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Abstract For the vanishing deformation parameter A, the
full structure of the (anti)commutator relations in the A" = 4
supersymmetric linear Wo[A = 0] algebra is obtained for
arbitrary weights /1 and & of the currents appearing on the
left hand sides in these (anti)commutators. The w14~ algebra
can be seen from this by taking the vanishing limit of other
deformation parameter g with the proper contractions of the
currents. For the nonzero A, the complete structure of the
N = 4 supersymmetric linear Wso[A] algebra is determined
for the arbitrary weight /| together with the constraint | —
3 < hy < hy + 1. The additional structures on the right
hand sides in the (anti)commutators, compared to the above
A = 0 case, arise for the arbitrary weights #; and h, where
the weight £, is outside of above region.
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1 Introduction and outlook

In the description of [1,2], the conformal weights of the free
bosonic and fermionic operators in the two dimensional con-
formal field theory do depend on the deformation param-
eter A. See also the relevant work [3] for the role of this
A in the similar two dimensional model. The bosonic and
fermionic currents made from the above free fields quadrat-
ically by including the multiple derivatives have integer or
half integer weights. The algebra from these currents has
the A dependent structure constants on the right hand sides
of the (anti)commutator relations because the relative coeffi-
cients between the free fields in the expression of the currents
reveal the A dependence in nontrivial way. By construction in
[1,2], it is a new feature, compared to the previous construc-
tion by using free fields (for example, [4-6]), that there exist
the bosonic current of weight-1 and the fermionic current of
weight- % The multiple number of free bosonic and fermionic
operators can be introduced. Then it is straightforward to
write down the corresponding algebra because the defining
operator product expansions(OPEs) between these multiple
free fields satisfy independently. See also the relevant work
in [7] without a deformation parameter we mentioned above.

The structure of the AN/ = 2 supersymmetric linear
Wolg’ K algebra where K is the number of complex bosons
or the number of complex fermions is found in [8]. The struc-
ture constants for vanishing deformation parameter are gen-
eralized to the ones for nonzero A. However, it turns out that
there are some constraints in the weights for the currents on
the left hand sides of the algebra according to the result of
this paper. Of course, when we go from the algebra (i) at
A = 0 to the algebra (ii) at & # 0, once the correspond-
ing structure constants in the latter which lead to the ones in
the former when we take A — 0 are determined, then defi-
nitely we expect to have the generalized structure constants
for nonzero A in the algebra ii) via above transition. This is
the simplest deformed algebra.
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On the other hand, suppose that there are some “addi-
tional” structure constants having the factor A in the (new
or known) currents appearing in the latter algebra (ii). Then
after we take the above A — 0 limit in this algebra (ii),
we still have the same former algebra (i) at A = 0 because
these “additional” terms vanish in this limit. This is another
deformed algebra. Therefore, it is nontrivial to determine the
“additional” current terms having the X factor explicitly for
general i1 and h;. They can appear as either the new cur-
rents with the coefficients having the A factor or previously
known currents with the structure constants having the X fac-
tor explicitly.

Recently [9], by considering the particular number K =
2 of free fields above, the N' = 4 supersymmetric linear
Weo[A] algebra is studied. For low weights, the explicit OPEs
between the currents of N = 4 multiplet are obtained. All the
structure constants appearing on the right hand sides of these
OPE:s are given in terms of the above deformation parameter
A explicitly but the general behavior of those on the weights
is not known.

In this paper, we continue to study the structure of the
N = 4 supersymmetric linear Wso[A] algebra found in [9].
We try to determine the A/ = 4 multiplet for any weight /2 in
terms of above free field operators. The corresponding five
components are determined explicitly for arbitrary weight 4.
After the explicit form of the A" = 4 multiplet is obtained, we
perform their OPEs by using the defining OPEs between the
free fields. In doing this, we should use the previous results
in [8] for the OPEs between the nonsinglet currents, as an
intermediate step. We will observe the appearance of the
extra structures (described before) on the right hand sides
of the (anti)commutators for the particular weights &1 and
h,. Eventually we will determine the (anti)commutator rela-
tions between the currents of the A/ = 4 multiplet, as in the
abstract. In the various footnotes, we emphasize that the extra
structures on the right hand sides of the (anti)commutators
arise for the specific 4 and k5.

In Sect. 2, we construct the N = 4 multiplet in terms
of free fields for general weight 4. In Sect. 3, the explicit
(anti)commutator relations between the nonsinglet currents
for the weights i1 and h, satisfying some constraints are
obtained. In Sect. 4, the fundamental commutator relations
between the N = 4 multiplets of SO (4) singlets or nonsin-
glets are determined. In Appendices, the details appearing in
Sects. 3 and 4 are described. In particular, the remaining ten
(anti)commutators for the N' = 4 multiplet are given here.
We are using the Thielemans package [10] with a mathemat-
ica [11].

We summarize what we have obtained as follows. At the
vanishing deformation parameter . = 0, the complete struc-
ture of the N = 4 supersymmetric linear Woo[A = 0] algebra
is given by (4.4), (4.6), (4.8), (4.9) and (4.10) in addition to
Appendices (G.1), (G.2), (G.3), (G.5), (G.6), (G.9), (G.10),

(G.11),(G.13) and (G.14) where all the A dependence appear-
ing on the right hand sides is gone by putting A = 0. Com-
pared to the previous work in [12], due to the presence of the
weights 1 and % currents mentioned before, in general, they
do appear on the right hand sides of above (anti)commutators
at A = 0. However, in the most of the examples, the structure
constants appearing in these currents are vanishing at A = 0.
See also the footnotes in Sects. 3 and 4. It is an open prob-
lem whether the present algebra at A = 0 can be reduced
to the one of [12] by decoupling the above weights 1 and
% currents. For nonzero A, still the above (anti)commutator
relations between the currents can be used for the weights
h1 and h, satisfying some constraints. From the analysis in
the footnotes of Sect. 4, this algebra at nonzero A is differ-
ent from the one in [13]. In other words, they have common
algebra at A = 0 (their structure constants are the same) and
for nonzero X, one deformed algebra is given by [13] and
another one is the algebra obtained in this paper.

Then what happens for the generic weights i and hy?
First of all, the A/ = 4 supersymmetric linear Wy, [A] alge-
bra is linear in the sense that the right hand sides of the OPEs
between the currents contain all the possible current terms
which are linear. Furthermore, the A/ = 4 multiplet is given
by (2.7), (2.8), (2.9), (2.10) and (2.11). Then we can per-
form any OPE inside the Thielemans package [10] using the
explicit forms of the ' = 4 multiplet. Of course, from the
beginning we should fix the weights &1 and A, within the
package. Then the possible poles are given by the highest
singular term which is (k] + h>)th order pole, the next sin-
gular term which is (k1 + hy — 1)th order pole, and so on
until the first order pole. Then the next step is to rewrite all
the singular terms in terms of the components of the N = 4
multiplet of SO (4) nonsinglets or singlets. This is straight-
forward because the possible current terms at the particular
singular term are known. The weight # is fixed and the pos-
sible currents can be determined. They consist of the current
having that weight %, the current having the weight (h — 1)

with one derivative, . . ., and the current having the weight 1
with (h — 1) derivative. See also Appendix C for the specific
examples.

Now we introduce the arbitrary coefficients on these pos-
sible current terms and solve the linear equations for these
unknown coefficients by requiring that the algebra is closed
in the sense that the right hand side of the OPE contains the
components of N = 4 multiplet. It will turn out that they can
be determined explicitly in terms of the deformation param-
eter A. The point is, according to the result of this paper, that
there exists a critical singular term where the possible current
of weight A, is allowed. If &4 < k., then we expect to have
the additional structures (either the presence of new currents
or the different A dependent structure constants in the pre-
viously known currents) on the right hand side of the OPE.
In this case, although the structure constants are known in
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terms of the A for fixed /1 and k5, their explicit expressions
for generic i1 and h» are not known so far. On the other hand,
if h > h., thenstill we can use the previous (anti)commutator
relations described in the previous paragraph, for nonzero A
without any modifications. In this case, all the structure con-
stants are known and they are given by those in Appendix
A.

Let us list some future directions along the line of the
present paper.

e The N = 4 superspace OPE.

Although we have found 15 (anti)commutator relations
explicitly, it is nice to observe its ' = 4 superspace descrip-
tion. In order to perform the A/ = 4 superspace approach, we
need to rewrite the above fundamental OPEs in (4.4), (4.6),
(4.8), (4.9) and (4.10) such that the second element with the
coordinate w on the left hand side of the OPE should be the
lowest component of the AN/ = 4 multiplet. That is, they
are given by [(®"), (@('2)a], [, (@5, ],

2
. |
(@, (@G2)a], [(@F)r, (@], and [(@5" )

(dJ(()hz) )n] in the commutators. After these are obtained, then
it is straightforward to express them in the A' = 4 super-
space. For consistency check, it is obvious to extract the
remaining 10 (anti)commutator relations (or its correspond-
ing OPEs) from the above N = 4 superspace description.
In other words, we do not have to calculate the remaining
(anti)commutators separately and this is the power of N = 4
supersymmetry.

e The complete structure constants for any 41 and s for
NONZEro A.

One way to determine these is that it is better to consider
the modes of the currents in terms of those in the free fields.
By simplifying the (anti)commutator relations in terms of the
modes of the free fields, we can express them in terms of sev-
eral (anti)commutator relations according to the decomposi-
tion of the (anti)commutator in quantum mechanics. Then
we can use the corresponding (anti)commutator relations for
(2.1). We can try to obtain the general structure by fixing the
weights i1 and hj. It is rather nontrivial to determine the
structure constants for generic /1 and hj by varying them.

e Realization of the present algebra in the celestial con-
formal field theory.

Atthe vanishing deformation parameter A = 0, the algebra
is known completely. In other words, the structure constants
are given in Appendix A by inserting the A = 0. We are left
with another deformation parameter ¢g. As described before,
we realize that the w4 algebra can be obtained from the
S O (4) singlet currents via proper contractions of the currents
with vanishing ¢ limit at A = 0. It would be interesting to
observe whether there exists any realization of the present
algebra in the celestial conformal field theory, along the line
of [14-20], or not.

@ Springer

2 The N = 4 multiplet

The N = 4 multiplet for any weight % is described by using
the free bosonic and fermionic fields.

2.1 Review

The B y and b ¢ systems satisfy the following operator prod-
uct expansions

Y B0 w) = 5175% -

(z—w)

ij gab 4 .
E— 8 &Y +
The fundamental indices a, b of SU(2) runovera,b = 1,2
while the antifundamental indices a, b of SU(2) run over
a, b = 1, 2. Similarly the fundamental indices i, j of SU (N)
runoveri, j = 1,2,..., N and the antifundamental indices
i, jof SUN)runoveri, j =1,2,..., N.The (8, y) fields
are bosonic operators and the (b, c) fields are fermionic oper-
ators.

Then the SU(N) singlet currents (the generalization of
[1,2]) can be obtained by taking the bilinears of above free
fields with a summation over the (anti)fundamental indices
of SU(N) as follows:

¢4 (2) bIP (w) = @2.1)

h—1

V)fi_[);* — Z ai(h, )") 8h717i ((al /Blb) 5”_ ylﬁ)
i=0
h-1 1 A B}
+Z(; al (h,)\. + E) ah—l—l ((al blb) SIiCla)a
(h—1+22) "= i ;
V)L(h&)b— - _ Z at (h, A ah—l—z ((az ﬁlb) 6Ziyla)
: Ch—1) &
(h—23) "=

. 1 S ,
Z al <h7 )\ + 5) ah*l*l ((3! blb) Sll_cla)v
0

@ 2
h=1 . . .7 -

nyz_; = Z o (h, 1) ah—l—t ((at ,Blb) Blicla)
i=0

-2 ) i
=2 B (@) 87y,
i=0
h—1 ) . o B
O, =3 ol (h, 1) "1 (@ B 87 ')
i=0
h=2

4 Z ﬂi (h, )\‘) ah—Z—i ((al bl_b) Sli ylé_l) .
i=0

2.2)

Note that the weights of these currents are given by h, &,
(h — %) and (h — %) respectively. The conformal weights of
(B, y) fields are given by (A, 1 — A) while conformal weights
of (b, c) fields are given by (% +A, % — ). The above weights
for the currents do not depend on the deformation parameter
A due to the particular combinations of the free fields. By
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counting the number of (anti)fundamental indices, there exist
four components labeled by (ab) = (11, 12, 21, 22) in each
current.

The relative coefficients appearing in (2.2) depend on the
conformal weight & and deformation parameter A explicitly
and they are given by the binomial coefficients and the rising
Pochhammer symbols where (a), = a(a+1)---(a+n—1)
as follows [1,2]:

a’(h,k)z(h;l)

(=22 = h +2)p—1-i

. , 0<i<(h—1,
(h+ Dn—1-i
o (h, 1) = <hl_1>
(—2)\‘—.h+2)h—1—l" Oilf(h_])v
(h+i—1Dp_1-
, h—2
B (h, 1) = ( i )
(=22 —h.+2)h727i’ 0<i<(h=2).
(h+ D)p—2—i
(2.3)

Let us consider the following currents consisting of (b, ¢)
fields, (B, y) fields, (y, b) fields and (B, c) fields respectively
by taking the linear combinations of (2.2) with the help of
(2.3)
2h=3(h — 1) (—Dh

@3 S D

(h — 142X (h)+ (h)—
X|: (2]1 _ 1) Vk,ﬁb + Vk,ﬁb ’

213 py (—DP
Qh =3 S ai(h, 0)
5 [(h =20 L+ V(h)—]

Wil (b, ¢) =

Wi (B.y) =

(2]’1 _ 1) A,ab A,ab
1 2h=1p (=)t
2 Qh =D Sl i +1,0)

(h+1)— (h+1)+
X[ wab — Piab ]

1 2h=1p (— 1!
2Qh=DU S aih+1,0)

(D)= | A+ D+
X[ wab T Qab ]

X,ab
’ ’b =
0,1 b)

0,1 (. ) =
2.4

The overall coefficients do not depend on the deformation
parameter A. Then we have eight bosonic currents for the
weight h = 1,2, ... and eight fermionic currents for the
weight h + % = %, %, ... as well as four fermionic currents

Q)"b& of the weight % in (2.4). Note that four fermionic cur-

1
2 _
rents Q)i’ab of the weight % are identically zero.

2
The stress energy tensor of weight 2 is given by

L= (nga + Wéf“), (2.5)

v+

which can be written as V, Z.

charge is

. The corresponding central

Ceen = 6N (1 —41), (2.6)
which depends on the deformation parameter A explic-
itly. The above bosonic and fermionic currents in (2.4) are
quasiprimary operators under the stress energy tensor (2.5)
by using the defining OPEs in (2.1). The central charge (2.6)
becomes ¢, = 6N at A = 0.

2.2 The N' = 4 multiplet
2.2.1 The lowest component

It is known, in [9], that the lowest components CD(()h) for the
weights & = 1, 2, 3 and 4 have their explicit A dependences
(h—2A) and (h—1+2A) in their relative coefficients. Then the
question is how we determine these relative coefficients for
arbitrary weight /. We realize that there exists an additional
overall factor —4 from the weight / to the weight (2 4 1) in
(2.4). Moreover, the denominator of the overall factor can be
extracted easily and is given by (2,1—1“) in terms of the weight

h. We expect to have the factor (—=4)" from the above anal-
ysis. The other numerical (4 independent) factor can appear
in general. This can be fixed only after we calculate the OPE
between this lowest component and itself and obtain the cen-
tral term. We will compute this central term later. For the
time being we simply write down the following form

(=42

o) =
2k —1)

[ — (h = 2%) WEi+(h—1+22) WQ;,‘}“}.
2.7)

For the weights i = 1, 2, 3, 4, we can observe that the cor-
responding numerical values appearing in the relative coeffi-
cients of (2.7) can be seen from the ones in [9]. The normal-
ization in (2.7) is different from the one in [9] where there
appear the additional numerical factors 16, 8, 12, 24 for the
weights h = 1, 2, 3, 4 respectively. At the moment, it is not
easy to figure out the exact 2 dependence from these values.
In other words, we take the 4 dependence as in (2.7) together
with the additional numerical factor (—4)~2. As explained
before, the overall factor in (2.7) can be determined by the
normalization of the highest order singular term in the OPE
between the <I>(()h) and itself.

