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1 Introduction

Recently, the old observation [1-3] that generalised entropy — the sum of gravitational
entropy and the entropy of bulk matter fields — is better defined than each term in the sum
has been placed on firmer footing [4-13] using the crossed product construction [14]. T will
refer to this construction in the context of gravity as the ‘gravitational crossed product,’” even
though it is mathematically not distinct, as I would like to make physical comments that
pertain only to this case. See [15] for a recent introduction aimed at high energy theorists.

The gravitational crossed product takes the type III; algebra of bulk matter fields [16—
18] and adjoins a ‘boundary’ Hamiltonian. In the asymptotically AdS case this boundary
Hamiltonian is the ADM Hamiltonian and in the asymptotically dS/arbitrary subregion
of the bulk case it is the (modular) Hamiltonian of an observer; what is important is the
existence of a state in which the bulk modular Hamiltonian is related to this boundary
Hamiltonian by a constraint. The resulting algebra is type II. Unlike in type III algebras,
type II algebras have well-defined entropies, and it can be shown that differences of this
type II entropy between different states is the difference of the generalised entropies between
those states [6, 13]. Naively, this construction seems to rely crucially on the existence of an
outer automorphism of the local algebra of bulk matter fields; these do not exist for type
I factors and so it seems that this approach is ‘purely infinite.

A similar argument has been made in the context of Harlow’s holographic quantum
error-correcting (QEC) code [19],! illustrated in figure 1, by [21]. [21] shows the existence
of a conditional expectation in these codes that keeps entanglement entropy constant while
moving some of it from the bulk to the area operator. Perhaps surprisingly, [21] only uses
type I algebras to make this argument.

See [20] for a more continuum-like treatment of holographic QEC.
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Figure 1. A holographic QEC, as introduced in [19]. The boxed part is just a system such that the
local algebra is a type I non-factor algebra.

This work is the bridge between the two arguments. I argue that a construction that
contains the ‘physical’ aspects of the crossed product construction exists even in type I
algebras. While this is true in any such situation, this construction is particularly natural
when the local algebra is a non-trivial direct sum of type I factors. An example of this structure
is in a holographic QEC. The results of [12], though different in detail and perspective, have
the same flavour: they show that the algebras of the quantisation of classical systems with
edge modes have a crossed-product structure.

A specific reason this is an interesting observation involves tensor network toy models
for holographic states. In these toy models, the bulk algebra is always type I; the observation
in this paper shows how to define an entanglement entropy in these models that is free
of bulk UV divergences. We will expand on this in upcoming work [22]. Another reason
this is interesting is in understanding the connection between the path integral proof of the
well-defined-ness of the generalised entropy and the algebraic proof.

The plan of the paper is the following. I begin with a trivial observation in section 2. I
move on to a small discussion of the brick wall boundary condition that is commonly used to
approximate entanglement entropy in the type IIT algebras corresponding to subregions of
QFTs in section 3; this section can be safely skipped by most readers. In section 4 1 describe
the central result. I end with discussion in section 5.

2 The basic idea

There are two basic ideas that go into the main construction of this work. The first concerns
the most important difference between the holographic QEC model and the crossed-product
construction. And the second is a useful reformulation of the trace in any algebra where it
exists. Neither is new, but together they suggest the construction of section 4.

Area and ‘boundary’ energy. The holographic QEC and the gravitational crossed
product share the following structure. They both involve embedding ‘bulk’ algebras on the
left and the right into a larger algebra involving an extra degree of freedom. The differences
are as follows. Firstly, the bulk algebra is type I in the holographic QEC whereas it is type IIT
in the gravitational crossed product; this will be the subject of section 4. The more physical
difference is the extra degree of freedom: in the holographic QEC it is the area, which is a
central operator supported on the co-dimension-two HRT surface, while in the gravitational
crossed product it is the ADM energy (in the asymptotically AdS case when the boundary



Figure 2. Changing the extra degree of freedom is analogous to changing the dressing. On the left
is the dressing relevant for the holographic QEC; nothing is dressed across the HRT surface and so
one-sided operators cannot change the area. On the right is that relevant for the gravitational crossed
product; everything is dressed to the right boundary and so the left ADM energy is central. The trace
for the left algebra is best written down by changing the dressing to be to the left boundary. In other
words, the state is dressed as in the right picture but the operators are dressed as in the left picture.

subregion is an entire CFT). More generally, the ADM energy is replaced by the modular
energy of some boundary observer [7, 10, 11]; i will refer to it as the ‘boundary’ energy.

