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Abstract

The COMET experiment will measure Charged Lepton Flavour Violation

by searching for the neutrinoless decay of a muon into an electron while

the muon is electromagnetically bound to an atomic nucleus. This µ-

e conversion process is not allowed in the Standard Model of particle

physics which makes it an excellent probe for Beyond the Standard Model

physics.

The first phase of the experiment will improve the current sensitivity

limit on µ-e conversion from the 7.0×10−13 at 90% C.L. to 3.0×10−15 at

90% C.L. To achieve this, COMET will utilize several novel design elements

to produce the world’s high-intensity muon beam to maximise the number

of observed muonic atoms.

The high-intensity design of this experiment poses significant chal-

lenges to both the tracking and triggering systems. A novel algorithm

called the CDC Hit Filter is designed to alleviate these challenges. The

algorithm utilizes machine learning classification and a circular Hough

Transform to identify and remove background hits. When applied offline,

it can remove 98% of background hits while retaining 98% of signal hits.

When adapted to the online environment, it can remove 89% of the back-

ground hits considered by the trigger while retaining 89% of signal hits.

Both of these mark a significant improvement over the more traditional

cut-based approach, which can remove 75% of background hits while

retaining 75% of signal hits.
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Chapter 1.

The History of Muon Mysteries

The muon has a rich history of refusing to behave as physicists expect. Its discovery

baffled physicists at the time, most of whom were content with a universe that consisted

of electrons, neutrons, protons, positrons and photons. During the ten years following its

discovery, it was thought to be a negative-pion. Even once it was correctly identified, its

behaviour motivated theoretically dubious Lepton Flavour Conservation laws. It is currently

responsible for some of the largest disagreements between measurement and the Standard

Model.

The early history of muon research exhibits a noteworthy pattern: the theory surround-

ing the particle raced to keep up with the relevant experimental measurements. This chapter

discusses where and when the gaps between muon theory and experiment have occurred,

how some of these gaps were solved, and details the ones that still exist. It concludes with

a summary of the ongoing research that is relevant to the COMET experiment.

1.1. The Discovery of the Muon

In 1937, the first muons were detected in the US and Japan [1

.

, 2

.

]. These new, alien

particles were first detected as cosmic rays and identified as “less massive than protons but

more penetrating than electrons.” Two years previous to their discovery, Hideki Yukawa

had hypothesized a massive, charged particle to mediate the force between nucleons, which

is now known as the strong force [3

.

]. He described this particle as roughly “2×102 times

as large as the electron mass”, which agreed with the measured mass of the cosmic ray

muons. This red herring was reinforced in 1940, muons were first observed to decay into

electrons by Williams and Roberts, as seen in Figure 1.1a

.

. This too agreed with Yukawa’s

hypothesised particle.

1



2 The History of Muon Mysteries

(a) This image from 1940 [2

.

] shows a bubble
chamber with a muon trajectory originating
bottom left corner as marked by A. The muon
decays at B, resulting in a thinner electron
track as marked by C.

(b) A Feynman diagram of the muon decay seen
in Figure 1.1a

.

as described in the Standard
Model. The inner workings of this diagram
were a topic of much debate when the muon
was first discovered.

Figure 1.1.: These images compare the first observation of muon decay to the modern understanding
of the process. By 1940, physicists were confident that the muon decayed into an
electron, as seen in Figure 1.1a

.

. They were unsure of what other particles were
involved. Figure 1.1b

.

shows the modern understanding of muon decay in the Standard
Model.

The observation of muon decay only created more questions. Four-momentum conserva-

tion dictates that the daughter electron must be accompanied by some other particle. This

agreed with experimental data, which observed that this electron carried away a fraction

of the available energy. The three competing explanations were that the muon was:

• a spin-1 particle that decayed into an electron and one neutrino,

• a spin-1
2 particle that decayed into an electron and a photon, or

• a spin-1
2 particle that decayed into an electron and two neutrinos.

The first case agreed well with Yukawa’s prediction of a spin-1 particle. However, in 1941

Nordheim studied the missing energy of the decay electrons and noted it was too high to

fit with either of the first two cases. This led him to speculate that muon decay may result

in the “simultaneous creation of a number of neutrinos” [4

.

].

In 1947, measurements of the decay modes of the mysterious cosmic rays identified

two, distinct new particles. The parent cosmic ray was identified as Yukawa’s “pi-meson”,

which we now know as the pion [5

.

], while the decay particle was named the “muon”. This

discovery meant that they hypothesis that muons were spin-1 could abandoned, which

leads to a number of searches for muons decaying into electrons and photons, all of which



The History of Muon Mysteries 3

Figure 1.2.: The beamline schematic for the 1962 Brookhaven muon-neutrino discovery experi-
ment [7

.

]. In this setup, 15 GeV protons were fired at a fixed beryllium target to create a
beam of secondary pions. These pions decay to create muon and muon-neutrino pairs.
Some of the weakly-interacting neutrinos are able to then pass through over 13 meters
of steel shielding to hit the 10-ton aluminium spark chamber. The detector watches
for the appearance of either muons or electrons resulting from neutrino interactions.

come back with negative results [6

.

]. This is implied that the muon decayed into an electron

and two neutrinos.

If this were true, another natural conclusion could be reached: the two decay neutrinos

could not annihilate with each other to produce a photon. This motivated the existence of

conserved quantum numbers that distinguished the two neutrinos. This is now referred

to as Lepton Flavour Conservation. In muon decay, this means that the decay electron is

accompanied by an anti electron-neutrino and a muon-neutrino so that the muon-flavour

and electron-flavour numbers are balanced between the initial and final states. This can be

seen in the Feynman diagram shown in Figure 1.1b

.

.

1.2. Muon Decay and Lepton Flavour Conservation

Lepton Flavour Conservation was not experimentally validated until 1962 when a group at

Brookhaven National Laboratory created a neutrino beam and probed its lepton flavour

content. The setup is discussed in Figure 1.2

.

. This experiment found that only muon-like

particles appear in the detector from the neutrino beam, thus proving that the beam must

only contain muon-neutrinos. This observation was taken as proof of both lepton flavour

and lepton flavour conservation [7

.

].
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Lepton flavour Conservation has since become a part of the Standard Model. Most

conservation laws in the Standard Model are supported by Noether’s theorem, which states

that all symmetries in a physical system correspond to a conserved quantity [8

.

]. Such

conservation laws can be derived theoretically by finding the corresponding symmetry

in the Standard Model Lagrangian. With that said, Lepton flavour Conservation has

no corresponding symmetry, which plants a theoretical seed of doubt in Lepton flavour

Conservation.

1.3. Neutrino Oscillation and Lepton Flavour Violation

This doubt was reinforced by experimental observation in 1968, when a team at Brookhaven

measured the neutrino flux coming from the Sun [9

.

]. They found that the electron neutrino

flux was around a third of what they expected. This exact problem had been anticipated a

year earlier by Pontecorvo, who predicted that neutrinos may oscillate between the two

known neutrino flavours and cause “the flux of observable solar neutrinos [to] be half as

large as the total flux of solar neutrinos” [10

.

]. The process he described is now known as

neutrino oscillation and violates Neutral Lepton flavour Conservation.

The first evidence of neutrino oscillation was observed by the Super-Kamiokande exper-

iment in 1998, 30 years after the solar neutrino problem was posed [11

.

]. This discovery

proved that lepton flavour was not conserved by neutrinos! Instead, the theory of neutrino

oscillation states that the flavour eigenstates of the neutrino are formed from mixtures

of its mass eigenstates. While all neutrinos are created as one of the flavour eigenstates,

they propagate a combination of the three mass eigenstates. Each of the mass eigen-

states propagate differently, which means the flavour eigenstate of the neutrino evolves

as it propagates [12

.

]. By demonstrating and explaining Neutral Lepton Flavour Violation

(NLFV), these results naturally call the laws of Charged Lepton Flavour Violation (CLFV)

into question.

1.4. Motivating CLFV Searches

Searches for Charged Lepton Flavour Violation (CLFV) are primarily motivated by the fact

that CLFV is not allowed in the Standard Model. Any signal of CLFV would provide great

insight into Beyond the Standard Model physics while a negative result would be a powerful

benchmark measurement for existing and future theories.
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(a) A Feynman diagram of µ− → e−γ caused
through neutrino oscillation.

(b) A similar diagram to Figure 1.3a

.

in the pres-
ence of nuclear matter.

Figure 1.3.: These diagrams compare two CLFV channels that arise from NLFV. In both cases, the
neutrino flavour must then oscillate from a muon-neutrino to an electron-neutrino
inside the loop it forms with the W boson.

With that said, the discovery of neutrino oscillation is already a Beyond Standard Model

process which can give rise to some CLFV. Two such processes can be seen in Figure 1.3

.

.

Fortunately, the predicted rates of CLFV via NLFV are many orders of magnitude lower

than current experimental limits. The easiest way to show this is to consider the µ → eγ

process shown in Figure 1.3a

.

. This process has a branching ratio equal to:

B(µ→ eγ) =
3α

32π

�

�

�

�

�

∑

i=2,3

U∗µiUei

∆m2
i1

M2
W

�

�

�

�

�

2

≃ O
�

10−54
�

(1.1)

where Uαi an element of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix that de-

scribes the amplitude of the mass eigenstate i in flavour state α,∆mi j is the mass difference

between the i-th and j-th eigenstates, MW is the mass of the W boson, and the lead-

ing α factor is the fine structure constant [13

.

, 14

.

]. With current experimental limits at

O
�

10−13
�

, this calculation shows that µ-e gamma searches incur no observable intrinsic

backgrounds from NLFV. Similar arguments can be made for other CLFV processes like

coherent µ-e conversion, µ−N → e−N , an example of which is shown in Figure 1.3b

.

.

CLFV searches are further motivated by existing tensions between lepton physics mea-

surements and the Standard Model. There has been a 3σ disagreement between the SM

prediction of the muon anomalous magnetic dipole moment and the measured value since

2001 [15

.

, 16

.

]. More recently, studies demonstrate a 7σ tension between measurements of

the proton radius and its measured value when using the hyperfine structure of muonic

hydrogen [17

.

]. Finally, a number of collider experiments have shown tensions that call

lepton universality into question [18

.

, 19

.

, 20

.

, 21

.

, 22

.

, 23

.

], which in turn can be shown to

imply CLFV [24

.

].
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Figure 1.4.: Since the first study of muon decay in 1948, the sensitivity of muonic CLFV searches
have improved by 12 orders of magnitude [14

.

, 25

.

]. Note that this plot also shows the
evolution of the host nucleus material used in the µ−N → e−N searches.

1.5. Modern Charged Lepton Flavour Violation Searches

The earliest search for muonic CLFV dates back to the initial studies of muon decay in

1948 [6

.

]. Since then, experiments continued to increase the sensitivity of this search in

three main channels:

• “µ-e gamma”: µ± → e± γ

• “µ to three e”: µ+ → e+ e− e+

• “µ-e conversion”: µ−N → e−N

The evolution of the CLFV search sensitivities1

.

in these channels can be seen in Figure 1.4

.

.

The MEG experiment is responsible for the most sensitive µ-e gamma measurement, while

the SINDRUM collaboration is responsible for the most sensitive µ+ → e+ e− e+ and µ-

e conversion measurements. The COMET and Mu2e experiments are both aiming to set

the new µ-e conversion sensitivity limit.

1.5.1. The MEG Experiment

The MEG Experiment completed its first data-taking period at the Paul Scherrer Institute

(PSI) in Switzerland in 2009 and published its final results in 2016. This result set an

1All exclusion measurements from here on are taken at 90% C.L., although the notation is dropped for
brevity.
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Figure 1.5.: The MEG detector system measures the decay products of stopped µ+ in a fixed target.
It is composed of an liquid Xenon electromagnetic calorimeter and a tracking system
that respectively search for photons and positrons from the µ+ → e+γ decays. It
operates at PSI, which houses the world’s most intense continuous µ+ beam [25

.

].

upper limit of 4.2×10−13 on the µ+ → e+γ process2

.

, which is a factor 30 improvement

over the previous result [25

.

]. This is the most recent result across all three channels, as

seen in Figure 1.4

.

. The experimental setup used to make this measurement is discussed in

Figure 1.5

.

.

1.5.2. The SINDRUM Experiment

The SINDRUM experiment published the current sensitivity limit for the µ+ → e+ e− e+

in 1988 at 1.0×10−12 [27

.

]. Of the three channels, this is the oldest world-leading mea-

surement. The next-generation of this search will be carried out at PSI by the Mu3e

collaboration. This experiment is in its final stages of construction as PSI, with plans to

start data taking in 2019 [28

.

].

The SINDRUM collaboration went on construct the SINDRUM-II experiment at PSI,

which set world-leading sensitivity limit for the µ−N → e−N in 2006 at 7.0×10−13 [28

.

].
The detector setup for this experiment and a simulated signal event are shown in Figure 1.6

.

.

2Searches for µ+ → e+γ are favoured over µ− → e−γ since they avoid the muon capture related backgrounds,
which are discussed in Section 2.3.4

.
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Figure 1.6.: The SINDRUM-II detector system probed for µ−N → e−N on a fixed gold target [26

.

].
A sample signal event from GEANT simulations is shown in the images to the right.

1.5.3. The COMET and Mu2e Experiments

While SINDRUM was underway in Switzerland, similar research was being carried out

at the Moscow Meson Factory in what was then the USSR. In 1989, Soviet researchers

proposed the MELC experiment, which was to be the next generation µ-e conversion

experiment [29

.

, 30

.

]. The project was given the green light in 1992, but unfortunately had

to be shut down in 1995 due to the political and economic turbulence that was caused

by the dissolution of the USSR. In 1997, researchers at Brookhaven National Laboratory

proposed a new experiment called MECO, which was heavily inspired by MELC. It was

designed to probe for µ-e conversion down to a limit of 2×10−17 [31

.

, 32

.

]. It was approved

in 2001, only to be cancelled in 2005 when funding was pulled from Brookhaven’s particle

physics program [33

.

].

In 2009, a new collaboration called Mu2e was formed in the US from the ashes of the

MECO collaboration. The detector hall is currently under construction at Fermilab. Mu2e’s

beamline design (which echoes MECO’s) can be seen in Figure 1.7

.

. Mu2e hopes to achieve

a sensitivity of 3×10−17 over a three-year data-taking period on the same time scale as

COMET [34

.

]. As such, Mu2e is COMET’s competition.

In 2009, the COMET collaboration was also formed. Like MECO, the COMET experiment

borrows many design principles first seen in the MELC experiment. COMET is currently

under construction in Tokai, Japan. Unlike Mu2e, COMET will be built in two phases, as is
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Figure 1.7.: The Mu2e experiment is designed to probe for µ−N → e−N [34

.

]. Its design was
heavily inspired by the MECO and MELC experiments. Mu2e is directly competing
with COMET to make a world-leading sensitivity measurement of µ−N → e−N .

discussed in Chapter 3

.

. In its first phase, COMET will achieve a sensitivity of 3×10−15 over

a 180-day data-taking period. In the full design in the second phase, COMET will achieve

a sensitivity of 3×10−17, again over a 180-day data-taking period. This phased design

will help illuminate the underlying physics involved in the COMET experiment, which is

discussed in the next chapter.
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Chapter 2.

The Physics of Muon to Electron

Conversion

Muon to electron conversion refers to the neutrino-less decay of a muon into an electron

while the muon is electromagnetically bound to an atomic nucleus. It can be formalised as:

µ− + N (A, Z)→ e− + N (A, Z) (2.1)

While this process is not allowed by the Standard Model, most extensions to the Standard

Model predict µ-e conversion at some level [35

.

, 36

.

, 37

.

]. Even neutrino oscillation can give

rise to this process, as discussed in Section 1.4

.

. With that said, the landscape of Beyond

Standard Model physics is constantly shifting as theories are discarded, created, or adapted

to account for new measurements.

The beauty of searching for µ-e conversion experimentally is that it is largely immune

to the shifts in theoretical predictions. In fact, it does not require any hypothesis about

which extension to the Standard Model is correct. Instead, these searches only seek to

measure the initial bound muon and resulting decay electron of whatever Beyond Standard

Model interaction mediates this process. This property is commonly referred to as “model

independence”.

With model independence in mind, this chapter will start by discussing a simplified

effective field theory that highlights how different search channels are affected by the

underlying CLFV process. It then focuses on the Standard Model physics that describes the

properties of the signal electron and the critical backgrounds.

11
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(a) The coverage of Λ-κ space by modern CLFV
experiments.

(b) A comparison of how the two CLFV channels
can mimic one another, albeit at a suppressed
rate.

Figure 2.1.: A comparison of the µ-e gamma and µ-e conversion search channels. Figure 2.1a

.

demonstrates the complementary coverage of the two channels in the κ-Λ phase space,
as introduced in equation (2.2

.

). Figure 2.2b

.

illustrates how one channel may be
suppressed over the other depending on the nature of the New Physics [38

.

].

2.1. Model-Independent Effective Field Theory for Muon

CLFV

The COMET experiment is almost completely model-independent. The only requirement is

that the new physics should manifest at low energies as a four-Fermi contact interaction or

in a photonic interaction, and that these interactions are mediated by physics processes

that are best described at a very high energy scale. From this, one can imagine resumming

the new physics by interaction type to yield the following effective Lagrangian1

.

:

LCLFV =
1

κ+ 1

mµ

Λ2 µRσµνeL Fµν +
κ

κ+ 1
1

Λ2 µLγµeL

�

uLγ
µuL + d Lγ

µdL

�

+ h.c. (2.2)

where κ and Λ are parameters, the (L, R) subscripts denote the chirality of the fermion

fields, Fµν is the photon field strength, and mµ is the muon mass.

The first term describes a photonic CLFV interaction, while the second describes the

four-Fermi interaction. The parameter Λ has units of energy and characterizes the energy-

1This treatment is first discussed in [39

.

] in 2013. A review of the current status of such treatments is
discussed in [40

.

].
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scale of the new physics processes. The dimensionless parameter κ determines the extent

to which the new physics is photonic (κ→0) or four-Fermi-like (κ→∞). The limits on

the κ-Λ parameter space from experimental searches is shown in Figure 2.1a

.

. This figure

highlights that these channels can probe much higher energy scales than are currently

available in direct searches.

If the new physics is photonic, the µ-e gamma searches will be more sensitive. The

µ-e conversion could still detect the new physics if the outgoing photon interacts with the

host nucleus. This incurs a factor of α, the fine structure constant, and hence reduces

the sensitivity by two orders of magnitude. If the new physics is four-Fermi-like, then

the µ-e conversion searches will be more sensitive. In this case, the µ-e gamma searches

could only see a signal if the quark lines reconnect and a photon is emitted, which would

significantly impact the sensitivity of the search. Diagrams corresponding to these scenarios

can be seen in Figure 2.1b

.

. Taken together, these searchers are complementary. A signal in

both channels could determine a value of κ, which could help illuminate the underlying

nature of the new physics.

2.2. Constraining Theoretical Physics

A high-sensitivity measurement of µ-e conversion would heavily constrain a number of

new physics models. For example, consider the Grand Unification Theories based around

the E6 Lie group [41

.

]. These theories hypothesise that all known interactions, with the

exception of gravity, can be embedded into the E6 gauge group. This group admits a

complex or chiral representation, which is needed to construct the Standard Model [42

.

].
After symmetry breaking, this group can give rise to the SU(3)×SO(2)×U(1) gauge group

of the Standard Model.

These models predict the existence a new, neutral Z ′ boson. This particle is expected

to admit naturally large flavour changing vertices. Given that these interactions have not

been observed by past µ−N → e−N experiments, the Z ′ boson is hypotheised to have a

large mass. To satisfy limits on µ+ → e+ e− e+ and naturalness assumptions on the fermion

mass matrix, the additional gauge boston “should not be much lighter than O (TeV)” [43

.

].
If COMET detects µ−N → e−N , the experiment could provide the first insight into Z ′

interactions. If it does not, then E6 theories are forced to consider unnaturally small femion

mixing levels or unnaturally massive Z ′ bosons [43

.

].
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2.3. Measuring Muon to Electron Conversion

Searches for µ-e conversion rely on a firm understanding of the initial-state muonic atom,

the properties the final-state signal electron, and all background processes that can mimic

this final state. This requires an interesting mixture of Standard Model theory, nuclear

physics models, and phenomenological models.

2.3.1. The Bound Muon

As muons travel through atomic matter, they lose energy due to ionization. When the

kinetic energy of the muon reaches a lower threshold, typically a few keV, an atom in the

material is able to capture the muon in its Coulomb potential. The bound state of a muon

and an atomic nucleus is referred to as a “muonic atom”.

Once bound to the nucleus, the muon transitions down through the atomic orbitals,

typically reaching the ground state after O (100 fs). Each transition incurs an X-ray emission

with an energy that characterizes the given transition [44

.

]. This is used in experiments to

determine the total number of muonic atoms formed in a target material. From this point,

the bound muon can either undergo the signal process, decay while orbiting the nucleus,

or be captured by the nucleus.

2.3.2. The Signal Electron

All µ-e conversion searches hypothesise that the ground-state muon may interact with the

quarks of the nucleus via some new physics process. This process would yield an electron

and an unchanged nucleus, which violates lepton flavour conservation, but leaves the

other quantum numbers intact. This results in a well-defined signal, despite the electron’s

mysterious origin.

