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Outline

The moduli space of complex curves, or Riemann surfaces, is endowed with a recursive
structure, which has been extensively used in the investigation of the moduli space
since its construction in the previous century. Algebro-geometric invariants of this
moduli space, which are called intersection numbers, are related correlation functions
of matrix models. In this thesis the Quartic Kontsevich Model as well as the LSZ model
act as two examples for this. The origin of both matrix models, which in a particular
limit are related to quantum field theoretic investigations, can be traced back to the
quest of finding a unified physical theory of our universe by constructing a non-trivial
interacting model on non-commutative space. It is, however, in the truncated matrix
models, where most algebraic structures are evident. These are studied here applying
the universal framework of topological recursion to explicitly compute expressions for
the correlators of low topological type in terms of intersection numbers on the moduli
space of curves. While the LSZ model, a matrix model of complex matrices, can be
treated within the original topological recursion, its hermitian counterpart, the Quartic
Kontsevich Model requires a generalization to what is called blobbed topological recur-
sion due to its more involved loop equations. The additional data of this framework is
provided for the correlators of the Quartic Kontsevich Model for low topological type.
These explicit results are set to supply future research towards an understanding of
the integrable structure of the Quartic Kontsevich Model (in the sense of the Japanese
school) with useful data.

This integrable structure is a consequence of the deep recursive nature of the inves-
tigated models. It is, prominently, also shared by the Kontsevich model itself, the
cubic analogue of the model studied here, which encodes the intersection numbers
on the moduli space. In order to provide a different perspective on this, a relation
between intersection numbers and a combinatorial approach to the lattice-point count
in polytopes called Ehrhart theory is studied. A restricted setting allows to approach
the natural question of the significance of those polytopes corresponding to intersec-
tion number. By determining explicit data in the setting of Ehrhart theory this class
of polytopes is characterized. Beyond the fact that this data has an interpretation in
terms of a specific type of partitions, called order-consecutive partition sequences, in
that process interesting patterns are observed. In particular logarithmic concavity is
proved for the expansion data by different techniques, which reflect the significant and
profound structure of the moduli space of curves.

Der Modulraum komplexer Kurven, beziehungsweise Riemannscher Flachen, weist
eine rekursive Struktur auf, welche in der Untersuchung dieses Modulraums weitre-
ichend genutzt wurde. In dieser Thesis werden algebraisch-geometrische Invarianten,
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welche aus dem Englischen intersection numbers oder auch Schnittzahlen genannt
werden, mit dem quartischen Kontsevich-Modell sowie dem LSZ-Modell in Verbindung
gesetzt. Der Ursprung beider Matrixmodelle, welche in einem speziellen Grenzwert
quantenfeldtheoretisch betrachtet werden kénnen, sind zumindest bis zu der Suche
nach einer vereinheitlichten physikalischen Theorie unseres Universums zurtickzuver-
folgen, da beide als nicht-triviale, welchselwirkende Modelle auf nicht-kommutativem
Raum konstruiert sind. Da die algebraischen Strukturen jedoch in dem Matrixmodell,
nicht in dem angesprochenen Grenzprozess, zu beobachten sind, wird hier ersteres
untersucht. Mithilfe des universellen Prinzips der Topologischen Rekursion werden
explizite Ausdriicke far Korrelationsfunktionen niedrigen topologischen Typs gefun-
den, welche deren Abhingigkeit zu den Schnittzahlen beschreiben. Wahrend das
LSZ Modell, welches ein Matrixmodell komplexer Matrizen ist, im Rahmen der ur-
sprunglichen Topologischen Rekursion betrachtet werden kann, erfordert dessen her-
mitesches Analogon, das quartische Kontsevich-Modell, aufgrund der komplizierteren
Schleifengleichungen eine Verallgemeinerung, welche im Englischen blobbed topologi-
cal recursion genannt wird. Die zuséatzlichen Informationen dieser allgemeineren For-
mulierung werden fur Korrelationsfunktionen niedrigen topologischen Typs explizit im
quartischen Kontsevich-Modell hergeleitet und bereitgestellt. Damit kann zukunftige
Forschung beztiglich der integrierbaren Struktur des quartischen Kontsevich-Modells
(im Sinne der japanischen Schule) auf einem fundierten Verstindnis der Verbindung
zu Schnittzahlen aufbauen.

Auch dieser zu untersuchenden integrierbaren Struktur liegt die rekursive Natur der
untersuchten Systeme zugrunde. Diese wird auch durch das kubische Analogon, das
Kontsevich-Modell, geteilt, welches die Schnittzahlen des Modulraums kodiert. Eine
weitere Perspektive darauf stellt eine Beziehung zwischen Schnittzahlen des Modul-
raums und der Ehrhart-Theorie aus der Kombinatorik dar, welche die Zahlung von
Gitterpunkten in Polytopen beschreibt. In einem eingeschrankten Rahmen kénnen hier
nattirliche Fragen beztiglich der Bedeutung und Darstellung von den zu Schnittzahlen
korrespondierenden Polytopklassen angegangen werden, indem explizite Daten ermit-
telt werden um, diese zu charakterisieren. Dabei wird nicht nur eine Interpretation der
Daten durch einen speziellen Typ von Partitionen gefunden, welche konsekutiv geord-
nete Partitionsfolgen genannt werden, sondern auch interessante Muster wie logarith-
mische Konkavitdt beobachtet. Diese Eigenschaft der Ehrhart-theoretischen Daten,
welche auf verschiedene Art und Weisen bewiesen wird, spiegelt die signifikanten und
tiefgreifenden Strukturen des Modulraums der Riemannschen Flachen wider.



Introduction

Investigation of natural phenomena has been a human pursuit as it is inherent in evolu-
tionary processes themselves. Documented in texts since antiquity the acquirement of
knowledge rested on the element of experimentation through ways of observation, trial
and error and reasoning via analogies. Although this can in some sense be regarded an
antecedent of the modern experimental quest, the reasoning in ancient text, for which
Aristotelian works are pivotal examples, relied rather on philosophical inference than
on rigorous data-backed conclusions.

In these days, mathematical considerations mostly arose due to physical problems that
were of original interest as opposed to the present when mathematics developed into a
discipline of its own interest with a plethora of subfields.

This development can be traced back to the scientific revolution, which had its be-
ginning in the 15th and 16th century, where mathematics became a decisive part of
scientific, primarily physical, studies. In various texts authors ascribed different roles
to mathematics in scientific inquiry. The plethora of these scholars ranges from Fran-
cis Bacon who laid down fundamental ideas developing the scientific method to Galileo
Galilei who perceived mathematics as an inherent feature of the universe.

Through various works Bacon, [Bacll], put forward an agenda of scientific method
through instrumentation and data collection heralding the beginnings of the scientific
revolution. He put forth the idea that' [Bac20]

« everything to do with natural phenomena |[...] should |[...] be set down,
counted, weighed, measured and defined. For we are after works, not spec-
ulations, and, indeed, a good marriage of Physics with Mathematics begets
practice »

and further explained the role of mixed mathematics, which in the present day might
be opposed to pure mathematics, that! [Bac05, Bac23]

« [it] has for its subject some axioms and parts of natural philosophy, and
considers quantity in so far as it assists to explain, demonstrate and actuate
these. »

tfrom the original « Illud insuper praecipimus, ut omnia in naturalibus tam corporibus quam virtutibus
(quantum fieri potest) numerata, appensa, dimensa, determinata proponantur. Opera enim meditamur,
non speculationes. Physica autem et mathematica bene commistaegenerant practicam. » [Bac20]

from the English original « Mixed hath for subject some axioms or parts of natural philosophy, and
considereth quantity determined, as it is auxiliary and incident unto them» [BacO5] or the later Latin
version « Mixta habet pro subjecto Axiomata et portiones physicas; Quantitatem autem considerat, quatenus
est ad ea elucidanda et demonstranda et actuanda auxiliaris. » [Bac23]



iv Introduction

In these passages Bacon postulates mathematics as a method for data analysis and
interpretation in science, which must be a supplementary but vital part of scientific
research. Galileo’s perception of the role of mathematics in science reached even further
documented in his famous lines’ [Dra57, Gal23]

« [Science] is written in this grand book - I mean the universe - which stands
continually open to our gaze, but it cannot be understood unless one first
learns to comprehend the language and interpret the characters in which it is
written. It is written in the language of mathematics, and its characters are
triangles, circles, and other geometrical figures, without which it is humanly
impossible to understand a single word of it; without these, one is wandering
around in a dark labyrinth. »

This passage from Il Saggiatore, 1623, describes the nature of mathematics as a lan-
guage which is not only a convenient tool to describe the universe we live in but referring
to it as its intrinsic characteristic.

Today it is obvious that the mathematical description of the world we live in mas-
sively facilitates the predictive properties of physics. In that, mathematics acts as a
language, being an assignment of meaning to symbols abstracting the world and our
thoughts. One that provides appropriate semantics to capture and - in great parts -
consistently conceptualize the information gathered through (extended) perception in
the observable universe. The consistency of our perception, which is reflected in the
mathematical description through abstraction, is not just a curious and fortunate co-
incidence but rather is due to its formation in an evolutionary process. This illustrates
the anthropic principle, as human perception has evolved in a realm of the universe in
which it navigates. The mathematical abstraction that we, as humans, use to formulate
physical theories can in this sense be seen to be a, not necessarily fated, but direct
consequence of the observable universe via the anthropic principle. In this context
Galileo’s claim pushes even further by describing math as an inevitable constitutional
element of the universe.

The quest of abstraction as well as unification, which oftentimes go hand in hand,
are inherent features of science as described before. In the modern history of physical
theory this can be seen when Isaac Newton used the development of calculus to pro-
vide a unified description of gravitation at scales available to observation at that time.
Similar in spirit was Paul Dirac when he developed a special relativistic equation for
quantum particles rediscovering matrices that were first investigated by William Clif-
ford about half a century earlier. Or Albert Einstein when he built his theory of gravity
unifying electromagnetism with gravitation with methods from differential geometry. At

*from the Italian original « La filosofia & scritta in questo grandissimo libro che continuamente ci sta
aperto innanzi a gli occhi (io dico l'universo), ma non si puo intendere se prima non s’impara a intender
la lingua, e conoscer i caratteri, ne’ quali é scritto. Egli é scritto in lingua matematica, e i caratteri son
triangoli, cerchi, ed altre figure geometriche, senza i quali mezi é impossibile a intenderne umanamente
parola; senza questi &€ un aggirarsi vanamente per un oscuro laberinto. » [Gal23]
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the present day this quest has a representation in the search of a unified description
of quantum and gravitational effects by finding a theory of quantum field theory and
general relativity. The various approaches that have been proposed, which not yet have
had conclusive success, have in turn stirred far-reaching activities in various areas of
mathematics realizing a fruitful interaction of the two disciplines.

The problem of incorporating gravity into a quantum field theoretic model of the uni-

verse can be approached at different levels of generality. On the one hand, separating
the quantum and gravitational effects one discusses quantum field theoretic objects on
an external background, that is described by classical, that is non-quantum, gravity.
Here the non-interacting, that is free, field has a satisfying solution. However, once this
point in the space of theories is left, there are no constructions of consistent theories
tieing to the issue of renormalization. This is exemplified by the proof of triviality of the
toy model of quartic scalar fields in four dimensions by Aizenman [Aiz81, AD21]. This
shows that one clearly needs to depart from this standard setting to avoid inconsisten-
cies in the interacting theory. On the other hand, as alluded to above, a true theory
of quantum gravity that provides a consistent description of gravity and the quantum
realm in full generality is right now not available. Future inspirations in the art of
mathematics and the curiosity to investigate the physical universe that stir creativity
might lead to a yet unwritten theory that achieves this.
At an intermediate level, one might investigate the influence of quantum field theoretical
objects on classical gravity via the stress-energy tensor. Described by Heisenberg’s re-
lation prescribing the boundedness of the product AzAp from below the measurement
uncertainties in position and momentum space in quantum mechanics are correlated
introducing a non-commutative structure in the phase-space of quantum mechanics.
Equating the momentum uncertainty to one in mass this in turn is responsible for an
uncertainty in the Schwarzschild radius of the object that is considered. Thus, the
metric is effected by quantum mechanical effects introducing a minimal length which
quantum fields can be localised on and thereby a non-commutative structure on space
itself. This is related to short-distance singularities in quantum field theories and ulti-
mately to the fact that on small scales geometry might lose its classical meaning, an idea
that already Bernhard Riemann speculated about [Rie68]. By consistently handling
this issue one constructs a quantum field theory on non-commutative backgrounds
resting on the framework of non-commutative geometry [Con94, Con95, Con96]. There
have been waves of attention to this subject since the mid of the past century pro-
ducing literature that ranges from foundational work, renormalizability concerns to
connections to string theory amongst others, which will not be discussed here. The
interested reader is referred to one of various reviews emphasizing different subjects
such as [Sza03, Wul06, RivO7, Wull9].

In this thesis a special limit of one example for a toy model of such a quantum
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Figure 1: This illustrates Riemann surfaces of increasing genus in R3.

field theory on non-commutative space is investigated! with respect to mathematical
structures that it exhibits. Incidentally, in this limit the nature of a quantum field
theory is lost and what is studied is a truncated matrix model, while the investigation
can still give valuable insights that might apply in the broader context. The gain of
this is a wealth of algebraic structure that is, amongst others, related to the moduli
space of curves. This entity, which can be seen as the parameter space of a class
of surfaces in three-dimensional space that are named Riemann surfaces in honor of
Bernhard Riemann, is a classical subject of studies since the past century and can
even be traced back at least to Riemann himself [Rie57].

The pursuit of abstraction and generality in mathematics oftentimes leads to programs
of classification. A topological classification of Riemann surfaces that is illustrated in
Figure 1 is achieved by the integers enumerating what is called the genus. A closer
examination of the nature of the space of Riemann surfaces shows that beyond the
topological there is a vast range of structures to be discovered by means of complex-
analytic, algebro-geometric or combinatorial methods. These lead to the construction of
the moduli spaces of Riemann surfaces of fixed genus M,. Akey step in its investigation
was the realization that M, in fact, has non-trivial boundary. In their seminal work
Pierre Deligne and David Mumford and later Finn Knudsen [DM69, Knu83] constructed
a compactification M ¢ of the moduli space of Riemann surfaces as what is today called
a Deligne-Mumford stack that allowed for a plethora of new insights. Amongst others,
cohomological methods were used to identify invariants of M ¢- These include intersec-
tion numbers of cohomological classes, which are central to this thesis. Intersection
numbers are a fascinating object of studies for decades. One crucial property is their
recursive structure which is inherited from the boundary of the elements of the collec-
tion { M ¢}¢- This structure, which is known by the name of Virasoro constraints can be
phrased in terms of a system, or hierarchy, of differential equations, which relate them
to the field of partial differential equations as well as matrix models. This remarkable
connection was famously first conjectured by Edward Witten [Wit90] and then proved
by Maxim Kontsevich [Kon92]. It was later discovered to be an instance of a deep uni-
versal framework called topological recursion [CEO06, EO07, Eynl11b, Eyn16], which
governs a wide range of problems in different areas of mathematics. As the field of
topological recursion, since its initiation by Bertrand Eynard and collaborators more

tOne can approach the model from various other, certainly more mathematical, directions than the
physical approach sketched here. This owes to the author of this thesis deciding to choose that one
which is the most natural due to the educational background of the author.
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Figure 2: This shows a polygon in R2. It has area 7 (shaded blue), which can either be
deduced classically or by Pick’s theorem from the count of its internal (yellow) and half
the boundary points (red) as well the number of connected components of its complement
minus two.

than 15 years ago, has experienced an incredible growth beyond a tailored introduction
a broad discussion will not be attempted here. It will, however, be pointed out that the
results presented in this thesis in Chapter 2 are an explicit computation of correla-
tion functions of the physical model described in Chapter 1 in terms of Intersection
numbers using an extension of the theory of topological recursion, called blobbed topo-
logical recursion. This furthers the understanding of the physical model by the explicit
computation of the further parts, called blobs. This will assist a deeper understanding
of the implications of the algebraic structures in the model in terms of what is called
integrability, which will be the subject of future studies.

As alluded to above, there are various techniques that can shed light on the nature
of the moduli space of curves by uncovering new perspectives and interpretations. The
analysis in Chapter 2 about its relation to matrix models is accompanied by work on
a recent combinatorial interpretation of intersection numbers, to which Chapter 3 is
dedicated. In [Afa22], Adam Afandi uncovered that certain polynomials that compute
intersection numbers are, in fact, related to the count of integer lattice points in poly-
topes. The latter is described by a well-developed theory which traces back to Eugéne
Ehrhart who introduced the theory since the 1960s [Ehr62, Ehr74]. It can be seen as
a generalization of a classical theorem by Georg Pick [Pic99]. In his presentation he
showed that the area of a polygon in two dimensions can be computed using only com-
binatorial data about integer lattice point in its interior and boundary. The theorem,
illustrated in Figure 2, received, since it was first stated, several different proofs and
generalizations that translate the continuous information of the area into discrete data.
Ehrhart’s work extends Pick’s theorem to higher dimensions by considering polytopes.
Counting integer lattice points in polytopes, the continuous information is recovered in
a certain scaling limit.

By showing that intersection numbers on the moduli space of curves can be computed
via Ehrhart theory, Afandi not only gave an interesting new interpretation. He also re-
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proved their polynomial asymptotics as relevant information about the Ehrhart theory
of polytopes is captured by so-called Ehrhart polynomials. In this thesis the class of
polytopes corresponding to evaluations of intersection numbers is investigated. Based
on an explicit result about a restricted sector of these, combinatorial properties are
conjectured. To be explicit, it is shown that binomial expansions of the Ehrhart poly-
nomials in the restricted sector obey logarithmic concavity. Numerical data as well as
the recursive structure of the intersection numbers strongly suggests that this result
extends to all Ehrhart polynomials associated to Intersection numbers. This property
appears in different contexts in a variety of different fields in mathematics. It, there-
fore, was subject of studies from numerous different perspectives shedding light on
its nature as well as providing different techniques most recently from matroid the-
ory [Huh15, Huh12, HK12]. Due to the rich structures that have been found in the
moduli space of curves, the occurrence of logarithmic concavity may not come as a
surprise. In this thesis, classical results due to Richard Stanley and others are applied
for the proof. Future research will be dedicated to using techniques from topological
recursion to verify the intriguing conjecture.

structure

The structure of this thesis is parallel to the order in which the topics were mentioned
in this introduction. The thesis is divided into three chapters. The presentation takes
the physical point of view on the Quartic Kontsevich Model as well as the LSZ model,
which are introduced and defined in Chapter 1. This also includes a discussion of the
steps that were taken in the past in approaching a solution of this and related models,
which relates through the recursive structures to intersection numbers on the moduli
space of curves. As the moduli space of curves acts as a unifying theme, it is the
topic of Chapter 2. The latter offers a short presentation of the ideas and definitions
that are required to understand intersection numbers on the moduli space of curves.
This naturally leads to the structure of topological recursion defined in Section 2.2,
which is a reflection of the recursive nature of the moduli space of curves as well as
governs the Quartic Kontsevich Model. The relation between physical models such as
the latter and intersection numbers is discussed, and the explicit results are laid down.
Based on the discussion of the properties of intersection numbers, in Chapter 3 the
combinatorial perspective on them through Ehrhart theory is introduced. This includes
an exposition of Ehrhart theory results tailored to this thesis as well as its relation
to intersection numbers. The discrete data, which this interpretation of intersection
numbers generates, is investigated in the following with respect to logarithmic concavity
which is discussed in Section 3.4. Two different proofs of this result are provided taking
an explicit as well as an abstract approach. The thesis is concluded by highlighting the
main results as well as natural avenues to generalize these in future research.
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Notation

The notation in this thesis generally follows widely accepted conventions and is for the
most part defined where it is first used. For reference some basic notation is laid down
here to facilitate comprehension as well as provide transparency and consistency.

The body of this thesis has a layered structure by chapters, sections, as well as
subsections.

Numbering of elements in text Throughout the text elements appear such as (i)
Definitions, which are illustrated by (i) Examples, as well as (iii) results stated in
Theorems, Propositions, Corollaries and Lemmas. The numbering of these elements,
as in

C.5.Ny

indicates the chapter and the section they are stated in, with numbers ¢ and s, respec-
tively, and enumerates them by n, within the groups, (i)-(iii), in which they are listed
above. The same applies to Figures after the introduction. Results due to the author
are contrasted to other work by the fact that these have no description in parentheses
after their number.

Equations that are displayed with number

(c.n)

are enumerated by n in every chapter of number c separately.

In this thesis N, Z, R, and C denote the natural numbers (starting from zero), the
integers, the real and complex numbers, respectively. At various instances the number
zero is excluded, which indicated by the symbol ’x’ in the superscript, that is N* for
example.

Furthermore, if not specified otherwise, the letters n, m, and d including their capitals
represent natural numbers. These appear for example as numbers of points or the
dimension such as in {vq,...,v,}, R?, or &,,, which denotes the symmetric group on n
objects. The imaginary unit, that is the solution to 2> + 1 = 0, is in formulas typeset in
an upright, roman-type fashion as i.

The ring of power series in = with real coefficients is denoted by R|[x]] while R|z] signifies
the corresponding polynomials. The same applies to other domains of the coefficients.

Braces and brackets Curly brackets (or braces) {al, as, .. } denote sets for some
objects ay, whereas ordinary round brackets (or parentheses) (a1, as, . . . ) denote ordered
sets. Moreover, for n < m double square brackets [n, m] indicate the set of subsequent
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integers {n,n+1,...,m—1,m} C Z, which is not to be confused with the closed interval
[a,b] C R. Using this, frequent notation is

{ar}eepn representing {ai, ..., a,},

or {ay}y if the index set is clear from context. In order to indicate the domain of the
elements of some set at various spots in this text the notation {a;}, € X is used for
some space X, which is to be understood as {a;}; C X.

Further peculiar notation include sums in the context of the moduli space of curves
/\/lg,n or its compactified version ./\797n (see Chapter 2). Here primed sums, which
are typeset as Z/, appear frequently. If not specified otherwise, in these sums terms
associated to unstable topological types are excluded.

Combinatorial functions In this thesis (Z) for n,k € C denotes the binomial coef-
ficient. It has a combinatorial interpretation in terms of counting ways of choosing
k objects from a set with n elements in the classical domain defined by n € N and

k € [0, n] yielding
n\ n!
k) Kl(n—k)’

for n! = n(n — 1)---(2)(1). Beyond this domain one might either set (}}) = 0 or
analytically continue the binomial coefficients using the I'-function via the identity
n! = I'(n 4+ 1). The I'-function constitutes the natural (and unique up to logarithmic
convexity [BM18], see Section 3.4,) extension of the factorial to the complex domain
without negative integers. As a variant to the ordinary factorial, the double factorial n!!
appears in this text, which signifies the product of all numbers up to n with the same

parity as n,

" Zfl 2k , k even,
22k — 1), koodd
k=1 ’ :

This should not be confused with the iterated factorial (n!)!.
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CHAPTER 1
Field theories on non-commutative
space

This chapter first introduces the Quartic Kontsevich Model as a matrix field the-
ory, which amongst others draws motivation from quantum field theories on non-
commutative space. As such one can see this model as a perturbation of a measure d M
defined by

exp —Liﬂ :/ d/\/l(q))ei@(‘]) (1.1)

!
k=1 N

where the integral is a matrix integral on the space H} dual to N x N-matrices and
{Jkl}k,l are the coordinates of some J € Hy with respect to the standard basis. The
non-commutativity of the underlying space is here encoded in the parameter N. Intro-
ducing the appropriate notation as well as results that give context to this is the aim of
this chapter.

Parallel to toy models in ordinary quantum field theory, this measure is deformed in
a quartic manner, here via a non-commutative product parametrized by N. Such
deformation away from the free theory is usually - in quantum field theoretical mod-
els - the source of interesting models but also ill-defined quantities. This has lead to
various attempts to renormalize such models, which had, rigorously speaking, limited
success exemplified by the proof of triviality of the quantum field theory with quartic
interaction on ordinary four dimensional spacetime by Aizenman and Duminil-Copin
in [Aiz81, AD21]. The Quartic Kontsevich Model, as described here, has to be subject
to renormalization only in the limit of infinite matrix size N — oo. This limit will not be
investigated here as it is the truncated model which exhibits richer algebraic structures
evident in the limit due to the effect of transcendental objects. The reader interested
in learning about this sector, which is closer to the quantum field theoretic motivation
of the Quartic Kontsevich Model is referred to the dedicated reviews [Wul06, Wul19] as
well as a nice presentation in [Bra22].

The main subject of investigation in the subsequent Chapter 2 will be derived from the
moments of the partition function Z associated to the quartically deformed measure

1 o Z(J)
= [ dAMu(®) D(epy,) - O S .2
(epras €pnan) /va Mint(P) D(ep,4,) (€pnan) i"0Jpa1 - 0Jpan o (1.2)

The algebraic structures that these exhibit were first observed in the Kontsevich model,
the cubic analogue of the present model. The investigation of the latter by Maxim Kont-
sevich and its role in the proof of Edward Witten’s conjecture about two-dimensional
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quantum gravity has crucially led to the formation of the research field this thesis
is embedded in. In [Wit90, Wit92], Edward Witten famously conjectured that two-
dimensional gravity, or the integrals computing its moments, correspond to intersec-
tion numbers on the moduli space of complex curves. Maxim Kontsevich was able
to prove this correspondence using so-called Strebel differentials and the language of
ribbon graphs [Kon92].

This seminal work stirred a wave of attention for this line of research as well as
similar models. Examples for these are the Quartic Kontsevich Model and the LSZ
model [LS02, LSZ04] named after Edwin Langmann, Richard Szabo and Konstantin
Zarembo, which will briefly be discussed at the end of this chapter in Section 1.4.

The discussion above explains that the investigation of the Quartic Kontsevich Model
is inspired by advances in quantum field theory, gravity as well as mathematical disci-
plines such as algebraic geometry amongst others but can be approached from various
other point of view. In the following the quantum field theoretic approach is taken
starting with the concept of axiomatic quantum field theories in the Lorentzian and
Euclidean setting, Section 1.1. The general theory is accompanied by a running exam-
ple defining the Quartic Kontsevich Model, which is a central topic of this thesis. In
Section 1.3 the solution strategy of this specific quantum field theory is outlined. The
exposition in this chapter follows in different parts [Wul19, Wul06, Bra22, BHW22].

1.1 Axiomatic approach to QFTs

A scalar quantum field is, initially, defined on Lorentzian spacetime R~

Definition 1.1.1. A scalar quantum field ¢ on R»¥~! is an unbounded operator-valued
distribution acting on a Hilbert space #, that is for any test function! f € S(RY4-1)
both ¢(f) and ¢*(f) act linearly on a dense set in H.

Furthermore, ¢ satisfies the axioms of covariance under the Poincare group, a spectrum
condition as well as locality.

The Hilbert space associated to a quantum field theory constitutes the space of
states. In it one distinguishes the vacuum state {2 € H being a unit vector of the
subspace of Poincaré-invariant vectors in the dense set, see above. From these data
one can build the essential objects, vacuum expectation values W: S(RV41)V — C
with

(froo o IN) = (S o(f1) - o(fN)Q) (1.3)

which are called Wightman functions in the context of Lorentzian spacetime [Wigh6,
SW89]. Understanding the axioms of Definition 1.1.1 as properties of Wightman func-
tions leads to the physical implications of covariance, locality as well as spectrum and

"The space of Schwartz functions S(R?) on R? is defined as a subspace of infinitely differentiable
functions as S(R?) = {g € C*°(R?): sup,cpa ’x"(Dﬁg)(x)‘ <00 Va,fB €N}
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cluster properties. Furthermore, it can be shown that these functions enjoy analytic
continuation to C in the time domain, which will be used in the below to define quan-
tum field theories on Euclidean space.

The foundation for the pivotal importance of the Wightman functions, or correlation
functions, lies partly in Wightman’s theorem stating equivalence of the data contained
in the scalar quantum field and the full set of correlation functions, see [SW89].

Euclidean space In order to rigorously define a QFT on a Euclidean space, Oster-
walder and Schrader in the 70s of the last century defined axioms building on consid-
erably irrefutable principles of physics [0S73, OS75, GJ87]. These mirror the axioms
proposed by Wightman in the context of Lorentzian spacetime.

The fundamental objects subject to these axioms are the vacuum expectation values,
or Schwinger functions, see [Sch59b], S(x1,...,z,) evaluated at positions {z1, ...z, }.
According to Osterwalder and Schrader the Schwinger functions shall transform in a
covariant manner under Euclidean transformations R? x SO(d), obey reflection pos-
itivity as well as be symmetric under permutation of their arguments. At this point
it is refrained from defining these axioms in more detail and the interested reader is
referred the original work as well as the reviews [Wul06, Wul19] for a discussion.

It remains to say that a model, that is constructed satisfying these axioms, can in
a mathematically rigorous manner be called a quantum field theory, amongst others
being free of spurious divergencies as well as having a proper time evolution [GJ87].
However, completing such a construction beyond non-interacting, that is free, theories
required major work [GJ87] in low dimensions and remains elusive in four dimensions
and is crucially tied to deep mathematically meaningful insight.

1.2 Non-commutative setting

Expressing the above on non-commutative space it is customary to structure the data
into a spectral triple (A, H,D), see [Con94], made of a Hilbert space of states accom-
panied by an unbounded self-adjoint operator D. The algebra A acts on H through
a representation. The operator D, which must have a compact resolvent, is usually
referred to as the Dirac operator as it behaves like a first-order differential operator due
to the boundedness of the commutator [D, a] for all a € A.

In the past it was understood that the correct setup to construct the model, which
this thesis investigates, are nuclear and approximately finite (AF) Fréchet algebras,
see [Wull9]. To understand this, it will first be explained what is meant by the class
of algebras referred to. This will be accompanied by a running example pivotal to this
thesis, leading to the definition of the Quartic Kontsevich Model.