These two quantities are related by the modular energy of the bulk fields in the entan-
glement wedge, which is known in the literature as the JLMS relation [23, 24]. So the first
step in the construction will be relabelling a basis of the holographic QEC. The labels for
the basis elements need to be changed from the pair (area,bulk modular energy) to (bulk
modular energy, ‘boundary’ energy). This is a little subtle in the general case, involving a
set of simultaneous non-linear equations (4.14), but becomes as simple as it sounds when I
mock up the gravitational case, in (4.25). It would be interesting to restate this as a change
in quantum reference frame, see e.g. [25, 26]. More colloquially, it can also be thought of
as a change in dressing [6], as shown in figure 2.

More precisely, I find that the dressing is changed as in figure 2 in the sense that the
different sectors are indexed by a fixed value of the left ‘boundary’ Hamiltonian, but that the
same is not true for the algebra. Notice that in the re-dressing depicted, only the left-sided
operators change. The crossed product algebra for right-sided operators are dressed to the
right as shown, but that for left-sided operators are dressed to the left [6]. In other words,
as a far as the algebras are concerned, the dressing is as on the left of the figure. The only
thing that changes for the algebras is that the sectors for the right (left) algebra are labelled
by the values of the right (left) ‘boundary’ Hamiltonian instead of the area. This provides
moral evidence for the idea [12] that the crossed product construction is essentially the type
IIT version of an algebra with a centre.

Allowing the local algebra to have a centre and changing dressing as above is the most
important step in approximating the crossed product.? The crossed product construction takes
a type III; algebra and, using the fact that the modular automorphism is outer, constructs a
type II algebra with the trace (2.3). While both of these algebras, the initial and the crossed
product, are hyper-finite, the procedure that takes the initial algebra to the crossed product is
not trivial to approximate. This is because type I factors have no outer automorphisms, and
the crossed product construction is trivial when built on an inner automorphism. However,
as it turns out, the physical aspects don’t depend on this mathematical detail.

2Even when we begin without a centre, the change in dressing requires adding it in, as we will see.



Traces. The second observation regards the trace. Consider a state ) € %1, @ #r that is
cyclic and separating with respect to B (#1,r). This essentially means that dim %7, = dim #R
and the Schmidt spectrum of the state has no zeros. Then, the trace of an operator
Or € B(#nr) can be rewritten as

trog, Or = trogg (PRORpﬁl)
= (Y|OrpRI¥) - (2.1)

This is entirely analogous to the trace in the crossed-product algebra. In that case, there
are two type II algebras &g, o/, = &1, the modular operator is written as

Ay =KK™, KedpKed (2.2)
and the trace is

trOr = (Y|ORK Iy (2.3)

Comparing the modular operator for type I factors, Ay = prpy L with (2.2), one may
intuit that K, K are the reduced density matrices for &g, &/1,. This is in fact true. Consider

trKOr = (Y|KORK™1|¢)
= (y|KK 'ORKK'[y)
= (Y[OrlY) - (2.4)

In the second equality, I have used the fact that K € @/, commutes with Og € &R, and in
the third I have used the fact that Ay [f) = |¢/). So K reproduces the correct expectation
values for all operators in &g, meaning that it is the reduced density matrix.

3 Type I approximations and Type III limits

In the main section of this paper, I will imagine the same physical subsystem of the bulk
matter QFT to have both (approximate) type I algebras and exact type III algebras. While
this is standard in the literature on entanglement in QFT, it is also somewhat implicit. So,
I include a small introduction here for non-experts.

3.1 An example of a Type I approximation

Consider the example of a free massless scalar field ¢(x) on a two-dimensional asymptotically
AdS two-sided eternal black hole background, with metric (in one exterior)
2 _ .2 272
re—ri o {2dr
dt* + - (3.1)

In this section, this geometry is merely a geometry on which the QFT lives; there is no gravity
in the theory. Impose a brick wall boundary condition at a stretched horizon r — r, = § < ¢,

¢(r =rn+8) = ¢o, (3.2)



Figure 3. I consider a scalar field on a two-sided black hole background with a brick wall.

and the usual normalisable boundary condition at the asymptotic boundary,

N (3.3)

Now, mode expand the field in terms of the solutions of the equation of motion. Defining

ro_e

the alternate radial coordinate p = [ dr = £ coth™ L the equation of motion is
h Th

