |ϕ⟩ = |ϕ1 ⊗ · · · ⊗ ϕk⟩, then the second term (the cross terms) in (3.65) vanishes

since every ϵ(0,γ⊕γ′)E(0,γ ⊕ γ′) with γ ̸= γ′ is some nontrivial Pauli Z logical. Note that

it follows from Theorem 7 that
∑

µ

∑
γ |Aµ,γ |2 = 1. Since

∑
µ pµ(|ϕ⟩) = 1 for any initial

state |ϕ⟩ ∈ V(S), it follows that the sum of the second term over all the X-syndromes is 0,

that is, ∑
µ

∑
γ ̸=γ′

Aµ,γAµ,γ′⟨ϕ|ϵ(0,γ⊕γ′)E(0,γ ⊕ γ′)|ϕ⟩ = 0. (3.66)

Note that Pauli Z logicals only change signs in the |0⟩&|1⟩ basis. If the second term

is the same for all |0⟩&|1⟩ computational basis states in the codespace, then the proba-

bility of observing different syndromes is the same for different initial states |ϕ⟩. If not,

the probabilities depend on the initial state, and encode the mutual information between

initial state and syndrome measurement. In these circumstances, we cannot find a recovery

operator for UZ that is good for the entire codespace. An important special case is when

a decoherence-free subspace is embedded in the codespace (useful for passive control of

coherent errors UZ = RZ (θ)).

We now introduce two examples to illustrate how (3.65) provides insight into invariance

of the codespace, the probability of success in magic state distillation, and existence of an

40

embedded decoherence-free subspace. We compute the probabilities of observing different

syndromes for the [[7, 1, 3]] Steane code and discuss implications. We demonstrate that by

changing signs of Z-stabilizers in the [[4, 2, 2]] code, we can switch from the case where the

second term is the same for every initial state to the case of an embedded decoherence-free

subspace.

Example 9. The Steane [[7, 1, 3]] code has only one logical qubit, and we let |0⟩, |1⟩ denote

the the two computational basis states. Given a syndrome µ, we observe that one of

the generator coefficients Aµ,γ=0(θ), Aµ,γ ̸=0(θ), is real and the other is purely imaginary,

so that the crossterms vanish in (3.65). Hence, the probabilities of observing different

syndromes are constant for different initial states and are given by

pµ=0(|0⟩, θ) = pµ=0(|1⟩, θ) =
1

32
(7 cos 4θ + 25) ,

pµ ̸=0(|0⟩, θ) = pµ ̸=0(|1⟩, θ) =
1

32
(1− cos 4θ) . (3.67)

It is not hard to verify that
∑

µ pµ(|ϕ⟩, θ) =
1
32 (7 cos 4θ + 25) + 7

32 (1− cos 4θ) = 1 for all

|ϕ⟩ ∈ V(S) and for all θ. Figure 3.3 plots the probability of observing the trivial syndrome

as a function of the rotation angle.

Figure 3.3: The probability of observing the trivial syndrome for the Steane code
under RZ (θ) for varying physical angles θ.

We observe from Figure 3.3 that when θ is a multiple of π
2 , pµ=0(|ϕ⟩) = 1 for all

the states |ϕ⟩ in the Steane codespace V(S), which implies that RZ
(
kπ
2

)
preserves V(S).

41

The angle θ = π
4 + kπ

2 minimizes the probability of obtaining the zero syndrome and this

minimum value relates to the probability of success in magic state distillation. Substituting

θ = π
4 , we obtain pµ=0

(
|ϕ⟩, π4

)
= 9

16 , and pµ ̸=0

(
|ϕ⟩, π4

)
= 1

16 , for all |ϕ⟩ ∈ V(S).

Example 10. Recall the [[4, 2, 2]] CSS(X, C2 = {0,1};Z, C⊥
1 = C2) code with two different

choices of signs defined by the character vectors y = 0 (all positive signs), and y′ = [0, 0, 0, 1]

(negative Z⊗4 in the stabilizer group).

Table 3.2: Generator coefficients Aµ,γ (θ) for RZ (θ) of the [[4, 2, 2]] code with all
positive signs (y = 0).

γ = 0 γ ̸= 0

µ = 0 1
4 (cos 2θ + 3) 1

4 (cos 2θ − 1)

µ = [1, 0, 0, 0] −1
4 ı sin 2θ

Table 3.2 lists the generator coefficients for all positive signs (y = 0). We now use the

data to calculate the probabilities of observing different syndromes as described in (3.65).

For the encoded |00⟩ state, we have

pµ=0(|00⟩, θ) =
1

2
cos 4θ +

1

2
,

pµ=[0,0,0,1](|00⟩, θ) = −1

2
cos 4θ +

1

2
. (3.68)

The remaining three states have the same probabilities of observing X-syndromes:

Table 3.3: Generator coefficientsAµ,γ (θ) forRZ (θ) of the [[4, 2, 2]] code with negative
Z⊗4 stabilizer (y = [0, 0, 0, 1]).

X-synd

Z-log
γ = 0 γ1 = [0, 0, 1, 1] γ2 = [0, 1, 1, 0] γ3 = γ1 ⊕ γ2

µ = 0 cos θ 0 0 0

µ = [1, 0, 0, 0] −1
2 ı sin θ

1
2 ı sin θ −1

2 ı sin θ −1
2 ı sin θ

42

pµ=0(|ϕ⟩ ∈ {|01⟩, |10⟩, |11⟩}, θ) = 1

8
(cos 4θ + 7) +

1

8
(1− cos 4θ) = 1, (3.69)

pµ=[1,0,0,0](|ϕ⟩ ∈ {|01⟩, |10⟩, |11⟩}, θ) = 1

8
(1− cos 4θ)− 1

8
(1− cos 4θ) = 0. (3.70)

If the initial state is among |01⟩, |10⟩, |11⟩, then it evolves within the codespace for all

angles θ, which implies that F := span(|01⟩, |10⟩, |11⟩) forms a embedded decoherence-free

subspace (DFS) inside the codespace [HLRC22].

Figure 3.4: The [[4, 2, 2]] code with all positive stabilizers: the probability of observ-
ing the trivial syndrome for the initial encoded state |00⟩ under RZ (θ) for varying
physical angles θ.

Figure 3.4 plots (3.68) for different physical angles θ. When θ = π
4 + kπ

2 for some

integer k, syndrome measurement acts as projection from V(S) to the embedded DFS, and

we are able to learn whether the initial state was |00⟩; When θ = kπ
2 for some integer k, the

measurement outcome is always the zero syndrome, which implies that RZ
(
π
2

)
preserves

the codespace and some logical operator is induced. The Kraus operators derived in (3.43)

imply that the induced logical operator is

Bµ=0

(π
2

)
=
∑
γ

A0,γ

(π
2

)
E(0,γ)

=
1

2
E(0,0)− 1

2
E(0,γ1)−

1

2
E(0,γ2)−

1

2
E(0,γ1 ⊕ γ2)

=
1

2
Ī ⊗ Ī − 1

2
Ī ⊗ Z̄ − 1

2
Z̄ ⊗ Ī − 1

2
Z̄ ⊗ Z̄ ≡

(
Z̄ ⊗ Z̄

)
◦ CZ. (3.71)

43

Next, we compute the generator coefficients for the same [[4, 2, 2]] code but with nontrivial

signs (character vector y = [0, 0, 0, 1]).

It follows from (3.65) and Table 3.3 that

pµ=0(|ϕ⟩ ∈ {|00⟩, |01⟩, |10⟩, |11⟩}, θ) = (cos θ)2,

pµ=[1,0,0,0](|ϕ⟩ ∈ {|00⟩, |01⟩, |10⟩, |11⟩}, θ) = (sin θ)2.

In this case, the probabilities are independent of the different initial states and there is no

embedded decoherence-free subspace in the codespace. This example shows that for the

same code, state evolution depends very strongly on signs of Z-stabilizers.

In prior work [HLRC22], we have derived criteria that ensure a stabilizer code is a DFS,

and (3.65) opens the door to developing criteria for embedded DFS, in which the second

term acts as an amendment to the first term and implies the probability is either 0 or 1 for

a subset of initial |0⟩&|1⟩-basis state in the codespace.

3.2.3 Generator Coefficients and State Distillations

Classical magic state distillation post-selects on the trivial syndrome without considering

error correction. We use the Steane code as an example to show the trade-off between

fidelity and the probability of success in magic state distillation. If we follow the procedures

of classical state distillation, then the [[7, 1, 3]] Steane code can provide linear convergence as

described in Case 1. In Case 2, we try to increase the probability of success by introducing

error-correction instead of post-selecting on the trivial syndrome. In Case 3, we consider

correcting only one of the non-trivial syndromes.

Case 1: Reichardt [Rei05] calculated error rate by tracking evolution of code states.

The generator coefficient framework makes it possible to calculate the output error rate by

tracking operators.

• Encode to get the |+⟩ of the Steane codestate.

44

• Given seven copies of |A⟩ := T |+⟩ = (|0⟩ + eıπ/4|1⟩)/
√
2 and ancillary qubits, we

can realize the phsyical transversal T⊗7 = exp
(
−ıπ8Z

)⊗7
with the help of Clifford

gates and Pauli measurements. If the states |A⟩ are exact, the probability of ob-

serving the trivial syndrome is peµ=0 = 9
16 and the probability of observing each

non-trivial syndrome is peµ ̸=0 = 1
16 (Take θ = π

4 in (3.67)). When the trivial syn-

drome is observed, it follows from Example 8 that the induced logical operator is

T †
L = exp

(
ıπ8ZL

)
. We then apply a physical representation of the logical Phase gate

P to obtain |A⟩ = PLT
†
L|+⟩. In practice, each of the input magic states |A⟩ is noisy.

We assume dephasing noise: ρ → (1− p)ρ+ pZρZ with the same probability p of a

Pauli Z error for each of the seven physical qubits. The probability of observing the

trivial syndrome involves two terms. The first term captures the event that upon ob-

serving the trivial syndrome µ = 0, the dephasing error is undetectable. The second

term captures the event that upon observing the non-trivial syndrome µ ̸= 0, the

dephasing error cancels the observed syndrome. The probability of success is given

by

Pµ=0 = peµ=0P (Z-error in C⊥
2) +

∑
µ ̸=0

peµP (Z-error in C⊥
2 + µ)

=
9

16

∑
v∈C⊥

2

(1− p)7−wH(v)pwH(v) +
∑
µ ̸=0

1

16

∑
v∈C⊥

2 +µ

(1− p)7−wH(v)pwH(v)

=
9

16

1

|C2|
∑
v∈C2

(1− 2p)wH(v) +
7

16

1

|C2|
∑
v∈C2

(−1)ve
T
1 (1− 2p)wH(v)

=
1

16

(
2 + 7(1− 2p)4

)
. (3.72)

Note that the 7 cosets corresponding to non-trivial syndromes have identical weight

enumerators.

• If we observe the non-trivial syndrome µ ̸= 0, we declare failure and restart. Upon

observing the trivial syndrome, we decode and the output mixed state is

ρout =
1

Pµ=0
(p0out|A⟩⟨A|+ p1outZ|A⟩⟨A|Z) (3.73)

45

where

p0out = peµ=0P (Z-error in C⊥
1) +

∑
µ ̸=0

peµP (Z-error in C⊥
1 + µ+ γ for γ ̸= 0)

=
9

16

∑
v∈C⊥

1

(1− p)n−wH(v)pwH(v) +
∑
µ ̸=0

1

16

∑
v∈C⊥

1 +µ+1

(1− p)n−wH(v)pwH(v)

=
1

32

(
2 + 7(1− 2p)3 + 7(1− 2p)4 + 2(1− 2p)7

)
. (3.74)

The first term captures the event that upon observing the the trivial syndrome µ = 0,

the dephasing error acts as a Z-stabilizer (Bµ=0 = 3
4 T̄

†). The second captures the

event that upon observing the the non-trivial syndrome µ ̸= 0, the dephasing error

lies in C⊥
1 + µ+ γ (Bµ ̸=0 = 1

4 T̄
†Z̄). In this case, the dephasing error appears as the

error correction that maps back to the code space and results in a logical T † gate.

We now write the output error rate q as a function of the initial error rate p, and

calculate its Taylor expansion at 0

q(p) = 1− p0out
Pµ=0

=
7

9
p+

14

81
p2 +O(p3). (3.75)

This implies that the threshold for the initial error rate is 0.1464... (the same as

[Rei05]), while that of the [[15, 1, 3]] code is 0.1415.. [BK05].

Case 2: Note that probability of success in Case 1 is upper bounded by 9/16 = 56.25%.

It is natural to ask whether we may introduce error correction to increase the probability of

success. It follows from (3.54) that we can choose proper corrections based on syndromes

(γµ = Z̄ for µ ̸= 0) to obtain the logical operator T † with probability 1 if the physical

transversal T is exact. The output error-rate now becomes

q(p) = 1− p0out = 1− P (Z-error in C⊥
1) =

∑
v∈C⊥

1

(1− p)n−wH(v)pwH(v) =
1

8

(
1 + 7(1− 2p)4

)
.

(3.76)

The output error rate does not fall below the line y = x in the positive orthant, and we

conclude that the protocol does not converge.

46

Case 3: We balance Case 1 and Case 2 by implementing error correction for only one of

the seven non-trivial syndromes, say µ = e1. Although the probability of success increases

slightly to

PS = Pµ=0 + Pµ=e1 =
1

16

(
2 + 7(1− 2p)4

)
+

1

16

(
2− (1− 2p)4

)
=

1

8

(
2 + 3(1− 2p)4

)
,

(3.77)

the prefactor of the linear term of the output error rate is greater than 1. We conclude

that the protocol does not converge as well.

The same analysis can be performed for a code that is perfectly preserved by the

transversal T gate, such as the [[15, 1, 3]] code. The analysis provides insight into the trade-

off between the probability of success and the fidelity of the output magic states.

The converging Case 1 shows how RZ(
π
4) supports magic state distillation with the aid

of a logical Phase gate. When θ < π
4 , θL < θ, and the Steane code might be applied to

convert 7 noisy copies of the state (|0⟩+eıθ|1⟩)/
√
2 into 1 copy of the state (|0⟩+eıθL |1⟩)/

√
2

with higher fidelity.

Note that the Steane code is not a triorthogonal code [BH12], but it can be used in state

distillation [Rei05]. The generator coefficient framework help to characterize codes that are

not preserved by transversal T but realize a logical T gate when the trivial syndrome

is observed. Recently, Vasmer and Kubica [VK22] introduced a new [[10, 1, 2]] code by

morphing the [[15, 1, 3]] quantum Reed-Muller code [KLZ96, BK05] and the [[8, 3, 2]] color

code [CH17]. It provides the first protocol in state distillation that supports a fault-tolerant

logical T gate from a diagonal physical gate that is not transversal T . The generator

coefficient framework applies to arbitrary diagonal gates, and may facilitate finding more

examples of distillation.

47

Chapter 4

CSS Codes that Support Transversal
Physical Diagonal Gates

4.1 CSS Codes preserved by Diagonal Gates

When a CSS code is preserved by a unitary UZ , the probability of observing the zero

syndrome is 1, and the Kraus operators capture evolution of logical states. Theorem 8

provides necessary and sufficient conditions for a unitary UZ to preserve a CSS code.

We prove Theorem 8 by writing ΠS as a product ΠS = ΠSX
ΠSZ

, where UZ commutes

with the Z-projector ΠSZ
, and we then translate commutativity to conditions on generator

coefficients. We generalize these conditions to arbitrary stabilizer codes in Chapter 4.3.

Theorem 8. Let CSS(X, C2 = ⟨ci : 1 ≤ i ≤ k2⟩;Z, C⊥
1 = ⟨dj : 1 ≤ j ≤ n − k1⟩) be an

[[n, k1−k2, d]] CSS code V(S) defined by the stabilizer group S with code projector ΠS . Then

the unitary UZ =
∑

v∈Fn
2
f(v)E(0,v) preserves V(S) (i.e. UZΠSU

†
Z = ΠS) if and only if

∑
γ∈C⊥

2 /C⊥
1

|A0,γ |2 = 1. (4.1)

Proof. Recall from (3.4) that UZΠSZ = ΠSZUZ simplifies to

UZΠSZ
=

1

2n−k1

∑
µ∈Fn

2 /C⊥
2

∑
γ∈C⊥

2 /C⊥
1

Aµ,γ

 ∑
u∈C⊥

1 +µ+γ

ϵ(0,u)E(0,u)

 . (4.2)

⇐: We assume (4.1) holds and derive UZΠS = ΠSUZ . By Theorem 7, we have Aµ,γ = 0

when µ ̸= 0. It follows from (3.4) that

UZΠSZ
= ΠSZ

UZ =
1

2n−k1

∑
γ∈C⊥

2 /C⊥
1

A0,γ

 ∑
u∈C⊥

1 +γ

ϵ(0,u)E(0,u)

 . (4.3)

48

For any γ ∈ C⊥
2 /C⊥

1 and u ∈ C⊥
1 + γ ⊂ C⊥

2 , we have E(0,u)ΠSX
= ΠSX

E(0,u). Hence,

UZΠS = UZΠSZ
ΠSX

=
1

2n−k1

∑
γ∈C⊥

2 /C⊥
1

A0,γ

 ∑
u∈C⊥

1 +γ

ϵ(0,u)ΠSX
E(0,u)


= ΠSX

UZΠSZ
= ΠSX

ΠSZ
UZ = ΠSUZ . (4.4)

⇒: We assume UZΠS = ΠSUZ and show (4.1). It follows from (3.37) that

UZΠS = UZΠSZ
ΠSX

=
1

2n−k1

∑
µ∈Fn

2 /C⊥
2

ΠSX(µ)

∑
γ∈C⊥

2 /C⊥
1

Aµ,γ

 ∑
u∈C⊥

1 +γ+µ

ϵ(0,u)E(0,u)

 = ΠSUZ .

