ACAT-2021 IOP Publishing
Journal of Physics: Conference Series 2438(2023) 012015 doi:10.1088/1742-6596/2438/1/012015

Clustering in the Heterogeneous Reconstruction

Chain of the CMS HGCAL Detector

Bruno Alves!?, Felice Pantaleo?, Marco Rovere?

! Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de
Paris, Palaiseau, France
2 CERN, 1211 Geneva 23, Switzerland

E-mail: bruno.alves@cern.ch

Abstract. We present an important milestone for the CMS High Granularity Calorimeter
(HGCAL) event reconstruction: the deployment of the GPU clustering algorithm (CLUE) to
the CMS software. The connection between GPU CLUE and the preceding GPU calibration step
is thus made possible, further extending the heterogeneous chain of HGCAL’s reconstruction
framework. In addition to improvements brought by CLUE’s deployment, new recursive device
kernels are added to efficiently calculate the position and energy of CLUE clusters. Data
conversions between GPU and CPU are included to facilitate the validation of the algorithms
and increase the flexibility of the reconstruction. For the first time in HGCAL, conditions data
are deployed to the GPU and made available on demand at any stage of the heterogeneous
reconstruction. This is achieved via a new geometry ordering scheme in which physical and
memory locations are connected. This scheme is successfully tested with the GPU CLUE version
reported here, and is expected to have a broad range of applicability for future heterogeneous
developments in CMS. Finally, the performance of the combined calibration and clustering
algorithms on GPU is assessed and compared to its CPU counterpart.

1. Introduction

The High Luminosity LHC (HL-LHC) will start taking data in 2029, achieving unprecedented
instantaneous luminosities of ~5 x 1034 cm?s™! (more than twice LHC’s current value) and a
pileup of up to 200. An integrated luminosity of ~3ab~! will be reached over 10 years [1, 2].

In order to cope with the above, a major upgrade of the CMS endcap calorimeters [3, 4]
is being prepared. The novel High Granularity Calorimeter (HGCAL) [2] is an extremely
challenging project, requiring the development of reconstruction code capable of fully exploiting
the increased granularity under the expected extreme conditions.

The biggest contributor to CPU usage is event reconstruction, of which currently ~5% is
used by HGCAL [5]. CMS plans to port part of its reconstruction to Graphics Processing
Units (GPUs), which represent one of the most promising hardware accelerator technologies on
the market. GPUs are a key element when one considers taking advantage of heterogeneous
architectures available on traditional and High-Performance Computing grid sites, including the
upgraded Worldwide LHC Computing Grid. GPUs also promote the development of algorithms
with better computing performance, and profit from a potentially favourable cost when compared
to CPUs, per unit capacity. CMS is planning to adopt a heterogeneous High Level Trigger (HLT)

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOIL.
Published under licence by IOP Publishing Ltd 1

ACAT-2021 IOP Publishing
Journal of Physics: Conference Series 2438(2023) 012015 doi:10.1088/1742-6596/2438/1/012015

farm already in Run 3 (2022-2025), where ~30% of the workflow will be offloaded to GPUs (50%
and 80% by the end of Run 4 and 5, respectively) [6].

This paper describes the integration of the standalone GPU CLUE (CLUstering of Energy)
algorithm [11] with the CMS software (CMSSW) [10]. This effort follows the development of
the CMSSW GPU based calibration of energy deposits [7], which immediately preceeds CLUE
in the reconstruction chain. This work thus measures the performance of two HGCAL GPU
tasks without resorting to intermediate CPU/GPU data transfers. Also, for the first time,
we implement and deploy the calculation of cluster energies and positions to the device. We
do so using device kernel recursion, as opposed to the local stack method chosen for CLUE.
Finally, conditions data are deployed to the GPU and subsequently used by the algorithm. The
implementation uses a geometry ordering scheme which minimizes memory consumption.

2. HGCAL and its Reconstruction Chain

HGCAL will be a sampling calorimeter. The proposed design includes an electromagnetic section
of silicon sensors as active material in the first 28 layers. A hadronic section comprises 8 silicon-
only layers followed by 14 silicon-scintillator hybrid layers, where the scintillation light is read
out by silicon photo-multipliers. Both sections are interleaved with absorber layers. HGCAL
will comprise ~620m? of silicon and ~400m? of plastic scintillators for a total of, respectively,
~6 million and ~240 thousand channels. Three subdetectors form HGCAL’s hybrid detection
technology: the first 28 layers made exclusively of silicon (CE-E) and the silicon and scintillator
parts of the hadronic section (CE-Hg; and CE-Hg¢;). The reconstruction model envisioned for
HGCAL is intended to be fast and flexible, comprising a sequence of modules/stages which
transform raw data into physics objects. After the initial generation, simulation, digitization [5]
and calibration steps, energy deposits (hits) are clustered by CLUE, a fully-parallelizable density-
based clustering algorithm [8], in order to form two-dimensional objects. In a nutshell, CLUE
assigns an energy density and a separation distance to all hits, which are later used to classify
each hit as either a seed, a follower (based on the hit’s nearest highest density), or an outlier.
Clusters are built by traversing the tree of followers of each seed, assigning the index of the
seed to all its followers. This work includes the calculation of the cluster energy and cartesian
positions, which are computed in the device (section 3.1). In addition, a heterogeneous approach
for navigating through the detector’s geometrical/topological information is devised and used
within CLUE (section 3.2).