The kinematics of the signal is determined by the conservation of four-momentum.

Since the nucleus is unchanged, all of the energy is transferred to the electron and to the

recoil of the nucleus. The electron energy, Ee, is calculated as:

Ee = mµc2 − EB − ER (2.3)

where mµ = 105.66 MeV/c2 is the mass of the muon [45

.

], EB is the binding energy of the

decay electron to the nucleus, and ER is the energy of the recoiling nucleus. Both EB and

ER vary from element to element.
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(a) The reconstructed momentum distribution of
simulated signal and DIO electrons.

(b) The acceptance of signal and DIO electrons
as a function of the momentum threshold.

Figure 2.2.: A comparison of signal and DIO electron momenta and acceptances. This data is
simulated assuming a rate of 3×10−15 signal electrons per muonic atom and the
DIO electrons were modelled using the momentum spectrum presented by Czarnecki
in [46

.

]. The vertical scale in Figure 2.2a

.

has been set so that the integral of the signal
curve is one.

This means the signal as a lone, mono-energetic electron. As such it is inherently

immune to combinatorial backgrounds that limit the other two search channels, which

makes this process an excellent candidate for high-intensity searches. Best of all, the energy

of this electron separates it from the electrons generated by background processes.

2.3.3. Muon Decay in Orbit

Muon decay-in-orbit (DIO) is one of the main background sources in modern µ-e conversion

searches. It occurs when the bound muon undergoes its flavour conserving decay mode:

µ− + N (A, Z)→ e− + νe + νµ + N (A, Z) (2.4)

This process looks similar to free muon decay with one notable difference: the presence of

the nucleus affects the allowed phase space of the electron energy.

In free muon decay, the maximum decay electron energy is half of mass-energy of the

muon, i.e. 52.83 MeV/c2. This occurs when the electron recoils back-to-back with the

neutrinos. In the bound case, the nucleus provides the decay with an additional degree

of kinematic freedom. This allows the decay neutrinos to recoil off of each other while

the electron to recoils off of the nucleus. Nearly all of the mass-energy of the muon can

be transferred to the electron in this configuration, which perfectly mimics the signal in

µ-e conversion searches.
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Fortunately, this process is heavily suppressed near the signal energy, so much so that

it has only become relevant in modern searches [26

.

, 38

.

]. Figure 2.2a

.

illustrates how the

high-momentum tail events from DIO electrons encroaches on the distribution of signal

electron momenta. A lower bound is selected for the signal momentum window to remove

this background, such that any electrons below this threshold are not considered to be

signal electrons. Figure 2.2b

.

shows the acceptance of both signal and DIO electrons as a

function of this threshold.

2.3.4. Nuclear Muon Capture

Nuclear muon capture is another potentially problematic background in µ-e conversion

searches. It is an analogous process to electron capture:

µ− + N (A, Z)→νµ + N (A, Z − 1) (2.5)

This process leaves the nucleus in an excited state. As it de-excites, it can emit a number of

particles, including protons, neutrons, gamma rays, alpha particles, deuteron, and triton.

Although this cannot produce any signal-like electrons, the sheer volume of these decay

particles can be dangerous in high-intensity µ-e conversion searches. The charged particles

can flood the detectors, drowning out any signal electrons. The neutral particles can

pierce through shielding material to damage the electronics. To make matters worse, the

underlying nuclear processes extremely hard to model in general and can change depending

on the original nucleus. Instead, experimental measurements of the decay products are

used to construct simple phenomenological models. Most notably, the AlCAP Experiment

at PSI aims to measure nuclear muon decay spectrum for aluminium in preparation for the

COMET and Mu2e experiments [47

.

].

2.3.5. The Host Nucleus

The properties of the signal and background processes depends greatly on the atomic

number, Z , of the host nucleus. The maximum energy available to the both signal and

DIO electrons is impacted by the binding energy and recoil energy of the nucleus, as

given by equation (2.3

.

). For heavier elements, the binding energy is the dominant effect,

while for lighter elements, the recoil energy becomes more significant. The SINDRUM-II

experiment opted for a heavy host nucleus, gold, which corresponds to a maximal energy of

95.56 MeV/c2 [26

.

], which is significantly lower than the total 105.66 MeV/c2 available. In
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Figure 2.3.: The bound muon lifetime as a function of Z of the host nucleus. The red line shows
the partial lifetime of nuclear muon capture, the blue line shows the partial lifetime of
muon decay-in-orbit, while the black line shows the total lifetime. The plot is taken
from [38

.

], which read the data from Geant4 [48

.

]. Note that the partial decay lifetime
is assumed to be the same for all elements in this plot.

general, higher energy signals are easier to distinguish from electrons from other potential

background sources, like beam-electrons or cosmic rays. This favours lighter host nuclei

for µ-e conversion searches.

As the atomic number of the element increases, the muon becomes more tightly bound

to the nucleus. This increases the overlap between the muon wavefunction and the nuclear

wavefunction, which increases the interaction probability of the signal process. Furthermore,

since a bound muon is never truly at rest, time dilation increases the partial lifetime of

muon decay. This effect scales with the atomic number of the nucleus. Both of these

properties favour heavier host nuclei for µ-e conversion searches.

Most importantly for COMET, the lifetime of the bound muon varies greatly as a function

of Z . Since the signal process is extremely rare, it has no measurable effect on the bound

muon lifetime. Instead, this lifetime is determined a shifting balance between the muon’s

DIO and nuclear capture rates. The nuclear capture rate dominates for heavier elements

due to the increased number of protons that can participate and the increased overlap

between the muon waveform and the nucleus. For elements lighter than Z ≈ 12, this shifts

so that the DIO rates dominate [38

.

]. A plot of this relationship can be seen in Figure 2.3

.

.
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The COMET experiment will use aluminium as the host nuclei. This element corresponds

to a to a signal electron energy of 104.96 MeV/c2, meaning only 0.7 MeV/c2 is lost to

the aluminium nuclei. The bound muon lifetime for this element is 864 ns, which is long

enough to allow for a clean separation between beam-related backgrounds and signal

particles. Once the muons bind to the aluminium nucleus, 61% will be captured by the

nucleus, leaving the remaining 29% to decay-in-orbit or convert to an electron [38

.

]. The

COMET experiment is designed to heavily exploit both of these properties,as discussed in

the next chapter.



Chapter 3.

The COMET Experiment

The COMET experiment will take place in two phases: Phase-I and Phase-II. The first phase

has two main goals:

• to probe µ-e conversion at 100 times the sensitivity limit set by SINDRUM-II [26

.

], and

• to gain an understanding of the beamline in preparation for Phase-II.

The first goal is the focus of this thesis. To achieve this goal, the COMET beamline is

designed to create the initial-state bound muons in the target material. The collaboration

has built the Cylindrical Detector (CyDet) for Phase-I to measure the momentum of the

resulting particles in search of the signal electron. Together, the experiment is designed to

take full advantage of the signal properties, introduced in Section 2.3

.

.

3.1. The COMET Beamline

The COMET experiment will achieve a world-leading sensitivity measurement of µ-e con-

version. To this end, both Phase-I and Phase-II aim to:

• Remove all sources of high-momentum background electrons in the beam.

• Create as many muonic atoms in the target material as possible.

• Avoid backgrounds from low-momentum and beam-prompt particles.

• Remain sensitive to the high-momentum, delayed signal electrons.

These goals have inspired the striking Phase-II beamline design seen in Figure 3.1a

.

.

Moving in the direction of the arrows in this figure, each component is summarized:

19
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(a) The Phase-II design. (b) The Phase-I design.

Figure 3.1.: The COMET Phase-II beamline compared to the Phase-I beamline. The Pion Capture
section, the first 90-degree bend of the Muon Transport Section, and the Detector
Solenoid appear in both phases [38

.

].

1. The Proton Beam: A pulsed, high-intensity beam of 8 GeV protons strikes the sta-

tionary Pion Production Target.

2. The Pion Capture Section: A superconducting solenoid with a 5 T field captures the

low-momentum pions and directs them into a curved solenoidal section.

3. The Muon Transport Section: The curved solenoids are used in conjunction with

collimators create a low-momentum muon beam from the pion beam.

4. The Stopping Target Section: The muon beam is directed at the Muon Stopping

Target, where the muonic atoms are created.

5. The Electron Spectrometer: Particles from the stopped muon processes are steered

into another curved solenoid that is designed to only accept signal electrons.

6. The Detector Solenoid: The detector system sits inside a solenoid providing a 1 T

magnetic field and watches for the signal electrons.

The Phase-I beamline, seen in Figure 3.1b

.

, is a truncated version of this full design

that achieves the goals outlined above. It incorporates the Proton Beam, the Pion Capture

Section, and half of the Muon Transport Section. It does not have the Stopping Target



The COMET Experiment 21

Section or Electron Spectrometer. Instead, the Muon Stopping Target sits inside the Detector

Solenoid, with the CyDet system surrounding it. This section will detail the Phase-I beamline

components, while a detailed discussion of Phase-II can be found in [38

.

].

3.1.1. The Proton Beamline

The COMET experiment is the future flagship experiment for the Japan Proton Accelerator

Research Complex (J-PARC). This laboratory is currently in the process of a major upgrade

to their proton beamline to deliver the high-intensity, pulsed proton beam to the COMET

experiment [49

.

]. These protons strike the fixed target inside the Pion Capture Section to

create a high yield of low-momentum pions, which decay in the beamline to create the

muon beam.

An 8 GeV proton beam will be used to maximise the pion yield while suppressing

dangerous backgrounds from antiprotons. This beam will be pulsed to create high-intensity

proton bunches that are well separated in time. The resulting muon beam mirrors this

structure such that the muonic atoms are created as the muon bunches reach the Muon

Stopping Target. The gaps between the bunches have a much lower background beam

intensity, but maintain a large signal acceptance due to the 864 ns lifetime of bound muons

in aluminium. This is discussed in more detail in Chapter 6

.

. The key parameters for the

proton beam are:

• Energy: 8 GeV

• Protons Per Bunch: 1.6×107

• Bunch width: 100 ns

• Bunch separation: 1.17 µs or 1.75 µs

3.1.2. The Pion Capture Section

Once inside the Pion Capture Section, the bunched protons hit the Pion Production Target

to create an explosion of particles. This section is surrounded by a rectangular iron yoke,

as shown in Figure 3.2a

.

. The target itself can be seen in Figure 3.2b

.

.

The target sits inside a solenoidal 5 T magnetic field that is designed to capture the

backscattered muons and pions, as implied in Figure 3.1

.

. This reduces the overall momen-

tum of the captured beam, which reduces the chance of high-momentum electrons beam

electrons. This also provides the pions with more time to decay to muons in-flight. The

resulting muons are easier to stop, which increases the muonic atom yield in the Muon

Stopping Target. Once the pions and muons are captured, they are directed through a



22 The COMET Experiment

(a) The Pion Capture Section (b) The Pion Production Target.

Figure 3.2.: The Pion Capture region, half-sectioned. These incoming protons travel through the
bisected beampipe, shown in green, to hit the Pion Production Target, shown in pink.
The target is surrounded by both the Pion Capture Solenoid, shown in red, and a
considerable amount of shielding, shown in grey.

matching solenoid that brings the field strength down to 3 T and feeds the particles into

the Muon Transport section. The important dimensions for the Pion Capture Section are:

• Target Length: 70 cm

• Target Diameter: 2.6 cm

• Target Orientation:

−10 ◦ around y and −10 ◦ around z.

• Yoke Length: 642 cm

• Yoke Width: 350 cm

• Yoke Height: 345 cm

3.1.3. Curved Solenoids and Collimation

The Muon Transport Section is designed to select low-momentum muons and pions using

curved solenoids, dipole magnets, and collimators. This is achieved through a dispersion

effect. Beam dispersion, D, is defined as the amount a relative change in momentum,∆p/p,

affects the trajectory of a particle, ∆x:

D =
∆x
∆p/p

(3.1)

Particles that are transported through curved solenoids disperse perpendicularly to the

plane of the solenoid curvature. The magnitude of the dispersion, D, for a particle of charge

q, transverse momentum p⊥, longitudinal momentum p∥, that travels a distance s through
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Figure 3.3.: The Muon Transport Section. This region is composed of solenoids, shown in red,
and dipole magnets, which are not shown here. The collimator is placed before the
Detector Solenoid and is shown in green. It has a symmetrically placed plane in the
top half of this region, which is not shown here.

a solenoid with radius of curvature R and magnetic field strength B is:

D =
1

qB

� s
R

� 2p∥
2 + p⊥

2

2p∥
(3.2)

The dispersion in the Muon Transport Section allows for separation of low and high-

momentum particles. The plane of curvature is the x-z plane, meaning the higher momenta

particles in the beam drift vertically in y. The beam is then collimated to reduce the

high-momentum particles. To tune this selection, a constant dipole field is applied to evenly

shifts the whole beam vertically. Changing the dipole fields allows different cross sections

of the dispersed beam to be accepted by the collimators. The dipole field strength used in

simulation is 50 mT, which results in the efficient transport of muons with |p| ≈ 40 MeV/c.

The Muon Transport Section for Phase-I can be seen in Figure 3.3

.

. The curved section

has a bending radius of 3 m. The 15 solenoids shown there keep the magnetic field strength

at 3 T along the core of the curved beamline. At the end of this section sits a collimator

formed of two horizontal plates so that the collimation occurs at the point of maximal

dispersion.
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Figure 3.4.: The Cylindrical Detector System. The Muon Stopping Target disks are placed at the
very center of the system, lie parallel to the x-axis, and are surrounded by the CDC
and CTH.

3.2. The Cylindrical Detector

The Cylindrical Detector (CyDet) System will be used in Phase-I for the µ-e conversion

measurement. It is shown in Figure 3.4

.

. This system sits inside the Detector Solenoid and

surrounds the Muon Stopping Target. The target and detector volumes share a common

central axis, which is parallel to the incoming beam.

3.2.1. A Signal Event

Once inside the Detector Solenoid, the beam hits the Muon Stopping Target. This target

sits inside the central cavity of the aptly named Cylindrical Drift Chamber (CDC). The

CDC is the tracking detector for the CyDet and forms the focus of the track reconstruction

algorithms in this thesis. This detector is accompanied by the Cherenkov Trigger Hodoscope

(CTH). The CTH is made from two stations, one placed just inside the inner radius of the

upstream end of the CDC and a similar station at the downstream end. These stations are
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(a) Projected view onto z y-axes. (b) Rotated view.

Figure 3.5.: An event display of a signal event in the CyDet. The signal electron track, shown in
red, originates from one of the Muon Stopping Target disks. It passes through the CDC
and causes a number of hits, shown in blue. It terminates in the downstream CTH
station and causes a trigger signal.

designed to detect signal electrons after they pass through the CDC and exit the CyDet

system, as seen in the ample event in Figure 3.5

.

. As implied by the name, they form the

primary trigger system for the CyDet.

3.2.2. The Muon Stopping Target

The Muon Stopping Target lies at the heart of the CyDet. This target seeks to strike a

balance between two competing effects: maximising the number of stopped muons and

minimising the multiple scattering of particles in the CyDet. The former prefers a higher-

mass target, while the latter prefers less material inside the CDC cavity. A series of thin

disks are currently used to satisfy both of these criteria, as seen in Figure 3.6a

.

. Listed here

are the key parameters for this region:

• Number of Disks: 17

• Spacing Between Disks: 5 cm

• Disk Radius: 10 cm

• Disk Thickness: 200 µm
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(a) The Muon Stopping Target (b) The Cylindrical Drift Chamber

Figure 3.6.: The Muon Stopping Target. Figure 3.6a

.

shows both the target disks and support frame
that sit in the centre of the CDC, as seen in Figure 3.6b

.

. Note each disk has three wires
connecting it to the wireframe support that are too thin to be rendered at this scale.

3.2.3. Cylindrical Drift Chamber

The CDC is a cylindrically symmetric wire drift chamber with a hollowed out cavity along

its central axis that surrounds the Muon Stopping Target, as seen in Figure 3.6b

.

. This

section outlines the operating principles of wire drift chambers and details the relevant

design elements of the CDC geometry.

Operating Principles

Wire drift chambers are constructed using an enclosed gaseous volume, cathode wires, and

anode wires. The wires are placed in the gas so that each anode is surrounded by cathodes

and hence forms its own local maximum in the electric field generated by the wires. This

maximum attracts all electrons in the region between the anode and surrounding cathodes.

This region is referred to as the “cell” of the anode wire. The anode wires are commonly

referred to as sense wires, while the cathodes are referred to as field wires. This geometry

is illustrated in Figure 3.7

.

. The following steps lead to a readout hit in a given cell:

1. A charged particle passes through the gas volume, ionizing some of the gas molecules.

2. The freed electrons are accelerated towards the closest sense wire by the electric field

in the cell, as shown in Figure 3.7b

.

.
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(a) An example of a wire drift chamber. (b) The highlighted cell in the chamber.

Figure 3.7.: A schematic that highlights the operating principles of a wire drift chamber. Figure 3.7a

.

illustrates the layout of anode and cathode wires across a simplified wire drift chamber.
The anode wires are shown as the filled circles, while the cathodes are the open circles.
The particle trajectory is shown in red. A single cell is highlighted in the blue box, and
show in detail in Figure 3.7b

.

. Inside the cell, the particle ionizes the gas to create the
electrons, shown in green, that are accelerated towards the anode wire.

3. As the electrons approach the wire, they gain enough energy to ionize the gas to create

more electrons. This causes an avalanche that amplifies the original signal.

4. As the avalanche approaches the wire, it induces a pulse of current in the wire which

flows towards the ground.

5. This induced pulse is detected by readout hardware at the end of the wire.

Hits are defined by the position of the sense wire and the time that the pulse was

readout, tRO. The hit position where the charge track first ionized the gas is inferred using

these two pieces of information. This requires determining the distance between the hit

position and the wire, which is referred to as the “drift distance”. This can be calculated as

a function of the drift time, tD, which is the time it takes for the ionization electrons to drift

from the initial hit position to the sense wire. The drift time can be recovered using the

recorded time of the induced pulse tRO, the time the wire passes through the cell tHit, and

the time it takes for the signal to pass through the data acquisition (DAQ) hardware tDAQ:

tD = tRO − tHit − tDAQ (3.3)
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(a) The readout projection of the wire cham-
ber.

(b) The “hidden” projection of the wire cham-
ber.

Figure 3.8.: A demonstration of how stereo angles can recover 3D hit positions. In both figures,
the blue layers are rotated around y by a stereo angle θ , while the red layers are
rotated around y by -θ . This example contains no super-layers. Both images show
three colour-coded particles passing through the chamber that leave colour coded hits.

Typically, tHit is measured using a detector with a fast timing response like a scintillator strip,

where the time of flight between the wire cell and the scintillator is negligible. The DAQ

time tDAQ can be measured and accounted for during calibration. Finally, tRO is recorded

for each hit.

With the drift time calculated, the resulting values for the drift distance are provided to

the track fitting algorithm. This fitting algorithm then finds a track that passes through each

cell at the appropriate drift distance from the sense wire. In the presence of a magnetic

field, the momentum of the particle transverse to the beam can be recovered from this fit:

p⊥ = qBR (3.4)

where B is the magnitude of the magnetic field, q is the charge of the particle, and R is the

radius of curvature of the trajectory in the transverse plane.

Stereo Angles

Wire chambers can naturally describe the locations of hits in the perpendicular plane to the

wire direction, but this can only provide a p⊥ measurement in the CDC. Stereo layers are
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used to provide information about the third dimension of the hit location, which is used to

measure p∥. For the purposes of this explanation, consider the x-y plane to be parallel to

the readout plane and z to be perpendicular to the x-y plane.

In a wire drift chamber, stereo layers are layers where the orientation of the wires

deviates slightly from the z-direction. The angle of deviation is referred to as the “stereo

angle” and is typically a few degrees. These layers are normally used in conjunction with

“super layers”, however, COMET has opted to use only stereo layers in the CDC to improve

the p∥ resolution. The COMET design resembles Figure 3.8

.

, where the sign of the stereo

angle alternates by layer.

Figure 3.8

.

uses a model drift chamber to demonstrate how stereo layers are used

to recover information about the z-position of the hit. Figure 3.8a

.

shows the readout

projection of this chamber. While the y position of the hits is unaffected by the stereometry,

the x positions of the hits alternate by stereo layer for a given track. The disagreement

between the two sets of layers encodes information about the z-position of the hit, as

shown in Figure 3.8b

.

. Here, we can see that the purple track intersects the drift chamber

at z = 0.6 cm, which is close to the readout plane at z = 0 cm. This means that the readout

plane sees a correspondingly small shift in x between the two set of layers. The green track

intercepts at z = 5 cm, causing a larger disagreement in x at the readout plane, while the

orange track at z = 9.2 cm causes the largest disagreement in x .

The particles in this demonstration have p∥ = pz = 0, which means the disagreement in

x between layers in different y positions is constant. For p∥ ̸= 0, this disagreement will

shrink or grow. By quantifying the change in disagreement between layers, a measurement

for p∥ can be achieved.

Geometry Description

The CDC is designed to measure the total momentum of 105 MeV electron tracks with a

resolution of 200 keV or better. It is composed of 19,548 wires in total across 39 layers.