@ Springer
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2.2.2 The second components

From the observation of [9] for the weights h = 1, 2, 3, 4, the
second components contain the various fermionic currents
and their relative coefficients are common for any weights
h = 1,2,3,4. This implies that it is natural to take these
relative coefficients for any . and the question is how we
obtain the overall numerical factor. By taking the normal-
ization of (2.7) we can extract the overall factors for the
weights h = 1, 2, 3, 4 and they are given by —% x1= —1—16,
—é X (=2) = }1, —% x 12 =—1 and—ﬁ X 96 = 4 respec-
tively. We can easily see that there exists (—4)" dependence
when we increase the weight by 1. Therefore, the general
expression for the weight / is given by 4(—4)"~* which cov-
ers the above numerical values for the weights h = 1, 2, 3, 4.
Then we can write down the corresponding second compo-
nents as follows:

1
oM = 4 (—ayh—4 [_ (Qx,n L iV
2

2 \Zh+} hts

. 121 1,22 Ar 11

+21\/§Qh+% 2Qh+%+2Qh+%

. “A12 . AL21  A3A,22
+21«/§Qh+%+l\/§Qh+% Qh+§)i|’

(M2 _ 4 g\h—4 _L( Wl | A 2l
O\ =4 (-4 [ 5 Qh+%+21\/§Qh+%

A,22 AA, 11 , AAL12 AA,22
“2057 420} +2v20; 1 - 0,7) }

(M3 _ 4 gvh—4 _L( NI 12
(I)% —4( 4) |: ) Qh-&-%—‘rlﬁQh—&-%

ht3 3 h+%

) A,22+2 ~A,11 —|—ix/§ Ar21 -1,22)]’
Q Qh+ Qh+% Q

M4 _ 4 ah=4| L i a2 | A
Oy =404 [ 2 @l ~ it O

()
+3 Qh+%] (2.8)
Or we can calculate the OPEs between the supersymme-
try generators and the lowest component and read off the
first order pole which will provide the second components
in (2.8). We will calculate the central terms coming from the
highest order pole between the second components and itself
later. As described before, once we fix this central term, then
the overall factor in (2.8) where we use the normalization in
(2.7) can be determined.

2.2.3 The third components
The third components contain the various bosonic currents

and their relative coefficients are equal to each other for any
weights & = 1, 2, 3, 4 in the analysis of [9]. Then we obtain

@ Springer

the following results by replacing them with the correspond-
ing expressions for arbitrary weight i with the above overall
factors in previous section

()12 et [ ol 12 a2
(12 = 4 (-4 20 Wy'ph — V2WEE =2 Wi,
. A, 11 A, 12 . 1,22
+2i Wghiy — 2V2 Wehi —2i WEih ]
"1 = 4 (| 2 Wi AV W 20 W

B,h+1 B,h+1

. A, 11 A,21 . 1,22
—2i Wiy + 2V2WERL + 20 Wi }

(h).14 hed s oadl 12
o1t — 4 (4 Wity +iv2WEE

. 2,21 2,22 a1l
+4iV2 Wy, = 2Weihy — 2 Wei
—2iN2 Wit —2N2 W A2 W ]

(h),23 h—4 A1 . A, 12
(P = 4(—4) |:—2WB$h+1—l\/§WB’h+l

. 2,21 2,22 a1l
—4iV2 Wty 2 Wity —2 Wi
—2iN2 Wit —2N2 W A2 W ]

oM = 4 (- —2i WL AW 20 W

B,h+1

AW - 2N -2 W

(h),34 h—4 s AL 1l A,12 . 2,22
O =4(—4) =20 Wy V2 Wy 420 Wyt

L2 WL CaAWER i Wi ] (2.9)
In principle, the OPEs between the supersymmetry gen-
erators of N' = 4 superconformal algebra and the second
components and the first order pole will provide the third
components in (2.9). The central terms coming from the
highest order pole between the third components and itself
will be determined later. Note that we can express the linear
combination of Wg:;il and another linear combination of
W;:Zﬁl q)(lh)sl] 8[/](1 @gh)’kl
the @ﬁh)’lz and the <I>§h)’34 look similar to each other in the
sense that the field contents are the same and half of them
have opposite signs. By adding or subtracting these two rela-
tions, the two independent field contents can be written in

terms of the third components of N = 4 multiplet as above.

in terms of and % . For example,

2.2.4 The fourth components

The fourth components contain the various fermionic cur-
rents and their relative coefficients are equal to each other for
any weights 7 = 1, 2, 3, 4 in the analysis of [9]. By replac-
ing them with the corresponding expressions for arbitrary



Eur. Phys. J. C (2023) 83:615

Page 70f47 615

weight i with the above overall factors in previous section
we determine the following results as follows:

S (0,1 _ g ()1 M),1
M1 = oM _ 1—40)0d
3 3 (2h+1)( ) 3
1
A (_ayh—4 All 12
—4(—4) [ 2( hiy T fQ

+2[\/‘QA21 _2Q2f2_2QA11

h+3
—Zlkalz—zfQ“l;+Q“2)],

&)(h),Z = (3/1),2

3 3 @h+1)
RN 0! 221 2,22
= 4(-4) [2( L2VIgh —200

h),2
(1—4/\)aq>(%)

-20; 14 ~2iv2 0)) 3+Q”2)}

. 1
W3 = 3 _ (1—42)9 o3
2 2 2h +1) 2
A _\h—d i 112y oh22
= 4(-4) [2( cHivIgp 2008
AA, 11 2,21 22
~20, V2057 + 0, )}
- 1
Pt = o — (1 —4na e
3 I @h+ ) 5

= 4 (—4yh B (Qh+3+2 Qx 2%+2 Qx 1£+Qx 22) }
(2.10)

Compared to the q)(;h)’i which belongs to the components

2 .
of the N' = 4 multiplet, the d~>gh)” in (2.10) are quasiprimary

(h),i

fields under the stress energy tensor (2.5). The <I> and the

CDY'H) i by considering that the weight 4 in (2.8) is replaced

wizth the weight (4 1) look similar to each other in the sense
that the field contents are the same and half of them have
opposite signs. By adding or subtracting these two relations
as before, the two independent field contents can be written
in terms of the second components of the (h + 1)th N' = 4
multiplet and the fourth components of the ~-th A" = 4 mul-
tiplet. We expect that the OPEs between the supersymmetry
generators of N = 4 superconformal algebra and the third
components will provide the fourth components in (2.10).

2.2.5 The last component

Finally we describe the last component for arbitrary weight
h as follows:

B = ol _

= o (1—43)0% o)

h+1)

= 4 (—4)' [ 2 (Wé aa 4 WQ,;‘_‘;Q)] @.11)
Under the stress energy tensor (2.5), this is a quasiprimary
operator. The OPEs between the supersymmetry generators
of N = 4 superconformal algebra and the fourth components
will provide the last component in (2 1 1) By replacmg h with
(h+2)in (2.7), we can express WB ‘42 AN nd WF ht2 in terms

of CD(()hH) and <I>§h) by simple linear combinations as before.

Therefore, the N' = 4 multiplet is summarized by (2.7),
(2.8), (2.9), (2.10) and (2.11) together with (2.2), (2.3) and
(2.4). Their algebra will be obtained explicitly by using the
defining relations in (2.1).

3 The N = 4 supersymmetric linear Wi;z algebra
between the adjoints and the bifundamentals under
the U (2) x U(2) symmetry

In order to obtain the algebra between (2.7), (2.8), (2.9),
(2.10) and (2.11), it is necessary to determine the alge-
bra between the currents in (2.4). In the footnotes, we
present some examples where there are extra structures
(described in the introduction) on the right hand sides of the
(anti)commutator relations for the specific weights &1 and
hs.

3.1 The (anti)commutator relations between the nonsinglet
currents

Let us consider the algebra between the currents consisting
of (b, c) fields in (2.4). By multiplying the Pauli matrix of
SU(2) with the additional factor % properly and summing
over the indices a and b as in [9], we can construct the three
fundamentals of SU (2). By multiplying the Kronecker delta
(or 2 x 2 identity matrix) with the contractions of the indices,
we obtain the singlet of SU (2). First of all, in SU(2), there

is no symmetric d45¢

symbols.

3.1.1 The commutator relation with hy = ho, hy £ 1 for
nonzero A

Then we can associate (WF n + Wéfl) (WF h —

and (Wé‘ h“ — é‘ 32) with the triplets Wlﬁ ;‘ !

rA=3
WF,h

A21
W)
r,A=2
WFh
A1l

Moreover, the (WF P

,and

of SU(2) respectively.

@ Springer
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122) Aaa
Fh Fh

Wé » of SU(2). One of the commutator relations in [9] can

plays the role of the singlet Wlﬁ‘ hA =0 =

be written as the following commutator relation’

(Wt ym. (WEE ]

h1+hy—3
- _ Z qh hi, hzh(m n, 1)
h=—1, odd
xi fABC( hl-‘rhz o p)mtn
m+hl - AB hi+hy—4
<h1+h2—1> cr(hi, ha, M) 6 q 8m+n
hi+hy—3
+ Z h hlhzh(mnk)
h=0,even

3.1

AB sy
b ) (WF,h1+hz—2—h)m+n'

The structure constant is given by (A.4).

Let us calculate the central term in (3.1) explicitly. One of
the reasons why we are doing this is that we have not seen any
literatures which provides all the details in the calculation and
itis useful to observe the general structure of the computation
of any OPEs including the free fields. In order to calculate
the highest singular term in the OPE VX’&]ZJF( ) V(hZH( ),
we need to calculate the central term in the OPE between
V)\(‘}’t;g+(z) and 8,7 y'¢ 9" B'4(w) coming from V(h2)+( ). It
is known that the following OPE satisfies

h1—1
h - 4 |
VI @y =8 Y (2 (=DM !
Jj=0
Jj+1 . .
. =0 la -
X ;(] +1=Dn-1-j 0@ —xyit yex) 4

(3.2)

The next step is to calculate the OPE between L Y (x)

appearing in the last factor in (3.2) and 8{0 B (w). We have
the defining OPE relation in (2.1). The multiple derivative

! We can calculate the OPE between WF I _6(2) and WF s 4(u))

where | = hy+2 and read off the ninth order pole which has the struc-
ture constant B2 (L — DAL + 1)(24 — 3)(24 — )24 + 1)(24 +3)
appearing in the current Wg‘! hy-phy —2—h=1 (W) In this case, the weight
h is given by odd number 4 = 7. We do not see this term from the
commutator (3.1) because the even & appears in the last term of (3.1).
This implies that if the weights /1 and A, do not satisty the above con-
straint (h; = hp or hy = hy £ 1) for nonzero A, then we cannot use
the formula in (3.1) fully and there appear the extra terms on the right
hand sides of the corresponding OPE. Because the above extra factor
contains A, there will be no problem for vanishing A when we use (3.1).
It would be interesting to obtain the above commutator for generic /]
and h;. It seems that there is a critical singular term in the sense that
we still have the structure of (3.1) for the poles less than this critical
singular term. Of course, for the poles greater than the critical singular
term there exist other extra terms in general.

@ Springer

with respect to x acting on 6 lw) can be obtained explicitly
and the similar multiple derivative with respect to w acting on
Gy Can be rewritten as the corresponding multiple deriva-
tive with respect to x acting on (x_l—w) with the number of

minus signs. Then we obtain the following result

_ - 1 . o

oy @) 8y, B (W) = o (2D (18T 8
+eee (3.3)
Now we expand —(Z_xl) 7= appearing in the second factor from

the last in (3.2) around x = w by using the Taylor expansion.
Then we obtain that the coefficient of (x — w)**! in the
W evaluated at x = w is given by m (hy —
t)r+i+1. We are left, by collecting the contributions from
(3.2) and (3.3), with

h1—1 Jj+1 1
[aba Do, DY G = n i ;}

j=0 t=0
x [(—1)t (t+ i)!(S”_S"‘_’}

(hy — l)r+i+1:|, (3.4)

x[_‘
t+i+1)

1—i

in the W term. After acting the derivative e

V(h2)+

from the remaining factor in the first part of V; 2, (w) on the

W term, we obtain (1 +i+1),,—1—;. By combining
with (3.4), the final contribution from the central terms in the
OPE between VA(ZIZJF(Z) and the first part of Vk(hczfr(u)) can

be written as

hi—1 hy—1 j+1

N&pedaa Y Y al(hi,2)a (ha,2)

j=0 i=0 =0
N+ ) b

LUy L=y 1

Taxizo D A= Dot

X(hy = D140 (hy + 1+ Dpy—1-i- (3.5

We can do the similar calculation for the contribution from
the second part of V(h2)+(w) In this case, we should use the
following intermediate result in [9]

h1—1
V(]71)+(Z) C./C(_x) — 8176 Z a‘/ (h], A + )( l)hl.]'
Jj=0
j+1
XY G+1=0m-1-j
t=0
1

G
Xﬁ(z—x)hl—tac W)+

(3.6)

By starting with (3.6) and following the procedures in
(3.3), (3.4) and (3.5) we have described above, we obtain the
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following contribution

hi—1 hy—1 j+1 1 1
N 3o 3 3 al (ot ) o (k)
j=0 i=0 =0
Jla+i)! hidt
- - _1 1 1_[ s
“Toarizn D U= Ont

X(hy = Oppri (hy + 14+ Dpy—1-4. 3.7

Therefore, we obtain the final central term, by adding (3.5)
and (3.7), as follows:

h1—1 hp—1 j+1

= N 8p¢ dda Z Z Z

h h
VI @) VT (w)

(o)1 j=0 i=0 =0
. i . 1 ; 1
x| a’(hy, 1) a' (ha, X)) —a’ hl,)\'f‘i a hz,k—i-i
L+ i) par
Tetizo DT UHT=On-1

x(hy — 14 (hy + 1+ Dpp—1-i. (3.8)

Due to the behavior of two Kronecker deltas, the central term
is nonzero only for the case where the second index of the
first operator should equal to the first index of the second
operator and the first index of the first operator should equal
to the second index of the second operator on the left hand
side. In Appendix B, we present other central terms.

By realizing that the overall factor appearing in the first
current of (2.4) is given by (—4)"=2, we can write down the
central terms

(hi — 14 21)

By, o, ) = (=)t s, 0 8
cp(hy, ho, A) = (—4) ba 0dé ah 1)

< @ v w

V@V W)
v @ v w)
(hzzzzlj_lz))\‘) VA(EZ? (Z)

x V"2 (w) , (3.9)

1
(Z—w)h 1+ho

where the relation (3.8) and the relations in Appendix (B.1)
are used. In the last term of (3.9), we can use the central term
of V"2)"(2) V"))~ (w) with the extra factor (—1)"1+/2,

In Appendicés (C.1)and (C.2), we present the correspond-
ing OPEs for h; = hy = 4 where the indices A and B are
equal to each other for the former while they are different
from each other for the latter. Compared to the commutator
relation in (3.1), there exists (—1)"~! factor. Due to the Kro-
necker delta, the former corresponds to the last two terms in
(3.1) while the latter corresponds to the first termin (3.1). The
other four cases between the nonsinglet currents are checked

explicitly and we do not present them in this paper. The com-
mutator relations between the nonsinglet currents are given
in [8]. The corresponding commutator relations between the
nonsinglet currents and the singlet currents can be determined
similarly.

3.1.2 The second commutator relation with
h1 = hy, ho £ 1 for nonzero A

Similarly, we obtain the following commutator relation for
the currents consisting of (8, y) fields?

[(WE i ms (WEE ]

hi+hy—=3
h hihoh
== > " pg"" " m.n 0
h=-—1,0dd

. 1.C
xif (WEhyhy—2—p)metn

m+hy —1 AB hi+hy—4
<h1 Fhy— 1) cp(hi, ha, 2) 87" g
X8min
h1+hy—3
+ > g pg " man b
h=0,even

<84T (WE iy oy 2 n)metn- (3.10)

The central term appearing in (3.10), by recalling the def-
inition of the second relation of (2.4), can be described by
(hy —2)) (hy —23)
2hy = 1) 2hy = 1)

h h
< VI @) v (w)

cp(hy, ho, 1) = (=hMT=4 5,2 8,z [

(hy —21)

(h1)— (h2)—
+V)»,¢i]b (Z) VA,?d (U)) - (2]’1] _ 1)

h hy)—
)V @) Vi) (w)

2 As in the footnote 1, the OPE between Wl;’;: :=17 (z) and Wé_',i :=13(w)
where i1 = hy+4 can be calculated and the ninth order pole contains the
structure constant — 22188 (L —1)A (21 —3)(2A — 1) 2A+ 1) (A% —1+5)
appearing in the current Wﬁ -y —2—h=1 (w) and the seventh order pole
contains the structure constant —6144(A — DA2A—3)21—1)2A+1)
appearing in the current Wé‘,hl+h2727,1:3(w). In this case, the weight
h is given by odd number & = 7 or h = 5 while the corresponding
dummy variable / is given by even number in (3.10). If the weights &
and &, do not satisfy the above constraint (] = hy or h = hy £ 1)
for nonzero X, then we cannot use the formula in (3.10) exactly because
the extra terms on the right hand sides of the corresponding OPE occur,
compared to the A = 0 case. We observe that for the poles less than the
critical singular term mentioned in the footnote 1, the above commutator
can be used precisely and for the poles greater than that singular term
there exist extra terms on the right hand side of the OPE. Although these
extra terms can be obtained for fixed /| and /5, at the moment, those for
general /11 and &, are not known. It seems that as the difference between
hy and hj increases, the pole corresponding to the critical singular term
decreases.

@ Springer
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(ha =2%) = - (h2)+
- (2]’12 _ 1) V)\.,alb (Z) V)»,l(‘_,zd (U))

1
(sz)hl +hy

(3.11)

The previous relation (3.8) and the previous relations in
Appendix (B.1) can be used. As before, in the last term of
(3.11), the central term of V)fhézd) @) V)\(h%— (w) with the extra
factor (— l)h 1112 can be used. The relevant OPEs are givenin
Appendices (C.3) and (C.4). The additional (—1)}’_1 factor

appears in the OPEs.