The algebra acting on ‘H has the structure of a Fréchet space, which allows for a more
general topological structure induced by a family of seminorms compared to Banach
spaces, which require a norm.
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Definition 1.2.1. A Fréchet space is a locally convex vector space X with a topology
induced by a countable increasing family (u,,) of seminorms, which make X metrisable
and complete.

The Fréchet space X is nuclear if
1. for every n there is an inner product (, ),, which induces u,,
2. for any u,, there is a larger u,, such that the natural map from the closure of X
with respect to u,, to that of u,, is trace-class.

The space obtains its algebraic structure through a product compatible with the
topological data.

Definition 1.2.2. A (nuclear) Fréchet algebra is an algebra that, as a vector space,
is a (nuclear) Fréchet space in which the multiplication associated to the algebra is
continuous.

In order to illustrate these definitions, in the following as a running example the
Moyal algebra will be defined following [Wull9]. This will be the space on which at
a later stage the Quartic Kontsevich Model is constructed, which is a subject of this
thesis.

Example 1.2.1. In this text the original two-dimensional Moyal space is constructed
through double-indexed sequences. This construction can be generalized to any even
dimension by mapping indices to tuples acting as indices and using Cantor’s bijection.
In the two-dimensional case, let Ay be the vector space of double-indexed sequences
(ak1)k1enx , completed with respect to the family of inner products

(@,b) =Y 07" (k+1/2)" (1 + 1/2)" @by . (1.4)

k.l

where the notation a* = (@) k1 denotes an involution on Ay. To each of these inner
products an orthonormal basis of elements of the form 0™ (r +1/2)"™/2(s +1/2)"™/2e, ,
with (er,s)m = 0,04, can be associated. Furthermore, a calculation shows that the vector
space Ay with the inner products ( , ), is nuclear.

The vector space Ay receives its algebraic structure by the multiplication defined for
a,b € Ay by ab = ¢ with

Ok = Z T (1.5)

In that way, the multiplication is compatible with the linear structure as well as is con-
tinuous, turning Ay into a nuclear Fréchet algebra with basis elements ¢, 5, such that one
expands

.A@ oa= Zak,lem. (1.6)

k.l



1.2. Non-commutative setting 5

The following theorem, which goes back to Takako and Yukio Komura and was later
proved for any dimension? d, encodes possible the non-commutative structure in a
product of fields, see [KK66, VogOO].

Theorem 1.2.1 (Komura-Komura). A Fréchet space is nuclear if and only if it is isomor-
phic to a closed subspace of C*(RY).

Concretely, the algebra can now be interpreted as a vector space of smooth functions
connected via a (deformed) product, denoted by %, which is induced by the isomorphism
between A and a subspace of C*°(R?). Referring back to the beginning of this para-
graph, the construction through Komura’s theorem allows a consistent interpretation
of the coexistence of discreteness and continuity in the theory.

Example 1.2.2. Inthe running example of the Moyal algebra, the isomorphism of Kbmura-
Komura’s theorem maps Ay to a closed subspace of OOO(]RZ), which can be linearly ex-
tended to the nuclear vector space of Schwartz functions S(R2). It can be specified by its
action on the basis elements as

N )
©) o kKD [T+ i e 1N le?
=iy () A on

where X% are the associated Laguerre polynomials of degree m and x = (1, x2). This
introduces a product on S(R?), that is induced by the multiplication on Ay. One can
verify [GBVSS] that for ¢, € S(R?) this product takes the_form

dk dy

(2m)?
100

where © = 3 ( 00 ) To understand the xg-product, it might be noted that in the limit

6 — 0 this non-commutative product reduces to the ordinary product of functions. In fact,
one can write down an asymptotic expansion, see [WulO6, EGBV89] in the form

(@) )~ exp (195 Yoot

o(x + Oy)v(z + y)e” (1.8)

(ra)le) = [

(1.9)

r=y==z

In this representation the nature of the product as a deformation of the ordinary product
of functions is apparent. It is important to point out that even though in this text the
*g-product was introduced as a way to implement non-commutativity on the level of
space, beyond that it has additional, physically-interesting features such as non-locality,
see [Wull9].

A convenient tool to describe a quantum field theory including interacting models
as well as their renormalisation is the partition function or rather the associated mea-
sure. Originating in ideas of statistical models and already applied in the early days of

iOriginally the theorem is given for a closed subspace of C*°(U) with U C R?. Here only U = R? will
be significant.
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quantum mechanics, in this framework vacuum expectation values are calculated via
derivations.

In the present context the partition function is constructed via the inner products of
the nuclear Fréchet space. On the space A, of self-adjoint elements of A these define a
continuous, symmetric, positive-semidefinite bilinear form c, see [Wull9, Section 3.2],
called the covariance, as well as associated to it a continuous map

Z.(a) = exp(—c(a,a)/2). (1.10)

Using a theorem by Bochner [Boc32] generalised by Minlos [Min59] from this a proba-
bility measure is constructed in the context of real Fréchet spaces.

Theorem 1.2.2 (Bohner-Minlos). Let Z be a real continuous map on a real nuclear
Fréchet space X which is
- normalised to Z(0) = 1 and
- of positive type, that is for any xy, ..., v, € X and ¢, ..., ¢, € C one has
Z:J CkClZ(ﬁk — SL’Z) 2 0.
Then there exists a unique probability measure dM on the dual space X' with

Z(z) = / dM () e (1.11)

As it is familiar from field theories, in general, the moments of the measure due to
the theorem above are the Schwinger functions of the theory in consideration

Sn(ag,...,a,) = / dMe(p) p(ar) - - p(ay,) . (1.12)
(Ax)

for elements ay, ..., a, of the Fréchet space. These Schwinger functions are subject to
the axioms by Osterwalder and Schrader.

Example 1.2.3. For the introduction of fields on the Moyal space different covariances
can be defined. One of particular importance here, see [Wull9, Section 4.2] is defined for
a sequence of positive real number (E})ren by

6k,n6l,m

= . 1.13
E,.+ E; ( )

CE(ek,l, em,n)
The fields associated to this covariance through the Bochner-Minlos theorem can be in-
terpreted to propagate according to this covariance. In that sense the fields carry two
indices that are propagated and the positive real numbers { Ey};. can be interpreted as
masses carried on the different indices.
Other covariances, that are of relevance for this text’, are induced by the action of trans-
lations in R? or pointwise multiplication of functions in S(R?). For details on these the
reader is referred to [WulO6, Wull9] and references therein.

‘These play a role in the construction of the {)-term mentioned in Example 1.2.5, see[Wull9, Sec-
tion 4.2].
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Interacting theories

The physically interesting models arise when the free theory is perturbed by an in-
teraction. The approach that implements such a perturbation is rooted in quantum
mechanics and is named after Feynman and Kac [Kac49]. In this spirit the measure of
the perturbed theory d M, is proposed as

M ()~ P0%)
Jiany AM (p)e=PA9)

AMint(p) = (1.14)

in terms of the original measure d M as well as a polynomial perturbation P(\, ¢). At
this point it was cautiously refrained from making a definition, as naively implementing
this approach suffers, in actual quantum field theories, from various issues. Mathe-
matically speaking, the origin of these issues in quantum field theories traces back to
the fields in the argument of the polynomial P. Being distributions dual to functions
in the Schwartz space, their product constitutes not necessarily a closed operation.
This is observed in ill-defined objects such as diverging physical quantities. Solving
this requires major work, which is summarized by what is known as the programs of
regularisation and renormalisation. For a general discussion it is referred to one of
many quantum field theory textbooks [Sch13, Pes18] as well as reviews tailored to the
specific setting [Wul06, Wul19] and references therein.

Usually these approaches deal with the theory in a restricted setting and, then, try to
lift these restrictions in a careful limiting procedure, which - if successfull - preserves
the nice properties. This motivates the additional structure of approximate finiteness
which is imposed on the Fréchet space following [Wul19, Definition 3.5].

Definition 1.2.3. A nuclear Fréchet algebra A is called approximately finite if there is
an increasing sequence of finite-dimensional subalgebras embedded into each other by
x-homomorphisms

L1

A0 0 AL

A2 <2y (1.15)

such that union U,enAF is dense in A with respect to the locally-convex topology in-
duced by the Hilbert seminorms.

Example 1.2.4. The approximately finite nature of Ay can be seen by identifying trun-
cated double-indexed sequences in A) = span(ey;: k,I < N) with matrices, that is
AY = My(C). The x-homomorphisms ty: AY — A}t is given by

in:a—ad(0), fora e My(C), (1.16)

and a short calculation shows that the infinite union of the finite dimensional algebras
Al is dense in Aj.

This concludes the definition of the class of nuclear, approximately finite Fréchet
algebras, that are used to construct field theories on non-commutative space. In the
following the interaction is implemented in the running example.
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Example 1.2.5. The field theory obtained through the Bochner-Minlos theorem in the
running example on the Moyal space above can be deformed via the Feynman-Kac ap-
proach. It will then be truncated to yield the Quartic Kontsevich Model.

Although the details of the renormalisation procedure will not be laid down here, as the
truncated model in the end does not require it, the resulting action will be quoted [GW05,
Bra22] here ind € {0,2,4,6} dimensions

ddl' 1 _ 2 A e
Slp] = /Rd 8 <590*e (—A+§22H2@ L] +u2>g0+ 1 04) (), (1.17)

where © =14/ ® ( o 8). This action can be expanded into matrix base to yield

A
S[q)] = Z (I)k:l(_Akl;Ts + MQ)CI)TS + Z Z cI)kleq)kas U q)kzlkl . (1.18)

k,l,r,s k1y..yka

In the above the interaction polynomial given by the quartic xg-product of fields expands
into a cyclic matrix product. Furthermore, the Laplacian A = )", 02 contained in the
Gaussian term, which is a well-known part of action functionals in quantum field the-
ories, is accompanied by a harmonic oscillator term weighted by 2. While the precise
Jform of their tensorial representation in Ay, is not relevant here, it is interesting to note
the motivation for the introduction of the harmonic oscillator term. Although the original
reason for its introduction procedure was ad-hoc and rooted in the renormalisation proce-
dure , it was later observed that there is an interplay between the A-term and the (2-term
in this model of Equation (1.17). In [LS02] Langmann and Szabo discovered a duality
between position and momentum space in this model given by the duality transform

S[®; 11, { e )i, Q] = Q2 S[®; 1/, {)\k/Qz}k ,1/9]. (1.19)

This inverts the roles of the A-term and the §)-term, thus achieving duality-covariance of
the model with ()-term. Furthermore, it is interesting and convenient to study the model
at the self-duality point ) = 1. This is adopted from this point on. In that case

|kl + 1] +d/2

(_Akl;rs + MZ)/2|Q:1 - 5k,7'6l,s ( 0/4

+ pﬂ) /2= Ey;. (1.20)
Additionally, truncating the action at finite N reduces Equation (1.18) to that ofan N x N
Hermitian matrix model

S[®)|a=r = —(0/4)¥* tr (E<I>2 + 2@4) : (1.21)

Finally, it should be pointed out that the dimension of the underlying geometry,
which is encoded in the spectral triple and in the case of infinity matrix size also decides
renormalizablility, is encoded in the density of eigenvalues of the external matrix (or
field) £. Without attempting a rigorous deduction here, this can be seen by following
an approach, put forward already by Connes [Weyl1l, Con94], to look at the trace of
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the heat kernel of the unbounded operator D. Relating it by the means of a Mellin
transform to the (-function of the system, the maximum dimension appearing in its
asymptotic expansion decides convergence. Heuristically, the reason for deducing the
dimension from a heat kernel is, that the heat kernel, crucially, is sensitive to the
dimension of the underlying space. This can already been seen in the fact that the
return probability of a random walk radically decreases with dimension [P6121, Wei].
The quantitative behaviour is dictated by the dimension.

Example 1.2.6. In the case of the specific model set up here, the geometry is encoded in
the coefficients Fy,;. The notion of dimension given above translates here [Wull9, Bra22]
to the smallest d such that for all ¢ > 0 the sum

> (Bri) (1.22)

k>1

converges. Thus, a spectrum truncated at a finite k = N yields a zero dimensional
theory, while at N — oo the growth-rate of the E,; determine the dimension.

It is important to note at this point, that even in the limit of infinite matrix size
the (properly renormalized) model one has obtained is not a consistent quantum field
theory. What one achieved in this limit, which goes beyond the structure of the Quartic
Kontsevich Model, are physical limits of all relevant quantities, that is all moments, in
the sense of a statistical physics model. To obtain an actual quantum field theory a
consistent time-evolution is essential, which is a deep consequence of the axioms of
Osterwalder-Schrader.

1.3 Solution strategy of Quartic Kontsevich Model

Once the model is set up, referring to the previous section, the objects of study are the
moments and cumulants [Spe83] of the deformed measure which are obtained from the
partition function Z(.J) by derivation with respect to the current

1 o Z(J) 1 0"log Z(J)

Coigy - © == ,and  (Cpgy - Cpugn)e = .
epia o) 1" OJpiqy * - Odpg, o ) 1" OJpiqy - OJpg,
(1.23)

These sets of objects carry equivalent information and can be translated into each
other computationally. The cumulants are only non-zero if ¢, = p-x), where 7 € G,
is a permutation, and then only depend on the cycle-type of 7, which is a result of
Wicks theorem. Therefore, let b be the number of cycles of the permutation and ny, for
k € [[1,b], their length. Furthermore, they enjoy an expansion

iP5 Dhy [Py,

o0
— 2_2('”1""‘1)2 —2g(9)
((eptpyeptps - epp pt)  (&ptpt - &ty ))e = N NTHG, E
g=0

(1.24)
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where the parameter A/ can be interpreted as N’ = N = (§/4)%? in terms of the setup
in the previous section, but is treated as a formal parameter here. This expansion is
usually referred to as a genus expansion, hence the index g, and was introduced by
Gerard 't Hooft [tH74]. This name already suggests a deep connection of the objects
G with surfaces of different topological types, which will be discussed below.

The strategy that leads to a solution of the Quartic Kontsevich Model is determined
by its Dyson-Schwinger equations. These form an infinite system of equations and
are also called the equations of motion in the physics literature. Furthermore, the
symmetries of the model imply Ward-Takahashi identities [DGMRO7]. Together these
relations imply an intricate structure. In fact, the functions G9 come with a partial
order, encoded in the topological type of the ribbon graphs associated to them. The
relations between them, crucially, respect exactly this order, implying that either two
functions are independent, or one is smaller and depends on the larger. Therefore,
functions depend only on finitely many smaller functions and eventually on the planar
two point functions G and GV

Ipq] Iplgl®
equation [BHW22, HW21, Bra22]

The former is determined by the closed non-linear

A OGN A
(Ep + Eq)Glpq\ =1+ N 8E[: N Z /\G\pQIG\pk\ + WG\quG\plp\
k=1

N
A Gl = G A Gl = Gyt () g

N& E—-E, N E,—E,

%
due to insights by Alexander Hock. In order to solve this equation complex analytic
methods turned out to be key, see [SW23, GHW19, Bra22] ascribing meaning to the
derivatives with respect to matrix entries of the external field and coinciding matrix
indices. Therefore, the correlation functions G|p%.__p1 | will be holomorphically

n ‘|Plfp2
continued into the complex plain such that ' ’

G(Ey,... By |- |Ep - Ep ) =G

Py pnb

phy el ph, (1.26)
Remark 1.3.0.1. In order to describe this process in more detail, one defines the holo-
morphic functions G on a neighborhood of the values E;, € C according to equa-
tion (1.26) and postulates that the Dyson-Schwinger equations carry over to the newly
defined functions. This is accompanied by the complexification of the derivative

(%q (E,) f(’fzzigiEq) N 827 £(n). (1.27)

9| Eq—n

Considering the equation on G in the complement of the {Ey},, one is now also able
to define its values at coinciding points by a limit procedure. In that case the spec-
trum (F})rep,ny is consisting of pairwise different values (e;)rep,py With multiplicities
ry for k € [1, D] such that >0 | 7, = N.
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This results in the non-linear Dyson-Schwinger equation*

)‘ ¢ G(O)(Elm n) — G(O)(Ca 7]))
+ Z § . E,)GWY _ .

determining G(O)(-, -), which can be approached by complex analytic methods [SW23].
The authors of [SW23] showed that the central ingredient to the solution of, in fact in
all topological sectors, is a variable transformation, denoted R, on C.

Theorem 1.3.1 (Schurmann-Wulkenhaar [SW23]). For A, {ex}r > 0, assume that there
is a rational function R: C — C such that

- Ris of degree (D + 1), is normalized to R(c0) = 0o and bi-holomorphically maps a
domain U C C to a neighborhood in C of a real interval that contains e, . .., ep
- interms of G (z,w) == G (R(z), R(w)) and ¢, = R~'(e;) one has

—R(—Z) = R(Z) + % ;Tk (m + Q(O)(z, €k>> y (129]

Jor z,w, {ex} € U.
Then R and G are uniquely determined by equation (1.28) to

D
z):z—iz Pk (1.30)
N = Ex + 2
A D Tk D R(w)—R( )
o 1= 8 2 momre tren—reay =1 TRa-Re) La1
o= R(w) — R(—2) o e

Jor R(ey) = e, and ppR'(e) = ri. In the above, solutions v € C of R(v) = R(z) with
z € U are denoted by v € {z,z',...,Z”}. The ansatz (1.29) is identically satisfied by
these R and G\©

Furthermore, the function G 0) is symmetric and its poles are located at z + w = 0 and

Z,w € {acj}k,je[[l,D]]-

A proof of the theorem will not be given here and the interested reader will be re-
ferred to the excellent exposition of this and related results in [Bra22] or the original
work [SW23, GHW19]. Nevertheless, it should be pointed out that the variable trans-
form R is introduced such that the Dyson-Schwinger equation for GO reduces to a
linear equation which in turn determines the form of R in an involved manner. Consid-
ering this, it might be unexpected that one finds 12 under relatively mild assumptions.
This pivotal result now enables to achieve solutions for all higher correlation functions.

‘The Dyson-Schinger equation in this form already assumes D to be finite. In order to find a G(*)
consistent in renormalization for N, D — oo requires a more general form of the DSE introducing
renormalisation parameters Z, fipare for the {e;} and GO jtself. T runcating at finite N, D yields trivial
values for these parameters.



12 Chapter 1. Field theories on nc space

To exemplify this, note that there is another two-point correlation function at genus
zero of different cycle-type, which is G(O)(( |n). The corresponding Dyson-Schwinger
equation can be brought to the form

A & 5l|w LG9, w) — GO(w, w)
N; Alon) z)iA (1.32)

R(Ckk) — R(w) ’

where {y}rep 2p+1] are solutions of R(2) = R(—z), which is solved by the theory of
Cauchy matrices [SW23, Sch59a] observing the linearity of this equation in contrast
to Equation (1.28). The latter fact will persist for all larger correlation functions as
mentioned above.

Proposition 1.3.2 (Schirmann-Wulkenhaar [SW23]). The planar two-point function
9(¢|n) of cycle type (2,0) determined by Equation (1.32) takes the_form

G (zlw) " (R(z) —/\R(w))2 (Q(O)(Z7w) (1.33)

B R(z) + <w>—2R ﬁ Rz k>><R<w>—R<ak>>)
(R(2) — R(—2))(R(w) R(0)(R(w) — R(ex)) )

with GO (z,w), the planar two-point function of cycle-type (0, 1), given in Theorem 1.3.1.

These solutions build the basis for the solution in the higher topological sectors,
see [BHW22]. In fact to fully capture and utilize the recursive structure due to the
Dyson-Schwinger equations and Ward-Takahashi identities, one is compelled to intro-
duce generalized correlation functions

G (1.34)

Dby | ph b, |

T 1 .1 b b | —m
q1s-sqmlp1--pL [0S pb |
= 2 W T OB, .. 0F,,

as well as

1 (—N)m_l(?m_lQ (Smg
Q, = — E G —G d Q = n ’ .
! N k=1 o 2l o A OE,, ... 0E,, * (Ey — Eg,)?

(1.35)

Assuming that {2, has a primitive in £, it is easy to see that the (), . are symmetric
in their indices. The primitive, in fact, corresponds to the partition function or the free
energies, which will appear later.

On the same lines as discussed above for the ordinary correlators G one can find
relations for the generalized correlators which suggest complexification, yielding gen-
eralized correlation functions, as well as composition with the variable transform R to
arrive at the functions denoted 7 and (2. The components of the genus expansion of
these functions, 79 and Q19 obey an interwoven web of equations, which is illustrated
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m+b
\ 1 2 3
g

2 2) & TO(g||z,w]) | —>| QP (u1,2) = TO |2, w]) | —>| O (w1, w2, 2) = TO (g, ug|z, w])

0 N N\

<

TO(2]|2|w]) —>| 7O (u|z]w])
x=1 x=0 x=-1
QM (2) 5 TO(g||z,w]) |—> | 8 (u1,2) = TO(uy||z,w]) |[—> ...
1 \ \
T (2||2|w]) — ..
x=-1 X =2

Figure 1.3.1: This graphic, which is borrowed from [BHW22], illustrates the inter-
woven web of equations determining 79 and Q(9). ng) (2) = & 357660 ek, 2) and
TO)(3|z,w) = G (2, w) which are determined through the solution of G(¥)(z, w) in

Theorem 1.3.1 constitute the initialization.

in Figure 1.3.1 borrowed from [BHW22]. This allows for the recursive construction of
the correlation functions of the model starting form the solution of G (z, w) of Theo-
rem 1.3.1.

In order to get more intuition about the generalized correlation functions it is instructive
to take another look at the definition of the cumulants in Equation (1.23) and their
genus expansion from the perspective of perturbation theory, see [Bra22, Chapter 6].
The general idea of a perturbative expansion is that one expands the theory around
the free theory associated to A = 0 and then, crucially exchanges the integral over the
configurations with the sum. The latter step is, in general, inherently ill-defined and
the resulting series in \ has zero radius of convergence’. Instead, one can view the
perturbative expansion as a formal expression. For the cumulants one arrives at

o~ NU(=A/4)°
(€p1gr """ Cpnsgn)e = Z - [/dM Pprar Ppon

|
=0 V!
N v
X Z H(q)jikiq)kiliq)limiq)mz‘ji> . (1.36)
Jiski,li;mi=1 i=1 c

This expression can be evaluated using ribbon graphs, which are Feynman graphs, with
edges that carry two labels such that the vertices obtain a cyclic order of labels. Vertices

$1t is believed that an expansion at the free theory will generally do not give handleable results.
Future research will show, if one should rather expand the theory at the solution to the planar sector
instead.
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—f 1 R
Z (I)JA(I)’\‘_I ((I),/LM(I)A‘Lllq:)[wu(l)nujL)

AL
Jiskiyli,m; l_|—|—| I—| 1 k | -
><((I)JJAJ(I)A-zb(pl-z/ﬂz(p/ﬂzjz) ( X((V)
=v—r+n+s =2-2g-b
=2-5+2+0 =2-2 -1

Figure 1.3.2: This illustrates how a cumulant is associated to a ribbon graph (middle)
and a Riemann surface with boundary (left). The contractions of fields induce identi-
fication of strands, which form the graph I'. This graph can be drawn on a Riemann
surface C, whose topological type is prescribed by the cycle type of the external fields
and the topology of the graph encoded in its Euler characteristic.

correspond to cycles of indices with a factor (—\). Fields ® Py, in the cumulant above

are contracted according to the propagator of the free theory, %, using Wicks
P q

theorem.

J1|m

] m

D1 Ppi Pin P B, D, p_p

k l q q
ki
Note that the number of such contractions is calculated by half the number of involved
fields r = w = # = 2v 4+ n/2. Using this count and recalling that a cumulant is
non-zero if and only if its indices form cycles of a permutation 7 one can show that

[e.e]
N™(Cp1r(p1) " Cpur(pn) e = Z Z N (T, (1.37)
v=0 Fe@g;pl ,,,,, Pn
where sr is the number of loops of I'. The sum is performed over the set &7, = of

labelled connected ribbon graphs with v four-valent vertices and n one-valent vertices
labelled by external indices ((pk,7(Pk)))repi - The weight @, is obtained from the
calculation above and summing over all loop-indices {ki}ie[[l,s]]a i.e. all indices that are
not identified with an external index upon contractions, with a factor N ~°.

These graphs, with their fixed cyclic order of indices at the vertices that sets them
apart from ordinary Feynman graphs, can be embedded into Riemann surfaces with
boundary. Riemann surfaces are properly introduced in the beginning of next chapter
in Section 2.1. Here they can be viewed as surfaces embedded into R® with a Rie-
mannian metric on them. As it will be discussed later, closed Riemann surfaces are
characterized by a natural number g, which is denoted the genus. For an illustration
see Figure 2.1.1 in the next chapter. Riemann surfaces with boundary can be obtained
from closed ones by removing open discs and their genus is defined as the genus of the
corresponding closed surface. It turns out, that one can show, that the exponent of N
in equation (1.37) computes a related invariant of Riemann surfaces

v—r4+n+s=x=2—-29—0b, (1.38)

the Euler characteristic x, see Section 2.1. This associates a cumulant, or the corre-
sponding correlator G, to a Riemann surface of genus g with b boundaries, where
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T (uy,. .., u,,,\|,:|].:é.....,:’,'”\.‘. 2,...,22) Q9 (uy, ..., Uy )

“ny

Figure 1.3.3: In this graphic, adapted from [Bra22], the Riemann surfaces associated
to the different correlation functions constructed in this section are sketched. Note
that the variables {sz}ie[[l,nk}] are supported on the k-th boundary, for i € [1,b], of the
Riemann surface associated to the correlation function while the variables {ui}ieﬂl,m]]
are supported on the interior of the surface.

b is the number of cycles of 7, see Figure 1.3.2. By translating this to the functions
GW(z1,...25|...|2},...,2,,) the variable z¥ corresponds to the i-th point on the k-
th boundary. Extending this to the generalized correlation functions, the derivatives
acting on G in the definition of 7@ (uy, ..., un||2f,... 2} |.. |2}, ..., 2} ) additionally
mark m different points on interior of the Riemann surface associated to G9). In this
language Q) (u1,...,un,), then, corresponds to a closed Riemann surface with marked
points, see Figure 1.3.3.

The form of the relations for Q9 and their solutions as well as the graphical language

suggest [BHW22, HW21, HW23] that these objects, or rather the differential forms
wOM (21, ..y 2n) = A2 Q0@ (2 2 dR(2) - - - dR(2,) | (1.39)

connect the interwoven structure found in the Quartic Kontsevich Model to the univer-
sal framework of topological recursion. This theory was uncovered by Leonid Chekhov,
Bertrand Eynard, and Nicolas Orantin in the years leading to 2007 [CEO06, EOQ7]
and generalized in the following years in a plethora of different ways. One of these,
called blobbed topological recursion, due to Gaétan Borot and Sergei Shadrin [BS17]
of 2016, is mentioned here as it is believed to be the appropriate framework for the
Quartic Kontsevich Model. An exposition of the theory of topological recursion is found
in Section 2.2 giving a necessarily incomplete account of it. For a more thorough in-
troduction to the subject the reader may refer to the textbook [Eyn16] as well as the
quickly growing literature.
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1.4 LSZ model

The model, which is introduced in this chapter, the Quartic Kontsevich Model, is a
theory of hermitian matrices with quartic interaction. In that sense it closely resembles
the original Kontsevich matrix model, which is its cubic analogue. As it will be dis-
cussed in the next chapter the latter model plaid a crucial role in Maxim Kontsevich’s
proof [Kon92] of the famous Witten conjecture [Wit90] about the generating function of
intersection numbers satisfying the differential equations of the KdV hierarchy, which
was motivated by considerations of gravity in two dimensions. This has led to a wave
of attention for closely related models such as the Quartic Kontsevich Model or the LSZ
model [LS02, LSZ04] named after Edwin Langmann, Richard Szabo and Konstantin
Zarembo. In the form it should be discussed here it is defined by the action

SYZ[D $f = —N tr (E<I><I>T + EDdT + %(@ch)?) : (1.40)

In the above F and E are two distinct N x N hermitian external matrices and \
the coupling constant as described for the Quartic Kontsevich Model. Note that the
associated partition function integrates over the space of complex N x N matrices.
This distinguishes the LSZ model from the Quartic Kontsevich Model and was believed
to by the reason for dramatically different analysis and results in the two different
models [ST20]. However, it was recently shown by Johannes Branahl and Alexander
Hock in [BH23] using the framework of topological recursion that the models can in
fact be treated on a similar footing. In their work their presented a complete solution of
the model, which will be used in the subsequent chapter for the explicit investigation of
correlators of low (g, n), see Examples 2.2.3 and 2.2.4 and their interpretation in terms
of Intersection numbers on the moduli space of curves, see Chapter 2.



CHAPTER 2
The Moduli Space of Curves and
Topological Recursion

In the following chapter the moduli space of complex curves is introduced, mainly fol-
lowing [Zvol2, Sch20]. It constitutes a central and unifying theme of this thesis. For
further reading, reference as well as broader context the reader is invited to select from
a plethora of textbooks and lecture scripts that goes far beyond [Har77, Hat02, ACG11,
Lan82, HM98, Panl6].

As an interesting subject of study by itself and as one of the oldest and most stud-
ied moduli problems, it allows for a variety of different perspectives and approaches
and thus appears in a wide range of mathematical disciplines. It will be retraced
how the Quartic Kontsevich Model as well as the LSZ model, introduced in the pre-
vious Chapter 1, relate to the moduli space of curves via the universal framework
of topological recursion. This, which is original work due to the author of this the-
sis, uses a the language of topological recursion, introduced by Chekhov, Eynard and
Orantin [CEOO06, Eyn11b, Eyn16], in a unified and consistent manner, see Section 2.2.3
as well as Examples 2.2.5 and 2.2.6 and Section 2.2.6. In this process for the Quartic
Kontsevich Model explicit novel data is computed that will be helpful in future research
in understanding further the deep structures that the model exhibits such as integra-
bility [HB21, Kac90, BCEG23].

In the subsequent Chapter 3 using a combinatorial approach via Ehrhart theory a
compelling pattern, logarithmic concavity, is uncovered in intersection numbers on the
moduli space of curves.