The outer two most layers are guard layers with both anode and cathode wires. While they

are similar to the sense layers, they are not read out. Instead, these layers collect any space

charge that builds upon the inner and outer walls of the CDC. The remaining 37 layers

alternate between field and sense layers, with 19 field layers and 18 sense layers.

The 18 sense layers contain 4,482 sensitive channels. All of these layers are exhibit a

stereo angle with a magnitude between 64 and 75 mrad. These angles are achieved by
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angularly displaying the origin and the end point of each wire so that the wires are no

longer coaxial with the CDC. The sign of stereo angle, or angular displacement, alternates

between each layer, causing two stereo projections to arise from any given track. This

configuration is chosen to ensure a longitudinal spatial resolution of 3 mm, which is

needed to ensure the overall resolution of 200 keV. The CDC is also designed to ignore

low momentum background particles. This is achieved by placing the CDC in a 1 T field

and offsetting the instrumented volume from the target so that the CDC has an inner

radius of 49.65 cm. Noting that the Muon Stopping Target disks have a radius of 10 cm,

equation (3.4

.

) can be used to calculate the minimum p⊥ needed for a decay electron reach

the CDC as p⊥∼65 MeV. A summary of the CDC parameters is found in Table 3.1

.

for

reference.

3.2.4. Cherenkov Trigger Hodoscope

The Cherenkov Trigger Hodoscope (CTH) provides the trigger signal for the CyDet system.

It is composed of two cylindrically symmetric stations that line the inside of the upstream

and downstream ends of the CDC, as seen in Figure 3.9

.

. Each station is formed from an

inner layer of Cherenkov counters and an outer layer of scintillator strips. Together, these

layers are used to provide a trigger signal. This signal is formed from the tight-coincidence

of four modules, as explored later in Section 6.1

.

.

Table 3.1.: Key parameters of the CDC.

Inner wall Length 1495.5 mm

Radius 496.0∼496.5 mm

Outer wall Length 1577.3 mm

Radius 835.0∼840.0 mm

Sense wires Material Au plated W

Diameter 25 µm

Number of active channels 4482

Number of guard channels 504

Field wires Material Al

Diameter 126 µm

Number of wires 14562
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(a) CTH with Muon Stopping Target. (b) CTH with Muon Stopping Target and CDC.

Figure 3.9.: The Cherenkov Trigger Hodoscope for Phase-I. The CTH stations surround the upstream
and downstream ends of the Muon Stopping Target, as shown in Figure 3.9a

.

. The
stations sit inside the CDC, as shown in Figure 3.9b

.

.

Operating Principles

When radiation passes through a scintillator, it excites the scintillator’s component atoms

which then deexcite and emit scintillation light. This light is guided to a photomultiplier

tube where it is converted to an electric charge pulse, which is then further amplified by

the electronics system. Scintillators have several attractive properties as detectors:

• They have a fast response and recovery time relative to other detectors, which offers

superior timing resolution.

• Above a certain threshold, they give a linear response to the amount of energy de-

posited.

Due to these properties, scintillators are some of the most widely detectors in particle

physics. [50

.

].

Cherenkov counters rely on Cherenkov radiation to detect incident particles. Cherenkov

radiation occurs when a particle moves through a medium faster than light moves in the

same medium. This relationship is given by:

β =
v
c
>

1
n
=⇒ v >

c
n

(3.5)
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Figure 3.10.: The Cherenkov Trigger Hodoscope schematics. The left image shows the projection
the CyDet down the beamline axis, but cuts the CDC off at the fifth layer. The cross-
section of the scintillators are shown in blue, while the Cherenkov counters are shown
in pink. This projection hides the fact that there are two CTH stations, best seen
in Figure 3.9

.

. The right image shows the different dimensions of the CTH modules
at the upstream and downstream stations, with the red parts showing the active
volumes and the blue part showing the light guides.

where v is the speed of the particle, n is the real part of the material’s refraction index, and c

is the speed of light in a vacuum [51

.

]. When this criterion is satisfied, the particle generates

an electromagnetic shock wave, similar to sonic shock waves created by objects travelling

faster than the speed of sound. Similar to the scintillator case, the photons generated in

this process are guided to a photomultiplier tube where they are converted to an electric

current, which is then amplified and readout. Cherenkov counters have several attractive

properties as detectors:

• They have a fast response and recovery time, just like scintillators

• They are able to ignore non-relativistic particles and only detect particles based on

their overall velocity. This makes them more sensitive to electrons than protons for a

fixed energy.
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Geometry Description

The CTH is designed to detect the signal electrons as they exit the CDC. It is composed of

two distinct stations, as seen in Figure 3.9

.

. Each station is formed from an inner layer of 64

Cherenkov counters and an outer layer of 64 scintillators. Within each layer, the detector

modules are tilted slightly and shifted by a half-length so that neighbouring modules overlap.

This configuration and be seen into the left in Figure 3.10

.

.

The Cherenkov counters and scintillators modules are right rectangular prisms of similar

dimension. The Cherenkov counters are 9 cm×30 cm×1 cm, while the scintillators are

9 cm×30 cm×0.5 cm. As seen in both Figure 3.9

.

and Figure 3.10

.

, the longest side of

these modules are aligned with the central axis of the CDC. The scintillators are made from

a plastic called polyvinyltoluene (PVT). The Cherenkov counters are made from acrylic.

Both the scintillators and Cherenkov counter modules are optically coupled to a photo-

multiplier tube (PMT) via an acrylic light guide. This configuration can be seen to the right

in Figure 3.10

.

. To maximise the acceptance, the upstream light guides are 15.6 cm long,

while the downstream light guides are 45.8 cm light guides long.
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Chapter 4.

Simulating the COMET Experiment

Over 1.09×1012 proton-on-target (POT) events were simulated to develop the novel al-

gorithms introduced in this thesis. This equates to around 68,000 Phase-I bunch-events.

These data are used to model the beam related background and the stopped muons that

create the signal particles. This chapter outlines the software used to simulate the experi-

ment, describes physics processes included in the simulation and explains the resampling

techniques used to improve the statistical significance of the data sample.

4.1. The ICEDUST Software Framework

The Integrated COMET Experiment Data User Software Toolkit (ICEDUST) is the COMET

experiment’s official software framework. While questionably named, it has been rigorously

designed to handle and analyse COMET data. At its core, it is designed to handle simulation

data and real data using the exact same software algorithms. The code base itself was

copied over from the existing framework of the T2K experiment’s off-axis near detector,

ND280 [52

.

], and modified to suit COMET needs. The overall data flow can be seen in

Figure 4.1

.

.

Simulations of the hadronic physics inside the Pion Production Target can be handled

by a host of simulation packages, including PHITS, MARS, Fluka, and Geant4 [53

.

, 54

.

, 48

.

].
The simulation starts with the equivalent of one POT event. Details of the resulting particle

flux out of the Pion Production Target are read into a common data format defined by the

oaRooTracker package. The SimG4 package then reads these data and tracks the particles

through the beamline components. SimHitMerger is used to combine the data from many

events into one event and impose the expected pulsed structure. The data are then read by

35
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Figure 4.1.: The ICEDUST data flow model, including both real data and simulated data. This work
focuses on the SimG4, SimHitMerger, and SimDetectorResponse stages [38

.

].

SimDetectorResponse, which creates data structures that mimic those produced during the

real experiment.

Real data will be stored in the MIDAS file format. This data will be converted using the

oaRawData and oaUnpack packages to create the data structures mimicked by SimDetec-

torResponse. From here, both real data and simulation data are calibrated, reconstructed,

and analysed.

The data flow in ICEDUST is built around the oaEvent data format. This file format is

based around a ROOT tree with one branch, where each entry stores the data from one

COMET event. Each COMET event can store an arbitrary amount of POT events. At each

stage simulation, reconstruction, and analysis, relevant data from the input oaEvent file

can be copied into the output oaEvent file, which ensures the full legacy of the data can be

accessed at any point.

In an effort to ensure that the mass-produced simulation has no critical bugs, a thorough

testing suite has been added to ICEDUST. This testing suite builds upon existing tests from

ND280 for the oaEvent package and adds tests for oaRooTracker, SimG4, oaGeomInfo1

.

,

1This package is used to store and access information about the COMET geometry, most notably about
subdetector systems like the CDC.
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Figure 4.2.: Phase-I event display of 8e6 proton-on-target events, one half of a bunch, in the CyDet
system. This image also includes the experimental hall in which the Phase-I beamline
is placed. Only the trajectories that reach the Detector Solenoid are rendered.

SimHitMerger, and SimDetectorResponse. These tests run automatically inside the existing

development workflow whenever changes to the official copy of the code are under review.

For more information on this workflow, see Appendix A

.

.

4.2. Running the Simulations

Simulating the COMET experiment is challenging. At the core of this challenge lies the

fact that COMET is a high-intensity experiment that is designed to generate many more

particles than it will detect. The particles that are detected must first traverse a gauntlet of

complicated beamline components through an equally complicated magnetic field. Even

worse, these particles are otherwise indistinguishable from their less fortunate counterparts

that do not make it to the detector region. Protons that miss the production target entirely

to instead hit some element of the shielding can still create particles that are later detected.

This forces the simulation to mirror the experiment’s high-intensity environment and

simulate far more particles than actually create hits in the detector. Despite efforts, no cuts

in the simulated particle phase space could be found that would improve simulation time
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without sacrificing a potential source of background, as demonstrated later in Section 6.2

.

.

To ensure a high-quality data sample for the tracking studies, all particles resulting from

the initial proton events were simulated. A visualization of the simulation can be seen in

Figure 4.2

.

.

The samples created for this study are the first large scale production simulation samples

produced for COMET Phase-I using ICEDUST. As such, they prioritise model accuracy over

computational performance. While expensive, this means they can serve as a benchmark

for later computational optimization. Furthermore, the machine-learning elements of this

work require high statistics samples that are statistically independent of each other. This

section outlines the simulation flow that was designed to meet both of these requirements.

Summaries of the resulting samples are presented in Appendix C

.

.

4.2.1. The Physics Models

These samples were created using Geant4 to simulate both the interactions inside the Pion

Production Target and the transportation of the particles through the rest of the experiment.

When using Geant4, the user is responsible for registering all relevant physics processes

that will be simulated in the “physics list”. For ICEDUST, the QGSP_BERT_HP list was

taken as a starting point. This model is intended to give high accuracy for low-energy

physics involving neutrons [48

.

]. The list was adapted to include all relevant and potentially

relevant phenomenology. Custom physics models were implemented for both bound muon

decay and muon capture. Further details for both of these are provided in Appendix B

.

.

4.2.2. From Initial Proton to Detector Response

There are four main steps to ICEDUST simulations:

• Reading the input using oaRooTracker,

• Simulating the events in SimG4,

• Combining the results into a bunch-like timing structure in SimHitMerger,

• Simulating the detector response in SimDetectorResponse.

The simulation starts by propagating the 8 GeV protons through the proton beamline

that feeds the COMET experiment using the TURTLE software framework [55

.

]. The results

of this simulation are sampled just as the protons enter the Pion Production section and

saved in an oaRooTracker file, as depicted by the black peak in Figure 4.3a

.

.
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(a) Primary particles for
one event are cre-
ated.

(b) The particles create
hits in detectors.

(c) Many POT events
are combined into
bunch-trains.

(d) Detector hits in the
time window are
simulated.

Figure 4.3.: These diagrams illustrate the evolution of simulation. All these cartoons are histograms
with time as their x-axis. The black peaks represent the proton beam, the dark blue
peaks represent the muon beam, the light blue peaks represent the hits generated in
the detector, and the red highlights the fiducial time window.

SimG4 reads the description of the input protons from this file to continue the simulation.

In this section, each event corresponds to one input proton. The protons can do one of two

things:

• scatter off of the pion-production target or,

• miss the pion-production target and collide with the beam dump.

The resulting secondaries from either case are simulated in full by Geant4 through the

Muon Transport section and into the detector region. The hits generated in SimG4 describe

the time and magnitude of all energy deposits in the detectors. They are referred to as

"truth" hits. The timing structure of these hits is shown in Figure 4.3b

.

.

SimHitMerger combines the individual POT events simulated by SimG4 to form the

bunch-like timing structure discussed in Section 3.1.1

.

. First, bunch-like events are created

by shifting the timing of each of the 1.6e7 POT events in the bunch by a random value in

the range [−50ns, 50ns] and combining the results. The pulsed beam is simulated using a

handful of bunch-events, where each is separated by 1170 ns to form “bunch-train” events.

The timing structure can be seen in Figure 4.3c

.

and discussed in detail in Section 6.3

.

.

SimDetectorResponse simulates the physics processes inside the detectors that result in

detected hits. This includes gas avalanche simulations within the CDC and gain processes

in the CTH. These processes are only simulated within a fiducial time window. This section

outputs both the ADC waveforms and descriptions of calibrated detector hits. The relevant

fiducial time window is depicted in Figure 4.3d

.

.
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CDC

CDC

 Muon Target 

Pion Production 
Region

Muon Transport and 
Detector Solenoid Regions

Figure 4.4.: A schematic that illustrates the resampling technique used in the simulation. The upper
image shows an event where the RooTracker histogram is generated. The primary
proton is represented by the arrow, the secondaries that hit the beam dump are shown
in red, and the particles that make it into the region of interest are shown in blue. The
sampling points for the histogram is shown by the black X’s. The lower image shows
the resampling of the same event.

4.2.3. Resampling Techniques

The detailed physics list and full simulation of beam dump particles cause over 99% of

the simulation time to be spent in the Pion Production section of the experiment. The

simulation spends the other 1% of the time simulating particles in the Muon Transport and

Detector Solenoid sections, which is the “region of interest” for track reconstruction.

To correct this imbalance, particle four-momenta and four-position are recorded as they

enter this region of interest in Geant4. This information is used to make a RooTrackerHis-

togram file, which contains two histograms for each particle type:

• an 8D histogram which records the four-momentum and four-position information

for the given particle type, and

• a 1D frequency histogram which records how many of the given particle type occurred

in each event.

The simulation can then be restarted from this file to only simulate the particles in

the regions of interest. First, each frequency histogram in the file is randomly sampled to
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determine the number of each particle needed to build a POT-equivalent event. For each

of these particles, the corresponding 8D histogram is randomly sampled to determine its

initial properties.

This resampling technique gives the particles that reach the region of interest multiple

chances to reach the detector, which provides fundamentally new information while skipping

the first 99% of the simulation. Figure 4.4

.

illustrates this process, highlighting the fact that

sampling for the histogram carefully avoids double counting.

4.2.4. Signal Simulation

Since the signal is extremely rare, there is no chance of it occurring “naturally” in the

simulation. Instead, the signal simulation uses a similar resampling technique to the

background simulations. First, the four-positions of all stopped muons in the Muon Stopping

Target are recorded in a RooTrackerHistogram. This process is represented by the black X’s

on the Muon Stopping Target in Figure 4.4

.

. The resulting RooTrackerHistogram is sampled

to determine the initial position of the signal electrons.

The initial time of the signal electron is then smeared by the distribution of the bound

muon lifetime in aluminium. This distribution is described by an exponential decay with

a characteristic lifetime of 864 ns. With the time established, these electrons are given

a momentum with a magnitude of 105 MeV and a random initial direction. The signal

tracks are then overlaid on background bunch-train events to create a combined signal and

background event.
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Chapter 5.

Machine Learning and Computer Vision

Methods

The last decade has seen a dramatic revival of machine learning across both academia and

industry. This revival has been catalysed by several key developments, including:

• the exponentially growing amount of data generated in everyday life,

• the ability to distribute this information over the internet, and

• the analytical power offered by modern computers.

In this context, machine learning is often used to extract meaningful information or results

from vast collections of data. Experimental particle physics has a long history of extracting

physics principles by measuring rare events. In doing so, particle physicists are constantly

pushing the boundaries of data collection and analysis. Machine learning methods are

gaining traction in the field, as summarised in [56

.

, 57

.

]. This chapter will introduce some

of the core principles of machine learning, as reviewed in [58

.

]. From here, the algorithms

that form the basis of the track reconstruction in this thesis are introduced.

5.1. Fundamentals

The aim of the machine learning discussed in this thesis is to build a function f that

can predict the target property of a given datum, y, using a vector of that datum’s other

properties, x. This can be formalised as:

f (x,θ ) = ŷ (5.1)

43
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The known properties that make up the vector x are referred to as the “input features.”

The function f is constructed by the machine learning algorithm and referred to as the

“predictor” in this section. This function is parametrised by a vector of parameters, θ , and

evaluates to a prediction, ŷ, of the true value of the target property, y. Constructing the

predictor normally means determining the optimal set of parameters θ .

5.1.1. Training and Testing a Supervised Learning Algorithm

In general, there are two families of learning algorithms:

• Supervised Learning: The value of the target variable, y , is available for all elements

in the data. This means that the true value of y can be used to guide the algorithm to

build an accurate predictor.

• Unsupervised Learning: The value of the target variable, y , is not available for elements

in the data. These learning models are usually used to cluster or organise data.

The algorithms discussed here supervised algorithms that are trained and tested on simu-

lation data, where the target y value is readily available1

.

. This process can normally be

divided into two stages:

1. Training: The machine learning algorithm fits the function f to a data sample called

the “training” data. It is given both x and y to determine the values of θ in f that

best describe the relationship between x and y .

2. Testing: The algorithm is provided with a new data set called the “testing” data. The

predictor is evaluated with the θ values determined in training to make a prediction

for each element in the testing data set. The accuracy of these predictions is used to

judge the performance of the predictor.

From this structure arises one of the first tenets of machine learning: training and testing

data must be statistically independent. This is to ensure that the predictor can generalise

what it learns from the training set to accurately predict properties of as-of-yet unseen data

members in the testing set.

1With that said, unsupervised learning is a very attractive prospect for real data, which often come as an
abundance of unlabelled data.
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5.1.2. The Loss Function, Regularisation, and Gradient Descent

Both the training and testing stages require some measure of how well the algorithm is

performing. This is determined using a “loss” function, which describes the disagreement

between the value of the target variable y and its predicted values ŷ across the whole data

set as a single number. A prime example of a loss function is the mean squared error:

E(Y, ŷ) =
1

2N

N
∑

i=1

�

ŷ (i) − y (i)
�2

E(Y, X ,θ ) =
1

2N

N
∑

i=1

�

f
�

x(i),θ
�

− y (i)
�2

(5.2)

On the left hand side, the function E is the loss function and the capital Y and Ŷ refer to

the target y values and their corresponding ŷ predictions across all elements in the data

set. The capital X is the matrix of all features for all data elements. The right hand side

averages the mean squared error from all N elements in the data set, where the superscript

denotes the i-th data element2

.

.

The parameters θ are iteratively updated using the training set. This process utilizes

a method called “gradient descent”, which uses the differential of the loss function with

respect to each element in θ to update θ so that the loss is minimized. Using mean squared

error as an example:

θ j := θ j −α
∂

∂ θ j

E(Y, X ,θ ) (5.3)

:= θ j −α
∂

∂ θ j

1
2N

N
∑

i=1

�

f
�

x(i),θ
�

− y (i)
�2

θ j := θ j −
α

N

N
∑

i=1

�

f
�

x(i)θ
�

− y (i)
� ∂

∂ θ j

f
�

x(i),θ
�

(5.4)

In these equations, α is referred to as the learning rate. It controls the speed of convergence

to help the loss function reach the global minimum. This update rule recycles the residuals

needed to calculate the loss, which makes the mean square error attractive loss function.

As with all optimisation problems, local minima must carefully be avoided. In machine

learning, this often occurs when an algorithm finds a minimum that is unique to the training

set. This problem is referred to as “overfitting”. To combat overfitting, a technique called

2The leading value of 1/2 is a convention used in machine learning to ease computational cost of training.
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“regularisation” is often used. A simple example below demonstrates how this can be

achieved:

J(Y, X ,θ ) = E(Y, X ,θ ) +
λ

2

M
∑

j=1

θ j
2 (5.5)

This equation introduces the loss function J which is the sum of the training loss E and the

new regularisation term. This new term penalises the model for relying too heavily on any

one parameter θ j, which encourages the model to have a smoother response overall. The

parameter λ is introduced to control the strength of this penalty. The update rule can then

be defined using the function J in place of E in equation (5.3

.

) to recover:

θ j := θ j −α
∂

∂ θ j

J(Y, X ,θ ) (5.6)

θ j := θ j(1+λ)−
α

N

N
∑

i=1

�

f
�

x(i),θ
�

− y (i)
� ∂

∂ θ j

f
�

x(i),θ
�

(5.7)

5.1.3. Classification and the Logistic Function

Supervised learning problems can be divided into two main categories: “regression” and

“classification”. Regression refers to cases where y is a continuous variable, like particle

momentum. Classification refers to cases where y is a discrete variable. The simplest case

is called binary classification, where y takes a boolean value, like “signal” or “background”.

Binary classification, which is sometimes called logistic regression, can be treated as an

extension of the normal regression example discussed so far. In this case, an additional

function, g, is applied to the outcome of the predictor:

h
�

x(i),θ
�

= g
�

f
�

x(i),θ
��

=
1

1+ e− f (x(i),θ)
= ŷ (i) (5.8)

In this example, g is the “logistic” function, which always returns a value between 0 and 1.

A cut is then normally taken to reduce this to a binary value.