3.1.3 Other commutator relations with h1 = hy, ho + 1 for
nonzero A

The remaining commutator relations between the bosonic
currents and the fermionic currents can be described as

hi+hy=3

[WesDm 0 0] = 32

h=—1

x<l. pABE (giC

hi+hy—

1
h /11,h2+§,h
q9 qr

(m,r,A)

é,h)”H”
2

AB (o
+5 (th+h2_%_h)m+,>,

hi+hy—=3

A B
(W . (Qzﬁ%)r] = >

h=—1

X(_ifABé(Qx,é

1
h hiho+5,h
q" qg 2 (m,r, 1)

h1+h27%7h)m+r

+8AB (Q21+h2—%—h)m+r>’

hi+hy—2

hiho+4.n
Yo =D g )
h=—1

X(_ i fABE (51C

/11+h2—%

(Wi, (Q;ﬁ%»] -
_h)m+r

AB (A
+5 (th+h27%7h)m+r>7

hy+hy—2

By ha+5.n
Do g =D )
h=—1

- rABC ([M.C
><<tf (0 s s

[(WE . <Q2ﬁ%)r] =

AB [ A
+46 (th+h27%7h)m+r>-

(3.12)

The corresponding OPE:s for fixed /| and /5 can be found

in Appendices (C.5), (C.6), (C.7), (C.8),(C.9), (C.10), (C.11)

and (C.12). In the last two commutator relations of (3.12), the

upper limit of 4 is given by A = hq + hy — 2 due to the pres-

ence of the lowest fermionic current Qi 5@ The additional
2

@ Springer

(=1~ factor appears when we change the commutator
relations into the corresponding OPEs.>

3.1.4 The final anticommutator relation with h1 = hy for
nonzero A

The final anticommutator relation between the fermionic cur-
rents is summarized by

i 5 it hi+ 1o+ L
AA A B _ hohityhats,
{(Qh]%)r,(Qhﬁ%)x} = ) do (r, 8, 2)

h=0

. 2ABC 0, C
X (l f WE by +hy—n)r+s

+848 (W},h1+h2—h)r+s)

el hi4+L ho+1n
1T73,02T75,
+ Y qhog TN s, )
h=0

. 2ABC jyhC
X ( —if W b hy—n)r+s

3 As in two previous examples, the OPE between Wé‘_’hA] 215 (z) and
Q;f =+11 , (w) where hy = hy + 2 can be obtained and the seventh
Jhaty=3
order pole contains the structure constant —%()\ — DA+ DA+
2)(22—3)(2A+1)(21+-3) appearing in the current 0’ N 5 (w).
hit+hy—5—h=3
7

On the other hand, the structure constant qs’ 23 (m, r, A) contains the A
dependent factor %(A— D(A+1)(22—3)(2A+1)(42% — 141 —9). By

subtracting the contribution % A=DAA+DRA=3)2A—=1)(2A+1)

7
coming from the structure constant qé’ 2 ’S(m, r, A), where 4 is realized
by (k1 — 1), from the above, we obtain —% A=DA+DHA+2)2r—

;
3)(2 + 1)(2A + 3). Note that the additional term in the gy > (. r. 1)
contains the factor 1. By considering the numerical factor 46080 when
we move from the modes in the commutator to the differential operators
in the OPE and multiplying this into the above factor, we obtain the pre-

vious structure constant in the current Q; 3 g3 (w). This implies
1 2—53—h=3

that if the weights /1| and i, do not satisfy the above constraint (hy = hy
or h1 = hy + 1) for nonzero A, then the formula in the first equation of
(3.12) cannot be used fully because the extra contribution from the struc-
ture constant on the right hand sides of the corresponding OPE occur.
As before, for the poles less than the critical singular term, still we can
use some of terms in the corresponding expression of the first relation

of (3.12). Similarly, let us consider the last equation of (3.12). Then

the OPE between W];‘ ’,’141:_15 (z) and Q;’ﬁi‘ .
= It L=

order pole with —%(A— DA+1D)2A=3)2r+1)(21+3)(11A—10)
appearing in the current Q% (w). This can be obtained by adding the
2

, (w) provides the seventh
2

7
extra contribution from qé’z’S(m, r, A) in addition to the one from
7 _
qé’z’s(m, r, A) as in previous paragraph. Note that the 0% (w) term
2

on the right hand side of the OPE can be determined by the contribu-
. 5,1.6

tion from the structure constant g 2" (m, r, 1) only. Therefore, the last
equation of (3.12) should be modified for nonzero A with more gen-
eral iy and hy where the weight /5 is outside of the above allowed

region. The similar behaviors corresponding to the second and the third
equations of (3.12) we do not present in this paper can appear.
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+ 848 (Wg,h1+h2—h)r+3>

r+hy—
+< hy + hy

AB _hi+hy—2
x§AB ghitha=2s

) co(hy, ha, )

(3.13)

The corresponding OPEs for fixed /1 and /5 can be found in
Appendices (C.13) and (C.14).* The additional (—1)" factor
appears when we change the anticommutator relations into
the corresponding OPEs. Because the lowest weight of Wg’zb
is given by 1, the upper limit of the second summation is also
given by h = h1 4 hy — 1 which is the same as the one in the
first summation of (3.13). Here the central term appearing in
(3.13) can be described by

co(hi, ha, 1) = 8(—hTha=4s,.5,
hi+1 ha+1
x [ — 0" @0 w)

hi+1)— ha+1)—
+0" (@0 (w)

hi+D+ ho+1)—
-0 @ 0" (w)

hi+1)— l; D+
+0" 7 (2) 02t (w)

ho+1 hi+1
—(=MH QD (@) Of" Y (w)

hy+1)— hi+1)—
DM QDT (@) 0315 (w)

4 As in the examples appearing in the previous footnotes, the OPE

between Ql A 1] 3 (z) and QA B 1]
+2=

determined and the fourth order pole contains the structure constant
128 (A—=1)(2r—3)(21 — 1) appearing in the current WF,h1+hz—h:1 (w).

37
7:3.3 .
On the other hand, the structure constant on 2 (r, s, A) contains the A

dependent factor % (21 — 1)(422 4 21 + 3). We can take the sum (due
to the odd h) of these with proper numerical value —48 for the latter and
obtain — ISA)\(M —1)(21+7) which vanishes at A = 0 and this implies
that this extra contribution should appear. Furthermore, the fourth order
pole contains the structure constant 256)»()» + 1)(2A + 1) appearing in
the current ng Iy +hy—h=1 (w). On the other hand, the structure con-

1 (w) where h; = hp — 2 can be

A(4A% — 62 + 5). Obviously they are
different from each other and the extra term —256 A —=DHr2r - 1)
should appear from similar analysis. Similarly, the thlrd order pole con-
tains the structure constant 95—6(A — 1)(2x — 3) appearing in the cur-

37
rent W5 e _,(w). Moreover, the structure constantoi’j’z(r 5,0
contains —z (4)»2 +101—9). By taking the difference (due to the even /)
between the latter with an additional numerical value 8 and the former,
we obtain —32X1(2A—1) which vanishes at . = 0 and should appear. The
third order pole also contains the structure constant 95—6 A+DH2A+1)
5 (w). On the other hand, the struc-

37
3:3.3 .
stant o *"" (r, s, A) contains %

appearing in the current Wﬁ_h |t —h=

37

ture constant og’j’z(r, s, A) contains —%(4A2 — 141 — 3). We obtain
—321(21 — 1) from the difference between the latter and the former as
before and this A dependent contribution should appear. If the weights
h1 and hj are not equal to each other for nonzero A, then the formula
in the first equation of (3.13) cannot be used fully because the extra
contribution from the structure constant on the right hand sides of the
corresponding OPE arises.

( 1)h1+h2 Q(h2+1)+( )Qg‘}’ll&;:])f(w)

ha+1)— hi+1D)+
DR QR @ O Ty |

(3.14)

where we can use Appendix (D.1).

Therefore, the seven (anti)commutator relations between
the nonsinglet currents are given by (3.1), (3.10), (3.12) and
(3.13).

3.2 The (anti)commutator relations between the nonsinglet
currents in explicit forms with &y = hy, hy £ 1 for
nonzero A

In order to construct the algebra from the ' = 4 multiplets,
we should rewrite the previous (anti)commutator relations
in the basis of four components of (ab) = (11, 12, 21, 22)
in each current. For example, from (3.1), the commutator
relation between A = 1 (sum of (12) and (21)) and B=1is
known. Moreover, the commutator relation between A=1
and B =2 (difference of (12) and (21) up to an overall factor)
is known. Then we obtain the commutator relation between
A = 1 and the element (12) current by adding the above two
commutator relations. By realizing that there is no singular
term in the commutator relation between the element (12)
current and itself, the above analysis leads to the commutator
relation between the element (21) and the element (12) as
follows:

hi+hy—3
2,21 hy,hy,h
[(WFhl)m’(WFh2 Z q" ppt """ (m, n, 3)
h 0,even
)» 11 Ar,22
x(W) F,hi+hy—2—h T W, hi+hy— 2 p)m4n
L (m+hi— hi+hy—4
~ <h1+h2—] CF(hlthv)\)q 8m+n
1 hi+hy—3
h _hi,ha.h A,
) Z q pF1 " (m, n, 1) (WF,h1+h2—2—h
h=—1,0dd

Ar,22

~WE b 4hy—2—n)mtn- (3.15)

On the other hand, by subtracting the previous two com-
mutator relations and by using the fact that there is no sin-
gular term in the commutator relation between the element
(21) current and itself, we obtain the following commutator
relation between the element (12) and the element (21) as
follows:

| Itha-3
a2 121y h h ha.h
[(WF,hl)m’(Wth = Z q" pg""" (m,n, )
h=0,even
P 2,22

XWE b 4hy—2—n T WE R s hy—2—p)mtn

I (m+h —
+§<

hy+ hy — 1) cr(hy, ha, )\)qh|+h274 S
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hi1+hy—3

1 hihosh
-5 2 d" P
h=—1,0dd

X(WI:},’hlllJrhz—z—h - Wlé,ﬁlerhz—z—h)ern' (3.16)

Similarly, the commutator relation having both A=1and
B = 3 and the commutator relation having A=2andB =3
provide the commutator relation between the element (12)
and the current having B = 3 and the commutator relation
between the element (21) and the current having B = 3.
Furthermore, the commutator relation having both A =1land
B = 0 and the commutator relation having A=2andB =0
provide the commutator relation between the element (12)
and the current having B = 0 and the commutator relation
between the element (21) and the current having B = 0.
Then we obtain the following commutator relations by linear
combination of previous four commutators

1 h1+hy—3 hi+hy—3
1,12 RN
[Wesm Wil =5 | D2 = X
h=0,even h=—1,0dd
h  hi,hah
xq" pg""* " (m, n, 1)
A 12
X(WE b shy—2—p)m+ns
1 h14+hy—3 h1+hy—3
A, 12 2,22 _
[(WF,hl )m» (WF,hz )n] — z Z + Z
h=0,even h=-—1,0dd
h _hi,hah
Xq pF] : (mans)")
12
X (WE b shy—2—p)m+n
1 hi+hy—3 h1+hy—3
2,21 a1 _ 1
[Wesim Wil =5 | D2+ X
h=0,even h=—1,0dd
h _hi,hah
Xq pFl : (manv)‘«)
2,21
X(WE R, 4hy—2—p)m+ns
1 hi+hy—3  hi+hy—3
2,21 R N
[(WF,hl )m9 (WF,hz )n] - 5 Z - Z
h=0,even h=—1,0dd
h _hi,hah
xq" pgt" " (m, n, 1)

(Wl (BT

From the results of the commutator relation between the
current having the index A = 0 and the current having B=1
and the commutator relation between the current having the
index A = 0 and the current having B = 2, the commutator
relation between the current having the index A = 0and
the element (12) and the one between the current having
the index A = 0 and the element (21) can be determined.
Moreover, from the commutator relation having the index
A =3 and B = 1 and the commutator relation having the
index A = 3and B = 2, the commutator relation between
the current having the index A = 3 and the element (12) and

@ Springer

the one between the current having the index A = 3 and the
element (21) can be fixed. Therefore, by linear combinations
of these results, we can determine the following commutator
relations

1 hi+hy—3 hi1+hy—3
211 RN
[(WF,hl )ms (WF,h2 )n] - E Z + Z
h=0,even h=—1,0dd
h _hi,hah
Xq pFl : (mans)‘«)
r,12
X (WEh shy—2—p)m+ns
1 hi+hy—3  hi+hy—3
2,22 R LNE
[Wemm Wl =5 | 22 = X2
h=0,even h=—1,0dd
h _hi,hoh
xq" ppt"* (m, n, 1)
2,12
X(Wp,hl+h2_2_h)m+n7
1 hi+hy—3  hj+ha—3
a1l 1218 7
[(WF,hl )mv (WF,hz )n] - 5 Z - Z
h=0,even h=—1,0dd
h _hihah
xq" pp"? " (m, n, h)
2,21
X (W phy—2—p)m-+n
hi+hy—3  hi+ha—3
2,22 X,21
[(WF,hl)'m (WF,hz )n] == Z + Z
h=0,even h=—1,0dd
h _hi,hoh
xq" pg""* " (m, n, A)

)W oo dmn. (3.18)

Finally, from the results of the commutator relation
between the current having the index A = 0 and the cur-
rent having the index B = 3 and the commutator relation
between the current having the index A = 0 and the current
having the index B = 0, we can determine the following
commutator relations by realizing that there is no nontriv-
ial commutator relation between the element (11) and the
element (22)

hy+hy—3
hy,hoh
> g pp " mon )

h=0,even

(Wi s (W] =

Al
X (WEh, 4hy—2—p)m+n

I (m+h —1
5 <h1 +h12 _ 1) cr(hy, ha, 2)
thl+h274 Simtn>
h1+hy—3
[(WeiDm W] = 32 ¢" pr ™" (mon. 2
h=0,even

2
X(Wé,’hwrhrth)mﬂ
1 hy —
4o m+hy—1
2 \hi+hy—1

xghtio—ds

) cr(hi, ha, 1)

(3.19)
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Therefore, there are (3.15), (3.16), (3.17), (3.18) and
(3.19). Other complete relations are summarized by Appen-
dices (E.1), (E.2), (E.3), (E.4), (E.5) and (E.6). By adding the
two equations of (3.19), we obtain the commutator between
the singlet currents and by taking the contractions of the cur-
rents with the vanishing ¢ limit for A = 0 we obtain the
W14oo algebra [7,21,22].

4 The N = 4 supersymmetric linear W§52 algebra
between the A/ = 4 multiplets

Based on the results in previous sections, we present the first
five commutator relations between the N/ = 4 multiplets.
In the footnotes, some particular examples for the specific
weights i1 and hy show that there are extra terms on the
right hand sides of the commutators for the nonzero A we
explained in the introduction.

4.1 The commutator relation between the lowest
components with &1 = hy, ho £ 1 for nonzero A

Let us consider the commutator relation between the low-
est components @E)hl)(z) and d>(()h2)(w) of the N' = 4 mul-
tiplet. Because thege are no singular terms in the OPE of
W;Z? (z) and ngzlz’(w) according to (2.1), the commuta-
tor relation consists of two parts. That is, they are given
by [(Wriam, (Wip)n] and [(Wg i), (Wjy2),]. Then
we can use the relation (3.19) and the last two relations of
Appendix (E.1). We need to express the right hand sides of
these commutator relations in terms of the components of
the N' = 4 multiplet in order to present the complete alge-
bra between them. The two relations in (3.19) and the last
two relations of Appendix (E.1) can be added respectively
because the structure constants are common at each expres-
sion.

As described before, from the relations (2.7) and (2.11),
we obtain the following relations

Whaa _ _ 1 m  (h=142%) <o
B2 08— (=4 2T
Wwhaa _ 1 () (h—2)) = (h—2)
BIT(hm2 70 82— (=4l 72
4.1)

Once we observe the currents on the left hand sides, then we
should rewrite them in terms of the components of A = 4
multiplet according to (4.1).

On the other hand, there exist the following relations
between the lowest bosonic currents and the lowest com-
ponent <I>(()l) of the first AV = 4 multiplet from (2.7) and the

weight-1 current U = 2(W}¢:‘f“ + Wg:’f“) of the N/ = 4 stress

energy tensor

A (1)

Wij =40,  +AU,
— 1

whia = _4 oD 4 ;=200 4.2)
This implies that by comparing (4.1) with (4.2), we can iden-
tify the previous weight-1 current as <I>;71) =256U.

Furthermore, there are relations between the lowest com-
ponent QD(()Z) of the second NV = 4 multiplet and the weight-2
stress energy tensor L of the A/ = 4 stress energy tensor
together with (2.7) and (2.5) as follows:

; 1
2
Wrs' = —p + 3 (1 +20) L,

W5t = o) + % (1—2)L. (4.3)
Again, from the relations (4.1) and (4.3), we identify the
stress energy tensor in terms of the component of N' = 4
multiplet as & = —32 L.