2.1 Formal introduction to the moduli space of curves

The main object of study are Riemann surfaces with marked points, [Rie57, Wey13,
Har77]. There are different perspectives on these objects. From a complex point of
view, Riemann surfaces are

connected, complex manifolds of complex dimension one.

If one rather approaches these objects from a real setting, one considers Riemannian
metrics on smooth real manifolds. These are smooth families of inner products on
the tangent spaces, which assign to each point on the manifolds a positive definite
symmetric bilinear form. By forming equivalence classes of positive functions on the
space of Riemannian metrics, which are denoted conformal structures, angles but not
lengths can be measured on these surfaces. Then, Riemann surfaces are
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/L@®

Figure 2.1.1: This illustrates Riemann surfaces of genus g = 0, 1,2 - a sphere, a torus
and a surface of genus two - embedded into R3.

connected, oriented, real manifolds of real dimension two
together with a conformal structure.

More formally, it can be shown that in algebro-geometric terms a Riemann surface X
underlies a unique one-dimensional, smooth and irreducible projective complex algebraic
variety C', also called curve.

Definition 2.1.1. A projective complex algebraic variety is given by the set of zeros of
finitely many complex homogeneous polynomials in (n + 1) variables, viewed as an
algebraic subset of the corresponding n-dimensional complex projective space CP",
for n € N.

A smooth complex projective algebraic variety is irreducible, if and only if the under-
lying complex manifold is connected. In the following only compactifiable Riemann sur-
faces are considered, which are the open complement of a finite subset S = {x1,...,z,}
of labelled points in a uniquely determined compact Riemann surface

X=X\S. (2.1)

These are the complex manifolds given by the complex points in smooth, irreducible
algebraic curves that are the open complement of the finite subset in a smooth pro-
Jective algebraic curve. On a smooth curve, that is one without any singularities, the
Jacobian of the defining functions is required to have full rank in every point. Fur-
ther below, the requirement of smoothness will actually be relaxed, allowing for nodal
singularities. In the neighborhood of a nodal singularity the surface can be described
by {(z,y) € C: zy = 0}. B

Such Riemann surfaces X = X \ S are topologically classified by their topological type,
which is encoded in their Euler characteristic

X(X) = > (=D)F dim Hi(X), (2.2)

where Hy(X) denotes the k-th homology group of Riemann surface X or respectively
the curve C, see Appendix A.2. In the case of compact Riemann surfaces X with
n marked points, corresponding to the deleted points S C X, this calculates to

X=2—2g9g—n, (2.3)
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Figure 2.1.2: This depicts a Riemann surface of genus two with three marked points
illustrating non-contractible cycles (red).

where ¢ is denoted as the (topological) genus’. In Figures 2.1.1 and 2.1.2 this is
pictorially explained. Using the Euler characteristic one can define a strict partial
order on the topological type (g,n) of Riemann surfaces by calling (g,n) > (¢’,n’) if
Xg,n < Xg' '

In order to illustrate the definition further, Riemann surfaces of genus O and 1 are
examined in the following.

Example 2.1.1. The orientable manifold of genus zero is the sphere, which has a unique
Riemann surface structure being that of CP!. Using its automorphism group, P.S L(2,C),
three of its marked points can be send to a fixed location, making (CPI; 0,1,00) the
unique Riemann surface of topological type (g,n) = (0, 3) up to isomorphism.

At genus one the torus obtains its Riemann surface structure by the identification with
the quotient of the complex plane by a lattice. The automorphism group of such elliptic
curves is harder to describe, containing even the curve itself. From intuition, it is, howeuver,
easy to gather that the order of the automorphism group is only infinite if there are no
marked points, generated by infinitesimal rotation along one of the two cycles.

Noting that for g > 2 there is a bound on the order of the automorphism group [Hur93],
one realizes that as long as the Euler characteristic is strictly negative, that is

2g—2+n>0, (2.4)

the automorphism group is finite. In that case one can make sense of a moduli space
of complex curves M, ,, avoiding the algebro-geometric language of stacks for the most
part inferring from this theory only if necessary.

There are different levels to understanding the space of Riemann surfaces with marked
points. At a cursory level one can explore the sets of Riemann surfaces of different
topologies. However, the use of such inspections is limited. Thus, one tries to investi-
gate the geometry of the space of Riemann surfaces. While explicit computations can
serve as useful tools to get intuition at low topologies it has been proven interesting to
compute invariants of the geometry of the space of Riemann surfaces. This requires
more structure. At a formal level, the precise way to introduce the moduli space is to
define it as a Deligne-Mumford stack. This quest will, however, not be undertaken here.

fWhile in the present context, Equation (2.3) can be thought of as a definition, algebro-geometrically
it can be defined as the dimension of the space of sections of the cotangent line bundle on the curve.
See below Definition 2.1.2
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Figure 2.1.3: This illustrates the construction of M, and its universal curve C, .
given in Theorem 2.1.1.

Instead, most of the structure can be captured by approaching M, ,, as a manifold with
local automorphisms, an orbifold.

The tool used to define and investigate the geometry of M, is the idea of a family
p: C — B of genus g curves with n marked points. Every fibre over geometric points
of the base scheme B of this family is a (smooth) Riemann surface. Such a family is
endowed with n disjoint sections s; : B — C corresponding to the marked points of the
curves, such that p o s; = idg. Furthermore, one can relate two families p;: C; — B,
and py: C; — By by pull back along a morphism v: Bg — By for Bg C B; by requiring
that p, *(B;) C C, and that the pull back of C; under v be isomorphic.

Theorem 2.1.1 ([HM98, Zvo12]). Let C' be a Riemann surface of topological type (g, n),
such that x(C) < 0, and denote Aut its (finite) isomorphism group. Then there exists

- an open bounded simply-connected domain U C C3@-D+n,
- afamily p: C — U of Riemann surfaces of topological type (g,n),
- an Aut-action on C descending to an Aut-action on U such that

- the fibre C over 0 € U is isomorphic to C,

- the action of Aut preserves Cy and acts as its symmetry group,

- given any family pg : C® — B such that pgl(b) ~ (' for some b € B, there
exists an open subset B C B containing b and a map ¢ : B — U (unique up
to the action of Aut), such that the restriction of the family pg is the pull-back

by Y of the family p.

In Figure 2.1.3 the construction of the theorem is illustrated. This theorem achieves
a definition of the moduli space M, ,, as the space covered by charts U/Aut as well as
its universal curve p, ,,: C;,, — M, ,,, where C,,, is covered by the sets C.
It turns out that M, , is in general not compact. This can already be seen extending
Example 2.1.1 to Riemann surfaces of topological type (0, 4).

Example 2.1.2. In Example 2.1.1 it was shown that using the automorphism group of
CP! three marked points can be set to 0, 1, and co. This, however, exhausts the ability
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- {zy=1:1—0}

Figure 2.1.4: This illustrates how a smooth Riemann surface with four marked points
degenerates into a nodal Riemann surface with two components with each three special
points (two marked points and the node). The node is a transverse intersection, such
that in local coordinates x, y its neighborhood is described by zy = ¢ in the limit ¢ — 0.

v

to fix points. The location of any additional point on CP! is a free parametert, also called
modulus,

(C, 21, 19,73, 74) = (CP',0,1,00,1). (2.5)

Thus, Moy ~ CP'\ {0,1,00}. In order to see what happens when the modulus ap-
proaches the boundary of M 4, one may look att — 0. In that case, naively x, and x4
collided. However, transforming to another chart by x — x/t, one obtains

(C, 1,19, 23, 24) ~ (CP,0,1/t,00,1). (2.6)

Then, in the limitt — 0 the points x5 and x3 seem to collide. As none of these perspectives
is to be preferred, the geometric picture is, that there are two components with either of the
two pairs of points connected by a node. The described situation is pictorially explained
in Figure 2.1.4. A different perspective is to describe this degeneration as the limit of a
shrinking cycle in the surface. In that case the modulus t can be interpreted as the length
of the cycle shrinking to zero.

As constructing geometric invariants via cohomology is not feasible in the non-
compact setting, Pierre Deligne and David Mumford in [DM69], generalized by Finn
Knudsen [Knu83], constructed a consistent compactification denoted /Wg,n. They in-
troduced the notion of a stable nodal curve in order to correctly treat the degeneration
behavior illustrated in Example 2.1.1, in that it allows homologically-inequivalent cy-
cles to shrink. Therefore, note that a nodal curve, i.e. curves with only smooth points
or nodal singularities, can be de-singularized in two ways. Smoothening a node refers
to replacing the two discs with identified centers that form its neighborhood with a
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- (<)==

Figure 2.1.5: This illustrates the normalization map v (left) and the smoothening (right)
of a node (middle). Normalizing the surface, the two preimages of the node are marked

points of the respective connected components. The node is actually supposed to be a
transverse intersection of the two components. On the smoothened surface the cycle
that is shrunk to obtain the singular surface is indicated.

cylinder. Alternatively, normalizing a node describes replacing the same with two dis-
joint discs, see Figure 2.1.5. Using this notion one observes that starting from the finite
setting of smooth Riemann surfaces modulo isomorphism one can construct infinitely
many nodal curves. However, this process introduces a series of components with
automorphism group of infinite order. This suggests the definition of a stable nodal
curve.

Definition 2.1.2. A complete, connected nodal curve is stable, if its automorphism
group has finite order.

It turns out that in this setting the notion of (topological) genus introduced before is
not well-defined anymore. Instead, there are two different ways to define a genus of a
nodal surface, which agree in the case of a smooth projective curve with the topological
genus of the underlying compact Riemann surface (see also [Hir66]). The geometric
genus is given by

Jgeo(C) = dim HO(C, QIC) , (2.7)

where Q)f, is the dualizing sheaf of C, given as the subsheaf of 1,{)}, characterized by
opposite residues in the two points v~ !(p) for each node p of C'. The arithmetic genus
is given by ¢,(C) := dim H'(C, O¢), which agrees with

9.(C) =1 —dim H(C, O¢) + dim H'(C, O¢) , (2.8)

as the considered curves are connected. Interpreting these definitions using the nor-
malization, one finds that when a smooth surface degenerates the geometric genus
drops, while the arithmetic genus is constant?,

Jeeo(C) = Ggeo(v™10O) 92(C) = ga(v*C) + #(nodes of O)
=g(v10), = g(v'0) + #(nodes of C), (2.9)

'In this text, when referring to the topological type (g,n), the genus g should be interpreted as
the arithmetic genus of the curve. This is because in families of nodal curves the arithmetic genus is
constant, referring back to the construction of the moduli space, see Theorem 2.1.1.
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see [Zvol2]. This can be used to obtain a description of the stability condition, similar
to the smooth setting. In fact, a nodal curve is stable, if for every component v~ !(C),
of the normalization of a nodal curve C indexed by &,

29(v " (O)g) =2+ 7y, >0, (2.10)

where 7, is the number of marked points plus the number of preimages of nodes under
v on the respective component.

Later in the text a combinatorial representation of nodal curves in terms of graphs will
often be utilized. In this dual description the vertices v of the graph correspond to
irreducible components C,, of the curve C' and are decorated with the genus of v~!(C,).
The vertices v and w are connected by an edge e,, prescribed by the nodes of C.
Half edges, or leaves, attached to a vertex v correspond to the marked points on C),
and obtain a numbering from the marked points of C'. In order to work with this
dual description the properties of the curves need to be translated to the graphs: The
arithmetic genus of the curve translates to the first Betti number b; of the graph and the
geometric genus to the sum of the decorations of the vertices. Automorphisms Aut I’
of the graph I' are re-labellings of the edges and vertices that preserve the structure of
the graph and are isomorphic to a subgroup of the automorphism group of the curve.
In fact, [Sch20], one can construct the short exact sequence

0— 1] Aut(v™1(C,)) — Aut(C) — Aut(T') — 0. (2.11)

v vertex

The stability condition can then be translated to
2g(v) —24n(v) >0 (2.12)

for all vertices v, where n(v) is the number of edges and half-edges attached to v.
By allowing stable curves Deligne and Mumford and Knudsen showed that the universal
curve extends to the compact setting

pg,n: C_g,n — -/Wg,n . (213]

Remark 2.1.1.1. In this setting issues arise when comparing two families p;: C; — U,
and py: Cy — U, on the overlap S = U; N U,. Defining a morphism ¢: S — M, it is
fully determined in terms of its restriction to U; and U,. The family of curves up to
isomorphism, however, is not necessarily uniquely described by its restrictions.

In order to fix this, see [Sch20, Section 5 and 6.2], one can facilitate category-theoretic
language. As a stack, ./Wg,n is given by a category with

ObM,, ={(p:C—=U, s1,...,8,: U— C): family of nodal genus g curves} (2.14)
together with
f .
C=C(f, f) make C'/U"

M o o = :
or(p: C" = U, p: C = U) [ﬁ) / [l]p a pullback of C/U
N

(2.15)
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Adding the morphisms to the data, one is able to prescribe the glueing of two families
on their overlap.

It turns out that the moduli stack of curves has especially nice structure. In fact, it is
smooth as a stack and its charts can be chosen in a way that describes its algebraic
structure - it is a smooth Deligne-Mumford stack of dimension

dyn = dime My, =3(g—1)+n. (2.16)

For a short introduction to stacks [FanO1] might serve as a decent start.

Constructed in that manner, Mg’n enjoys a stratified structure in terms of dual
stable graphs with n leaves and genus g. Therefore, associate to a stable graph ' of
topological type (g,n) the set of curves

M = {C nodal curve of type (g,n): I'c ~ T}, (2.17)

which is an irreducible, locally closed subset of ./\79771. In particular,
Mg =[] Mr, (2.18)

where [' runs through the isomorphism classes of stable graphs. As expected the
number of edges of the graph, or the number of nodes of the dual curve gives the co-
dimension of M in M, ¢,n- By considering the normalization map one can identify the
corresponding closure My of Mr as HU vertex Mg(v)m(v) and define the closed inclusion
tr: Mp — My, ,. In particular, restricting to graphs with exactly one edge, that is going
to co-dimension one in the boundary of M, ,,, one finds

— / J— J— J—
HMF(U >~ ( H Mghnl X MQQ,n2> HMgfl,n+2 9 (2.19]
(g1,m1)

l—‘(1) +(927n2):(g’n)

where ['(;) runs through isomorphism classes of stable graphs with one edge and the
primed co-product indicates the exclusions of terms containing unstable topologies.
This establishes the recursive boundary structure of M ¢,n» Which will be key to under-
standing computations of intersection numbers of cohomological classes in the next
section and ultimatively the relation of /Wg,n to topological recursion, see Section 2.2
as well as Section 2.2.2.

2.1.1 Cohomology on the moduli space of curves

In the previous section the moduli space of complex curves, M, ,, is set up including
its recursive structure. It is noted that with increasing topological type (g, n), investi-
gating the geometry of Mgﬁn in a naive manner becomes infeasible. A popular tool to
obtain information is to construct natural cohomology classes on the moduli space and
compute intersection theoretic information from these classes, see [Pan16].

In Appendix A.2 basic notions of singular homology and the associated cohomology
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Figure 2.1.6: This illustrates the two cases, in which the stabilization map is not the

stabilization

identity. As the respective component after forgetting the (n + 1)-st marked point is
unstable, it is collapsed. In the upper case collapsing the unstable component, the ¢-th
marked point takes the place of the preimage of the node on the remaining component.
In the lower case, the preimages of the nodes on the remaining components connected
to the collapsed component are identified.

on varieties over C are discussed. For a more detailed introduction to this topic the
reader is directed to one of many textbooks [Har77, Hat02, ACG11, Lan82, HM98]. In
fact, one can construct singular homology and cohomology groups in the setting of
stacks [Vis89, Kre99, ACG11]. For the moduli space of curves [Pan16], one is then able
to realize an isomorphism between cohomology groups in the stacky description and
the language presented here. This is to say that by considering the compactified moduli
space as a compact complex manifold with localized quotient singularities, that is an
orbifold, Poincaré duality is available between cohomology and homology with rational
coeflicients. This is why rational coeffients for (co)homology are considered here.

The key tool to constructing the classes that are of interest in this text is the forgetful
map

Tn41+ Mg,?rkl — Mg,n ’ (Caph s ;pnypn+1) = (éaﬁh s 7ﬁn) ) (220]

which omits the last marked point of a curve. Here (C’ : D1, - - -, Pn) denotes the stabiliza-
tion of (C; py, ..., pn). This process takes care of the fact that omitting one marked point
of a stable curve might return an unstable curve, illustrated in Figure 2.1.6. In fact,
one can easily see that as a family over M, ¢,n the forgetful map 7, is isomorphic to the
universal curve and each marked point corresponds to a section s;: /ngn — ./\79771_’_1.
Now, the most natural way to construct cohomology classes on ./Wg,n is using funda-
mental classes of M, itself and its boundary components. Classes obtained in this
way, or rather the closure of these under products and pushforwards of forgetful maps
and glueing morphisms, form the tautological ring of M ¢,n and its elements are called
tautological classes [FP11]. The elements that are of interest here will be introduced in
the following.

-classes Let A C C,, be the divisor corresponding to nodes in the singular fibres.
On the complement of A there is naturally the holomorphic line bundle cotangent to
the fibres of the universal curve,

Pt
Tn+1 qec

smooth

=T1,C. (2.21)



26 Chapter 2. Moduli Space and Topological Recursion

This line bundle can be extended to the entire C ¢,n Dy realizing that locally in A the line
bundle is generated by the sections df and % modulo the relation %;’) = df + dgy =0,

which is already satisfied on every fibre of p,,,. Then,

Li = 5] (Wr,1) s (2.22)

2

where the line bundle W, ., is called the sheaf of relative differentials of the forgetful
map, which is isomorphic to the universal curve.

Definition 2.1.3. The -class associated to the i-th marked point is defined by the first
Chern class

Y= (Ly) € HZ(./Wg,n) ) (2.23)
for i € [1,n].

These classes are the most elementary elements of the tautological ring of /ngn
and other elements can be reduced to these. One key property, which will be crucial
for determining their intersection numbers using the recursive boundary structure
of ./\_/lgm, is

Vi — T (i) = [04] (2.24)

where the difference class §; = (s;).[M,.,] represents for i € [1,n] the divisor on
/ngﬂ that corresponds to curves on which the respective line bundles do not agree,
see [Wit90, Zvo12], equation (2.36). This happens on curves if and only if the stabiliza-
tion map is not the identity on this curve. These curves are sketched in Figure 2.1.6,
where the lower case only happens in co-dimension two not affecting the line bundles.
Thus, ¢; is given by curves dual to graphs

(

In terms of this divisor one can reinterpret the definition of i-classes by writing
i = —(mny1) * ([0;] — [0;]), verifying its nature as a tautological class, see [Zvo12, Pan16].
This comparison formula is used to prove the important result, called the string equa-
tion.

Proposition 2.1.2 (String equation). Let2g — 2 +n > 0 and (dy,...,d,) € N" be such
that ), d = dgn11. Then,

n
d d" _ d di—1 dn

/ Gy _Z/ I (2.25)

Mg,n-H k=1 Mg,n

Proof. A nice presentation of a proof can be found in [Wit90], which is recapitulated
here.
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In order to represent the integral on M gn+1 in terms of integrals on the moduli space
with one marked point less, one may use the comparison result (2.24) to write’

b = (m¥eh)? + [0 ()L (2.26)

Noting that the geometric intersection d; N d; for ¢ # j is empty, one may deduce

/ AR :/ Y
Mg,n+1 Mg n+1

+Z (T )™ - [S] (T )BT () (2.27)

Mg n+1

Then, the first integral vanishes and the integrals in the sum can be reduced to the
desired form using the projection formula. O

Using elementary techniquest, in low topologies intersection numbers can directly
be computed. One finds

1
P =1, and P =—, (2.28)
Mo, M 24

as well as, trivially, [ Mo L =1
k-classes Another important type of classes in the tautological ring are k-classes,

which are obtained from the pushforward of 1/-classes from moduli spaces of higher
topological type [Mum83, AC96, LX09].

Definition 2.1.4. The m-th k-class is defined by
m+1 m N awi
K = T ((cl(wwnﬂ(a))) ) =T (Wps1)™) € H™(My,), (2.29)

where 6 = Y, _, 0 for m € N.

Investigating intersection numbers of these x-classes, one might want to populate
the cohomological degree with 1)-classes to obtain a class of top degree. Then, one
finds the monomial " - wd"wn”jlﬁl. Evaluating this on M,,, one needs to push
down inductively the 1/-classes using the comparison result in Equation (2.24) to find

(Wn+1)*< : wd"wn’ff“)zmdm M (2.30)

and in general

n 1 dy, 1
(7Tn+1 e 7Tn+k)* ( : ¢d”¢n++11+ T 2/}7z—$-+l€k—i_ > = <2766k KT) ill e gn ) (231]

*Note that 1;[d;] = 0 because the bundle £, is trivial over ;. See equation (2.39) of the work [Wit90]
that is followed here.

‘The integral on /\7074 can be deduced using Equation (2.24), and the integral M 1,1 using modular
function techniques, see [Zvo12, Pan16], Proposition 2.26.
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where &, is the symmetric group of order £, and s, ‘= K| - -  K|,,| for the decomposi-
tion of 7 into cycles {Ti}ie[[Lm]]. This might provide insight into the significance of the
k-classes from the physical intuition of moments and cumulants.

To find the general result (2.31) one requires a comparison formula for s-classes, which
is obtained from the comparison relation for 1/-classes by pushing down,

RKm — W;K/m = (%)m ) (2.32)

see for example [Zvo12], Theorem 3.34. As a special case of Equation (2.30), one can
show the dilaton equation.

Proposition 2.1.3 (Dilaton equation). In the same setting as Theorem 2.1.2, one has

/ (W1 nr = (29 =24 n) [ gt (2.33)
Mg,n+1 Mg,n
Proof. This is a special case of Equation (2.30) for a,+; = 0. Noting that

Ko = (29 — 2+ n)[Mgy,], (2.34)
one finds the result using the projection formula. O

In the proof above Equation (2.34) was used, see for example [Pan16]. This is a
consequence of the Riemann-Roch formula [BS58, Har77, Hir66]. It is intuitive because
the degree-zero part of the x-classes reflects global structure of the moduli space, which
is naturally encoded in the Euler characteristic x = 2 — 2¢g — n being a fundamental
topological invariant.

2.1.2 Virasoro constraints

In the quest to compute intersection numbers of ¢-classes in the above, see Theo-
rems 2.1.2 and 2.1.3, the recursive structure of /ng has been used to reduce inter-
section numbers to moduli spaces of lower (g,n). In order to fully exploit this, it is
convenient to collect all intersections of 1-classes into a generating series

r Rh91
F({t:}ien) = oy > (M wfl---zﬁfﬁ”) tay - ta, (2.35)

g=0,n>1 ’ {di}i>0

recalling that the notation of intersection numbers prescribes that the integral vanishes
aslongas ), dy #d,, =39 —3+n.
The complete set of Virasoro constraints, which determine all y)-class intersection num-
bers, that is all coefficients of I, are generated by the operators L,,. These operators
act on functions in the variables p; = t/(2k + 1)!!l. Therefore, following [Zvo12], Sec-
tion 4.2, let

0

Je(f) = prf, Jk(f) = ka—f, for k € N* | and Jo =0, (2.36)
Pk
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for a function f = f({px}). and define the series J(z) := >, _, -27. Then,

1
Z m+2 bt J(2)%, (2.37)

meZ

where :0: denotes the normal ordering’® of the operator O. The operators in {Lm}mez
are called Virasoro operators as they satisfy the commutation relations

n(n?—1)

LnuLm: - an
L L) = (1= )L+ 20

Ontm.0 (2.38)

between each other as well as [J;, L,,| = kJy 1, with the currents Jj.

Theorem 2.1.4 (Witten-Kontsevich). For every integer m > —1 one has
(Lam = James + O /8) e (B7Di2e1)) = 0. (2.39)

In fact, the dilaton and string equation of Theorems 2.1.2 and 2.1.3 are contained
in this set of relations. They are equivalent to m = 0 and m = —1. For m > 0 the
Virasoro relations translate to

(2m + 3)!! /M ( 11 z/zfi) m (2.40)
g,n+1

i€1,n]

(2d; +2m + 1)!!
_Z Qd_lll)/MM(Hw)

i€1,n]

1
+ 2 Z (2dns1 + DN(2dni2 + 1)

dny1+dpio=m—1

/l/)di wdn+1 dn+2
o 7 n+1 ¥n+2
Mg_1,n+2 .

1€[1,n]

2 o (I e (0 )

g1+g2=g, ielh iely
LUL=[1n

Note that this actually prescribes a recursive determination, as the Euler characteristic
of the moduli spaces on the right-hand side is one less than on the left-hand side.

The theorem was originally conjectured by Edward Witten in [Wit90] and then proved
shortly after by Maxim Kontsevich [Kon92]. The proof is a seminal work, which relies on
deep results from the theory of the moduli space of curves as well as matrix field theory.
It will not be presented here. Rather, in the next section topological recursion will be
introduced, which acts as a framework in which not only Kontsevich’s proof of Wittens
conjecture can be understood but a vast class of mathematical studies ranging from
systems in mathematical physics including the Quartic Kontsevich Model introduced in
Chapter 1 as a matrix model to problems in combinatorics and enumerative geometry.

$The normal ordering describes the process of putting all operators in a product that decrease the
degree in pj, to the right and all those that increase it to the left, i.e. for k,! € Z positive :a_xa;:= aja_j
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2.2 Topological recursion

The remarkable structures described above that were unvieled in the moduli space of
curves were later found to be a pivotal example for a universal mathematical struc-
ture, which can be found to describe a plethora of phenomena. Inspired from their
research on matrix models, Leonid Chekhov, Betrand Eynard, and Nicolas Orantin
described what they called topological recursion in their work [CEO06, EOO07]. The
recursive structures of correlation functions of certain matrix models parallels that of
the boundary structure of the moduli space, or more explicitly the Virasoro constrains
of its intersection numbers, is what is in their theory called abstract loop equations.
These fully determine the respective systems and enable to calculate all higher sectors
of invariants from a few base cases.

In the following the theory of topological recursion is briefly introduced with an em-
phasis on its interrelation to the moduli space of curves as well as the LSZ model and,
later, to the Quartic Kontsevich Model. This presentation follows references [EOO07,
Eynllb, BCEG23] and does not attempt to give an even or even complete overview of
the theory and its application. It should rather serve to provide the neccessary language
and perspectives for stating the results. These are comprised of explicit calculations
of correlation functions of physically motivated models, that is the LSZ and Quartic
Kontsevich Model, in terms of intersection numbers on the moduli space of curves. As
the latter is not governed by topological recursion itself but an extension called blobbed
topological recursion, these calculations also give explicit formulas for the additional
data called blobs. This will serve future research in understanding the physical signifi-
cance of the deep structures in the models, which are reflected by topological recursion,
in terms of integrable hierarchies, see [EO07, BCEG23, Kac90, HB21].

2.2.1 Definition of topological recursion

Topological recursion computes an infinite sequence of admissible correlators (Wy.,,)g.n.
indexed by the pair (g,n) € N x N*. These objects are meromorphic 1-forms in each of
their n variables on a Riemann surface and are recursively constructed in 2(g — 1) + n.
The significance of the (negative) Euler characteristic here might motivate the associa-
tion of the correlators w, , with Riemann surfaces of topological type (g, n). This picture
is frequently exploited in the following.

The initial data of the recursion is provided by a spectral curve, see Figure 2.2.1.

Definition 2.2.1. A spectral curve is the data of a Riemann surface Y together with
two meromorphic functions and a meromorphic symmetric bi-differential of the second
kind,

z:¥ — C, y: ¥ — C, and Be H'(X? K3?). (2.41)

The symmetric bi-differential B has a pole with unit residue on the diagonal and no
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Ua 1
ramification pt. a. — -~

x(a) L
branch pt.

Figure 2.2.1: This illustrates the local behavior of the data of a spectral curve around
a ramification point a of the cover z. In this graphic the local Galois-involution ¢z is
indicated exchanging the two branches of the curve (top-right).

other pole
le dZQ

(21 — 22)

B(z1, 7)) 222 5 + holo. (2.42)

in local coordinates, where holo. represents possible holomorphic contributions.

Remark 2.2.0.1. The symmetric bi-differential B, which is defined in the definition
above as part of a spectral curve is an example for an Abelean differential of the sec-
ond kind, see [Rie57, Lan82]. In the literature on topological recursion also the term
Bergman kernel is used for B, which might be misleading, as one is not referring to
a so-called reproducing kernel of the Hilbert space of square-integrable holomorphic
functions that Stephan Bergman investigated in [BS51].

Depending on the spectral curve data the correlators constructed via topological
recursion obey nice properties. The class of spectral curves that is studied the most is
regular spectral curves.

Definition 2.2.2. A spectral curve (X; z, y; B) is called regular, if dx has finitely many
simple zeros {f3; }icp1,s) and dy does not vanish there.

The points {f;}icp1,5] € ¥ are denoted ramification points and their images under z, that
is {x(8;) }icp1,s] € C. branch points.

From the spectral curve one constructs the correlators of the unstable topologies,
(g,m) = (0,1) and (0, 2), by setting

wo1(2) = y(z)dz(z) , and wo2(21, 22) = B(z1, 22) . (2.43)

The prescription of topological recursion constructing the higher w, ,, given below, is
an inherently local procedure that extracts the information from the spectral curve at
the ramification points {;}; (see Figure 2.2.1) via the recursion kernel K;. It is defined
as

117 Bz e
Ki(z,q) = —2@ S , (2.44)

Wo,l(q) - wo,l(%(Q))
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/ I
Way 1+ |14 ]
e

Figure 2.2.2: This illustrates the different terms in the recursion prescription (2.45)
using the association of the correlators w,, with Riemann surfaces of genus g with
n boundaries corresponding to the n variables. As explained in Remark 2.2.0.2 the
recursion is organized as a decomposition of these surfaces into parts of type (0, 3).

where ¢;, defined by x(;(5;)) = z(5;), is the local Galois involution of = at the i-th
ramification point. Then, the admissible correlators of the stable topological type (g, n),
such that 2g — 2 +n > 0, are given by the recursive prescription

g1 (2 1) = Res Ki(2,q) | wyo1ns2(g, (), T) (2.45)

i=1 g—p;

/
+ Z Way 14111 (4, 11) Wy 14111 (5i(q) I2)

g1t+g2=g

ILulo=1I
In the above [ = {z,..., z,} and in the primed sum terms containing topological types
smaller than (0, 1) are excluded.