00 r2—r2
simply (a? - af,) ¢ = 0. In this co-ordinate, the stretched horizon is at p = ps = i log % and
the asymptotic boundary is at p = 0. The mode expansion of the field in the right exterior is
—_ . . n 2rn
¢ = ¢1+¢0 ¢1p+z [ar,wnef”"”t + aI}wne‘“’""} Ny, sin (wpp), ©n=— = 5——7-. (3.4)
Ps e ps plosy

Here, N, is a normalisation factor that will not be important for us. The mode expansion

on the left is the same except a,,,, — a1,,.- The state in the exterior of the two stretched
2762
rnp

_B i i
1B)s = ® V1 — e bone” 2 Manon |0}, {0), . (3.5)
Wn

horizons is the thermofield double state with inverse temperature f =

In the limit § — 0 this becomes the boost-invariant Hartle-Hawking state.

The important outcome of the mode expansion (3.4) is that for any § # 0, one can assign
a separable Hilbert space to the right exterior, that of one oscillator for the countably infinite
set of frequencies wy,; this is similar to the Hilbert space of a free QFT on a circle. The right
algebra aﬁa) is the algebra of this countably infinite set of oscillators and is therefore type I;

further, since it is generated by non-commuting pairs a,,,al , , it has no centre and it is a

Lo
type I factor. One can also sum over different values of the Dirichlet boundary condition (3.2)
at the stretched horizon; then the algebra is one copy of the above type I factor for every
value of ¢y and there is a centre generated by the operator that measures ¢y [27, 28].

Of course, the algebra of interest is actually the one at § = 0.3 However, the algebra of
the exterior is not continuous in this limit. To see this, consider taking the § — 0 limit of
the mode expansion (3.4). For simplicity, I take t = 0 and ¢9 = ¢1 = 0. When § — 0, the

spacing between frequencies vanishes and the set of frequencies becomes the positive real

3And with no constraint on ¢(8) — this is why one in general wants to sum over all values of ¢o.



line R™; as a result, the sum needs to be converted to an integral,

.I.
a s
,t=0) Ao | Bmon 4 Tron| g , Aw oc —
d(p Z [ Aa) o SIN Wy P © X o
Aw—0 & d t .
—_— ; W [ar,w + aw] N, sin wp,
where a;, = lim Fron (3.6)

Aw—0 Aa)

The algebra at § = 0, then, is generated by combinations of a;,. Of course, the operator
ar, itself is not a well-defined operator, because

roal,] =00 -o) = flal, )P = Wlawwal,l¥) ~50) ¢RT.  (3.7)

Thus, these operators are not maps from a Hilbert space to itself. So, in this limit, the
algebra of the right is made out of the creation and annihilation operators integrated against
sufficiently smooth functions f(w), which is qualitatively different from the algebra at & > 0.
This algebra, of course, is type III;. Note that the type I algebras at finite § are not
subalgebras of the type III algebra.

3.2 Generalities

In what follows, I will use two notions relating to a local QFT algebra «,. These notions
are not precisely defined here. Since I'll only use them to understand the physics of the
result and not for the result itself, the extra technical baggage of precise definitions would
not improve this work.

Type I approximation. This is an algebra @56), which is type I and has the following

properties. First, the modular Hamiltonian for a particular special state has level spacing

~ log %. Second, there is a shared notion of locality between «, and aﬁa), such that operators

in @, smeared over a length scale > § are well-approximated by operators in aﬁa).‘l I
have not defined this second point in a rigorous way. I am not requiring that the type I
approximation be a subalgebra — otherwise, the finite § algebras in the example above
would not be type I approximations.

Examples of such approximations are the algebras of the subregion after latticisation, or
the example given above using a brick wall. It should be noted here that there is a notion of
optimal type I approximation introduced by [28, 29] (they call it an isometric factorisation
map or a shrinkable boundary condition). This is the type I approximation (also depending
on an arbitrary length scale §) that preserves all expectation values of a subalgebra (also
depending on §) of operators. In particular, the optimal type I approximation is not a type I
factor but generically has a centre. In the scalar example above, one has to integrate over
all Dirichlet boundary conditions at the stretched horizon [28].

Type III limit. The second notion is an inverse of the first. Consider a series of type I
algebras (@1@ 0<6< 1) such that they are all approximations of the same type III; algebra
;. Given this set of type I algebras, the type IIT limit is just ..