(4.5)

Pairwise orthogonality of projectors implies ΠSX(µ)ΠSX(µ′) = 0 when µ ̸= µ′ in Fn2/C⊥
2 .

Hence, for any µ0 ∈ Fn2/C⊥
2 \ {0}, we have we have

0 = ΠSX(µ0)ΠSX
ΠSZ

UZ = ΠSX(µ0)(ΠSUZ) = ΠSX(µ0)(UZΠS), (4.6)

which implies that

0 =
1

2n−k1

∑
µ∈Fn

2 /C⊥
2

ΠSX(µ0)ΠSX(µ)

∑
γ∈C⊥

2 /C⊥
1

Aµ,γ

 ∑
u∈C⊥

1 +γ+µ

ϵ(0,u)E(0,u)


=

1

2n−k1
ΠSX(µ0)

∑
γ∈C⊥

2 /C⊥
1

Aµ0,γ

 ∑
u∈C⊥

1 +γ+µ0

ϵ(0,u)E(0,u)


=

1

2n−k1

 1

2k2

∑
a∈C2

(−1)aµ
T
0 ϵ(a,0)E(a,0)

 ∑
γ∈C⊥

2 /C⊥
1

Aµ0,γ

 ∑
u∈C⊥

1 +γ+µ0

ϵ(0,u)E(0,u)


=

1

2n−k1+k2

∑
γ∈C⊥

2 /C⊥
1

∑
u∈C⊥

1 +γ+µ0

∑
a∈C2

Aµ0,γ(−1)aµ
T
0 ıaµ

T
0 ϵ(a,u)E(a,u). (4.7)

Since Pauli matrices are linearly independent, we have Aµ0,γ = 0 for all µ ∈ Fn2/C⊥
2 \ {0}

and all γ ∈ C⊥
2 /C⊥

1 , and (4.1) holds.

Remark 9 (Logical Operator induced by UZ). We assume that UZΠSU
†
Z = ΠS for a CSS

code defined by S. By Theorem 8, (4.1) holds, so that by Theorem 7 we only have one

49

Kraus operator left in (3.43) that is given by

Bµ=0 =
∑

γ∈C⊥
2 /C⊥

1

A0,γ ϵ(0,γ)E(0,γ). (4.8)

Note that Fk2 ≃ C⊥
2 /C⊥

1 and we have a bijective map g : Fk2 → C⊥
2 /C⊥

1 defined by g(α) =

αGC⊥
2 /C⊥

1
, where GC⊥

2 /C⊥
1

is the generator matrix selected. Let ULZ be the logical operator

induced by UZ , and let αj be the jth entry of the vector α. Then, using (2.42), we translate

the Kraus operator into the logical space as

ULZ =
∑
α∈Fk

2

A0,g(α)

 k∏
j=1

(
ZLj
)αj

 =
∑
α∈Fk

2

A0,g(α)E(0,α), (4.9)

Thus, if a CSS code is preserved by UZ =
∑

v∈Fn
2
f(v)E(0,v), then the generator coefficients

corresponding to the zero syndrome are simply the coefficients in the Pauli expansion of

the induced logical operator. We also observe that ULZ given in (4.9) is unitary if and only

if (4.1) holds.

We then simplify (4.1) in special cases when UZ is a QFD gate, and when UZ = RZ

(
π
p

)
for some integer p. We then provide necessary and sufficient conditions for quantum Reed-

Muller codes to be preserved by RZ
(
2π
2l

)
, and connect to the conditions in [RCNP20,

Theorem 17].

Theorem 10 below specializes Theorem 8 to the broad class of diagonal level-l QFD

gates τ
(l)
R determined by symmetric matrices R ∈ Zn×n

2l
. Note that Theorem 10 applies

to CSS codes with arbitrary signs and RZ
(
2π
2l

)
form a subset of QFD gates. Theorem 10

includes the divisibility conditions derived in [ZCC11, LC13, VB22] as a special case.

Theorem 10. Consider a CSS(X, C2;Z, C⊥
1)code, where y is the character vector of the

Z-stabilizers. Then, a QFD gate τ
(l)
R =

∑
v∈Fn

2
ξvRvT mod 2l

l |v⟩⟨v| preserves the codespace

V(S) if and only if

2l | (v1RvT1 − v2Rv
T
2) (4.10)

for all v1,v2 ∈ C1 + y such that v1 ⊕ v2 ∈ C2.

50

Proof. It follows from (3.31) that

∑
γ∈C⊥

2 /C⊥
1

|A0,γ(R, l)|2 =
1

|C1|2
∑
v∈C1

s(v,y)
∑

γ∈C⊥
2 /C⊥

1

(−1)γv
T
, (4.11)

where

s(v,y) :=
∑

v1∈C1+y

ξ
v1RvT

1 −(v⊕v1)R(v⊕v1)T mod 2l

l . (4.12)

We simplify (4.1) using (4.11) to obtain

1 =
∑

γ∈C⊥
2 /C⊥

1

|A0,γ(R, l)|2 =
1

|C1|2
∑
v∈C1

s(v,y)
∑

γ∈C⊥
2 /C⊥

1

(−1)γv
T

=

∑
v∈C2

∑
v1∈C1+y ξ

v1RvT
1 −(v⊕v1)R(v⊕v1)T

l

|C1||C2|
, (4.13)

which requires each term to contribute 1 to the summation. We complete the proof by

setting v2 = v ⊕ v1.

Remark 11. When R = I, then vRvT = wH(v) and the divisibility condition simplifies to

the condition previously obtained for RZ
(
2π
2l

)
. If a CSS code is preserved by RZ

(
2π
2l

)
for all

l ≥ 1, then it follows (4.10) that for any fixed w ∈ C1 C2, all elements in the coset C2+w+y

have the same Hamming weight. It then follows from the generalized encoding map given

in (2.36) that any CSS code invariant under RZ
(
2π
2l

)
for all l ≥ 1 is a constant-excitation

code [ZR97].

We now explore the influence of signs by analyzing and separating the effect of the

character vector y.

Lemma 12. Consider a CSS(X, C2;Z, C⊥
1) code, where y is the character vector of the

Z-stabilizers. Then, (4.10) holds for all v1,v2 ∈ C1 + y such that v1 ⊕ v2 ∈ C2 if and only

if

2l | (v1RvT1 − v2Rv
T
2), for all v1,v2 ∈ C2 + y; (4.14)

2l−1 | (u1 − u2)Rw
T , (4.15)

for all u1,u2 ∈ C2 and w ∈ C1/C2.

51

Proof. ⇒: Assume (4.10) holds for all v1,v2 ∈ C1 + y such that v1 ⊕ v2 ∈ C2. Then,

(4.14) is satisfied. Let v1,v2 ∈ (C1 + y)/(C2 + y) and v1 ⊕ v2 ∈ C2. Then we can write

v1 = u1 +w+ y and v2 = u2 +w+ y for u1,u2 ∈ C2 and w ∈ C1/C2. We simplify (4.10)

as

2l | (u1 +w + y)R(u1 +w + y)T − (u2 +w + y)R(u2 +w + y)T

2l |
(
(u1 + y)R(u1 + y)T − (u2 + y)R(u2 + y)T

)
+ 2

(
(u1 + y)RwT − (u1 + y)RwT

)
2l | 2(u1 − u2)Rw

T , (4.16)

since u1 + y,u2 + y ∈ C2 + y. Thus, (4.15) is also satisfied.

⇐: We simply reverse the above three steps.

Note that only (4.14) depends on the character vector y, and its contribution is moving

the divisibility requirement to a coset.

Note that by varying the level l, the same symmetric matrix R can determine different

gates (for example, the gates CZ and CP in Example 6). The divisibility conditions

corresponding to successive levels differ by a factor of 2. This suggests using concatenation

to lift a code preserved by a level l QFD gate determined by R to a code preserved by a

level l + 1 QFD gate determine by I2 ⊗ R. More details along this line are included in

Chapter 5.

4.2 CSS Codes Constructions from Classical Reed-

Muller Codes

If the physical rotation angle θ is a fraction of π, then the constraint on generator coefficients

in (4.1) is equivalent to conditions on the Hamming weights that appear in the classical

codes C1 and C2 that determine the quantum CSS code.

Theorem 13. Let p ∈ Z. Then RZ

(
π
p

)
preserves the CSS(X, C2;Z, C⊥

1) codespace if and

only if

2p | (wH(w)− 2wH(w ∗ z)) , (4.17)

52

for all w ∈ C2 and all z ∈ C1 + y, where y is the character vector that determines signs of

Z-stabilizers and w ∗ z is the coordinate-wise product of w and z.

Proof. The proof idea is the same as that of Theorem 10. We take UZ = RZ

(
π
p

)
and

simplify (3.14) using (4.1):

1 =
∑

γ∈C⊥
2 /C⊥

1

∣∣∣∣A0,γ

(
π

p

)∣∣∣∣2
=

∑
γ∈C⊥

2 /C⊥
1

1

|C1|2
∑

z1,z2∈C1+y

(−1)γ(z1⊕z2)T
(
e
ıπ
p

)wH(z1)−wH(z2)
. (4.18)

Setting w = z1 ⊕ z2 and z = z2, we obtain

1 =
1

|C1|2
∑
w∈C1

∑
z∈C1+y

(
e
ıπ
p

)wH(w⊕z)−wH(z) ∑
γ∈C⊥

2 /C⊥
1

(−1)γw
T

=
1

|C1|2
|C1|
|C2|

∑
w∈C2

∑
z∈C1+y

(
e
ıπ
p

)wH(w⊕z)−wH(z)

=
1

|C1||C2|
∑
w∈C2

∑
z∈C1+y

(
e
ıπ
p

)wH(w)−2wH(w∗z)
, (4.19)

Note that (4.19) implies every term in the double sum is equal to 1, which completes the

proof.

Remark 14 (Transversal π/2l Z-rotation). Assume positive signs (character vector y = 0)

and set p = 2l−1 for some integer l ≥ 1. Since 0 ∈ C1 and 0 ∈ C2, it follows from Theorem

13 that RZ
(
2π
2l

)
preserves a CSS codespace V(S) if and only if

2l | wH(w) for all w ∈ C2, and (4.20)

2l−1 | wH(w ∗ z) for all w ∈ C2 and for all z ∈ C1. (4.21)

This result coincides with the sufficient conditions in [VB22, Proposition 4], which is a

special case of the quasitransversality introduced earlier by Campbell and Howard [CH17].

For example, if a CSS code with all positive stabilizers is invariant under RZ
(
π
4

)
, then the

weight of every X-stabilizers needs to be divisible by 8. We note that the [[8, 3, 2]] color

code is the smallest error-detecting CSS code with all positive signs that is preserved by

RZ
(
π
4

)
. We defer the study of non-trivial character vectors y to future work.

53

The divisibility conditions (4.20), (4.21) suggest constructing CSS codes from classical

Reed-Muller codes.

Theorem 15 (Reed-Muller Constructions). Consider Reed-Muller codes C1 = RM(r1,m) ⊃

C2 = RM(r2,m) with r1 > r2. The [[n = 2m, k =
∑r1

j=r2+1

(
m
j

)
, d = 2min{r2+1,m−r1}]]

CSS(X, C2;Z, C⊥
1) code with all positive stabilizers is preserved by RZ

(
2π
2l

)
if and only if

l ≤


⌊
m−1
r1

⌋
+ 1, if r2 = 0,

min
{⌊

m−r2−1
r1

⌋
+ 1,

⌊
m−r1
r2

⌋
+ 1
}
, if r2 ̸= 0.

(4.22)

Proof. Note that all Z-stabilizers have positive signs corresponding to the case y = 0 in

Theorem 13. Then, RZ
(
2π
2l

)
preserves a CSS codespace if and only if (4.20) and (4.21)

hold.

Let w ∈ C2 and z ∈ C1. If r2 = 0, then C2 = {0,1} and wH(w) ∈ {0, 2m}. It follows

from McEliece [McE71] (see also Ax [Ax64]) that

2

⌊
m−1
r1

⌋
| wH(w ∗ z), (4.23)

and this bound is tight. The two conditions become l ≤ min{m,
⌊
m−1
r1

⌋
+ 1} =

⌊
m−1
r1

⌋
+ 1.

If r2 ̸= 0, then it follows from McEliece [McE72, Bor13] that
⌊
m−1
r2

⌋
is the highest power

of 2 that divides wH(w) for all w ∈ C2 = RM(r2,m). We first show (4.22) is necessary. It

follows from (4.20) that

l ≤
⌊
m− 1

r2

⌋
. (4.24)

We need to understand divisibility of weights wH(w ∗ z) where w ∈ C2 and z ∈ C1. The

codeword w is the evaluation vector of a sum of monomials, and we start by considering the

case of a single monomial. Consider a codeword w1 ∈ C2 corresponding to the evaluation

of a monomial of degree s. For all z ∈ C1, we observe that w1 ∗ z is a codeword in

RM(min{r1,m− s},m− s) supported on w1. Then,
⌊

m−s−1
max{r1,m−s}

⌋
is the highest power of

2 that divides wH(w1 ∗ z) for all z ∈ C1. Note that since s takes values from 0 to r2, we

have

l ≤
⌊

m− r2 − 1

max{r1,m− r2}

⌋
+ 1 =


⌊
m−r2−1

r1

⌋
+ 1, if r1 + r2 ≤ m,

1 =
⌊
m−r1
r2

⌋
+ 1, if m < r1 + r2.

(4.25)

54

We now consider w ∈ C2 such that w = w1 ⊕ w2, where w1, w2 are evaluation vectors

correspond to monomials in C2. Then, for z ∈ C1, we have

wH(w ∗ z) = wH(w1 ∗ z) + wH(w2 ∗ z)− 2wH(w1 ∗w2 ∗ z). (4.26)

Since w,w1,w2 ∈ C2, it follows from (4.21) that 2l divides 2wH(w ∗ z), 2wH(w1 ∗ z), and

so 2wH(w2 ∗ z). By (4.26), we have

2l|4wH(w1 ∗w2 ∗ z). (4.27)

Sincew1∗w2 is the evaluation vector of a monomial with degree s′ ≤ min{m, 2r2}, w1∗w2∗

z is a codeword in RM(min{r1,m−s′},m−s′) supported onw1∗w2. Then,
⌊

m−2r2−1
max{r1,m−2r2}

⌋
is the highest power of 2 that divides wH(w1 ∗w2 ∗z) for all w1 ∗w2 ∈ C2. The extremum

is achieved when the monimials corresponding to w1 and w2 have degree r2 and do not

share a variable. Hence,

l ≤
⌊

m− 2r2 − 1

max{r1,m− 2r2}

⌋
+ 2 =


⌊
m−2r2−1

r1

⌋
+ 2, if r1 + 2r2 ≤ m,

2 =
⌊
m−r1
r2

⌋
+ 1, if r1 + r2 ≤ m < r1 + 2r2.

(4.28)

It remains to consider the case w = w1⊕w2⊕· · ·⊕wt ∈ C2, where each wi is the evaluation

vector of a monomial. We use inclusion-exclusion to rewrite (4.21) as

2l−1
∣∣∣ t∑
i=1

(−2)i−1
∑

1≤j1≤···≤ji≤t
wH(wj1 ∗ · · · ∗wji ∗ z). (4.29)

We now use induction. Assume for 1 ≤ i ≤ t− 1, we have

l ≤
⌊

m− ir2 − 1

max{r1,m− ir2}

⌋
+ i =


⌊
m−ir2−1

r1

⌋
+ i, if r1 + ir2 ≤ m,

i =
⌊
m−r1
r2

⌋
+ 1, if (i− 1)r2 ≤ m− r1 < ir2.