Remark 2.2.0.2. This recursion can be interpreted as a decomposition of a Riemann
surface of genus ¢ with (n+ 1) boundaries into surfaces of genus zero with three bound-
aries. Therefore, note that using Gauf3-Bonnet theorem one can deduce from the Euler
characteristic of the surface its mean curvature. In the case 2 —2g —n < 0, that is
when the recursion applies, the surface associated to w,,, is, thus, a hyperbolic sur-
face. This shows that the surface can be glued from hyperbolic polygons or equivalently
from surfaces of type (0,3). As this decomposition is not unique the recursion sums
over all such possibilities, see Figure 2.2.2.

Basic properties that can be established, which are not manifest in their construc-
tion but can be proved using the recursion, for these w,,., amongst a vast list, include
their symmetry in their variables [EO07] as well as their invariance under symplectic
transformations for 2g —2+n > 0, that is such transformations of x and y that preserve
the form dz A dy [Hoc23b, Hoc23al].

Furthermore, constructed via the recursion (2.45) the w,, constitute a solution to so-
called abstract loop equations, which is in fact their defining property and holds by
construction. The abstract loop equations inherit their name due to their origin in
quantum field theoretic methods. In the latter context transformation properties of the
measure of the theory can be translated into equations for the correlation functions of
the theory. In Chapter 1 these appeared by the name of Dyson-Schwinger equations
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and determine the form of the correlation functions 9. Translating these ideas to
the abstract and universal setting of topological recursion one arrives at the linear and
quadratic loop equations,

Wynt1(2, 1) + wyni1(si(2), 1) = O(z — Bi), (2.46)

and

Wy—1n42(2,6(2), 1) + Z Wor 1410) (2, [ )wga 1415 (5i(2), L) = O(z — 3;)?,  (2.47)

LUl=I
g1+g2=g

respectively, for ¢ € N and n € N. It is important to note that although the correlators
constructed in this setting are studied the most and behave nicely, they do not pro-
vide the complete set of solutions to the abstract loop equations'’. In fact in order to
approach the Quartic Kontsevich Model, defined in Chapter 1 one needs to invoke the
more general setting of blobbed topological recursion, see Section 2.2.4.

For the sake of completeness and in order to connect to ideas in the previous chapter,
note that one can extend the definitions above to (g,n) = (g,0) by introducing the free
energies

F9) = (2 —2¢)7" ngeﬁs DO (2)wyq(2), forg > 2, (2.48)
i=1 ’
where  is the primitive of wy; defined by d®”!(z) = wy;(z). This relation can be seen
as a special case of the dilaton equation for the w,, given by

Z Res ®%( (2)wgni1(Z1y -y 20, 2) = (2 =29 —n)wgn(21, .- 2n) - (2.49)

z—B4

The name already suggests a relation of this equation to Equation (2.33). In fact, the
upcoming Example 2.2.1 will show that the w,, associated to a basic spectral curve
compute intersection numbers of 1)-classes. In that case the dilaton equation above
reduces to the result of Theorem 2.1.3.

For g € {0, 1} the free energies are defined using theta functions, which will not be
discussed here (see [EOO07, Eynl6]). The set (]-"(g))geN C C encodes the complete
information about the model, which is described by topological recursion as its partition
function Z is given by

log Z =) N>FW. (2.50)

geN

ff Although at a later stage it is obvious that equations that reduce the most general solution to the
abstract loop equations to that special one given in Equation (2.45) is requiring vanishing of all blobs, the
author is wondering whether there are more natural relations comparable to the abstract loop equations
or a setting in that the vanishing has a natural interpretation in.
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Already in the original work Eynard and Orantin were able to show the remarkable con-
nection of topological recursion to integrable hierarchies. These will not be introduced
here as both content as well as theoretical and computational machinery would break
the scope of this text. It will only be mentioned that these infinite systems of differen-
tial equations, which describe different kinds of systems from water waves in shallow
water to structures in infinite Grassmannians, constitute a complementary approach
to topological recursion, see [BCEG23]. Depending on the genericy of the model there
are different generalizations of integrable hierarchies. Important examples for hierar-
chies are the KdV-hierarchy [Bou77, KDV95, SW85], the KP-hierarchy [KP70, SW85]
or most general the Toda-lattice [Tod67] as well as the general formulation by Hi-
rota [Hir71, HB21]. The correlators of topological recursion, constructed via Equa-
tion (2.45), obey the KdV equations.

Example 2.2.1. The pivotal example is the spectral curve with ¥ = CP! and
le dZQ

V) =22, and Y*V(z)=2, and B*V(z,z)= )
1= 2

(2.51)
It can be shown that the correlators generated from this spectral curve by topological
recursion reproduce the intersection numbers of 1)-classes on M, g.n» See [Eynllb], as

o (2d; + 1) dz
W!I,{,iv('z“ oy Zp) = (=2)%en Z </M P .wfn) H (ZTBQ’ (2.52)

d1+“‘+dn:dg,n =1

and ]:I({ﬂ)v = 0, for g > 2. This is part of the seminal work by Kontsevich [Kon92] where he
used a cell-decomposition of the moduli space of curves induced by Strebel differentials
to prove the corresponding conjecture by Witten [Wit90]. A first generalization of this
spectral curve can be achieved by allowing higher powers in y such that

y(z) = Ztk+2 (z/\/§>k , (2.53)

k>0

introducing {t }1>2 which are widely called KdV-times. Deforming the curve f(z,y) =0
via these parameters, in the space of families {wg,n} ¢,n generated by topological recursion
one obtains

n

e (2d; + 1)1 dz
wan(ts- e za) = (<2 3 </M e kwf---wi">HW,

d1+"‘+dn<dg,n =1 g
(2.54)

finding that k-classes are appearing, see [Eynl1b]. It is pointed out again that the nota-
tion of intersection numbers prescribes that the integral vanishes as long as ) . d; # dg .
The dual times {t}}cn are defined by a Laplace transform

P =k
ek kU™

2y3/2
= u(a(z)==(8) d = § 2k + 1)t -+ 2.55
e z)dx(z I T .

ﬁ [/ﬁ y( ) ( ) k( ) 2k+3 ( )
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Observe that in the correlators only the odd times occur, while the even ones completely
decouple. This phenomenon as well as the fact that the Laplace transform of the initial
data appear in the correlators will generalize to blobbed topological recursion described
in Section 2.2.4.

This setup of deformed KdV incorporates celebrated results such as Mirzakhani’s com-
putation of Weil-Petersson volumes [Eynl 1c, MS06]

Volg (01, ..., 0,) = dl ' / wlen (2.56)
gn: J Mg n(l1,....0n)

where w € H* (M, (04, ...,0,)) is the Weil-Petersson form on the moduli space of Rie-

mann surfaces of genus g with n boundaries of hyperbolic lengths (1, ..., /{, denoted

Ml ...,0,), which is given by 2%k, see [MirO7a, MirO7b, Wolll]. The recur-

sion that she found in her work of 2007 can be seen as the Laplace transformation

of the equation of topological recursion relating the (Vol, ), to the correlators of topo-

—sn@m2) o equivalently, the deformed dual KAV times

logical recursion with y(z) = o

(Z?k)kEN = (10g27 277'27 07 cee )

2.2.2 Topological recursion and intersection numbers

In the example above, it is shown that topological recursion and the moduli space of
curves share a deep relation. In the following this is retraced in greater detail.

The mentioned examples share the fact that the spectral curves have only one ramifi-
cation point. When turning to models that are described by a spectral curve with more
than one ramification point, it is convenient to enhance the moduli space M g,n Dy the
information of some continuous coloring map

o:v 10— {1,... s}, (2.57)

denoting the new space M, sn- Note that continuity of ¢ implies that it must be constant
on each connected component of the normalization of the curve C'. In order to illustrate
the effect of this additional datum, below the enriched moduli space is decomposed
into factors of M gn- This should stress the fact that the colored moduli space is only
an auxiliary construction abbreviating notation and structuring the calculations. All
computations are equivalently done on (factors of the) ordinary M, gn-

Example 2.2.2. Note that /\73,3 simply gives s factors of ./W(lg as stable curves of topo-
logical type (0, 3) cannot degenerate. Therefore, in this and the subsequent examples the
Jocus is on the next higher topological types with x,, = 1 and 2.

Consider first ./\_/102’ 4+ Points in this space generically are colored curves of genus zero
with _four marked points. In its boundary there are nodal curves with two components
of topological type (0,3). As curves in the bulk only have one component (on which the
color is supposed to be constant) and s = 2, one finds two copies of /\70,4~ Considering
all possible colorings of boundary curves, one finds

0274 ~ ./\/l074 U M0,4 U (Mojg X Mo’g)uu ~ ./\7074 L ./\70’4 L (Mo,g X Movg)HG . (258]
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g
= v
- SO AW~

Figure 2.2.3: This depicts different colorings (horizontal red and vertical purple) of
curves of topological type (0,4) and its degeneration to a curve with two components
of type (0,3). Curves in the same box are in the same compact component (see Equa-
tion (2.58)). Note that the labelling of the marked points is omitted here to avoid clut-

\Y
V

tering.

In the above, unichrome degenerate curves with two components of topological type (0, 3)
are parametrized by one of the twelve factors of M3 x M3 in the decomposition of
./\/102’ 4, into non-compact moduli spaces. Alternatively due to the inclusion of the boundary

strata
Moz x Moz — /\70,4 (2.59)

by one of the two factors of ./\70,4 in the decomposition in terms of compactified moduli
spaces (see Figure 2.2.3).

Then, consider ./Wil. Curves of topological type (1, 1) may degenerate into type (0, 3).
As all curves have only one component, there are no polychrome curves. Thus, one finds

/\712,1 ~ Mg UM UMz U Mgz~ /\7171 U ./\7171 . (2.60)

An illustration can be found in Figure 2.2.4.

As seen in Equation (2.53) the initial data enjoys an expansion at the ramification
point ¢ = 0 in terms of z ~ /x, which is what generates KdV times {tk}r>2. For a

- D@

Figure 2.2.4: This depicts different colorings (horizontal red and vertical purple) of
curves of topological type (1, 1) and its degeneration of type (0,3). Curves in the same
box are in the same compact component (see Equation (2.60)). Note that the labelling of
the marked points is omitted here to avoid cluttering.
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generic ramification point (3;, one can achieve this expansion by a special choice of
local coordinates

= /2(z(2) — z(8)), for z € Up, . (2.61)

This yields a collection of KdV times {ti,k}kﬂ for each ramification point f;, with
i=11,s].

In order to express the entire space of families generated by topological recursion
through intersection numbers on M, ¢.n» ONE wants to allow for a generic bi-differential 5.
Its holomorphic contributions are parametrized by coefficients Bg, 1.5, associated to a
pair of ramification points (/3;, 3;), with i € [1, s], such that

2155

22— 51’,‘
B(z,25) ~ ((Q(zl) _j<j<22))2 + %BﬁiykﬁjJ Ci(zl)ij(Z2)l> dGi(21) d¢j(z2) . (2.62)

As for the times, there are dual coefficients éﬁ“k; s;, defined via Laplace transform by

> k. — uu
> B kg, aurtuyt = 5@;'172
k,1>0 uy 7 U2
1/2
+ <U1U2) / / eul(x(zl)z(ﬁl))/ €7u2(x(22)7x(/8j))8<21,22)
2m " ",
= (2]{3 — 1)”(2l — 1)!!Bﬁi72k;gj721u1_ku2_l . (2.63]
E,1>0

Theorem 2.2.1 (Eynard [Eynlla, Theorem 4.1]). Let (¥;x,y, B) be a spectral curve
with ramification points {5; }icp1,s; and {(U;, z,y, B*Y) }iep 5 the local spectral curves in
the vicinities of the ramification points. Then,

n

k
Wg,n(zb ety Zn) = ng’n H A,Bm H Qw QJ H 0(5 Zz; 1/%) ) (2-64]

M {@i,95} =1

9,

where the different contributions are defined below.

In the following the notation of the theorem above is explained.

Integration class

The three factors of the integrand, that is [ Ag, . [] ¢(g:, ¢;), and [] Be/% o (213 1/;), are
due to contributions of elements in ./\72,” - the bulk of the different components of a
curve, its nodal points as well as the marked points, respectively (see Figure 2.2.5). The
product of these factors is integrated over the moduli space of colored complex curves
or over the ordinary moduli space accompanied by a sum over colors.
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Bﬁk
5*75/’((1j)

Figure 2.2.5: This sketches the origin of the different contributions to Theorem 2.2.1
associated to the bulk, that is A, the nodes, £,1(q), and the marked points, Bg.

Bulk contribution: Each component v~ *(C),, of a colored curve C' € Mfm con-
tributes a factor

Ay —exp(Ztmw— > 2 Bisnla) w’w’”)) (2.65)

A€OMy p k1,k220

where the sum ), M, Tuns over the co-dimension one boundary divisors Aof M,
see Equation (2.19). Then for A fixed 1A denotes the embedding tp: A — M ¢n- By that
means, the i-classes are evaluated on a boundary component at the marked points
that make up the node on the respective component. To be precise, for some class
a€ H (M 4n) one evaluates via the projection formula

/ o (ca)u (1) = / (1a)u(0) 19 2.60)
Myg.n

A

Further, if A ~ Mgl,nl X ./\792 nys ONe can decompose (1a)*(a) = ZZ] p1,ip2,; into com-
ponents in H (Mg, ,,) ® H(M,, n,), with i + j = dim A — (k; + ky) via the classical
theorem by Kunneth, see [Kiin23, Hat02], and find

(2.66) = / P10t P20 . (2.67)
itj= dlmA (k1 +ko) 7 Morm Mgy ny

Note that Aﬁ as well as B g‘z 8k 1S ir}dexed by only one color. This is due to the fact that
a one-component curve, to which Ag is associated, can be colored in only one single
color.

Node contribution: The moduli space of colored curves contains components of
polychrome nodal curves. A node p contributes in the integral in Theorem 2.2.1 through

(qlv qj — Z (Bﬂa(q ) kl»ﬁa(q k2 T 550(% 760((1] Bﬁd(ql),kl,ﬁq(q ),k2> Ux (¢<Qi>kl¢(qj>k2) ’
dy,d2>0

(2.68)

where v '(p) = {¢,¢;}. In the above . embeds the boundary component that the
considered nodal curve corresponds to into M, ,,. Note thatif Bs .51, = BE,‘?X; 3.k ODIY
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not self-connecting nodes give a non-zero result, that is those with o(g;) # o(g;). This
is also observed when decomposing ./W ,, into components of colored factors of ./Wg,n.
Only polychrome multi-component curves are due to novel components in M gne While
unichrome curves are parametrized by one of the s factors of ./\/lgyn in terms of the
disjoint decomposition of (see Example 2.2.2).

Contribution of marked points: In terms of graphs, see above Equation (2.11),
marked points correspond to half edges or leaves. This is reflected in the way marked
points contribute in Theorem 2.2.1. Each marked point contributes by a single sided

Laplace transformation

— \/>/ e EN Bz, v) =Y " dégalz)u (2.69)

k>0

The expansion coefficients are 1-forms and can be expanded as

2 d 2d — 1)
Agsa " 055V/2(2d + 1)1 CB(CB)(ML = NG ) ;Bﬁ,zd;ﬁ/,kéﬁ'(z)k Ay (2) - (2.70)

For later reference, note that the Laplace transform can equivalently be expressed as a
residue prescription by writing

A¢s.a = —V2(2d = 1)!! Res B(v, 2)(a(v) " 2.71)

The Theorem 2.2.1 as well as the definitions above are illustrated in the following
two examples building on Example 2.2.2.

Example 2.2.3. Consider w4 for a spectral curve with s = 2 and B = B*V. As
described in Example 2.2.2, the moduli space M(2), 4 decomposes into two factors of M 4
and six factors of ./Wo,;; X /\7073. Thus, Theorem 2.2.1 expands to

N 4 A N 4 N
2*%@0’4(21, ey Z4> = / Agl Hi:l B/gl (Zi; 1/’(%) + / A52 Hi:l B/32 (Zi; 1/’4@)
Mo, Mo,a
2 4
+ A/31 Aﬁ2 C(Ql? qQ) H Bﬂ1 (zi; 1/1/} H Zja 1/1/)]
Mo,sx Mo,s i=1 Jj=3

+symm(z1,...,24) | - (2.72)

Noting that dim M, 0,3 = 0 one expands the integrand in the second line according to the
definitions above in Equations (2.65), (2.68) and (2.69) keeping only those parts of degree
zero. This yields for the integral over /\/lg 3 X /\/lo 3

N R N 2
/ e'f1.0m0 ¢l 0%0 Bﬁl,o,ﬂz,o@/}(ql)%(%)oﬂ. s, 0(25) ¥y H , 4, 0 (257) V5
-/\703X-/\703

= ellorots0)00005 By o 4,0 (1os(1os s, 0(21) dés, o(22) dés,0(2s) d€s0(21) - (2.73)
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As dim /WOA = 1, the integrand of the integral over /WOA is expanded to degree one.
Furthermore, it is recognized that with every order of BX in the expansion of the bulk

contribution A, the integral retrieves to a boundary stratum of co-dimension one, see
Equation (2.66). This yields

. . 1 A -
/ el (1 +t0,1f-€1)<1 t5 2 B507075a70¢0¢/0> L1 (65, 0(z) ¥ + déara(z) )
Mo.a

ACOMo 4 Jj=1

. ) ; , . 4
_ <etﬁo,0<f€0>0,4tﬁml</{1>074 + 2t6o0(K0)0.3 (6/2)Bs,.0,,.0 <1>073<1>073> szl dés, 0(2;) (2.74)

+ (65’3"’0<HO>0’4 <¢1>o,4 d§BU,1(Z1) dfﬂo,o(zz) dﬁﬁa,o(za) dfﬁg,o(zzx) + Symm(zlu e 724)> .

In conclusion

4
2 woa= ) { ot (tﬂa 1 +3B3,06,.0 > Hj:1 d€s,.0(2))

oe{1,2}
2o 24 (dfﬁa,l(zi) H4 ,dfﬂl,o(zj)ﬂ

. . 1 4
+elmoting By oo Z Z d€s,0(2) dsy 0 (zJ)Hk#Udgﬁmo(zk) .
(2.75)

Now consider w; ;. In Example 2.2.2 it is laid down that /W%l ~ M ;U M,;. Thus,
Jfrom Theorem 2.2.1 one finds

27wy 1 (2) = / Ag, Bg, (21;1/4) +/ Ag, Bg, (205 1/1n). (2.76)
M1 M1

Expanding the integrand and keeping only contributions up to degree one, yields for both
summands in the above (0 = 1, 2)

X . 1 )
/ €000 (1 +tqk1) [ 1+ B Z Bs,0,5,,00°0" | (d€s,.0(21) ¥) 4+ d&s, 1 (1) 1)
M

§€OMo 4

. R 1 . R
= (etﬁ"’“mh’ltﬁo,l</€1>1,1 + 56%"’0('{@0’3350,0,,60,0 <1>0,3) dégs, 0(21)

+ el otro)n (Y1)11 d€g,1(21)

) B o1
= Gtﬁa’o ( gzl + ,30,;7/30,0> dggmo(zl) -+ etﬁa’o ﬂ dfgml(zl) . (277]

2.2.3 Application to the LSZ model

As it was already mentioned in the definition of the LSZ model, see Section 1.4, the
authors of [BH23] were able to solve the model in terms of topological recursion. They
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provide the spectral curve

A o 1 A o 1
o(2) = 2 — — — ., and y*%(2) = —2 4 — )
() N kz_; y'(Ex)(z — &) () N ; (k) (2 — ex)
(2.78)
as well as B(zy, 29) = % on CP!. In the above {¢;}; and {&,}, are the preimages

of the eigenvalues of the external matrices &/ and E under z and y, respectively. The
correlators due to topological recursion

WoH (21, 2n) = QUISZ(5 L 2) datE (z) - - - datE(2,) (2.79)
give then
0 06 1 J 05 2
0(9)Lsz - Zg:97n,1 E gt
n (5]217 5%) A V (.I‘)( p1> + (Ep1 - Ep2)2

an
N?7207(=1)" " log Z5* 2.80
FINTH ) G g 2, (280

for V(z) =2 — ), ﬁ

Within the investigation of the Quartic Kontsevich Model, the hermitian analogue of the

LSZ model, it has proven useful to express the results in terms of parameters {23, } nenx

and {ys,, }nenx defined as expansion coefficients of the functions = and y by

9,72 x(z 9, My(z

2—() , and yon i Y@ (2.81)
9.°x(2) |._p 9.y(2) .3

supplemented with zg = (9221‘(2)‘Z:ﬁ and ygo = 0.y(2)|,_g- These are well-defined,

as the spectral curve is regular. However, the definitions can be generalized to a larger

class of spectral curves.

Lpn =

Times {3, In order to obtain the times ¢z, in terms of the parameters z3, and yg .,
one compares the expansion of y parametrized by x4, and {3 to that parametrized by

ygyn as
y({zantn: {tsrte; 2) = y{ysntn; 2) - (2.82)

The left-hand side is obtained by expanding first in terms of (5(z), and then in terms
of z at the ramification point

C —0 z%ﬁ
y({zom tan}iz) = Y tanraCalz D tonio Y ssni{zsa)z—8) . (2.83
k>0 k>0 1>k
There, for some k,l € N, 354:({z3,}) is the coefficient of (2 — 3)" in the expansion
of ((s)* = (z(2) — x(B))*/2, which depends on the parameters {z4,}. For the sake of
completeness, these are calculated in Appendix B.1.1. The right-hand side is

n+1
z—p Z—
y{ysn}i2) "= y(B) + yso(z = +y502y5n n+1 . (2.84)

n>1
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A comparison of coefficients of the left- and right-hand-side yields relations between
the parameters ¢35, and xg, as well as yg ,. The expressions for the first few {3, can be
found in Appendix B.1 in Tables B.1.1 and B.1.2.

Coefficients Bj .5 ;v A similar analysis that gave the times in terms of {3, Y31 }n.
also gives the expansion coefficients Bgy. ). In particular, one obtains elements
of { Bg 1.5 i } k. i’en Dy expanding the Bergman kernel in the local coordinate (3(z). Again,
expanding the appearing powers of (3(z) in z gives

CBHO
1= 5 / /
B(Z, Z/) CB: ’ dCB(Z) dCB’(Z/) [(gﬁ(z) —/8723/(2/))2 + Z Bﬁ,k;ﬁ’,k’ CB(Z)kCB/(Z,)k]
k,k'>0

z2=f m
“2F 4247 (Z > (4 1) —m+ 13p1n01381m-me1(z — B)"(2 — 5’)nm>
n>0 n=0
. [ Sop
[2121 3500 ((z = B) = (¢ = 5)1)}

l
+ > Bakpw > Y 3skrdpwir(z—B) (2 — 5')1_1 , (2.85)

k,k'>0 120 r=0

2

with 35 = 3s..({Zsn}) as above. This expression is compared with the explicit direct
expansion of B(z, ') for z — (3, 2" — [/, yielding relations between {Bg 1.5 i }x x'en and
{1’5’”, Iﬂ’m}nGN-

Example 2.2.4. Using these new parameters, the expressions in the running Exam-
ple 2.2.3 can be rewritten to

271&10,4 = Z ; [((3 - 5</€1>o,4 + 20@/1)0,4)37(2771 - 3(1 - (l‘i1>0,4 + 4<¢>0,4)CC50,2

2 2
se{1.2} 4825, Y5, 0

4 1
+ 12(Kk1)0,45,,1Y8,1 — 12("@1)0,4%0,2) Hz‘:l (AL

— 24() 048, 1 ijl ((%_;50)3 H;i (%—;ﬁa)g
20y (ﬁ H; m> }
1/2 !

pr — 52)2$ﬁ1,0$52,oy,81,0y/32,0 ((Zl - 51)2(22 - @1)2(23 - 52)2(24 - 52)2

+ symm(zq, . .. ,24)) (2.86)

M
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as well as

1
27wy = Y o oo {((—1 +10((k1)11 — (@)1,0))x5, 1+ (1= 6((k1)11 — (P)1,1)) 75, 2
oce{1,2} 7 7

1
— 24(K1)1178,1Yp,1 + 24<R1>1,1y/30,2) I8

48(z1 — Bo)?
()15, 3(¥)11
(Zl - /80')3 B (Zl — 50)4 (287]

Using the parameters xg , and yz, for the spectral curve of the LSZ model one explicitly
finds how the intersection numbers on the moduli space of curves are convoluted in the
physical model.

+

In the following a similar result is aspired for the hermitian analogue of the LSZ
model - the Quartic Kontsevich Model. Therefore, the framework of topological re-
cursion, introduced here, however, needs to be generalized to include higher order
deformation parameters analogous to the times ¢35 ; and the parameters Bg .5 /. This,
more general, blobbed topological recursion will be introduced in the next section.

2.2.4 Blobbed topological recursion

It was already mentioned above that in order to capture the Quartic Kontsevich Model, it
is believed that the setup of ordinary topological recursion, which was introduced in the
previous section, is too narrow. Nevertheless, on the level of loop equations, the model
is supposed to follow a structure close to topological recursion. This less restrictive
framework is achieved by considering the most general solutions to the abstract loop
equation, denoted w,,, which are constructed via blobbed topological recursion. The
latter is introduced in the following.

The general solution is obtained by enriching the recursion at each step by a holo-
morphic contribution ¢, ,, called blob, see Figure 2.2.6. Thinking about the system
from the perspective of hierarchies of differential equations, the blobs can be interpeted
as integration constants, introduced whenever an equation is integrated. Setting all of
these integration constants to zero, one retrieves to one special point in the space of
solutions. For one specific model which is determined be its loop equations the blobs
are constrained in the global picture completely.

These blobs are global sections of the n-th symmetric power of the canonical bundle
over X symmetric in their arguments. To proceed, define for a meromorphic 1-form 7
the projection operator P by

i=1g—p;

q
= Z Res 1(q)®Y*(q, z) , for (g, zo) ::/ Wo2(e, 2p) - (2.88)

If there are multiple variables (z;);, the corresponding projections are denoted (P;);.
As the divergent part of Pn at the points {f;}; agrees with that of 7, P is called the
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Figure 2.2.6: This illustrates the different terms in the recursion prescription (2.94)

using the association of the correlators with Riemann surfaces, similar to Figure 2.2.2.
Compared to the latter, here in the case of blobbed topological recursion, there appear
the holomorphic blobs ¢, ,, which represent the terms in the second to fifth line of
Equation (2.94).

projection on the polar part. The remainder
7—[77 =n— Pn (2.89)

is accordingly the holomorphic part. Note that these projections are well-defined as for
29 — 2+ n > 0 the @,, do not have poles on the diagonals and thus [P, ] = 0. For
the unstable topologies the polar part vanishes as w;; and @, 2 do not have poles at the
B;. Furthermore, it should be stressed that the exact forms obtained by the projections
depends on Wy 2.

Theorem 2.2.2 (Borot-Shadrin [BS17]). Let (@, ,),, be a solution to the abstract loop
equations, then

Pla}g,n(zla I) = Z :}ieﬁs Ki('zla Q) ag—l,n+2(Q7 gi(Q)a I) (290]
i=1 !

/ ~ ~
+ Z wgl,1+\l1|(q7[1) wg2,1+\l2|(<i(Q>7[2>

g1+g2=g
Lula=1

This theorem shows that the solution to ordinary topological recursion w is convo-
luted in the w, but cannot easily be extracted, as the blobs ¢ enter the recursion at
each individual step. This induces a short exact sequence of solutions to ordinary and
blobbed topological recursion, M and M, respectively,

0—M-—M— P B.—0, (2.91)

2g—24n>0

where B,, consists of global sections of the n-th symmetric power of the canonical
bundle over > symmetric in their arguments, yielding the stable holomorphic blobs.
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Trivially, the (wy,)4n, € M correspond to the solution of blobbed topological recursion
for (¢gn)gn = (ydx, B,0,...).

In the general case Borot and Shadrin showed that the polar and holomorphic parts
of w can be decomposed according to bipartite graphs (see below).

Theorem 2.2.3 (Borot-Shadrin [BS17]). If (&,,),, is a solution to the abstract loop
equations and I, U I, = [1,n], then

~ wr
Hr, Pr,0gn = g —\#Aut r , for2g—2+n >0, (2.92)
TeBip,.,, (In,Ip)

where the set of graphs Bipg’n and their weights wr are described below.

In the theorem above, the set of graphs Bip, ,(/5, I,,) is given by bipartite graphs I'
that satisfy the following conditions.

- The vertices are of type ¢ or w. They are decorated with a label i (v) which together
with their valency d(v) satisfy stability 2h(v) — 2 + d(v) > 0. #

— The edges connect only ¢ to w vertices.

- The unbounded edges, also called leaves, are labelled by [1,n]. The partition
I, u I, =[1,n], of Theorem 2.2.3, prescribes the type of vertices to which the
leaves are connected, where [}, corresponds to ¢ and /[, to w vertices.

— The w vertices must be incident to at least one leaf.

- The graph is connected and its first Betti number b; satisfies b; + ) h(v) = g.

Such graphs can be associated with a weight as follows.

— One assigns external variables {Zi}ie[[l,n}] € Y to leaves according to their labelling.
An internal edge e obtains integration variables z..

- Avertex v contributes a local weight wy(v),a()(Z(v)) Or Yh(w),dw)(Z(v)) according to
its type, where Z(v) is the set of variables assigned to the edges incident to v.

- Then local weights are multiplied and internal variables {z.}. are integrated out
via the prescription

S

(W(ze, (26, J)) ZResw(q,I)/%gp(o,J). (2.93)

23
9 Bi

Example 2.2.5. The progress within the Quartic Kontsevich Model over the past decades
has lead to the belief, that the model can be described by the general setup of blobbed
topological recursion. First and foremost, its solution in the planar and genus one sector
provide compelling evidence for this.