3. Methodology
The CPU and GPU workflows available in CMSSW follow the same structure (fig. 1). For the
GPU case, the “Device to Host”, “D—H” and “SoA to Legacy” modules guarantee a robust
validation and increase the framework’s flexibility. The implementation of all GPU code relies
on Nvidia’s CUDA [9]. Conditions data are deployed from the CPU to the GPU and remain
available in the GPU during an “interval of validity”. Algorithms might run in parallel for the
CE-E, CE-Hg; and CE-Hg; subdetectors, using different CUDA streams, as is the case for the
hit calibration and clustering stages.

A GPU standalone version of CLUE [11] is currently available and being actively used for
testing and optimization purposes. In the following we list the improvements and the features
brought by deploying CLUE to CMSSW:

e Data Formats: The standalone version is currently using Structure of Arrays (SoAs)
where each array performs its own independent memory management. We instead allocate
a single SoA memory block for all arrays, thus decreasing the time dedicated to device
and host memory allocations (often a bottleneck [12]) and initialization, and improving
spatial memory locality. Allocations are made in multiples of CUDA’s warpSize (currently

ACAT-2021 IOP Publishing
Journal of Physics: Conference Series 2438(2023) 012015 doi:10.1088/1742-6596/2438/1/012015

N,
<>,

|D — Hl-)ISOA — Legacy |D — Hl-)ISOA — Legacy

~_ 7

Figure 1. Partial side-by-side view of the HGCAL CPU and GPU reconstruction chains. Each
subdetector is asssigned to a different CUDA stream. Data conversion modules (where “D—H”
corresponds to “Device to Host”) perform GPU to CPU data legacy conversion. Conditions data
are deployed from the CPU to the GPU and remain available in the GPU during an interval
of validity. The CE-E and CE-Hg; are considered separately for the hit calibration and jointly
during the clustering stage (EM). CE-Hg.; and HAD refer to the same hadronic section.

32 threads), and memory is accessed such that coalesced reads are possible (potential
throughput increase of one order of magnitude [12]). Padding is added to the end of each
array to ensure data alignment with the warps. The memory management is done using
CMSSW’s caching allocator scheme which is heaviliy based on Nvidia’s CUB [13] and which
reuses memory regions over multiple events as long as the data can be accomodated.

e Data Input: The input is now received from the preceding hit calibration stage [7] in the
GPU, avoiding additional host-device transfers present in the standalone version.

e Data Output: The output, instead of being hit-level and stored in a text file, is converted
to a cluster-level data format in order to be propagated to the next reconstruction steps.
Cluster level information must therefore be calculated and stored (section 3.1).

e Dynamic Memory Allocations: The CMSSW version now allocates memory
dynamically according to the number of hits in each physics event and in each subdetector.
Further optimization is possible and currently being pursued (see section 5).

e Conditions data: In CMSSW the detector geometry must be considered and conditions
are ported to the GPU (section 3.2).

e Subdetectors: Subdetectors are assigned to different CUDA stream, where multiple
reconstruction steps can run sequentially.

8.1. Calculation of cluster energy and positions

The calculation of the energy and cartesian x and y positions of the clusters follows the CMSSW
CPU approach [8]. A GPU thread is assigned to each cluster. The energy of a cluster is calculated
by summing the energy of all its hits. The positions are estimated by using a logarithmic-
weighted truncated sum:

g = =i W,-:WO—i-log(ZE;?)ZO (1)

i

ACAT-2021 IOP Publishing
Journal of Physics: Conference Series 2438(2023) 012015 doi:10.1088/1742-6596/2438/1/012015

where [stands for « or y, E; is the energy of hit ¢, and Wy is a parameter set to 2.9, which
controls the smallest fraction of energy that a cell can have and still contribute to the position
measurement (2.9 corresponds to a minimum energy fraction of 5.5%).