Therefore, the commutator relation between the lowest
component of the hi-th A/ = 4 multiplet and the lowest
component of the /;-th A/ = 4 multiplet can be described
as, by substituting the relation (4.1) into the above right hand
sides of the relevant commutator relations described before,

(h1) o)y 1 (BN (=42
(@6, (@] = (2h1 —1) 2hy — 1)

m+hy —1 hy+hy—4
X[<h1+h2—1>"

x((hl —2))(hy —2X) cp(hy, ho, A) 4+ (hy — 1+ 2X)

x(hy = 1+20) cp(hi, ha, )»)) Sm+n

hi+hy—3

py

h=0,even

( — (1 — 20 (ha —20) ¢" ppt" " (m, n, )

+(ht — 1422 (ha — 1 +21) ¢" pp'">" (m, n, A))

! (h1+hy—2—h)
XW (% Ym+n
hi+hy—3
- 2 <(h1 —20)(ha —2A)(h1 +hy —h —3422)
h=0,even
xq" ppt™ " m, n, 1)

H+(h1 = 14+2X)(hy = 14+ 2X)(hy +hy —h —2 = 2X)

xq" pp"> " (m, n, )\))

1
" 82 1 2hy—2h—5)(— 4yl Th—h=8

= (h1+hy—h—4
x (1 )>m+n}.

4.4)
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Each central term is given by (3.9) and (3.11). Due to the
even weight 4 in the summation, the currents of even (or
odd) weights can occur depending on the weights /1 and h».
When we change the above commutator relation (4.4) into
the corresponding OPE, due to the factor (— l)h_l foreven h,
then there exists an extra minus sign on the right hand side of
the OPE. We can easily observe that for the maximum value
of dummy variable i, h = hy 4+ hy — 3 with odd (k1 + h»),
on the right hand side of (4.4), there appear the currents <I>(()l)
and CTDZ_ ! which is related to the previous current U of N = 4
stress energy tensor. Note that we have vanishing structure
constant pg"hz’h'+h2_3 at A = 0 [8]. On the other hand, for
even (h1 + hy), the maximum value of the weight % is given
by h = h1 + hy —4 because the weight / should be even. For
this value, there appear the currents <I>(()2) and &)(20), which is
related to the previous current L, with proper A dependent
structure constants on the right hand side of (4.4). Let us
emphasize that for nonzero X, the above commutator holds
for the arbitrary weight /1 under the condition &1 = h, or
hy = hy £ 1. We take the particular example which shows
that if the weights #; and hy do not satisfy this condition,
then there exist other terms on the right hand of the above
commutator.’

4.2 The commutator relation between the lowest
component and the second component with
h1 = hy, hy + 1 for nonzero A

Let us consider the commutator relation between the lowest
component <I>(()h D (z) of the h1-th A = 4 multipletin (2.7) and

the second component dD(th)’i (w) of hp-th N' = 4 multiplet
2

in (2.8).

We expect to have the fermionic currents Q N

on the right hand side of the commutator relation because
the product of bosonic and fermionic operators produce the
fermionic ones. As before, we need to rewrite them in terms of
the components of the A = 4 multiplet in order to complete

A,ab AA.ba
T and Q7
+3 Qh+%

5 Let us take the OPE between d)éh':l)(z) and d>(()hz=3)(w) where
the weights satisfy 71 = hy — 2. The third order pole of this OPE
provides the structure constant 2048\ (2A — 1) appearing in the current
d>(()l)(w) and the structure constant %A(M — 1)(4x — 1) appearing in
the current U (w). According to (4.4), the exponent of the first current
implies iy +hy —2—h = 2—h.Moreover, h is given by & = 0 from the
summation and the exponent is 2. Therefore, the current @61) (w) cannot
appear from the (4.4). Furthermore, the exponent in the second current
implies 11 +hy —4—h = —h = —1 from the presence of U. Moreover,
h is given by i = 0 from the summation and there is a contradiction. In
this case also, the current U (w) cannot appear from the corresponding
term in (4.4). Note that the two structure constants contain the A factor
and they become zero at A = 0. From the above analysis, there exist
extra terms on the right hand side of the commutator (or corresponding
OPE) for the weights which do not satisfy the constraint #; = hy or
hy = hy £ 1 we mentioned before. As in previous footnotes in Sect. 3,
this feature also arises for the singlet currents.

@ Springer

the algebra we are considering. For the index i = 1 of these
components of the A" = 4 multiplets, the following relations
are satisfied

L/ o, . A2 A 221 2,22
(o +ivaerlt +2ivaoyl —2007)

2 \Zh+s3

_1 1 el _ 1 Bl
2 [4(—hh—4 73 4(—4)h=5 73 ’
Lis 0l | o /5A012 | - /a2l Ah22
5(2 Oyl +2V20y 1 +iV20,T h+%)
1 1 .1 1 = (h=1),1

= | —®V" — . 4.5
2[4(—4)'1—4 TR @

Note that the weight on both sides is given by (4 + %). On
the right hand side, the (h — 1)-th component of N' = 4
multiplet appears also. Other relations for i = 2, 3, 4 appear
in Appendix (F.1). For 2 = 0, the above relation (4.5) with
others in Appendix (F.1) implies that there exists the relation

between the currents &)(3—1),1' = _alT CID(lO)’i together with

(2.8) and (2.10) because tzhe left hand side g)f the first relation

of (4.5) isidentically zero and moreover, the wei ght—% current

of the N/ = 4 stress energy tensor has the following relation

—iTl =64 CD&O)J with (2.8). For h = 1, the corresponding
2

weight-% currents of A/ = 4 stress energy tensor can be
written as G’ = 64 ci><3°)*’ with (2.10) by subtracting the two
2

relation of (4.5). Therefore, the components, U, ', G'and L

of N = 4 stress energy tensor, except the weight-1 currents

T'J which will appear in next subsection, are given by the

components of the N' = 4 multiplet, &);—1)’ dJ(lO)’l, &)(50),1
2 2

and égo) up to normalization respectively.

The result of the commutator relation we are consider-
ing, by replacing all the fermionic currents with the N" = 4
components appearing in (4.5) and Appendix (F.1), can be
summarized by

(—4"2

_qyha—4
hy = 1) HoT

(@5, (@42, ] =5

MR
x[(—(hl—ZA) > gt mr )
h=-—1
hy+hy—2 P
—(hi=21) Y q" =g om0
h=-—1
hi+hy—3
=142 Y

h=—1

il hyho+ 3k
Hh—1420 Y g (=Dl (m,r,m)
h=-—1

n hiho+dh
q"qg " 7 (m,r,2)

1

(h1+hy—2—h)
X 8(_4)h1+h27h76 (q)% )m+r
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hi+hy—3 - A
( S = 200" " )

h=—1
hy+hy—2

=Y =2 g )
h=—1

hi+hy—3 1

- Y 14200 gy " )
h=-—1

hi+hy—2

hiha+1 ok
+ Y - 142" () gy T (m,r,k))
h=—

(&)(%hl+h273ih))m+r :| (46)

X 8(_4)]11+h2—h—7

Note that the upper limit of z having the term with the factor
(=D is given by h = hy + hy — 2. Except these four terms,
the range of / in all the other terms is the same. Then these
four terms occur if their structure constants are nonvanishing.
Depending on the odd & or even &, some of terms in (4.6)
can cancel each other because four kinds of each two terms
have the same structure except the factor (=" Ath =
h1 + hy — 2, there appear the current <I>(lo)‘i and the current
2
ég_l)’i which are related to the previous weight-% current
2
! as above, with the relevant structure constants. Moreover,

L hi o+ -2
we have vanishing structure constants g 2 =

0= gl a2 18] Forthe h < hy +hy — 3
with odd h in (4.6), there appear the current &D(;h'+h2_3_h)’l

2
terms because the coefficients of the current <I>(1h1+h2_2_h)”

2
terms are identically vanishing. Note that there are relative
signs in (4.6). On the other hand, for the # < h; + .h2 -3
with even h, there appear the current <I>(h‘+h2_2_h)” terms

(h1+h2 3—h),i

because the coefficients of the current CD terms

are identically zero. We also present some example where
the weights &1 and %y do not satisfy the condition A = hy
orhy =hy+1.°

6 Along the line of thelfootnote 5, we consider the OPE between
<I>(()h1:4) (z) and Cb(f'z:z)"(w) where h; = hy + 2. The sixth order
2
pole of this OPE gives us the structure constant %(}L — DHAa@2r —
1)(2x + 1)(41 — 1) appearing in the current <I>(1h1+h2727h:0)'i(w)
2
with the weight & = 4. By substituting the various expressions in
the corresponding terms of (4.6), we can check that we obtain the
5
above structure constant correctly where q4F’ 24 term corresponds to
H
% A—=—DAR2A=3)2r—1)(2A+1) while q: 24 term corresponds to
— 32— DA+ 1)(2% — 1)(2 + 1). There is no current &V (w)
) 2
term in the sixth order pole from our calculation and this is consistent
with (4.6) because all the coefficients vanish for the even 7 = 4.
Now we can move to the fifth order pole of this OPE. The current

G'(w) term of N' = 4 stress energy tensor has the structure constant
=32 — 1)(2x + 1)(62% — 31 — 4) which can be identified with

4.3 The commutator relation between the lowest
component and the third component with
hy = hy, ho + 1, ho + 2 for nonzero A

Let us consider the commutator relation between the low-
est component dDE)hl)(z) of the h;-th N' = 4 multiplet and

the third component <I>§h2)’ij(u)) of the ho-th AV = 4 mul-
tiplet. Because there are no singular terms in the OPE of

;Zi’(z) and WX ‘d(w) the commutator relation consists

of two parts. That is, there are [(W; Zla)m, (W Zj)n] and

[(Wg:i?)m, (Wg ;d)n]. Then we can use the previous rela-
tions, (3.15), (3.16), (3.17), (3.18) and (3.19) and Appendix
(E.1). We need to express the right hand sides of these com-
mutator relations in terms of the components of the N' = 4
multiplet as before.

We obtain the following relations

A 11 2,22
2i Bh+1 ‘/_WBthl_2 WBh+1
1
_ (h),12 _ (h),34
B 8(—4)h—4[ ! i }

A1 2,12 2,22
2i Wiy — 2V2 Wit — 20 Wikt

1
= s |:<I>§h)’12 + <I>(1h)’34}. @.7)
For other relations, we present them in Appendix (F.2). By
using (4.7) and Appendix (F.2), we can express the weight-1
current 7%/ of the N' = 4 stress energy tensor as i T/ =
64 @\ with (2.9). On the right hand sides of (4.7), there
are only the components of hth A/ = 4 multiplet. By linear
combinations, any component of the hith N = 4 multiplet
can be written in terms of W,); Z{)H nd WB h +1 explicitly.

It turns out that the corresponding commutator relation,
after substituting all the bosonic currents in terms of the com-
ponents of the A/ = 4 multiplet described above, can be

written as
.. hi—2
(h1) (h2).ij (=4 hy—d
P (@ =44
[(@¢" ), (@) In) 2h = 1) (=4

Footnote 6 continued . )
the coefficient appearing in the second current d><3h‘+h2737h:0)" (w)
3

433
and g correctly as before. On the

(nth2=2=h=D.7 1)) term with the
2

structure constant — DAQ2A — 1)(2x + 1) having the A factor.
We can check that this structure constant is equal to the one in the first

o 4,33
of (4.6) by substituting ¢ *
other hand, there exists the current @
2

. . 4,33 4,33
current terms in (4.6) where the previous ¢ >~ and ¢ > are replaced

5 5

by q;’ 73 and qz,' 73 respectively. That is, the i is replaced by (h; —1).
Therefore, we cannot use the Eq. (4.6) for this particular pole fully. We
can check that the remaining lower order poles can be described by
(4.6) without any extra terms precisely.
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hi+hy—2 hi+hy—2 nh +§ P
x [ —(hi =2 Y q"p " mn ) x[((hl o) Y g )
h=—1,even h=~1
hi+hy—1
X; (q)(hl"rhz—z—h),ij —(h; = 22) IZZ qh (_l)hqgl*hz-"%'h(m’r’ x)
8(_4)h|+h27h76 1 =,
L ijkt g (ha—2—h) ki Bty =2 .
t5 e @ N ——1420 Y gy T
m-n h=—1
hi+hy—2 L hythy—1 ,
h Jho+1, 3
+(hy —1+22) Z q" pg " (m,n, L) () —1+20) Z 4" (=1 qgl,hzﬂ’h(m’r’ A))
h=—1,even h=-1
1 (hi+ho—2—h),ij 1 (hi+ha—1—h),i
, O] r
X 8(—4)h1+ha—h—6 (q)l Xg(_4)h1+h2—h—5 ( ) Jm+
hi+hy—2 R
L iju q)§h1+h2—2—h),k1) } 48 +< Cm-2 Y g
2 m-+n h=—1
hi+hy—1
Due to the even weight £, on the right hand side of (4.8), the —(hy —20) ] 212: " (_1)]1qh1,h2+%,h(m ")
currents of odd (or even) weights can appear depending on the P F
weights /1 and h,. Due to the SO (4) index ij appearing on hi+hy—2 \
the left hand side of (4.8), the field contents on the right hand +(hy — 1421 Z qhqg‘ ot
side are different from the ones in (4.4). At the maximum h=—1
value of h, h = h| + hp — 2, the current CDEO)’” term and the hithy—1 ] o s
. h Jha+3,
current g'/k! CIDEO)’M term, which are related to the previous +(h1—14+22) Z g (=17 qp (m, r, M)
h=—1

weight-1 current of the N/ = 4 stress energy tensor, occur
on the right hand side of (4.8). Note that as before we have
vanishing structure constant pgl’h2+1’h'+h2_2 at A = 0 [8].
In this case also, there some constraints on the weight 4, for

nonzero 1.’

4.4 The commutator relation between the lowest
component and the fourth component with
hi = hy + 1, hp 4+ 2 for nonzero A

In this case, we can use the previous relation (4.5) and
Appendix (F.1) by simply substituting /# with (4 + 1) in order
to rewrite the right hand side of this commutator relation in
terms of the components of the A" = 4 multiplet.

Then we can determine the following result for the com-
mutator relation between the lowest component <I>(()h1) (z) of
the hi-th N = 4 multiplet and the fourth component (and
derivative term) &Dgh”’i (w) of the hp-th NV = 4 multiplet

2

R _ A4y -2
(@), (@), ] = gyt
2

C@hi—1)

7 For the OPE between <I>((Jh = () and @ghz:”’u (w) where the weights
satisfy i1 = hy+-3, the fifth order pole of this OPE has the structure con-

stant — 81923, (22.— 1) (422 —24—5) in the current &”"¥ (w) term and the

structure constant *‘gﬁx(zxf 1)(4A—1) in the current % glikl d>(10)’k1 (w)
term from our calculation. However, the corresponding structure con-
stants pI}' =hhat1=2.1=2 414 pZ' =hha1=21=2 45 not produce these A
dependent structure constants respectively. This implies that there are
extra contributions in the structure constants for the weights which do

not satisfy the condition &y = hy, hy = hy + 1,0orhy = hy + 2.

@ Springer

By, 49)

R (—4)hiTh—h—6 (

The form of this (4.9) looks similar to the previous one in

(4.6) because the field contents are the same. The relative

signs are different from each other and we observe that after

replacing hy with (hy + 1) appearing in (4.6), the corre-

sponding expressions occur in (4.9). At h = hy + hy — 1,

there appear the dD(lO)’i and the d~>(§71>’i which are related to
2 2

the weight-% current I''. Except four terms having the fac-
tor (—1)" with h = hy + hy — 1, there some cancellation

between the currents. Furthermore, we have vanishing struc-

hl,h2+%,h1+h2—l hl,h2+%,h1+h2—l
ture constants g =0=gy at

A = 0 [8]. For the h < hy + hy — 2 with odd 4 in (4.9),

there appear the current <I>Y"+h2*1*h)’i terms because the

2
&)(h1+h2—2—h),i
3

coefficients of the current terms are identi-

2
cally vanishing. On the other hand, forthe h < hy + hy — 2

with even £, there appear the current éghﬁhz*z*h)’i terms

2
(h\+ha—2—h),i

because the coefficients of the current ® i terms

are identically zero. This behavior is diffzerent from the one
in (4.6) because the appearance of signs behaves differently.
We also comment on the possible ranges for the weight /o
as described before.

8 Similar to the previous examples, we consider the OPE between
®(()h':4) (z) and CDg”:l)"(w) where the weights satisfy hy = hy + 3.