In [BHW22, HW21, HW23], the authors showed that for g € {0, 1} its correlators, which

#This allows for h(v) to be interpreted as a local genus
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are constructed in Chapter 1, follow the recursion

QKM } : Z’ QKM QKM
wg n+1 (E}es IC Z Q) [ g 1 n+2(q Q7 + wgl7‘[1|+1(Q7 ]1)w927‘[2|+1(Qa ]2)]
& hUl=I
gi+g92=9g

q—)Z

1]
+ Zd Res K., (2, ¢ [ Z d]1 iKmm(qv[l) 92, |12\+1(Q,[2)

j=1 huly=
g1+92= g
(da(q))? & [wdi(q 1)
+ d w1 (g g, 1) + I
g-1n+2l ) 6  J(x(q))?\ dz(q)dz(z;)
+ RGSIC()(Z Q)[ Wy 1,n+2 q q, Z d 1 ngK‘l\I/I1|+1<q’[1) g2, |[2|+1<Q7[2)
e
L (@) 9 (dywin(ed. ) .00
2 0x(q) dz(q) ’ '

where the primed sum Z' excludes terms containing correlators of topological type (0,0),
with the initial data
le dZQ le d22

(21 — 2’2>2 (21 + 22)2
(2.95)

9"M(2) = R(2), y*™™M(2) = —R(—2), and wggM(zl, 29) =

referring to the function R, defined in Equation (1.30) in Chapter 1. In the recursion
above, wg’)2 (¢, q), which contains a double pole, should be replaced by its holomorphic

part, that is lim _,q(wég2 (q,q) — -Axl0d2@) y - py rthermore, the standard kernel

(z(q)—x(q'))?
_dz ( 1 )
2 z2—si(q)
IC'L'(Z7 Q) =

(y(@) — y(<i(g))) du(q)

is accompanied by kernels due to the contributions of the reflected part of Wo 9 M and zero

B D) _ ¥
= @)+ 2@) da(g) = W@ T e @)

Note, in the correlator of topological type (0,2) there are two contributions. The first is
Sfamiliar from Example 2.2.1 and often referred to as the Bergmann kernel in literature on
topological recursion. The second term is novel and is a reflected, z, — —z5, version of
the former. This additional term is also reflected in all higher correlators as can be seen
in the subsequent examples.

(2.96)

(2.97)

The technically involved proof given in the original work amounts to a careful analysis of
the pole structure of different functions related to the w9 in order to find globally defined
loop equations. The interested reader is referred to the original work as a presentation is
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beyond the scope of this thesis.

Instead, it is pointed out that in Equation (2.94) the contributions entering each step of
the recursion that are holomorphic at the ramification points have a structure similar
to the polar contributions. Even more, they are expressed in terms of correlators of
lower topological type®. It is currently unknown to what effect or structure within the
Quartic Kontsevich Model this relates, but it certainly shows that the exploration and
understanding holds a variety of different avenues.

Using the explicit recursion from the correlators associated to the unstable topologies
all higher correlators can be constructed. In order to give an example as well as for later
reference the correlators associated to the lowest topological types are provided in the
variables (; + (i//Tip, fori € [1, s], expanded up zeroth order in all variables. First, the
different sectors of wgg‘M, that is the various combinations of expansion points, expand
according to

(witg ) (21, 22, 25)

dGi(21) d¢i(22) dGi(z3)
B 1 -1

 YioTio {Cf(zl)ff(%)ff(zs)
_ (L_{_i(:ﬂ — T )) < 1 + 1 + 1 )
42 24 T )\ B le) P zs) Q1)) 2P ()

L1 oL - 1 1
N =g = (x — —(x7, —
1651 " agpr T ) T gt Tl I\ By T 20 T )
N ( 15 3(wi1 — 2y;1) 577, — 3wig — 12351951 + 24yi12 + 12952 (%2,1 — Ti2)?

3260 168 1284} 1923
(3312,1 - $i,2)3
_W)]
1 3
R 2o ol ey A= e R S I

and
(W(%gM)(l’]’J) (Zl y 22, 23)

d¢i(z1) d¢j(z2) dj(23)

o 1 1 1

T Yoo [(ﬁi — B;)? " (Bi + 5;‘)2} (3 (22)CF(22)

1 1 1 2 1
Yi,0Ti,0 {(@ — Bj)* (51 + B;)* ( — B)(Bi + B;)? } (7 (z1)

1 [1 +x%—xm}( 1 1 )
Yyiorio [ 267 12 HE ) (3 (23)
1

L[ | (v bt )
yj,Oxj,O Bf(ﬁl“’ﬁj) (/BZ+/B]) 533 2532

*in terms of the strict partial order induced by the negative Euler characteristic
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B 1 (%,1 — T2 n (25, — Tj2) ) n 1 ( 3 2y51
(Bi — B;)? 4832 576 (Bi + B;)* \ 85] 42
+5x?71 —3xj0 — 123;1y;1 + 24y]2»’1 + 12y, 9 B (x?l — xj72)4)}
482 576

4 1 [ ]_0 _'_ 21‘1‘,1 — 4%’,1 B 1 ( ]_ i i,1 ﬁz,Q)
YioTio L(Bi+ B;)° (Bi + B;)° (B — B;)* \ 457 24
1 (5$z 1 Tig Tl n n ?/12) _ 1 %2,1 - fEi,2:|
<5Z+ﬁj> Wty ) TG ErG AT 1
1
Bi — B:)*(Bj + Bi)*

8 2
1

P Do { Bi— B2, — B '

t#{ig}
2

Bi — Be)*(B5 — Be)*(Bj + Br)?

T } + O(Gil21), Gil22), Gi(23)) (2.99)

and

(W(?EM)(” ) (21, Z9, 23

)
ddi(21) d¢;(z2) d¢n(z3)
1

1 1 1
T Yiotio [( B;)*(Bi — Bn)? * (Bi + B;)*(Bi — Bn)? * (Bi — B;)*(Bi + Bn)?
1 1
+(6i+5j>2<ﬁi+ﬂh)2} ()
n 1 { 3 n 3 n 4
YioTio L (Bi + Br)2(Bi + B5)* (B + Bu)*(Bi + B5)%  (Bi + Bn)?(Bi + 5;)3

+ Symm((zh i), (227j)7 (Z37 h))

1 1
+ (@ = 2) ((ﬁi BB+ B (Bt BB+ w)
_ 1 _ x%’l — T2 ( 1 n 1
4B2(B; — Bn)*(Bs — B;)? 24 (Bi = Br)*(Bi — B5)%  (Bi+ Bu)*(Bi — B;)?

2
1 1 i,1 )

1 X
TG BB BE Bt BBt ﬁm) TGt BB+ By (T "6

ST g2 B2 | symm((a1, ), (22,), (29, B)
1 1 1
T ot A A G AT
+ ! + ! }
(Bi = B)* (B + B)* (B — B)* (B — B)*(B5 — Be)*(Bn + B)?
+ O(Gi(21), Gi(22), Gi(23)) - (2.100)

It should be noted, that the corresponding sectors only exist if the number of ramification
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points is sufficiently large. For w%IfM there is only one sector for which one finds

64 576 48 48 642

1 [1 1 (%‘,2 75’712,1 $z‘,1yi,1+yi,2 1) 1
Yi,0%i0 3 QA‘(ZI)

¢ (21)
_49x§1’1 17%‘,2%2,1 _ Ti3Tin 11%2,2 i Tig x?,1yz‘,1 i L3124 2Yi1 n I?,1yz‘,2
27648 4608 1152 9216 5760 1152 1152 1152
T2V 2 . 1 (w0 T3 n 1 55[10] 1
1152 p2\144 144 (x([)ol)2 16a? 803
1 1 Ty 1 ( T Tio Yio
+ — — : + —_— 4 =+ ==
2 Yot [ 8B — By 24 - 5P G-\ 48 a8
T 1
_ tigtvl — G_BQH + O((i(#1)) (2.101)
t

These follow directly by expanding the expressions found from the recursion (2.94), for
which [Bra22, Section 2] can serve as a reference. In the above additional data {a:g)} b is
used. That is similarly to Equation (2.81) defined as

o 8Zn+1$(2)

0
T T 0.(z) ’ and ) = 0.0(2)],_y - (2.102)

2=0

with x = R here, evaluated at zero instead of at the ramification points.

The expansion in the KdV-variables in the previous example suggests, that - as in
ordinary topological recursion - there is a relation to intersection numbers on the mod-
uli space of curves. This is introduced in the next section together with an associated
graphical language. Using the latter from the explicit expressions given in the previous
example the form of the blobs can be deduced.

2.2.5 Blobbed topological recursion and intersection numbers

Parallel to the expansion of ordinary topological recursion at the ramification points to
find coefficients encoding intersection numbers on the moduli space of complex curves,
see Section 2.2.2 one can expand the solutions to blobbed topological recursion. In that
case the additional data of the blobs is convoluted in the expansion.

Again, one introduces in neighborhoods {U; };c[1,¢] for the ramification points {£; }ic[i,]
the local variables (;(2)?/2 = z(z) — x(5;) and the standard bi-differential

dGi g2

R 5@'m J (2.103)

where (;;, = (i(#;) for z; € Uy, omitting all holomorphic contributions of @,- at the
ramification points. Using this restricted form one defines P¥% and H%" analogously
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to Equation (2.88) as with @?’2 replaced with

q
q)?’Q‘Kdv(qa Zo):/ CT10,2!K<1v(°72‘0)~ (2.104)

i

This yields the KdV-blobs for 2g — 2 4+ n > 0 via
Qg =MLV HEVG, ., and @1 =Do1, Qo2 = Wo2 — Woolkav  (2.105)

is set. One finds the contributions from the different ramification points by expanding

n

Bgn (21, 2) N Q) = N g [ ] T(Gon) G - (2.106)

di,...,dn >0 =1

The following theorem due to Borot and Shadrin (in [BS17]) shows how the intersection
numbers are convoluted in the general framework of blobbed topological recursion.

Theorem 2.2.4 (Borot-Shadrin [BS17, Section 3]). The partition function associated to
the solution (@, ), to the abstract loop equations is given by

Z = exp (Z @,n) H Z;, (2.107)
g,n =1

where Z; is an extended KAV partition function at the ¢-th ramification point and ngﬁ isa
Jfamily of operators associated to the KdV blobs defined below in Equation (2.110).

A solution to the abstract loop equations (@, ,),, is associated to the partition
function Z in the usual way through a formal expansion

nZ = Zhgl Z > IN[r] Ht%dk (2.108)

i1,..in=1d1,...,dn €Z

(2d+1)!d¢;

ti g <> n
e ~odd Ze—Vie ~ (i1,emyin) Z “, ,zn H (2dy, + 1)1 dG,

Won (Zl, cee Zn) ~ Wy = di,e..,dn 2dk+2 !
di,...,dn€Z k=1

11 5eeeyin

where the superscript odd denotes the odd part in each variable and IN[ dn} is a
linear combination of intersection numbers of ¢)-classes on M, ,,.

The theorem above can be proved by deforming the KdV partition function. In order
to explain this, first note that for intersection numbers the moduli space of genus zero
one can find the closed expression f Mo @Z)fl cee @/}Z" = ( d:.iiin) as long as n > 3 using
the string equation in Theorem 2.1.2. Referring to the analytic continuation of the
binomial coefficients beyond their combinatorial domain, one can add terms for the
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unstable M, ; and M to the KdV partition function in order to define

t_ 1
Z; = exp (?2 + % Z(—l)dtdt_l_d> ZKdv

td'_)itl,d/az
20 hish/a?
t, 1 )
d=0
A
+ Z (/ Yb . wdn) thk> tars—tiafa; s (2.109)
g>07n>1 ' dl: 7dn>0 h»—)h/a

where t¢; 4 is the d-th KdV time at the i-th ramification point and «; = ¢, ,[i]. These
partition functions are deformed by the KdV blobs via the operators

o~/ . _ n i i n a
%ilnwln) = Z ¢gn 2d1: 2d, H (2d; — 1) ”8 ) (2.110)
=1

di,...,dn>0 i,d;
for (g,n) # (0,1), and
0

(2]

A = D doald)2d = 1l

d>2

(2.111)

Remark two details here. The family of operators gg only depends on the purely odd
part of the (¢,,),,. Furthermore, the operator of type (¢g,n) = (0,1) constitutes an
exception due to the fact that ¢g1[}] = ydx |5, = 0 and the exclusion of ¢g1[}] = «;.
The latter is required to make the action of 50,1 on Z; well-defined. The exclusion of
d = 1 makes sure that the operator respects the structure of Z; as a formal power series
in the variables t; 4 for, d < 1,with coefficients being polynomials in ¢; 4, for d > 2.

Graphical expansion at KdV-solution

It is possible to express the coefficients IN [ - ’Z” ] graphically as sums of contributions
due to connected bipartite graphs. This was descr1bed in [BS17] generalizing the graph-
ical language of ordinary topological recursion of [Eynl1b]. These graphs [' € BlpKdv
will be defined below and are different from Bip,,, introduced above. Later, it will be
noticed that the set BlpKdV is infinite, which limits its significance, but can be renor-
malized to yield Blp;{mn, following [BS17]. It is both computationally and conceptually
important that one can re-sum graphs in BlpKdV. While finite calculations can only
deal with a limited number of graphs, unbounded contributions would signal divergent
rendering the theory ill-defined.

Graphs in Biph," satisfy the following rules.

- There are KdV- and ®-vertices. They are decorated with a label i(v) corresponding
to the genus as well their valency d(v) such that d(v) > 1

— The edges connect only KdV- to ®-vertices.

- The half-edges, leaves, are labelled by [1,n] and are incident to KdV-vertices.



52 Chapter 2. Moduli Space and Topological Recursion

- The graph is connected and its first Betti number b; satisfies b; + ) h(v) = g.

Remark 2.2.4.1. In the original work [BS17], the third rule is more strict as it also
requires leaves to be connected to a KdV-vertex of type (h(v),d(v)) = (0,2) with one
exception given by (g,n) = (0, 1) (in that case the graph consists of only one vertex that
is of KdV-type). This is, however, contradictory. Assuming every leaf be connected to
a (0,2)-KdV-type vertex, the next vertex must be a ®-vertex. If, however, the theory
is specified such that all ¢,, for (g,n) # (0,1),(0,2) vanish, this theory would yield
Wgn = 0for (g,n) # (0,1),(0,2), contrary to w,, as would be expected.

Kdv

According to [BS17], a graph I' € Bip5;

can be associated with a weight as follows.

— One assigns external variables {zi}ie[[m]] € X to leaves according to their labelling
and an internal edge e obtains integration variables z.. The set of internal edges
is denoted E and the subset of primary internal edges FE,, which are incident to
the same KdV-vertex of topological type (0, 2) as the leaves.

- Avertex v contributes a local weight Wy, (v),d(v) [kav(Z (v)) OF @p(v).4)(Z(v)) accord-
ing to its type, where Z(v) is the set of variables corresponding to the edges
incident to v and

“(2d, + )N
Ondlkav(Z(v)) = (—ay)* 27" Z </M Y- ¢gn> H ( lz._zdl)m i :

di++dpn=dg.n =1 1l

(2.112)

for 2¢g —2+n > 0, for (h,d) = (0,2) by the standard bi-differential of Equa-
tion (2.103), and for (h,d) = (0,1) by @o1 = —a;¢? d{; as well as

Ze(1) Ze(d)
Dy a(Z(v)) = / / (Gh.a — S(h,ay=0,1):C7 dG) - (2.113)

Ye(1) Ye(d)

— Then local weights are multiplied and the total weight is given by

D
wﬁdv - [HeieEo Z5321:| |:H€€E\E() Zie zel%ﬁeasie } Egut ([II)‘]) ’ (2- 114)

where D(v) are the local weights using a pairing similar to Equation (2.93).

Remark 2.2.4.2. At this point a few remarks will be made regarding the prescriptions
above.

It was pointed out previously, see Remark 2.2.4.1, that the third rule to con-
struct graphs in Bip;{f:lv was modified. This affects the calculation of the corresponding
weights. In the original work primary internal edges, that is those edges in £, are
defined as all edges incident to the same KdV-vertex as leaves. In the original formula-
tion then a one-to-one correspondence between these edges and the leaves is claimed,
which allowed to write down the residue prescription as in Equation (2.114). Modifying
the rules of the graphs, this one-to-one correspondence only applies for those edges
that are incident to the same KdV-vertex of topological type (0,2) as leaves. Hence, in



2.2. Topological recursion 53

order to be consistent the rule for computing the weights given in by Borot and Shadrin
had to be modified.

The local weights of the KdV-vertices correspond to the correlators of the KdV par-
tition function, which encodes the 1)-class intersection numbers, or, in the language of
blobbed topological recursion, the solution to the abstract loop equations for agm =0
for all (g, n). These are already computed in Example 2.2.1 of Section 2.2.2 restricting
to Bg g = 0 for all 5, 5" € {f;}icpi,s) and k, &’ € N. This illustrates how the blobs of
higher topological type in the graphical language connect KdV-sectors, given by /-class
intersection numbers, in the same way as the holomorphic contributions to wys = B
in ordinary topological recursion do.

Regarding expression (2.114) it may be pointed out that the residue prescription
can more easily be understood in the local variables (;(z) near the i-th marked point.

Describing the same objects, it is possible to relate the two graphical expressions in
terms of graphs Bip, ,,(I4, [,) and BipI;‘iLV. Therefore, one needs to associate the leaves
to the sets [, and I,. This is done by noting that there are three possibilities for the
vertices incident to a leaf according to the rules given above. If the leaf is incident to a
stable KdV-vertex or a KdV-vertex of type (0, 2) that is further attached to a ®-vertex of
type (0,2), then the leaf is said to be of P-type. Otherwise, that is if it is incident to a
KdV-vertex of type (0, 2) that is further attached to a stable ®-vertex, then it is called of
‘H-type. This associates leaves of a given type to the corresponding projectors, H or P,
in the representation of correlators in terms of Bip, (s, I,).

Using this knowledge, one obtains the elements of Bip, (I, I,) from the ones con-
structed here by considering the maximal connected subgraphs that only contain KdV-
vertices and unstable ®-vertices and that are incident to at least one leaf of P-type.
These subgraphs are the w vertices of Bipgm(f n, 1), while the connected components
of the complement give, with one caveat, the ¢ vertices. At the leaves incident to these
¢ vertices one needs to remove the KdV-vertex of topological type (0, 2) turning the form
into a actual function.

Investigating a set Bipgiv one constructs graphs used to evaluate solutions to the ab-
stract loop equations by the association of weights to these graphs. This sum over
graphs is only well-defined, if there are only finitely many contributions, which is
true here. However, this is not manifest from the set Bipgiv, which is infinite. With-
out changing topological type one can extend a graph by attaching any vertices of
type (0,1), referred to as blossoming, or pairs of KdV- and ®-vertices of type (0,2)
arbitrarily often (see Figure 2.2.7). Nevertheless, the sum over contributions is finite
because the weights of almost all of these graphs vanish, as it was shown in the original
work, see [BS17] Lemma 3.14 and 3.15. This can be incorporated into the graphical

language constructing the restricted set Bip by requiring

- there is no internal KdV-vertex of type (0,2) and no KdV-vertex of type (0,1)
incident to an internal edge,

- if there is a stable KdV-vertex of type (g, n+k) attached to k ®-vertices of type (0, 1)
such that g > 0, n > 0 and k > 1, then k < dg,,, where d,,, = dim M.
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o
o L6
_@_

o HOH 1

Figure 2.2.7: This depicts graphs of topological type (g,n) = (1, 3), where boxes repre-

sent KdV- and circles ®-vertices. This illustrates the fact that the set Biplf%v

as vertices (here @, but in fact any) of type (0, 1) (upper side) and pairs of ®- and KdV-

is infinite

vertices of type (0, 2) can be attached to any graph without changing its topological type.

Remark 2.2.4.3. Note that the fact that internal KdV-vertices of type (0, 2) are forbidden
for graphs in Bip allows for an alternative way to resolve the inconsistency mentioned
in Remark 2.2.4.2. Then graphs can be constructed according to the rules Bipﬁv,
except for (a) only stable KdV-vertices are allowed, (b) the (O, 1)—blobs renormalize the
(all) KdV-vertices as described above and (c) leaves can be incident to (any) KdV-vertices.
For these graphs, which form a finite set, weights can be computed in the same way as

for Bip only that at leaves incident to a KdV-vertex one replaces correspondingly
\/5(2616 + DG (ze) /Cz?de—i-z(ze) — d&ia,(ze)

and at leaves incident to a ®-vertex the residue prescription

d¢i(Z;) ddi(2)
5{52 (Cz(gl) - Cz(zz))2

is inserted. Then, by ommitting the tilde one obtains the usual symbols of the variables.

Before giving examples for this expansion it should be pointed out that there is in fact
nothing special about the graphical expansion of the general solutions (&, ,) encoded
in blobs (¢,,),.» via the KdV solution (@, ,|kav),,». Which is specified by the vanishing
of all QAﬁg,n. By choosing a different special solution as reference point, a similar kind of
expansion would be obtained with a similar translation back to ¢-blobs as described
above for ¢-blobs.

Example 2.2.6. In this example the expansion of the correlators @, , of types (0,3),
(1,1), and (0, 4) will be explicitly calculated. To that end the graphical language is used.
This illustrates not only the reconstruction of the correlators_from the graphical language
in that it illustrates various effects that occur in this process. It also shows at different
instances how blobbed topological recursion is a natural extension of the ordinary theory
of Section 2.2. Furthermore, the results of this example can then be compared with the
explicit computations in the Quartic Kontsevich Model of Example 2.2.5 yielding the form
of the blobs in this model, see Section 2.2.6.
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(@, @@ OofoD

Figure 2.2.8: A list of the graphs present in Bip. The hatched squares represent
blossomed KdV-vertices and the circles represent ®-vertices. Note that each graph in
this list represents one class consisting of a linear combination of labelled graphs, which
is symmetric in the leaves.

First construct the set Bip, see Figure 2.2.8. As depicted there, the first graph is the

pure KdV contribution with only one KdV vertex of topological type (0, 3). Without creating
loops and changing the topological type of the graph only a blob of type (0, 3) can replace
the KdV vertex or blobs of type (0,2) can be attached to the leaves of the first graph. In
order to obey the rule that leaves can only be incident to KdV vertices additionally a KdV
vertex of type (0, 2) has to be attached. The pair of KAV and ® vertices resulting in the
latter case can be attached to either of the leaves of the KdV vertex of type (0,3). This
gives the graphs in the list in Figure 2.2.8 modulo symumnetrization.

In the following the weights of these graphs are exemplary constructed. Therefore,
one first considers the graphs in Figure 2.2.8 with the renormalised KdV-vertices replaced
by their not-renormalized counterpart. The weight of the first graph Iy, that is

zZ1 1 i 29

—4 0 F—
/| v

is given by the local weight D[v] = wo3(21, 22, 23)|kav 0f the only vertex v. Thus, going
back to Equation (2.112) this gives

i 1 dCZZ dsz dlZ
(@pe) 9 (21, 29, 23) = ——(1)o 3 ( 12) ( 2)2 Gilz2) 5 -
Qv (Gi(21))%(Gi(22))?(Gi((23))
Following the structure of attaching a pair of vertices of topological type (0, 2) first at one
of the leaves, one computes the weight of a graph of as

(2.115)

SN | 0)e—4 o p—=2
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denoted I';. The local weights of the additional vertices is given by

~dG(21) A (zeo) . Po,2[2k 21]
= Gl Gl P 2 e G ) e

The set of internal edges is E = {eg, e}, while the set of primary internal edges is
Eq = {eo}. Using the residue prescription for combining the local weights, see Equa-
tion (2.114), one computes

(WE?V) (]7171) (Zh 22, Z3

_ Res( Res ) K )d@(zl)dci(zz)dci(zz)
Bt
1)

e v (Gi(22))2(Ci(23))?

Z ®0,2 |2k 21] (T (2e,) d¢;(ze,) CSQZH(%) dg;(ze)
2 @R D@D (G~ Gl (=)

(1)0,3 d¢;(21) dGi(22) d¢;(20) Z Po,2[2k 2]

o (GEPGER)P A 0(2k+1><2l+1>
)
(23)

(2/‘+ >Q/ ( )/lészélo

(
<24(~)3d<]((zz)ig((2§2 i Z¢02 E(z). (2.117)

Comparing this to the weight of the graph 'y above one observes that in addition to a
more general index structure (the structure here (j,1,1) includes j = i as well as j # i)
a replacement of the polar contribution ((;(z1))~% at the leaf by the holomorphic ones
>k Go.2[5h0) (¥ (21) parametrized by the blobs.

This pattern continues in the computation of I's, that is

The local weights of the vertices attached at the leaves are

1 del(’Zl) dg;, (Ze(l)) n_ ®o,2 [271;118251] 2%k1+1 201 +1
Pl = G e DT 2 BR e nen o Gl ).
B deQ (22) dez (Zeg) o ¢0,2 [211;22,,82212] 2 2
D[vi] = (G (22) — ng(zeg))z Dlv3] = Z (2ks + 1) (205 + 1)<3gk H(Ze%)Cfé (2e2) -

ko,l2>0
(2.118)
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The global weight follows from the residue prescription, Equation (2.114), as

(VY o) (2, 2, 23

— Res Res ( Res >( Res )[<—<1>0,3) dgj(z1) ddn(22) dGi(z2)

3 (\)—>z1 :(;_1—>z2 - z,1 ﬁﬁiel - 2,2 ﬁﬁiEQ o, (Cl(Zg))Q

Z Do.2[2k 50, Do.2[2k 50,
(2k1 +1)(20; + 1) (2ko + 1)(2l2 + 1)

y I (ze) A6 (20) Y (2a) Gy (2e1)
(Gir(21) = G (200))? (G (2e1))?

L G (g <1c,><~5><2§2+l<zez)d<j2(zez>]
(Gio(22) = Cu(z2))® (Ginl2e2))? '

Note that the contributions of both attached leaf structures are completely independent.
This is a general phenomenon, which is due to the fact that the computation of the global
weight is a local procedure via residue prescriptions. Re-using the computation of the
weight of I'y, one finds

k1,l1,k2,122>0

(2.119)

RdV (ji1,J2,t _ 1 ) dCl d<2 dC@
(wF;jl )¢ )(Z1722,Z3) = _<O>£3 j (Zl)(g(JzS)Qg (23)
Z bo2 [ 70] Doz [570] G (20) ¢y (22)* . (2.120)
k1,k2

Continuing to attach a pair of (0, 2) vertices at the last remaining leaf on finds graph T's,
that is

the computation is analogously to the above and arrives at

(wgdv)(jl’jz’m(zl 22, 23)

— Z Jos dg;, (z1) A, (22) d¢, (23)

Z P02 [0 Po2 [9270] oz [55 0] G (1) G (22)2 (s (20)% . 2.121)

k1,k2,k3

Note that structure of the external index here does not fix the index at the vertex v of
topological type (0,3). In order to find a complete result, this index is summed over all
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ramification points.
The last graph T,

’

is given by the blob of topological type (0, 3) with local weight

¢0 3 [rilér/?rgk ] 2k1+1 2ko+1 2ks+1
Do) = et ok () ke () (o) (2.122)
kl,k;@o<2k1+1><2k2+1><2k3+1> v e o B

and KdV vertices of type (0, 2) at the leaves. This yields

(wII“SdV) (]1 >j27j3) (Zl y 227 23)

0,3(2k1,2k2,2k3
- Ris RES Ris kl,];kpo (2k; + ?)(2[/:; +k 1)122]k3 +1)
At (z, )dc,.( 2e1) Gt (2, dc,)<25><f“+'< 3) dGjs (2e3)
(G (21) = u)) (Gia(22) = Co (2:2))? (G (23) — G (= ‘))
=dg, (21) d¢j,(22) dcjg(zB) Z P0.3[2kr 2ks. 3k ] G le(zl)c%“‘( (A3 (z3).  (2.128)
k1,ko,k3>0

To conclude the computation of W, 3 expanded in the KdV variables, one needs to take
care of the renormalization of the KAV vertices by blobs of topological type (0,1). This
step is trivial here as

Xo03+k < 0, kE<ds (2.124)
has no solution for k > 0, referrlng to the construction of Blpm. Collecting the contri-
(i-g,h)

butions of all graphs one finds wy; Excluding the last graph the result is equivalent
to what one finds using the framework of ordinary topological recursion as the blobs
$o,2 [zﬂ can be translated to the coefficients Bg, 1.5,1. This is reflected in the expansion
of d¢, which already includes a polar as well as a sum over holomorphic contributions.

Then the set Bip is considered. It consists of five graphs depicted in Figure 2.2.9.
Note the structure here. There is the first graph, which is also there in pure KdV, and the
third graph, which is the degeneration of the torus to a three punctured sphere having a
self-connecting node represented by a (0, 2)-blob. The second and third graph is obtained
Jfrom the first and third by the insertion of a (0,2)-blob at the leaf, respectively. This
accounts for a polar and a holomorphic contribution at the leaves, which, as described in
the discussion of Blpo 3 above, can already be found in ordinary topological recursion.

The fifth graph cannot be found in ordinary topological recursion because it contains
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B
25%0)

Figure 2.2.9: A list of the graphs present in Bip. The hatched squares represent
blossomed KdV-vertices and the circles represent ®-vertices.

a (1,1)-blob. Here, a (0,2)-blob cannot be inserted at the leaf as this would yield an
internal (0, 2)-KdV vertex.

In the construction of the weights, one first considers the graphs in Figure 2.2.10 with
the renormalised KdV-vertices replaced by their not-renormalized counterpart.