4Local algebras in QFT are believed to all be hyper-finite, which means that they can be approximated by
type I algebras. These factors are subalgebras however, and that is not what I am demanding.



4 The construction

I now describe the central construction of this work. This construction involves taking a
situation where the local algebra of one side is a type I non-factor algebra and massaging it
into a form reminiscent of the crossed-product algebra. More precisely, I construct a trace on
an algebra g that is a direct sum of factors @4, 4" that satisfies the following properties:

1. When each factor is type I, this trace is a renormalised version of the usual trace.

2. When the factors are isomorphic and approximately type III, this renormalised trace
approximates the trace for the type II crossed-product algebra.
4.1 A general Type I algebra

A type I factor is the algebra of bounded operators on a Hilbert space B(#;). We are
interested in a general type I algebra, which is a direct sum over type I factors

aR = @ Cor s Grg = B(Ha) - (4.1)

Here, a labels the sector, and this algebra does not contain any operators that change
the sector a. There is a non-trivial centre® consisting of operators of the form @, f(a)1,,
where f is a complex-valued function of the sector. This structure occurs in lattice gauge
theories [30-32] as well as holographic QECs [19] (see figure 1).

This algebra, like every von Neumann algebra, can be realised as a subalgebra of operators
on a larger Hilbert space B(#'). This larger Hilbert space has the form

H = @%,a ® %,a C %Xt = @%,a ® %,a ® %us,a (42)

where # is the subspace of #¢yt that looks like

|\Ij> = Z \/pirx |¢>1r,a & ’Xa> ’ ’¢>lr,(x € %ﬂ ® %,as

Xa) € #rusa- (4.3)

Here, {|xq)} is a fixed set of states, one for every a. The states appearing in (4.3) are
normalised as

<¢W>a =1 <Xa’)(zx> =1 (4'4>

The extra Hilbert space #ysq in (4.2) is known as a ‘fusion tensor factor,” a name that
comes from the lattice gauge theory literature. It has a tensor factorisation

%us,a = %us,L,a X %us,R,a- (45)

The state |y,) is a fixed state.” The fact that @r cannot change the value of a (i.e. that it
has the direct sum structure in (4.1)) descends here from the fact that @ can be measured

5The case of a factor follows by only taking one value of a. Subtleties will be dealt with in footnotes.

SA centre Z of an algebra o is a subalgebra that commutes with every operator in the parent algebra,
[Z,d] = 0. A factor is an algebra with a trivial centre (consisting of multiples of the identity).

"Note that it is possible to have this fusion tensor factor even in the case of a factor, i.e. when a takes only
one value.



also in the left algebra @1, = @k. The choice of s, and |y,) are entirely arbitrary from
the algebraic point-of-view, since the algebras of interest <1, g do not have access to them.
This arbitrariness arises when we represent these algebras on a Hilbert space; they are not
there in the algebras themselves. We can think of them as representation ambiguities.

Some notation: I will use small letters 1/r for the ‘bulk’ subsystems (the subalgebras
acting on each #i, o) and capital letters L, R for the ‘boundary’ subsystem (that includes
the central operator). The nomenclature of ‘bulk’ and ‘boundary’ is motivated by analogy
with the holographic QEC [19]; heuristically, the centre operator is available to a boundary
observer but not a bulk observer. Note that there is no bulk algebra «, here, only the bulk
algebras a. o for each sector; in section 4.2 we will make all the .48 isomorphic and then
there will be a bulk algebra «,. I will also put a hat on top of operators when I am using
the same letter for the operator and its eigenvalue.

As mentioned above, the choice of #,s, and also |y,) is not unique given only «r. Both
in lattice gauge theories as well as in holographic QECs [33] |y,) is maximally entangled
across the factorisation in (4.5), and I will assume this to be the case.® The entanglement
entropy does depend on this choice; it is

SE(I,R) = Zpa (—log pa — tr palog pa + Sa) . S = log dim Hys - (4.6)

It is crucial here that « is a discrete index. In the holographic QEC, this is S, ~ A/4GN.
Given that S, is the only effect of these |yq)s, let me now choose the indices a to be’

a=S, (4.7)
and replace |yq) by
Xa) = o)y, )R - (4.8)