2
The sixth order pole of this OPE provides the structure constant
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4.5 The commutator relation between the lowest
component and the last component with
hy =hy+1, hp + 2, hp + 3 for nonzero A

Finally, the commutator relation between the lowest com-
ponent Cb(hl)(z) of the i;-th AV = 4 multiplet and the last

component (and derivative term) CD(hZ) (w) of the hpth N = 4
multiplet can be determined by using (4.1)

(42
@hy = 1)

m+ht =1\ ji4n-2 .
X|:<h1+h2—1)q 2(hy —2A) cF

~2(hy — 14 22) cB) S

[(@"), (@2),] = 4(—4)h—4

hi+hy—1
+ Z - 4)h1+hz —— 2( (h1 =20 p hl hz+2h(m,n,)L)

h=0,even
—(hy — 1+ 22) ppt "2 2R A)) (@1t

h1+hy—1 h
q

+ Z hi+hy—h—6
30 oven 42hy + 2hy — 2h — 1)(—4)m+ha=h

x ( — (1 = 20 (1 +hy — b — 1 422) ppt ™22 2
F(h1=1420) (h1+ha—h—22) ppt"> " (m, n, 1) )

<@, (4.10)

Footnote 8 continued

3B (5, — DA@2A — )21 + 1)(@A — 1) appearing in the current

&)(hl-%—hz—Z—h:—l).i
3

(w) with the weight i = 4. By substituting the var-
2

ious expressions in the corresponding terms of (4.9), we can check that

. 4,34

we obtain the above structure constant correctly where g >*" term cor-

responds to the A dependent factor ? A=Dr2A=3)2A—1)(2r+1)

5
while q2'2’4 term corresponds to the A dependent factor —%(A —
A0 4+ 1) — 1)(24 + 1). There is no & (w) term in the sixth

2
order pole from our calculation and this is consistent with (4.9) because
all the coefficients vanish for the even weight & = 4.
Now we can move to the fifth order pole of above OPE. The
p{nth=2=h=hi 2088 (5 1) (2A+

2
1)(6A2 — 31 — 4) which can be identified with the coefficient appear-
ing in the second current <I>(|]”+h2_2_h=1)’i (w) of (4.9) by substituting
2
5
q4F’ % and ‘143’ correctly. On the other hand, there exists the current
G'(w) term of N = 4 stress energy tensor with the structure constant
% (A —DA@2r—1)(21+ 1) having the A factor. We can check that this
structure constant is equal to the one in the first current terms in (4.9)
. 4,3.3 43,3 3,3.3 3,33
where the previous g > and g > are replaced by ¢, > and g
respectively. The weight & is replaced by the weight (1 — 1) and this
reflects the fact that the weight 4 is increased by 1 from i = hy + 2
to hy = ha+ 3. Now we have seen the extra structures on the right hand
side of this particular pole for the weights we are considering.

(w) term has the structure constant —

5
33

The field contents appearing in (4.10) are the same as the one
in (4.4). As before, we observe that for the maximum value
of dummy variable &, h = h1+hy — 1 withodd (h+h2), on
the right hand side of (4.10), there appear the currents <I>(()1)
and d~>2_ ! which is related to the previous current U of N = 4
stress energy tensor. On the other hand, foreven (k1 +h>), the
maximum value of the weight & is givenby h = hy +hy —2
because the weight 4 should be even. For this value, there
appear the currents CD(()Z) and ¢~>§0), which is related to the
previous current L, with proper A dependent structure con-
stants on the right hand side of (4.10). Note that as before we
have vanishing structure constant phl atZhithe=l 05 =0
[8]. We comment on the other possible cases for the weights.’

In Appendix G, the remaining (anti) commutator relations
are given. Therefore, the (anti)commutator relations between
the AV = 4 multiplets are summarized by (4.4), (4.6), (4.8),
(4.9) and (4.10) in addition to Appendices (G.1), (G.2),
(G.3), (G.5), (G.6), (G.9), (G.10), (G.11), (G.13) and (G.14).
Among these, the more fundamental (anti)commutator rela-
tions are given by (4.4), (4.6), (4.8), Appendices (G.1), and
(G.6) in the sense that the field contents on the right hand
sides of the remaining ones can be seen from the ones of
these fundamental relations up to signs. As mentioned at the
end of previous Sect. 3, by using (4.4), (4.10) and Appendix
(G.14) together with (4.1), the w14 algebra can be obtained
by taking the proper limit on the parameter ¢ at 1 = 0 with
the contractions of the currents.
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cated otherwise in a credit line to the material. If material is not F.2h o g 2h+2+
included in the article’s Creative Commons licence and your intended
. . . . (2]’11 —2h — 3) h],hz—&-l
use is not permitted by statutory regulation or exceeds the permit- ———————BF,,, 2 ,
ted use, you will need to obtain permission directly from the copy- 16(h + 1) T du=on
right holder. To view a copy of this licence, visit http://creativecomm 1 !
i hyha+5 1 hi,ha+5
ons.org/licenses/by/4.0/. dpoprr myn, ) = =BF) 3~
Funded by SCOAP3. SCOAP? supports the goals of the International ' 8 '
Year of Basic Sciences for Sustainable Development. (hi —h—2) BFhl’hﬁ%]
- 2h+3, — ’
4(2h + 3) =2,
. hn ha+3 L it}
Appendix A: The structure constants dgon ~(m.n,2) = | — gBF2h+2, +
. . . . . 2hy —2h -3 hiha+k
By introducing the generalized hypergeometric function _@h =2k =3) BF,, +§+f ,
16(h + 1) R Y
1 1 I+a—r a—r
hsha o A = ,F §+A§_A 2 T2 1 hi, 2+ 1 h2+2
¢ "N a) 43[%—h1%—h2%+h1+h2—r ) qp.2m+1 Z(m,n, \) = 8BF2h+3+
(A.1) (i —h=2) BFh],thr%
. 4(2]’! + 3) 2h+3, — _2)\”
and mode dependent function w=
h1+ ot hi+5 . ho+}
h+1 htl OF o 2 (m 7"7)‘):[_FF2h+12,+ ’
hl ha — !
(m,n) = IX(;( ) ( ) 2 +ho = h) Lot heh
4(2]1_'_ N 2h+1, — _n’
x[hy =14+ mlpp1—[hy — 1 —m]; i n=
hi+t.h+) hi+ Lo+t
x[hy =1 +nlilhy =1 = nlpp1—, (A2) 052" 2(m.n,2) = |FFy, 3772
the three kinds of structure constants in [13] can be summa- 2(h1+hy—h)—1 FFhIJF%,hﬁ%
rized, together with (A.1) and (A.2), by 2(h+1) 2h+2, — ;rz)\,
1 hy+ Yo+ i i+ S+t
BB, 4, 1) = NG N/ (m, ) ogon M= | —FFy {7
[ 2(h1+ha—h) __hi+} o4}
hiha D21 1 A2 pphitahats
X i r (u, DEy (I—p, |, + Qh+1) 2041, — . 2As
hi, hz+ 1 h] h2+
BF 2 ) = —-— 2 /’l1+ o+ 1+ 3+ 1
(m. P 1) (r — 1) (m. p) Opony1 C(m.n,a) = FFsz Ll
[yt 3E1 —h—
Lot (v 57) 20tk

3+1
£t (1o 250 |

1 h1+%.hz+%
Tr—1r? (0

341
ot (22

3+1
+ ¢f"+T1””“(1 — T)}

h1+2

o+ L
FR, 22 (0 s ) =

(A3)

Then the structure constants in Sect. 3, from (A.3), are
given by

1
i omn ) = 3Bl eeik |
n=2x
1
hy,k hy,h hy,h
pBlhlz(m,n,)L) |:BBh:_22+ BBhf,_22_ ,

4 n=2x

@ Springer

L+l
2h+2) ’ o

(A4)

At A = 0, the above structure constants reduce to the ones in
[6,12].

Appendix B: The other central terms

As done in (3.8), we obtain the following central terms

hi—1 hp—1 j+1

= N 8p¢ dda Z Z Z

h h
VI @) v (w)

P—TE j=0 i=0 t=0
(hy — 14 2X) j .
— 2 al(hy, M) a' (hy, A
( G a’(hi,A)a' (ha, 1)
(hy —2X) j | B 1
2 i+ =Y (hah+ =
(th_l)a(] +2)a 2 +2
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N+ .
_J -~ 7 _] 1 ]—t I
nerizn VU A= Oh-1

X(hy = D14 (hy + 1T+ Dpy—1-4,
hi—1 hy—1 j+1

= N 8pé baa Z Z Z

j=0 i=0 =0

Vi @V w)

(hy —142)) (hpy —142))

( Qhi—1)  Qha—1)
(hy —23) (ha —2))
S @2hi—1) Qha—1)

Jh(e+i)!
t(t+i+ 1)
x(h = Op14i (hy + 1+ Dpy—1-i,

a’(hi, 2y a' (ha, 3)

al (hy, » + 1)a"(h r+ 1)
1, B 2 )

=DM G+ 1=t —1—

(B.1)

where the previous relations in (2.3) are used.

Appendix C: The OPEs between the nonsinglet currents

In this Appendix, the three kinds of OPEs corresponding to
the ones in Sect. 3 are given explicitly.

C.1 The OPE between the bosonic currents

We present the explicit check for (3.1) and (3.10) with the
weights h; = hy = 4.

C.1.1 The OPE between W;:le and itself

For the same indices A = B = 1 in (3.1), we obtain the
following result

(Wry? + Wedh@ Wy + Wegh(w)

. 1 B 1536 6 4 2
= 7(2 Y [ —~ (1121° — 2801 + 147x 9)]
1 2048
+— [—(x — D+ DA —3)2r + 3)]
(z —w)° 5

) (Wpy! + Wi w)

+ ! l[%(A—1)(A+1)(2x—3)(2x+3)]
@-wp 2[5

X0 (Wi + Wi (w)

+ : [i 2048(A—1)(A+1)(2A—3)(2A+3)
(z—w)*[20 5

2 A1l 2,22
xo? (Wrat+ wiP?)

96
_?(M2 —19) (Wpy' + W}jz)](w)

1 1 2048
|: A=DA+1DH2Ar-=3)21r+3)

w303
x0* (Wia' + Wp3)

196

-5 ?(4A2 — 190 (Wpy' + W;jz)](w)

L] 12048
(z—w)? [ 168 5
4 A 11 1,22

X9t (Wi + Wr3h)
5 96

T ?(4x2 —19) 0> Wiy + Wi

+6 (W' + W}:éz)](w)

(A= DA+ DA =321 +3)

L 12048
(z—w) | 1120 5

X (20 43) 95 (Wi + Wiah)
1 96

) 3 ool 2,22
—35 5 W 19907 (Wry + W)

(A — DR+ 1)@2r —3)

1
+560 Wre' + W};?)](w) 4.

1 1536 . . 5
S E— — =5 (1122° — 2804 + 14737 — 9)

[ Wis' + Wﬁ:?xw)]

4,4
_pF,4(az’ awa )h) (Z — w)

(Wi +W,ﬁ;iz><w)}

4.4
—pr L0z, Oy, A
pp,z( 25 Ow, A) (i—w)

T (Wi + Wﬁ;éz)(w)]
(z—w)

4.4
_PF,O(az, 0w, 1)

1
= mCF(“-, 4, }\.)811 q4

4
+ > g D PR 0w, )

h=0,even

[<W£*él_h + Wﬁ’éihxw)]
x ’ ’ +

Z— (C.1)

The right hand side of (C.1) can be seen from the last two
terms in (3.1) by changing the commutator to the correspond-
ing OPE. Note that there is an additional factor (—1)"~! in
the above.

C.1.2 The OPE between W;’le and W;i.’fzz

For the different indices A = 1 and B = 2 in (3.1), the
following result is satisfied

Wi + Wrdh@i Weg® = Widhw)
1 2048

T e-w? [?(* -DO+ D@L =3)2r— 1)

x (21 4+ D(2r + 3)] P W = WETHw)

A=DA+D2r-=3)2r—-1)

n 1 12048
(z—w)o|2 5
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PN S R}
X (20 + 1)(2x+3)]ia(W,¢*}1 —WEP) (W) ><|:l Ve — W3 )(w)] +
’ ’ (z—w)
1 [1 8 DO+ DA —BH2h— 1) >
G—wy |6 5 =— > "D P @ by, i f1
X (20 + D24 +3)i 02 (Whit — wh22) h=hodd
' ’ A A=3
256 A3 (AL DL— 1T i (W22 « Wre—n ) (C.2)
—f( =3)CA+3)2A=1T) i (Wg3 —=WE'57) [(w) (z—w)
1 1 2048
+(z —w)? 24 5 G =DO+DEA=3)2r — 1) Therefore, we observe that this can be seen from theAﬁrst
X (20 4+ 1A +3)i 93 (Wh11 _ wh22) term in (3.1). It turns out that the three elements of Wﬁ:f are
1 256 1 £ normalized correctly. Here the structure constant is given by
~3 o5 A=3)2A+3)(2X2=17)i 123 = 1. We can also check other cases of (3.1) by choosing

oW -WE [

L ! L o+ D -H2a—1)
(Z — w)3 120 5

X (21 4+ D(2n+ Dio* (Wr ! —wr)
1256 ,

—5 55 @ =3 r+ 32— 17)132(W§j§1 - %2

4
+§(4A2 —69)i(Wps' — W};ﬁz)}

A=DA+DEA-3)2r—-1)

L] 1 2048

(z—w)? [720 5

x2h+ DA+ 3 W' = Wi
5 256

e — p— 2 p—
68 25 QA —=3)2r+3)2r" —17)

xi 8% (Wya! = Wii)
14
+5 g(4,\2 —69)id (Wi — Wﬁjgz)}(w)

+ A=-DA+DH2r =321 —-1)

1 12048
(z—w) | 5040 5
X (2h+ DA +3)id (W] — Wi

5 256 2 o4
~ 1008 25 P~ I+ —17)id
(W' = WD)

3 4 432 — 69)i 92 W,\,ll A,22
+o5 5 7 =691 9" (W5 — Wis)

I
—5 i W'~ ;;%](w) o

Wi = W%:?)(w)]

4.4 i
= _pF,S(apaws)\)[ z—w)

— P40z, 00, )

§ [i Wrs' Wﬁ:?xw)}
(z—w)

P Wes' — W§:§2><w>]

44
_pF‘1(817alU7)\)|: (z—w)

S ARTCE I
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the different indices and expect to have similar relations to
(C.1) and (C.2). We have checked that the relation (3.1) satis-
fies for the case of the arbitrary weight /1 with the restricted

Weight hy (hy = hy, hy £ 1).

4.5.1 C.1.3 The OPE between Wg’le and itself

We can consider the second case described by (3.10). It turns

out that we obtain the result

Wi+ Weih@ Wyl + wiihw) =
1 6144
x—— | —(281° — 8427 + 352% + 7043
z—wd| 5
—422% — T+ 3)]

n 1 2048
z—wb| 5
X(Wga' + Wy (w)

(A —2)(h + D2A — 3)(2r + 1)]

L [%u C2)( 4+ D@ —3)2h+ 1)}
G wi2l s
X0 (W' + Wy3") (w)
1 |: 3 2048
(Z—w)4 20 5

x (WAt + wp3?)

(=2)(A+1)(2A—=3)(2A+1)d?

192
_?(2x2—zx—9)(ngl+wl§;§2)] (w)

: L 20 20 1)2—3) A+ 1)9°
(z—w)3 |30 5
x (WAt + wh3?)
1192
_E?mz — 2 -9y, + ngiz)](w)
+ ! 12048 A=2)(x+1D(2r—3)
z—w?2|168 5
x4+ D)ot (Wit + W
5 192

2 2 A1l 2,22
—3¢ 5 @ =2 =9 (W + W)
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+6 Wy + w§;§%]<w>

1 1 2048
[ (h—2)(A+1)(2x —3)

(z—w) | 1120 5
X204 195 (Wi + W3
1192

2 3 A1l 1,22
—3¢ 5 @7 =298 (W' + W)

1
+560 Whe' + wg;gz)]m) 4.

?(2&6 — 842° 4 350% 4 7023

1 |:6144
(- w)?

—42)0% —Th + 3)]
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44 (5.9 A)[(ngélJngZéz)(w)]
PB’Q 2> Ows (2 —w)

1
= mcl;(4,4,)\)511q4

4
+ Y "D P 0 0w 1)

h=0,even
A 11 2,22
o <
(z—w)

which looks similar to the previous one in (C.1). The cor-
responding central charge, the structure constants and the
currents occur.

C.1.4 The OPE between W},‘:f:l and Wg:fzz

By taking the different indices A = 1 and B = 2 in (3.10),
the following result is obtained

Wi+ Wiih@i w2 = withw)

= ! 8192A 2)(A— DAL+ 1)2x =3
—m[?(—)(—)(-i-)( -3)

X (2 + 1)} P Wyt = Wi w)

1 1[8192
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X204 Di 97 (W' = W)
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7 25( YA+ 1)( 33)i

7 Wys' = Wy3)

16 ,
+?(}\2 —h—1T)i (W' - wg;?)](w)
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xQr+1i > Wiy = Wi
5 512
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5 512
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T008 25 AP s
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I
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(z—w)

i W)L’ll _ W)\,ZZ w
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’ (z—w)
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5

— 4.4 .
=— > "D Pyl @, 0w, 1) f17
h=—1,0dd
1, A=3

y [ Wh.o- (“’)] e (C.4)

(z—w)

Note that there is a A factor in the structure constants appear-
ing the current (Wg’}l — gfz) and its descendants. It is

obvious that they vanish at A = 0.