For binary classification, the logarithmic loss function is favoured over the mean squared

error. This function has the following form:

E(Y, X ,θ ) = −
1
N

N
∑

i=1

y (i) log
�

h(x(i),θ )
�

+
�

1− y (i)
�

log
�

1− h(x(i),θ )
�

(5.9)
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Since all y values are 0 or 1, only one of these terms survives for any given data member.

The leading negative sign accounts for the fact that the logarithmic factors are always

negative for 0 < h(x(i),θ ) < 1. This loss function has the distinct advantage of being

convex, which means it has an accessible global minimum. As with the mean squared error,

the update rule for θ can be calculated from equation (5.6

.

). Interestingly enough, one

recovers nearly the same update equation as in equation (5.7

.

), except that the logistic

function remains in the residual term:

θ j := θ j(1+λ)−
α

N

N
∑

i=1

�

h
�

x(i),θ
�

− y (i)
� ∂

∂ θ j

f
�

x(i),θ
�

(5.10)

5.2. Algorithms

The discussion about machine learning so far has been in general terms, without any

discussion of the form of f (x,θ ). This section will build on these principles and explore

the two machine learning algorithms used in this work: Neural Networks and Gradient

Boosted Decision Trees. For more details, see [58

.

].

5.2.1. Neural Networks

Neural Networks (NN) are arguably the richest paradigm of machine learning models.

While they are conceptually difficult, the mathematics behind them is surprisingly elegant.

The following example explains how neural networks are evaluated once they are trained.

For simplicity, it considers an input vector with three features and a classifier that yields a

single output value. In general, neural networks can have an arbitrary number of input

features and output values.

The basic structure of a neural network is a graph. The graph consists of three main

types of nodes: input nodes, hidden nodes, and output nodes. The graph starts by placing

the value of each feature onto its own input node, as in Figure 5.1

.

. The first step is to

pass a weighted linear sum of these features to each node in the first hidden layer. This

operation can be formalized as a matrix multiplication:

z(1)i =
3
∑

j=1

Θ
(0)
i j x j or equivalently z(1) = Θ(0)x (5.11)
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Figure 5.1.: A diagram of the structure of a neural network, illustrating the input layer in green,
the hidden layers in blue, and the output layer in red. The ellipses indicate that neural
networks can have a variable number of hidden layers and a variable number of nodes
in each layer. The number of input and output nodes are three and one respectively.
Only the outer edges are labelled by their corresponding values from the Θ(k) matrices.

This equation introduces some key notation and concepts. The vector z(1) is the input to

the first hidden layer, where each element corresponds to a node in the layer. This vector

has p elements in it according to Figure 5.1

.

. It is calculated as the product of a matrix of

weights Θ(0) and the input vector x. In this notation, the superscript on z(l)i denotes which

layer it is in, while the subscript denotes the node position in the layer.

In this example, Θ(0) defines a (p×3) matrix of free parameters. We can generalize to

define Θ(l) as the matrix that controls the mapping from the layer l to layer l + 1. This

matrix will have a shape of (n×m), where m is the number of nodes in layer l and n is the

number of nodes in l + 1. In general, each layer can have an arbitrary number of nodes.

This defines the free parameters in NN models as a vector of matrices, all of which can vary

in shape. This vector is denoted by Θ.

Inside the node, a non-linear “activation” or “response” function is used on the input to

generate the output of the node. A popular choice is the logistic function:

a(1)i = g
�

z(1)i

�

=
1

1+ exp

�

−
3
∑

j=1
Θ
(0)
i j x j

� (5.12)
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This defines the output of the first hidden layer as a function of the three input features.

This can readily be extended to define the flow of information between hidden layers:

z(l+1)
i =

m
∑

j=1

Θ
(l)
i j a(l)j (5.13)

a(l+1)
i =

1

1+ exp
�

−z(l+1)
j

� =
1

1+ exp

�

−
m
∑

j=1
Θ
(l)
i j a(l)j

� (5.14)

Note that in general, the activation function g must be non-linear, otherwise the system

could be reduced to a single linear transformation of the input variables.

Finally, Figure 5.1

.

shows that the output node is calculated according to equation (5.13

.

).

This value is unbounded, which works well for most regression problems. For classifica-

tion problems, it is normal to apply another logistic function or something similar, as in

equation (5.8

.

). This can be explicitly written as:

Regression: ŷk = z(L+1)
k = f (x,Θ)k (5.15)

Classification: ŷk = h
�

z(L+1)
k

�

= h
�

f (x,Θ)k
�

(5.16)

In these equations, the output has been subscripted by k, which only has a value of one

in the example. As stated previously, neural networks can return an arbitrary number of

values, meaning k would index the output vector of values.

Neural networks are trained through gradient descent using the “back propagation”

algorithm. The derivation of this technique is explored in Appendix D.1

.

. Those who are

unfamiliar with this technique and dubious about neural networks in general are urged to

read it.

5.2.2. Gradient Boosted Decision Trees

Gradient Boosted Decision Tree (GBDT) classifiers are conceptually simpler than neural

networks, but less mathematically pleasing. They fall under the umbrella category of

“ensemble” learning methods, which combine many weak learning algorithms into a far

stronger one. Unsurprisingly, GBDTs combine the output of many Decision Trees using a

Gradient Boosting method. These models typically use Classification and Regression Trees

(CARTs) as the underlying tree model [59

.

].
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Input Datum, x

x3 < c1

x1 < c2 x2 < c3

x3 < c4

ŷ = 0.7ŷ = 0.3 ŷ = 0.1

x1 < c5

ŷ = 0.9 ŷ = 0.6ŷ = 0.5

FalseTrue

FalseTrue

True False

True False

True False

Figure 5.2.: A diagram of a fully grown Decision Tree. The input data is represented as a green
block, the splitting nodes are drawn in blue, and the leaf nodes are drawn in red with
their associated values.

Evaluating a single CART is very simple. These trees work on the principle of splitting the

feature space into smaller subspaces and assigning an output value to each one. Figure 5.2

.

illustrates the trees’ structure. In this figure, the input datum with feature set x= (x1, x2, x3)
is passed into the tree. From here, the datum is passed through splitting nodes of the

tree, which represent a sequence of cuts on the feature space. These cuts are made at

thresholds ck, which have been left in general terms in the diagram. Each leaf node has a

corresponding ŷ value which is assigned to each datum that arrives in the node. These

values are explicitly provided in the example for clarity.

Gradient Boosting in general is an example of an additive model, which is a subset of

ensemble methods. Additive models admit the following form:

FM(x) =
M
∑

i=1

γihi(x) (5.17)

This defines the output of an additive ensemble of M weak predictors as FM . Each predictor,

or tree in this case, is indexed by i and has a corresponding output of hi. The weight of

each predictor in the sum is denoted γi. Evaluating the ensemble is then a question of

evaluating each tree and taking the weighted sum of their outputs [60

.

].
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Gradient Boosted algorithms are built so that each new predictor corrects for the mistakes

of the existing predictors in the model. This means that each tree is built independently

and sequentially. The full details of CART building and Gradient Boosting can be found in

Appendix D.2

.

and Appendix D.3

.

, respectively.

5.2.3. The Circular Hough Transform

Particle physics track reconstruction was one of the first disciplines to utilize computer

vision algorithms. Of note is the Hough Transform, which was developed by Paul Hough in

1962 to automate track detection in bubble chamber experiments [61

.

]. While the original

algorithm was developed to detect straight lines, this work utilizes the circular Hough

transform [62

.

].

All (x , y) points, or hits3

.

, on a circle centred around the point (a, b) with a radius r

satisfy the following equation:

(x − a)2 + (y − b)2 = r2 (5.18)

This identifies the three parameters (a, b, r) that can be used to describe any circle in

(x , y) space. The circular Hough transform finds the best circle for a set of cocyclic hits by

fixing r and determining the best (a, b) candidate.

It starts with the list of hits in (x , y). For each hit, it generates a list of candidate (a, b)
points that lie a distance r from the hit. It then selects the most popular (a, b) value-set

from all candidates from all hits. This can be represented graphically as drawing a circle of

radius r around each of the hits and checking where these circles overlap.

An obvious shortcoming of this algorithm is that a fixed r is required. In real applications,

circle finding normally requires finding if a set of hits that lie roughly the same distance

from a point (a, b). To achieve this, circles drawn around the cocyclic hits can be smeared

to accept a wider range of (a, b) candidates. This smearing is best described in the context

of a discrete space, in which all the position vectors x= (x , y) for the hits are part of some

finite set. The same can be said for the potential circle-centre position vectors, a= (a, b).
Formally, one can write:

x j ∈ X for j ∈ [0, N − 1], N = |X | (5.19)

ai ∈ A for i ∈ [0, M − 1], M = |A| (5.20)

3Points in (x , y) will be referred to as hits to match the language used in later sections.
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(a) The input to the algorithm hypothesises that
each of the blue points lies somewhere within
the circular shaded blue area.

(b) Each hit point votes on its favoured track cen-
tres. Each hit is given equal voting weight.
The score for each potential centre is shown
by the size of the pink dot.

Figure 5.3.: These two images visually summarize equation (5.23

.

). In this example, A= X , which
are defined in equation (5.19

.

) and equation (5.20

.

). Furthermore, Ti j is defined such
that centres at the target radius are favoured, while points towards the edge are
favoured less. Despite being in a discrete space with points that are not perfectly
cocyclic, the transformation still finds the centre of the hypothesised red circle.

where |S| denotes the cardinality of the set S. These definitions highlight the fact that X

and A do not have to be the same in general. From this, a function can be defined that

determines if centre ai lies within some radial band of point x j:

H
�

ai,x j

�

=

⎧

⎨

⎩

1 : rmin < |ai − x j|< rmax

0 : else
(5.21)

where rmin and rmax define the range of acceptable radial of candidates. This is the simplest

example of smearing, but the concept can be extended to allow for a family of smearing

functions.

The circular Hough transform readily admits another two properties:

H
�

ai,x j

�

= F
�

|ai − x j|
�

H
�

ai,x j

�

= Ti j ≡ F
�

Ri j

�

(5.22)
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The first line simply states that any general transformation H between hits and circle-centres

must be radially symmetric. H can then be phrased as a function F that only cares about the

distance between the hit point at x j and the potential centre at ai. The second line builds

on this to observe that in a discretised space, the pairwise distances between all points
�

x j ∈ X
	

and
�

ai ∈ A
	

can be described by a matrix R where Ri j = |ai − x j| From here, the

transformation itself readily admits its own matrix formulation, where Ti j is defined from

F(Ri j). Note that this in an M ×N matrix, as implied directly from equation (5.19

.

) and

equation (5.20

.

). This discrete transform is visualized in Figure 5.3

.

.

This leads to the full matrix form of the circular Hough transform:

ci =
N−1
∑

j=0

Ti jw j (5.23)

This has introduced two new vectors, w and c, which are best explained by first exploring

a simple example. Define Ti j using equation (5.21

.

) and define w j to equal one if there is

a hit at x j and zero otherwise. This implicitly defines the element ci as the number of hit

points that lie between rmin and rmax of the circle-centre at ai. This means the most likely

circle centre corresponds to the maximal element in c.

Three key generalizations can be made by lifting the assumptions made for the example

case:

• The hit property vector w can store continuous values. This allows hits to be weighted

to adjust their relative contributions to the centre property vector, c.

• The function F can return continuous values. This means F can be selected so that it

matches the expected radial distribution of the hits around the centre.

• As a natural extension of these two, c can also store continuous values. Furthermore,

when considering the most likely centre, a set of maximal points can be considered

instead just one.

In conclusion, the circular Hough transform can be thought of as a voting scheme. Each

hit point, x j, votes on its favourite circle-centres. The amount which it favours a given

centre ai is described in the matrix element Ti j = F(Ri j). The amount which it gets to vote

is controlled by its weight w j. The output scores each potential circle centre by how many

votes it receives, which is stored in the c vector. The maximal element(s) of c are the most

popular circle centre candidate(s).
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Chapter 6.

Signal and Background Acceptance

To introduce concepts seen throughout the analysis work, this chapter starts by illustrating

how the CyDet detects a signal electron. It the then uses the simulation to show how the

beam evolves from an 8 GeV proton beam to a high intensity, low-momentum muon beam.

It finishes with an analysis of three groups of parameters that are key to tracking:

• Bunch size: The number of proton-on-target (POT) events per bunch, which deter-

mines the intensity of the tracking environment.

• Time window: The size and placement of the fiducial time window relative to the

bunch arrival affects both signal and background acceptance.

• Trigger and Track Quality: All signal tracks must pass a minimum standard before

any reconstruction can be attempted.

6.1. Hits in the Cylindrical Detector

A signal track is show in simulation event display in Figure 6.1a

.

, where the CyDet compo-

nents are transparent. Figure 6.1b

.

shows this same track in terms of CDC and CTH hits in

the readout plane.

6.1.1. CTH Hits

The CTH is composed of scintillators and Cherenkov counters. To model their 10 ns

sampling rate, the CTH hits are defined by the sum of all energy deposition within 10 ns

bins for each CTH module. The ADC values are set to this sum, which ignores any non-linear

scaling between the deposited energy and the detected ADC signal.

55



56 Signal and Background Acceptance

(a) A signal electron inside the CyDet.

90°

0°

Radial Distance [cm]

0 10 20 30 40 50 60 70 80

(b) The readout projection of the track.

Figure 6.1.: An example of a signal event in the CyDet detector. Figure 6.1a

.

shows the electron
passing through the CyDet, while Figure 6.1b

.

illustrates what the same track looks
like to the detector system at the readout plane. The hits on the CDC wires and CTH
modules are shown in pink.

The ADC values are calculated as the deposited energy from Geant4 for the scintillators.

For the Cherenkov counters, the ADC values are determined by the number of Cherenkov

photons generated by the incident particle. The light guides can also generate Cherenkov

photons, such that the guides attached to the Cherenkov counters are treated as part of the

module’s fiducial volumes. Since scintillation produces around 100 times more light than

Cherenkov radiation, the light guides attached to the scintillators are ignored.

The CTH hits in Figure 6.1b

.

exemplify the “four-fold coincidence” trigger pattern. This

pattern is formed from a neighbouring pair of modules in the scintillator layer and a

corresponding pair in the Cherenkov layer. The module pairs must have at least one

overlapping module. All four hits must occur within a 50 ns time window that is inside the

event’s fiducial time window.

6.1.2. CDC Hits

The CDC hits in Figure 6.1b

.

are from a single pass, but manifest as two distinct semi-circular

patterns. This is caused by the alternating stereo angles, as discussed in Section 3.2.3

.

. Each

hit is defined as the sum of the charge deposition in a channel ADC in each channel over
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Figure 6.2.: The initial particle distributions projected onto the x-z plane. The left plot shows
where all simulated particles are created. The right plot shows where particles that
are accepted by the Muon Transport or Detector Solenoid are created, including all
parents, grandparents, etc. of accepted particles. Note the colour axis is logarithmic.
These plots can be compared to the full 3D geometry, as seen in Figure 4.2

.

.

the whole fiducial time window. This corresponds to the “worst-case” scenario for CDC

time resolution. The earliest hit time in the sum is used to describe the CDC hit.

The fiducial time window in the CDC is defined to be longer than the trigger time

window to account for the drift time of the hits. Like the CTH window, it is defined relative

to the arrival of the proton bunch at the target. The real experiment may define the window

relative to the CTH trigger time instead, but this has not been finalized.

6.2. The COMET Beam

The momentum of each initial proton is set at 8±0.1 GeV. They are directed towards the

pion production target, although not all are guaranteed to hard-scatter off of the target.

The protons that pass through the target or miss it all together typically deposit their energy

in the beam dump.

The left plot in Figure 6.2

.

illustrates that the COMET beamline is very radioactive, with

1.5e11 particles are simulated per bunch. Of these particles, the plot to the right plots

the initial position of the 2.7e6 particles that make it to the Muon Transport or Detector

solenoid sections. This plot demonstrates that even particles that are born in the beam
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Figure 6.3.: The momenta of pions, muons, electrons, and their antiparticles as they enter the
Muon Transport Section, pass through its mid-point, and exit it. The midpoint is
defined as the plane at 45 degrees along the full 90-degree bend of the curved solenoid.
The legend for each plot provides the integral of the corresponding entry, including
any particles in the overflow bins. These plots are normalized to one bunch and are
displayed on a logarithmic axis.

dump are accepted by the later stages of the beamline. As delayed particles, they are a

potentially dangerous background source, which forces the simulation to consider them.

As discussed in Section 3.1.3

.

, the Muon Transport section is designed to filter out all

high-momentum particles and positively charged particles to create the low-momentum

muon beam. Figure 6.3

.

clearly demonstrates that the high-momentum particles that enter

the transport section are filtered away, while the low-momentum muons are preserved. It

also demonstrates that the positively charged particles are more heavily filtered than their

negatively charged counterparts.

The position distribution of stopped muons shown in Figure 6.4

.

illuminates how the

Muon Stopping Target stops as many muons as possible with a minimal material budget,

as discussed in Section 3.2.2

.

. In total, 4.675×10−4 muons are stopped in the target per

POT event. The left plot shows that slightly more muons stop in the earlier disks. The

right plot shows that the peak of the transverse distribution is slightly off centre. Since this



Signal and Background Acceptance 59

Figure 6.4.: The longitudinal and transverse stopping distribution of muons in the Muon Stopping
Target disks. The longitudinal plot shows the number of stopped muons per disk,
which are perpendicular to the muon beam. The transverse distribution sums over all
disks. For both plots with (0,0,0) corresponds to the centre of the central target disk.
Both plots are normalized to one bunch.

distribution determines the initial position the simulated signal electrons, there may be

some asymmetries in the detected signal hit patterns.

6.3. Bunch Parameters

The pulsed structure of the COMET beam, as discussed in Section 3.1.1

.

, structure can be

summarized by three key parameters:

• Bunch Period, BT : The time between bunches.

• Bunch Width, BW : The time between the first and last proton in the bunch

• Bunch Intensity, BI : The number of protons delivered in each bunch.

The default values for (BT , BW , BI) are (1170 ns, 100 ns,16e6 POT). The arrival of the

centre of the bunch to the Pion Production Target defines t = 0. The protons have a flat

timing structure within the bunch width, meaning each POT event has an equal probability

arriving anywhere between −50 ns and +50 ns.

The bunch width affects the timing of CDC hits, CTH hits, and stopped muons, as seen

in Figure 6.5

.

. If the bunch width were zero, the upper plots demonstrate the peak from the

beam flash that occurs between [40 ns, 100 ns] can be separated from the peak from Muon

Stopping Target radiation that starts at 100 ns. The slow decay of this second peak in the

CDC hits highlights how the bound muon lifetime results in delayed background hits. The
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Figure 6.5.: The effects of the bunch width on the background hit and stopped muon timing in the
CDC and CTH. The top plot shows the timing distrubitons for BW = 0 ns, while the
bottom plots show these distributions for BW = 100 ns. Note that lines are normalized
to one bunch and that the CDC hits do not include the drift time.
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Figure 6.6.: The bunch-train timing structure in the CDC and CTH hits. The upper plot shows the
full bunch-train window. The lower plot zooms in on the fiducial time window of the
bunch-train event. This plot highlights [700 ns, 1170 ns] as the CTH trigger window.
The CDC accepts an additional 450 ns to allow the any signal hits to drift to the wires.
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Figure 6.7.: The overflow of background hits into later fiducial time windows for the CDC and
the CTH. The histograms, corresponding to the left axes, count the number of hits
from a bunch arriving at t = 0 occur within the fiducial time window of the N -th
bunch, defined as: [1170 ·N ns,700 ns+ 1170 · (N + 1) ns] and denoted as BN. The
lines, corresponding to the right axes, determine the fraction of hits in the first N
windows relative to the number of hits in the first 100 windows.

lower plots highlight how the 100 ns bunch width smears these two peaks together and

pushes the time of the earliest hits to t = 0. The tail in the CTH is caused by the neutron

background, which has a larger cross-section solid volumes of the CTH than the gaseous

volume of the CDC.

The bunch-train timing structure is used to model the beam background. This structure

includes the tails of the previous eight bunches and any early beam flash from the next

bunch, as seen in the upper plot in Figure 6.6

.

. This plot shows how the tails from the

previous bunches form a pedestal of hits in the later time windows. The bottom plot shows

the default fiducial time window for the bunch-train events. While the CTH window ends

at 1170 ns, the drift time in the CDC requires an additional 450 ns to detect any signal hits.
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Figure 6.8.: The distribution of the hit rate from late particles. The top plots show the hit rates
in the CDC and CTH separated out by the charge of the particle that leaves the hit.
Similarly, the bottom plots show the hit rate separated out by the charge of the parent
of the particle that made the hit.

This causes the CDC to accept a large portion of hits from the next bunch. Optimizing this

time window is explored later in Section 6.4.5

.

.

Figure 6.7

.

illustrates how many hits from a bunch at t = 0 overflow into the fiducial time

window of later bunches. This plot illustrates the previous bunches can create backgrounds

that take O (1 ms) to hit the CDC or the CTH. This effect should be verified using other

simulation packages like PHITS or FLUKA, but this is outside the scope of this work. Building

bunch-train events in ICEDUST requires around 1 GB of memory for each bunch in the

train, which limits the bunch-train to 8 tail bunches, the analyzed bunch at t = 0, and the

next bunch. This “ten bunch-train” accounts for around 70% of CTH hits and 80% of CDC

hits from the tail of the previous 100 bunches.