For both the algorithm above and CLUE, a method is needed to traverse the tree of followers
of a given seed. CLUE opted for defining a local fixed-size stack where, together with a loop,
items are added and removed (left side of fig. 2). This method has the side effect of allocating
more memory than required. As an alternative, we used device kernel recursion (right of fig. 2).
This approach is general, and could be applied to the CPU algorithm as well. Recursion is often
used for tree traversal since it adds clarity, and in this case reduces the amount of algorithm-
related allocated memory. However, it can also lead to uncontrolled function stack frame growth,
effectively using more memory, especially for deeply nested trees. Future measurements will
establish which method is more performant in terms of memory consumption and throughput.

void func() { void func(&vars, &followers) {
buffer[stackSize] = allocate();
while(!buffer.empty()) { for(auto fl : followers()) {
i = buffer.back();
buffer.pop_back(); //energy and positions

some_calculation(vars);
for(auto f1 : i.followers()) {

fl.clusterID = i.clusterID; func(vars, fl.followers());
buffer.push_back(fl); }
} }
+
} vars = set_variables();
func(); func(vars, followers);

Figure 2. Pseudo-code displaying the two methods employed to traverse all followers in a
cluster: local stack plus a loop (left) and device function recursion (right), avoiding a local
stack, where “&” refers to pass-by-reference.

3.2. Deployment of conditions data to the GPU

HGCAL will have approximately 6 million detector elements; a fast and straightforward
mechanism to transfer conditions data to the GPU is needed. An achievement of this work
is to completely remove host-device transfers of conditions data between modules, making them
available to all modules of the reconstruction chain via a single transfer per interval of validity,
per CPU job and per available device. This approach offers several advantages:

e Alleviates module (including CLUE) memory consumption, by avoiding the storage of
conditions data;

e Avoids slow and recurrent CPU—GPU data transfers;

e Makes data transfers faster, as they are now done in parallel. Indeed, conditions data
are mapped via a CMSSW indexing class which allows to retrieve information for each
particular detector element. Once all indexes have been transferred (serially), conditions
(sensor positions, for instance) can be filled in the GPU in parallel, as they are independent
from one another.

e Simplifies the implementation of future GPU reconstruction modules, given that all
geometry information is already accessible on the device.

ACAT-2021 IOP Publishing
Journal of Physics: Conference Series 2438(2023) 012015 doi:10.1088/1742-6596/2438/1/012015

Position information is stored according to HGCAL’s geometry: two endcaps, subdetectors,
layers, and silicon cells (or tiles for the hadronic section). A single SoA-like memory block is
allocated. The same specific order is later exploited on the GPU side to retrieve the correct
information, mapping detector elements to their memory locations (O(1) lookup complexity).
The procedure keeps data transfer to a minimum while ensuring spatial locality: conditions of
adjacent detector elements will often be located very close in memory and be requested at close
moments in time. A given set of detector element coordinates (layer, cell, ...) points to a unique
location in GPU memory, where a GPU user can access the relevant element’s information.

4. Validation and Performance

Both validation and performance measurements are executed starting from three uncalibrated
CPU collections of hits (one per subdetector). The hits are transferred to the GPU, are calibrated
using techniques described in [7], and are directly forwarded to CLUE. Finally, GPU data in
SoA format is converted back to the Legacy CPU format (as in fig. 1).

For the validation, the CPU-only and the GPU steps just described are run over the same
input dataset. The clusters thus obtained are compared in terms of their underlying quantities:
no differences are found for hit energy densities and distances while minor discrepancies,
currently under investigation, are observed for cluster energies and positions.

Performance is assessed using a T4 Nvidia and V100 GPU, and an Intel(R) Xeon(R) Silver
4114 CPU (40 logical cores), using a custom benchmarking tool [14]. Several pileup scenarios
are assessed: 0, 50, 100, 140 and 200. We measure the throughput, defined as the number of
events processed per second. Throughput measurements are performed using 4 and 8 jobs for
the CPU and 1 job for GPU, with 10 CPU threads each and 400 events, skipping the first 100 to
mitigate GPU initialization costs. 512 threads per block are tested in the GPU. Larger values
were tested with no performance benefit. The measurements include initial uncalibrated hits
data transfer from the CPU to the GPU. A single interval of validity was considered®.

The measurements in fig. 3 show the throughput for multiple CPU and GPU scenarios (left)
and the obtained speedups (right), defined as the throughput of a GPU scenario divided by
the most performant CPU throughput. We stress that the comparison is being made between
a full CMS node and a single GPU. The GPU memory usage observed varied significantly
depending on specific algorithm parameters, such as the maximum number of seeds allowed, the
maximum number of followers per seed and the size of the local stack (see fig. 2), which can
be tuned for different pileup values. The GPU throughput did not change significantly when
considering device-to-host data transfers, conversions to legacy formats and the kernel discussed
in section 3.1, suggesting the bottleneck lies in the CLUE algorithm itself.

We note that the final chain will include multiple modules accessing data directly in the
GPU; memory transfers and allocations will therefore not be requested on a per-module basis,
significantly reducing their impact on the overall throughput.