C.2 The OPE between the bosonic currents and the
fermionic currents

We present the explicit check for (3.12) with the weights
h1 =4andh2 =3.

C.2.1 The OPE between Wf;*le and Q%%=!
’ 3

For the same indices A = B = 1 in the first equation of
(3.12), the following result holds

Wiy + Wrih@ (077 + 07h(w)
1 [256

x2r+D2x+ 3)] (Q*%'“ + Q’\%’zz)(w)

1 2256
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3
2
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2 2
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2
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A
2
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The right hand side of (C.5) can be seen from the last term in
the first relation of (3.12) by changing the commutator to the
corresponding OPE. Note that there is an additional factor
(—1)”_1 in the above.

C.2.2 The OPE between W;\,’f:l and Q%P2
’ 3

The following result is obtained by taking the different
indices A = 1 and B = 2 in the first equation of (3.12),
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Then we observe the first term of the first equation of
(3.12) and the first relation of (3.12) satisfies for the case
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of the arbitrary weight h; with the restricted weight h;
(h1 =ha, ho +1).

C.2.3 The OPE between Wg,’f:l and Q%5=!
‘ 3

We obtain the following result for the same indices A=B=
1
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We observe that the second relation of (3.12) can be seen
from (C.7).

C.2.4 The OPE between Wg’le and Q%82
: 2

Similarly, we can calculate the following OPE for different
indices A=1and B =2
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We observe that the first term of second relation of (3.12) can

be seen from (C.8).

C.2.5 The OPE between W 2=" and 0’y *=!

o >

We can consider the third equation of (3.12) and the following

result can be determined
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There appears the A factor in the coefficients appearing in the
current Q%% (w) and its descendants.
2

C.2.6 The OPE between Wf;:le and Q%22
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For different indices, we obtain the following result
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There appears the A factor in the coefficients of the current
0% (w) and its descendants.
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C.2.8 The OPE between Wg’le and Q%P2
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= (C.12)

Similarly, we observe that the last equation of (3.12) can be
seen from the above (C.12).
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C.3 The OPE between the fermionic currents

We check (3.13) with the weights A1 = hy = 3.

C.3.1 The OPE between Q=" and 0%2=!

7
2

ol >

When the indices A and B (A =B = 1) are the same, then
we obtain the following expression

<Q§12 + 05" @) (Q*;12 + Q*;Z‘)(w)

A
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. (C.13)

We can check that the corresponding terms in (3.13) can be
seen from the above (C.13) and note that there is an additional
factor (—1)" coming from the anticommutator to the OPE.

C.3.2 The OPE between 0"~ and 0%'5=2
2 2

By considering the different indices as before, we determine
the following result
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WA,A:3(w)
X[L] n

As before, the A factor appears in the structure constants

appearing in the current (Wg’ %1 - g?) and its descendants.

Appendix D: The other central terms in the OPEs
between the fermionic currents

As in (3.8) and (B.1), we can calculate the following OPEs
for the highest order poles
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h1—2 hy—1 j+1 1 hi+hy—3 hi+hy—3
_ o [ _ j i a2 PRI
_N8bc5da< PO BB AURSEL I (Wi Wl =5 | 2 = 2
j=0 i=0 =0 h=0,even h=—1,0dd
i1t + i) h bk
X%(_l)hl_m G+1=0n-2-; xa" g
! i ! a2
X(hy =1 —=0pq14i (A1 + Dpy—1-i x(m, s 2) (W yny—a—pdmetn>
hi—1 hy—2 j+1 b 2 1 hi+hy—3  hi+hy—3
+ 3 S @l 2 B, b [Wendm Wil =5 | 22 + X2
j=0 i=0 =0 h=0,even h=—1,0dd
. . hi.ho.h 212
SOEDT g — D1 xq" pg"" " om,n 2) Wy ot
t@+i+1)! - . | [t i3
(h1 = Drsrgs (1 + 1 +i>h22,~>. o1 [ Weide Weadl =5 | D + 32
h=0,even h=—1,0dd

h hihah 2,21
X4 P (m,n, 1) (WB,h1+h2—2—h)m+"’

1 hi+h,=3  hi+hy—3
2,21 2,22 _
[(WB,hl)m’ (WB,hz)"] - E Z - Z
h=0,even h=—1,0dd

Appendix E: The other (anti)commutator relations xq" pgl,hz,h(m n, ) (Wé\,il o mn
b 9 s 1+ 2_ — 9

These results will be used in (3.13) and (3.14).

We present the remaining (anti)commutator relations dis-
cussed in Sect. 3. . b | (a3 b3
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(E.1)

where the central term (3.11) can be substituted.

E.2 The commutators between the currents consisting of b ¢
system and the currents consisting of y b system with
hy = ho, hy + 1 for nonzero A

By analyzing the first equation of (3.12), we obtain the fol-
lowing commutators between the currents consisting of b ¢
system and the currents consisting of y b system

MR b

2,21 A, 12 h 1,h2+5,
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As in previous footnote 3, the OPE between W];k”;:‘;lﬁ (z) and

Q)];’f::, , (w) where the weights satisfy 1 = hy+3 canbe
aty=;

obtained and the seventh order pole of this OPE contains the
structure constant — % A+DA+2)2A=3)2A+3) 21+

5)(11x — 17) appearing in the current Q* 3 5 (w)
hy+hy—3—h=3

with weight & = 5. On the other hand, the structure con-
7

stant gp > (m, r, 2) contains g (A + 1)(2% — 3)(4n* —

2813 — 1312 4+ 491 + 51). By subtracting the contribution

%(A —DAA+ DA —-3)21r — 1)(2A + 1) coming from

7

the structure constant qé’z’s(m, r, A) from this, we obtain

— 55 A+ 1) (A +2) (22— 3) (2 +3) (22 +5) (11— 17). The

weight i1 = 6 is replaced by the weight (k] — 2) = 4. Note
7

that the additional term appearing in the q;’ 2? (m, r, \) con-
tains the factor A. By considering the numerical factor 46080
when we move from the modes to the differential operator in
the OPE and multiplying this into the above factor, we obtain
the above structure constant in the current Q§ (w).

2

E.3 The commutators between the currents consisting of
B v system and the currents consisting of y b system with
hi = hy, hp + 1 for nonzero A

In this case, by using the second equation of (3.12), we can
write down the following commutators between the currents
consisting of By system and the currents consisting of y b
system

hi+h2—3 1
[(Waihm @20 )= 3 o Y
h=—1
x(m,r, A) (QZ;thr%ih)m_H,
hi+h,—3 1
[UGRINCAE ENDY g g
h=-1
x(m, . 3) (QZ;irthf%,h)m-‘rr,
hi+hy—3 1
[(Wé,’;ll,z)m» (Qz;zf%)r] = Z 4" q§1,h2+§,h
h=1

A, 12
X(ma r, )V) (th+h2_§_h)m+ra
2

Mt i

2,21 a1l n hihots,

[(WaieDms (@0 )= D0 d"ay
' 2+

h=—1

A,21
X(m’ r, )") (th+h2_§_h)m+r,
2
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hi+hy—3 ol hi+hy—2 Bt
211 212 n_hihats, 2,22 1,12 h h_hihats,
[(Wanm (200 )= 30 a"ag™ [(Weim @20 = 30 a" (=D ge™
h=—1 h=—1
1,12 =312
x(m, r, A) (Qh1+h2—%—h)'"+r’ x(m, r, A) (th—i-hz—%—h)m-H’
hi+hy—3 il hi+hy—2 PR
2,22 121 _ hhihots, 211 A4,11 _ h p hihatg,
[(WeiDms (@70 = 30 d"ap [Wenom: 0 0] = 30 a" (=1 g
h=—1 h=—1
2,21 ~A,11
Xm0 Q42 . <m0 (@] e,
MR b il hy o+
A1 A1 _ h 1,n2+75, 2,22 AA,22 _ h h 1,h2+5,
[WeDme (@100 )= 30 a"ag [(WeiDm: (@370 )= 30 a"(=D'gg
h=—1 h=—1
A1 AA,22
X(m’ r, )") (th+h2_%_h)m+r’ X(m’ r, )") (th+h2_%_h)m+r' (E4)
hy+hy—3 ]
[WeP) (0520 ]= Y ghgy ™ " Note that there exists the factor (—1)" in (E.4) which appears
o hats h——1 in the (anti)commutators described in Sect. 4.
2,22
X(ma r, )\) (th+h2_§_h)m+ra (Es)
2

which look similar to the previous relations in (E.2).

E.4 The commutators between the currents consisting of b ¢
system and the currents consisting of 8 ¢ system with
hi = hy, hp + 1 for nonzero A

Similarly, from the third equation of (3.12), we can write
down the commutators between the currents consisting of
b ¢ system and the currents consisting of 8 ¢ system

hi+hy—2 Bt
2,21 AA,21 h h 1,h2+75,
[(WeiDm: (@750 )= 30 a" (=1)'gg
h=-1
1,22
X(ma r7 )") (th+h2_%_h)nz+ra
M2 hi ot 3h
2,12 A, 12 h h 1,h2+5,
[Wenm: (@20 )= 30 a" (=D gg
h=-—1
AA, 11
X(I’)’l, r, )‘) (th+h2_%_h)m+rv
hi+hy—2 ol
x,12 A1,22 h no hihaots,
[(WenDm: (0,770 ] = 30 a" (=1 g
h=-—1
AA,21
X
(m,r, A) (Qh|+h27%7h)m+r’
hiha-2 b+ L h
x,21 A1 _ h h hihats,
[(Wesim: 0 0] = 30 a" (=1 g
h=—1
=112
X(ma r7 )") (Q/’l1+h2—%—h)m+r’
hi+hy—2 Bl
2,11 ~A,21 h h 1,ho+5,h
[WenDm: (@75 0] = 30 a" (=1 gg
h=-—1
Ar,21
X(m’ r, )") (th+h2_%_h)m+r,

@ Springer

E.5 The commutators between the currents consisting of
B v system and the currents consisting of 8 ¢ system with
hi = hy, hy + 1 for nonzero A

Finally, from the analysis of the last equation of (3.12), we
obtain the following result for the commutators between the
currents consisting of 8 y system and the currents consisting
of B ¢ system

ka2 hy o+
2,21 A2,21 _ n n hiha+s,
[Waim: (0,7 D] = 32 a" (=1'gy
h=—1
Al
x(m,r, 1) (Qh|+h27%7h)m+r’
a2 hyha+ b
A, 12 A, 12 _ h h 1,h2+5,
[Wedme (@20 )= 30 a" (=1 ag
h=—1
AR.22
X(m7 r, )") (th+h2_%_h)m+r,
hi+hy—2 ol
2,12 Al n n hihatd,
[Wame (@00 )= 30 a" (=D gg
h=-1
21,21
X(I’)’l, r, )\) (th+h2_%_h)m+ra
21 22 M2 hiha+1n
A, A, h h 1,h2+5,
[(Waim (@)= 3. a" (=D ag
h=—1
~.12
x(m,r, A) (Qh|+h27%7h)m+r’
22 21 =2 hiho+1tn
A, Ak, _ h h hihats,
[(WaiDm: (0,7 D] = 32 a" (=1)'gg
h=—1
A2.21
X(ma r, )") (th+h2_%_h)m+ra
5 h1+hy—2 Bl
Al Al n n hihaty,
[WeDm: (@20 )= 30 a"(=1)'gg
h=-1
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AA, 12
x(m,r, ) (02 5 e
2

h1+hy
ka2 hyho+Lh
A1l AA, 11 1,n2+75,
[Wam: (0,0 )r] = DA G D
h=—1
AA, 11
x(m,r, 1) (th+h2_%_h)m+r,
hi+hy—2 ol
2,22 AA,22 h h 1,h2+5,
[Waaom: (@70 = 30 a" (=D"gg™
h=-—1
AA,22
X(mr ) (0,2, s D (E.5)
2

Similar to the previous footnote 3, the OPE between

A A=1 =1, B=1
Wg’y,=7(2) and QB’thr%=
with the structure constant % *+2)2x + 321 +
5)(66213 —31651% 454341 —3339) appearing in the current

Q% (w). This can be obtained by adding the extra contribu-
2

, (w) provides the seventh order
2

. 4,15 .

tion from gp' > (m, r, A) where h is replaced by (h; — 3)
15

ir_l addition to the one from q;’z’ (m, r, A). Note that the

Q}i (w) term on the right hand side of the tenth order pole

of 2the OPE can be determined by the contribution from the

7
structure constant q]53' 7'8(m, r, 1) only.
Note that there exists the factor (—1)" in (E.5) which
appears in the (anti)commutators described in Sect. 4 and
Appendix G.

E.6 The anticommutators between the currents consisting
of y b system and the currents consisting of 8 ¢ system with
hi = hy for nonzero A

By analyzing the equation of (3.13), the following result sat-
isfies

ftha-l hi+L o+ don
2,21 “.21 _ Z nf A+,
{(thJr%)r,(thJr%)s}— L q (OF

A1l
x(r, s, A) (WF,h1+h2—h)”+S

h]-l-%,hz—i-%,h
+op

,22
X (r, 5, 1) (W{hl+,12,,)r+s>

L (r+h—% hy4hy—2
— hi, hy, &) g"tha=2s,
2( Iy + co(hi, ha, 1) q rts
2,12 ~3.12 _h'+h27] h m+3ha+hh
(@) (0775} = ];) q" | ok

2,22
x(r, s, ) (WF,h1+h2—h)’+S
+Ogl+%,h2+%,h

A1l
x(r, s, ) (Wg’h1+h2h)r+x>

L (r+h—3 hy+hy—2
+= 2 ) colhy, ho, X)) g"Mt2=2s, .
5 ( Iy + o(hi, ha, 2)q rts
hi+hy—1 il sl
A, 12 A, 11 _ Z h Nity.n2+5,
{(Qh1+%)r’(th+%)S}_ — q O
=
A 12
X(r9 s, )\') (WF,/’l1+h2—h)r+~Y’
it hi+d ho+ L h
A 12 Ar,22 _ Z h hitgz.n2+73,
{(th"'%)r,(QhZ"l‘%)S}_ —~ q 0p
A 12
x(r, s, ) (WB,hlJrhz—h)r'i‘S’
it hitd ha+ L
221 NI Z n AL+l
{(th+%)r,(Qh2+%).€}— — q 0g
1,21
x(r, s, ) (WB’hl_l,_hz_h)r-i—Sv
il hit+d ho+ L h
2,21 2022 )y Z [N TR NI
{(thJr%)r»(thJr%)s}— — q Op
A,21
x(r, s, ) (WF,h1+h2—h)r+S’
hi+ha—1 il sl
A, lL Ar,21 _ Z h Nity.n2+y,
{(Qh1+%)r’(th+%)S}_ — q 0g
A, 12
x(r, s, ) (WB,h1+h2—h)”+5’
it hit+d ho+ L
222 =121 _ h ittt
((Q, 7 )r (0370 )5} = /;) q" o
A, 12
x(r, s, A) (WF,hlJrhth)r-Q—S’
it hit+d ho+ L
a1 212\ Z n i+ttt
(O @20 = 30 d'e;
A,21
x(r, s, A) (Wp,hl_;,_hz_h)r—t-n
hi+hy—1 il sl g
2,22 AL, 12 _ Z h Nitay.n2+5,
{(Qh1+%)r’(th+%)S}_ — q 0g

2,21
x(r, s, ) (WB’hl_th_h)rJrs,

e hi+3. o+ 1 n
A, ll A, 11 _ Z h 1+73.n2+7,
{(th_’_%)rv(th_i_%)s}— p q (OF

A1l
x(r, s, ) (WFyh|+h27h)r+S

hi+3.ha+3,

h Al
+og (r,s, A) (WB,hl+h2h)r+S)

1 (I’—}-/’ll—l

- 2 hi . ho. A h]+h2—25
+3 Iy +ho )CQ( 1,ha2, 2) g s

hi+hy—1 mitd ol
A,22 AA,22 h 1+75,12+7,
s = o
{(th_i_%)r (th_i_%)s} ]EO q ( F
(=
2,22
x(r, s, ) (WF,h1+h2—h)r+S

h1+%,h2+%,h

22
+og (r, s, A) (nghl+h2_h)r+s>
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+1 (I’—}-hl—l

_ 2 hi+hy—2
> Iy + o ) co(hi, ha,X)q Orts-
(E.6)

There are the relations when we interchange /1 and hj as

h2+%,h|+%,h h h]-l—%,hz—i-%,h h2+%,h]+%,h
OR = (=1)"op and op =

h h1+%,h2+%,h

(=D"og . These will be used in Appendix G.