Starting with the first graph, I'y, in Figure 2.2.10,

— 1

v )

there is only one vertex, which is of KAV-type and has local weight D[v] = w1 1 (2)|kav and
no internal edges. Furthermore, the automorphism-group is trivial. Thus, the weight of
the graphs evaluates to

(@H)0(:) = 1Dlo] = - (W3 G- 2.125)

Insertion of a (0, 2)-blob at the leaf yields the graph

’

which corresponds to the second element in Bip. The local weights of the vertices are

d 7 d 1 \~eg
Pl =@y, Dlnl = s
_ ¢0,2 [211;521] 2k+1 21+1
D[UQ] N k,1>0 <2k + 1)(2[ + 1) Cr * (Zeo)gs * (Ze> ) (2-126]

and the sets of edges are E = {eg, e} and Ey = {ey}. Using Equation (2.114), the weight
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of the entire graph evaluates to

=06 = R (3 Rey ) [0 (7)o

Z Po.2[ox 5] M (2ey) G (200 )2 (2e) AG (2e)
2 ORI (G -l PG )

=d¢(2) (—Z) MZZ 21{?}?22?1]4_1)(2]‘ )(i (2)0; 05,5011

j kiI=0

_ W ZZQSOQ ) R (2) dGi(2) - (2.127)

j k=0

The third element in the set B1p1 . is

i Ze)
. L
2 ’
4 i v
X S
v L Zeq
2 ’

D[U] = (,«)073<Z7 Zeq s Zez)leV ’

no_ ¢072[227,52l] 2k-+1 20+1
‘D[U] - ];N) (2/{? + 1)(2l + 1)Cr (Zel)gs (262) : (2128]

with local weights of the vertices

Here, a problem with the modified third rule of graphs in Bipgﬁy occurs, which the original
Jformulation did not show, see Remarks 2.2.4.1 and 2.2.4.2. As the first vertex after the
leaf is not of topological type (0, 2) there is no one-to-one correspondence between leaves
and primary internal edges. Thus, it is initially unclear how the residues should be
evaluated. A close examination of the graphical language yields, however, that

=00 =5( X rs ).k, ) 65 (-02)

X ¢0’2[22’82l] QM"_')]“JH <Z"| ) dC" (‘:/f‘l ) CsQlJrl (Ze2) dCi(ze2>
k>0 (2k+1)(20+1) (P (%) CZQ(ZEQ)
(Do ddi(2) bo.2 [ok21] .
TGS k% @kt )2l 1) ol Ol
= _<10>53¢02[1 }ig((z)) : (2.129)

Attaching a (0, 2)-blob at the leave of '3 one obtains the graph Iy as
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In analogy with the calculation of deV see also Remark 2.2.4.2, one finds

(@0 (z) = -

G doalA) F(2) d¢ (2) (2.130)

7 k=0

The last graph I';5 in Bip corresponds to

The local weights here are

D] = dg(2) dGi (2e)

n _ ¢11[2k} 2%+1 .
C(G(2) = Gi(ze))? and D[] = Z—C (ze), (2.131)

P (2k +1)

and the sets of edges are E = Ey = {e}. From this one calculates

@ (2) = Res (2 11 (5] C;Z“H(:v)(lﬁf (ze)
( I's ) ( ) R_m dCz( )kzﬂ) (2]€—|—1) (CZ(Z) _Cﬂ,‘<3(~>>2

J
= dQ(z)Z%(M +1 Zd)ll S1CR(2)dGi(2) . (2.132)

k=0 k>0
In order to find the true weights of the graphs in Blp? the renormalisation by blossomed
KdV-vertices needs to be re-installed. Therefore, going back to the definition of Bip, one
realizes that amongst those that appear here only KdV-vertices of topological type (1,1)
are modified. In that case only k = 1 blob of type (0, 1) needs to be attached. Thus, the
weight of subgraphs I' of the form

3 o

is calculated. The two vertices have the local weights

Dlv] = UJLQ(Z, Ze )| kav

_ ddi(z )dCl(Ze) {(1#?)1,2(5)”(1)” L ()2 (MEN <¢§>1,2(1)”(5)”}

)? ¢F(2)GF (=) M=) (=) ()¢ ()
¢7 J
/BJ ; Go,1[5)] — daney] GG = ;;dl—ﬂéfd“(ze). (2.133)
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Computing the weight of the subgraph then yields

' dGi(2) = Goa[d] [ @Hia(3)()N G (2) dGi(ze)
KdV (4) _ d )
=D =2 Ry | Tar & 20+ { 36 Q)
() (3UEN G () A=) <¢2>12< (B G (=) dGi=)
C-A‘(Z) Git(ze) ¢ (2) P (ze)
W >1 2 dCz ®o,114 W%)Lz i dg; (Z)
- (ai)z CQ ”;2d+1 i, d2 5)3‘W¢0,1[4](3)W-
(2.134)
Collecting all contributions calculated above, one finds
gz)l Z dev _ ??Xf‘l + w;{j}:@)(i) + ( wgv 4 wgf\/)( @) + (wlljgv)()
reBipkdy . 1 ”
ST (ﬁ”;f;f%,lu] - 400 4 35] ) diaten)
+ Z¢1 15)€ 21 ) dGi(z1) - (2.135)

k>0

At last consider the set Bip. The graphs are depicted in Figure 2.2.10. The crossed
vertex on leaves indicates a contribution by a holomorphic and polar part as it was
described above in the case of Blp1 1 » see also Remark 2.2.4.2. Note that depending on
the specific expansion point structure, not all the combinations of holomorphic and polar
leaves appear. This will be seen again below.

Here the graphs in the first line of the figure are the ones that are already present in
ordinary topological recursion, while those in the second line contain higher blobs of
topological types (0,3) and (0,4), respectively. Note also that the graphs come with
non-trivial multiplicity.

The first graph, T'Y, that one might think of is

which is just the pure KAV contribution. One readily obtains

[WFS?V(Z)} (4i,i,7) B <¢>074

+ symm(zy, 22, 23, 24) |

1
8% [cﬂzo C(22)¢ (23)¢7 ()

d¢(2) - (w)?
(2.1306)
using the notation
|:w—<Z—) :| e = W(il’i%ig,u)(zla 22, %3, 24) (2 137]
d¢(Z) dGi, (21) dGiy (22) iy (23) dGiy (24) '
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Figure 2.2.10: A list of the graphs present in Bip. While the hatched squares repre-
sent blossomed KdV-vertices and the circles represent ®-vertices, the crossed vertices
are equivalent to a leave plus a leave attached to a KdV-vertex which is attached to a
d-vertex of type (0, 2).
Note that due to its index structure this graph only appears when computing w(] 1:52,33.4)
with j; = jo = j3 = jy = i is computed. Attaching one (0, 2)-blob one obtains the graph
'} given by |

z1___Jl 0 L T(\S__1 0 123

Again computation according to Equation (2.114) yields

[@(2)/ A(2) 5 ST o e .
(V)oa/ () 22)(P(23)CF (24)
ji 1

+3ualdal (c;*<z2><3(z3><3<z4
This graph is present in the case (j1, j2, j3, ja) = (J,1,1,1), which includes the two sec-
tors j =i as well as j # 1.
In a similar fashion one also obtains the contributions iteratively attaching two, F%, three,
'3, and four, T'{, blobs of type (0,2) at the leaves

[ Kdv( )/ d¢(Z )](jl’h’i’l) le 2k2 ¢02[2kz1 }4502[21@2 0] + symm(1, 2)
Tl 2l e Eeelen

+ 30na i naliz]

] + symm( 2o, 23,2'4)) ] )

) +Symm(z372’4)>} ;

1
Gt (23) P (24
(2.139)
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[wEY(2)] d¢(2))rinind I
< >074/(Oél') kkzk 1 2 Z2)Cj33(23)

y [%2[%1 2] o2 [527%) do2 [437] + symm(1,2,3)

7 (24)
4 Soualdoloa o] d0a ]| 2.140)
G (24)
and
[w?fv( )/ dC(Z)](jl’jZ’j3’j4) — Z (W) Z le 2k2 (22)C2k3 (Z3>C324k4 (24)
i (ai k1,k2,k3,ka
X [950,2 [0,%2] @02 [5720) bo.2 [s1s 0] do.2 [70)
+ symm(1, 2, 3, 4)} ; (2.141)

It should be pointed out here, that the (external) index structure of deV U132:333) qoes not

fix the (internal) index 1, see the construction of B1p0 3 ,» because at all leaves (0, 2)-blobs
have been attached. Thus, in order to get the correct weight for the graph I'}, the index
should be summed over all ramification points.

Turning to the second graph in Figure 2.2.10 one first computes the weight of Fg, that is

11 T/N\S 19

This graph represents curves of topological type (0, 4) that degenerated to two components
of type (0, 3). One obtains

KAV (i1 nsindn) ¢ oy GG (21) Gy (22) (D03, 1iyiny ()03 dGiy (23) dGiy (24)
(wrd ) (Z) - ,i(?d) 2 (Z2> i, ¢0,2|:0,0] o, i22(23> 2 (Z4> R (2142]
and by attaching (0, 2)-blobs at the leaves
[V (Z)/ d((Z)] 220 ¢ (21)

2.143
¢02 [“,62]( 32)/ 0%04@2 Z %2 %0 (ZQ)C (23) (24) ( )
[Y(2)) ()| o ()R ()
%ﬁﬂm2mwm‘§%”“W@@zwum’ (2.144
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as well as
deV(Z) (J1,J2,73%1)
rj i1,i2 )
[ d¢(2) } :Z%,z[& Z 0,2 511“ ¢02[2k2, }%2[%3,}
iz iy Wiz k1,k2,k3
2k1 2ko 2ks
- z z z
) ) ) -
7 (24)
KdV o e
foviin (Z)7 Grsd.daga) o 1 . - .
{ dE(Z) :Z%’?[é i Z S0 [34;°b] 02 [3155] b0 [3155] 02 [3i]
11,82 iy Vi k1,k2,k3,ka
> 2/€1 (Zl)cﬂcg (Zz)c2k3(z3)<2k4(z4) ) (2146]

Note, again, that the (external) index structure of the weight of graph I's and I'3 does
not fix the (internal) indices iy and i1, 15, respectively. The correct weight is obtained by
summing over the corresponding indices.

In order to shorten the discussion here, the weights of the graphs

’ ~4 ’

which correspond to the third and fourth graph in Figure 2.2.10, are only cited here and

not explained in detail. Their computation proceeds analogously. For the former one
finds

wKOdV(Z) (J1,2,,3) 200, e2m (s
{ drg(z) ] — o Zcboa 031 3m] #gé(;j) (2.147)
KdV(Z) (41,72:33,1) 21(2 12 () 2’“(2 )
[ d¢(2) ] 0322%3 o’gllmzn ¢02[8%?/}} 1 222(242) : ,
(2.148)
WKSV(Z) (J1:42:93,4) N B
{ dFE(Z)_] -y 2SS dualsgil doa (o5 ool
i Lim ki ko

X CHz) M (2) O (23) G (), (2.149)

while for the latter there is only the contribution
{wﬁdv(z) ] (J1,92,3.J4)

A¢(Z) = > Gl g ) () P (20 )G () . (2.150)

k,l,m,n
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Note that the former graphs contain vertices of topological type (0, 3) corresponding to
the collapse of a component of type (0,3) in the curve. This generalizes the picture
of curves degenerating by shrinking cycles to components of higher topological type.
On the resulting curve intersection numbers are then only computed on the remaining
component, which is here of type (0,3). This can be seen in the corresponding weights
by the appearence of ((1)o3/a;) associated to the one remaining component. The latter
graphs correspond to curves, where the entire curve of topological type (0,4) collapsed
and only the external structure remains as well as the associated blob.

All graphs considered above are build from the non-renormalized KdV-vertices. In
order to obtain the entire &y 4 blossoming of (0, 1)-blobs must be considered. The only
non-vanishing contributions come from

H Lo
This subgraph has the weight

KAV (4,4,i,i) _ _<¢2>0,5 g dg;(21) dGi(22) dGi(zs) dGi(24)
o)) = = e e e )

Replacing the KdV-vertex of topological type (0,4) in graphs {I'*}, with this subgraph
one obtains

(ww

(2.151)

RAV( 7)) 7 (isisisi)
V{T;)] o <E@)°3;5¢[31‘] C2(21)<2(22>1<2(23)C-2(24) ! (2.152)
] o2 ol ><j2k<<2>)<3<zn’ (2153
2 <§fj;§¢u1 z olailolaiolaig e B )
(2.155)
(SN Wy S ofeldnlobiileld

k1,k2,k3,ka
X (21 ()R (2) ¢ (20) . (2.156)

Concluding, in order to find the expansion of wy 4 at the KdV solution in a sector specified
by the indices (ji, - . ., j4) one needs to add the weights of all graphs contributing in this
sector.
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2.2.6 Application to Quartic Kontsevich Model

In this subsection the information of both examples in this section, Examples 2.2.5
and 2.2.6, are combined to find explicit expressions for the blobs ¢, ,, in low topologies
and order.

Recapitulate the definition of the blobs in Equation (2.105)
Ggn(21, .oy 2n) = (Hi- - Hp) Dgn(21,- .., 2n) (2.157)

This formula can be interpreted in two different manners. Either, from the persepctive
of Example 2.2.5, one projects the correlators that are obtained through the recur-
sion to their holomorphic part in all variables. Alternatively, one can first construct
the correlators first abstractly using the graphical language. These expressions are
parametrized by the expansion components ¢, [ ;l dn] for (¢',n') < (g,n), which are
defined in Equation (2.106) as

byt (21r v 2) "R S Gy H Ci (21) % dG, (2) - (2.158)
k=1

di,...,dp =0

Starting from the blobs of topological types (g,n) € {(0,1), (0,2)}, which are given as the
initial data of the recursion, one can iteratively deduce blobs of topological type (g, n)
from the correlator of type (g,n) as all blobs of lower type are determined by then.

To illustrate how one proceeds the blobs in low topological types are determined in the
following for the Quartic Kontsevich Model. Therefore, first expand

wer'(z) = —R(—2)R/(z)dz (2.159)

in (;(z \/2 R(p;)) as
(@D (2) = (W™ (2)

= dgi(z) (— R(=A)Gi(2) — L¢3 (2) + Yo Tt “ il sy (9.160)

x.
Zilo 40 6

2
Yio Dy — 3win + 1225 1yi1 + 12y0
32 ) ¢H(z)+O(&)

Lo

as well as

QKM 1423 1423
w z = + 2.161
0,2 ( 1 Z2) ( L 2)2 ( L 2)2 ( ]
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to yield

Y 1 1 1
®0,2 [OZO} = {TBQ + ﬂ(xil — xm)} )

Li,0

®0,2 [216} = + (17533?71 — 3501‘%%@2 + 75:ci2

1632 83 9682 5760

+ 120@-,1@-,3 - 24.T2,4):|

= ¢o2[05] ,
R E TR TR 126 8065}

2,0
(37152}, — 56707 x5 + 85527, + 1404w 12;5 — 1807;4)

8

T 172802

+ 36162525, — 1084875z x; o + 41166023, x; 5
i,1 7,171, 7,17,

o {
1555200
+ 74182527127y — 1161007 34 — 32724025 125553 — 2268021745

— 6547527, — 2154627 5 — 36720z, 22,4 + 24307;6) } (2.162)

and for ¢ # j

i 1 1 1
Pozlit] = (zi0%0)1/ [(ﬁi — Bj)? " (Bi +5j)2} ’

waldl) = G =y ) v (o - e ap)
2o (23,075,0)'/% Ti0 (B: =)t (B + 5)* 7 (Bi = 6;)* (B +5)°

. 51’1271 — 3ZL‘Z'72 ( 1 n 1 ):|
24 (Bi — B)? (B + B))?

= go2[{4]

& [u} _ i 1 {30 ( L + ! )
0,222 (Ti075.0) 2 30250 (Bi — B;)8 (B + B;)°

1 1 ! !
_Mﬂ(%—@ﬁ_wﬁﬁm)+M“Q@—@ﬁ+%+@ﬁ>

N 5271 — 3wig + 527 — 3T ( 1 N 1 )
8 (B = B)* (B + B;)*
n T 1751 ( 1 B 1 ) B (53712,1 — 3xi9)Tj1
2 (Bi =Bt (Bi+By)* 24

1 1 ZL'Z',1<5I?’1 — 31’%2) 1 1
X 3 5T 5 3
(Bi — B;) (Bi + B;) 24 (Bi — ;) (Bi + B;)
N (527, — 3xi2) (527, — 31;2) < 1 N 1 )]
576 (Bi = B;)*  (Bi+B;)?
Using this data one can proceed to the next higher topological type (0,3). Then

(2.163)
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the above is inserted in what was in Example 2.2.6 found for wgé{M. The resulting
expression is order by order in the variables equated with the results of Example 2.2.5.
The coefficients of negative orders match exactly, while in positive orders there is one

free parameter, the blob of that order. Solving for these one finds

| 1 3 1 ( x}, xs bya 5 1/ Yo
0aloios] =3 [‘ﬁg*z—ﬂgw—g (‘E* R R Rty
Ti1 x?,l xi,ﬂ?,l %2,2 Yi,3

1
— — Y 1) - | — - — Y — Yializ —
y Yt +B§( 576 288 Grg U YT g

i xgz n 1'1712%,1 + yil + % —Ti1— Y+ 1)] W{Eiﬂ#
N Z { 1 N 2 N - } 11
7 (Bi+ 8¢ (Bi+ B)*(Bi—B5)*  (Bi+ B5)*(Bi — Bi)* | vj0Tj0 xf’{f ’
(2.164)

Slodd] = [( )6 T 5 (2730 — dyin) + (_1 e

Bi + B; (Bi + B;) (Bi +B;)t \ 4 6 2
ot 4 Yi2 n 1 ) n 1 } 1 1
it 457 2B7(Bi — B;)*(Bi + B5)* | yioxio g:z.l’{ij’g

3 1 Loz Y L)
i [25]2 (Bi + ;)" i (8: + 8;)° (532 ( 2 2 > - 83

1 L sz yin 1 Ty T Tje Vi Yo

1 _(L_L)Jr_ _ T Y Tie  dia Y2
(Bi + ;) (5;7" 4 2 33 1 T8 12 T2 Ty
N 7 >+ 1 1 1

].6/6]4 166;1 (ﬁz — 63)2 yj,OIj,O 3711/233],0

i

1 1 2
+{ Gt BB+ B (B BBt B T (Bi B2 (B — B2 (B + w}

X ! ! (2.165)
Yt,0%¢,0 9:3’62:%0 7 .
and
. 3 3 4
$l6.6] = 1 7 T 2 1t 3 3

(Br+B:)" (Bi+B5)"  (Bu+ Bi)” (Bi + By) (B + Bi)” (Bi + 5;)

n i1 — 2Uia Ti1 — 2Yin L 1 (%21
(B + @')2 (B +B5)% (Bn+ @')3 (Bi+B5)?  (Bn+ 51')2 (B; + @')2 4

C Tiz Tia¥ia o Yi2 1 ) 1
6 2 Ty iR ) TG, ) (B 1 )

+ + symm(i. j. h
457 (B + 62')2 (Bi — Bj)2] Yi o0 (T5025,0Th,0) Y2 ymm(iJ )>
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1 1
B BB+ B Bt B (it B (B — B (B + B
- ! - !
(B + 515)2 (B; + Bt)Q (Bn — ﬁt)z (Bi + @)2 (B, + Bt)z (Bn + 5t)2
X 1 1 (2.166)

1/2
Yt,02t,0 (%’,oxj,oxh,o) /

Analogously one finds for the blob of topological type (1, 1) the expression

ol 1 [T 1] {_ 1 (_<1>073+3<¢>171)
AG(z) /22 (22| 167 86| wiowio | B 32 16
N—

3,0

do not know
which int.numbers

1 <?/1>1,137i,1 1 Ti2 %2,1 <¢2>1,2 <¢2>1,2
“F 8 @\ 288 s T s St g b

do not know
which int.numbers

1 [_( 3()1a (V)11 P (<1>0,3

- 7 Yi0T50 Bi+ Bt (Bi+5;)3 " (Bi+B;)2 \ 48 32
— SE?,l (5<¢>1’12_4<¢2>1’2 + <2§3) + <¢22>1’2xj,1yj,1 + <¢22>1’2Z/j,2
—%g}“) + 3 ?ﬁm . (2.167)

In the cases above only the blobs of topological type (0,2) were used. Going further
in the computation of blobs, for example to type (0,4), also higher blobs occur and
need to be included, in that case the blobs of type (0, 3) as they appear in the graphical
expansion.

Note here that close examination of the respective expressions in Examples 2.2.5
and 2.2.6 enables to write down the blob in terms of intersection numbers for the
most part (see caveat in the expression above). It does not give the blobs in terms
of intersection numbers in general due to ambiguities in the origin of certain terms
inherent in the method of matching the expressions. In these cases the coefficients of
the data {a:zk} . is a difference of a number and several intersection numbers. In that
case only the numerical result of that difference is given.

In this chapter it has been shown how algebro-geometric data of the moduli space of
curves expressed in intersection numbers is inherently encoded in limits of toy models
of quantum field theories on non-commutative space. To be precise the results for the
expansion of the LSZ model as well as that of the Quartic Kontsevich Model including
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the novel data of the blobs of low topological type were presented.
In the next chapter a specific sector of intersection numbers is investigated in the light
of its combinatorial structure.
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CHAPTER 3

logarithmic concavity

The moduli space of curves, which is introduced in the previous Chapter 2, has been
a fruitful subject of fascinating studies since its construction and compactification by
Deligne and Mumford in [DM69, Mum83]. Beyond its relation to field theories, which
was iterated on in the previous part of this thesis, a particular interesting perspec-
tive was uncovered by Adam Afandi in [Afa22]. The author showed that intersection
numbers on the moduli space of complex curves of type

d dn
/ 11 e 77Z)n
Mg imnt1 L=t

are tied to evaluations of Ehrhart polynomials of partial polytopal complexes. This
relates the algebro-geometric investigation of the top degree of the tautological ring of
the moduli space of complex curves to the combinatorial Ehrhart theory.

After introducing relevant Ehrhart theory, this chapter investigates the particular case
of this relation for

(di,...,dy) =(1,...,1) (3.1)

in greater detail. As for n > 3 an explicit construction quickly becomes infeasible, the
class of polytopal objects corresponding to intersection numbers of this type is charac-
terized through the Ehrhart-theoretic data of f*- and h*-vectors. These are determined
from the polynomial description in the context of Ehrhart theory and enumerate build-
ing blocks of the geometric objects. In the course of this the specific representation
the data collected in sequences, here exemplary denoted (ay); C Z, allows to reveal a
remarkable combinatorial structure

ai > Qpy10k—1 for all k, (3.2)

which is referred to as logarithmic concavity. Logarithmic concavity is shared by many
important sequences in various fields in mathematics and often signifies deep struc-
tures. While connections to a wide range of disciplines have shed some light on the
property and have given rise to methods of proving it, it is oftentimes a hard task to
establish that a specific sequence exhibits logarithmic concavity.

In the first section basic facts about Ehrhart theory are reviewed, followed by a discus-
sion of the relation with intersection numbers in the second section. The latter also
presents the central Theorems 3.2.4 and 3.2.5, which give explicit so-called f*- and h*-
expansions of the subset of the Ehrhart polynomials encoding intersection numbers.
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Figure 3.1.1: This depicts the standard simplex A3 in d = 3 dimensions (left) as well
as its faces of dimensions zero, one, and two, respectively.

As a short digression, in Section 3.3 relevant combinatorial objects are introduced,
which are investigated with respect to their logarithmic concavity in the following Sec-
tion 3.4. The chapter is concluded by the proofs of the theorems about the f*- and
h*-expansions of the Ehrhart functions, which together with Theorem 3.4.6 show log-
arithmic concavity of the Ehrhart polynomials considered here. Conjecture 3.2.7 in
Section 3.2 claims that this generalizes to all intersection numbers.

3.1 Short exposition of Ehrhart theory

In the following the reader finds a short exposition introducing to Ehrhart theory, which
is tailored to the content of this thesis. A far broader presentation of the body of the
theory can be found for example in [BRO7], which a large portion of this presentation
follows.

The basic objects in Ehrhart theory are polytopes. Polytopes have two dual descriptions
in terms of vertices as well as hyperplanes that are equivalent, which is, in fact, a non-
trivial remark’. In order to define a polytope using vertices, let {v1,...,v,} be a set of
vectors that span R?. A polytope P is defined as the convex hull

P = Conv(vy,...,v,) = {d p_; \vi| VE Ay = 0 such that Y ,_ A\, = 1} . (3.3)

Approaching this object from the perspective of polyhedra, a polytope is described as
the bounded intersection of finitely many half-spaces defined by hyperplanes.

Given a polytope P in any description, a general hyperplane is called supporting, if P
lies entirely in one closed half-space defined by it. Then, a face of P is given by the
intersection of P with a supporting hyperplane.

Example 3.1.1. An important example of a polytope is the standard simplex A, in d
dimensions defined by the unit vectors and the origin (see Figure 3.1.1). A general
simplex in d dimensions has exactly (d + 1) arbitrary vertices. The hyperplanes that
correspond to this vertex description of the standard simplex are {x € R?: z; = O}ie[[l,d]]
and {z € RY: >, x; = 1}. The faces of dimension zero are the vertices, that is the

Tsee Appendix A of [BRO7], which is based on Lecture 1 of [Zie95]
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/ T3

Figure 3.1.2: This illustrates the cone (shaded blue) over the standard 2-simplex. De-
picted in shaded red are at x3 = 1 the standard 2-simplex as well as at x3 = 2 second
dilate.

origin and the points {(0;;)jep q) iep,q)- Specifying to d = 3, the faces of dimension one,
the edges, are the line segments connecting any two vertices. The facets, which are in
general faces of dimension d — 1, are the triangles defined by three vertices. The unique
face of dimension three is the simplex itself. In fact the empty set is a _face of P as well.
In many applications it is useful to set its dimension to minus one.

One can construct a cone over a polytope P by embedding P into R%*!. In the vertex
description of the polytope, one constructs the vertices of the cone via v; — w; = (v;, 1),
for alli € [1,n], and sets

cone(P) = cone(wy, ..., wy,) = {d> 1_ Aswg| Yk A\, = 0} . (3.4)

Then, the g-th dilate of the polytope P, for g € N, is given by the intersection of the
cone with the hyperplane at

gP = cone(P) N {r € R?: 24y, = g}, (3.5)

see Figure 3.1.2. If its vertices are in Z¢, the polytope and its dilates are called integral.
Furthermore, an open polytope is the relative interior of a polytope. In the following
two definitions the concept of a polytope is generalized.

Definition 3.1.1. An integral polytopal complex P is a finite collection of integral poly-
topes containing the empty polytope, such that

a) if () is a face of P € P, then ) € P,
b) if P,Q) € P, then PN Q) is a face of both P and ().

The elements of P, which are of maximal dimension d, are called faces.
Definition 3.1.2. An integral partial polytopal complex P of dimension d is the disjoint

finite union of open integral polytopes. Again, the elements of P are called faces and
are of maximal dimension d.



76 Chapter 3. logarithmic concavity

Remark 3.1.0.1. There are three remarks concerning these definitions. First, the no-
tions introduced above are in fact generalizations of the class of integral polytopes.
Every polytope can be thought of as a partial polytopal complex, that is as the disjoint
union of the interior of its faces. Then, there is a bijection between the faces of the
polytope and the partial polytopal complex. To be precise, the faces of the polytope are
the relative closures of the faces of the partial polytopal complex.

Secondly, it should be noted that due to the definitions above, in contrast to polytopal
complexes, partial polytopal complexes are not closed under passing to faces, as some
relatively open faces might be absent.

Thirdly, results in Ehrhart theory for integral polytopes can often be translated to ra-
tional polytopes by clearing denominators. Beyond this domain, regarding irrational
polytopes in general dimension few is known. In dimension three and lower, one can
in fact transform irrational polytopes into rational ones. This fails in larger dimensions
(see [BRO7, chapter 3 note 8 and open problem 3.47 as well as chapter 5 note 3]).

Example 3.1.2. An example for a partial polytopal complex can be constructed starting
from the standard simplex A, discussed in Example 3.1.1. Removing k open facets,
that is faces of co-dimension one, one defines A%, for k € [0,d + 1]. In fact, for k # 0,
these objects are neither polytopes nor polytopal complexes by construction, but can be
obtained from open polytopes. The corresponding complexes are comprised of the open
d simplex, the vertices plus the relative closure of those facets that were not removed, as
well as the relative interior of all faces of these objects.

The task undertaken by Ehrhart theory is to count the lattice points contained in
the dilates gP. This count is usually encoded in a function Lp(g) named in honor of
Ehrhart, who initiated and developed the theory [Ehr62, Ehr74]. As already mentioned
above, for a presentation of results obtained in Ehrhart theory and its methods the
reader is kindly referred to [Afa22, BR0O7] and references therein. The first central
theorem, which is cited here, was uncovered by Ehrhart himself for polytopes [Ehr62]
and then generalized.

Theorem 3.1.1 (Ehrhart). The Ehrhart function Lp(g) associated to an integral partial
polytopal d-complex P is a rational polynomial in g of degree d.

Note that the theorem also received generalization to rational polytopes due to
Ehrhart himself. In that case L is a quasi-polynomial with period that divides the
lowest common multiple of the denominators of the vertices.

Theorem 3.1.1 allows applying the methods of rational polynomials to Ehrhart the-
ory. The Ehrhart polynomial Lp(g) of an integral partial polytopal d-complex P can be
expanded into binomial bases {(9;1) }refo,a) or {(9+3_k) }refo,q» that is

- g—1 d g+d—k
Lp(g) :;Zf;( L ) and Lp(g) :;Zh,’;( p > (3.6)
k=0 k=0
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The associated coefficients are collected in the vectors f*, h* € Q%*!, respectively. These
vectors are the subject of intensive studies in Ehrhart theory and beyond, as informa-
tion about the partial polytopal complex is encoded in them. A pivotal example of this
is Stanley’s non-negativity theorem (see [Sta80]) for the h*-vector.

In order to give an interpretation for the numbers {f;} and {h}}, a few more notions
are needed. A partial polytopal complex P is simplicial, if all of its faces are simplices.
A triangulation of P is a simplicial complex whose support is P. Such a triangulation
of P is unimodular, if the simplices of it can be mapped to the standard simplex by an
affine automorphism of Z.