These steps are valid so long as there are no degeneracies in S,; I assume this to be the
case for simplicity, but nothing important depends on this assumption. This is analogous
to a passage from the CFT Hilbert space to a semi-classical Hilbert space in AdS/CFT;
low-energy measurements cannot resolve the e’-dimensional microcanonical subspace and
can only measure S — or, more precisely, the closely related quantity of ‘boundary’ energy.
Introduce the modified trace of a right-sided operator a = ®qa, [38]

tra = Z e“try,, aq. (4.9)
a
Define also the ‘area’ operators

OA(L/R =a |a>L/R <0{‘ . (4.10)

8This is not so in quantum group lattice gauge theories or more generally if the trace with the correct
adjoint-invariance properties is a ‘quantum trace’ — i.e. Tr O = tr (IDO), where tr is the naive trace and D is
known as the defect operator or the Drin’feld element depending on context — a situation that is relevant
for gravity [22, 29, 34-36]. Repeating the analysis of [33] with the quantum trace leads to a non-maximally
entangled state [37]. In this case Sy defined in (4.6) becomes a non-trivial operator even within each sector .
My analysis uses pretty heavily that it is a number; it would be interesting to address this lacuna.

9 is a label and can be chosen to be any property of the corresponding sector. I’'m choosing this property
to be S,.



Now fix a base statel?
= Z VYo ‘(p>lr,a ‘0‘>L ’0‘>R' (4.11)
o

This is the state I will use to rewrite the trace (4.9) using (2.1). It will be useful to use
the Schmidt basis for |¢),

ka
=Y e 7 |ka) [Ka), s kot = Zk |kar)iyy (ke - (4.12)
ko

|®) is chosen so that these are complete bases of %/r,a and none of the k,s vanish. I
have also defined the one-sided modular Hamiltonians kg here. The one-sided modular
Hamiltonian for ® is

Ror =Y (=10 ge + ke ) @), (@ (4.13)

Applying (2.1) at this stage will not result in anything insightful.

The fundamental reason for this is that at this stage the algebra is made out of a ‘bulk’
operator for every value of the ‘area’ whereas the crossed product algebra is one ‘bulk’
operator for every value of the left ‘boundary’ Hamiltonian. For a € specar, ky, € spec 120,,1,
define the ‘boundary Hamiltonian’ X, the probability gx of measuring the value X and the
set K(X) as the simultaneous solutions of the following equations

—loggx = a +kq —log qq

kx € K(X) & qxe ™ =gue ke

Yooek=1 (4.14)
kx €K(X)
These equations are the discrete versions of the JLMS relation [23, 24]; they will become
more familiar in section 4.2. We remind the reader that, despite the name, X is not a
Hamiltonian governing the real-time evolution of any system but the modular Hamiltonian
in a putative boundary dual (more precisely, it has the same eigenvalues as the modular
Hamiltonian but is not the same operator).
Call the set of solutions for X as Z.!! With these definitions, the basis elements of the
Hilbert space can be rewritten as

ka)y o)y, = [X)1, lkx )y s )R lka), = kx), [X)g - (4.15)

In terms of this new basis, the base state is

_ka
= Z que 2 |ka)y o)y ) [ka),
ke
_kx
= Z Z gxe 2 [X), [kx) [kx), [X)R

X€EE kxeK(X)

= Z Vax [ X)p [e)x 1X)g - (4.16)

XeE

10T his is normalised as written if we modify the trace as in (4.9) without modifying the inner product, so
that (a|a) = 1 but tr|a) (a| = e*. This is a slightly unnatural, but more convenient, choice.

10 the case of a factor, g, = 1 and E = {a + k‘k € speclg}. Assuming no degeneracies in the entanglement
spectrum of |®) — a choice that can always be made — gx = e XY ks = 0.



This also clarifies that the set K(X) = spec ]EX)l, where the latter is the one-sided modular
Hamiltonian for [¢)y.
A general state in the full Hilbert space gets renamed to

lka)y o), la)g |k:x>R = |X)p, [kx ) [kx), |X/>R' (4.17)

There is a relation between X and X’ due to the equality of as on the left and the right.
Notice first from (4.14) that

a =X+ log {qae_k“] =X —kx. (4.18)

qx

As a result
X' — X =kyx — kx. (4.19)
Abstractly,

, (4.20)

@ %a,l & %a,r = @ %X,l X %X’,r
« X' —X=kys,—kx,

X,X'€x

where the operator equation in the subscript is a constraint satisfied by all states.
After similar manipulations, the one-sided modular Hamiltonian (4.13) for ® can be
written as