(4.30)

Note that for 1 ≤ i ≤ t − 1, wj1 ∗ · · · ∗ wji corresponds to a monomial with degree

s′′ ≤ min{m, ir}, hence wj1 ∗ · · · ∗wji ∗ z is a codeword in RM(min{r1,m − s′′},m − s′′)

supported on wj1 ∗ · · · ∗wji . Then, we have

2

⌊
m−ir2−1

max{r1,m−ir2}

⌋
+i | 2iwH(wj1 ∗ · · · ∗wji ∗ z), (4.31)

55

in which the bound on the exponent is tight since we can choosew1, · · · ,wi to be evaluation

vectors corresponding to i disjoint monomials of degree r2. Hence, 2l−1 divides all terms

in (4.29) for i = 1, 2, . . . , t− 1. Hence, for the last term, we must have

2l−1|2t−1wH(w1 ∗ · · · ∗wt ∗ z), (4.32)

which implies that

l ≤
⌊

m− tr2 − 1

max{r1,m− tr2}

⌋
+ t =


⌊
m−tr2−1

r1

⌋
+ t, if r1 + tr2 ≤ m,

t =
⌊
m−r1
r2

⌋
+ 1, if (t− 1)r2 ≤ m− r1 < tr2,

(4.33)

and the induction is complete. Note that since r1 > r2, we have⌊
m− tr2 − 1

r1

⌋
+ t ≥

⌊
m− r2 − 1

r1

⌋
+ 1 for t ≥ 1, (4.34)

and the necessary condition reduces to

l ≤ min

{⌊
m− r2 − 1

r1

⌋
+ 1,

⌊
m− r1
r2

⌋
+ 1

}
. (4.35)

To prove the sufficiency of the case r2 ̸= 0, we simply reverse the steps.

Remark 16 (Puncturing RM codes by removing the first coordinate). Consider the clas-

sical RM(r,m) code, and two elementary operations on its generator matrix: 1. removing

the first column which is [1, 0, . . . , 0]T ; 2. removing the first row of all 1s. After either

of the two operations, we observe that 2⌊
(m−1)

2
⌋ is still the highest power of 2 that di-

vides all of its weights. Hence, the RM constructions described in Theorem 15 can be

extended to punctured RM codes. If operation 1 is applied on C1 = RM(r1,m), and

operations 1 and 2 are applied on C2 = RM(r2,m), then we can relax the relation be-

tween r1 and r2 as r1 ≥ r2. It follows from the same arguments that the resulting

[[2m − 1,
∑r1

j−r2+1

(
m
j

)
+ 1, 2min{r2+1,m−r1} − 1]] CSS code is preserved by RZ

(
2π
2l

)
with

the same constraint on l as described in (4.22). This family contains the [[2m − 1, 1, 3]]

triorthogonal codes described in [BH12].

Remark 17 (QRM(r,m) Codes). When r1 = r and r2 = r − 1, this family of CSS

codes coincides with the QRM(r,m) [[2m,
(
m
r

)
, 2min{r,m−r}]] codes constructed in [HH18] and

56

[RCNP20, Theorem 19]. The code QRM(r,m) is preserved by RZ(
2π

2m/r) if 1 ≤ r ≤ m/2

and r | m. When r2 = 0, we obtain the [[2m,m, 2]] family that is preserved by RZ(
2π
2m). If

r2 ̸= 0, since r | m, we have

l =
m

r
= min

{⌊
m− r

r

⌋
+ 1,

⌊
m− 1

r − 1

⌋}
= min

{⌊
m− (r − 1)− 1

r

⌋
+ 1,

⌊
m− r

r − 1

⌋
+ 1

}
, (4.36)

which satisfies the necessary and sufficient conditions in (4.22).

We now illustrate Theorem 8 and Theorem 13 through two CSS codes preserved by

RZ
(
π
4

)
, one with a single logical qubit, the other with multiple logical quibts.

Example 14 (The [[15, 1, 3]] punctured quantum Reed-Muller code [KLZ96, BK05]). Con-

sider the CSS(X, C2;Z, C⊥
1) code defined by C2 = ⟨x1, x2, x3, x4⟩ and C⊥

1 = ⟨x1, x2, x3, x4,

x1x2, x1x3, x1x4, x2x3, x2x4, x3x4⟩, with the first coordinate removed in both C2 and C⊥
1 . It

is well-known [BK05, RCNP20] that RZ(
π
4) preserves the CSS codespace when the signs of

Z-stabilizers are trivial. Since 8 | wH(v), for v ∈ RM(1, 4) and 4 | wH(u) for u ∈ RM(2, 4)),

the code satisfies the divisibility conditions in Theorem 13. We compute the induced log-

ical operator by computing the generator coefficients for the zero syndrome. Note that

C⊥
2 /C⊥

1 = {0,1}. The weight enumerators of C1 and C1 + 1 are given by

PC1(x, y) = PC1+1(x, y) = x15 + 15x8y7 + 15x7y8 + y15.

We have

A0,0

(π
4

)
=

1

32

(
2 cos

15π

8
+ 30 cos

π

8

)
= cos

π

8
, A0,1

(π
4

)
= ı sin

π

8
.

The constraint on generator coefficients in (4.1) is satisfied:

∑
γ∈{0,1}

∣∣∣A0,γ

(π
4

)∣∣∣2 = (cos π
8

)2
+
(
sin

π

8

)2
= 1.

It follows from (4.9) that the logical operator induced by RZ
(
π
4

)
is

RLZ

(π
4

)
= A0,0

(π
4

)
IL +A0,1

(π
4

)
ZL = cos

π

8
IL + ı sin

π

8
ZL = (T †)L.

57

Example 15 (The [[8, 3, 2]] code). The [[8, 3, 2]] color code [CH17] is defined on 8 qubits

which we identify with vertices of the cube. All vertices participate in the X-stabilizer and

generators of the Z-stabilizers can be identified with 4 independent faces of the cube. The

signs of all the stabilizers are positive. The [[8, 3, 2]] color code can also be thought as a

Reed-Muller CSS(X, C2 = {0,1}; Z, C⊥
1 = RM(1, 3)) code with generator matrix

GS =



1

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1


. (4.37)

The [[8, 3, 2]] code can be used in magic state distillation for the controlled-controlled-Z

(CCZ) gate in the third-level of Clifford hierarchy. To verify that the code is preserved

by RZ
(
π
4

)
and the induced logical operator is CCZ (up to some logical Pauli ZL), we

first compute the generator coefficients corresponding to the trivial syndrome. The weight

enumerators of C⊥
1 and C⊥

1 + γ for γ ∈ C⊥
2 /C⊥

1 \ {0} are given by

PC⊥
1
(x, y) = x8 + 14x4y4 + y8,

PC⊥
1 +γ(x, y) = 4x6y2 + 8x4y4 + 4x2y6,

so that

A0,0

(π
4

)
=

3

4
, and A0,γ ̸=0

(π
4

)
= −1

4
(4.38)

for all the seven non-zero γ ∈ C⊥
2 /C⊥

1 . Then,∑
γ∈C⊥

2 /C⊥
1

∣∣∣A0,γ

(π
4

)∣∣∣2 = (3

4

)2

+ 7 ·
(
−1

4

)2

= 1,

so (4.1) holds, and the induced logical operator is

RLZ

(π
4

)
=
∑
α∈F3

2

A0,g(α)

(π
4

)
E(0,α)

≡ (ZL ⊗ IL ⊗ ZL) ◦ CCZL. (4.39)

58

4.3 Extension to Stabilizer Codes

We described the generator coefficient framework for CSS code and we now extend it to

arbitrary stabilizer codes. We consider a general stabilizer code generated by the matrix

GS =


K 0

0 J

D

 , (4.40)

where D = (Dx, Dz) such that Dx is the X-component of D and Dz is the Z-component

of D. We assume that the row space of D contains no non-zero vector c = (cX , cZ) with

cX = 0 or cZ = 0. Assume the dimensions of K, J , and D are nx, nz, nxz respectively.

Then, we have

ΠS = ΠSX
ΠSZ

ΠSXZ
, (4.41)

where

ΠSX
=

1

2nx

∑
a∈K=⟨K⟩

ϵ(a,0)E(a,0), ΠSZ
=

1

2nz

∑
b∈J=⟨J⟩

ϵ(0,b)E(0, b), and (4.42)

ΠSXZ
=

1

2nxz

∑
(c,d)∈D=⟨D⟩

ϵ(c,d)E(c,d). (4.43)

Let T := ⟨K,Dx⟩. Then, J ⊂ T ⊥ ⊂ Fn2 as described below.

{0}

C2

C1

Fn2

{0}

C⊥
1

C⊥
2

Fn2

{0}

K

⟨J,Dz⟩⊥

Fn2

{0}

J

T ⊥ = ⟨K,Dx⟩⊥

Fn2StabilizerCSS
µ

γ

µ

γ

Then (3.4) becomes

ΠSZ
UZ =

(
1

2nz

∑
b∈J

ϵ(0,b)E(0, b)

)∑
v∈Fn

2

f(v)E(0,v)


=

1

2nz

∑
µ∈Fn

2 /T ⊥

∑
γ∈T ⊥/J

 ∑
z∈J+µ+γ

ϵ(0,v)f(z)

 ∑
u∈J+µ+γ

ϵ(0,u)E(0,u), (4.44)

59

and the generator coefficients of UZ for the stabilizer code S are given by

AS
µ,γ :=

∑
z∈J+µ+γ

ϵ(0,z)f(z), (4.45)

where µ ∈ Fn2/T ⊥ and γ ∈ T ⊥/J . These generalized generator coefficients inherit the

properties described in Theorem 7, that is,

∑
µ∈Fn

2 /T ⊥

∑
γ∈T ⊥/J

AS
µ,γA

S
µ,η⊕γ =

 1 if η = 0,

0 if η ̸= 0,
(4.46)

for η ∈ T ⊥/J . Grouping together the projectors ΠSX
and ΠSXZ

, we consider the new

family of projectors

L := ΠSX
ΠSXZ

=

 1

2nx

∑
a∈K=⟨K⟩

ϵ(a,0)E(a,0)

 1

2nxz

∑
(c,d)∈D=⟨D⟩

ϵ(c,d)E(c,d)


=

1

2nx+nxz

∑
a∈K,

(c,d)∈D

ϵ(a⊕c)ı
−adT

(−1)d(a∗c)
T
E(a⊕ c,d). (4.47)

For µ ∈ Fn2/T ⊥, we write

L(µ) :=

 1

2nx

∑
a∈K=⟨K⟩

(−1)µaT
ϵ(a,0)E(a,0)

 1

2nxz

∑
(c,d)∈D=⟨D⟩

(−1)µcT ϵ(c,d)E(c,d)

 ,

(4.48)

and note that {L(µ)}µ∈Fn
2 /T ⊥ is a resolution of identity.

Replacing the resolution of identity {ΠSX(µ)}µ∈Fn
2 /C⊥

2
by {L(µ)}µ∈Fn

2 /T ⊥ , we conclude

that the generator coefficients {AS
µ,γ}µ∈Fn

2 /T ⊥,γ∈T ⊥/J describe the same average logical

channel as in (3.42) and (3.43) since the logical Pauli Z for stabilizer codes can be chosen

as γ ∈ T ⊥/J up to a sign. Based on the description of the average logical channel, we

study the conditions for the invariance of a stabilizer code as below.

Theorem 18. Consider a general stabilizer code defined by (4.40). Consider T = ⟨K,Hx⟩,

and we have J ⊂ T ⊥ ⊂ Fn2 . Then, a Z-unitary gate UZ =
∑

v∈Fn
2
f(v)E(0,v) preserves

60

V(S) (i.e. UZΠSU
†
Z = ΠS) if and only if

∑
γ∈T ⊥/J

|AS
0,γ |2 = 1. (4.49)

Proof. ⇐: We assume (4.49) holds and derive UZΠS = ΠSUZ . It follows from (4.46) that

AS
µ,γ = 0 when µ ̸= 0. Then, by (4.44), we have

UZΠSZ
= ΠSZ

UZ =
1

2n−k1

∑
γ∈T ⊥/J

AS
0,γ

 ∑
u∈C⊥

1 +γ

ϵ(0,u)E(0,u)

 . (4.50)

For any γ ∈ T ⊥/J and u ∈ C⊥
1 + γ ⊂ T ⊥, we have E(0,u)L = LE(0,u), where L =

ΠSX
ΠSXZ

. Hence,

UZΠS = UZΠSZ
L = LUZΠSZ

= LΠSZ
UZ = ΠSUZ . (4.51)

⇒: We assume UZΠS = ΠSUZ and show (4.49). The idea is the same as in the proof

of Theorem 8, and it remains to show that each term in (4.47) is distinct in order to use

the independence of Pauli matrices. Assume (a ⊕ c,d) = (a′ ⊕ c′,d′) for some a,a′ ∈ K

and (c,d), (c′,d′) ∈ D. Then, d = d′ and a ⊕ c = a′ ⊕ c′. Note that (c,d) ⊕ (c′,d′) =

(c⊕c′,0) ∈ D. Since J∩Dx = {0}, we have c⊕c′ = 0, which means c = c′ and a = a′.

Theorem 19. Consider an [[n, k, d]] stabilize code generated by the matrix GS =


K 0

0 J

D


that satisfies Theorem 18. Let J be the space defined by the generator matrix J . Assume the

minimum weight in J is at least d (i.e. minz∈J wH(z) ≥ d). Then the CSS code generated

by GS′ =


K 0

0 J

Dx 0

 satisfies Theorem 8. Moreover, the CSS code has parameters n′ = n,

k′ = k, and the Z-distance d′Z = minz∈⟨K,Dx⟩⊥\J wH(z) ≥ d.

Proof. From the construction of GS′ , the number of physical qubits does not change (n′ =

n). Also, k′ = k follows from the fact that Dx ∩K = {0}. It remains to show that the new

Z-distance d′Z ≥ d.

61

Assume there exists (s, t) ∈ N (S ′) \ S ′ such that h(s, t) < d and t ̸= 0, where h is the

Pauli weight (number of nontrivial Pauli matrices) defined by

h(s, t) = wH(s) + wH(t)− wH(s ∗ t). (4.52)

Then, h(0, t) < d and t ∈ M⊥ ∩ D⊥
x , which implies that (0, t) ∈ N (S). Also by

definition, we have J ∩Dz = {0} and thus (0, t) ∈ N (S) \ S. However, by assumption the

distance of V(S) is d and thus N (S) \ S has minimum weight d, which is a contradiction.

Therefore, d′Z ≥ d.

Remark 20. Note that the values of generator coefficients are the same for the [[n, k, d]]

stabilizer code and the [[n′ = n, k′ = k, d′Z ≥ d]] CSS code. The induced logical operator

by UZ remains the same. Note that an [[n, k, d]] stabilizer code is non-degenerate if all

stabilizer elements have weight at least d. It follows from Theorem 19 that given an [[n, k, d]]

non-degenerate stabilizer code supporting a physical UZ =
∑

v∈Fn
2
f(v)E(0,v) quantum

(unitary) gate, there exists an equivalent CSS code (since the Pauli expansion of the physical

gate UZ has support only on Pauli Z, we only compare the distance d of stabilizer code

with the Z-distance of the equivalent CSS code) supporting the same operation. Note that

a similar argument applies to UX =
∑

v∈Fn
2
f(v)E(v,0).

62

Chapter 5

Designing CSS Codes by Climbing the
Clifford Hierarchy

We introduce three basic operations - concatenation, removal of Z-stabilizers, and addition

of X-stabilizers [HLC21] - that can be combined to synthesize a logical diagonal gate.

We present the [[2m,
(
m
r

)
, 2min{r,m−r}]] QRM code family [RCNP20, HLC22b] as a proof of

concept in Example 20.

physical level

logical
level
Concatenation

Removing Z-stabilizers

Adding X-stabilizers

Example:

[[4,2,2]] [[64,2,2]]

[[64,15,4]]

+

Figure 5.1: Three basic operations that can be combined to synthesize a CSS code
with higher distance, preserved by a diagonal physical gate which induces a prescribed
logical diagonal gate in the higher level of the Clifford hierarchy.

Figure 5.1 shows how the three basic operations combine to provide CSS codes where

both distance and the level of the induced logical operator are increasing. We now examine

the three basic operations in more detail.