Theorem 3.1.2 ([Brel2, Section 2.3] building on [BRO7]). For a unimodular triangu-
lation of a polytopal complex P the f; associated to P count the k-dimensional open
simplices A’g“ in the triangulation.

If the triangulation, furthermore, is a disjoint union of unimodular half-open' simplices
of dimension d, then the h; count the k-dimensional relatively open unimodular sim-
plices Ak,

Note that not every integral polytopal complex enjoys a unimodular triangulation.
In that case the interpretation of the expansion coefficients given in Theorem 3.1.2
does not hold. However, the expansion of Lp(g) in terms of the binomial basis of Q[g]
remains valid.
The following result further characterizes the Ehrhart functions mentioned to be integer-
valued. Beyond this it allows to classify Ehrhart polynomials of partial polytopal com-
plexes.

Theorem 3.1.3 (Breuer [Brel2]). Let L be an integer-valued polynomial of degree d and
‘P is a partial polytopal complex. Then,

L(g) = #(gPNZY) <= fi(L)>=0forallkc [1,d]. (8.7)

In the next part of this section the expansion coefficients collected in the f*- and
h*-vector are related.

3.1.1 Relation of f*- and h*-vector

The f*- and h*-coefficients of an integer-valued polynomial p € Q[n] of degree d as
defined in Equation (3.6) are generated by

Zp(n)z” = %k_:o% = H"(z), and Zp(n)z” = Zf':(liw = F*(2).

n=0 n=1 k=0

This can be seen as follows.

A half-open polytope is a set of the form P\ UL_,p;, where P is a polytope and p; are faces of P.
Note that every such polytope is supported by a partial polytopal complex.
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h*-expansion First, expand the denominator and use the reflection relation and sym-
metry of binomial coefficients to find

ZZ:thzk : * _k d+n n : * d+n—k n
e S0 () E ) o1t (L RN

k=0 n=0 k=0 n>k

where in the last step one shifts n — n — k. As the sum over k does not change when
starting at zero, then interchange the two sums to find the desired form

sz2h7<k+5_l) = 2n(k). (3.10)

k>0  1=0 k>0

f*-expansion In a parallel fashion one shows the expression for the f*-vector using

Zk+1 n—1 .
(1_Z)k+1:Z( k )Z' (8.11)

n=1

Remark 3.1.3.1. The expressions (3.8) can already be found in [Brel2]’. There, the
definitions are different to the present work. This concerns in particular the binomial
coefficient (:1) beyond the classical domain n > 0 and 0 < m < n. The fact that the
combinatorial interpretation breaks down for negative n suggests (:1) =0foralln < 0.
This is in conflict with the continuation of the binomial coefficient using the I'-function
to negative arguments. In order to adapt to this, the sum in (3.8) begins at k£ = 1.

Using the two generating series defined in equation (3.8) one can relate the f*- and
h*-coefficients via H*(z) = p(0) + F*(z). Therefore,

d d
> bt =p(0)(1— )" 4> fr (1 - 2, (8.12)
k=0 k=0

which can be interpreted as artificially adding the term f*;, = p(0).

3.1.2 Ehrhart theory background

This section should serve the interested reader by providing some background on
Ehrhart theory motivating some definitions and giving settings in which classical re-
sults can be proved. For the understanding of the following text, this is not crucial and
one can readily skip it. This section mostly builds on [BRO7].

In general a cone is a set

K= {(l + ZkAkwM Yk A\ = O} (3.13)

‘The h*-expression is a classical result by Stanley, while the idea of generating functions for the f*-
and h*-vector goes already back to Ehrhart.
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specified by its apex and generators a,w;, € R?, respectively. The dimension of K is
the dimension of the affine space spanned by its generators. A cone of dimension d is
called simplicial, if {wy}, is a basis of its span. Similar to polytopes, also cones can
alternatively be described in terms of half-spaces.

For a rational cone K, Ehrhart theory defines the lattice point counting function

pr(2) = pr(z1, ..., 2q) = Z 2™, (3.14)

meKNZ4

where 2™ = 2] --- 2" is understood. The lattice point count p obtains its name due
to its bounded analogue. If K was a bounded object,

pr(l,...,1) =#(KNnZY. (3.15)

At this point p is only a generating function, but later one can show that it is rather a
meromorphic function, to which already the following short example alludes to.

Example 3.1.3. Consider the one-dimensional cone K = [0, c0). Then

Poo)(2) = pocoy(z) = D = A= (3.16)

m1€[0,00)NZ meN

In case of the general rational cone /K one tiles the cone with the fundamental
parallelepiped

Iy = {ZkAkwﬂ Vk 1> )\k > O}, (3.17)
to find the lattice point count

pa+HK(Z)
1—zw1)---(1—zwd) )

pi(z) = ( (3.18)

For a proof see [BRO7], theorem 3.5. Considering cones as objects originating from
polytopes via the process described in Equation (3.4), one finds

pcone(P)(Zla ceey Rdy Zd+1) =1+ Z UgP Rlyeeny d) Zd+1‘
z1=-=2q=1 z1=-=2q=1
2441=%2 g=1 Zg41=2
=1+ Lp(g)2* = ehrp(2) (3.19)
g=1

defining the Ehrhart function Lp, which is invariant under unimodular transformations
of the polytope, and associated the Ehrhart series ehrp. Using Equation (3.18), one
computes

f(z)

ehrp(z) = SR

(3.20)

and identifies f(z) = ., hjz" as well as analogously for the f*-vector.
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hy =1 fo=3 fi=3 f5=1

Figure 3.1.3: This counts the (relatively) open simplices AZH (panels to the right)

and A’; (panels to the left) of a unimodular triangulation of A;_o = A (second panel) by
dimension.

Example 3.1.4. Consider the cone over the standard simplex Ay = A of Example 3.1.1,
see Figure 3.1.2. This cone has the generators w;, obtained from the vertices v, of A, for
ke [1,3], with

{Uk}k = {(170)7 <O71)7 (0,0)} = {wk}k = {(17071)7(07171)7(07071)} (3.21)

Consequently, pr;, = 1, as the lattice point count of the fundamental parallelepiped
associated to these generators only includes the origin. Tiling (see Equation (3.18)) the
cone by IIx one finds

B pria (21, 22, 23) B 1
palz1, 22, 23) = (= 290) (1 — 292) (1 — 2%) (1 — 2125)(1 — 227) (1 — 25) (3.22)

and by specifying to z; = 2o = 1 (see Equation (3.19))
chra(z) =(1—2) =1+ Z . (3.23)
Upon inspection this yields La(g) = 1+ (3/2)g + (1/ 2) g°, which gives the vectors
[ =1(3,3,1), and h* =(1,0,0). (3.24)

Going back this reproduces the result cited in Theorem 3.1.2, see Figure 3.1.3. Note also
that the coefficients in the monomial basis are rational, while those in the binomial are
integral.

In this setup one can build the theory. This includes the results highlighted at the
beginning of this section as well as determinations such as

hy=1, and hi=Lp(l)—(d+1), (3.25)
or results that connect the discrete realm to continuous objects such as the volume
e #(gP N Z%)
vol(P) = lim S Z ik (3.26)

both cited from [BRO7]. Furthermore, although the domain of L might at first sight
only be the positive integers, there is a plethora of results reaching from extending
this to the negative integers to rather recent research investigating R as the domain,
see references in [BRO7]. Applications of these results can be found in various fields
including computer science or the moduli space of curves. The latter, which was
recently demonstrated in [Afa22], will be portrayed in the following.
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3.2 Ehrhart theory and intersection numbers on the
moduli space of curves

As already stated above, it is shown in [Afa22] that the information about -class
intersection numbers is entirely determined by the family of maps

{ NK — Ehr }
(di)i = Ly (g+m) neN ’

where Ehr denotes the space of Ehrhart polynomials in g. These maps encode the
intersection numbers specified by the array (dy, ..., d,) in the shifted Ehrhart polyno-
mial Lq,), (g +m) of a partial polytopal complex. This result provides an intriguing per-
spective on tautological intersection numbers and naturally raises the question about
what types of partial polytopal complexes correspond to various moduli space data. A
partial answer to this for the case of (di,...,d,) = (1,...,1) is provided in this section
in terms of a combinatorial interpretation by the f*- and h*-vector.

The theorem of [Afa22] providing the connection encoded in these maps states the
following.

Theorem 3.2.1 (Afandi [Afa22]). Let n € N* as well as (dy,...,d,) € N". Then there
exists a partial polytopal complex P 4,), of dimension >, d; with associated integer-valued
Ehrhart polynomial Lp,, , (g) such that

di ., . dn
2w (g mic((dy) [ T

= Lp,,(9)- (3.27)
Mgtm,ns1 1- ¢n+1 (di);

The constant C' and the shift m are given by

n

C{d}s) = [[di+ 1) and  m({d}) = [(— (n+1) +Zn:di>/3-‘ . (3.29)

=1

The quotient of v-classes in the theorem should be understood as a geometric
series. By the notation of intersection numbers this reduces to only one term with the
appropriate power of ¢, ;1. Then, the shift m in the genus ensures that

g
/ — " #0 — g—1=>0, (3.29)
Mg imnt1 L =g

which is required to make the connection to Ehrhart theory, which is, at least classi-
cally, concerned with (positive) integer dilates of polytopes.

The proof of the theorem provided in the original work, relies on the recursive structure
of the moduli space of curves encoded in the Virasoro constraints on the intersection
numbers, see Section 2.1.2. These are translated to equations for the Ehrhart functions
encoding the corresponding intersection numbers. Using these the property of being



82 Chapter 3. logarithmic concavity

an integer-valued function with non-negative f*-vector is recursively checked starting
from initial cases. By Theorem 3.1.3 due to Breuer this shows the correspondence of
intersection numbers and Ehrhart theory.

In the following, the Ehrhart polynomial associated to intersection numbers with
(di,....dy) =(1,...,1) (3.30)
such that ), d; = n is further investigated, for which

Ca,..1y=3" and m(1,...,1)=0. (3.31)

geeey

In this context denote

L (9). (3.32)

yeeny

First, an explicit representation is given.

Proposition 3.2.2. In the setting of Theorem 3.2.1 specify to (d;); = (1,...,1). Then,

_ H g—1)+k) =]](6g+ (3k — 6)) (3.33)
Pl k=1

Proof. This proposition is achieved iteratively using the Dilaton equation, see Theo-
rem 2.1.3, as

La(g) = 249(9!)3n/M wllw—z—w:fn
=249(g")3"(2(g — 1) +n) . % - 1&
=30l =1 £ mheale). (3.34)

Removing the 1/-classes step by step one produces in each step one factor of the product
in the proposition. The result is completed through the base case [ M, 3=+ which
equates to 1/(g!249), see [Wit90] between equations (2.26) and (2.27). O

In order to find an enumerative interpretation in terms of the f*- and h*-vector of
the Ehrhart polynomials L,(g), an appropriate normalization is provided. Using the
representation of L, (g) found from the algebro-geometric interpretation, define £,, so
that

L,.(g)=3"(n)L,(9). (3.35)

Proposition 3.2.3. The normalized Ehrhart polynomial L,(g) defined through Equa-
tion (3.35) is an integer-valued polynomial.
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Proof. Note that the coefficients of the polynomial in a monomial basis are in general
not divisible by n! contrary to the f;*. Therefore, it is suggestive to find an expression
in terms of binomial coefficients. This is provided by considering

_ - (2(g — 1) +n)!
37"Ly( (g—1)+k
o =11e ACIrE)]
2(g—1 ! 2(g—1
S I it ) ] e TS
nl(2(g—1)+n—n)! n
O
The constructive proof of this proposition explicitly gives
20g—1)+n
Ly(g) = ( S n) ) : (3.37)

This sets the stage to analysing the polynomials from the combinatorial perspective
of f*- and h*-vectors, which is what the next sections constitute. Theorems 3.2.4
and 3.2.5 below give the h*- and f*-vectors of the normalized Ehrhart polynomials
{L,(g)} associated to the type of 1)-class intersection numbers described above.

The first of these is treating the f*-expansion.

Theorem 3.2.4. The [*-vector of the normalized Ehrhart polynomial L,,(g) associated to
Y-class intersection numbers of powers (d;); = (1,...,1) € N" computes the number of
order-consecutive partition sequences of (n + 1) objects into (k + 1) parts, that is

- * g_l (n+1) - k-‘rl 2l +n k
9)=>_f L) with fr=0CPS" (k4 1) => (-1 )
k=0

=0
(3.38)

The h*-expansion is treated in the second.

Theorem 3.2.5. Let 2 < n € N. The normalized Ehrhart polynomial L, (g), which
computes intersection numbers of 1-classes with powers (d;); = (1,...,1) € N", enjoys
the h*-expansion

_ - (9t n—k , . _ n+1
_,;hk( . ) with hk_(Q(k—l))' (3.39)

The latter theorem mentions the numbers OCPS™ (p). These numbers, which count
combinatorial objects named order-consecutive partition sequences, will be defined just
below in Section 3.3. They share with the binomial numbers computed by the h*-vector
the fact that they are logarithmically concave. This enticing property as well as the
proof of it for OCPS™ (p) will be the topic of Section 3.4. After establishing logarithmic
concavity of these numbers the proof of Theorems 3.2.4 and 3.2.5 will be given.

The following corollary explicitly summarizes this result.
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Corollary 3.2.6. The normalized Ehrhart polynomials L, (g) which correspond to inter-
section numbers specified by the vector

(dy,...,dp)=(1,...,1) (3.40)
have logarithmically concave f*- and h*-expansions.

Proof. This is a direct implication of Theorems 3.2.4 and 3.2.5 above together with
Theorem 3.4.6. O

Logarithmic concavity of f*- and /*-expansion of all Lp,

Even further, numerical data strongly suggests that expanding the general Ehrhart
polynomials L£p, according to the f*- and h*-bases the property of logarithmic concavity
persists.

Conjecture 3.2.7. The Ehrhart polynomial Lp( 4% of a partial polytopal complex P(q4,),
associated to 1-class intersection numbers specified by (dy, . .., d,) € N" forn € N given
by

di L. gl
Lp(di)i(g) = 24977 (g + m)!C({di}i)/ L (3.41)

./\79,71+1 - wTH*l
enjoys logarithmically concave f*- and h*-expansions.

In Appendix B.2 data is offered supporting this statement for (d;); beyond the case
(di)i = (1,...,1).

3.3 Combinatorial definitions

This section provides the definitions of the combinatorial objects - order-consecutive
partition sequences - which appear in Theorem 3.2.4 above. These were first investi-
gated in [COR85, HM95], which this section mainly follows.

Start with a (linearly) ordered set N,, = (1,...,n) C N of n elements and a partition
Sy = {s1,...,8p} of it, for some p € [1,n]. The family of sets S is such that it does
not contain the empty set, and it covers V,, in a disjoint manner. The elements s; of a
partition are called parts.

The classical counting result states that there are

P (p) = {Z} (3.42)

p-part partitions of /N, referring to the Sterling numbers of the second kind [Sti30,
Sta97, Sta99]. This can be seen by considering the recurrence relation of these numbers

{Zii}:{Z}Hp*l){pzl}- (3.43)
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Then, note that the element (n + 1) € N,, can be a singleton of the partition or not.
If so, there are n remaining elements that are partitioned into the remaining p parts,
giving the first summand above. If (n 4 1) is not a singleton, then such partitions can
be constructed by first partitioning the other n elements into (p 4+ 1) parts and then
adding (n + 1) in one of these (p + 1) parts, thus yielding the second summand.

A consecutive partition consists of parts that form consecutive sets, that is two subse-
quent elements of a part differ by one. In this case the count reduces to

CP™(p) (p B 1) (3.44)

essentially counting the ways of inserting (p — 1) characters into the (n — 1) spaces
between elements in /N, and thereby specifying the parts sj.

The techniques exemplified above will occur in the following sections at various in-
stances.

Definition 3.3.1. Let n,p € N*. A partition S} of the ordered set N, is a partition
sequence, if the parts s; of Sg have a fixed order, denoted by (s1,...,5,).

Definition 3.3.2. In the setting of Definition 3.3.1 a partition sequence is order-
consecutive, if for all k € [1, p] the union Ué‘;lsl is consecutive.

Example 3.3.1. In order to illustrate the definition above, consider N5 = (1,...,5) par-
titioned into three parts by the partition sequence S = (s1, $2, s3) such that

S1 = (2) > SS9 = (374), S3 = (1,5) . (345)

One readily verifies that S is order-consecutive, see the left panel of Figure 3.3.1. In
contrast to this, S = (51, 32, §3) defined by

§1 = (2) y 52 - (3, 5), 53 - (1,4) ; (346]

serves as a counterexample. This partition sequence is not order-consecutive, which can
be inspected in the right panel of Figure 3.3.1. As indicated there, 5; U 5, = (2,3,5) is
not consecutive.

Finally, the counting result about order-consecutive partition sequences is cited.

Theorem 3.3.1 (Hwang-Mallows [HM95, Theorem 7]). Let n,p € N*. Then the number
of order-consecutive partition sequences of an ordered set with n elements into p parts is

p—1
OCPS™(p) = 3 (~1)r 1+ (p . 1) (" - ;]: 2’*’) | (3.47)

k=0

Sketch of proof. The proof, which is presented in the original work by Hwang and Mal-
lows, is sketched here. It relies on a different notation for order-consecutive partition
sequences using commas and slashes.
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S1 2 51 2
51 U 89 2 3 4 — 51U 89 2 3 _
-S'IU-S'QUS:), 1 2 3 4 5. ;1U;_>U§3 1 2 3 4 5.

Figure 3.3.1: This inspects the partition sequences S and S of Example 3.3.1. It shows
that the former is order-consecutive (left panel) while the latter is not (right panel). This
lack, due to the set 51 U S not being consecutive, is highlighted in the second line on
the right panel in red.

Encoding an order-consecutive partition sequence Sg is achieved by inserting 2(p — 1)
characters, alternating commas and slashes, into the spaces between the elements of
N, (the space after the last element is allowed to contain a slash). One requires that if
the slashes are ignored, the commas yield a p-part partition. The parts of the partition
are obtained part-by-part considering the sequence of numbers between two commas
(in front of 1 and after n there are obligatory commas which are not included in the
2(p — 1) characters). The slash separates a sequence. Having part s; the next part s
contains the consecutive sequence of numbers directly prior to the lowest number of s
as well as directly after the highest number of the same. The length of both of these is
determined by the lengths of the sequences separated by the slash, respectively. This is
best illustrated going back to Example 3.3.1. The order-consecutive partition sequence
S =((2),(3,4),(1,5)) of Example 3.3.1 is encoded by 1, /23,4/5 as

/1, s1 has one element,
, /23, 52 has two elements to the right of (larger than) s,
,4/5, s3 has one element to the left (smaller) and

one to the right of (larger than) s; U s

Using this approach one counts order-consecutive partition sequences by an inclusion-
exclusion argument, see Figure 3.3.2. Therefore, first count all ways of inserting the
characters into V,, to be

((n— 1)+ 2(p — 1)) _ <n+2p—3)' 548

2(p—1) 2p — 2

|AU B
= [A[+[B| - |AN B

Figure 3.3.2: This illustrates the simplest case of an inclusion-exclusion counting
argument. Counting the elements in the union of the sets A and B, one counts the
elements of these sets themselves and subtracts the count of their intersection. This is
because the latter is accounted for twice as it is included in the counting of A and B.
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Figure 3.3.3: This plots the values of (log OCPS(™ (P))pef2,n) for n € [1,6] (from light
blue to purple and with increasing number of angles). One recognizes the concave
shape, see Section 3.4.

This ignores the requirements one the commas and slashes introducing parts of length
zero. Therefore, remove all arrangements, where the j-th part is empty for all j € [1, p].
In the language of commas and slashes these are the arrangements in which there is
no element of N, between the j-th and (j + 1)-st comma. By deleting one of these
commas and the in-between slash one obtains one of the arrangements counted by

((n—l)—l—?(p—l—l)) _ (n+2p—5). .49

2(p—1-1) 2p — 4
Proceeding iteratively, the theorem is shown by reversing the order in the sum. O

Logarithmic concavity of these numbers is shown in the following Section 3.4. Com-
puting the first few OCPS™(p) one gets the values

Pl1 92 3 Ply 2 3 4 5 ¢
n n
1 |1 4 |1 9 16 8
9 5 |1 14 41 44 16
3 |1 5 4 6 |1 20 8 146 112 32

see also Figure 3.3.3.

3.4 Logarithmic concavity

This section introduces and discusses the property of logarithmic concavity, which is
referred to in Section 3.2 in Corollary 3.2.6 and Conjecture 3.2.7.

Logarithmic concavity and different generalizations have been found in various fields
in pure and applied mathematics reaching from applications in control theory, finance
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Figure 3.4.1: This shows the graph of a concave function f illustrating the conditions
given in Equations (3.50) and (3.51). The secant is an under-estimator of the function,
corresponding to the original condition. Furthermore, the first order condition is fullfilled
as the tangents to the graph are over-estimators. The slope of the tangents decreases

with z suggesting that it obeys the second order condition.

mathematics and use in various algorithms to applications inspired by quantum me-
chanics or results in matroid theory.

The analysis of concave functions has been substantially studied showing their well-
behavedness. An example is the fact that on sufficiently nice domains concave func-
tions can only have singular behavior on the relative boundary. Introducing concavity
following [BV04] and the dual concept of convexity* as a property of functions, which
can then be discretized to apply to sequences, a function f: R — R is called concave,
if between two points x, y € R the secant is always below the value of the function, that
is

fltz+ (1 —=ty) = tf(x)+ (1 —1t)f(y), fort € [0,1], (3.50)

see Figure 3.4.1. In that regard the requirement of concavity is a restriction to the
growth rate of a function without referring to differentiability. If f is differentiable this
condition can be translated to a condition on its derivatives. One can show that

(3.50) & flx) < fly)+ fy)x—y) < f(z) <0, (3.51)

which is illustrated in Figure 3.4.1. Examples for concave functions are f(z) = z°
for a € [0,1] or the logarithm f(x) = log(x) or, generalizing to R", the logarithmic
determinant f(X) = logdet M on the set of symmetric positive-definite matrices, while
the exponential function f(z) = exp(x) is convex. Linear functions are both concave
and convex.

For many problems it is convenient to generalize to the class to logarithmically or
even quasi-concave functions, of which the former is discussed here. Logarithmically
concave functions f obey Equation (3.50) only with log f. This can be translated to

flte + (1 —1t)y) > (f(2))" (fly) ", for ¢ € [0,1], (3.52)

turning the arithmetic comparison in Equation (3.50) to a geometric one. Analogously,
the second-order condition yields

fla) f"(x) < (f'(x)). (3.53)

*A function f is convex if (—f) is concave.
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— —_— = —_—

Figure 3.4.2: This plots the sequences ((}))xe[o,s] for n € [10,14] (from light blue to
purple and with increasing number of angles) on linear (left panel) and logarithmic scale
(right panel).

The application of the logarithm, see Figure 3.4.2, induces that the exponential func-
tion f(z) = exp(ax + b) now takes the role of linear functions in that they are both
logarithmically concave and convex. Other examples for logarithmic concavity are
the determinant on symmetric positive-definite matrices or the normal distribution
f(@) = (2ma)”'/? exp(—2?/a).

In order to discretize the property to apply to sequences one maps the derivative 0, f ()
to the finite difference A, f(z) = (f(x+h) — f(x))/h for some finite value h € R*. From
Equation (3.52) one finds

(flx+1)* > fla+2)f(2), (3.54)
for h = 1. This motivates the following definition.

Definition 3.4.1. A sequence of real numbers (a)en is logarithmically concave, if for
all k € N~

(ar)? = apir10p_1 and (ag)*> > 0. (3.55)

Remark 3.4.0.1. Occasionally the definition of logarithmic concavity of a sequence (ax)y
includes requiring positiveness a; > 0 for all £ € N and the absence of internal zeros.
An internal zero is an a; with a; = 0 such that there exist k < k and k > k such that
aj, # 0 # a;. In this thesis these additional conditions are separated from logarithmic
concavity in order to properly include them in the discussion.

Logarithmic concavity (often also log-concavity) is a distinguished property of se-
quences. In the past many important sequences have been shown to have this prop-
erty with examples throughout various fields, see reviews by Richard P. Stanley [Sta89],
Francesco Brenti [Bre94] and Petter Brandén [Bral4].

Referring back to the examples above the binomial coefficients {(Z) }kE[[O,nﬂ for some
fixed n € N constitute the pivotal example for logarithmically concave sequences, see
Figure 3.4.2. In this case the proof is an immediate consequence of the definition.
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Having no internal zeros in their classical domain 0 < k£ < n one readily calculates

2 n! 2
n n n ((n—k)!k!) E+1n—-k+1
= = 1 3.56
(k>/<k+1)(k—1) B— ol K a—k 1 B0

n—k—D)1(k+1)! (n—k+1)I(k—1)!

for 1 < k£ < n — 1 and additionally notes (3) = (Z) = 1 > 0. Beyond this and
similar simple examples it proves to be a substantial challenge to establish logarithmic
concavity. A ubiquitous technique in its investigation is the formation of generating

series for sequences (ax)reny C R by

Rl[z]] ) ", (3.57)

which are polynomials if the sequence is eventually vanishing. Important properties
of sequences such as the fact that the element-wise product of two logarithmically
concave sequences is logarithmically concave are inherited by their generating series.
Amongst these many important properties of the generating series, here real-rootedness
is highlighted. A polynomial f(z) € R[z], and by extension the associated sequence, is
said to be real-rooted, if

flz)=0 =  z€eR. (3.58)

It turns out that real-rootedness of the generating polynomial is a stronger property
than logarithmic concavity of the associated sequence, which is a classic result, which
can for example be found in [Sta89]. A proof will be sketched in Theorem 3.4.8 below.

Theorem 3.4.1 (Stanley). Let (ax)ren be an eventually vanishing sequence with non-
negative elements. If (ay); is real-rooted, then it is logarithmically concave and has no
internal zeros.

This result will be used in Section 3.4.2 to prove logarithmic concavity of the counts
of order-consecutive partition sequences. Furthermore, real-rootedness implies an
additional natural property called unimodality. A general sequence (ay)xen is unimodal
if there exists an index ky € N, called the mode, such that

) S a1 < oo K Ag—1 S Alyg = g1 2= -+ - (3.59)

A characterization of positive, real-rooted sequences can be found in [Bre88], which
are called Pdlya frequency sequences. This is used in an alternative proof of loga-
rithmic concavity of the counts of order-consecutive partition sequences formulated in
Section 3.4.3. To define the Pélya frequency condition, consider the sequence of real
numbers (ay)xen and associate the (possibly infinite) Toeplitz matrix M = (M}, ;)i to it
with

MkJ = A]—f - (360]
This matrix is a lower-triangular matrix with diagonals given by the elements of (ay)g.
The deciding objects are, in fact, the signs of the minors of ). If all minors of a specific

rank up to some rank have the same sign, then one can construct a sequence ¢ = (¢,.),
formed by the signs of the minors of the rank specified by the index.
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Definition 3.4.2. A sequence (ay)ren is a Polya frequency sequence of order r, denoted
B, if the sign sequence of M starts with at least r ones. If (a)ey is B, for all r > 0,
then it is called ‘3.

Note that *J3; sequences are just sequences with non-negative elements.

Remark 3.4.1.1. Non-negative sequences are those, which are of interest in combina-
torics as they can be associated to counting problems.

The definition above implies a theorem due to Brenti [Bre88].

Theorem 3.4.2 (Brenti). An eventually vanishing sequence with non-negative elements
is real-rooted if and only if it is °B.

Relating Polya frequency sequences to logarithmic concavity, there is a stronger
result in terms of ‘P35, which will be discussed in Section 3.4.3 related to the proof of
logarithmic concavity of the numbers OCPS™ (p) in Theorem 3.4.6. Furthermore, the
theory of Pdlya frequency sequences implies that the sequences found in this thesis in
the context of intersection theory on the moduli space of curves are unimodal. This is
because logarithmically concave combinatorial sequences are unimodal if and only if
they are ‘3.

In the following, a proof of a recurrence relation for the count of order-consecutive
partition sequences is presented in order to deduce the generating function. Then,
the zeros of this generating function are located by applying an appropriate change of
variables, which in turn verifies logarithmic concavity by Theorem 3.4.1 cited above.
The section is concluded with the discussion of an alternative proof using the theory of
Polya frequency sequences, see Definition 3.4.2 above.

3.4.1 Generating function for OCPS

Arrange the numbers OCps™tl) (p+1) counting order-consecutive partition sequences,
see Definitions 3.3.1 and 3.3.2 and Theorem 3.3.1, into the generating function

G(z,y) = > OCPS"V(p+1) 2™y, (3.61)
n,peEN
with coefficients
. 1 8”G(x,y) o (n+1) P
gnly) = — =55 = pEZN OCPS" D (p+1) y”. (3.62)

Remark 3.4.2.1. Constructed in this way G(z,y) € R[[z]][y] as it is a power series in «
and each coefficient of this power series, given by ¢,(y), is a polynomial in y. This is
because as long as p > n the coefficient of z"y” in G(z,y), that is OCPS™)(p + 1),
vanishes.
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The following propositions, 3.4.3 and 3.4.5, provide a closed expression for G and
for g,, respectively.

Proposition 3.4.3. The rational generating function for the numbers of order-consecutive
partition sequences OCPS(”H)(p +1) forn,p € Nis

11—z
G = . 3.63
(z.9) 1— 2z — 2zy + 22 + 22y ( )
This rational function expands into
Ga,y) X1+ (14 2y) x + (14 5y + 49%) 2> + O(2?) . (3.64)

Remark 3.4.3.1. This generating function was conjectured before in [BDGP17] (in Sec-
tion 9 on page 26) but no proof was given. In that work, the numbers of order-
consecutive partition sequences appeared in the context of a combinatorial approach
to lacunary series of generalized Laguerre polynomials.

Theorem 3.4.3 is shown in two steps by
- first finding a recurrence relation (Lemma below) and
- then deducing the generating function from there.