To dive deeper into the late hits, Figure 6.8

.

inspects the underlying cause. The top plots

show that neutral particles are more likely to cause late hits in both the CDC and the CTH.

In both detectors, muons and electrons account for 90% of the charged hits while neutrons

account for 99% of the neutral hits. The bottom plots explore the charge of the parents of

the particles that cause these hits and demonstrates that these parents can be other neutral

particles or charged particles. This suggests that this late background is caused by ambient

radiation in the COMET experimental hall.

Figure 6.9

.

shows the effects of the intensity on the CDC hits, the CTH hits, the CDC

occupancy and the CTH fake trigger acceptance. Using 16e6 POT events per bunch, the
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Figure 6.9.: The CDC occupancy and the CTH trigger acceptance as a function of the bunch intensity.
The histogram counts the hits in each detector using the left axes. The occupancy and
trigger acceptance are plotted with the purple line and correspond to the right axis.

default timing window, and ten bunches in each bunch-train, the trigger fires for 91.7% of

events in which 25.8% of the CDC channels are occupied. Both of these values are high for

the DAQ systems or tracking fitting algorithms to handle. Reducing both of these numbers

is the focus of this work.

6.4. Timing, Triggering, and Tracking Cuts

The signal acceptance can be decomposed into three main components:

• Timing: the size and placement of the fiducial time window.

• Triggering: the acceptance of the CTH geometry and triggering algorithms.

• Track Quality: the acceptance of “quality” track by the CDC geometry, where “quality”

denotes a track that passes the minimum requirements for the track fitting algorithm.

The final acceptance comes from tracks that are accepted by all three of these components.

The breakdown of these acceptances for the current design values for all thresholds is

shown in Table 6.1

.

.
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Selection Acceptance Comment

Time 30% Discussed in Section 6.4.2

.

.

Triggering 30% Discussed in Section 6.4.3

.

.

Track Quality 78.3% Discussed in Section 6.4.4

.

.

Total 6.6% Accounts for all of the above.

Table 6.1.: The breakdown of the signal acceptance into timing, triggering, and track quality
components.

6.4.1. Timing Parameters

The CDC occupancy, CTH fake trigger acceptance, and overall signal acceptance all depend

on the following four time parameters:

• the lower limit for the fiducial time window for the CDC and the CTH, tmin,

• the upper limit for the CTH fiducial time window, tmax,

• the upper limit for the CDC fiducial time window, tmax + tD,

• the coincidence time window for the CTH trigger pattern, tW , and

The optimal parameters would maximal signal acceptance with minimal CDC occupancy

and CTH fake triggers. This study attempts to find more favourable sets of (tmin, tmax, tD, tW )
than the default values of (700 ns, 1170 ns, 50 ns, 450 ns). Note that the fake trigger “rate”

is measured as the percentage of background only bunch-train events that contain the

trigger pattern.

6.4.2. The Time Distribution of Signal Tracks

The time distribution of signal tracks is determined by the stopped muon time, shown in

Figure 6.5

.

and the lifetime of bound muons in aluminium, as described in Section 4.2.4

.

.

The blue line in the left plot in Figure 6.10

.

shows the stopped muon process rate from

one bunch. This long tail on this line implies that signal tracks might be created in a

later fiducial time window. To model this effect, signal tracks are simulated initialized by

sampling the modulo of the stopped muon process time with 1170 ns, as shown by the

pink line in the same plot. This forces all signal tracks to start within the analyzed bunch

that starts at t = 0. The contour plot to the right in Figure 6.10

.

shows the fraction of signal

tracks that are created within different [tmin, tmax] windows. The flight time of signal tracks
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Figure 6.10.: The stopped muon process time and the implied signal acceptance. The left plot
shows the stopped muon process rate from one bunch arriving at the production
target at t = 0 in blue. The blue line includes the stopped muons from all previous
bunches. The contours in the right plot show the signal acceptance as a function of
the lower and upper time limits.

is negligible, such that this plot represents the overall signal acceptance for all possible

fiducial time windows.

6.4.3. The CTH Trigger

A lower threshold on the ADC of the CTH scintillators can reduce the fake trigger acceptance.

The left plot in Figure 6.11

.

shows the loose cut is selected at Emin = 170 keV on the

scintillator ADC values. This cut keeps 99% of signal trigger hits while removing 60% of

background hits. A tighter cut could be made that keeps 95% of signal hits and removes

95% of background hits. Given the simplicity of the ADC modelling, the looser cut was

selected. The ADC values of the signal trigger hits in the Cherenkov hodoscope were not

separable from the background hits. The right plot shows the fake trigger acceptance after

the ADC cut for all [tmin, tmax] windows, where tW = 50 ns. This determines the fake trigger

acceptance to be 83.1% for the default CTH parameters.

The plot to the left of Figure 6.12

.

how the coincidence window, tW , affects the signal

and background acceptance. This plot introduces the signal trigger acceptance at 9.0%

for the default time window timing, which includes the overall geometrical acceptance of

the CTH. If the ADC cut is used and the tW is reduced to 10 ns, i.e. one CTH time bin, the

fake trigger acceptance is reduced to 31.0%, but only loses 0.2% of the signal acceptance.
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Figure 6.11.: The CTH scintillator ADC distribution and the fake trigger acceptance. The left
plot compares the ADC values for signal and background on a logarithmic x-axis
with selected cut denoted by a vertical line. The right plot shows the fake trigger
acceptance after the ADC cut as a function of the lower and upper fiducial time
window limits, where tW = 50 ns.
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Figure 6.12.: The signal and background trigger acceptance as a function of the coincidence window,
tW . The CTH ADC cut is used for both of these plots. The left plots the fake trigger
acceptance the left axis and the signal trigger acceptance on the right axis as a
function of the trigger coincidence window size, tW . This plot uses the default
[700 ns, 1170 ns] time window. The right plot shows the fake trigger acceptance for
the tW = 10 ns for all possible time windows.
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Figure 6.13.: The background drift time, hit rate and occupancy in the CDC. The top left plot shows
the probability distribution of drift times for all background CDC hits. The bottom
left plot shows the background hit rate in the CDC after this drift time is considered.
The right side shows CDC occupancy as a function of the fiducial time window.

The right-hand plot in Figure 6.12

.

shows the fake trigger acceptance as a function of the

fiducial time window for the 10 ns coincidence window and using the ADC cut. The signal

trigger acceptance closely follows the signal acceptance plot shown Figure 6.10

.

, albeit at

an evenly reduced acceptance due to the geometrical acceptance of the CTH.

6.4.4. Tracking Cuts

The plot thickens once the CDC acceptance is considered. The background CDC hit rate

can be seen in the plot to the bottom left in Figure 6.13

.

. This plot features two double peak

structures. The double peak is caused by the two peaks in the drift time distribution, which

is plotted in the top left plot. The first double peak comes from the bunch arriving at t = 0

while the second is from the next bunch that arrives at 1170 ns. The right plot shows the

CDC background occupancy as a function of the fiducial time window. The dip between

the two double peaks is reflected by the shallower contour lines from 600 ns to 1200 ns. In

order to be accepted by the CDC, the signal track must:

• have at least 35 hits from their first turn through the CDC survive the time cut, where

• the maximum layer reached by these hits is at least the fifth layer, and

• at least one hit survives in the first three layers at the track’s first turn entry and exit

positions.
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Figure 6.14.: The signal hit rate and occupancy in the CDC. The plot on the left shows the signal
hit rate in the CDC after the drift time is considered. The right side shows the signal
CDC acceptance, as defined in the text, as a function of the fiducial time window.

The first two requirements ensure there are enough hits to obtain the needed resolution in

the final tracking fit. The third ensures that there is a good “seed” to initialize the full track

fit.

The signal hit rate is shown in the left plot of Figure 6.14

.

. This distribution has a kink

just after 100 ns, which matches the start time for bound muon decay for the bunch arriving

at t = 0 in Figure 6.10

.

. A second kink kind occurs at 1170 ns, which is the latest creation

time for any signal track. All hits occurring after 1170 ns are due to the drift time. The

plot to the right of Figure 6.14

.

shows the signal acceptance in the CDC, as defined above,

for different fiducial time windows.

6.4.5. Cut Optimization Study

A parameter scan was used to optimize the default values of (tmin, tmax, tW , tD). The scan

used a time resolution of 10 ns was used for the scan in the following allowed regions:

• Upper Time Threshold, tmax ∈ [10 ns, 1170 ns]

• Lower Time Threshold, tmin ∈ [0 ns, (tmax − 10) ns]

• Allowed Drift Time, tD ∈ [0 ns, 530 ns]

• Trigger Coincidence Window, tW = 10 ns
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For each set, fake CTH trigger acceptance, CTHB, the background CDC occupancy, CDCB,

and signal overall signal acceptance for both the CTH trigger and CDC track quality, SIGA,

was determined. A metric, T , is constructed from these values. This metric is inspired

by the statistical significance that is commonly used in optimization problems in particle

physics:

T =
SIGA ∗ SIGA

p

SIGA+CDCB

p

SIGA+CTHB

(6.1)

If left unbounded, the scan determines (120 ns, 1700 ns, 180 ns) as the ideal time window.

While this triples the signal acceptance at relativly low background CDC and CTH cost,

previous studies have shown that there are dangerous, prompt background sources that

occur before 500 ns. Constraining the lower time threshold to be above (500 ns) yields

(500 ns,1170 ns,180 ns) as the optimal set, while constraining it further (700 ns) yields

(700 ns,1170 ns, 180 ns).

These three sets imply that tD = 180 ns the preferred value of tD when tmax = 1170 ns,

which lowers the upper threshold of the CDC time window from 1620 ns to 1350 ns. The

contour plots in Figure 6.14

.

and Figure 6.13

.

support this conclusion. They show that signal

acceptance does not improve much as the upper threshold moves past 1400 ns, while the

background increases rapidly after 1300 ns.

These two new parameter sets are compared to the default set in Table 6.2

.

. This table

shows the resulting background and signal acceptance for the CDC and the CTH, as well as

a name used to refer to the set. While not explored in this study, it is worth noting that

proton beamline at J-PARC is able to scale the bunch intensity down or increase the bunch

spacing to 1755 ns to alleviate the trigger and occupancy rates.

Parameters [ns] Fake Occu. Signal

tmin tmax tD tW CTH CDC CTH CDC Both Sample Name

500 1170 180 10 44.9% 20.9% 14.4% 29.7% 10.5% Improved Signal

700 1170 180 10 30.9% 14.0% 8.8% 22.6% 6.4% Improved Default

450 50 83.1% 25.8% 9.0% 23.5% 6.6% Default

Table 6.2.: The selected parameter sets and their resulting CTH and CDC acceptances. For the CDC,
background acceptance is taken as the background channel occupancy while the signal
acceptance follows the definition in Section 6.4.4

.

.
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Chapter 7.

The CDC Hit Filter

The CDC track reconstruction algorithms are responsible for the final physics measurement

for COMET Phase-I. These algorithms must be able to handle in the COMET’s high-intensity

environment while remaining sensitive to the wide range of signal track shapes accepted

by the CDC. The first stage of reconstruction is designed to filter out as many background

tracks as possible while maintaining a high signal acceptance.

The high CDC occupancy and the stereometry make it very hard to distinguish the

different track shapes in the event. To address this, the filtering algorithm operates at the

hit-level to describe how likely it is that the hit came from a signal track. This reduces

the first stage of track reconstruction to a hit classifier referred to as the CDC Hit Filter

(CDCHF).

The full classifier has three main stages:

1. Local Filtering: Use as many features as possible to build a classifier that selects

signal hits, discussed in Section 7.2

.

2. Shape Recognition: Score all the selected signal hits the previous stage by their

ability to form a signal track with the other selected hits, discussed in Section 7.3

.

3. Track Filtering: Build a new classifier that uses the original features from the first

stage and the score from the second stage to further separate the signal and background

hits, discussing in Section 7.4

.

.

71
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Figure 7.1.: The CDC occupancy distribution and an event display from a high occupancy event.
Both plots share the colour key, denoted in the legend in the occupancy plot to the
left. This legend also provides the average number of hits and occupancy for the
corresponding entries.

7.1. Data Sample Description

The simulated signal tracks are added into the background bunch trains to produce mixed

events. All of the signal tracks pass the CTH trigger and CDC acceptance cuts, as outlined

in Section 6.4

.

. In the event that both background and signal hit the same CDC channel, the

ADC values are summed, the hit timing is set to the minimum time of the two hits, and the

signal label is kept. The same rules are used to sum CTH hits that occur in the same module

within the same 10ns bin. The trigger signal is recalculated for the event after the signal is

added so that both signal and/or background can participate in the four-fold coincidence

pattern. The CTH trigger time is set to the time of the earliest hit of the earliest instance

of the signal pattern. The sample has a total of 8.8 × 1011 POT event, as described in

Section C

.

, which results in 50,000 background bunch-train events for the default intensity

of 1.6 × 107 POT per bunch.

The distribution of signal and background occupancy can be seen in Figure 7.1a

.

. The

two distinct peaks in the signal distribution correspond to the first turn and second turns

through the CDC. The long tail is from events where the signal track circles through the

CDC many times. On average, there are 83 channels hit by a signal track per event. The
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background occupancy follows a Gaussian distribution with a mean of 1134 channel hits

and a standard deviation of 104 hits. The event display in Figure 7.1b

.

provides a more

intuitive look at these occupancy levels. This event shows a signal turn electron track in an

event with 1278 background hits, meaning this event is 1.5 σ above the mean background

occupancy values. Of these background hits, 40.6% comes from protons, 24.0% comes

from electrons, 17.8% comes from neutrons, and the remaining 17.6% comes from pions,

muons and all other radiation. The event displayed here will be used to demonstrate to the

functionality of the CDCHF.

7.2. Local and Neighbouring Classification

The first stage of the CDCHF uses machine learning to classify each hit using all the features

that can be defined without considering the full context of the hit in the event. This step is

inspired by more traditional hit filter which typically places a lower and/or upper threshold

on each feature, or perhaps a series of 2D cuts on the 2D projections of the feature space.

7.2.1. Feature Space

The lowest level features are referred to as the “local-level” features. These features describe

each hit in isolation using:

• the magnitude of the ADC value of the hit, q, and

• the radial distance of the hit’s channel from the centre of the CDC, |x|.

• the delay between the recorded time of the hit and the trigger signal in the event, tR.

While easily defined, local-level features fail to consider the hits as a part of a larger

hit pattern. To this end, the “neighbour” features consider the properties of the properties

of hits on neighbouring channels. These features capture the fact that signal hits in this

plot are almost always flanked by other signal hits in the same layer, as is apparent in

Figure 7.1b

.

. This defines the neighbour features as:

• the magnitude of the ADC value of any hits on the neighbouring channels, q(L) and

q(R), and

• the relative time, tR, of any hits on the neighbouring channels, t(L)R , and t(R)R .
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Figure 7.2.: The signal and background hit charge deposition distribution and corresponding ROC
curve. To highlight the separation of the two samples, the distributions are normalized
and that the x-axis is displayed on a logarithmic scale. While the detector response
yields ADC values in units of e, this plot scales these values by assuming a linear signal
amplification in the CDC gas, as discussed in Section 3.2.3

.

.

Local Features

Signal electron tracks deposit far less charge on the CDC channels than most of the back-

ground tracks, as seen in the left plot in Figure 7.2

.

. The original hit filter for the CDC

placed an upper threshold on this distribution to remove background hits. The 1D cut is

taken as a baseline for the filtering performance. The signal hit efficiency and background

hit rejection for all possible cuts on this feature are summarized in the ROC curve to the

right in Figure 7.2

.

. This curve plots the background rejection and signal acceptance of all

possible cuts on the distribution to the left. This type of plot will be used throughout this

work to judge classification performance.

The “relative hit time” feature, tR, is defined as the delay between the earliest hit in

the earliest CTH trigger pattern in the event, tT , and the detected time of the hit, tD,

as tR = tH − tT . The distributions of this feature is seen in the left plot in Figure 7.3

.

.

The limits of this new feature are determined by the fiducial time window parameters

as [tmin − tmax, tmax − tmin + tD] = [−470 ns, 920 ns]. If a signal track causes the CTH

trigger, the timing of the signal hits will closely follow the drift time distribution, while

the background hits timing will form a delayed peak from the accepted hits from the next

bunch. With that said, only 38% of the earliest trigger signals in the mixed events contain

signal hits for the default time window parameters. The fake triggers cause the smaller
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Figure 7.3.: The hit timing and radial distributions for signal and background particles. The timing
distribution is taken relative to the time of the earliest CTH trigger signal in the event.
The radial distribution is naturally binned to the number of layers in the CDC.

background peak at t = 0 seen in the plot and smears the signal hit distribution away from

the drift time distribution.

The radial position distribution seen to the right in Figure 7.3

.

highlights that the CDC is

designed to accept the full arc of the signal tracks, such that there are few signal hits in

outer most layers. The flat background distribution is the result of two competing effects.

The inner layers always get hit by tracks that enter from within the CDC cavity, meaning

they get hit more often. The outer layers have more channels overall, meaning they can

accommodate more summed CDC hits per event.

Neighbour Features

The local features of any hits on the neighbouring channels of a hit are defined as the

“neighbour” features of the hit. For clarity, the hit-to-be-classified is referred to as the

“labelled” hit and the hits on the channels anti-clockwise and clockwise to the labelled hit

are referred to as the left and right neighbours, respectively.

When the labelled hit has no neighbouring hit, its neighbour features are set to a default

“zero-bin” value. This value must fall outside the distribution of the corresponding local

feature so that empty neighbour channels are not confused with ones that have a hit. For

charge deposition, the zero-bin value is naturally defined as zero. For relative timing, its

defined to be just outside the local-level distribution, i.e. less than tmin − tmax.
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Figure 7.4.: The relative timing of the hits to the left of the labelled hit. The right plot highlights
the dominant zero bin, which denotes an empty channel to the left of the labelled hit,
while the right shows the distribution in all other bins.

The distribution for t(L)R is plotted Figure 7.4

.

. For the default window, the zero-bin

for this feature is set to −500 ns. The plot to the left shows how this bin dominates the

distribution. The zero-bin contents determine that background hits are around three times

more likely to have no left-neighbouring hit than signal hits. The plot to the right highlights

that the signal hits in the remaining distribution are easier to separate than in the local tR

feature. Given the symmetry of the CDC, the plots for the right-neighbour detected time

indistinguishable from these plots. The neighbour charge plots have the same zero-bin

values and a similarly improved distribution in the remaining bins.

In summary, the two feature groups are formally defined below. Note that the Neighbour-

Level Feature set is defined to include all features in the Local-Level Feature set.

• Local-Level Features: (q, tR, |x|).

• Neighbour-Level Features: (q, q(L), q(R), tR, t(R)R , t(L)R |x|).

7.2.2. Classification Performance

As a first step in the hit filter, a Gradient Boosted Decision Tree (GBDT) was trained on these

features to classify the signal hit points. The full algorithm was developed in PYTHON, with

extensive use of the SCIPY, PANDAS, and NUMPY libraries [63

.

, 64

.

]. The early implementations

used the GradientBoostingClassifier from the SCIKIT-LEARN library, which in general
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Figure 7.5.: The normalised classification output distribution of the Local GBDT and Neighbour
GBDT.

is a great for library for algorithm development [65

.

]. The final implementation uses the

XGBClassifier from the XGBOOST library, which offers parallelization and GPU support

for both training and predicting [66

.

].

The “Local GBDT” was trained using the local-level features, while the “Neighbour

GBDT” was trained using the neighbour-level feature set. The default settings of the

XGBClassifier were used, since no significant gains were found by adjusting its hyper-

parameters. As such, each GBDTs are composed of 100 trees where each tree is grown to a

maximum depth of 3 layers.

12,500 training events were used for this stage, although previous results from smaller

sample sizes suggest that similar performance could be obtained from as few as 2,500

events. The same number of events were used to test the classifiers. To match the definition

of an accepted signal track in Section 6.4.4

.

, the signal hits in the first three layers are

weighted as ten times more important than the other hits. This penalizes the classifier ten

times more for misclassifying a signal hit from the first three layers than misclassifying any

other type of hit.

The output distribution of the classifiers shown in Figure 7.5

.

clearly show that the

Neighbour GBDT significantly outperforms the Local GBDT. The output of the Local GBDT,

ŷLCL, has several distinct peaks in the signal distribution. The best-separated peak around

0.8 is formed exclusively from the signal hits in the first three layers that do not have any

coincident background hits. The most poorly separated signal peak between 0 to 0.2 is
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(a) The output of the Local GBDT, ŷLCL. (b) The output of the Neighbour GBDT, ŷNGH.

Figure 7.6.: The output of the Local and Neighbour GBDTs, ŷLCL and ŷNGH, for each hit in the sample
event. As in Figure 7.1b

.

, the signal hits are colored in pink, while the background hits
are blue. The size of the hit is scaled to the output of the corresponding GBDT output,
with a full circle denoting a signal-like hit.

formed from signals hits get washed out by an earlier coincident background hit. The signal

hits from 0.2 to 0.6 represent all other scenarios. While the Neighbour GBDT also features

several peaks, the higher dimensionality of the input features makes the peaks harder to

interpret. With that said, the peak from 0.7 to 1 contains the majority of signal hits from

the first three layers. The ROC curves for these distributions are compared later to the

performance of the full CDCHF in Figure 7.15

.

.