1. Concatenation. Figure 5.1 shows that the level of the induced logical operator is

bounded by that of the physical operator. Concatenation is depicted in Figure 5.2

and described in Section 5.1. We double the number of physical qubits to increase

the level of the physical diagonal gate and to make room for increasing the level

of the induced logical operator. Theorem 21 characterizes the family of physical

63

diagonal gates acting on the new code to induce the same logical gate. For example,

the [[7, 1, 3]] Steane code [Ste96b] is preserved by a transversal Phase gate, RZ
(
π
2

)
=

P⊗7 =
(
Z1/2

)⊗7
, which induces a logical P † gate. By concatenating once, we obtain

the [[14, 1, 3]] CSS code that supports the logical P † gate through a family of physical

gates including the I⊗7
2 ⊗ P⊗7 physical gate at level 2 and the transversal T gate

(RZ
(
π
4

)
= T⊗14) at level 3. The higher level gate creates the opportunity to use the

second basic operation to increase the level of the induced logical operator.

2. Removal of Z-stabilizers. This is depicted in Figure 5.3 and described in Chapter

5.2. We increase the code rate by removing a non-trivial Z-stabilizer to introduce a

new logical qubit. Each generator coefficient in the expansion of the original logical

operator splits into two new generator coefficients. We provide necessary and suffi-

cient conditions for the new code to be preserved by the original physical diagonal

gate. In this case we say that the removal/split is admissible. We describe three

types of admissible split that increase the level of the induced logical operator, each

built on a recursive relation on the generator coefficients. The two splits described

in Figure 5.4 apply trigonometric identities. When the physical gate is a transver-

sal Z1/2l , Theorem 25 specifies the Z-stabilizer that is to be removed. For example,

removing the all-one Z-stabilizer from the [[14, 1, 3]] code gives the [[14, 2, 2]] triorthog-

onal code, and the induced logical operator becomes a transversal T †. Distance may

decrease after removing a Z-stabilizer, and the purpose of the third basic operation

is to compensate this loss.

3. Addition of X-stabilizers. This is depicted in Figure 5.6 and described in Section

5.3. We derive necessary and sufficient conditions for the new code after addition to

be preserved by the original physical diagonal gate, and we say that the addition is

admissible in this case. Our conditions require that half the generator coefficients

associated with the trivial syndrome must vanish. For an admissible addition, we

show that the level of the induced logical operator is unchanged. We may need to

concatenate several times and to remove several independent Z-stabilizers in order to

64

create sufficiently many zeros to enable an admissible addition. For example, consider

the [[4, 2, 2]] CSS code defined by the stabilizer group S = ⟨X⊗4, Z⊗4⟩. Up to some

logcial Pauli Z, the code realizes a logical CZ by a transversal Phase gate. We first

concatenate 4 times to obtain the [[64, 2, 2]] CSS code with the same logical operator,

but induced by a physical transversal T gate. Then, we remove 19 independent

Z-stabilizers to produce the [[64, 21, 2]] code that realizes 15 logical CCZ gates (up

to logical Pauli Z) induced by a physical transversal T gate. Finally, we add 6

independent X-stabilizers to increase the distance and arrive the [[64, 15, 4]] QRM

code supporting the same physical and logical gates.

5.1 Concatenations

The Generator Coefficient Framework was introduced in [HLC22b] to describe the evolution

of stabilizer code states under a physical diagonal gate UZ =
∑

u∈Fn
2
du|u⟩⟨u|. Note that

|u⟩⟨u| = 1
2n
∑

v∈Fn
2
(−1)uv

T
E(0,v). We may expand UZ in the Pauli basis

UZ =
∑
v∈Fn

2

f(v)E(0,v), (5.1)

where

f(v) =
1

2n

∑
u∈Fn

2

(−1)uv
T
du. (5.2)

Note that we can connect the coefficients in standard basis and Pauli basis by

[f(v)]v∈Fn
2
= [du]u∈Fn

2
H2n , (5.3)

where H2n = H ⊗H2n−1 = H⊗n is the Walsh-Hadamard matrix.

We use (5.2) to simplify the generator coefficients in (3.3) as

Aµ,γ =
1

2n

∑
u∈Fn

2

∑
z∈C⊥

1 +µ+γ

(−1)zy
T
(−1)zu

T
du

=
1

|C1|
∑

u∈C1+y

(−1)(µ⊕γ)(y⊕u)T du, (5.4)

65

{0}

C2

C1

Fn2

{0}

C⊥
1

C⊥
2

Fn2
µ

γ

[[n, k, d]]

→
physical level

{0}

C ′
2 = [1, 1]⊗ C2

C ′
1 = [1, 1]⊗ C1

F2n
2

{0}

(C ′
1)

⊥ = {[α,β] : α⊕ β ∈ C⊥
1 }

(C ′
2)

⊥ = {[α,β] : α⊕ β ∈ C⊥
2 }

F2n
2

[[2n, k, d′ ≥ d]] y′ = [1, 1]⊗ y

µ′ = [µ,0]

γ ′ = [γ,0]

Figure 5.2: Concatenation transforms an [[n, k, d]] CSS code preserved by a diagonal
gate UZ at level l to a [[2n, k, d′]] CSS code preserved by a family of diagonal gates

U ′
Z , some of which are at level l + 1 such as

(√
UZ
)⊗2

. The logical operator induced
by U ′

Z coincides with the logical operator induced by UZ . The circuit implementation
is a transversal CX gate followed by some Pauli X on the support of y′. The control
qubit of each CX gate is one of the qubit in the encoded [[n, k, d]] codeword, and the
target qubit of that is |0⟩.

which is the general version of Lemma 5.

We need to climb the physical Clifford hierarchy because the level of the physical oper-

ator bounds that of the induced logical operator. Consider a physical diagonal gate

UZ =
∑
u∈Fn

2

du|u⟩⟨u|, (5.5)

that preserves an [[n, k, d]] CSS(X, C2;Z, C⊥
1 ,y) code with X-distance

dX := min
x∈C1\C2

wH(x), (5.6)

and Z-distance

dZ := min
z∈C⊥

2 \C⊥
1

wH(z). (5.7)

66

We denote the logical operator induced by UZ as ULZ . The concatenation process de-

scribed in Figure 5.2 produces a [[2n, k, d′]] CSS(X, C′
2;Z, (C′

1)
⊥,y′) code. Concatenation

does not change the number of Z-logicals or the number of X-syndromes, and so the num-

ber of generator coefficients remains the same. We now show this code is preserved by an

ensemble of physical gates, all inducing the same logical operator as ULZ .

Theorem 21. The [[2n, k, d′]] CSS(X, C′
2;Z, (C′

1)
⊥,y′) code is preserved by any diagonal

physical gate

U ′
Z =

∑
u′∈F2n

2

d′u′ |u′⟩⟨u′|, (5.8)

for which d′[u,u] = du for all u ∈ Fn2 .

The minimum distance d′ ≥ d and the induced logical operator (U ′
Z)
L is equal to ULZ .

Proof. Let d′X , d
′
Z be the X- and Z-distances for the CSS(X, C′

2;Z, (C′
1)

⊥,y′) code. Given

x′ ∈ C′
1 \ C′

2, there exists x ∈ C1 \ C2 such that x′ = [1, 1] ⊗ x, and so d′X = 2dX . Given

[α,β] ∈ (C′
2)

⊥ \ (C′
1)

⊥, we have

wH([α,β]) = wH(α) + wH(β) ≥ wH(α⊕ β), (5.9)

and so d′Z ≥ dZ . Concatenation doubles X-distance while maintaining Z-distance.

We now prove that (U ′
Z)
L = ULZ by showing the generator coefficients remain the same:

A′
µ′,γ′(U ′

Z) =
1

|C′
1|

∑
u′∈C′

1+y′

(−1)(µ
′⊕γ′)(y′⊕u′)T d′u′

=
1

|C1|
∑

u∈C1+y

(−1)[µ⊕γ,0][y⊕u,y⊕u]T d′[u,u]

=
1

|C1|
∑

u∈C1+y

(−1)(µ⊕γ)(y⊕u)T du

= Aµ,γ(UZ). (5.10)

Hence, concatenation brings opportunity to design multiple physical operators that realize

the same logical operator.

67

We may partition U ′
Z into 2n blocks, where the block indexed by u ∈ Fn2 is a 2n × 2n

diagonal matrix diag
[
d′[u,v]

]
. Theorem 21 specifies a single diagonal entry d′[u,u] in each

block. The remaining 22n−2n entries can be freely chosen to design the unitary U ′
Z . When

UZ (on n qubits) is a transversal C(i)Z1/2j gate at level i+ j in the Clifford hierarchy, we

can choose U ′
Z to be the transversal C(i)Z1/2j+1

gate (on 2n qubits) at level i+ j + 1.

Remark 22 (Quadratic Form Diagonal (QFD) gates). We now describe how to raise

the level of a QFD gate τ
(l)
R ∈ C(l)

d at level l in the Clifford hierarchy. Here τ
(l)
R =∑

v∈Fn
2
ξvRvT mod 2l

l |v⟩⟨v|, where ξl = e
ı π

2l−1 , and R is an n × n symmetric matrix with

entries in Z2l , the ring of integers modulo 2l. Note that the exponent vRvT ∈ Z2l . Ren-

gaswamy et al. [RCP19] proved that QFD gates include all 1-local and 2-local diagonal

gates in the Clifford hierarchy. We choose U ′
Z = τ

(l+1)
I2⊗R ∈ C(l+1)

d , and observe

d′u,u = ξ2uRuT

l+1 = ξuRuT

l = du. (5.11)

Example 16 (Climbing from P⊗7 acting on the [[7, 1, 3]] Steane code to T⊗14 acting on

the [[14, 1, 3]] CSS code). Recall that the Steane code [Ste96b] is a CSS(X, C2;Z, C⊥
1 ,y = 0)

code with generator matrix

GS =

 H

H

 , (5.12)

where H is the parity-check matrix of the Hamming code as in (3.8). The only nontrivial

Z-logical corresponds to the all one vector 1. After concatenation described in Figure 5.2,

we obtain a [[14, 1, 3]] CSS code. When R = In, τ
(2)
R = P⊗n and τ

(3)
I2⊗R = T⊗2n. Let Aµ,γ

(
π
2

)
and A′

µ′,γ′
(
π
4

)
be the generator coefficients corresponding to P⊗7 and T⊗14, acting on the

[[7, 1, 3]] and [[14, 1, 3]] code respectively. Then, we have

Aµ=0,γ=0

(π
2

)
= A′

[0,0],[1,0]

(π
4

)
= cos

(π
4

)
,

Aµ=0,γ=1

(π
2

)
= A′

[0,0],[1,0]

(π
4

)
= ı sin

(π
4

)
, (5.13)

which implies that the invariance of [[7, 1, 3]] under P⊗7 and that of [[14, 1, 3]] under T⊗14.

It then follows from the expression of the induced logical operator in (4.9) that both of the

codes implement a logical P †.

68

Example 17 (Climbing from CZ⊗2 acting on the [[4, 2, 2]] CSS code to CP⊗4 acting on the

[[8, 2, 2]] CSS code). Consider the [[4, 2, 2]] CSS(X, C2;Z, C⊥
1) code with C2 = C⊥

1 = {0,1}.

We may choose the generators of Z-logicals to be γ1 = [0, 0, 1, 1] and γ2 = [0, 1, 1, 0]. Their

generator coefficients coincide:

Aµ=0,γ=0(CZ
⊗2) = A′

[0,0],[0,0](CP
⊗4) =

1

2
,

Aµ=0,γ=γ1(CZ
⊗2) = A′

[0,0],[γ1,0]
(CP⊗4) = −1

2
,

Aµ=0,γ=γ2(CZ
⊗2) = A′

[0,0],[γ2,0]
(CP⊗4) =

1

2
,

Aµ=0,γ=γ1⊕γ2(CZ
⊗2) = A′

[0,0],[γ1⊕γ2,0]
(CP⊗4) =

1

2
. (5.14)

Both cases realize a logical Z1◦CZ := (Z ⊗ I)CZ.

Remark 23 (Switching between Computation and Storage). It is the choice of charac-

ter vector that distinguishes the method of concatenation depicted in Figure 5.2 from the

method of constructing a decoherence-free subspaces (DFS) described in [HLRC22]. Con-

sider the graph where the vertices are the qubits involved in the support of some X-stabilizer,

and where two vertices are joined by an edge if there exists a weight 2 Z-stabilizer involving

these two qubits. Instead of choosing y′ = [1, 1]⊗y, we balance the signs of Z-stabilizers by

requiring that the support of y′′ include half the qubits in every connected component of the

graph [HLRC22]. The stabilizer group determines a resolution of the identity. To change

the signs of Z-stabilizers, we simply apply some physical PauliX to transform from one part

of the resolution to the other part (see Example 2). To determine the specific position to

add these extra Pauli X, we recall the general encoding map ge : |α⟩L ∈ Fk2 → |α⟩ ∈ V(S)

of a CSS(X, C2, r;Z, C⊥
1 ,y) code in (2.36),

|α⟩ := 1√
|C2|

∑
x∈C2

(−1)xr
T |αGC1/C2 ⊕ x⊕ y⟩,

where r,y are the character vectors for X- and Z-stabilizers, and GC1/C2 is a generator

matrix of the X-logicals C1/C2. The positions of these Pauli X correspond to the support

of the difference of two character vectors y′ − y′′. Hence it is simple to switch between

computation and storage. Given a code that realizes a specific diagonal logical operator

69

induced by the physical gate UZ , we first apply the concatenation described in Figure 5.2.

After concatenation, we choose U ′
Z = IN ⊗ UZ , at the same level as UZ , to realize the

same specific logical operator. We then apply some physical Pauli X to change signs of

Z-stabilizers and embed the logical information in a DFS. To continue the computation, we

recover the stored results by applying the same Pauli X. Note that concatenation doubles

the X-distance, which improves protection when we change the signs of Z-stabilizers.

For example, suppose our goal is to first implement a logical P † and to wait for a while

before calculating the next step. We can apply the physical U ′
Z = I⊗7

2 ⊗P⊗7 to the [[14, 1, 3]]

CSS code in Example 16 to realize the logical P †. Note that y′ = 0 ∈ F14
2 and one choice

of y′′ is [1, 0] ⊗ 17 ∈ F14
2 . Then we can apply Pauli X alternatively to map the computed

result in a DFS.

To achieve more advanced circuits, we need diagonal logical operators from higher

levels. Raising the level of a physical operator prepares the ground for climbing the logical

hierarchy.

5.2 Removal of Z-stabilizers

(a) Remove a non-trivial Z-stabilizer

{0}

C2

C1

Fn2

w0

{0}

C⊥
1

C⊥
2

Fn2

γ0

γ ∈ C⊥
2 /C⊥

1

µ
Aµ,γ

γ ′ ∈ ⟨C⊥
2 /C⊥

1 ,γ0⟩

µ′ = µ
A′

µ,γ′=γ A′
µ,γ′=γ⊕γ0

(b) Aµ,γ = A′
µ,γ + A′

µ,γ⊕γ0

remove add

Figure 5.3: (a) Removing a Z-stabilizer γ0 creates a new Z-logical, and transforms
an old Z-syndrome w0 into a new X-logical. (b) Removing/adding a Z-stabilizer
induces splitting/grouping of generator coefficients.

70

We describe how to increase the level of an induced logical operator by judiciously

removing Z-stabilizers from a CSS code. We start by considering a physical diagonal gate

UZ =
∑
v∈Fn

2

f(v)E(0,v) (5.15)

that preserves an [[n, k, d]] CSS(X, C2;Z, C⊥
1 ,y) code. The induced logical channels are

described by generator coefficients Aµ,γ where µ ∈ Fn2/C⊥
2 and γ ∈ C⊥

2 /C⊥
1 . Let γ0 ∈ C⊥

1

be a nontrivial Z-stabilizer. Set C⊥
1 = ⟨(C′

1)
⊥,γ0⟩, and set C′

1 = ⟨C1,w0⟩, where w0 ∈

Fn2/C1. If we remove γ0 from C⊥
1 , then γ0 becomes a Z-logical for the [[n, k + 1, d′ ≤ d]]

CSS(X, C2;Z, (C′
1)

⊥,y) code, as shown in Figure 5.3(a). Removing the Z-logical γ0 doubles

the number of Z-logicals. Each generator coefficient Aµ,γ associated with the original CSS

code splits into two generator coefficients A′
µ,γ′=γ and A′

µ,γ′=γ⊕γ0
associated with the new

code. We have

Aµ,γ =
∑

z∈⟨(C′
1)

⊥,γ0⟩+µ+γ

ϵ(0,z)f(z)

=
∑

z∈(C′
1)

⊥+µ+γ

ϵ(0,z)f(z) +
∑

z∈(C′
1)

⊥+µ+γ+γ0

ϵ(0,z)f(z)

= A′
µ,γ′=γ +A′

µ,γ′=γ⊕γ0
. (5.16)

Adding a Z-stabilizer simply reverses this process as shown in Figure 5.3(b).