Appendix F: Some relations which can be used in Sect. 4

Other component result related to (4.5) can be summarized
by

Lol | A 21 a2\ |1
——(Qh+%+2m/§Qh+%—2Q )_-

2 2 V)
i 1 .2 1 - h-1).2 |
X|———®, """ ——F—= o,
R e B
L2001 | a5 a1z Ax22) _ 1
2 (2 Qh+% + ZZﬁQh% Qh+%) 2
[ 1 (.2 L ca-n2]
“laca L iyt )
PRSI w12 s ar22) |
2 (Qh+% + M/EQH% 2 Qh+%) 2
y 1 3 1 2 (h-1),3 |
R . L A
Lo aall | . /5 Ak20 An22)
2 (2 Qh+% + M/EQH% Qh%) 2
1 -
)3 (h—1),3
X| ——— — ,
[4(—4)h4 T e ]
| ST o 1
22y 9k =2
o 1 (M4 1 = (h—1).4 |
RO e N S
- 1 - 1
IRV - R |
Qh+% ) Qh+% 2
[ ()4 < (h—1).4]
X| —— —® . F.1
a—a L i &L

Similarly, other relations associated with (4.7) can be
described as

A, 11 x,21 .22
—2i Wy +4«/§WB,,1+1 +2i Wy'in,

1
|:q>§h),13 + q)gh),24i| ’

= 8(—4)h_4
ol 2,21 22
—2i Wiyhy +2V2 WL, + 20 Wi
1 .13 (h).24
=g o)
Al . PRD) ) 221 2,22
2Wehy + iv2 Wglht1 + 4iV2 Wglhe1 —2Wglii

@ Springer

1 h). 14 (.23

A1 . 2,12 . 2,21 2,22
—2WEi — 21«/§WF,h+1 - 21\/§WF’,7+1 +2W,

F.h+1
1
[cpﬁ’”’” + <I>§h)’23] (F2)

T 8(—4)i4
Both relations in (F.1) and (F.2) are used in Sect. 4 and
Appendix G.

Appendix G: The remaining (anti)commutator relations
between the ' = 4 multiplets

In this Appendix, the remaining ten (anti)commutators with
the particular examples for the specific weights 41 and A,
showing that the extra structures on the right hand sides of
these (anti)commutators are given explicitly.

G.1 The anticommutator relation between the second
components with 4| = h, for nonzero A

By using the expressions in (2.8) and (E.6) together with
(4.1), (4.7) and (F.2), the following anticommutator can be
obtained

{(q)(%hl),i)r’ (q)(%hz)yj)s} — 16(_4)h1—4 (_4)]’12—4

1 -
X[ <r+h1 2) qh1+h272CQ 81] 8r+s

hy+hy
et m+d o+ in
+87 Y g+ (=DM (o; 2R 5, 0)
h=0
1 1
—op TR, A))
1 (hy+ha—h) ij
XS Caynriiz (Po )ris + 6"
hi+hy—1
x Y ((hl +hy—h—14+204" 1+ (=DM
h=0

1 1
som F2IEIN G 3 S (hy + hy — h—20)

1 1
g (14 (=1 op T2 T2 A))
1
X
16(2h1 + 2hy — 2h — 1)(—4)yh+ha—h=6

= (hy+hy—h—2)
X(@g e )r—i—x
hi+hy—1

1 1
x— 3 A= (et
h=0
(hi+hy—h=1),ij
X (r’ S, )‘) 32(_4)h1+h2—h—5 <d)1
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L ¢Eh1+h2—h—1),k1)
2

r+s
i A o A
Y g = Do T
1 (hy+ha—h—1),ij
X32(_4)h1+h2—h—5 (q)l
1 . _h—
_Egljkl q>§h1+h2 h I)Jd) j| (Gl)
r+s

The central term is given by (3.14). Due to the factor (1 £
(-1 Y1) in the above, the two kinds of the currents, the SO @)
singlets and the SO (4) adjoints appear alternatively. When
the weight & is equal to its maximum value h = hy +hy — 1,
then the currents <I>(()1) and égﬁl) terms in the SO (4) singlets

appear on the right hand side while the currents Cb(lo)’ij and

L gijkl cpgo)’kl appear similarly.

G.2 The commutator relation between the second
component and the third component with 41 = hp, hy + 1
for nonzero A

By using the relation (2.8), (2.9) together with (E.2), (E.3),
(E.4), (E.5), (4.5), and (F.1), It turns out that we obtain

(@D, (@275, ] = (=)~ 44—
2

Ml
x|:5ij <— Z qh qF2+’ +2, (m,r, 1)
h=—1
h1+hy—1
+ Z q ( 1)h h2+lh1+ h(m’r’)\‘)
h=—1
hi+hy—2
+ Z h h2+l h1+2 h(m’ . )\.)
h=-—1
hi+hy—1
- Y e ’”*”"*“’(m,r,x))
h=-—1
1 hi+hy—1—h).k
X—4(_4)h1+h27h75 (qD(él 2 ) )mﬂ
hi+hy—2 1
+8ij< Z qhq£2+l’hl+7’h(m,r, A)
h=—1
hi+hy—1
+ Z q ( 1)h h2+lh1+ h(m’r’)\‘)
h=—1
hi+hy—2 .
_ Z qhqu+1,h1+§,h(m’r’)\)
h=—1
hi+hy—1 !
-y q”<—1>hq§2+l’h‘+2’h(m,r,x))
h=-—1

1 (Un+ha=2-k
4( 4)h1+h2 —h—6

hi+hy—2 1
_(Sik<_ Z qhq£2+l’hl+7’h(m,r,x)
h=—1
h1+hy—1
T Z q (— 1)h h2+1h1+ h(m’r’)\‘)
h=-—1
hi+hy—
+ Z h h2+1h1+2 h(m’r’)\)
h=—1
hi+hy—1 1
-y qh(—1>hq§2+1”"+2”’(m,r,x))

h=—1

)m—i—r

1 (hi+ha—1-h), j
e ot 1 +4 h
_8116 < Z qh sz ST, (m’ r )\')
h=—1

il hy+1,hi+4,h
+ Y gD g T )
h=—1
A
D A S N
h=—1
il hot L+
— Y gt (m,r,w)
h=-—1
1
x 4(_4)h1+hz—h—6 (
-2

hi+hy
ijki Z h h2+1,h1+%,h
+8 - q ql: (m7 r, )\')
h=-—1

5 (hi+hy—2—h),j
cb; )m+r

hi+hy—1 .
+ Y DT om0
h=—1
A
D R A S N
h=-—1
hithy—1 1
+ Y qh(—1>hq§2+l’h‘+2’h(m,r,x))
h=-—1
1 ((D(h|+hz 1=h),1

W )m+r
hi+hy—2 .
+8ijkl< Z qhqu+1,h|+§,h(m’r’k)
h=—1
hi+hy—1

h+1h+ Jh
+ > gD T T )
h=-—1

a2 hot L +4 0
2+ 1+
+ E q"q 2 (m,r, M)
h=—1
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hi+hy—1 hot L1 - hitho B a3
t2 e e “) +59 3 "= =D (o; PR G )
h=-1 h=0
—1 5 (hi+ha—=2=h),l h+ o3 h
X4(—4)h1+hrh76((bgl ’ M | —og T TT(r, s, A)
G2) — ! (hi+ha+1=h)
X Cariit (@0 s
Due to the antisymmetric property in the indices j and k on e
the left hand side, we observe that there exists antisymmetric SR h n
’ 51 hy+hy—h+20) " (1 - (~1
property for the interchange of those indices on the right T Z (h1+hy +20 4" ( (=D%

hand side. The field contents in (G.2) look like as the ones
in (4.6). Note that the ordering of first two upper elements in
the structure constants in the above is opposite to the one in
(4.6). As before, in the summation over the dummy variable
of the weight £, there are current terms for the case of h =

h1 + hy — 2 where we see the presence of the current CI>(ll)’k

2
and <'1“>(3°”" terms with Kronecker delta or epsilon tensor of
3
SO (4) and for the weights 1 < h| + hy — 3, there are some
cancellations in the current terms due to the factor (—1)"
depending on the even or odd property of the weight &.

Let us consider the OPE between d>(1h'=3)’i(z) and
2

<I>(1hz:4)’]k(w) with i = j where hy = hy — 1 as in
the footnotes of Sect. 4. The seventh order pole of this
OPE gives us the structure constant %(A - 2)(x —
D+ D@2A —3)(2r 4+ 1)(21 + 3) appearing in the cur-
rent dJ(lh'Jrhz_l_h:l)’k(w) with weight &~ = 5. By substi-

2
tuting the various expressions 1n the correspondmg terms

of (G.2), we can check that we obtain the above struc-
7

ture constant correctly where q;’z’s term corresponds to
409 (5 — 1)( + 124 — 3)(2 + 1) (22 — 143 — 9) while

7

qg’ 23 term corresponds to —%()\ —DA+DRA=3)2Ar+
1)(4A% 4101 — 15). There appears the current &)(20),1 (w) term

with nonzero structure constant having the A factér in the sev-
enth order pole of this OPE and this is not consistent with
(G.2) because all the coefficients vanish for the odd weight
h = 5. This implies that there is additional term on the right
hand side of the OPE for the weights 71 = 3 and hy = 4.

G.3 The anticommutator relation between the second
component and the fourth component with 4| = hy + 1 for
nonzero A

By using the relations (2.8) and (2.10), we can rewrite it
in terms of the corresponding anticommutators in (E.6) and
using the relations (4.1), (4.7) and (F.2), the following result
can be obtained

o ) )

(@, (@)} = 164!~ (a2
Fhi =5\ bt s sij

X|: (h1+h2+l 1 €Q 8" Orts

@ Springer

h=0
B4 o3k
XOF 2 2

(r,s, )
Sh 4+ ha+1—h—2)q" (1= (=DM

i+ o330
xop ° 2 (r, s, )

1
X
16(2h1 + 2hy — 2h + 1)(—4)h+ha—h=5
F (h+hy—h—1
X(CDE e ))r+s
hi+h
e h1+%,h2+%,h

- > "+ =DMoy

h=0

(r,s,))

1 (h1+ha—h),ij
X 32(_4)h1+h2—h—4 (cI)]

1. _
+E€t/k1®§h1+h2 h)Jd)

Inthe hi+1ho+3 .k
+ Y d" A Do T

h=0

r+s

(r,s, M)

1 (h1+ha—h),ij
X 3p(—a)ylhth—h—4 (CDI

_l 8ijkl qjghl'i‘hz—h)akl) :| (G.3)
2 r+s

The central charge will be given later soon. The right hand
side of (G.3) is similar to the one in (G.1) in the sense that the
field contents are the same and the relative signs are different
from each other. It is obvious to see that some expressions
having /> in (G.1) are replaced by (42 + 1). As mentioned
before, the two kinds of currents occur alternatively depend-
ing on the even or odd property of the weight A.

The OPE between ® 1=/ (z) and & "2~ (w) withi =

j where the weights satzisfy hy =hy+ % can be calculated.
The fifth order pole of this OPE gives us the vanishing struc-
ture constant appearing in the current q)(()h‘+h2+l_h:2)(w)
with weight # = 4 from our calculation. There appears
the current &D;O)(w) term with nonzero structure constant
26 () — D21 — 1)(24 + 1) in the fifth order pole of this
OPE and this is not consistent with (G.3) because all the
coefficients vanish for the even weight 7 = 4. This implies
that there is additional term on the right hand side of the OPE
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for the weights 41 = 4 and A, = 1 which are outside of the
allowed region we consider.
Here the central term is given by

- hi+1 ha+2
cp = 8(=H" 27 8y 84 [ ~ 0@ QT )

hi+1)— hy+2)—
+0V"07 (@) 02 (w)

hi+1 hy+2)—
— Q"I (2) 2™ (w)

hi+1)— hy+2
+0 (@ 0" (w)
hy+2 hi+1
+(_1)h1+h2 Q( %"l‘ )+(Z) Q( l_+ )+(w)

A,cd A,ab
ha+2)— hi+1)—
—(=D 2 QIR () 0V (w)

ho+2 hi+1)—
DM QP @) 031 (w)

ha+2)— hi+D+
—=DMR QIR @ O T |

(G.4)

Note that from the inside of the bracket in (3.14), after the A,
is replaced with (4, + 1), we obtain the above result (G.4).

G.4 The commutator relation between the second
component and the last component with
hy = hy + 1, hp + 2 for nonzero A

By using the relations (2.8) and (2.11), we can rewrite it
in terms of the corresponding commutators in (E.2), (E.3),
(E.4), and (E.5) and using the relations (4.5) and (F.1), the
following result can be obtained
(@), (@5),] = 4(—4)n 4 4(—a)>~
2

hi+hy—1

X[( Y
h=—1

hi+h
3 gD g 2
h=—1

hi1+hy—1
+ Z h h2+2h]+2h(m,r,)\)

h=—1

hy+hy
n Z g1 ha+2.h1+3 h(m,r,k))
h=—1

m—+tr

! (hi+ha—h).i
g ayiia (P )

hi+hy—1 .
+<_ )3 qhqu+2,h1+§,h(m’r7)\)
h=—1
hi+hy
3 gD g )
h=—1

hi+hy—1

-

h=-—1

hutho hy+2,m+4 h
+ Y g =D (m,r,m)

h=—1

h ho42,h1+3,h
q qB : (mar7)\')

1 - 1N
CH ’“")mﬂ}. (G.5)

(= ayh i —h=s
The field contents on the right hand side in (G.5) look similar
tothe ones in (4.6). Except the four terms having (— 1)" factor
for the weight 1 = h;| + hy, there are some cancellation
between the currents due to the factor (— l)h. In other words,
the two kinds of currents appear alternatively depending on
the even or odd property of the weight /2. Note the presence of
different ordering in the elements of the structure constants.

Let us consider the OPE between CIJ(h1 =i (z) and

CIbéh2 1)(w) where the weights satisfy 7; = hy + 4. The
seventh order pole of this OPE gives us the structure con-
stant —=>>= 16384 16384 (X — 1)(2A + 1) (4A — 1)(6A% — 31 + 5) appearing
in the current G'(w) with weight & = 5. By substituting the
various expressions in the corresponding terms of (G.5), we
can check that We obtain the above structure constant cor-

rectly where q P2 23 4% (A DO+

D(2A + 1)(843 4+ 812 + 24) — 25) while q 5 2% term corre-
sponds to 4996 (A — 1) (24 —3) (2A+ 1) (423 — 1022+ 194 +5).

There appears the current CD(;)J (w) term with nonzero struc-

term corresponds to —

ture constant having the A fazctor in the seventh order pole of
the OPE and this is not consistent with (G.5) because all the
coefficients vanish for the odd weight 7 = 5. There is addi-
tional term on the right hand side of the OPE for the weights
hi1 = 5 and hp = 1 which are outside of the above allowed
region.

G.5 The commutator between the third components with
hi = hy — 1, hy, hy + 1 for nonzero A

By using the relations (2.9), we can rewrite them in terms of
the commutators in (3.15), (3.16), (3.17), (3.18), (3.19), and
(E.1). Then we can use (4.1), (4.7) and (F.2), we obtain the
following commutator

hy),ij ho),kl
(@), (@), ] =

m ~+ hy hitha—2 [ 4 (sik sl sjk gil
x[<hl+h2+l)q 4 (sik 571 — sk 5ily

16(_4)h1—4 (_4)]’[2—4

X(Cp + ) — 4 U7k (s — ) | Smn
hi+hy—1

_’_(alk (Sﬂ _ 511 5]1() Z qh (pl};1+1.h2+1,h(m, n, )\')
h=0,even

—pﬁ‘*‘*h”"h(m,n,m)
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4

(h1+ha—h)
X Cayiri—i=z (Po Jmtn

hi+hy—1

+(8tk 57 — 5t 57Ky Z ((h1+h2—h—1+2k)

h=0,even
hi+1,hy+1,h
xq" ppt T L )
H(hy +hy —h = 22) ¢" pit T G, A))

1
2Ny + 2hy — 2h — 1)(—dyli+h—h=6
X(d‘)g’ll-ﬁ-hz—h—Q})

m+n
hi+hy—1

Lgiikl Z

h=0,even

q" <p21+1,112+|,h(m’n7 3+ it Gy }\))

4 -
X i @0
hi+hy—1
ek N ((hl +hy—h—142))
h=0,even

xq" pg|+l,hz+1,h(m’ 7.2

_(hl 4 I’l2 —h— 2)\‘) qh pg]+l,/12+1,h(m’ n, )\))
1
X
202k + 2hy — 2h — 1)(—4)ln+h2—h=6

= (hi+hy—h-2
) (YR L

hi+hy—1
i hi+1,ho+1,h
+3”‘ Z qh pF1+ 2+ (m,n, 2
h=—1,0dd
1 (hy+ha—h—1).j
X4(_4)h1+h2—h—5 (q)l

_’_l gdmny q>(h|+h2—h—l),m|n1>
2 1

m+n
hy+hy—1
+5ik Z qh pgl+l’h2+l'h(m, n, %)
h=—1,0dd
» 1 <q)(h1+h27hfl),jl
4(—4)m+h2—h=5 1

1.
_ = Jjlminy g (hitha—h—1),min;
2 £ D,

m+n
hi+hy—1

it Z qh p]f;1+l,h2+l,h(m’ n, %)
h=—1,0dd

1 (hy+ha—h—1), jk
x 4(—4)m+h2—h=5 (q)l

+l gjkm]n] d>(1hl+hz_h_l)’mlnl>
2

m+n
hi+hy—1
il Z qh pg1+1,hz+l,h(m!n,)\)
h=—1,0dd
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1 (hi+ho—h—1), jk
X 4(_4)]11+h2—h—5 (q>1

1 . h
_5 8_1km1n1 ¢§hl+h2 h 1),"11”1)

m+n
hi+hy—1

=7k N g pp R n )
h=—1,0dd

1 .
0 (hi+hy—h—1),il
X4(_4)h1+h2—h—5 ( 1

+

| =

ilminy g (hi+ha—h—1),mn;
e N
m+n
et hi+1,ha+1,h
ik h +1,h2+1,
-8/ Z q" pg' (m,n, 1)
h=—1,0dd
» 1 PUn+ha—h=1),il
4(_4)h1+h271175 1
1 .
_ ilminy g h1+ha—h—1),mny
3 e @,
m+tn
hi+hy—1
i hi+1,hy+1,h
+5jl Z qh pFH- 2+ (m, n, A)
h=—1,0dd
y 1 Pn+ha—h—1ik
4(—4)m+h2—h=5 1
+% gikmn, ¢<lh1+hz—h—l),muu)
m—+n
hi+hy—1
i hi1+1,ho+1,h
_Hg_ll Z qh pB1+ 2+ (m,n, 2
h=—1,0dd

1 .
I (h1+hy—h—1),ik
><44(_4)h1+h2—h—5 ( 1

_1 gikmim q>(1h1+h2—h—l)~ml”1) ] (G.6)
2 m+n

The central terms will be given later. There are antisymmetric
properties both in the indices i and j and in the indices k
and / on the left hand side above. This will give us rather
complicated expressions on the right hand side. We do not
use any simplified notations.

