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Fig. 2 Non-planar loop and the Pomeron 

the non-planar loop (a) and the Pomeron (b); the 

strings have been drawn as arcs of circles moving 

along a cylinder. The topological equivalence 

between the non-planar loop and the Pomeron diagram 

appears in a new light in the string picture. The 

fact that the Pomeron pole factorizes with the 

Virasoro-Shapiro spectrum is now manifest. 
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Our report is divided into three distinct sections; 

the first deals with tree diagrams, and is devoted 

to a derivation of general relativity as the unique 

generator (at low frequency) of the tree expansion, 

given only the observed properties of gravitational 

forces and the principles of S-matrix theory. The 

second section deals with the ultraviolet behaviour 

of general relativity considered as a quantum field 

theory. In the last section we discuss some pros­

pects for improving the catastrophic situation which 

arises there. 
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I. Trees 

We summarize here the work of D. Boulware and the 

author (submitted to Ann. Phys.) which carries out 

a program first proposed by Weinberg (1964) and by 

Feynman (1962). There exist static, macroscopic, 

attractive, long range forces; by S-matrix theory 

these must be mediated by exchange of physical 

(non-ghost) particles. A well-known argument then 

shows that the forces cannot be due to quanta of 

spin other than 2 (gravitons). Lorentz invariance 

requires these gravitons to couple to a conserved 

symmetric matrix element, T ^ ( p , p T ) . As a low 

energy theorem, T is determined uniquely to 

first order in emitted graviton momentum. It has 

a universal strength and form for all systems (which 
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is known as the equivalence principle) and is thus 

derived to be the usual stress tensor of the source 

in question. More important for us is that gravitons, 

if emitted by any system, must also self-couple 

through a three-graviton vertex V^. Its structure 

is determined by the Ward identities derived from 

Lorentz invariance of the graviton polarisation 

tensor, at least to quadratic order in the momenta 

(which we stick to throughout). There is an 

infinite series of higher-point vertices, whose sum 

also satisfies a (more general) Ward identity. 

Many solutions of the identity exist but all yield 

the same amplitudes. We need only exhibit one solu­

tion, which is the Einstein action: all tree graphs 

are generated by the Einstein functional I - /v^R, 

plus the usual minimally coupled matter action. 

But since the classical limit of a theory is deter­

mined by its tree generator, this shows that any 

theory of gravitation which respects the stated 

principles will necessarily have general relativity 

as its classical limit. The above quantum deri­

vation is formally similar to, but considerably 

stronger than, the usual classical arguments based 

on seIf-coupling or gauge invariance, 

II. Closed Loops and Nônrénormalizabilitv  

Let us now consider general relativity as a local 

quantum field theory and examine its ultraviolet 

behaviour, at the one-loop level. What sort of 

counter-terms will be required, i.e. is it 

renormalizable? The recent powerful methods of 

covariant quantization in nonabelian gauge theory 

provided the incentive to attack the full quantized 

gravity-matter system. The pioneer work here Is by 

ft Hooft and Veltman (Ann. Inst. H. Poincare J974), 

who calculated the one-loop devergences of pure 

gravity and of gravity plus scalar field. The 

form of the counter terms in pure gravity is easily 

established without calculation, using the back­

ground field method and dimensional regularization. 

The counter-Lagrangian AL must be invariant in 

the background metric and have dimension 4; it is 

then necessarily a linear combination of the 

three quadratic curvature invariants: 

AL - (l/e)[aR2

 a + PR 2 + yR 2] /£ (1) 

For renormalizability AL must either vanish on mass 

shell (R = 0 = R ) , or be proportional to L itself. 

But although R _ does not vanish, a peculiar 

identity in 4 dimensions says its square is a 

linear combination of the other two invariants, 

and AL is "accidentally" zero at one loop. As 

soon as a scalar field is coupled, however, AL 

no longer vanishes on the scalar-graviton mass 

shell. 

In the hope that more physical matter systems do 

not share this fate, P van Nieuwenhuizen and I 

(Phys, Rev. D15 , July 1974) investigated the 

coupling to photons and to fermions, van 

Nieuwenhuizen, Tsao and I (Phys. Letters, June 

1974) calculated coupled Einstein-Yang-Mills loops. 

We concluded that general relativity is nonre-

normalizable when coupled to spin 0, j or ] (it 

would require an infinity of miraculous cancel­

lations for higher order counter terms to stop 

at a finite member). This disaster is linked to 

the presence of the dimensional coupling constant 

K . The Brans-Dicke theory is also nonrenorma-

lizable (being equivalent to the Einstein-

Scalar system). 

Ill Prospects 

It is of course possible that general relativity 

is renormalizable (or even finite) when treated 

nonperturbatively, but this is difficult to check, 

as is the possibility that some magic set of 

coupled matter fields will cancel each other's in­

finities when coupled to gravitation. The renor­

malizable model, first suggested by De Witt and 

Utiyama (1962) and also advocated by Weinberg at 
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this Conference (a sum of Einstein and Weyl 
2 2 

(aR^ + $R ) terms) , unfortunately, has propagator 

ghost difficulties. Perhaps the supergauge 

theories, either as matter sources, or in the spin 

2 plus 3/2 gauge fields they generate (see Zumino Ts 

lecture) will behave better. Whatever the correct 

road, it is essential to resolve this conflict be­

tween gravitation and quantum theory; the nonre-

normalizability of graviton-matter interactions 

pollutes, in principle, all calculations of the 

properties of matter. 
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There have been many reports at this conference on 

classical solutions of interacting field theories, or 

in general of systems with an infinite number of 

degrees of freedom, which are believed to be relevant 

to particle physics. This is a short report on the 

general method to deal with such systems in a quantum 

mechanical fashion. retails and examples are 

presented in réf. 1 . 

ihe idea is to extract as much information as possible 

from the classical system, to obtain results beyond 

perturbation theory. This is typically fruitful 

for bound state problems. 

The period is a continuous classical variable, 

together with the energy, and other constants of 

motion (if any) for which one has to find quantizatic 

conditions. 

The general method for WKB quantization of non 

separable systems is explained in ref. 2 and 3. 

It is illustrated by the following considerations: 

lor two separable degrees of freedom, where the 

hamiltonian is 

H = I P x
2 + \ P 2

2 + V(qp + V ( q 2 ) , 

the energy is separately conserved in each mode: 

The problem is to generalize in some sense the 

Bohr-Sommerfeld quantization rules to systems with 

many degrees of freedom in the non separable case. 

It turns out that the difficult problem is to go 

from one to two degrees of freedom. The analysis 

can then be extended fairly easily to field theories. 

Typically, one knows one or several families of 

classical solutions to the interacting field theory 

which have finite energy and are periodic in time. 

J G ^ = J P 1 + V(q^) = constant 

E 2 = \ P 2 + V(q 2) = constant 

These two equations define a manifold in classical 

(p^,q^) phase space, which is called an invariant 

torus. The important point is that such manifolds 

also exist in the non separable case (see ref. 4). 

iiaslov's quantization conditions are then 

c^ p dq = 2im (n i+A i) + 0(h ) , ̂  integer, 