Definition 24 (Admissible Splits). A split is admissible if the physical diagonal gate UZ

preserves the CSS(X, C2;Z, (C′
1)

⊥,y) code obtained by removing the non-trivial Z-stabilizer

γ0.

Since UZ preserves the original CSS code, we have

∑
γ∈C⊥

2 /C⊥
1

|A0,γ |2 = 1. (5.17)

The condition

∑
γ′∈⟨C⊥

2 /C⊥
1 ,γ0⟩

|A′
0,γ′ |2 =

∑
γ∈C⊥

2 /C⊥
1

|A′
0,γ |2 + |A′

0,γ⊕γ0
|2 = 1

71

(a)

(b)

I Z
cl sl

II IZ ZI ZZ

c2l+1
cl+1sl+1cl+1sl+1 s2l+1

Z1/2l−1

(
Z1/2l

)⊗2

Double-Angle
Formulas

xl = eıπ/2
l

cl = cos π
2l
, sl = −ı sin π

2l

Z1/2l−1
=

1+xl−1

2 I +
1−xl−1

2 Z

= xl(clI + slZ)
≡ clI + slZ

I Z
xlcl xlsl

II IZ ZI ZZ

xl+1clcl+1 −xl+1clsl+1 xl+1slcl+1 −xl+1slsl+1

Z1/2l−1

Z1/2l−1 ⊗
(
Z1/2l

)†
Z1/2l−1 ⊗

(
Z1/2l

)†
⊗ · · · ⊗

(
Z1/2l−1+j

)†
...

Euler’s
Formula

Figure 5.4: Admissible splits of Z-rotations: (a) One step for uniform ro-
tations from Z1/2l−1

to Z1/2l ⊗ Z1/2l ; (b) Multi-step for non-uniform rotations
Z → Z ⊗ P † → Z ⊗ P † ⊗ T † → · · · .

is both necessary and sufficient for admissibility. Note that the induced logical operator

(4.9) corresponding to the trivial syndrome remains a diagonal unitary after splitting.

It is natural to ask how many Z-stabilizers are needed to determine a stabilizer code

fixed by a given family of diagonal physical operators UZ . We derived necessary and

sufficient conditions for all transversal Z-rotations to preserve the codespace of a stabilizer

code [HLRC22]. The conditions require the weight 2 Z-stabilizers to cover all the qubits that

are in the support of the X-component of some stabilizer. Rengaswamy et al. [RCNP20]

derived less restrictive necessary and sufficient conditions for a single transversal T gate.

The difference A′
0,γ −A′

0,γ⊕γ0
depends on the new X-logical w0. For γ ∈ C⊥

2 /C⊥
1 , let

sγ(w0) :=
1

|C1|
∑

u∈C1+w0

(−1)γu
T
du⊕y. (5.18)

It then follows from (5.4) that

A′
0,γ =

1

2|C1|
∑

u∈⟨C1,w0⟩

(−1)γu
T
du⊕y =

1

2
(A0,γ + sγ(w0)) , (5.19)

and follows from (5.16) that

A′
0,γ⊕γ0

=
1

2
(A0,γ − sγ(w0))) . (5.20)

72

The quantity sγ(w0) determines whether or not a split is admissible.

We design extensible splittings by expanding diagonal operators in the Pauli basis, and

we illustrate our approach by constructing Z1/2l ⊗ Z1/2l from Z1/2l−1
. We write

Z1/2l−1 ≡ clI + slZ, (5.21)

where cl := cosπ/2l and sl := −ı sinπ/2l. Figure 5.4(a) shows how we construct(
Z1/2l

)⊗2
≡ c2l+1I ⊗ I + cl+1sl+1(I ⊗ Z + Z ⊗ I) + s2l+1Z ⊗ Z, (5.22)

by making use of the double angle formulas

cl = c2l+1 + s2l+1 and sl = 2cl+1sl+1. (5.23)

Recall that generator coefficients coincide with Pauli coefficients of the induced logical

operator as described in (4.9). The splitting rule determines the values sγ(w0) needed to

satisfy in (5.19) and (5.20). Here we require

sγ(w0) =

 1, if γ = 0,

0, if γ ̸= 0,
(5.24)

since we can write double-angle formulas as

c2l+1 =
1

2
(cl + 1) , s2l+1 =

1

2
(cl − 1) , and sl+1cl+1 =

1

2
(sl + 0) . (5.25)

Note that this design only connects a single level in the Clifford hierarchy to the next

level, that it does not extend indefinitely. In Figure 5.4(b), we generalize the design to make

it extend indefinitely. We include the global phase xl := eıπ/2
l
this time, and decompose

part of xl using the Euler’s formula

xl = xl+1xl+1 = xl+1(cl+1 − sl+1). (5.26)

Note that Z1/2l−1
= xl(clI+slZ) and

(
Z1/2l

)†
=

xl+1

xl
(cl+1I−sl+1Z). Then after splitting,

we obtain the gate at one level higher

Z1/2l−1 ⊗
(
Z1/2l

)†
= xl+1(clcl+1I ⊗ I − clsl+1I ⊗ Z + slcl+1Z ⊗ I − slsl+1Z ⊗ Z). (5.27)

73

The decomposition in (5.26) holds for any l, and we can use induction to prove that after

splitting j times, we obtain the gate

Z1/2l−1 ⊗
(
Z1/2l

)†
⊗ · · · ⊗

(
Z1/2l−1+j

)†
. (5.28)

Because of the non-uniform rotations, the values sγ(w0) needed to satisfy vary from step to

step. We now introduce a splitting that is indefinitely extensible with simple requirement

for sγ(w0).

I Z

c1(0) =
1+xl−1

2 c1(1) =
1−xl−1

2

II IZ ZI ZZ
c2(00) =

c1(0)+1
2 c2(01) =

c1(1)
2 c2(10) =

c1(0)−1
2 c2(11) =

c1(1)
2

III IIZ IZI IZZ ZII ZIZ ZZI ZZZ

c2(00)+1
2

c2(01)
2

c2(10)
2

c2(11)
2

c2(01)
2

c2(11)
2

c2(00)−1
2

c2(10)
2

Z1/2l−1

CZ1/2l−1

CCZ1/2l−1

C(j)Z1/2l−1

...

j is odd

j is even

Hadamard
Construction

Figure 5.5: Admissible splits from C(j−1)Z1/2l−1
to C(j)Z1/2l−1

for any fixed l ≥ 1.

The diagonal operator C(j−1)Z1/2l−1
= diag[dj] for

dj = [12j−1 ,12j−1−1, xl−1]
T , (5.29)

where 1m is the all-one vector with length m. Let e1, . . . , e2j be the standard basis of

F2j
2 .We expand C(j−1)Z1/2l−1

in the Pauli basis using the Walsh-Hadamard matrix H2j ,

C(j−1)Z1/2l−1
=
∑
v∈Fj

2

cj(v)E(0, v), (5.30)

where cj := [cj(v)]v∈Fj
2
is given by

cj = H2jdj = H2j (12j + (xl − 1) e2j)

= e1 +

(
xl − 1

2j

)
[(−1)wH(v)]T

v∈Fj
2

. (5.31)

The recursive construction for the Walsh-Hadamard matrix leads to a recursion for the

coefficients cj(v),

cj+1 =
1

2

H2j H2j

H2j −H2j

12j
dj

 (5.32)

74

so that

cj+1([0,v]) = (e1)v +

(
xl − 1

2j+1

)
(−1)wH(v), (5.33)

and

cj+1([1,v]) = −
(
xl − 1

2j+1

)
(−1)wH(v). (5.34)

Here e1 = [(e1)v]v∈F2j
2
. Note that wH(v) + wH(1j ⊕ v) = j. If j is odd, then (−1)wH(v) =

−(−1)wH(1j⊕v) and

cj(v) = cj+1([0,v]) + cj+1([1,1j ⊕ v]). (5.35)

Let t = [0, . . . , 0, 1] ∈ Fj2. If j is even, then (−1)wH(v) = −(−1)wH(1j⊕v⊕t) and

cj(v) = cj+1([0,v]) + cj+1([1,1j ⊕ v ⊕ t]). (5.36)

Figure 5.5 describes the splitting process of the cases j = 1, 2.

It then follows from (5.31), (5.33) and (5.34) that the requirement for sγ(w0) is the

same as in (5.24). Although they share the same splitting rule, the global phase xl they

differ becomes a local phase after splitting since sγ=0 = 1 ̸= 0.

Note that the admissible splits we describe include all the elementary operators in the

diagonal Clifford hierarchy as shown in Figure 1.1. Figure 5.4 corresponds to the vertical

line in Figure 1.1, and Figure 5.5 corresponds to the oblique line in Figure 1.1.

We now describe how to choose the new X-logical w0 to lift the level of the induced logi-

cal operator. For l ≥ 1 we suppose that the physical transversal Z-rotation
(
exp

(
−ı π

2l
Z
))⊗n

preserves an [[n, k, d]] CSS(X, C2;Z, C⊥
1 ,y = 0) code, inducing a single Z1/2l−1

or C(j)Z1/2l−1
.

Theorem 25. Suppose that after concatenation, the removal of Z-stabilizers introduces the

new X-logical w0 = [1n,0n]. Then, the logical operator lifts to
(
Z1/2l

)⊗2
or C(j)Z1/2l−1

.

Proof. Concatenation transforms the physical operator

UZ =
(
exp

(
−ı π

2l
Z
))⊗n

≡
(
Z1/2l−1

)⊗n
(5.37)

75

into

U ′
Z =

(
exp

(
−ı π

2l+1
Z
))⊗2n

≡
(
Z1/2l

)⊗2n
. (5.38)

The physical operator U ′
Z preserves the [[2n, k, d′ ≥ d]] CSS(X, C′

2;Z, (C′
1)

⊥,y′ = [0n,0n])

codespace, as shown in Figure 5.2 and Theorem 21. After concatenation, every element in

C′
1 takes the form [u,u] for some u ∈ C1. Since w0 = [1n,0n] /∈ C′

1, we can introduce w0 as

a new X-logical (C′′
1 = ⟨C′

1,w0⟩). Concatenation does not change the generator coefficients,

and it follows from Lemma 5 that

d[u,u] =
(
e
−ı π

2l+1

)2n−2wH([u,u])
(5.39)

for [u,u] ∈ C′
1. Let γ ∈ C⊥

2 /C⊥
1 . Then [γ,0] ∈ (C′

2)
⊥/(C′

1)
⊥, and it follows from (5.18) that

s[γ,0]([1,0]) =
1

|C′
1|

∑
[1⊕u,u]∈C′

1+[1,0]

(−1)[γ,0][1⊕u,u]T d[1⊕u,u]⊕[0,0]

=
1

|C1|
∑
u∈C1

(−1)γ(1⊕u)T
(
e
−ı π

2l+1

)2n−2wH([1⊕u,u])
. (5.40)

Since wH([1⊕ u,u]) = n for all u ∈ C1, we have

s[γ,0]([1,0]) = (−1)γ1
T 1

|C1|
∑
u∈C1

(−1)γu
T
=

 1, if γ = 0,

0, if γ ̸= 0,
(5.41)

and the theorem now follows from (5.24).

Example 18 (Continued: from [[14, 1, 3]] to [[14, 2, 2]]; Logical P † → (T †)⊗2). The [[14, 1, 3]]

code is obtained by concatenating the [[7, 1, 3]] Steane code. We introduce the new X-logical

w0 = [1,0] ∈ F2n
2 by removing the Z-stabilizer γ0 = [1,1] ∈ (C′

1)
⊥ to produce the [[14, 2, 2]]

code. The generator coefficients A′′
0,γ′′

(
π
4

)
of the [[14, 2, 2]] code for γ ′′ ∈ ⟨γ1 = [1,0],γ0⟩

under the physical T⊗14 gate are

A′′
0,γ′′=0

(π
4

)
=

1

2

(
cos

π

4
+ 1
)
=
(
cos

π

8

)2
,

A′′
0,γ′′=γ1

(π
4

)
=

1

2
ı sin

π

4
= ı sin

π

8
cos

π

8
. (5.42)

76

Splitting gives

A′′
0,γ′′=γ0

= A′
0,0 −A

′′

0,γ′′=0
=
(
ı sin

π

8

)2
,

A′′
0,γ′′=γ1⊕γ0

= A′
0,γ1

−A′′
0,γ′′=γ1

= ı sin
π

8
cos

π

8
. (5.43)

It follows from (4.9) that the logical operator induced by T⊗14 on the [[14, 2, 2]] codespace

is
(
T †)⊗2

. Note that the [[14, 2, 2]] code is a member of the triorthogonal code family

introduced by Bravyi and Haah [BH12]. The operations described above can transform

the [[15, 1, 3]] triorthogonal code [KLZ96, BK05, LC13, ADCP14] to the [[30, 2, 2]] code for

which the physical transversal
√
T induces a logical

√
T
†
. The same operations work for

the whole punctured Reed-Muller family [[2l+1−1, 1, 3]] [LC13] that realize the single logical

Z1/2l−1 ∈ C(l)
d and results in the [[2l+2−2, 2, 2]] triorthogonal code family realizing the logical

transversal Z1/2l ∈ C(l+1)
d .

Example 19 (Continued: the [[2l, l, 2]] code family realizes C(l−1)Z). Starting from the

[[4, 2, 2]] code, we first concatenate to obtain the [[8, 2, 2]] code, and then remove the Z-

stabilizer associated with adding the new X-logical w0 = [1,0] to produce the [[8, 3, 2]]

code. The [[4, 2, 2]] code realizes C(1)Z =CZ up to some logical Pauli Z by either physical

transversal Phase gate P⊗4 or transversal Control-Z gate CZ⊗2. The [[8, 3, 2]] code realizes

C(2)Z =CCZ up to some logical Pauli Z by either physical transversal T gate T⊗8 or

transversal Control-Phase gate CP⊗4. Repeated concatenation and removal of Z-stabilizers

yields the [[2l, l, 2]] code family that supports the logical C(l−1)Z gate up to some logical

Pauli Z. When the physical gate is a transversal Z-rotation, the generator coefficients of

the [[2l, l, 2]] code family are listed below.

Since removing Z-stabilizers may decrease code distance, we introduce a third elemen-

tary operation in the next Section with the aim of increasing the distance.

77

Table 5.1: The splitting of generator coefficients for the induced logical C(l−1)Z (up
to some logical Pauli Z). The [[2l, l, 2]] CSS codes are preserved by physical transversal

Z-rotations
(
exp

(
−ı π

2l−1Z
))⊗2l

.

ULZ up to ZL Generator Coefficients A0,γ

2 C(1)Z 1
2 −1

2 −1
2 −1

2

3 C(2)Z 3
4 −1

4 −1
4 · · · −1

4 −1
4

l C(l−1)Z 2l−1−1
2l−1 − 1

2l−1 − 1
2l−1 · · · − 1

2l−1

5.3 Addition of X-stabilizers

Our focus on diagonal gates UZ that preserve CSS(X, C2;Z, C⊥
1 ,y) codes implies that the

effective distance is the Z-distance, dZ = minz∈C⊥
2 \C⊥

1
wH(z). Concatenation, described

in Figure 5.2, does not change dZ . Removal of Z-stabilizers increases the number of Z-

logicals in C⊥
2 \C⊥

1 , and this may decrease dZ . After removing Z-stabilizers we may need to

increase effective distance by introducing newX-stabilizers. We now examine how generator

coefficients evolve when we add or remove X-stabilizers.

Adding a new X-stabilizer x0 ∈ C1 \ C2 transforms a CSS(X, C2; Z, C⊥
1 , y) code to

a CSS(X, ⟨C2,x0⟩; Z, C⊥
1 ,y) code. A Z-logical µ0 in the original code becomes an X-

syndrome in the new code. Note that µ0 ∈ C⊥
2 \ C⊥

1 and µ0 /∈ ⟨C2,x0⟩⊥ \ C⊥
1 . The number

of Z-logicals is halved, while the number of X-syndromes is doubled, so the number of

generator coefficients remains constant. Let UZ be a fixed diagonal physical gate. The

generator coefficients Aµ,γ for the old code determine the generator coefficients A′
µ′,γ′ for

the new code as follows:

A′
µ′,γ′ =

∑
z∈C⊥

1 +µ′+γ′

ϵ(0,z)f(z) =

 Aµ′,γ′ , if µ′ ∈ Fn2/C⊥
2 ,

Aµ′⊕µ0,γ′⊕µ0 , if µ′ ⊕ µ0 ∈ Fn2/C⊥
2 .

(5.44)

Note that the new Z-logical γ ′ ∈ ⟨C2,x0⟩⊥/C⊥
1 . If µ

′ coincides with an old syndrome, then

A′
µ′,γ′ = Aµ′,γ′ . Otherwise µ′ ⊕ µ0 ∈ Fn2/C⊥

2 and γ ′ ⊕ µ0 ∈ C⊥
2 /C⊥

1 . Figure 5.6 captures

the process of adding and removing X-stabilizers. Note that (5.44) is reversed when an

X-stabilizer is removed.