To help visualize the performance of these GBDTs, the size of each hit in sample event in

Figure 7.6

.

is scaled by its output from the corresponding GBDT. The visualized ŷLCL scores

in Figure 7.6a

.

demonstrates a significant reduction in the CDC background occupancy.

Unfortunately, some of the signal hits in the outer most layer are lost, while many isolated

background hits dot the CDC channels. Figure 7.6b

.

shows that using the ŷNGH score

alleviates these issues, but that there is still room for improvement.

7.3. The Reweighted Circular Hough Transform

The next stage of the CDCHF uses a circular Hough transform to take advantage of the

dominant signal track pattern highlighted by the ŷNGH score Figure 7.6b

.

. Building on the
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introduction in Section 5.2.3

.

, this transform for the CDC is introduced in its scalar form as:

H
�

ai,x j

�

= F(|ai − x j|) for i ∈ [0, M − 1], j ∈ [0, N − 1] (7.1)

where x j denotes the 2D position of the j-th channel in the readout projection and ai

denotes the 2D position of the i-th point in the the discretised “Hough-space” in the same

projection. Each ai point is defined as the centre of a signal-like circle formed by some of

the CDC channels. The radial symmetry of the transform means that H can be defined by a

function F over a single, scalar argument. Defining the matrix Ri j ≡ |ai − x j|, an equivalent

matrix form is defined as:

Ti j ≡ F
�

Ri j

�

for i ∈ [0, M − 1], j ∈ [0, N − 1] (7.2)

This stage of the CDCHF breaks down into three steps. First, it transforms the hits

into Hough-space to detect all the circular hit patterns in the event. Second, it uses the

Hough-space information to identify the strongest hit pattern. Third, it determines which

hits in the CDC are responsible for this pattern. This can be formalized by both matrix and

scalar equations:

Scalar Equations Matrix Equations

Forward Transform ci =
N−1
∑

j=0

F(|ai − x j|) ·w j c= Tw (7.3)

Track Selection ci
′ = G(c)i c′ = G(c) (7.4)

Inverse Transform w j
′ =

M−1
∑

i=0

F−1(|ai − x j|) · ci
′ w′ = T−1c′ (7.5)

where ci describes the any circular hit pattern centred around ai and w j weights the

contribution from channel j to all ci values. The function G uses all ci values in c to reward

the best circular patterns in the event with higher scores, which are returned in the c′ vector.

Finally, the inverse transform uses c′ to create a new weight w j
′ that weights the hit at x j

by its agreement with the best patterns in the event. The w′ vector is used in the last stage

of the CDCHF algorithm.
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7.3.1. The Forward and Inverse Hough Transform

The input for the forward Hough transform H is a collection of hits in the CDC, as described

by the w vector. As highlighted in equation (7.3

.

), this vector controls how much the j-th

channel contributes to the Hough-space scores in the c vector. Consider the case where w is

perfectly weighted such that w j = 1 if there is a signal hit on channel j and zero otherwise.

The forward Hough transform H calculates a “score vector” c according to equation (7.3

.

)

to identify the any circular signal-track hit patterns. If w is perfectly weighted, the ci element

describes the sum of F evaluated between the track-centre ai and the signal hits in the

event. To identify the true track centre at ai with the maximal ci value, F
�

|ai − x j|
�

should

peak when |ai − x j| is equal to radius of the circular pattern in the event.

Next, the function G reweights the track centre scores in c values so that only the best

values survive in the new c′ vector, as defined in equation (7.4

.

). Now consider the case

where the output of G is perfect, but the CDC hits are not labelled. This corresponds to a c′

with ci
′ = 1 if the true-track centre is at ai, and zero otherwise.

The inverse transform H−1 is designed to use c′ and F−1 to determine which hits form a

circular pattern around the true track-centre. This means F−1(|x j − ai|) should peak when

the distance between a hit at x j and the true track-centre at ai is the equal to the radius

signal-track pattern in the event. If c′ is perfectly weighted, equation (7.5

.

) defines w j
′ as

F−1 evaluated between the true track-centre and the hit on the j-th CDC channel.

This highlights the symmetry of the circular Hough transform, where both F
�

|ai − x j|
�

and F−1
�

|ai − x j|
�

should both peak when |ai − x j| is equal to the signal radius. So long as

w and c′ approximate these “perfectly weighting” cases, F and F−1 can be approximated by

the same transformation. This significantly reduces the parameter space and removes the

need to approximate the left-inverse of T . The inverse equation and its matrix are then:

Scalar Equations Matrix Equations

w j
′ =

M−1
∑

i=0

F(|ai − x j|) · ci
′ w′ = T T c′ (7.6)

7.3.2. The Hough Transform In 1D

The function F must accommodate the the radii of signal tracks in all events, denoted as

R(S). The first iteration of the CDCHF fit F
�

|ai − x j|
�

directly the R(S) distribution. This
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defines F to reward a
�

ai,x j

	

pair by the relative frequency of |ai − x j| in R(S). This fit

determined the functional for of F
�

|ai − x j|
�

as:

F(|ai − x j|)≡

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

γi exp

 
�

|ai − x j| − rpeak

�2

2σr
2

!

+ κ1 : rmin ≤ |ai − x j|< rpeak

γi

�

1+ κ1 −
|ai − x j| − rpeak

rmax − rpeak + κ2

�

: rpeak < |ai − x j| ≤ rmax

0 : else

(7.7)

γi =
1

λ+
∑N−1

j=0 F(|ai − x j|)
(7.8)

This form is determined emperically. Between rmin and rpeak, F is a Gaussian curve with a

width of σr an a peak at rpeak. The whole curve is raised by the constant κ1, which is fixed

at κ1 = 0.05. This parameter lets σr focus on modelling the shape of the rising edge of

R(S) as it approaches rpeak instead of the long tail of R(S). After rpeak, the function drops off

linearly until it reaches zero at rmax. The parameter κ2 allows rpeak to equal rmax without

risking a divide-by-zero error. Its value is fixed at κ2 = 0.1 cm, which has a negligible affect

for typical rmax and rpeak values. The factor γi normalizes all ci by their maximum possible

values. This is normalization is controlled by λ, which is discussed later in Section 7.3.4

.

,

and is only important full 2D transform.

The optimal parameters values were determined by a parameter scan that randomly

sampled the (rmin, rpeak, rmax) between [25 cm, 37 cm] and σr between [0.1 cm, 4.1cm] at

a resolution of 10 mm. These values were blindly selected on the basis of the resulting

performance of the full CDCHF. The optimal values are determined as:

�

rmin, rpeak, rmax,σr

�

= (28 cm,33.5 cm, 35 cm,1 cm) (7.9)

The top plot of Figure 7.7

.

shows that the optimal parameters for F are displaced from

the R(S) distribution by 2.5 cm. The middle plot shows that this causes the distribution of

the c values to “miss” the true track centres at |ai − x j| = 0. The bottom applies the inverse

hough transform to the c′ values to recover the w′ distribution. The w′ distribution agrees

well with the original R(S) distribution, such that the initial 2.5 cm disagreement cancels

out.
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Motivating the Hough Transformation using Signal Track Radii
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Figure 7.7.: The Circular Hough Transform in one dimension. The top plot compares the shape
of the R(S) in pink to F in purple. The middle applies the forward transform to R(S)

and shows the distribution of c values in orange, where the purple line shows the
contributions from the peak of the R(S). The last plot shows the values of c′ in blue and
compares the the resulting w′ distribution in purple to the original R(S) distribution.
Note that all the distributions are normalized to unit height.

Noting that the R(S) is not provided to the CDCHF algorithm directly, this agreement is

an excellent cross-check for the Hough transform stage. It demonstrates that of the 2,000

randomly selected parameter sets for F , the CDCHF performs best with a (rmin, rpeak, rmax,σr)
set that is able to map R(S) back on to itself. This implies that the algorithm is able to

recover R(S) implicitly from the CDC hit positions from the mixed background and signal

events and use this information to better improve its classification abilities.

With this said, the functions F and G are defined such that any overall shift of the radial

parameters (rmin, rpeak, rmax) will always cancel out. To prove this, define the unshifted

parameters that would fit F to R(S) perfectly as (r(S)min, r(S)peak, r(S)max). Denote theses parameters

explicitly as arguments of F and define d to describe a uniform shift. The function F admits:

F
�

r(S)min + d, r(S)peak + d, r(S)max + d, |ai − x j|
�

= F
�

r(S)min, r(S)peak, r(S)max, |ai − x j| − d
�

(7.10)
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Figure 7.8.: The CDC signal hit and Hough space distributions in 2D and their normalized radial
projections. The left plot shows all CDC channels

�

x j

	

and all track-centres
�

ai

	

. The
size of the pink dots denotes the 2D distribution of signal hits in all events. The size
of the orange dots denotes the distribution of all ci values from signal hits using F as
defined by equation (7.9

.

). The right plot shows the average values in the corresponding
layers. The bottom of the left plot highlights how the limits of ai are defined.

such that shifting the parameters of F by d is the same as shifting the argument by −d. The

peak selected by G is shifted to −d, after which F is reapplied to recover a w′ distribution

that peaks at
��

r(S)peak − d
�

+ d = r(S)peak

�

. To answer why d = 2.5 cm is preferable to d = 0,

the 2D discretised Hough space must be defined.

7.3.3. The 2D Discretised Hough Space

The symmetry of the CDC causes all ai track centres to lay between two radial limits, amax

and amin such that:

amin ≤
�

�ai

�

�≤ amax ∀i ∈ [0, M − 1] (7.11)

The ai points are defined to have 20 radial layers and 80 points in the inner-most layer. The

rest of the layers are given enough points to match the angular resolution of the first layer.

The optimal limits are determined to be [18 cm,35 cm], as outlined in the next section.

The distribution of signal hits across x j and their contributions to ci at each ai are

visualized to the left in Figure 7.8

.

. This plot scales each pink point by the fraction of signal
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hits in the corresponding CDC channel in all events to the total number of signal hits in all

events. This fraction is denoted as w̄ j. The w̄ j distribution is transformed into Hough-space

using F as determined from the parameter scan. The resulting ci values, denoted c̄i, are

mapped onto their corresponding ai points. Since the w̄ j and c̄i distributions are radially

symmetric, the right plot in Figure 7.8

.

shows the same information as the left plot by taking

the average values by layer. Note that the normalization imposed by γi scales the ci values

to be the same order of magnitude as w̄ j.

The bottom axis on the left plot in Figure 7.8

.

denotes the radial limits of the CDC

channels as
�

xmin, xmax

�

, the Muon Stopping Target radius as rMST, and plots the four ρ

parameters. The ρ parameters are useful when discussing the amin and amax limits. They

are defined as:

ρ0 ≡ xmax − amax ρ1 ≡ amax − rMST ρ2 ≡ xmin − amin ρ3 ≡ amin + rMST

Determining the amin and amax Limits

The limits of the Hough space limits can be defined by the fact that signal tracks must

originate from the Muon Stopping Target and hit the CDC. In this case, amin is centre of a

track that starts at
�

−rMST

�

, loops inwards towards xmax, but only has enough p⊥ to reach

xmin. The B field in the CDC constrains all signal hits to occur within xmax such that amax

corresponds to the centre of a track that starts at rMST, loops outwards towards xmax, and

has enough p⊥ to reach xmax. “These geometrical“ considerations define ρ0 ≡ ρ1 and

ρ2 ≡ ρ3.

The limits can also be defined by requiring that F best describes all possible signal

radii. This means F must be able to reach all the CDC channels, which means amin and

amax should be xmin and xmax shifted by the maximum possible signal radius, rmax. These

“functional” considerations defines ρ0 ≡ ρ2. Since rMST is not considered, no relations are

implied for ρ1 and ρ3.

The values for (rMST, xmin, xmax) are (10 cm,53 cm,80 cm). Taking rmax = 35 cm as in

the parameter scan, these two sets of definitions can be formalized and evaluated:

Geometrical Limits Functional Limits

a(G)min ≡
xmin − rMST

2
= 21.5 cm a(F)min ≡ xmin − rmax = 18 cm (7.12)

a(G)max ≡
xmax + rMST

2
= 45 cm a(F)max ≡ xmax − rmax = 45 cm (7.13)
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The key difference between the two cases is that the first assumes that the maximal p⊥
is defined by distance between xmax and the

�

+rMST

�

, while the second implicitly defines
�

+rMST = xmax − 2rmax

�

by assuming that rmax is needed to reach xmax.

Evaluating the Parameter Scan

The functional limits (a(F)min, a(F)max) were used during the previously mentioned parameter

scan used to optimize F . This gave the algorithm as much freedom as possible when

exploring this parameter space to find the optimal F and ai definitions.

Its encouraging that the optimal parameter set found a(F)max = a(G)max. This implies the

CDCHF worked best when ρ0 = ρ1, such that it was able to recover information about the

target geometry without forcing this relationship. Given that R(S) has a maximum value of

r(S)max = 32.5 cm, this also explains the 2.5 cm as the difference between a(G)max − rMST = ρ1

and r(S)max.

The selected value of a(F)min means that the inner three Hough layers are less than the a(G)min

value implied by the geometry. While technically non-zero, the c̄i values on the innermost

layer are two orders of magnitude less than the next layer up. This is because F is non-zero

for one or two x j for each ai position in the innermost layer, which can hardly be called

a circular pattern. The next two layers have a substantial c̄i values. Taken together, the

optimal definition for amin may lie somewhere between a(G)min and a(F)min. With that said, the

inner a layers have minimal impact on the relevant w′ values, especially given the track

quality cuts require at least 5 layers to be hit by the signal track.

7.3.4. Track Candidate Selection in Hough Space

The final element of the full Hough transform G breaks down into three steps, which defined

in terms of the full Hough transform stage:

Forward Transform ci = Ti jw j

Candidate Filter c(1)i =
ci

cmax

·H
�

ci − cLT

�

(7.14)

Local Sharpening c(2)i =
exp

�

αc(1)i

�

Γi
, Γ =

∑

k∈Si

exp
�

αc(1)k

�

�

�Si

�

�

(7.15)

Maximum Selection ci
′ = exp

�

β c(2)i

�

(7.16)

Inverse Transform w j
′ =

�

Ti j

�T
ci
′
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Figure 7.9.: The reweighting steps in Hough-space visualized in 3D. The x-y axes map to (a, b)
respectively, while the z and colour axes are used to demonstrate the reweighting
of ci. The colour axis is normalized to the maximum in the plot, while the z axis is
normalized to the maximum across all three plots. The left most plot shows the initial
ci values from the sample event. To better demonstrate the exponential weighting, cLT

is set to zero in equation (7.14

.

). The second plot shows the values c(2)i values and the
third plot shows the ci

′ values.

The first step of the track selection defined by equation (7.14

.

) uses a Heaviside step function

to remove all ci values below a lower threshold, defined by the cLT parameter. The remaining

values are normalized by cmax, which is the maximum ci value found in the training sample,

such that the returned c(1)i value is between [0, 1]. In practice, cLT is reparametrised as the

minimum percentile of accepted ci values, cM P = cLT/cmax.

The second step aims to select and reward local maxima to allow for multiple peaks in

Hough space in a given event. This stage defines the set Si to describe the points ak|k ∈ Si

as the nearest neighbours to ai. For the central layers, this set is the 8 points surrounding ai.

For the inner and outer layers, this set has 5 elements. Denoting the cardinality of the set

as |Si|, equation (7.15

.

) multiplies all c(1)i by a new parameter α, exponentiates the product,

and normalizes this exponential at each ai by its sum across the neighbours defined by

|Si|. This results in a new score c(2)i . In short, this punishes c(1)i values that have a larger

neighbouring value. In the limit (α→∞), this sets the c(2)i to one if it is the maximum in

Si and to zero otherwise. The effects of this local sharpening can be seen by comparing the

first two plots in Figure 7.9

.

.

The third step multiplies the c(2)i by a final parameter β and exponentiates the product

to determine ci
′. This can be thought of as an “inverse-log” scaling, such that separations

between c(2)i values on a linear space are magnified to separate the ci
′ by orders of magnitude.

The strength of this magnification is parametrised by β . This process kills all non-peak

values in c(2)i while allowing an arbitrary number of competing peak values to survive.
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(a) The forward Hough Transform (b) The inverse Hough transform

Figure 7.10.: The forward and inverse Hough transform event displays. Figure 7.10a

.

scales each
the point on each CDC channel by the Neighbour GBDT output, w j = ŷNGH. The pink
and blue colouring denotes signal and background, respectively. The forward Hough
transform for each hit is visualized using the purple circles, where the transparency
of the circle scales with w j . The orange dots in the left plot are scaled by the ci scores
and by ci

′ in the right plot, meaning they can be matched to the peaks shown in
Figure 7.9

.

. The right plot shows the inverse transform are plotted as purples circles,
where the transparency scales with ci

′. Likewise, the dots on the CDC channels are
scaled by w j

′.

Multiple peaks are very common in the CDC due to the dual stereo projections, making

this a valuable trait.

Together with λ, defined in equation (7.8

.

), the Hough-space reweighting parameters

are (α,β , cM P ,λ). These values were included in the blind parameter scan. The full 8D set

of selected values is:

�

rmin, rpeak, rmax,σr

�

= (28 cm,33.5 cm, 35 cm,1 cm) (7.17)
�

α,β , cM P ,λ
�

= (1.1,20, 0.966,5) (7.18)

The scan chose a much higher value of β than α, implying that the local sharpening stage

is not as important as the maximum selection stage.
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Figure 7.11.: The signal and background inverse hough transform output, w j
′, scores and the

resulting ROC curve. This distribution is plotted against log(w j
′) scale.

7.3.5. The Track-Level Feature

The forward and inverse Hough transform are displayed for the sample event in Figure 7.10

.

.

These plots highlight the simplicity of the central concepts of the transformation. Setting

w j = ŷNGH allows the most signal-like hits to determine the highest ci score. The true

signal-hits in pink with high w j form a circular hit pattern, while the scatted background

hits with a high w j in blue value do not. This suppresses ci scores from the background

hits in the ci
′ vector, as seen by the orange dots in both plots. This suppression is also seen

in Figure 7.9

.

, which described the same event.

The distribution of the new w j
′ feature is compared for signal and background hits in

the left plot in Figure 7.11

.

. The selected β = 20 value returns very high scores for w j
′,

so this distribution is shown against log(w j
′). Moving from right to left, this distribution

demonstrates a smooth signal curve that is well separated from most of the background.

The portion of background that overlaps the signal corresponds to the background hits that

flank the signal hits such that they are rewarded for agreeing with the signal track shape.
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Figure 7.12.: The signal and background distribution for the CDCHF output, ŷTRK, and occupancy
of all events. The weighted occupancy is defined by the sum of the ŷTRK scores by
event divided by the total number of CDC channels, i.e. 4482.

7.4. The CDC Hit Filter GBDT

Each hit can now be described by three local features, four neighbouring features, and

the inverse Hough output score w j
′. Together, these eight features define the Track-Level

feature set, which is used to train the Tracking GBDT, which defines the output of the

CDCHF. The output scores of this GBDT, ŷTRK, can be seen in left plot in Figure 7.12

.

. The

right plot shows the distribution of the signal and background ŷTRK scores summed by

event. Dividing this sum by the number of channels defines the “weighted occupancy” of

the event. Comparing this plot to the true occupancy plot in Figure 7.1a

.

illustrates that the

CDCHF is able to reduce significantly reduce the number of background hits in all events,

although the tail demonstrates that there are some events that maintain high background

levels.

7.4.1. Event Displays

The results of this classification are displayed for the sample event in Figure 7.13

.

. The left

plot scales each hit by its ŷTRK values. The ŷTRK scores for most of the background hits are

too low to show up on this plot, but there is a small cluster in the first layer that can still be

seen. The right plot sets a lower threshold of k on ŷTRK such that all hits with ŷTRK > k are

labelled as signal hits. The cut value k is taken such that 85% of signal hits survive the cut.
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(a) CDCHF output (b) CDCHF output after threshold cut

Figure 7.13.: The output of the CDCHF for each hit in the sample event, where the signal hits are
pink and the background hits are blue. The left plot scales the size the hit by its
CDCHF output, ŷTRK. The right shows the output of the GBDT after a lower threshold
is used to remove all hits where ŷTRK < k. The hits that pass this threshold have filled
circles while those that do not have empty circles

7.4.2. Feature Evaluation

Three metrics can be used to summarize the relative importance of each feature in the

GBDT:

• Gain: the improvement in separation when a feature is used to split a node.

• Coverage: the number of samples affected by the feature.

• Weight: the number of times a feature was used to split a node in the GBDT forest.

The plot to the left of Figure 7.14

.

shows these metrics for each feature in the CDCHF. Each

metric normalized to their maximum across all features so that they can share a common

axis. Unsurprisingly, w j
′ is the most important feature by all three metrics.

After w j
′, the weight determines the local feature group as more important than the

neighbour feature group. This means the track-level feature incorporates all the needed

shape information for signal hit patterns, which reduces the utility of checking for any

neighbour-level patterns. The gain and coverage tell a different story, ranking q, t(R)R and

|x| as the most important features after w j
′. While it is not immediately obvious why t(R)R
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Figure 7.14.: The feature correlation matrix and evaluation metrics. The left plot shows the gain,
coverage, and weight of each feature used in the CDC Track Filter. Each metric is
normalized to its maximum value across all features. These metrics themselves are
defined in the text. The right plot shows the correlations between all features and
GBDT scores.

is preferred to tR, it can be noted that this group contains one charge feature, one time

feature, and the radial feature. This highlights the importance of all three fundamental

features of the hit and implies that each one brings valuable information when classifying

the hit.