Let us consider the OPE between CD(lh1:3)"j (z) and
<I>(1h2=1)’kl(w) where the weights satisfy hy = hy + 2.
The fifth order pole of this OPE gives us the nonvanish-
ing structure constants in the current QD(()h'Jth*h:])(w) and
&Dgh‘+h2_2_h:_1)(w) with weight 2 = 3. This is not consis-
tent with (G.6) because the dummy variable 4 can appear as
even number. There is additional term on the right hand side
of the OPE for the weights 1 = 3 and 4> = 1 which do not
satisfy the above constraint between the weights.

The central term can be written in terms of

(h1 4+ 2)) (ho +2X)
2h1+1) Qha+1)

hi+1 ho+1
< VDT @) v DT )

= (=" 87 840 [
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(41— (ha+1)— (h1 +2X)
Vo V., —_—
+ A,ab (Z) A,cd (w) + (2]’11 + 1)
hi+1 hat1)—
) VMADE ) v D= ()

(ha 4+ 2) y+D-

@ e | @VETT ’

+ néd

-1
(sz)h 1+hy+2

(G.7)
and

(hy+1=21) (hp +1-=2))

cp = (=M, adg[

2h1+1) 2hy +1)
OV
(h+1)— (hy+1)— (hy +1-24)
v v B —
+ A,ab (Z) A,cd (w) (2h1 +1)

hi+1 hy+1)—
< VDT @) v D™ )

_(ha+1-24) ym+D-

G Va @VIETTw)

PR S
w12 F2

(G.8)

We can easily see that after /2 inside the bracket of (3.9) and
h, inside the bracket of (3.11) are replaced by (k] + 1) and
(hy 4 1) respectively, the central terms in (G.7) and (G.8)
can be obtained.

G.6 The commutator relation between the third component
and the fourth component with 21 = hj, hy + 1 for nonzero
A

By using the relations (2.9) and (2.10) we can have the com-

mutators in (E.2), (E.3), (E.4) and (E.5). Then by using (4.5)
and (F.1), the following result can be determined

(@), (@421),,] = 44 a4
2

-l hi+1,ha+3 0
X[81k< Yo d"a T mor )

h=-1
h1+hy 3
+ 3 @ g T
h=—1
_hl‘% 1 ¥ qgl+1,h2+%,h(m’ .y
h=—1
hi+ha 3
-3 gy T A))
h=—1
1 - .
x 4(—4)m+ha—h—4 (Q(;]Jrhz h)’])err
R T A
+5”<<— P S RPN

h=—1

hy+hy

hi41,ho+3 h
+ 3 g D g T )
h=-—1

hi+hy—1

n hi+Lho+3h
+ Y q"aqg im0
h=—1

hutho hi41,ha+3 .k
D I A G VA S (m,r,x)>
h=1

1
4(_4)h1+h2—h—5
hi+h2—1

_sik ( )

h=-—1

Z (hi+hy—1-h),j
@m0y,
2

3
n hi+lLha+3.h
q qr

(m,r, 1)

h1+hy

hi+1,ho+3 b
+ Y "D g )
h=—1
hi+hy—1

-

h=—1

hitho hy+1ho+3 0
D G VA (m,r,x))
h=-—1

n hi+Lha+3 0
qB

(m,r,\)

1 hi+ha—h),i
h—4 (q)(% ! 2 )’Z)Wl“rr

X—
4(—4)yh+ho—
hi+hy—1

: hi+1,ho+3 1
_5]k (_ Z qh qF1+ 2F3 (m’ r, )\()
h=-—1

hyi+hy

hi+1,ha+3.h
+ ) q =D g T m )
h=—1

h1+hy—1

hi+1ho+32.h
+ Y qtag T mor )
h=—1

hitho hi41,ha+3 .0
D I ARG S (m,r,x)>
h=1

y 1 (GUnth—1-hiy
4(—4)hi+ha—h=5 3 m+r
-l hat 2.+ h
+( S gt

h=-—1
h1+hy |
+ 3 @ D g
h=—1
hi+hy—1

ho+2,h+3 1
+ Y gy T )
h=-—1

it ho+2,h+ 5 h
+ > =D (m,r,)»)>
h=-—1

)m+r

1
(h1+hy—h),l
x 4(—4)m+ha—h—4 (q)%
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hi+hy—1 1 ..
.. h2+2,h1+l,h (h1+ha—h),ij
+glikl < _ Z qh qp 2 (m,r, A) x 4(—4)m+ha—h—4 (ch
h=—1
L hy+ha—h) ki
hi+ho 4— glikl CI)( 1+ha—h),
ha+2.hi+1.h 1
+ 3 D g T ) 2 men
h=-1 he hi+1, 42,k
+1,h242,
e D DR AN S CNIPN
- Z qh qu nre (m,r,2) h=0,even
h=—1 » 1 (h1+ho—h).ij
hi+hy 4(—4)m+ha—h—4 1
ho42,h+5 0
+ > g =D g T T u)
he1 (G.10)

1

TR (G.9)

= (hi+hy—1-h),l
G )m+,]
2

The field contents in (G.9) are similar to the ones in (G.2).
The antisymmetric property in the indices i and j on the
left hand side is seen on the right hand side. Except the case
of h = hy + h», due to the (—l)h factor, the two kinds of
currents appear alternatively.

Let us consider the OPE between <I>(1h1:3)’” (z) and

ég’”:””‘(u}) where h1 = hy + 2. The fifth order pole of
2

this OPE gives us the structure constant 35—2(A - D+
1)(2x — 3)(2x + 1) appearing in the current G'(w) of
N = 4 stress energy tensor with weight 7 = 3. By sub-
stituting the various expressions in the corresponding terms
of (G.9), we can check that we obtain the above struc-

4,33
ture constant correctly where ¢, " term corresponds to

5
—1B8_ 1)24 + 1)(242 — 5A — 2) while g5 2 term cor-

responds to 128 (4 — 1)(24 + 1)(2A2 + 31 — 4). On the other

(n+ha—h=1),i
q)l

hand, there exists the current (w) term with

2

the structure constant —%(A — DAQRA = 1)(2A 4+ 1) hav-
ing the A factor. We can check that this structure constant
is equal to the one in the first current terms in (G.9) where

. 4,33
the previous ¢ *

3,33 . .

gp *" respectively. Note that there is a replacement of /1 by

(h1 = 1).

4,33 3,33
and ¢, °" are replaced by ¢, °" and

G.7 The commutator relation between the third component
and the last component with i1 = ha, hy + 1, hy + 2 for
Nonzero A

By using (2.9) and (2.11) together with (3.15), (3.16), (3.17),
(3.18), (3.19), (E.1), (4.1), (4.7), and (F.2), we determine the
following commutator

[(Cbghl)’ij)m, (&)glz))n] — 16(_4)h1*4 (_4)h2*4

_[ bl

h=0,even

" pl{51+1,h2+2,h(m’ n. 2)

@ Springer

L iiir o (h+ha—h) kI
—E 8” CDI .
m-+n

The field contents on the right hand side of (G.10) are similar
to the ones in (4.8). At the maximum value of the weight
h = hy + h;, we observe that there exists the current of the
weight-1 current having SO (4) indices of the N' = 4 stress
energy tensor.

Let us calculate the OPE between CD(lhlzs)’ij (z) and
<I>;hz=2)(w) where the weights satisfy 7, = ho + 3. The
ninth order pole of this OPE gives us the nonvanishing
structure constants in the current d>§h1+h2_h:1)’ij (w) and
L gijkl @ {h+h2=2=h==DM () with weight h = 7. They have
the A factor explicitly. This is not consistent with (G.10)
because the dummy variable 4 can appear as even number.
This implies that there is additional term on the right hand
side of the OPE for the weights 41 = 5 and hy = 2 which
are outside of the above allowed region.

G.8 The anticommutator relation between the fourth
components with 4| = h, for nonzero A

By using the relations (2.10), we can rewrite in terms of the in

terms of anticommutator in (E.6). The relations (4.1), (4.7),
and (F.2) can be used further. We obtain

{@T0,, (@)} = 1641~ (—a
2 2

1

hi+hy+2
e hi+3 ho+3h
=87 Y ¢" 4+ (=Dh (o; R XN
h=0

hi+3 ho+3 0
—og T (r s, h)

1 (h
1+h2+2—h)
X2(_4)h|+h2—h (CDO Vrts
hi+ha+1
) Z
h=0
M43 o430
XoFl 2:127 3

((h1 +h+1—h+20)¢" 1+ (=D

(r,s,A)
i+ +2—h—=2)¢"(1+ (="
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3 3
xog'+2’h2+2’h(r, s, A))
1
X
82y + 2ha — 21 + 3)(—d)lHha—h—4

 (h+hy—h
X(q)é e ))r+s

hithatl M43 ho+3 h
+ ) A= Do T s )
h=0

1 (hi+ha+1-h),ij
s (9

1 .. B
_|_E £kl <I>(1h‘+h2 h).,kl)

r+s
hi+ha+1
hi+3 ho+3 .k
— Y a- Do T s
h=0
1 (hi+ha+1-h),ij
=G

_lsijkl d>(lhl+h2+l_h)’kl) :| (G.11)
2 r+s

The central term will be given later. The structure of (G.11) is
very similar to the one of (G.1). Once we replace the weights
h1 and hy with (k14 1) and (h2 + 1) in the latter respectively,
then we can see most of the structure of (G.11). Even the
factor (1 & (—1)") appears precisely.

Let us calculate the OPE between d>gh1:3)’i (z) and

2

@ghz:l)’j (w) with i = j where the weights satisfy h; =
h22+ 2. The sixth order pole of this OPE gives us the nonvan-
ishing structure constants in the currents d>(()h1+h2+2_h:l) (w)
and &1 72 7"="DM ) with weight h = 5. They have the
A factor. This is not consistent with (G.11) because all the
coefficients are vanishing for odd number 4. There is addi-
tional term on the right hand side of the OPE for the weights
h1 = 3 and hy = 1 which do not satisfy the above constraint

between the weights.
The central term contains

— hi1+2
cp = 8= 27 8y 8 [ -0 @

hy+2 h1+2)— ho+2)—
x Q2 (w) + 017 () 02 (w)
h1+2 ho+2)—
—0" P @) 02 (w)
h1+2)— ho+2
+01 57 (@ 02 (w)

ha+2 h1+2
—(=D ¥ QIR () 9 (w)

hy+2)— h1+2)—
=DM QT (0) 01 (w)

ha+2 h1+2)—
—(=D e QIR () 9 (w)

ha+2)— hi1+2)+
DR QR @ 0 T |
(sz)hl+h2+3

(G.12)

Note that from the inside of the bracket in (3.14), after the s
and the i arereplaced with (h1+1) and (h>+1) respectively,
we obtain the above result (G.12).

G.9 The commutator relation between the fourth component
and the last component with &1 = hy, hy + 1 for nonzero A

By using the relations (2.10) and (2.11), we can reexpress
them in terms of (E.2), (E.3), (E.4) and (E.5). After using
(4.5) and (F.1) the following result can be obtained

(@), (@) = 44"~ 4=y
2

Itho ha4+2,h+3,h
X[-(- Yodhge T )

h=—1
hi4ha+1 R

+ Y DT
h=-—1
hi+ha

h ha2.hi+3h
- q"ag 2 m, )
h=—1

hthat ho+2,h+3
2 NO e
+ Y 4" (D . (m,r,w)
h=-—1

1 .
(h1+ho+1—h),i
X 4(_4)h1+h2—h—3 (CD%

hy+hy 3
h hat2,hi+5.h
(> e (m

h=-—1
hi1+hy+1 3
+ Y DT
h=-—1
h1+hy 3
" Z qhqu+2,h1+§,h(m’r’ »
h=—1

)m+r

ST A)

MR Mot 2,43,k
+ Y gD <m,r,x>)
h=-—1

(égh'+h2‘h>"'>m+r] (G.13)

x 4(_4)h1+h2—h—4

In this case we can compare the above with the previous result
in (G.5). They look similar to each other. The alternating
feature between the currents depending on the property of
even or odd in the weight & can be observed.
Let us consider the OPE between Ci)(;”:l) “(2) and
2
é§h2:2) (w) where the weights satisfy 41 = hy — 1. The
sixth order pole of this OPE gives us the nonvanishing struc-
ture constant having the A factor in the current I/ (w) of the
N = 4 stress energy tensor. This is not consistent with (G.13)
because the minimum value of the exponent (i1 + hy — h) of
the first current is given by 3 and those of the second current
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is 2. There is additional term on the right hand side of the
OPE for the weights 71 = 1 and s, = 2 which are outside
of the allowed region between the weights.

G.10 The commutator relation between the last components
with iy = hy — 1, ho, hy + 1 for nonzero A

Finally, by using (2.11) together with (3.15), (3.16), (3.17),
(3.18),(3.19),(E.1),(4.1), (4.7), and (F.2) the following result
can be determined

[(&)gzl))m, (&)éhZ))n] — 16(_4)hl*4 (_4)/’1274

X|:<h1+h2+3) 44 o Z(C;JFC%)(S” Srts

hi+hy+1
h14+2,ha+2,h
+ Z qh(_pFl+ 2+ (m,n, \)

h=0,even

+pprt 2oy )\)>

4 (h1-+ha+2—h)
X Cayirin (Po It
hi+ha+1
+ ) <—(h1+h2+1—h+2/\)61h
h=0,even

Xpl]z‘l+2Yh2+2’h(mv n, )")

—(h1 +hy +2—h = 22) g" p TR o A))

1
"2 + 2hy — 2h + 3)(—dyh+ha—h=

= (h1+hy—h
x (Pt ))mﬂ]

(G.14)

This has the similar structure to the one in (4.4).

Let us calculate the OPE between &3;}” =2 (z) and &Dghzzo)
(w) where the weights satisfy 7; = hy + 2. The fifth order
pole of this OPE gives us the nonvanishing structure constants
having the A factor in the currents <béh1+h2+2_h:1)(w) and
é;h‘"Lhz_h:_l) (w) with weight 4 = 3. This is not consistent
with (G.14) because the dummy variable /& can appear as
even number. This implies that there is additional term on
the right hand side of the OPE for the weights 41 = 2 and
hy = 0 we are considering.

The central term has
(h1 +142))

(2h1 +3)

(hy +1+21) 2+

(hy +3) Mab

cp = (=M 8 80 [

ha+2
@) V2D (w)

(hi + 1422

(h1+2)— (ha+2)—
V. )V, o2
+Vi (2) séd (w) + 2h +3)

hi+2 hy+2)—
< VT @) v (w)
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(h2 +1+20) o +2)— ho+2
— v ) v ) :

2hy +3) 1
(Z_w)h|+h2+4
(G.15)
_ hi+2—21)
//: _4/11+h2 48‘8‘ (
Cp ( ) ba 9dc (2h1 T 3)
(ha +2—=2)0) _ (h+2)+ (ha+2)+
X (2h2 + 3) V)»,Ellb (Z) V)»,Z‘zd (w)
(h42)= _\ 1/ (ha+2)— (1 +2—24)
{7 Vs -
+ L,ab (Z) A, cd (U)) (2hl + 3)
Vide T @VE )
(ha +2=20)  n42)- (ha+2)+
- (2]12 + 3) V)\,L_Ih (Z) V)»,L_‘d (LU) .
e
(G.16)

We can easily see that after /2 inside the bracket of (3.9) and
hy inside the bracket of (3.11) are replaced by (k1 + 2) and
(h2 + 2) respectively, the central terms in (G.15) and (G.16)
can be obtained.
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