78

(a) Add an X-stabilizer

{0}

C2

C1

Fn2

x0

{0}

C⊥
1

C⊥
2

Fn2

µ0

γ ∈ C⊥
2 /C⊥

1

µ
A0,γ′⊕µ0

A′
µ0,γ′ = A0,γ′⊕µ0

γ ′ ∈ ⟨C2,x0⟩⊥/C⊥
1

µ

µ+ µ0

(b) Transform the table of generator coefficients

remove

add

Figure 5.6: (a) Adding the old X-logical x0 as a new X-stabilizer transforms the old
Z-logical µ0 to a new X-syndrome. (b) Introducing a new X-stabilizer x0 doubles
the number of X-syndromes and halves the number of Z-logicals. The blue rectangle
shifts as the generator coefficients evolve.

If we remove an X-stabilizer from a CSS code that is preserved by a diagonal gate UZ ,

then the new code is still preserved by UZ . If instead, we add an X-stabilizer, then the new

code may fail to be preserved by UZ . We say that addition of an X-stabilizer is admissible

if the new code is preserved by UZ . We now characterize admissible additions in terms of

the new X-syndrome µ0.

Let C⊥
2 /C⊥

1 = ⟨D,µ0⟩. The old code is preserved by UZ if and only if

∑
γ∈⟨D,µ0⟩

|A0,γ |2 = 1, (5.45)

and the new code is preserved by UZ if and only if

∑
γ∈D

|A0,γ |2 = 1. (5.46)

Addition of x0 is admissible if and only if

A0,γ = 0 for all γ ∈ D + µ0. (5.47)

We require that half the generator coefficients A0,γ vanish. The non-vanishing coefficients

appear in the green rectangle shown in Figure 5.6(b). It then follows from (4.9) that the

79

logical operator stays at the same level after an admissible addition. It also follows from

(5.19) and (5.20) that an addition is admissible if and only if

sγ(w0) = ±A0,γ for all γ ∈ C⊥
2 /C⊥

1 . (5.48)

We may need to concatenate several times and remove several independent Z-stabilizers to

create enough zeros among the generator coefficients.

We now combine concatenation, removal of Z-stabilizers, and addition of X-stabilizers

to construct a CSS code family with growing distance that is preserved by diagonal opera-

tors with increasing logical level in the Clifford hierarchy.

Example 20 (Quantum Reed-Muller (QRM) Code Family). Introduced in Theorem 15 and

[RCNP20, Theorem 19], this is a family of [[2m,
(
m
r

)
, 2min{r,m−r}]] CSS codes preserved by

physical transversal Z-rotations
(
Z1/2(m/r−1)

)⊗2m

when r | m. We now describe how these

codes are constructed by concatenation followed by removal of Z-stabilizers and addition

of X-stabilizers.

Let r ≥ 1 be fixed. Note that m/r increases by 1 when m increases by r, and that the

new code is preserved by a physical gate that is one level higher in the Clifford hierarchy.

We start from a [[2m,
(
m
r

)
, 2min{r,m−r}]] CSS code determined by C1 = RM(r,m) and C2 =

RM(r−1,m). The recursive construction of classical Reed-Muller codes [MS77] is given by

RM(r,m+ 1) = {(u,u⊕ v) |u ∈ RM(r,m),v ∈ RM(r − 1,m)}. (5.49)

Let 12r denotes the vector of length 2r with every entry equals to 1. We concatenate

our CSS code r times to construct the [[2m+r,
(
m
r

)
, 2min{r,m−r}]] CSS code determined by

C′
1 = 12r ⊗ RM(r,m) and C′

2 = 12r ⊗ RM(r − 1,m). Note that C′
1 ⊆ RM(r,m + r) and

C′
2 ⊆ RM(r − 1,m + r). We now remove the Z-stabilizers and add the X-stabilizers to

make C′
1 = RM(r,m + r), C′

2 = RM(r − 1,m + r). We obtain the [[2m+r,
(
m+r
r

)
, 2min{r,m}]]

CSS code which is the next member of the QRM code family. The level of the new induced

logical operator equals that of the new physical transversal Z-rotations [RCNP20, Theorem

19], which is one level higher than that of the old induced logical operator. For fixed r, the

operations described above just maintain the distance.

80

To achieve greater distance, we can increase r by 1, and increase m by h := r + m
r +

1 so that m
r + 1 = m+h

r+1 . When r | m, it follows from (5.49) that we can obtain the

[[2m+h,
(
m+h
r+1

)
, 2min {r+1,m+h−r−1}]] CSS code from a [[2m,

(
m
r

)
, 2min{r,m−r}]] CSS code by first

concatenating h times, then removing
((

m+h
r+1

)
+
(
m+h
r

)
−
(
m
r

))
Z-stabilizers, and adding(

m+h
r

)
X-stabilizers. The logical operator induced by the new code is one level higher than

that of the old code, and the distance doubles for the new code. Figure 5.1 illustrates the

case when m = 2 and r = 1.

81

Chapter 6

Applications of Generator Coefficients

We introduced an application of generator coefficients in Chapter 3.2.3 about considering

the entire logical channel in state distillation. In addition, generator coefficient framework

helps the design of CSS codes that are resilient to diagonal errors by restricting the induced

logical operators in (4.9) to be the logical identity and deriving properties on the weights

and signs of stabilizers (see [HLC22c] for an example). In this Chapter, we discuss another

two applications of generator coefficients. First, we show equivalence between the two

necessary and sufficient conditions in [RCNP20, HLC22b], which simplifies and generalizes

the conditions in [RCNP20]. Then, we make use of a connection with generator coefficients

to take advantage of classical divisible codes.

6.1 Generator Coefficients and Trigonometric Iden-

tities

When θ = 2π
2l

for some integer l, Rengaswamy et al. [RCNP20] derived necessary and suffi-

cient conditions for a stabilizer code to be invariant under RZ (θ) =
(
exp

(
−ı θ2Z

))⊗n
. This

derivation depends on prior work characterizing conjugates of arbitrary Pauli matrices by

RZ
(
2π
2l

)
[RCP19]. The necessary and sufficient conditions provided in [RCNP20, Theorem

17] are expressed as two types of trigonometric identity. We now show that our constraint

on generator coefficients is equivalent to the first trigonometric identity, and that the second

trigonometric identity follows from the first. Our main tool is the MacWilliams Identities

[Mac63], and our analysis extends from CSS codes to general stabilizer codes.

We demonstrate equivalence through a sequence of three lemmas.

Lemma 26. Given a CSS(X, C2;Z, C⊥
1) code, let B = {z ∈ C⊥

1 : ϵz = 1} and B⊥ = ⟨C1,y⟩.

For all nontrivial w ∈ C2, define Dw := {w ∗v : v ∈ C1}. Let θ ∈ (0, 2π). Then, (4.1) holds

82

if and only if for all non-zero w ∈ C2

1

|Dw|
∑

x∈Dw+w∗y

(
eıθ
)wH(w)−2wH(x)

= 1. (6.1)

Proof. It follows from (3.14) that

|A0,γ(θ)|2 =
1

|C1|
∑
w∈C1

(−1)γw
T
sw, (6.2)

where

sw :=
1

|C1|
∑

z∈C1+y

(
eıθ
)wH(w)−2wH(w∗z)

. (6.3)

Then

∑
γ∈C⊥

2 /C⊥
1

|A0,γ(θ)|2 =
1

|C1|
∑

γ∈C⊥
2 /C⊥

1

∑
w∈C2

(−1)γw
T
sw +

∑
w∈C1\C2

(−1)γw
T
sw


=

1

|C1|
∑

γ∈C⊥
2 /C⊥

1

∑
w∈C2

sw +
1

|C1|
∑

w∈C1\C2

∑
γ∈C⊥

2 /C⊥
1

(−1)γw
T
sw

=
1

|C1|
|C1|
|C2|

∑
w∈C2

sw =
1

|C2|
∑
w∈C2

sw, (6.4)

where the last step follows from the fact that for anyw ∈ C1\C2, we have
∑

γ∈C⊥
2 /C⊥

1
(−1)γw

T

= 0. Thus, (6.4) equals 1 if and only if sw = 1 for all w ∈ C2. Note that s0 = 1, and for all

non-zero w, we have

sw =
1

|C1|
∑
z∈C1

(
eıθ
)wH(w)−2wH(w∗(z⊕y))

=
1

|Dw|
∑

v∈Dw

(
eıθ
)wH(w∗(v⊕y))

=
1

|Dw|
∑

x∈Dw+w∗y

(
eıθ
)wH(w)−2wH(x)

. (6.5)

Thus,
∑

γ∈C⊥
2 /C⊥

1
|A0,γ(θ)|2 = 1 if and only if (6.1) holds for all non-zero w ∈ C2.

The support of a binary vector x is the set of coordinates for which the corresponding

entry is non-zero. Given two binary vectors x, y, we write x ⪯ y to mean that the

support of x is contained in the support of y. Let supp(x) be the support of x. We define

y|supp(x) ∈ FwH(x)
2 to be the truncated binary vector that drops all the coordinates outside

83

supp(x). Given a space C, we denote projx(C) := {v ∈ C : v ⪯ x}. The next lemma finds

equivalent representations of the cosets Dw +w ∗ y for non-zero w ∈ C2.

Lemma 27. Given a CSS(X, C2;Z, C⊥
1) code, define Dw and y as above. For any non-zero

w ∈ C2, define Zw := {z
∣∣
supp(w)

∈ FwH(w)
2 : z ∈ C⊥

1 and z ⪯ w} and Bw = {v ∈ Zw :

ϵv = 1}. Define Z̃w ⊂ Fn2 (resp. B̃w ⊂ Fn2) by adding all the zero coordinates outside

supp(w) back into Zw (resp. Bw). Note that dim(projw(B̃⊥
w)) = dim(projw(Z̃⊥

w)) + 1.

Define y′ ∈ Fn2 such that projw(B̃⊥
w) = ⟨projw(Z̃⊥

w),y′⟩. Then for all nontirvial w ∈ C2,

Dw +w ∗ y = projw(Z̃⊥
w) + y′. (6.6)

Proof. We first show that Dw+w ∗y ⊆ projw(Z̃⊥
w)+y′. Let z ∈ C1. Then, w ∗z⊕w ∗y ∈

Dw +w ∗ y. Let v ∈ Zw ⊆ C⊥
1 . We observe(

w ∗ (z ⊕ y)⊕ y′) ∗ v = z ∗w ∗ v ⊕ y ∗w ∗ v ⊕ y′ ∗ v = z ∗ v ⊕ y ∗ v ⊕ y′ ∗ v, (6.7)

where the last step follows from supp(x) ⊆ supp(w). Since x ∈ C⊥
1 and z ∈ C1, wH(z ∗

v) = 0 mod 2. We consider two cases. If v ∈ Bw ⊆ Zw, then wH(y ∗ v) = 0 mod 2

and wH(y
′ ∗ v) = 0 mod 2. Otherwise, v ∈ Zw \ Bw. Then wH(y ∗ v) = 1 mod 2 and

wH(y
′ ∗ v) = 1 mod 2. For both cases, wH((w ∗ (z ⊕ y)⊕ y′) ∗ v) = 0 mod 2. Thus,

w ∗ (z⊕ y)⊕ y′ ∈ projw(Z̃⊥
w), which implies that w ∗ (z⊕ y) ∈ projw(Z̃⊥

w) + y′. Then, we

have Dw +w ∗ y ⊆ projw(Z̃⊥
w) + y′.

It remains to show that |Dw| = |projw(Z̃⊥
w)|. We observe that Dw = C1

∣∣
1−w

=

(C⊥
1

∣∣
1−w

)⊥. Thus, dim(Dw) = wH(w) − dw = dim(Z⊥
w) = dim(projw(Z̃⊥

w)), which com-

pletes the proof.

Lemma 28. Given a CSS(X, C2;Z, C⊥
1) code, let B = {z ∈ C⊥

1 : ϵz = 1}, and define Zw,

Z̃w, Bw, B̃w, y
′ as above. Recall that projw(B̃⊥

w) = ⟨projw(Z̃⊥
w),y′⟩. For any θ and any

nontrivial w ∈ C2,

1∣∣∣projw(Z̃⊥
w)
∣∣∣

∑
v∈projw(Z̃⊥

w)+y′

(
eiθ
)wH(w)−2wH(v)

= 1, (6.8)

if and only if ∑
v∈Zw

ϵv (ı tan θ)
wH(v) = (sec θ)wH(w) . (6.9)

84

Proof. We rewrite (6.9) as

2
∑
v∈Bw

(ı tan θ)wH(v) −
∑
v∈Zw

(ı tan θ)wH(v) = (sec θ)wH(w) , (6.10)

and rearrange to obtain

2
∑
v∈Bw

(cos θ)wH(w)−wH(v) (sin θ)wH(v) −
∑
v∈Zw

(cos θ)wH(w)−wH(v) (sin θ)wH(v) = 1. (6.11)

We apply the MacWilliams Identities to P2θ[Bw] and P2θ[Zw] (Pθ[C] is deifned in (2.10) for

any angle θ and linear code C) to obtain

2

|B⊥
w|

∑
z∈B⊥

w

(
eıθ
)wH(w)−2wH(z)

− 1

|Z⊥
w|

∑
z∈Z⊥

w

(
eıθ
)wH(w)−2wH(z)

= 1. (6.12)

Since |B⊥
w| = 2|Z⊥

w|, B⊥
w = projw(B̃⊥

w), and Z⊥
w = projw(Z̃⊥

w), we obtain

1∣∣∣projw(Z̃⊥
w)
∣∣∣

∑
v∈projw(Z̃⊥

w)+y′

(
eiθ
)wH(w)−2wH(v)

= 1, (6.13)

which completes the proof.

Theorem 29. The unitary RZ (θ) realizes a logical operation on the codespace V (S) of an

[[n, k, d]] CSS(X,C2;Z,C
⊥
1) code if and only if for all non-zero w ∈ C2,

∑
v∈Zw

ϵv (ı tan θ)
wH(v) = (sec θ)wH(w) . (6.14)

Proof. By Lemma 27, we know (6.1) equals (6.8). It now follows from Lemma 26 and

Lemma 28 that (4.1) equals (6.14). It then follows directly from Theorem 8.

Remark 30. Rengaswamy [RCNP20, Theorem 17] derived a pair of necessary and sufficient

conditions for a CSS code to be invariant under RZ
(
2π
2l

)
. Theorem 29 shows that the first

of these conditions implies the second and also generalizes the first condition to arbitrary

angle θ. Note that the trigonometric conditions are local, whereas the square sum constraint

on generator coefficients is global.

85

6.2 Generator Coefficients and Quadratic Forms

Given a CSS code, we characterize and represent all possible diagonal gates that realize

a target diagonal logical gate. Consider a diagonal physical gate UZ that preserves a

CSS(X, C2;Z, C⊥
1 ,y) code, inducing a diagonal logical gate ULZ . The generator coefficients

A0,γ appear as coefficients in the Pauli expansions of UZ and ULZ , creating a bridge between

physical and logical worlds. We can express the coefficients A0,γ in terms of the diagonal

entries du of UZ , and express them in terms of the diagonal entries eıθα of the logical gate

ULZ . Theorem 31 results from equating these two expressions.

Theorem 31. Given a CSS(X, C2;Z, C⊥
1 ,y) code, the diagonal physical gate UZ =

∑
u∈Fn

2

du|u⟩⟨u| induces the logical gate ULZ =
∑

α∈Fk
2
eıθα |α⟩⟨α| if and only if

du⊕y = eıθα for GC⊥
2 /C⊥

1
uT = αT . (6.15)

Remark 32. If we think of GC⊥
2 /C⊥

1
vT as a syndrome, then we can observe that u and

u+w, w ∈ C2 determine the same syndrome.