Along similar lines, the right plot in Figure 7.14

.

shows the feature and score correlations.

This plot considers the logarithm of w j
′ to move it back to a linear scale so that it can be

compared with the other features. The strong negative correlation between |x| and ŷLCL

implies local-level classifier prefers to keep any hits in the inner layers, which highlights the

effects of weighting the signal hits in the first three layers as ten times more important than

the other hits. As more features are included in the classifier, the Neighbour and CDCHF

scores show that this correlation is controlled.

7.4.3. Performance Evaluation

The CDCHF introduces machine learning to that are novel to tracking to significantly reduce

the background occupancy of the CDC events. In doing so, it aims to complement the more

traditional track reconstruction techniques that work well for a limited number of hits, but

do not scale well in high occupancy environments.
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Figure 7.15.: The final output ROC curves for the baseline ADC classifier, Local GBDT, Neighbour
GBDT, and CDCHF. The left plot measures the performance of the algorithms in terms
of their ability to classify signal and background hits. For each implied cut on the
left ROC curve, the right ROC curve plots the fraction of signal events that still pass
the CDC quality cuts to the average number of background hits that remain in these
accepted events.

The main strength of this approach is its ability to filter hits by simultaneously consider

their features, their immediate neighbours, and their agreement with track-level patterns.

This is best demonstrated by the ROC curves in Figure 7.15

.

. The left plot shows the

performance of the algorithm at the hit level. Given that this is simulated data, these curves

are likely an optimistic estimate of a similar algorithm’s performance on data. With that

said, they clearly demonstrate that hit filtering improves as more features are considered.

This inspires the strongest conclusions from this study: using more features to filter hits

results in better performance. This conclusion should extend to real data.

This algorithm can also be treated as a track-finding algorithm instead of the hit filtering

stage of a larger algorithm. To do so, all hits in an event that pass the ŷTRK threshold cut

k define the signal track, while the rest are removed. Figure 7.15

.

compares the number

of signal tracks that still pass the quality cut for a given k value to the average number of

background hits remaining in the accepted events. The left region of the plot corresponds

to high purity cuts, while the right region corresponds to high signal acceptance.

These curves determine the CDCHF as the best track finding algorithm of the four

considered. Note that the baseline ADC-cut classifier cannot be seen on this axis scale.

Sampling this curve, cuts on this GBDT would allow for the signal track acceptance and
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background hit acceptance to be (90%, 17 hits), (95%, 28 hits), or (99%, 100 hits). If this

were truly the only step in track finding, a higher purity is preferred. With that said, most

track fitting methods incorporate some outlier detection abilities, which means a higher

acceptance cut could be used.

Its worth noting that the Neighbour GBDT dips below the Local GBDT in the high

acceptance region. This dip is caused by the track quality cuts, where the minimum layer

requirement prefers tracks that enter the CDC in a perpendicular direction to the inner

CDC wall. These tracks leave isolated signal hits in the inner layers and long chains of

signal hits in the outer layers. The Neighbour GBDT is trained to identify isolated hits as

background, which means it struggles to satisfy the track quality cut that requires signal

hits in the first three layers. The ten-fold reweighting of signal hits in the first three layers

aims corrects for this somewhat, but not completely.

7.4.4. Hardware and Computation Timing Metrics

As a final note, the timing metrics for this algorithm are discussed. The full algorithm

requires the Neighbour GBDT, the inverse reweighted Hough transform, and the final

Tracking GBDT. The Neighbour GBDT and Track GBDT are run on an NVIDIA Titan Xp GPU

and respectively take 153 µs and 181 µs per event. The transform stage runs on an AMD

1920X and takes 1.8 ms per event, although would most likely run an order of magnitude

faster on a GPU. Together, each event takes 2.13 ms per event so that the algorithm runs

processes 468 events per second.
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Chapter 8.

Online CDC Hit Filtering for the Track

Trigger

The CDC will implement a tracking-trigger to complement the CTH trigger. The CDC trigger

must operate within the bunch time window of 1170 ns, or equivalently at a rate of around

850 kHz. This chapter outlines how concepts from the CDC Hit Filter can be adapted to an

online environment to form a new algorithm called the Online CDC Hit Filter (OCDCHF).

This filter can serve as the first level of the full CDC track-trigger.

8.1. The Trigger Environment

While not finalized, the DAQ systems are aiming to accommodate an overall trigger rate

of around 30 kHz, which roughly means a fake trigger rate of 30 kHz/850 kHz ≈ 0.035,

or 3.5% of events. For the default timing window and a loose cut on the scintillator ADC

values, the CTH triggers on 30%–80% of background events, as seen in Figure 6.12

.

. This

means the CDC track-trigger must be able to reject between 88% and 96% of the fake

trigger accepted by the CTH to achieve the overall 3.5% fake trigger rate.

To form a trigger decision, the CDC data flows through several levels of electronics. The

first level is the CDC data acquisition system which is made up of 104 “RECBE” boards [67

.

].
Each board is wired to an average of 43 channels. These boards convert the analogue pulses

from the drift chamber wires to digital signals to determine the ADC values of the hits. To

meet the rate requirement of the trigger, the RECBE boards reduce the ADC resolution

before passing it to the dedicated trigger electronics.
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The first level of the dedicated trigger electronics is made from 10–20 “COTTRI” boards,

where the precise number has yet to be determined. This level processes the low-level

ADC information to produce the higher-level data needed for the CDC trigger. This data is

transferred to the master trigger board, which provides the overall CDC trigger decision.

8.2. Bonsai Boosted Decision Tree

Borrowing from the offline version, the OCDCHF considers the integrated ADC value of

each hit, q, and the integrated ADC value on its left and right neighbours, q(L) and q(R) to

classify each hit as signal or background. To satisfy the data rate requirements, the trigger

system considers these values at a significantly reduced resolution. This can be leveraged

to create a light-weight version of a GBDT called a Bonsai Boosted Decision Trees (BBDT).

The BBDT classifier was originally developed for the LHCb trigger [68

.

], although similar

algorithms are found in most of the popular gradient boosting libraries. This method starts

by reducing the resolution of the ADC values by histogramming them into nb bins. Each hit

is described by the three bin indexes (b, bL, bR) that correspond to its original (q, q(L), q(R))
values. This contains the the feature space of all possible hits to (Nb ≡ nb× nb× nb) possible

bin index combinations.

Next, a GBDT is trained over the (b, bL, bR) features and its output for each of the

possible Nb bin index combinations cached in a lookup table. This lookup table defines

the BBDT classifier, such that new hits can be classified by using their (b, bL, bR) values to

fetch the cached output from the BBDT lookup table. This procedure works well on FPGAs,

which often implement lookup tables to describe complex functions.

By binning the features, the BBDT may lose some performance compared to a GBDT

trained over unbinned features. This performance loss will shrink as nb grows, but the

size of the lookup table grows as n3
b. The goal is to select an nb that minimizes both the

performance loss and size of the lookup table.

8.3. Parallelizing the Classification

Naively, any CDC trigger algorithm must analyse all 4,482 channels to reach a decision.

The problem can be parallelized for the BBDT since each channel only needs information

about its immediate neighbours to be classified. Implementing the BBDT lookup tables on

the RECBE boards would by breaking each event into 104 pieces, resulting in an overall
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Figure 8.1.: The hit distribution across the RECBE boards, accompanied by an event display of the
RECBE wire grouping. The left plot shows the number of signal and background hits
in each RECBE board, where the x-axis denotes the board ID. The right plot grouping
wires by RECBE boards ID in a section of the CDC, and overlays the corresponding
board ID.

speed-up of around two orders of magnitude. Similarly, implementing the BBDT on the on

the COTTRI FE boards would provide a factor 10–20 speed up.

Parallelizing on the RECBEs also offers another feature to the classifier: the “board

ID” of the RECBE board, BID, which enumerates the RECBEs from 0 to 103. The board

IDs provide some positional information since channels readout by the same board are

naturally close to each other in (x , y), as demonstrated in the right-side plot Figure 8.1

.

. If

the BBDTs are implemented on the RECBE boards, this feature is “free” in the sense it does

not increase the size of the lookup table on each RECBE board. Instead, each implemented

BBDT would be trained to classify the wires on the corresponding board such that each

BBDT would be unique.

The left side plot in Figure 8.1

.

shows that some separation can be achieved using the

board ID. This distribution captures the radial distribution of signal and background hits

reduced to 6 bins. There is also a notable variation within each bin for the background

distribution, implying a slight angular asymmetry in the background distribution. This

mirrors the asymmetric stopped muon profile, seen previous in Section 6.2

.

, Figure 6.4

.

.
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Figure 8.2.: The ADC distributions of the hits, shown in the left column, and their left neighbours,
shown in the right column, for different binning schemes. The ADC values are left in
the unscaled units of e returned by the detector simulation. The top row represents the
unbinned feature distribution, although the histogram in the plot itself has 27 = 128
bins. The vertical lines in the remaining plots demonstrate the binning scheme defined
for the q values in the trigger electronics. Noting the log scaling of the axis, any q = 0
neighbouring values are mapped to the zero bin. To maintain only two bins for the
1-bit case, any values in the zero bin is mapped to the maximum bin.

8.4. The Binned Energy Deposition Features

The CDC trigger algorithm aims to use as few bits as possible to represent the ADC values.

This study considers the minimal 1, 2, and 3-bit representations. The number of bins

available doubles for each added bit, such that these cases correspond to nb = 2, nb = 4

and nb = 8. The unbinned feature space is compared to three potential binning schemes in

Figure 8.2

.

. The left plots shows the rebinned q distribution and the right plots show the

rebinned q(L) distributions, which also represent the q(R) distributions due to the symmetry

of the CDC. Noting the logarithmic x-axis, all q = 0 values in bL are plotted at x = 0.
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Figure 8.3.: The performance of the BBDT hit classifiers method. The left plot shows the output from
a BBDT trained over the 2 bit ADC features. The right plot compares the performance
of the BBDT for all three binning schemes. It also shows the performance of a GBDT
classifier trained over the unbinned ADC features, which represents the upper limit for
the BBDT performance. Similarly, the baseline, ADC cut classifier shown on the plot
represents a lower limit of hit classification performance.

The locations of the bin edges for the three are chosen using this plot. Formally, the bin

features and edges are defined as:

Bin Features b(N) ≡ i such that E(N)i ≤ q < E(N)i+1 (8.1)

1 Bit Edges E(1) ∈
�

0, 3e, 100e, qmax

	

(8.2)

2 Bits Edges E(2) ∈
�

0, 3e, 100e, 1000e, qmax

	

(8.3)

3 Bits Edges E(3) ∈
�

0, 3e, 10e, 31e, 100e, 310e, 1000e, 3100e, qmax

	

(8.4)

where qmax is defined at infinity. For the one bit case, all b(1) = 0 and b(1) = 2 values are

put in the same bin, as shown in Figure 8.2

.

.

8.5. Classification Performance

Five classifiers were created to determine the optimal number of ADC bits needed for the

BBDT hit filter. Each classifier is defined by its feature set:

• “ADC Cut”: a cut-based classifier on the (q) distribution.
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• “1 Bit BBDT”: a BBDT trained on (b(1), bL
(1), bR

(1), BID)

• “2 Bit BBDT”: a BBDT trained on (b(2), bL
(2), bR

(2), BID)

• “3 Bit BBDT”: a BBDT trained on (b(3), bL
(3), bR

(3), BID)

• “Unbinned GBDT”: a GBDT trained on (q, q(L), q(R), BID)

The ADC cut classifier determines the lower limit of online hit filtering. The unbinned

GBDT represents the upper limit of the ADC, neighbouring ADC, and board ID feature set.

The BBDT and GBDT classifiers assume that the all neighbour information is available for

all hits, which ignores the fact that each RECBE/COTTRI board reads out subset of the

total wires, as highlighted to the right plot of Figure 8.1

.

, meaning that some neighbor

information will be missing.

The ROC curves in the plot to the right of Figure 8.3

.

demonstrate the performance of

the three proposed binning schemes for the default timing window. The 2 Bit BBDT, 3 Bit

BBDT, and Unbinned GBDT curves show that very little is gained by including more than 2

bits. While the 1 Bit BBDT classifier does not perform as well, its definition maintains the

simplicity of a 1D cut-based classifier cut while capturing the performance of the neighbour

features. Essentially, the 1 Bit BBDT would apply the 1D cut to each hit, and then consider

if the hit and its neighbours pass the cut. With this in mind, its relative improvement over

the ADC Cut classifier shows that considering neighbouring hits at any resolution provides

an inexpensive avenue to improve performance.

8.6. Event Triggering

The hit-level classification provides a strong starting point for the CDC track trigger. This

classifier is designed for the RECBE or COTTRI boards, which could use the filtered hits to

perform some shape-based triggering algorithm. A potential candidate is:

• Calculate the BBDT score for each wire on the RECBE boards.

• Use the COTTRI boards to calculate the average BBDT score for each RECBE board to

create a new “board score” so that RECBE boards with more signal hits have a higher

score.

• Pass all RECBE scores to the master trigger board, which computes a light-weight

circular Hough transform using the RECBE board scores, in analogy to the forward

transform in the offline case.
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Figure 8.4.: The summed BBDT trigger performance. The left plot shows the distribution sum of
the 1 Bit BBDT scores for background only events and for events with both background
and a signal track. The right plot shows the ROC curves for a CDC trigger algorithm
that only considers the sum of the BBDT scores. Note that the axes have different
limits to highlight the high signal acceptance region.

• Accept events that show a peak in the Hough space.

This approach is still in development.

For now, a more naive approach is considered that classifies each event by the sum of

all of the BBDT scores in the event. While this approach does not meet the needed CDC

trigger performance, it aims to highlight the improvement of the BBDTs over the baseline

ADC cut using event-level metrics. To this end, the classifiers were evaluated over 10,000

background-only events and 10,000 mixed background and signal events. The resulting

classifier scores were summed for each event.

The plot to the right of Figure 8.4

.

shows the resulting trigger performance. The summed

ADC Cut classifier counts the number of hits in each event with q < 100e to classify an

event. The rest take the sum of scores of each hit to classify the event. As expected, the

ADC Cut and unbinned GBDT classifiers define the upper and lower limits of performance.

The 2 Bit and 3 Bit curves are indistinguishable. Interestingly, the summed 1Bit BBDT score

performs best in this scenario, even though it uses less information than the 2 and 3 Bit

cases. This implies the threshold used for the 1 Bit BBDT is effective at removing noise for

this naive triggering algorithm. With that said, this is not guaranteed to be true for a more

complex algorithm.
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Chapter 9.

Conclusion

COMET Phase-I is part of the next-generation of high-sensitivity particle physics experiments.

Its novel design will allow it to push the frontier of high-intensity physics in search of the

Charged Lepton Flavour Violating µ-e conversion process. The search is an excellent probe

for Beyond the Standard Model physics and can indirectly measure energy scales that are

orders of magnitude higher than those available to direct searches.

The ambitious intensity of the COMET is part of a growing trend in particle physics.

The LHC has similarly ambitious plans to increase its intensity, with plans to triple the

overall luminosity in the next decade [69

.

]. As the intensity increases, the experiments

will need to improve their data acquisition and analysis systems at every level, especially

at the track reconstruction level. These challenges are well met by the recent machine

learning renaissance, where algorithms are designed to improve in performance as more

data becomes available.

This work provides a proof-of-concept algorithm that integrates machine learning into

the lowest level of track reconstruction for the COMET experiment. It is designed to

complement traditional track reconstruction algorithms that perform well in lower intensity

environments. This work aims to encourage the larger particle physics community to adopt

similar approaches to meet the coming high-intensity challenges. With that said, there are

still several open questions that need to be addressed before this algorithm can be used on

real data.

9.1. Summary of Thesis Achievements

The primary achievement of this thesis is the CDC Hit Filtering algorithm. This algorithm

mixes the Hough transform, which is the first automated track identifier used in particle
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physics, with similarly well-established classification techniques found in machine learning.

By filtering out undesirable hits, it can reduce the intensity of the tracking environment

so that more traditional tracking algorithm can be used. As such, it aims to build on the

success of existing algorithms by leveraging all the information available at the lowest level

of track reconstruction. Ultimately, a successful implementation of this algorithm will allow

COMET to push its intensity much further than the baseline ADC cut-based hit filter would

allow.

In this summary, it is important to note that while this algorithm is more complex than

traditional, cut-based approaches, it is far simpler than the cutting-edge of computer vision

in machine learning, i.e. Convolutional Neural Networks. Its balance between simplicity

and performance aims to ease the burden of applying it to real data.

Elements of this algorithm are reformulated to define the Online CDC Hit Filter. This

algorithm is designed to work well on an FPGA so that it can form the basis of the CDC

Track Trigger. Both the filtering algorithm and triggering algorithm are still in the early

stages of development. Even at this early stage, the Online CDC Hit Filter demonstrates

it can significantly out perform more traditional filtering techniques without introducing

unwieldy levels of complexity.

Finally, this work established the large-scale simulation pipeline for the COMET collabo-

ration. This produced the first production-scale simulation data samples, which provide

four orders of magnitude more statistics than were previously available. These samples are

used groups throughout the COMET collaboration to support numerous research and de-

velopment avenues. This work also introduces an automated testing pipeline for ICEDUST,

which helps ensure the stability and accuracy of all future simulation and analysis efforts.

9.2. Impact on the COMET Experiment

The single event sensitivity of the COMET experiment is determined as [38

.

]:

S.E.S=
1

trunRµ/pBcapture

�

Ip/e
�

Aµ→ e

(9.1)

where trun is the total time of the run, Rµ/p is the muon stopping rate per POT,Bcapture is

the branching ratio for nuclear muon capture in Aluminium, Ip is the current of the proton

beam, and Aµ→ e is the overall signal acceptance. Assuming a 6 month run time, the first

four of these parameters for Phase-I are taken to be trun = 1.5×107 s, Rµ/p = 4.675×10−4,
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Selection Acceptance Comment

Time + Geometry 6.6% Accounts for the three below.

Time 30% Discussed in Section 6.4.2

.

.

Triggering 30% Discussed in Section 6.4.3

.

.

Track Quality 78.3% Discussed in Section 6.4.4

.

.

Online Track Trigger Efficiency 90% Target design value.

Data Aquision Efficiency 90% Target design value.

Tracking Efficiency 99% Target design value.

Signal Momumtum Window 93% Discussed in section Section 2.3.3

.

,

103.6 MeV< pe < 106 MeV

Total 4.9% Accounts for all above values in bold.

Table 9.1.: The breakdown of the overall signal acceptance for COMET Phase-I. Note that pe referes
to the reconstructed momentum of a signal electron. The “target design values” are
taken from the COMET TDR.

Bcapture = 0.61, and Ip = 0.4 µA. Extending Table 6.1

.

, the signal acceptance for the whole

experiment can be broken down into its components, as seen in Table 9.1

.

.

Taken together, all these values imply a total single event sensitivity of O
�

10−15
�

. This

thesis aims to aide the COMET experiment in realising this sensitivity by reducing the

background as much as possible while maintaining a high signal-acceptance. Section 6.4.5

.

concludes that the timing cuts may be optimized to improve the “Time + Geometry”

acceptance from 6.6 % to 10.5 % with little impact on the background acceptance. If the

backgrounds are tolerable, this could improve the overall signal acceptance from 4.9 %

to 7.8 %. If they are not tolerable, Section 6.4.5

.

highlights a different optimization that

would reduce the background rates with little effect on the signal acceptance.

The CDCHF and the OCDCHF aim to control the background levels so that the COMET

experiment can select the cuts that maximise its overall signal acceptance. These algorithms

will factor into “Online Track Trigger Efficiency” and “Tracking Efficiency” elements respec-

tively in Table 9.1

.

. Unfortunately, the final tracking fitting algorithm and track triggering

firmware must be implemented before these two efficiencies can be calculated. This means

the impact of the CDCHF and OCDCHF cannot be yet be quantified in the context of the

final single event sensitivity. Similarly, the full analysis of the impact on these algorithms

on the overall systematic error in the final momentum measurement must also wait for

the final elements of the track fitting algorithm to be implemented. With that said, both
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of these algorithms out-perform the ADC cut-based classifier that was part of the initial

designs for the tracking and triggering systems, as discussed in Chapter 7

.

and Chapter 8

.

.

9.3. Comments on Generalisation

The COMET tracking systems are required to identify a single, mono-energetic electron. The

CDC hit filter is implemented for COMET with this goal in mind, but the concepts behind

the algorithm can be generalised to other use cases. The key elements of the algorithm are:

• Local Filtering: Use a classifier to separate “signal hits” from “background hits”,

preferably using as many features as possible to describe each hit.

• Shape Recognition: Score each hit by its agreement with the shapes made by “signal

hits” identified in the previous stage. Any track-finding or track-fitting algorithm can

be used here, although ones that return a continuous score are favoured.

• Track Filtering: Design a new classifier that uses both the shape recognition score

and the local filtering features to further separate the “signal” and “background” hits.