Kor = Xr —loggg, , (4.21)

where Xg, qx,, measure the value of X', qx/ in (4.20). The trace (2.1) is then

tra:<q> q>>:<q>

The second equation follows from the constraint (4.19) and the fact that |¢) is annihilated

R X0
s
%,

a

q>> : (4.22)

oS

by its two-sided modular Hamiltonian kx. One can also renormalise it
Tra=e Xtra (4.23)

for some Xy. This is remarkably similar to the trace written down in the crossed product
algebra; in particular, it neither uses a sum over states in a local tensor factor nor the modular
Hamiltonian of |¢),.. This trace continues to make sense after replacing the local subalgebra
at fixed X, B(#x.), with a type III; algebra, meaning that the local subalgebra including
the X degree of freedom would be a type II algebra.

An important difference from the crossed product, however, is that the right subalgebra
apr from (4.1) is not block diagonal in X,

Dala = Z Ao kg k!, |0 ka> <05, k;‘
ke,
= Z X Xtk —kx AX ki X ke [ X bext) (X kx| (4.24)
XX ke kxer

,10,



The Kronecker delta here can be derived from the same steps used to derive (4.19). In
particular, this is also true of density matrices of states |¥) # |®).

The problem is that in this equation X is the right ‘boundary’ Hamiltonian, which is
not central since everything is dressed to the right ‘boundary’ Removing the expllclt |X )R
factor from the Hilbert space and using the constraint (4.19) to define Xp = X1 + kX kXL 1
the operator is block-diagonal in X; space. Before being more explicit about this, it will be
useful to specialise to a situation closer to holography.

One has to be more careful for operators on the left; the point is that when we change
the dressing as in figure 2, the operators on the right stay the same but those on the left
change — a left operator dressed to the right boundary is not block diagonal with respect to
a. But to build the crossed product algebra for the left the most convenient choice is to dress
the operators to the left boundary [4, 6]. This means that the actual algebras used are the
ones on the left of figure 2 — I index the right (left) operator by the left (right) ‘boundary’
energy X1, (Xg). This is exactly the original type I algebra on each side, as discussed already
in section 2, providing some moral support for the idea that the crossed product is a formal
way of dealing with centres in the type III case.

4.2 The Type III limit

A closer analogy to the crossed product construction is easier to describe in a special ‘semi-

classical’ situation. This situation is one where the following properties are true:
1. There is a large parameter S. In gravity, S ~ —N
2. spec @ is almost continuous, with a spacing e™>.

3. g is peaked around a = ap = O(S), with O (1) width. In other words, I work with a
microcanonical ensemble.

Further, the width of the probability distribution in all states of interest is O (1/¢),
where & = 0 (V) is a different small parameter [6].

4. The Hilbert spaces #i/ o = #i,x are the same for each «, and infinite-dimensional. And
therefore the same is true of the algebras @1/ = @i

This allows me to choose also a base state |®) such that the ‘bulk’ state |p,) = |@) is
also independent of «a.

5. @y is a type I approximation in the sense of section 3 with small parameter § ~
) (50) ,0 < ¢. In particular, this means that the spectrum of the one-sided modular
Hamiltonian Igl/r of the base state in each sector |¢) ranges from 0 to co with spacing
log %; this is true of any state. The spectrum of the full two-sided modular Hamiltonian
k is a discretisation of the full real line. This is also true for every other state.!2

I will assume that every number in speclz is O (SO) even though the spectrum is
unbounded above and below; cutting off such large eigenvalues only changes the state
by an exponentially small amount.

12Note here that I'm not using the non-rigorous second requirement of the type I approximation in section 3.2.
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I now treat a as a continuous variable, and take |a) to be §-function normalised. As long

13

as a is in reality discrete, the reader can read §(0)“ = 70 (es). With these approximations,

the equations (4.14) simplify substantially. The first equation is

X—a:k—i-logq(x) =0(1)

q(@)
— q(a) = q(X) + (& = X)q'(X) + -+ = q(X) (L + 0 (¢))
= X—a=k+0/(e),
and ko ~ kx. (4.25)

The intricate recursive structure of (4.14) has disappeared; it should be noted that the
assumptions (apart from the introduction of ¢) were chosen to mock up the semi-classical
limit of a holographic QEC, not to make this simplification happen.