Proof. We express the generator coefficients A0,γ in terms of the diagonal entries eıθα of

the logical gate ULZ ,[
A0,βGC⊥2 /C⊥1

]
β∈Fk

2

=
[
eıθα

]
α∈Fk

2

1

2k

[
(−1)αβT

]
α,β∈Fk

2

. (6.16)

We then express the coefficients A0,γ in terms of the diagonal entries du of UZ ,[
Aµ,βGC⊥2 /C⊥1

]
β∈Fk

2

=
1

|C1|
[du⊕y]u∈C1 H

µ=0

(C1,C⊥
2 /C⊥

1)

=
1

|C1|
[du⊕y]u∈C1

[
(−1)

βGC⊥2 /C⊥1
uT
]
u∈C1,β∈Fk

2

. (6.17)

We permute entries in [du⊕y]u∈C1 and rows in Hµ=0

(C1,C⊥
2 /C⊥

1)
to group together elements from

the same coset of C2 in C1. Given u1,u2 ∈ C2 and w1,w2 ∈ C1, we have

∑
β∈Fk

2

(−1)
βGC⊥2 /C⊥1

(u1⊕w1⊕u2⊕w2)
T

=

 2k, if w1 ⊕w2 ∈ C2,

0, otherwise.
(6.18)

86

Hence

Hµ=0

(C1,C⊥
2 /C⊥

1)

(
Hµ=0

(C1,C⊥
2 /C⊥

1)

)T
= I2k1−k2 ⊗B, (6.19)

where B is a square matrix of size 2k2 with every entry equal to 2k. We multiply (6.16) on

the right by
(
Hµ=0

(C1,C⊥
2 /C⊥

1)

)T
to obtain 1

2k1

∑
α∈Fk

2

eıθα
∑
β∈Fk

2

(−1)
β

(
αT+GC⊥2 /C⊥1

uT

) =
[
eıθα(u)

]
α(u)T=GC⊥2 /C⊥1

uT
. (6.20)

We then multiply (6.17) on the right by
(
Hµ=0

(C1,C⊥
2 /C⊥

1)

)T
to obtain

1

2k1
[du⊕y]u∈C1 (I2k1−k2 ⊗B) =

 1

2k2

∑
u∈C2+w

du⊕y


w∈C1/C2

= [du⊕y]α(u)T=GC⊥2 /C⊥1
uT .

(6.21)

We conclude the proof by equating (6.20) and (6.21).

Corollary 33. Set C2 = {u0,u1, . . . ,u2k2−1}. UZ =
∑

u∈Fn
2
du|u⟩⟨u|, a diagonal physical

gate, preserves the CSS(X, C2; Z, C⊥
1 ,y) codespace if and only if for each fixed w ∈ C1/C2,

du0⊕w⊕y = du1⊕w⊕y = · · · = du
2k2−1

⊕w⊕y. The induced logical operator is

ULZ =
∑
α∈Fk

2

du0⊕αGC1/C2⊕y|α⟩⟨α|. (6.22)

Proof. Note that GC1/C2G
T
C⊥
2 /C⊥

1
= Ik. The proof follows Theorem 8 and Theorem 31. This

is illustrated in Figure 6.1.

Remark 34. Corollary 33 provides a direct way to check whether a physical gate preserves

a CSS code, and enables design of CSS codes that are preserved by a particular physical

diagonal gate. It also implies that a CSS code with more Z-stabilizers (smaller |C1|) can

be preserved by more physical diagonal gates, which is consistent with [RCNP20, Theorem

2]. When UZ =
∑

u∈Fn
2

(
eıθ
)wH(u) |u⟩⟨u| and y = 0, Corollary 33 can be interpreted

as [ZCC11, Corollary 3]. Here, we consider more general transversal physical gates (See

Example 21) and specify the induced logical gate explicitly.

87

2n

C1 Fn2 \ C1

C2

C2 +w1

C2 + w
2k−1

2k

2k

an [[n, k, d]]

CSS code

Figure 6.1: The bridge between physical gate (left) and induced logical gate (right)
on an [[n, k, d]] CSS code: If the little diagonal blocks of physical unitary are aI2k1−k2

for some constant a ∈ C, then the physical gate preserves the CSS codespace, inducing
the logical gate on the right by shrinking each little diagonal block into one diagonal
element.

We discuss the [[5, 1, 2]] code [VK22] introduced by Vasmer and Kubica, where the mixed

transversal physical gate P ⊗ P † ⊗ P ⊗ CZ induces a fault-tolerant logical P gate.

Example 21. We first revisit the construction of the [[5, 1, 2]] code [VK22] starting from

the stabilizer generator matrix (all positive signs r = y = 0).

GS =



1 1 0 1 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0

0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 1 1 1 0


. (6.23)

The only non-trivial X-logical is w = [1, 1, 1, 0, 0] ∈ C1/C2. We have

C2 = {0, [1, 1, 0, 1, 0], [0, 1, 1, 0, 1], [1, 0, 1, 1, 1]},

C2 +w = {w, [0, 0, 1, 1, 0], [1, 0, 0, 0, 1], [0, 1, 0, 1, 1]}.

Consider the physical diagonal gate UZ = P ⊗ P † ⊗ P ⊗ CZ =
∑

u∈F5
2
du|u⟩⟨u|, we have

1 = d0 = eı
π
2 e−ı

π
2 = d[1,1,0,1,0] = e−ı

π
2 eı

π
2 = d[0,1,1,0,1] = eı

π
2 eı

π
2 eıπ = d[1,0,1,1,1], (6.24)

eı
π
2 = eı

π
2 e−ı

π
2 eı

π
2 = dw = d[0,0,1,1,0] = d[1,0,0,0,1] = e−ı

π
2 eıπ = d[0,1,0,1,1]. (6.25)

88

It follows from Corollary 33 that UZ preserves the codespace, inducing the logical Phase

gate ULZ = |0⟩⟨0| + eı
π
2 |1⟩⟨1|. To demonstrate fault-tolerance, we first calculate the set of

undetectable Z-errors,

Ue = {[1, 1, 1, 0, 0], [0, 0, 1, 1, 0], [1, 0, 0, 0, 1], [0, 1, 0, 1, 1]}. (6.26)

Since the only two weight-2 undetectable errors are not confined to the support of 2-local

physical gate CZ, the logical Phase gate is fault-tolerant.

Theorem 31 and Corollary 33 can be extended to general non-CSS stabilizer codes

using Theorem 18. We consider a general stabilizer code generated by the matrix GS =
A 0

0 B

C D

 , where the submatrices A and B are maximized. Then, the results remain

essentially the same, just switching the tower of classical codes from C2 ⊂ C1 to ⟨A,C⟩ ⊂ B⊥.

We illustrate the generalized Corollary 33 using the [[5, 1, 3]] stabilizer code to target a a

logical T gate.

Example 22. Consider the [[5, 1, 3]] stabilizer code with generator matrix GS = [C|D],

where

C =



1 0 0 1 0

0 1 0 0 1

1 0 1 0 0

0 1 0 1 0


and D =



0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1


. (6.27)

Note that B = {0}, so B⊥ = F5
2. Consider the coset ⟨C⟩ in F5

2, where ⟨C⟩ contains all the

even-weight vectors while its non-trivial coset includes all the odd-weight vectors. Then, it

follows from Corollary 33 with the modified tower ⟨C⟩ ⊂ F5
2 that the only diagonal physical

gate that preserves the [[5, 1, 3]] code space and induces a logical T gate is

UZ =
∑
α∈F5

2

dα|α⟩⟨α|, where dα =

 1, if wH(α) is even,

eı
π
4 , if wH(α) is odd,

(6.28)

≡ exp
(
−ıπ

8
Z ⊗ Z ⊗ Z ⊗ Z ⊗ Z

)
. (6.29)

89

Although UZ is a 5-local gate, we can design a outer code that supports a fault-tolerant

logical UZ .

The generator coefficient framework can work either forwards form a general diagonal

physical gate as Example 21 or backwards from a target diagonal logical gate as Example

22. In the remainder of this Chapter, we use the divisibility conditions of cosets in classical

coding theory to construct a new family of CSS codes that is preserved by the transversal

physical T † gate, inducing a target logical gate.

Suppose m ≥ 4. Consider the CSS(X, C2;Z, C⊥
1 ,y = 0) code, where C2 = C(m) is the

simplex code of length n = 2m − 1 and

C1 = ⟨C2, [1⊕ xixj]x∈Fm
2 ,x̸=0 | 1 ≤ i ≤ m− 4, i < j⟩. (6.30)

The generator matrix of the X-logicals is

GC1/C2 =


1

(1⊕ xixj)x∈Fm
2 ,x̸=0

. . .


1≤i≤m−4,i<j

. (6.31)

The minimum distance d is the minimum distance of the Hamming code C⊥
2 , so the param-

eters of the CSS code are [[n, k = 1 +
∑m−4

i=1 (m− i), d = 3]] by Lemma 1.

Theorem 35. The transversal T † gate UZ = (T †)⊗n =
∑

u∈Fn
2

(
eı

π
4

)wH(u)
|u⟩⟨u| preserves

the CSS(X, C2;Z, C⊥
‘ ,y = 0) code, inducing the logical operator

ULZ =
∑
α∈Fk

2

dα|α⟩⟨α| ≡ exp
(
ı
π

8
Z ⊗ Z ⊗ · · · ⊗ Z

)
, where dα =

 1, if wH(α) is even,

eı
π
4 , if wH(α) is odd.

(6.32)

Remark 36. Observe that the two sides of “≡” in (6.32) only differ by a global phase e−ıπ/8

and that (6.32) can be obtained from a single T gate by conjugation, using a sequence of

CX gates. The conclusions of Theorem 35 hold for any [[n = 2m−1, 1 ≤ k ≤ 1+
∑m−4

i=1 (m−

i), d = 3]] CSS code obtained by deleting rows of the form (1⊕ xixj)x∈Fm
2 ,x̸=0 from GC1/C2 .

90

Proof. Given ξi,j = 0 or 1 for 1 ≤ i ≤ m − 4, i < j, we observe that the rank of the

symplectic matrix R determined by the quadratic form QR(x) =
∑

1≤i≤m−4,i<j ξi,jxixj is

at most 2(m−4). Even weightX-logicals correspond to cosets C2+[QR(x)]x∈Fm
2 ,x̸=0 and odd

weight X-logicals correspond to cosets C2+[QR(x)]x∈Fm
2 ,x̸=0+1. Since m−(m−4)−1 = 3,

it follows from Lemma 1 that all weights in C2+[QR(x)]x∈Fm
2 ,x̸=0 are congruent to 0 modulo

8, and that all weights in C2 + [QR(x)]x∈Fm
2 ,x̸=0 + 1 are congruent to 7 modulo 8. It now

follows from Corollary 33 that the physical transversal gate UZ = (T †)⊗n preserves the CSS

code and that the induced logical gate ULZ is given by (6.32).

The next Lemma shows that the logical gate ULZ given by (6.32) can be decomposed

into a T -gate on every logical qubit, Controlled-Phase† on every pair of the logical qubits,

and Controlled-Controlled-Z on every triple of logical qubits.

Lemma 37. π
4

(
k
1

)
− π

2

(
k
2

)
+ π

(
k
3

)
=

 0 (mod 2π), if k ≥ 1 is even,

π
4 (mod 2π), if k ≥ 1 is odd.

Proof. When k = 1, only the first term remains to π
4 . When k = 2, only the first two terms

remain and they sum to 0. For k ≥ 3,

π

4

(
k

1

)
− π

2

(
k

2

)
+ π

(
k

3

)
= π

(
k

4
− k(k − 1)

4
+
k(k − 1)(k − 2)

6

)
=

π

12
k(k − 2)(2k − 5)

=


π
3 t(t− 1)(4t− 5) = 0 (mod 2π), if k = 2t for t ∈ Z+,

π
3 t(t− 1)(4t+ 1) + π

4 = π
4 (mod 2π), if k = 2t+ 1 for t ∈ Z+.

(6.33)

Given two integers t, t−1, one must be odd and one even. Given three integers t, t−1, 4t+1

or t, t−1, 4t−5 exactly one must be divisible by 3. This observation completes the proof.

Example 23. Setting m = 5, we consider the [[31, 5, 3]] CSS code preserved by
(
T †)⊗31

.

Let GC1 =

 GC1/C2

GC2

 , where GC1/C2 =

 1

(1⊕ x1xi)x∈F5
2,x̸=0


i=2,...,5

.

Let GC2 =
[
(xi)x∈F5

2,x̸=0

]
i=1,...,5

. If Ri, i = 2, . . . , 5 is the binary symmetric matrix de-

termined by the quadratic form x1xi, then every matrix R in ⟨Ri | i = 2, . . . , 5⟩ has rank

at most 2. Even weight X-logicals determine cosets C2 + [QR(x)]x∈F5
2,x̸=0 and odd weight

91

X-logicals determine cosets C2 + [QR(x)]+1. As m− (m− 4)− 1 = 3, Theorem 35 implies(
T †)⊗31

preserves the CSS code, and that the induced logical operator is given by (6.28).

We may obtain an [[n, k, d]] CSS code with d > 3 that is preserved by the transversal T

gate, by switching the X-stabilizers from the simplex code to the dual of 2-error-correcting

BCH code, or to the punctured Reed-Muller code RM∗(r,m) with higher degree r ≥ 2.

However, to maintain the congruence conditions, we need to increase the number of physical

qubits. We may optimize the parameters n, k, and d of the CSS code by choosing different

classical component codes. We start from a stabilizer code on N1 qubits and derive all

possible diagonal physical gates U ′
Z on N1 qubits that induce a target logical gate. In

Example 3, the unique (up to global phase) physical gate that preserves the [[5, 1, 3]] code

and induces a logical T gate is specified by (6.28).

Outer Qubits

[[31, 5, 3]] CSS code
[[63, 7, 3]] CSS code

[[N2, N1, d
′]] Stabilizer code

Perfect (T †)⊗n Perfect Non-Local UL
Z

Inner Qubits
Perfect T

[[5, 1, 3]] Stabilizer code
[[7, 1, 3]] Steane code

[[N1, k, d]] Stabilizer code

Figure 6.2: Configuring outer and inner qubits so that transversal T † gate on outer
qubits induces a logical T gate on the inner qubit.

In other word, we embed the N1 qubits in a larger physical space of N2 qubits. The N1

qubits become the logical qubits of a stabilizer code on N2 qubits. The code is preserved

by a transversal physical diagonal gate on N2 qubits, inducing the operator U ′
Z on the

N1 code qubits. The transversal diagonal gate on N2 qubits preserves the outer code,

inducing the target logical operator on the inner code. For example,
(
T †)⊗31

preserves the

5 logical qubits of the [[31, 5, 3]] code inducing a logical T gate on the inner [[5, 1, 3]] code.

The two-layer design is different from the [[105, 1, 3]] concatenated code [JOL14] since the

re-encoded process in the two-layer design handles the inner qubits all together instead of

independently as in [[105, 1, 3]].

92

The same method applies to the [[7, 1, 3]] Steane code, where the inner qubits on the 7

logical qubits of a [[63, 7, 3]] CSS code (a member in the [[n = 2m−1, 1 ≤ k ≤ 1+
∑m−4

i=1 (m−

i), d = 3]] CSS code family). Note however, that there could be physical gates other than

(6.32) that induce a logical T on the [[7, 1, 3]] Steane code, so it is possible to improve on

the parameters of the outer code.

Figure 6.2 describes this method of designing stabilizer codes in two layers. What makes

it feasible is the bridge between physical and logical quantum domains created by generator

coefficients. It may be useful to view concatenation of the [[31, 5, 3]] code and the [[5, 1, 3]]

code as factorization of a [[31, 1, 3]] triorthogonal code. Thus, for the purpose of assembling

a universal set of fault-tolerant gates by magic state distillation, this example provides no

advantage in terms of resources. However, it may still be useful to explore the possibilities

and constraints of the two layer design with the components that are classical divisible

codes.

93

Chapter 7

Conclusion and Discussion

We have classified and unified the theory of diagonal gates for the purpose of logical com-

putation. Analyzing the action of more general diagonal gates followed by X stabilizer

measurements, we have introduced the generator coefficient framework. The framework

provides insight into the structure of diagonal gates that can be used to induce logical

transformations on quantum information encoded in an error correcting code. Followed by

measurements, the interaction of code states and physical gates in terms of generator coeffi-

cients could have probabilistic outcomes. We have analyzed how the probabilistic outcomes

influence magic state distillation. Under specific conditions, the outcomes are determined.

We have derived necessary and sufficient conditions for a diagonal gate to preserve the code

space of a stabilizer code, and have provided an explicit expression for the induced logical

operator. For a transversal Z-rotation through an angle θ acting on a CSS code, we derived

a simple global condition that can be expressed in terms of divisibility of weights in the two

classical codes that determine the CSS code. When all signs in the CSS code are positive,

we have derived bounds on the code parameters for Reed-Muller component codes that

guarantee families of CSS codes invariant under transversal Z-rotation through π/2l. We

have also investigated the cases when the two component codes are cosets of the first order

Reed-Muller code defined by quadratic forms.

The generator coefficient framework provides a tool to analyze the evolution under

any given diagonal gate of stabilizer codes with arbitrary signs. It provides a first bridge

between the physical and logical quantum domains, and a second bridge between quantum

and classical coding domains. It remains open to construct more CSS codes for a target

diagonal logical gate by connecting to the code structure in classical coding theory. It also

remains open to use the tool to reduce the resources required to implement a fault-tolerant

non-Clifford diagonal gate on a stabilizer code.