This method requires that some hit-level features are available, but beyond that is easily

generalisable by adjusting the definition of “signal” and “background” hits. For example, if

an experiment was interested in muon tracks that travel in straight lines, all muon hits are

identified as signal, while the rest become background. A linear Hough transform can be

used to detect the needed straight-line patterns. If an experiment is interested in multiple

particle types, then multiple hit filters can constructed and applied in parallel.

9.4. Applications to Real Data

The main question that remains is: how will this algorithm work on real data? This method

uses supervised learning, which requires a dataset in which the hits are already labelled

by signal and background. The real data will not be labelled, and may be significantly

different from the simulated data. This can be alleviated by:

• using the real CDC data to tune the simulated data,

• producing a data sample which is rich with electrons that make signal-like tracks in

CDC, or

• creating machine learning algorithm that can learn from unlabelled data.
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The real solution to the problem will likely involve all three of these steps. A common

approach in LHC physics is to train machine learning methods using simulated signal events

and background events from data1

.

. This would require an accurate detector simulation of

signal tracks such that the hit timing and ADC waveforms agree with data.

With that in mind, the second option can be achieved by lowering the strength of the

magnetic field in the Detector Solenoid so that the DIO electrons can reach the CDC. This

would provide some insight to electron tracks that curve through the CDC, with the caveat

that the dynamics of the drifted particles changes with the magnetic field strength. Even

so, the DIO electrons could provide a valuable reference for the algorithm’s performance

on real data.

The third option describes an algorithm that can deal directly with unlabelled data.

Algorithms that cluster completely unlabelled data are referred to as unsupervised learning,

which is reviewed in [71

.

]. These algorithms aim to define distinct groups in the data set

based on their features. They are significantly more challenging than supervised methods,

but assuming that one could group signal-like hit and background like hits, an unsupervised

algorithm could effectively replace the local filtering stage. The shape recognition stage

would act overall distinct groups in the event to find the group that best matched they

hypothesised track shape.

Alternatively, a semi-supervised algorithm could be used, which are able to combine

labelled and unlabelled data when creating a classifier. These methods are reviewed in [72

.

].
Such methods could provide a promising framework for using both real and simulated data

together when training the algorithm.

9.5. Further Work

Even before real data is considered, there are several areas that should be addressed. The

first is that CDC hits should be described as ADC waveforms that result from the charge

pulses in the detector. The current treatment integrates this ADC waveform, which means

coincident hits are summed into one hit. By studying the waveform, the algorithm would

get closer to the lowest level data available and could possibly resolve two distinct hits on

the same channel. Overall, this should improve the algorithm.

At the same time, the crosstalk effect between channels is currently ignored. This refers

to the induced charge on neighbouring wires as a charge-pulse travels down a sense wire

1As an example, this was done by the author in [70

.

] for the LCHb collaboration.
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towards the readout board. Once it arrives at the readout board, there is some board-level

crosstalk, where some voltage leaks on to other channels on the board. This correlates the

ADC values and hit times of neighbouring channels, which would hurt the algorithms ability

to use neighbouring features to separate signal from background. With that said, this size

of the ADC pulses and their coincident timing follow a very regular pattern. Optimistically,

a classifier reads the whole ADC waveform would be able to identify this pattern and

distinguish it from the correlations that are described by the neighbouring features.



Appendix A.

Continuous Integration and Deployment

The Continuous Integration and Deployment elements of ICEDUST were added by the author

to support this tracking work and ease the development overhead for future collaborators.

These changes include adding a test suite and ensuring that these tests run automatically as

a part of the existing development workflow. This workflow is based on a GitLab instance

run by CCIN2P3. GitLab is a web-based front end for git where developers access and

update the latest official copy of ICEDUST [38

.

].

A.1. The Testing Suite

These tests aim to cover all functionality utilized in the mass production simulations. They

fall into two categories:

• Build tests: ensure the code can compile. This is handled by the compiler.

• Unit tests: each function is provided with a test input. The output is checked against

an expected result.

• Validation tests: higher level routines, which rely on many functions, are provided

test inputs. The output is checked against an expected result.

These tests groups are designed to complement one another such that the cause and effect

of any bugs can be determined quickly and accurately. The advantage of the testing suite is

that developers can be confident that their new feature does not introduce new bugs into

the software.
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A.2. Continuous Integration and Deployment using

Docker

Continuous Integration (CI) with automated testing includes these tests in the existing

workflow in ICEDUST, whereby developers change their personal copy of the software

when adding features, then open a “Merge Request” so that their changes are added to

the official copy of the software. With Continuous Integration, the software tests are run

automatically and remotely every time a Merge Request is opened or updated. The results

are then reported to both the developer and the code reviewers. A diagram of this workflow

can be seen in Figure A.1

.

. This enables developers to fix low-level bugs as they occur and

allows the code reviewer to focus on the higher level code-quality considerations.

Official 
Repository 

User Remote 
Repository 

User Local 
Repository 

Commit Commit...

Open Merge
Request

Testing
Engine

Commit ... Commit

Accept Merge
Request

Test &
Report

Docker
Images

Get
Image

Test &
Report

Get
Image

Test &
Report

Get
Image

Test

Get
Image

...

...

Report

Rebuild &
Update
Image

Testing Deployment

Development

Figure A.1.: A diagram of the ICEDUST development and testing workflow using Continuous
Integration and Continuous Deployment. The existing workflow is shown in blue,
which is the part that requires user input. The orange element shows the testing,
which is done remotely and automatically on GitLab. The green element shows the
deployment, which provides all users with a virtual image of the latest working copy
of ICEDUST and is also done automatically.

This functionality was implemented on GitLab using Docker. Docker is a relatively new

but widely used virtualisation platform used for environment management. Docker provides
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an interface to build and run virtual machines such that faithful copies of production

environments can be easily run on any computer. A base image that contains all the

needed packages for ICEDUST is created and hosted by GitLab. Each time the continuous

integration is triggered by a merge request, this image is retrieved, ICEDUST is compiled

inside the image, and the tests are run. Any error messages are reported via the GitLab

web interface. This is done automatically, without any input from the developer or code

reviewers.

GitLab and Docker can also be used for Continuous Deployment, which automatically

builds and distributes the latest version of ICEDUST. This process is triggered whenever a

merge request is accepted and the official copy is updated. This process starts with one

more run of automated testing. If the tests pass, the base image is updated, rebuilt, and

pushed to GitLab. This image will be used in future automated testing cycles. Similarly, the

latest version is compiled on top of the base image in a new deployment image, which is

also pushed to GitLab. This image can be used to run ICEDUST anywhere that uses Docker.
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Appendix B.

The Geant4 Physics Lists

The physics models selected for this work prioritize accuracy over computational perfor-

mance. This is to ensure that the results of the tracking studies are as accurate as possible,

and to ensure that these first samples serve as a benchmark for accuracy for later samples.

B.1. Geant4 Physics Lists

In Geant4, particle trajectories are determined by breaking the track into steps, which are

terminated by a physics process. To decide which physics process to use, Geant4 asks all the

relevant processes for a proposed step length. The processes then each calculate their step

length based on a random sampling of their probability distribution. This distribution often

involves some characteristic interaction length or decay time. The process that returns the

shortest length is selected to occur. If the particle is stopped, then the process that returns

the shortest time is chosen.

When using Geant4, the user is responsible for registering all the physics processes he

or she would like simulate [48

.

]. These processes are all added to the physics list, which

is then consulted whenever a particle is stepped through the simulation. ICEDUST uses

a combination of pre-built physics processes that come with Geant4 and custom physics

models based on recent experimental data.

B.2. Selecting a Low-Energy Physics List

Extra care was taken to ensure that the samples generated described all relevant potentially

relevant physics processes. To this end, physics models that are accurate at low energies

and that model hadronic scattering well were selected for ICEDUST. The QGSP_BERT_HP

113



114 The Geant4 Physics Lists

was taken as a starting point. QGSP_BERT_HP is intended to provide the best accuracy

for low-energy physics involving neutrons. This list was adapted slightly to improve the

accuracy of low-energy electromagnetic interactions as well. The full list is made from

these component lists:

1. Electromagnetic Physics

• G4EmStandardPhysics_option4

– Handles all electromagnetic processes, ionization, multiple-scattering, bremsstrahlung,

etc.

– Utilizes the most accurate standard and low energy models.

– Recommended for applications that requires a high accuracy for electrons,

hadrons and ion tracking.

• G4ExtraEmPhysics

– Adds several electromagnetic processes not included in the “standard” elec-

tromagnetic lists.

– These include electron, positron, and gamma nuclear inelastic scattering in

flight, all muon and anti-muon nuclear interactions in flight, and synchrotron

radiation for electrons and positrons.

2. Hadronic Physics

• G4HadronPhysicsQGSP_BERT_HP

– High-precision modelling of inelastic scattering of hadrons, including protons,

neutrons, pions, kaons, hyperons, and all anti-baryons.

– Uses Bertini cascade to model particles below 9.9 GeV, i.e. in COMET’s initial

proton energy range.

– Takes special care of low-energy neutrons, where a data-driven model is used

to incorporate both elastic and inelastic scattering below 19.5 MeV.

• G4HadronElasticPhysicsHP

– Designed as the elastic scattering complement G4HadronPhysicsQGSP_BERT_HP.
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– Modelling for all hadron elastic scattering except neutrons below 19.5 MeV,

which are modelled in G4HadronPhysicsQGSP_BERT_HP.

3. Decay Physics

• G4DecayPhysics

– Provides decay physics for all unstable particles.

– Present in most standard physics lists.

4. Ion Physics

• G4IonPhysics

– Provides elastic and inelastic scattering models for ions.

– This includes particle and interaction definitions for alpha particles, helium-3,

deuteron, triton. All other ions are modelled as “generic ions”, which are

parameterized by their atomic number and atomic mass.

5. Stopped Particle Physics

• G4StoppingPhysics

– Models stopped processes, such as nuclear capture, for hadrons. These include

anti-protons, anti-nuclei, negative pions, and some negatively charged strange

particles.

– Processes involving stopped muons were disabled here and added back in

using custom physics models, as discussed in the next section.

B.3. Custom Muon Physics for COMET in Geant4

In addition to the models listed in the previous section, custom physics processes have been

developed and added to ICEDUST, as described in full in [38

.

]. These models improve the

description of stopped muon processes in aluminium. The two main processes of note are

muon decay-in-orbit and nuclear muon capture.

As discussed in Section 2.3.3

.

, the bound muon decay end-point energy for the resulting

electron reaches the µ-e conversion limit of 105 MeV. The models used in Geant4 do not

reproduce this tail by default. These models use the free muon decay and apply a small

random boost factor set by the muon binding energy. To incorporate this tail, previous
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Figure B.1.: A comparison of the electron energy in the default muon decay-in-orbit modelling in
Geant4 and the model used in ICEDUST as proposed [46

.

]. The plots are normalized
such that the agreement at lower momenta is clear. The right plot is the same as the
left on a log scale. Note that the default model has a sharp cutoff, similar to free
muon decay, while the model in ICEDUST describes the high-momentum decay-in-orbit
background. These figures are from [38

.

], where the models were first implemented in
ICEDUST.

sensitivity studies have implemented the phenomenological model proposed in [46

.

]. The

differences in the emission spectrum between these two models can be seen Figure B.1

.

.

Muon nuclear capture in aluminium is also a significant source of background in COMET

Phase-I. As discussed in [47

.

], the AlCap experiment has measured the resulting spectra from

this process. The proton emission frequency and spectrum measured from AlCap has been

fed back into the custom stopped muon physics model. By default, Geant4 uses a Bertini

cascade to model this process. This model predicts that roughly 20% of all captured muons

result in protons. AlCap data predicts a much lower rate of around 3%. The spectrum

measured by AlCap is also less energetic than that predicted by the Bertini cascade, as seen

in Figure B.2

.

.
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Figure B.2.: A comparison of the proton emission energy spectrum from nuclear muon capture
between the Bertini cascade default in Geant4 versus the AlCap measured spectrum as
implemented in ICEDUST. Note that the default Geant4 model also predicts 7 times
more protons from nuclear muon capture than was measured by AlCap. The right plot
is the same as the left on a log scale. These figures are from [38

.

], where the models
were first implemented in ICEDUST.



118



Appendix C.

Sample Summaries

This appendix identifies the key samples referenced in the remainder of this work. Each

sample will be discussed briefly and have a summarizing entry in Table C.1

.

. The entries in

this table provide statistics about the run time and event size of the SimG4 portion of the

simulation.

Table C.1.: Simulation Sample Summaries

Sample Name Total Number of Events Run Time/Event Disk Size/Event

MC4n 8 × 106 3.61 s 2.665 MB

MC4o 9.8 × 109 2.77 s 8.77 kB

MC4p 9.7 × 1010 0.015 s 490 B

MC4q 8.8 × 1011 0.015 s 8.8 B

MC4n: This sample persists all tracks created across 8e6 POT events. As such, it is useful

for describing phenomenology in the Pion Production Target section. This sample is limited

by the available disk space.

MC4o: This sample is run with the same settings as MC4n but only saves particles that enter

the Muon Transport or Detector Solenoid sections to the disk. The particle flux from the

Pion Production Target into the Muon Transport or Detector Solenoid sections is recorded

so that it can be can be resampled later, as discussed in Section 4.2.3

.

.

MC4p: The resulting flux from MC4o is resampled to create to create 10 times more events.

All tracks that enter the Muon Transport or Detector Solenoid sections are saved.
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MC4q: Like MC4p, the resulting flux from MC4o is resampled to create to create 100 times

more events. Only tracks that leave a hit in the CDC or CTH are saved.



Appendix D.

Training Machine Learning Algorithms

Training form the crucial first step in building machine learning algorithms. This step is

analogous to fitting a generalized model to describe a given dataset. See [58

.

, 59

.

, 60

.

] for a

more detailed approach than provided in this summary.

D.1. Neural Networks And Back Propagation

Training a neural network means calculating the optimal values for all of the Θ(l) matrices,

as introduced in Section 5.2.1

.

To do so, the error is calculated at the output layer and then

distributed back through the preceding layers. This technique is called the “backpropagation

of errors” or “back propagation”. This is essentially an implementation of the chain rule.

To demonstrate this mathematically, consider a regression problem that utilizes the mean

squared error as a loss function with a regularisation term. This problem will generalize to

consider K output values, denoted by the subscript:

J (Y, X ,Θ) =
1

2N

N
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K
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k=1

�
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where layer l has ml elements and layer l + 1 has nl elements. Now consider the update

rule for an element of Θ(L)i j , i.e. the matrix connecting the last hidden layer to the output

layer. The form of this can be read off from equation (5.7

.

):

Θ
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Now use equation (5.15

.

) and equation (5.13

.

) to provide a more explicit form of f . Calculate

its differential:
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Two superscripts are now used, with the first indexing each datum in the sample, and the

second indexing the layer value. Note that summations over k and v are reduced since only

the (k = i, v = j) term contributes from the differential. A new variable δ(t)(L+1)
i defines

the error on the i-th node in the output layer for the t-th datum. This gives the update rule

the free parameters connecting the last two layers.

Now consider the updating the (L − 1) layer. The calculation starts the same, only the

expansion for f goes two layers deep, which in turn incurs the activation function g:
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The first two lines introduce the expansion to the second to last hidden layer. In calculating

the differential in the second line, the following property of g was used:

g ′ (z) = [1− g (z)] g (z) (D.6)

used. This differential reduces the summations over v and w since only the v = i and

w = j terms survive. In the last line, the Hadamard product, (A◦ B)i j = Ai jBi j, has been

introduced to vectorize part of the equation. This result can be extended to recursively
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define δ(t)(L):

δ(t)(l) =

⎧

⎨

⎩

z(t)(l+1)
i − y (t)i l = L + 1
�

�

Θ(l)
�T
δ(t)(l+1)

�

◦
�

1− a(t)(l)
�

◦ a(t)(l) l ≤ 0≤ L
(D.7)

From this definition, the update rule for all parameters in Θ can be deduced. First, note

that determining the Θ values in the L − 2 layer would proceed exactly as equation (D.5

.

)

had, but have one additional iteration of the chain rule on the a(t)(L−1)
j term. This additional

iteration would mirror the chain rule used to get equation (D.5

.

) from the previous result

from the L layer. This motivates the recursive definition of δ(t)(L) and along with it the

generalized form of the update rule:

Θ
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i j := Θ(l)i j (1+λ)−

α

N
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Finally, it is worth noting that exactly the same steps can be taken for a regression

problem that uses the logarithmic loss function. Starting instead from equation (5.10

.

), a

slightly different definition is used for the base case for δ(t)(L):
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The calculations of the update rule proceed in the same matter, such that equation (D.8

.

)

holds true for this case as well.

D.2. Growing a CART Tree

The most famous decision tree structure is called a Classification And Regression Tree

(CART). As their name suggests, they can be used for both classification and regression.

To grow a CART, the algorithm must determine the optimal split at each node of the data.

This split is defined by three values:

• The feature to split on, x j

• The threshold value of the selected feature, c

• The value of the prediction in both of the daughter node, (p1, p2)
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These four values are determined by ensuring that the split minimises some loss function.

Classification and regression trees only differ in the loss function choice. For regression, the

mean squared error is normally used. Classification trees often use the Gini Impurity or the

Cross Entropy. This review focuses on regression trees, which are used in GBDT algorithms.

To formalise this mathematically, consider a data set where each datum has a feature

vector x(t) and corresponding target y (t), where t indexes elements in the data set. Now

consider a cut on x j at value c. The resulting subsets of the data are defined as:

R1 ( j, c) =
¦

x(t) | x (t)j ≥ c
©

and R2 ( j, c) =
¦

x(t) | x (t)j > c
©

(D.10)

From here, the minimisation problem can be formalised in terms of the loss function, i.e.

the mean squared error:
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In this formalism, the solutions for p1 and p2 are the average value of y (t) of all elements

in R1 and R2, respectively:
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1
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y (t) | x(t) ∈ Ri ( j, c)
	

, i ∈ {1, 2} (D.12)

This equation introduces the cardinality of a set |S|, which denotes the number of elements

in the set. Due to the low computational complexity of these equations, the values of j and

s are determined by scanning input feature for its best possible cut. From here, (p1, p2) are

assigned to the output nodes. Note that the best split is calculated without considerations

of how this will affect future nodes. This is called a “greedy” optimization method.

This training process starts by considering all data in the training sample in the first

node, or “root” node. The first cut splits the data into two daughter nodes. The data

splitting continues recursively on the daughters until some stopping criteria are reached.

The stopping criteria used for the trees in ensemble models is often a limit of the total tree

depth.

Decision trees are simple to construct and interpret, but often struggle to build complex

predictors that generalise to the testing sample. They are far more powerful when used as

a part of an ensemble classifier, such as a GBDT.
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D.3. Gradient Boosting a Tree Ensemble

As mentioned in the main body of this work, Gradient Boosted classifiers admit the following

form:

FM (x) =
M
∑

i=1

γihi (x) (D.13)

This defines the output of an additive ensemble of M weak predictors as FM . Each predictor

is indexed by i and has a corresponding output of hi. The weight of each predictor in the

sum is denoted γi.

GBDTs build up FM in a forward, stage-wise fashion. That is to say, each predictor in the

ensemble is trained to correct for the error on the existing model. This can be formalised

as:

Fm (x) = Fm−1 (x) + γmhm (x) = y (D.14)

This is the ideal case, where Fm perfectly predicts y. This equation illustrates that when

building the tree hm, the model fixes what it has learned in the previous m− 1 steps. To

build some more intuition, the equation above can be rearranged as:

γmhm (x) = y − Fm−1 (x) = rm−1 (D.15)

This equation demonstrates that the output of γmhm(x) should be the residual of the true

value y to the predicted value from Fm−1(x). Equivalently, the predictor trained at stage m

should correct the disagreement from the previous m− 1 predictors. This means that tree

hm should predict the target value rm−1 given vector x.

If we consider a regression GBDT, the residuals rm can be thought of as the negative

gradient of the mean squared error loss, as in:

L (y, ŷ) =
1
2
[y − ŷ]2 such that rm = −

�

∂ L (y, ŷ)
∂ ŷ

�

ŷ=Fm−1(x)
(D.16)

This result is often extended to other loss functions, where rm is calculated as the negative

gradient of the loss function, as above, instead of the residual. In these cases, rm is referred

to as the “pseudo-residual”. The new tree trained at stage m is then fit to predict the
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pseudo-residuals from the previous step rm−1. As a final step, γm is chosen to minimise the

re-evaluated loss function, L(y, Fm(x)). This is normally done by scanning values of γm.

This can all be summarised into an algorithm, which proceeds as follows:

1. Create a base-case predictor, which is normally just the average of all y (t) values in

the sample:

F0

�

x(t)
�

=
1
N

N
∑

i=1

y (i)

2. For each m= 1 to M :

• Calculate the pseudo-residuals:

r(t)m = −

�

∂ L
�

y (t), ŷ (t)
�

∂ ŷ

�

ŷ(t)=Fm−1(x(t))
for t ∈ [1, N]

• Fit the hm tree to predict r(t)m given x(t) for all elements, i.e. t ∈ [1, N].

• Determine γm by scanning over potential values to solve:

γm =min
γ

N
∑

t=1

L
�

y (t), Fm−1 + γhm

�

x(t)
��

• Update the model:

Fm

�

x(t)
�

= Fm−1

�

x(t)
�

+ γmhm

�

x(t)
�

3. Output the final model, FM (x).
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