5. Conclusions and Next Steps
This work presents the second HGCAL heterogeneous algorithm to be fully integrated within
CMSSW after hit calibration [7]. It describes the algorithm’s porting to CMSSW and the GPU
implementation of additional, non embarassingly-parallel cluster-related steps. Preliminary
performance measurements were made, where the GPU throughput includes data conversions
and transfers which will not be present in the final version of the reconstruction chain.

The implementation of the clustering algorithm described in this work will be soon followed by
additional developments in HGCAL: using the alpaka [15]abstraction library, using RAPIDS [16]

! In CMS, intervals of validity last on average some hours, with some exceptions on the order of minutes (eg.,
calorimeter gains). Even if sensor positions would change once a minute (orders of magnitude faster than what is
currently expected), the offline reconstruction rate of 5kHz would imply a change every ~300k events only.

ACAT-2021 IOP Publishing
Journal of Physics: Conference Series 2438(2023) 012015 doi:10.1088/1742-6596/2438/1/012015

100 Single GPU vs Node (10 threads/job) 107Single GPU vs Node (10 threads/job)

m T4 W T4/CPU (8 jobs)
— & V100 o] 4 V100/CPU @ jobs)
} ¢ CPU (4 jobs)
) & CPU (8 jobs)
= 60
=)
<Y
S
S 10
2
=
= 20
< T o—a
0l : v . = = ‘ I ! I ‘
0 50 100 150 200 0 50 100 150 200
PU PU

Figure 3. Left: Throughput measurements of CLUE as a function of pileup, considering 4
and 8 jobs for the CPU and always 1 job for the GPU, with 10 CPU threads each. The GPU
throughput was measured using 512 threads per block. Vertical error bars are included but are
generally too small to be seen. Right: Speedups obtained after dividing the GPU throughput
measurements by the corresponding most performant (8 jobs) CPU measurements.

for memory footprint reduction and investigating novel SoA-like formats. The final goal of the
heterogeneous efforts is to perform the entire HGCAL reconstruction in the GPU.

References

[1] The CMS Collaboration 2017 The Phase-2 Upgrade of the CMS Tracker (Technical Design Report)
https://cds.cern.ch/record /2272264

[2] The CMS Collaboration 2017 The Phase-2 Upgrade of the CMS Endcap Calorimeter (Technical Design Report)
https://cds.cern.ch/record /2293646

[3] CMS Collaboration 2008 JINST 3 S08004

[4] Contardo D, Klute M, Mans J, Silvestris L and Butler J 2015 Technical Proposal for the Phase-II Upgrade of
the CMS Detector https://cds.cern.ch/record /2020886

[6] The CMS Collaboration 2021 Evolution of the CMS Computing Model towards Phase-2.
https://cds.cern.ch/record /2751565

[6] Badaro, Gilbert et al 2021 The Phase-2 Upgrade of the CMS Data Acquisition EPJ Web Of Conferences 251
04023

[7] Alves B, Bocci A, Kortelainen M, Pantaleo F. and Rovere M. 2021 Heterogeneous techniques for rescaling
energy deposits in the CMS Phase-2 endcap calorimeter EPJ Web Of Conferences 251 04017

[8] Rovere, M., Chen, Z., Di Pilato, A., Pantaleo, F. & Seez, C. CLUE: A Fast Parallel Clustering Algorithm for
High Granularity Calorimeters in High Energy Physics 2020 http://arxiv.org/abs/2001.09761

[9] Vingelmann P and Fitzek F 2021 NVIDIA CUDA release: 11.2.152 https://developer.nvidia.com/cuda-toolkit

[10] Jones C, Paterno M, Kowalkowski J, Sexton-Kennedy L and Tanenbaum W 2006 The New CMS Event
Data Model and Framework. Proceedings Of International Conference On Computing In High Energy And
Nuclear Physics (CHEPO06).

[11] Chen Z, Di Pilato A, Pantaleo F and Rovere M Standalone CLUE Algorithm on GPU and CPU
(https://gitlab.cern.ch/kalos/clue) Accessed: 2021-11-17

[12] NVIDIA 2021 CUDA C++ Programming Guide https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html Accessed: 2021-02-17

[13] NVIDIA CUB. 2016 https://nvlabs.github.io/cub/ Accessed: 2021-11-17

[14] Bocci A. Patatrack. https://patatrack.web.cern.ch/patatrack/ Accessed: 2021-05-12

[15] Matthes A, Widera R, Zenker E, Worpitz B, Huebl A and Bussmann, M 2017 Tuning and optimization for a
variety of many-core architectures without changing a single line of implementation code using the Alpaka
library arXiv 1706.10086 https://arxiv.org/abs/1706.10086

[16] Rapids Development Team 2018 RAPIDS: Collection of Libraries for End to End GPU Data Science
https://rapids.ai