(4.25) implies that X is also approximately continuous. Thus, the range of values of «
and X become the same and the relabelling can be thought of also as a shift

kD ey @y [k, = Ude™ e e [X) 1 X0 [K), (4.26)
where II is the conjugate of X and the re-dressing unitary Uy, is
Uy, = el (kllu+kellr) (4.27)
This re-dressing unitary exactly takes the value of the area to the value of the ‘boundary’
Hamiltonian by adding the modular energy of the bulk fields. I will call the r.h.s. the
left-boundary-indexed state and the Lh.s. the HRT-indexed state.
The e*!I& on the r.h.s. imposes the constraint (4.19). In the limit where spec X;, becomes
genuinely continuous, the state on the r.h.s. has norm §(0). This can be dealt with either by

taking the dual Hilbert space to be a Hilbert space of co-invariants [7, 39] or by removing
the |X)p factor and defining

Xg = X + k. (4.28)

This latter is closer to the usual crossed product construction, and this is the one that is
more convenient here. With this change,

Usere = €M1 Ja) [l [K), = Uler 1) Ky K, - (4.29)
For left-sided operators, we need to dress to the left boundary using
UarL, = eil;rﬁ. (4.30)

The confusing aspect of this notation is that in different equations the same tensor factor
carries the value of the area or the left or the right ‘boundary’ Hamiltonians.

Since the algebra in the HRT-indexing is made out of operators of the form ®,a,, that in
the boundary-indexing is made out of the same operators conjugated by the re-dressing unitary,

D

a.k,k’

Ubr = Y 1X.K) axer (X, K| (4.31)
X

UdrR a, k) agjp (o, K|
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An analogous operation is possible in the general case, but harder to describe, see the
discussion at the end of section 4.1.

Another issue that needs to be dealt with is that the trace (2.3) diverges in the S — oo
limit, because there is an eX in it and X = O(S). This is easily dealt with by renormalising
it. Define 6X = X — Xj; the renormalised trace is then

5X
a—s—

q(X)

This is in line with the idea that the trace in the type II algebra is a renormalised trace.

Tra=e Xtra= <\Il

\p> . (4.32)

Now, to show that there is a canonical isomorphism between the crossed product for
different base states, simply note that the re-dressing unitary is

Uarr = (ppy1) - (4.33)

Therefore the re-dressing unitary based on a different state |¥) is

Uber = (py) " = | (o) ™" (poa)™ | Ui (4.34)

The operator in the square brackets is exactly the Connes cocycle unitary used for this
isomorphism in [4]. In the general case, this independence is clear simply because all T did
there was rename states; recasting that renaming as the action of a unitary here makes
it seem non-trivial.

This isomorphism was also used in [6] to show that the type IT entropy was the difference
of generalised entropy from the base state. This proof applies to this situation as well,
since it differs from the continuum due to the finiteness of S, ! > ¢! and the proof
of [6] has errors of O (¢).

Finally, the conditional expectation of [21] exactly leaves the total modular energies X, X’
(more precisely, spec XL/R) unchanged while changing spec @ and spec Igl/r. The trace, then,
is manifestly invariant under this operation. This conditional expectation can be thought of
as coarse-graining the type I approximation (e.g. § — 2§ in the example of section 3).

4.3 Type II; algebras

If the area has a maximum value a < g, then the ‘boundary’ energy has a maximum value
which is ag + 0 (S°). Taking Xp to be the maximum value of X results in Tr1 = 1 and
therefore the algebra approximates a type II; algebra.

Inverting the logic, along with the fact that the gravitational crossed product is relevant
for de Sitter and also general gravitating subregions, indicates that the holographic QEC,
or at least the boxed part of figure 1, might apply to these cases also. This corroborates
intuition that the area operator is central in general situations; however, if the holographic
QEC is relevant in these situations, it is unclear what Hilbert space the unitaries (which
are the holographic as well as the error-correcting part of the circuit) map the semi-classical
state into.!3

131 thank Matthew Heydeman for emphasising this last subtlety to me.
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5 Discussion

I have shown that the crossed product construction can be approximated in a type I setting.
The main physical insights used can be found in [6]. The solution of this ‘engineering’ problem
can be used in the context of tensor networks and holographic QECs, but also in the more
general context of local algebras with centres like lattice gauge theories.

