1-264

[l alindiminidi 7N (= - — - —= —/-\

P =1 I =
—_ | ! { \

\\‘-.I_.-._.___._.v \-I_________\.,
T, T2 T3 T, T T3 T2 T,

(a) (b)
Fig. 2 Non-planar loop and the Pomeron
the non-planar loop (a) and the Pomeron (b); the

strings have been drawn as arcs of circles moving
along a cylinder. The topological equivalence

between the non-planar loop and the Pomeron diagram
appears in a new light in the string picture. The

fact that the Pomeron pole factorizes with the

Virasoro—Shapiro spectrum is now manifest.

S Deser
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QUANTUM GRAVITY#*
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Waltham,Mass., USA

Our report is divided into three distinct sections;
the first deals with tree diagrams, and is devoted

to a derivation of general relativity as the unique
generator (at low frequency) of the tree expansion,
given only the observed properties of gravitational
forces and the principles of S-matrix theory. The

second section deals with the ultraviolet behaviour
of general relativity considered as a quantum field
theory. In the last section we discuss some pros—

pects for improving the catastrophic situation which

arises there.
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I Irees

We summarize here the work of D. Boulware and the

author (submitted to Ann. Phys.) which carries out
a program first proposed by Weinberg (1964) and by

Feynman (1962). There exist static, macroscopic

2
attractive, long range forces; by S-matrix theory
these must be mediated by exchange of physical
(non-ghost) particles, A well-known argument then
shows that the forces cannot be due to quanta of
spin other than 2 (gravitons). Lorentz invariance
requires these gravitons to couple to a comserved
symmetric matrix element, Tpv(p,p'). As a low
energy theorem, Tuv is determined uniquely to
first order in emitted graviton momentum., It has

a universal strength and form for all systems (which
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is known as the equivalence principle) and is thus

derived to be the usual stress tensor of the source

in question. More important for us is that gravitons,

if emitted by any system, must also self-couple
through a three-graviton vertex V3. Its structure
is determined by the Ward identities derived from
Lorentz invariance of the graviton polarisation
tensor, at least to quadratic order in the momenta
(which we stick to throughout). There is an
infinite series of higher—point vertices, whose sum
also satisfies a (more general) Ward identity.

Many solutions of the identity exist but all yield
the same amplitudes. We need only exhibit one solu-
tion, which is the Einstein action: all tree graphs
are generated by the Einstein functional T = /Y8R,
plus the usual minimally coupled matter actiom.

But since the classical limit of a theory is deter—
mined by its tree generator, this shows that any
theory of gravitation which respects the stated
principles will necessarily have gemeral relativity
as its classical limit, The above quantum deri-
vation is formally similar to, but considerably
stronger than, the usual classical arguments based

on self-coupling or gauge invariance.

II. Closed Loops and Nonrenormalizability

Let us now consider general relativity as a local
quantum field theory and examine its ultraviolet
behaviour, at the one~loop level. What sort of
counter~terms will be required, i.e. is it
renormalizable? The recent powerful methods of
covariant quantization in nonabelian gauge theory
provided the incentive to attack the full quantized
gravity-matter system. The pioneer work here is by
't Hooft and Veltman (Ann. Inst. H. Poincare 1974),
who calculated the one-loop devergences of pure
gravity and of gravity plus scalar field. The

form of the counter terms in pure gravity is easily
established without calculation, using the back-

ground field method and dimensional regularizatiom,

The counter-Lagrangian AL must be invariant in
the background metric and have dimension 4; it is
then necessarily a linear combination of the
three quadratic curvature invariants:
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For renormalizability AL must either vanish on mass
shell (Ruv =0 = R), or be proportional to L itself.

But although Ru\J does not vanish, a peculiar

off
identity in 4 dimensions says its square 1is a

linear combination of the other two invariants,
and AL is "accidentally" zero at one loop. As
soon as a scalar field is coupled, however, AL

no longer vanishes on the scalar-graviton mass

shell,

In the hope that more physical matter systems do
not share this fate, P van Nieuwenhuizen and I

(Phys. Rev, D15 , July 1974) investigated the

coupling to photons and to fermioms, van
Nieuwenhuizen, Tsao and I (Phys. Letters, June
1974) calculated coupled Einstein-Yang-Mills loops.
We concluded that general relativity is nonre-
normalizable when coupled to spin 0, § or 1 (it
would require an infinity of miraculous cancel-
lations for higher order counter terms to stop

at a finite member). This disaster is linked to
the presence of the dimensional coupling constant
. The Brans-Dicke theory is also nonrenorma-—
lizable (being equivalent to the Einstein-

Scalar system).

IIT Prospects

It is of course possible that general relativity
is renormalizable (or even finite) when treated
nonperturbatively, but this is difficult to check,
as is the possibility that some magic set of
coupled matter fields will cancel each other's in-
finities when coupled to gravitation, The renor-
malizable model, first suggested by De Witt and

Utiyama (1962) and also advocated by Weinberg at
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this Conference (a sum of Einstein and Weyl

2

(aRuv + BRZ) terms), unfortunately, has propagator

ghost difficulties. Perhaps the supergauge

theories, either as matter sources, or in the spin

2 plus 3/2 gauge fields they generate (see Zumino's

A Neveu

lecture) will behave better. Whatever the correct
road, it is essential to resolve this conflict be-
tween gravitation and quantum theory; the nonre-

normalizability of graviton-matter interactions

pollutes, in principle, all calculations of the

properties of matter.

WBK METHOD IN FIELD THEORY
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. n . . . . . .
There have been many reports at this conference o The period is a continuous classical variable,

classical solutions of interacting field theories, or together with the energy, and other constants of

in general of systems with an infinite number of motion (if any) for which one has to find quantization

degrees of freedom, which are believed to be relevant conditions.

to particle physics. This is a short report on the The general method for WKB quantization of non

i h ms in a quantum . . . ,
general method to deal with such syste 4 ' separable systems is explained in ref. 2 and 3.

mechanical fashion. vetails and examples are

It is illustrated by the following comsiderations:

i £. 1. )
preseated in re tor two separable degrees of freedom, where the

Llhe idea is to extract as much information as possible hamiltonian is

from the classical system, to obtain results beyond
4 ’ 4 H=1LP 2, i P22 + V(ql) + V(qz),

perturbation theory. This is typically fruitful

for bound state problems. the energy is separately conserved in each mode:

2

the problem is to generalize in some sense the By = 3 Pl * V(ql) = constant

Bohr-Sommerfeld quantization rules to systems with . 2
E.=1}!P

5 2 constant

+ V(g,) =
many degrees of freedom in the non separable case.

It turns out that the difficult problem is to go These two equations define a manifold in classical

from one to two degrees of freedom.

The analysis (pi’qi) phase space, which is called an invariant

can then be extended fairly easily to field theories. torus. The important point is that such manifolds

also exist in the non separable case (see ref. 4).
Typically, one knows one or several families of
staslov's quantization conditions are then
classical solutions to the interacting field theory

c, P de=

which have finite energy and are periodic in time. !
i

2 .
21h (ni+2i) + 0(h™), n; integer,