94

The framework also enables us to break down the steps of constructing a CSS code for

a target logical operation and to analyze the effects on either the code or the set of valid

physical diagonal gates. Given a CSS code that realizes a diagonal gate at the lth level, we

have introduced three basic operations that can be combined to construct a new CSS code

that realizes a diagonal gate at the (l+1)th level in the Clifford hierarchy. The three basic

operations are concatenation (to increase the physical level), removal of Z-stabilizers (to

increase the logical level and increase code rate), and addition of X-stabilizers (to increase

the distance). It remains open to determine an optimal point that balances removal of Z-

stabilizers and addition of X-stabilizers. It also remains open to integrate the three basic

operations into an efficient search algorithm.

95

Bibliography

[ABD+22] Emma Lee Andrade, Jessalyn Bolkema, Thomas Dexter, Harrison Eggers, Vic-
toria Luongo, and Felice Manganiello. Css-t codes from reed-muller codes for
quantum fault-tolerance. In 2022 Virtual Joint Mathematics Meetings (JMM
2022). AMS, 2022.

[ACB12] Hussain Anwar, Earl T. Campbell, and Dan E Browne. Qutrit magic state
distillation. New J. Phys., 14(6):063006, 2012.

[ADCP14] Jonas T Anderson, Guillaume Duclos-Cianci, and David Poulin. Fault-tolerant
conversion between the steane and Reed-Muller quantum codes. Phys. Rev.
Lett., 113(8):080501, 2014.

[AJO16] Jonas T. Anderson and Tomas Jochym-O’Connor. Classification of transversal
gates in qubit stabilizer codes. Quantum Info. Comput., 16(9–10):771–802, Jul
2016.

[Ax64] James Ax. Zeroes of polynomials over finite fields. Am. J. Math., 86(2):255–
261, 1964.

[BBCH14] Ingemar Bengtsson, Kate Blanchfield, Earl T. Campbell, and Mark Howard.
Order 3 symmetry in the Clifford hierarchy. J. Phys. A Math. Theor.,
47(45):455302, 2014.

[BH12] Sergey Bravyi and Jeongwan Haah. Magic-state distillation with low overhead.
Phys. Rev. A, 86(5):052329, 2012.

[BK05] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal
Clifford gates and noisy ancillas. Phys. Rev. A, 71(2):022316, 2005.

[BMP+99] P. Oscar Boykin, Tal Mor, Matthew Pulver, Vwani Roychowdhury, and Farrokh
Vatan. On universal and fault-tolerant quantum computing: a novel basis and
a new constructive proof of universality for shor’s basis. In 40th Annu. Symp.
Found. Comput. Sci. (Cat. No.99CB37039), pages 486–494. IEEE, 1999.

[Bom15] Héctor Bomb́ın. Gauge color codes: optimal transversal gates and gauge fixing
in topological stabilizer codes. New J. Phys., 17(8):083002, 2015.

[Bor26] Max Born. Quantenmechanik der stoßvorgänge. Z. Phys., 38(11-12):803–827,
1926.

[Bor13] Yuri L. Borissov. On Mceliece’s result about divisibility of the weights in the
binary Reed-Muller codes. In Seventh International Workshop, Optimal Codes
and related topics, pages 47–52, 2013.

[BS10] Salman Beigi and Peter W Shor. C3, semi-Clifford and generalized semi-Clifford
operations. Quantum Inf. Comput., 10(1&2), 2010.

96

[CAB12] Earl T. Campbell, Hussain Anwar, and Dan E Browne. Magic-state distilla-
tion in all prime dimensions using quantum Reed-Muller codes. Phys. Rev. X,
2(4):041021, 2012.

[CGK17] Shawn X. Cui, Daniel Gottesman, and Anirudh Krishna. Diagonal gates in the
Clifford hierarchy. Phys. Rev. A, 95(1):012329, 2017.

[CH17] Earl T. Campbell and Mark Howard. Unified framework for magic state dis-
tillation and multiqubit gate synthesis with reduced resource cost. Phys. Rev.
A, 95(2):022316, 2017.

[CHX+21] Jiahui Chen, Jingzhen Hu, Yongjia Xu, Robert Krasny, and Weihua Geng.
Computing protein pkas using the tabi poisson–boltzmann solver. Journal of
Computational Biophysics and Chemistry, 20(02):175–187, 2021.

[CK86] Robert Calderbank and William M Kantor. The geometry of two-weight codes.
J. London Math. Soc., 18(2):97–122, 1986.

[CRSS97] A Robert Calderbank, Eric M Rains, Peter W Shor, and Neil JA Sloane. Quan-
tum error correction and orthogonal geometry. Phys. Rev. Lett., 78(3):405,
1997.

[CRSS98] Robert A. Calderbank, Eric M. Rains, Peter W. Shor, and Neil J.A. Sloane.
Quantum error correction via codes over GF (4). IEEE Trans. Inf. Theory,
44(4):1369–1387, 1998.

[CS96] Robert A. Calderbank and Peter W. Shor. Good quantum error-correcting
codes exist. Phys. Rev. A, 54:1098–1105, Aug 1996.

[DD15] Kelan Ding and Cunsheng Ding. A class of two-weight and three-weight codes
and their applications in secret sharing. IEEE Trans. Inf. Theory, 61(11):5835–
5842, 2015.

[Del73] Philippe Delsarte. Four fundamental parameters of a code and their combina-
torial significance. Inf. Control, 23(5):407–438, 1973.

[DEN+21] Dripto M. Debroy, Laird Egan, Crystal Noel, Andrew Risinger, Daiwei Zhu,
Debopriyo Biswas, Marko Cetina, Chris Monroe, and Kenneth R. Brown. Op-
timizing stabilizer parities for improved logical qubit memories. Phys. Rev.
Lett., 127(24), Dec 2021.

[DHL+22] Elena Dimitrova, Jingzhen Hu, Qingzhong Liang, Brandilyn Stigler, and Anyu
Zhang. Algebraic model selection and experimental design in biological data
science. Advances in Applied Mathematics, 133:102282, 2022.

[EK09] Bryan Eastin and Emanuel Knill. Restrictions on transversal encoded quantum
gate sets. Phys. Rev. Lett., 102(11):110502, 2009.

[EM96] Artur Ekert and Chiara Macchiavello. Quantum error correction for commu-
nication. Phys. Rev. Lett., 77(12):2585, 1996.

97

[GC99] Daniel Gottesman and Isaac L. Chuang. Demonstrating the viability of uni-
versal quantum computation using teleportation and single-qubit operations.
Nature, 402(6760):390–393, 1999.

[GG05] Solomon W Golomb and Guang Gong. Signal design for good correlation: for
wireless communication, cryptography, and radar. Cambridge University Press,
2005.

[Gol49] Marcel JE Golay. Notes on digital coding. Proc. IEEE, 37:657, 1949.

[Got97] Daniel Gottesman. Stabilizer codes and quantum error correction. California
Institute of Technology, 1997.

[Ham50] Richard W Hamming. Error detecting and error correcting codes. The Bell
system technical journal, 29(2):147–160, 1950.

[HFWH13] Charles D Hill, Austin G Fowler, David S Wang, and Lloyd CL Hollenberg.
Fault-tolerant quantum error correction code conversion. Quantum Inf. Com-
put., 13(5-6):439–451, 2013.

[HH18] Jeongwan Haah and Matthew B. Hastings. Codes and protocols for distilling
t, controlled-s, and toffoli gates. Quantum, 2:71, 2018.

[HLC21] Jingzhen Hu, Qingzhong Liang, and Robert Calderbank. Climbing the diagonal
clifford hierarchy. arXiv preprint arXiv:2110.11923, 2021.

[HLC22a] Jingzhen Hu, Qingzhong Liang, and Robert Calderbank. Co-design of css codes
and diagonal gates. In 2022 IEEE International Symposium on Information
Theory (ISIT), pages 1229–1234. IEEE, 2022.

[HLC22b] Jingzhen Hu, Qingzhong Liang, and Robert Calderbank. Designing the quan-
tum channels induced by diagonal gates. Quantum, 6:802, 2022.

[HLC22c] Jingzhen Hu, Qingzhong Liang, and Robert Calderbank. Divisible codes for
quantum computation. arXiv preprint arXiv:2204.13176, 2022.

[HLRC21] Jingzhen Hu, Qingzhong Liang, Narayanan Rengaswamy, and Robert Calder-
bank. Css codes that are oblivious to coherent noise. In 2021 IEEE Inter-
national Symposium on Information Theory (ISIT), pages 1481–1486. IEEE,
2021.

[HLRC22] Jingzhen Hu, Qingzhong Liang, Narayanan Rengaswamy, and Robert Calder-
bank. Mitigating coherent noise by balancing weight-2 Z-stabilizers. IEEE
Trans. Inf. Theory, 68(3):1795–1808, 2022.

[HZG18] Jingzhen Hu, Shan Zhao, and Weihua Geng. Accurate pka computation using
matched interface and boundary (mib) method based poisson-boltzmann solver.
Commun. Comput. Phys, 23(2):520–539, 2018.

98

[JOL14] Tomas Jochym-O’Connor and Raymond Laflamme. Using concatenated quan-
tum codes for universal fault-tolerant quantum gates. Phys. Rev. Lett.,
112(1):010505, 2014.

[KBLW01] Julia Kempe, Dave Bacon, Daniel A Lidar, and K Birgitta Whaley. Theory of
decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A,
63(4):042307, 2001.

[KK20] Michael Kiermaier and Sascha Kurz. On the lengths of divisible codes. IEEE
Trans. Inf. Theory, 66(7):4051–4060, 2020.

[KLZ96] Emanuel Knill, Raymond Laflamme, and Wojciech Zurek. Accuracy threshold
for quantum computation. arXiv quant-ph/9610011, 1996.

[Koh07] Axel Kohnert. Constructing two-weight codes with prescribed groups of auto-
morphisms. Discret. Appl. Math., 155(11):1451–1457, 2007.

[KT19] Anirudh Krishna and Jean-Pierre Tillich. Towards low overhead magic state
distillation. Phys. Rev. Lett., 123(7):070507, 2019.

[Kur21] Sascha Kurz. Divisible codes. arXiv preprint arXiv:2112.11763, 2021.

[LC13] Andrew J. Landahl and Chris Cesare. Complex instruction set computing ar-
chitecture for performing accurate quantum z rotations with less magic. arXiv
preprint arXiv:1302.3240, 2013.

[Mac63] Florence J. MacWilliams. A theorem on the distribution of weights in a sys-
tematic code. Bell Labs Tech. J., 42(1):79–94, January 1963.

[McE71] Robert J. McEliece. On periodic sequences from GF(q). J. Comb. Theory Ser.
A., 10(1):80–91, 1971.

[McE72] Robert J. McEliece. Weight congruences for p-ary cyclic codes. Discrete Math,
3(1):177–192, 1972.

[MS77] Florence J. MacWilliams and Neil J. A. Sloane. The theory of error correcting
codes, volume 16. Elsevier, 1977.

[NC11] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2011.

[Ouy21] Yingkai Ouyang. Avoiding coherent errors with rotated concatenated stabilizer
codes. Npj Quantum Inf., 7(1):87, 2021.

[PDH+20] Kaitlyn Phillipson, Elena S Dimitrova, Molly Honecker, Jingzhen Hu, and
Qingzhong Liang. Gröbner bases of convex neural code ideals. Advances in
Mathematical Sciences, pages 127–138, 2020.

[PR13] Adam Paetznick and Ben W Reichardt. Universal fault-tolerant quantum com-
putation with only transversal gates and error correction. Phys. Rev. Lett.,
111(9):090505, 2013.

99

[PRTC20] Tefjol Pllaha, Narayanan Rengaswamy, Olav Tirkkonen, and Robert A. Calder-
bank. Un-weyl-ing the Clifford hierarchy. Quantum, 4:370, 2020.

[RCNP20] Narayanan Rengaswamy, Robert A. Calderbank, Michael Newman, and
Henry D. Pfister. On optimality of CSS codes for transversal T . IEEE J.
Sel. Areas in Inf. Theory, 1(2):499–514, 2020.

[RCP19] Narayanan Rengaswamy, Robert A. Calderbank, and Henry D. Pfister. Uni-
fying the Clifford hierarchy via symmetric matrices over rings. Phys. Rev. A,
100(2):022304, 2019.

[Rei05] Ben W. Reichardt. Quantum universality from magic states distillation applied
to css codes. Quantum Inf. Process., 4(3):251–264, 2005.

[Ren20] Narayanan Rengaswamy. Classical coding approaches to quantum applications.
PhD thesis, Duke University, 2020.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21(2):120–
126, 1978.

[Sab22] Eric Sabo. Trellis Decoding And Applications For Quantum Error Correction.
PhD thesis, Georgia Institute of Technology, 2022.

[Sha48] Claude Elwood Shannon. A mathematical theory of communication. Bell Syst.
Tech. J., 27(3):379–423, 1948.

[Sho94] Peter W Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proc. - Annu. IEEE Symp. Found. Comput. Sci. FOCS, pages
124–134. Ieee, 1994.

[Sho99] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[Ste96a] A. M. Steane. Simple quantum error-correcting codes. Phys. Rev. A,
54(6):4741–4751, 1996.

[Ste96b] Andrew Steane. Multiple-particle interference and quantum error correction.
Proc. R. Soc. Lond., A Math. phys. sci., 452(1954):2551–2577, 1996.

[TRC22] Xinyu Tan, Narayanan Rengaswamy, and Robert Calderbank. Approximate
unitary 3-designs from transvection markov chains. Des. Codes, Cryptogr.,
90(9):2181–2204, 2022.

[VB22] Christophe Vuillot and Nikolas P. Breuckmann. Quantum pin codes. IEEE
Trans. Inf. Theory, 68(9):5955–5974, Sep 2022.

[VK22] Michael Vasmer and Aleksander Kubica. Morphing quantum codes. PRX
Quantum, 3(3), Aug 2022.

100

[War01] H. N. Ward. Divisible codes – a survey. Serdica Mathematical Journal, 27
(4):263–278, 2001.

[WHC+22] Leighton Wilson, Jingzhen Hu, Jiahui Chen, Robert Krasny, and Weihua Geng.
Computing electrostatic binding energy with the tabi poisson–boltzmann
solver. Communications in Information and Systems, 22(2):247–273, 2022.

[Wil13] Mark M Wilde. Quantum information theory. Cambridge University Press,
2013.

[WZ82] William K Wootters and Wojciech H Zurek. A single quantum cannot be
cloned. Nature, 299:802–803, 1982.

[YTC16] Theodore J Yoder, Ryuji Takagi, and Isaac L Chuang. Universal fault-tolerant
gates on concatenated stabilizer codes. Phys. Rev. X, 6(3):031039, 2016.

[ZCC08] Bei Zeng, Xie Chen, and Isaac L. Chuang. Semi-Clifford operations, structure
of Ck hierarchy, and gate complexity for fault-tolerant quantum computation.
Phys. Rev. A, 77(4):042313, 2008.

[ZCC11] Bei Zeng, Andrew Cross, and Isaac L. Chuang. Transversality versus univer-
sality for additive quantum codes. IEEE Trans. Inf. Theory, 57(9):6272–6284,
2011.

[ZLC00] Xinlan Zhou, Debbie W Leung, and Isaac L Chuang. Methodology for quantum
logic gate construction. Phys. Rev. A, 62(5):052316, 2000.

[ZR97] Paolo Zanardi and Mario Rasetti. Noiseless quantum codes. Phys. Rev. Lett.,
79(17):3306, 1997.

101

Biography

Jingzhen Hu was born and brought up in Shenzhen, a modern city in southern China. She

obtained a BS with distinction in Applied Math from Southern Methodist University in

Dec 2017, where she also received Hamilton Undergraduate Research Scholar, Statistical

Science Department Award for Academic Excellence, Summer Research Award, Carrie

& Edwin Mouzon Mathematics Scholarship, Founders Scholarship, Discovery Scholarship,

and Mustang Scholar. She started her undergraduate research on simulating pKa values

of proteins under the supervision of Professor Weihua Geng and Professor Rober Krasny

when she was a sophomore. This work led to several publications [HZG18], [CHX+21],

and [WHC+22]. Between the undergraduate and graduate study, she worked as a research

assistant with Professor Elena Dimitrova on algebraic models for biological data, which leads

to publications [PDH+20] and [DHL+22]. She moved to Duke University in 2018 in pursuit

of a PhD in Mathematics. Under the supervision of Professor Robert Calderbank, she

studied on designing the quantum channels induced by diagonal gates, which led to papers

[HLRC22], [HLC22b], [HLC21], [HLC22c], [HLRC21], and [HLC22a]. She also served as a

reviewer for the Journal of Supercomputing.

102