The most interesting outcomes of the main analysis are:

1. The transformation from the holographic QEC to the approximate crossed-product can
be thought of as a change of dressing. It would be interesting to make this precise in
the language of quantum reference frames. It would further be interesting to see if
the whole concept of the gravitational crossed product can be usefully recast in that
language.

2. The discussion of section 4.3 indicates that we should in fact think of the area operator
of the boundary of an arbitrary subregion, e.g. the static patch of de Sitter, as a
central operator in the regulated semi-classical algebra. This again is not a surprise;
the interesting statement is that this is justified as a consequence of the success of the
gravitational crossed product.

3. The holographic QEC can contain ‘non-classical’ states, those where the area has
0 (1/Gy) fluctuations. The steps above then lead to a direct sum of approximate
crossed products, one for each classical background.

There are some interesting future directions.

1. Make the discussion of section 3.2 more precise.

This might also help make my construction more elegant.

2. Extend this construction to the case when the fusion state is not maximally entangled.
This is relevant for the reasons discussed in footnote 8.

3. It would be interesting to make the connection with the description in terms of geomet-
rical phases over the space of states in [40].

4. This construction shows that there is a similarity between the crossed product algebra
and the code algebra in a holographic QEC. The structure of the holographic QEC
was found by demanding the Ryu-Takayanagi formula and entanglement wedge recon-
struction in type I algebras [19]. This suggests the following very interesting question:
can the crossed product algebra be related in a similarly precise way to the generalised
entropy formula and entanglement wedge reconstruction in the case where the bulk
algebra is type III, prehaps in an asymptotically isometric setting [20]?

5. Use this construction to understand the relation between the path integral and algebraic
proofs of the finiteness of generalised entropy.'* There are two path integral proofs,

141 thank Shiraz Minwalla for emphasising the importance of this question. I apologise for not having
solved it.
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both of which assert that the renormalisation of Newton’s constant required to make
any Euclidean path integral finite also renders the generalised entropy finite. The two
proofs differ in the replication scheme. The much better studied one, following in the
footsteps of [1], is one where a conical singularity is introduced at the horizon. Another
one [41] uses the Gibbons-Hawking path integral [42] and so does not introduce a conical
singularity. In this second scheme the statement of finiteness is straightforward!® but
the interpretation of the matter correction as a matter entanglement entropy is not.
Note that the first prescription is entirely wrong if one is interested in Rényi entropies,
and so it behooves us to study the Gibbons-Hawking prescription.

This is good news, since as we have seen the crossed product allows the area to fluctuate,
a feature shared only by the Gibbons-Hawking prescription does. In particular, the
calculation of Rényi entropy in the crossed product algebra reproduces the answer
from the Gibbons-Hawking path integral [4].'6 The holographic QEC is an even closer
analog, since it is (a) regulated and (b) natural from the bulk point of view to work
in sectors of fixed area rather than fixed ADM energy. Further, the same subtlety of
identifying the matter contribution as the entanglement entropy of a specific state in
the bulk QFT exists — since changing X also changes the geometry,'” which means
that the different states |¢/) live in different Hilbert spaces. In the Gibbons-Hawking
path integral, the bulk remains smooth upon replication because the dominant ADM
energy changes when we replicate, meaning that it is not just the bulk state on the
original geometry that contributes to the matter part. [6] (and, in their footsteps, I)
dealt with this subtlety by fixing the ensemble to be microcanonical. Since an O(1)
change in the ADM energy is an O(Gy) change in the bulk geometry, one does not have
to worry about the above subtlety.

So, to make the connection precise, we would have to either prove the equality of type
II and generalised entropies in the canonical ensemble or repeat the analysis of [41] in
the microcanonical ensemble.

6. Work out an example in JT gravity. This would involve constructing a holographic QEC
using a smeared area operator like [, ¢fs(0+)fs(0-), where f5(x) is sharply peaked at
x = 0 and width O(5). This is the same § as in section 3.1. The main technical obstacle
is to find a function f5 such that the relation (4.25) between ADM energy and smeared
area holds.

15There are subtleties regarding phase transitions and mass thresholds in the bulk QFT, but I believe the
same subtleties will exist in the algebraic proof.

16 A little more work is required to show this including matter corrections. [4] showed that the crossed
product reproduces log corrections to the entropy one expects from the boundary canonical ensemble. These
log corrections vanish if one does not allow the area and the ADM energy to fluctuate as in the conical
singularity prescription.

1"There is also a subleading issue where a single X sector is not exactly a single geometry.
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