Lemma 3.4.4. The double-indexed sequence (OCPS("H)(]} + 1))npeNX
order-consecutive partition sequences is determined by the recursion

of numbers of

(n)OCPS™ ) (p + 1) = (2p)OCPS™ (p) + (n + 2p)OCPS™ (p + 1) . (3.65)
Proof. This can be seen by explicit calculation

n+ 2p
n

OCPS™ ™V (p+1) — (@> OCPS™(p) — (

n

) OCPS™(p+1)

S Q) (522 (3
eI

1)k py[(n 1 _ - "

(3.66)

where the binomial relation (agl) = “T_b (Z) was employed several times. O
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Using this lemma Proposition 3.4.3 can be proved.

Proof of Prop. 3.4.3. From the recurrence relation given in the lemma above a partial
differential equation is deduced that the generating function must satisfy. It reads

1+ (-142)0,+2y(1+ (14+y)9y)| h(z,y) =0. (3.67)

To see this, note that by taking the general ansatz Zmp an px"yP the recursion of Theo-
rem 3.4.4 is recovered for the coefficients a,, ;.

It can easily be verified that the proposed rational function G(z,y) of Equation (3.63)
satisfies this differential equation. Hence, with the correct initial conditions it generates
the numbers of order-consecutive partition sequences. O

Based on the above determination of G(x, y) its coefficients ¢, (y), see Equation (3.62),
are deduced in the following.

Proposition 3.4.5. For a fixed n € N, the generating polynomial for the numbers of
order-consecutive partition sequences OCPS(”+1)(p +1) forp e Nis

gn(y) = (1+y )T {<\/1+ +\F> (M—ﬂ)n+1]. (3.68)

It is emphasized here, that g,(y) is in fact a polynomial for each n € N (see Re-
mark 3.4.2.1).

Proof. The proof presented here uses relations of special functions named after Cheby-
shev. The author wants to thank Raimar Wulkenhaar for pointing out this elegant
approach. Alternatively, the proposition can be shown using elementary methods via
a rather tedious induction in n.

The generating polynomial g,(y) is the coefficient of " in the series G(z,y). In order to
extract this coefficient rewrite

1—=x 1—=zx
L=22(l+y)+22(1+y)  1-2/T+y(avTFy)+ (2T Fp)°

G(z,y) = (3.69)

This can be expanded into
Gloy) = (1=2) > U (V/T+y)(1+y)"a", (3.70)

where Z,(z) = %51)(2) for n € N are Chebyshev polynomials of the second kind, a
special case of Gegenbauer polynomials Cé‘ [SW16, Ceb53]. These polynomials have
explicit representations, which will be employed here. For |z| < 1, let z = cos ¢, then

sin((n + 1)9)
sin 9 '

U (cosv) = (3.71)
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Using this as well as trigonometric relations, one calculates

"G, 22 — 1) = 2" Uy (t) — 2" Uy, ()

_ Sll’l((?”.t + 1)9) cos™ i) — sm‘(m?) .
sin ¥ sin ¥

_ [sin(n) sin(nd)

= |sng < ¥ + cos ¥ cos(nd) — 0

= [cos ¥ cos(nd) — sin ¥ sin(nd)] cos™ 9

= cos((n + 1)0) cos" 1 = 2" .7, ,1(2), (3.72)

os" 19

cos™ 1y

where {7, },cn are the Chebyshev polynomials of first kind [Ceb53]. These, in turn,
can be written as

T () = % [(z—l— m)” + (z VR 1)”} . (3.73)

Passing back to 22 — 1 = y one finds

In(y) = (1+y )" [<\/1+ +\/') <\/1+y—\/§>n“]. (3.74)

Note that for |z| > 1, there are equivalent relations of the Chebyshev polynomials in
terms of hyperbolic trigonometric functions giving the same result for g, here. This
concludes the proof. O

3.4.2 Proof of logarithmic concavity of OCPS

The combinatorial Theorem 3.4.6 below states that the numbers of order-consecutive
partition sequences form logarithmically concave sequences. Thereby, it establishes
that the f*-vector of the Ehrhart polynomial associated to v)-class intersection numbers
of powers one is logarithmically concave.

Theorem 3.4.6. For every n € N* the sequence (OCPS™ (P))pei,n] is logarithmically
concave.

Proof. In this proof, the results of the previous sections are used. According to Theo-
rem 3.4.5 the generating function

nly) = (1+y )T [<\/1+ +\/‘) <\/1+y—\/§)n+1] (3.75)

for a fixed n € N generates the sequence of numbers (OCPS"+Y(p + 1))peqi,ng- Thus,
to obtain the logarithmic concavity for these sequences, one needs to show for all
n € N that g,(y) has only real zeros. This implies by Theorem 3.4.1 about real rooted
generating polynomials the assertion. In order to do this, note that due to the first
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factor of its closed expression in the equation above g, has a zero of order [(n — 1)/2]
at y = —1. The remaining [n/2] zeros are determined by

n+1

(Vity+ @)"H+ (Vity-vy) =o. (3.76)

This is solved by yi € ), such that

tan2 (= 2k+L
yo :: { an (2 n+1) } ) (377]
) kEZ

2k+1
1 + tanz(% n—rl

To see this note that Equation (3.76) is equivalent to
VIT o+ Vi = e (VT ye— Vi) 3.78)
for all £ € Z. Rearranging this yields

[Ty _exp(iniiF) =1 exp(5355) —exp(—5755) itan<z2k+ 1)
n eXp(i,]TQTicJ—:ll) +1 exp(i” 2k+1) + exp(—iﬂ%ﬂ) 2 n+1 .

In the last step Euler’s formula exp(iz) = cos(z) + isin(z) was employed to reduce
the numerator and denominator to a sine and cosine, respectively, giving a tangent.
Finally, solving for y;, gives the desired result

. - 2 ™
GtanEE)° we(sR) -
Ye = 7 m 2k+1Y\)2 Tt 2(£2k+1)+1‘ (3.80)

(tan(z2)) -1 (535

By closely examining this expression one realizes that symmetries of the tangent trans-
late to the identification y, = y_;_1. Thus, the number of different values in ), reduces
by half, to be precise to [n/2].

This calculation gives the set of solutions ). Adding up the numbers of zeros and
taking their order into account, one finds [n/2] 4+ [(n — 1)/2] = n. This verifies that
all zeros of g, are found, since g,(y) is a polynomial of degree n (see Remark 3.4.2.1),
concluding the proof since

{yeC:g,(y) =0} ={-1} Uy CR. (3.81)

O

3.4.3 Abstract theory of Polya frequency sequences

It is mentioned above that the result of logarithmic concavity of the number of order-
consecutive partition sequences can also be inferred from abstract theory of Poélya
frequency sequences, see Definition 3.4.2. In [Bre88], amongst others this family of
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properties is investigated including its relation to other properties such as unimodu-
larity and logarithmic concavity as well as different operations that preserve it.
Referring back to Definition 3.4.1, the defining equation of logarithmic concavity is
quadratic in the elements of the sequence, see Equation (3.55). This suggests that
logarithmic concavity is related to 13, which is concerned with minors of the form

det( @ ) (3.82)
Q-1 QAp—1

It turns out that one is able to show that the property ‘B is invariant under binomial
transformations. To be precise, if (¢;)ren is a finite B, sequence, then so is (pg ) ey With
Pr = 2120 (,i) q; [Bre88]. Remark that this transformation does, in general, not pre-
serve logarithmic concavity. A direct consequence of this fact is the following theorem
of [Bre88].

Theorem 3.4.7 ([Bre88], Theorem 2.5.8). Let P(x) be a polynomial of degree d € N.
Then the expansion coefficients in terms of { (i) } kefo,aq) Jorma‘’, sequence if the expansion
coefficients in terms of { (Hj_k) Yreqo,q) do.

In terms of the notation of Section 3.1 of this thesis Brenti’s result can be translated
to the implication

h* is a P, sequence = f*is a P, sequence. (3.83)

In order to relate this result to logarithmic concavity, first note that from the defini-
tions it is obvious that I3, implies logarithmic concavity, see Definitions 3.4.1 and 3.4.2
and Equation (3.82). Additionally, due to its definition 3, implies ‘J3;.

The inverse relation, which is provided by [Bre88] where it is stated as Theorem 2.5.1,
requires additionally that a; > 0 and that there are no internal zeros. That these con-
ditions are necessary can be seen by modifying the sequence (1,1,1,1,0,...), which is
both a logarithmically concave and *J3; sequence. If the third of these ones changes sign,
then the sequence remains logarithmically concave as one can check, but calculating
minors of order two of the associated matrix M one realizes

>z1><<—1)—1><1:—2<o. (3.84)

Similarly, if the two internal ones, that is the second and third, are changed to zero,
then

Mz M 5)

det ’ Tl=0x0-1x1=-1<0, (3.85)
(M3,3 M; 5

but logarithmic concavity remains valid. The following result of [Bre88] is a re-stating

of Theorem 3.4.1 in the language of Pdlya frequency sequences.

Theorem 3.4.8 ([Bre88], Theorem 2.5.1). An eventually vanishing sequence is a ‘13,
sequence if and only if it is a*}3; sequence that is logarithmically concave without internal
zeros.
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Sketch of proof. In order to show that a *J3; sequence without internal zeros which obeys
logarithmic concavity is, in fact, a 3, sequence, one propagates the defining equation
of logarithmic concavity

0< aiﬂ — ajyoar = det k1 At (3.86)
ap  Qg41

to arbitrary minors of order two. This can be done by repeatedly applying operations of
the form

Qp42 A
Q12 det( + +3)

ag Af41

2
. S (k430511
= ak+2<ak+2ak+1 - ak+3ak> Z Q12 —a — Qp4-30%
k+2
2
= apy3(agy1 — Arr2ar) (3.87)

using logarithmic concavity as well as the fact that internal elements of the sequence
do not vanish. O

As a consequence of the results in this section, the result of this work in Theo-
rem 3.4.6 can be shown in a different fashion.

Alternative proof of Theorem 3.4.6. The theorem states the logarithmic concavity of the
numbers (OCPS™ (P))pefi,ng for all n € N*. Using the theory of Pélya frequency se-
quences, one deduces this from the fact that they are the f*-vectors of polynomials
that have as h*-vector the sequence of numbers of type {(Z) }pe[[o,n—l}] for some n, due
to Theorem 3.2.5 proved in Section 3.5.2. Note, that the latter is calculated from the
explicit representation of the f*-vector. This sequence of binomial coefficients is the
prime example for ¥ sequences and is, in particular, *3;. Thus, by Theorem 3.4.7 also
the f*-vector, being the numbers of order-consecutive partition sequences, is, which

proves the theorem. O

3.5 Proof of Theorems 3.2.4 and 3.2.5

Owing to the explicit determination of the Ehrhart polynomial associated to the inter-
section numbers described in Section 3.2, Theorems 3.2.4 and 3.2.5 explicitly calculate
the f* and h*-vector of these polynomials.

Beyond their value by themselves, these are, in fact, interesting counting results as
the vectors are the numbers of combinatorial objects which enjoy properties such as
logarithmic concavity as shown in the previous section. Here the proofs of the theorems
are presented starting with the determination of the f*-vector followed the by h*-vector,
which is deduced from the former.
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3.5.1 f*-expansion

This section proves the combinatorial significance of the f*-vector of the normalized
Ehrhart polynomial £, (g) in terms of order-consecutive partition sequences (see theo-
rem below).

Theorem (see above, Theorem 3.2.4). The f*-vector of the normalized Ehrhart polynomial
L, (g) associated to -class intersection numbers of powers (d;); = (1,...,1) € N"
computes the number of order-consecutive partition sequences of [1,n + 1] into (k + 1)
parts, that is

. k
-1 2 2
9)=) fi (gk ) with f{ = OCPS" ) (k+1) = 3 (- W( +n)(l>'
k=0 p
(3.88)

Proof. Equipped with the definitions of the combinatorial objects provided by Sec-
tion 3.3, the theorem can now be proved by applying the Gregory-Newton interpolation
Sormula [Fra20]. The classical relation states that an integer-valued polynomial p(t)
in ¢ of degree d can uniquely be expressed in terms of binomials via

p(t) = igar (i) | with 0 = g(—nr-s @ p(s). (3.89)

In the present context £,(g + 1) = (**!"") takes the role of p(g), and its coefficients are

defined via
29 +n ~ ) (9
= . 3.90

k=0

By the interpolation formula the expansion coefficients are calculated as

0= () () =g (50 e

using a symmetry of the binomial coefficients. This implies

SR ()] @)= eoen o

One obtains the assertion of the theorem by shifting ¢ — (g — 1) and identifying
OCPS™V(k + 1) in the above due to Hwang-Mallow’s theorem. O

For the first few sequences of these numbers enumerating order-consecutive parti-
tion sequences see Figure 3.3.3 in Section 3.3.
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3.5.2 h* expansion

After proving the combinatorial meaning of the f*-coefficients, the same is aspired for
the h*-coefficients here. At first, the cases £, and L, are set aside and will be discussed
separately further below, see Equation (3.99).

Theorem (see above, Theorem 3.2.5). Let n € N with n > 2. The normalized Ehrhart
polynomial L,(g), which computes the intersection numbers of 1)-classes with pow-
ers (d;); = (1,...,1) € N, enjoys the h*-expansion

_ g+n—=k . n+1
= h;, th h; = . 3.93
R () e

Proof. The h*-expansion is deduced from the f*-expansion provided in Theorem 3.2.4
via their algebraic relation (3.12) of Section 3.1.1.

Referring to Theorem 3.2.2 the constant term of £,(g) is given by [[,_,(k — 2) which
vanishes as long as n > 2. This is the technical reason for the restriction of the theorem
ton > 2. Then, by expanding the right-hand side of Equation (3.12) one finds

n n—k
Z e = L (1 ( ’“) e, (5.99

k=0 1=0

Due to Theorem 3.2.4 providing the f*-vector, the h*-vector of L,(g) is given by the
coefficients of

H*(Z> Z B n n—k k l+k+m (n + Qm) <k) <TL - k) Zk+l+1 (3.95)
Z k Z Z Z 2m m l ’ '
k=0

k=0 (=0 m=0
which yields by reordering of the sums

kool
n -+ 2m [ n—I
h* —_ -1 k—m
n= e (") 6) G2
i n+2m\ = (l+m\ (n—m—1
= —1)km : 3.96
I Do ] i B
m=0 =0
The inner sum can be treated by the Chu-Vandermonde relation in the transformed

form SN _, CHEYONE) =) with N=k—m, X =mand Y =n — k. It
can be deduced from the more-common version by the relation (—1)*(") = (7**"71).

v v
Thus,

k
X mfm+2m\ (n+1
k+1 — Z(‘l)k ( om ) (k; B m) . (3.97)

m=0
Rewriting in terms of the I'-function, one has
W ['(—n — 1+ 2k)
ML (—n— 12k + 1)
This computes the desired result which can be seen using the reflection identity of the

I'-function % =(— 1)“+1£E”Hg withu =n+1and v =2k — 1. O

(3.98)
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At this point a remark on the restriction of the theorem above ton > 2 is appropriate.
As mentioned in the proof, this is due to the fact that as long as n ¢ {0, 1}, the Ehrhart
polynomial £, (¢) has no constant term. For the two exceptional cases

Lo(g) =1, and Li(g)=29—-1, (3.99)

n=0: hy=1, and n=1: hj=-1, hi=3. (3.100)

This distinction of n € {0, 1} can conceptually be motivated using the algebro-geometric
origin of the Ehrhart polynomials. Recalling that L, computes 1)-class intersection
numbers on M, ,,;, the Ehrhart polynomials indexed by n € {0, 1} cover the realm of
unstable topologies of positive Euler characteristic y,,. Here intersection numbers are
classically not well-defined.

Properties Parallel to the f*-vector, the h*-vector has nice properties, which can
directly be read off from the representation in Theorem 3.2.5 such as the fact that
the sequences {(h})krec[o,n] }nen have no internal zeros and are logarithmically concave,
see Section 3.4. Furthermore, it is notable that starting from n = 2 the h*-vector is
non-negative and h(, always vanishes.

To summarize, for the first few £, the {h} }ic[o,n) are given by

o 1 2 “lo 1 2 3 4 5
n n
1 | 1 4 [0 1 6 1
-1 3 5 101 10 5 0
3 10 1 3 6 |0 1 15 15 1 0

Figure 3.5.1: This plots the values of (log (z&tll)))pe[[l,n]] for n € [3,7] (from light blue

to purple and with increasing number of angles), which highlights the concave shape.



Conclusions

Since the scientific revolution science devoloped into the main catalizing force driving
societal progress and fueling human curiosity. In that process the character of the
sciences changed in many ways. As human knowledge diversified and refined advances
become more and more driven by collaborative, interdisciplinary as well as gradual
steps. The author of this thesis hopes to contribute to this quest within the respective
fields of research the work is embedded in while realizing his own personal pursuit.

The moduli space of complex curves has been a classical algebro-geometric subject
of studies for decades. The explicit calculations presented in this thesis in Chapter 2
quantify its relation to the Quartic Kontsevich Model as well as the related LSZ model,
which are related to the quest of finding a non-trivial interacting quantum field theory
that describes the world we live in. This is set to aid future research in a deeper
understanding of the physical model especially towards its integrability.
These results are prepared in Chapters 1 and 2 with short introductions to the specific
models as well as the theory of intersection numbers on the moduli space of curves. On
that basis the explicit expressions are presented as examples for the universal struc-
ture of topological recursion, which governs, amongst many other mathematical and
physical phenomena, the Quartic Kontsevich Model and the calculation of intersection
numbers. This framework is used for calculating how intersection numbers are convo-
luted in the physical models for the first correlators. While the LSZ model, the complex
counterpart to the Quartic Kontsevich Model being a hermitian matrix model, is gov-
erned by ordinary topological recursion, the latter requires a broader framework, called
blobbed topological recursion. The additional structures, which are encoded in the loop
equations constraining the model, are determined for the first correlators. Therefore,
the graphical representation of the theory is exploited. That process not only yields new
data which will provide valuable insight for future research, but it also unifies notation
of various parts in the literature and fixes it for concrete applications.

Building on the structure of the moduli space, or more specifically that of its intersec-
tion numbers explained in the dedicated sections, a different perspective on intersection
numbers is investigated in detail in Chapter 3. This work is rooted in a recently devel-
oped relation between the algebraic theory of intersection numbers with Ehrhart theory,
which is a combinatorial approach to counting lattice points in polytopal objects. In
the study of this relation, not only natural questions after the class of polytopal objects
corresponding to these types of collections of intersection numbers and their proper-
ties are approached. But in significant structures within this relation also interesting
phenomena are observed such as logarithmic concavity of special expansion data - a
desirable property for sequences that can be found throughout a variety of different
fields in mathematical research.
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To be more precise, it is found that the expansion data of the Ehrhart theoretic objects
corresponding to a subclass of intersection numbers has, in fact, a combinatorial in-
terpretation in terms of a count of a specific kind of partitions. These partitions, which
are called order-consecutive partition sequences, are counted by sequences of numbers
that obey logarithmic concavity. Although different approaches to logarithmic concav-
ity all provide different perspectives on it, it is generally a hard task to establish it in
explicit examples. Here, the deduction is presented in two different ways either by com-
putations via special functions and via abstract theory of Pdlya frequency sequences,
while the author is aware of an additional elementary proof via induction. This reflects
the deep structure that this class of polytopal objects have, which ultimately ties back
to that of the moduli space of curves.

Together with strong numerical evidence the origin in the moduli space suggests that
using its recursive structure the property of having logarithmically concave expansion
data generalizes from the class of intersection numbers investigated here. Using the
framework of topological recursion a proof of this conjecture constitutes an interesting
avenue for future research.

In this sense this thesis combines motivations, results and methods within the fields
of mathematical physics, algebraic geometry and combinatorics to provide a mutual
benefits to the respective questions that are approached. These include explicit com-
putations for matrix models relating them to invariants of algebraic geometry as well as
a combinatorial investigation of these invariants revealing interesting new properties.
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SCIENTIFIC APPENDICES A

Complementary definitions

A.1 Hermitian and self-adjoint operators

Let ‘H be a Hilbert space and (-,-) the inner product on it. On # there acts a not
necessarily bounded operator A with dense domain Dom(A) C H. Note here that A
need not be defined on the entire . If this is however the case, then the notions of
symmetric and self-adjoint operators, that are explained below, will coincide. As this
can often be assumed, in many cases it is only referred to Hermitian operators. Note
also that this is automatic if H is finite-dimensional, as then Dom(A) = H. [DS88]
The action of the operator A* adjoint to A is prescribed by

(Az,y) = (2, A7y) (A1)
for y € Dom(A*) for all x € Dom(A).

Definition A.1.1. A is called symmetric, if Dom(A) C Dom(A*) and on z € Dom(A)
Az = A*x.

In that case
(Azx,y) = (z, Ay) , for x,y € Dom(A). (A.2)

In the physical context it is often desired to have a real pairing in order to define
observables. This can be achieved if an additional requirement is considered.

Definition A.1.2. A is called selfadjoint, if it is symmetric and Dom(A) = Dom(A*).
For such operators A also A* is symmetric and
(Az,z) = (x, Ax) € R, (A.3)

for x € Dom(A).
In this thesis, such real symmetric, that is self-adjoint operators defined on a Hilbert
space are called Hermitian.
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A.2 Singular homology and cohomology

In this appendix singular homology and the associated cohomology groups of connected,
smooth, complete varieties X over C, or better its underlying manifold of C-valued
points X ((C) will be discussed following (classical) references such as [Har77, Hir66,
Sch20, Zvol2].

Therefore, from singular simplices in the space X, that is continuous function from
the standard n-simplex to X, in the familiar way, which follows from the abstract ax-
iomatic definition, homology H.(X) = H,.(X(C), Q) and cohomology H*(X) = H*(X(C),Q)
are constructed, where X (C) are the of C-points of X equipped with the complex topol-
ogy. An example for this is provided below. In cohomology one can introduce a natural
product, the cup-product, which respects the grading by

H?(X) x HY(X) — HP"(X), (o, B) = a—f, (A.4)
introducing a ring structure. Complementary to this, in homology one defines the
cap-product by

Hy(X) x HY(X) — Hyo(X), (a,f) = a~f, (A.5)
which is also referred to as partial integration. Note that these products are compatible
satisfying 0 —~ (o — ) = (0 —~ a) — (. Using these one can introduce a pairing by
setting p — ¢ = 0, that is

H,(X) x HP(X) — Ho(X) ~Q. (A.6)

The isomorphism to Q is induced by the degree map of a zero-cycle D = ), aj[zy]
defined by deg(D) = ), a;. reflecting that all points z;, € X(C) are homologically
equivalent, since the considered spaces X are connected. This, in turn, induces the
Poincaré duality via the pairing in cohomology by setting p + ¢ = 2d

HP(X) x H*P(X) — H*(X) ~Q, A.7)

where the degree map is composed with multiplication with the pairing with the funda-
mental class [X] € H°(X) of X,

/Xn = deg([X] ~n), (A.8)

to obtain the isomorphism to Q for n € H?%(X). This suggests H?(X) ~ Hy; ,(X)
based on the assumption that X is also a compact complex mani- or orbifold, which is
called Poincaré duality.

Remark A.2.0.1. The integral notation introduced here is used throughout this text
recurrently and its convenience can even be increased by extending its applicability to
classes beyond the top cohomological group H?? on X. Therefore, one writes

/ - {deg([X] ~7), fork=2d,

(A.9)
0, otherwise ,

provided a cohomological class 77 € H*(X).
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Due to this insight one can interpret the products in a geometrical manner. At least
in the smooth setting, for A, B C X closed oriented submanifolds of co-dimension cd 4

and cd g, which intersect transversely, one can form the product of their fundamental
classes [A] € H4(X), [B] € H*?(X) and calculate

[A] — [B] = [AN B]JH®“4Ts5(X) | (A.10)

for a suitable orientation of the submanifold AN B. This gives rise to the term intersec-
tion theory.

Pushforward and pullback Relating connected, proper, smooth varieties (or orbifolds)
X and Y of dimension dx and dy by a morphism m: X — Y induces maps in homology
and cohomology

my: Hy(X) — Hip(Y), m*: H*(Y) — H"(X), (A.11)

denoted pushforward and pullback, respectively. Note that the pullback is compatible
with the cup-product and both are functorial for compositions of morphisms. Using
Poincaré duality the pushforward can also be interpreted as a map on cohomology, i.e.

my: HH(X) — HF2dy=dx)(y) (A.12)
Composing both induced maps, it can be shown, that they satisfy
m«(m* B — a) = f— m,a, (A.13)

the projection formula.

Chern classes Of pivotal importance in this text are elements of cohomology called
Chern classes ci(€) € H**(E) of a complex vector bundle €. The sum ¢(€) =, ¢ (&),
the total Chern class, which collects all Chern classes, is uniquely determined by
requiring naturality and additivity and setting ¢ = 1 4 ¢; for a complex line bundle.
Naturality concerns behavior under pullback to a different base m: B — B and refers
to

ce(m*E) =m* (). (A.14)
Additivity relates total Chern classes of vector bundles forming a short exact sequence
08 —=>E-E"=0 — (&) =c(&) —c(&"). (A.15)

Using these axioms one can construct’ the higher Chern classes from the total Chern
class ¢ = 1 + ¢; of a line bundle.

"Therefore, exhaust the vector bundle V by line bundles, introducing the Chern roots t; by Re-
mark A.2.0.2. Then ¢(V) = [[,(1 + ;).
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B

Figure A.2.1: This illustrates the construction for defining the Euler class

Remark A.2.0.2. Given a complex holomorphic line bundle over the base B, let s be
a nonzero meromorphic section and [Z], and [P] the divisors associated to the set of
zeroes and the set of poles. Then [Z] — [P] € H?(B) is the first Chern class of the line
bundle.

This is well posed, as it can be shown that this definition does not depend on the
specific section s chosen.
Alternatively, in terms of de Rham cohomology with real coefficients the first Chern
class of a line bundle £ can instructively be defined as the Euler class e(Eg) of the asso-
ciated oriented real vector bundle. This class can be constructed in local coordinates.
Therefore, choose charts {Uj } on the base that locally trivialize £. As £ is oriented one
can choose polar coordinates {(ry, ¥x)} over Uy, see Figure A.2.1. Denote the transition
functions of the angles by ¢y;: Uy N U; — R. Using a smooth partition of unity {ey}y
associated to {Uy },, one can glue the one forms dy,; to a global two form

1
elu, = dy with 9 = = > | godpm . (A.16)

which is the Euler class of £. This construction suggests the geometrical interpretation
of the first Chern class. In the case one can define the curvature form, c; is directly
proportional to it. This section is concluded with an example of the construction of
homology and cohomology.

Example A.2.1. In order to illustrate the construction of homology and cohomology in a
short example the cellular homology and cohomology groups of a cell complex are con-
structed, following [Hat02]. Note that the notions of cellular and singular groups canon-
ically agree for cell complexes. The latter generalizes the cellular setting by considering
maps from simplices to the space and thus solve various issues with orientation as well
as rigidity of the theory. This identification is induced by sending each simplex to its
characteristic map A,, — X, which is used to define singular cohomology.

For computing the cellular homology H, over Z of the spaces X, X,, and X3 depicted in
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(%]
-2

. . v2 f2 . 1)2
v /_ h /<
€1 € €3 e\ — |€e2 €3 e1\ = |e2 €3
v1° (i v1°
X X

X1 2 3

Figure A.2.2: This depicts the cell complexes X;, X», and X3 that are considered in
Example A.2.1. The complex X; has two vertices and three edges, while X, and X3
extend X by a one and two faces, respectively.

Figure A.2.2, first the generators of the cell groups are listed.

X X, X;
Co {Uh U2} {Uh Uz} {Uh Uz}

(A.17)
Cy {61, €2, 63} {617 €2, 63} {61, €2, 63}
Cy - {fi} {f1, 2}
The boundary maps between these such that
{0} &0, -2 00 -2 0 -2 {0} (A.18)
are given by
80(’01) == 60(112) = 0, 81<€1) = 81(62> = V2 — V1, 83(0) = 0, (Alg]
equally for all spaces considered and for X, X,, and X3, respectively, and
0,(0) =0, Oa(f1) = ey —e1, Oa(f1) = Oa(f2) = €2 —e1. (A.20)

Homology Noting the crucial relation 9> = 0, the homology groups are from here defined
forallp € N as

H,(X) = ker(0,)/im(0p41) - (A.21)
The zeroth homology is, thus given by

Hy(X;) = spang{vi, va}/spang{vs —v1} ~ Q, (A.22)

JSor all spaces X1, X5, and X3 identically. Note that in general the number of summands
in Hy counts the connected components of the space of which it is computed. The higher
homologies similarly count the numbers of independent cycles of the respective dimen-
sion. For identifying the first homology, the kernel of 0; and the image of 0, need to be
computed. Therefore,

81(61 - 62) == (UQ - Ul) - (UQ — Ul) =0
= 81 (61 — 63) = 81 (62 — 63) . (A23]
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Thus, ker(01) = spang{e; — ez, €1 — e3}. The map 0, varies for the different spaces. Its
image is given for X; by {0} and for X, and X3 by spang{e; — e1}. The homology is
therefore

Hy(X1) = spang{e; —ez,e1 —e3} ~ Q@ Q, (A.24)
H(Xy) = spang{e; — e, €1 — es}/spang{es — e1} = spang{e; —e3} ~ Q, (A.25)

for k € {2,3}. This reflects the fact that while in X, there are still two independent
one-cycles, the introduction of the face f, collapses the cycle e; — e,. In order to compute
the second homology the kernel of 0, is given by elements [ of Cy such that dy(f) = 0.
This can only be achieved in X3, because there

82(f1 - fg) = (62 — 61) — (62 — 61) =0. (A26]
Hence, for k € {1,2}

Hy(X;) ={0} and Hy(X3) = spang{f1 — fo} = Q. (A.27)

Cohomology The associated cohomology is constructed by taking hom(—, Q) of the
chain sequence obtaining the associated co-chain sequence formed by the A, and the co-
boundary maps 6,: A, 1 — A,. Analogously to homology 6> = ( yields the co-homology

H? = ker(dy11)/im(d,) . (A.28)

The zeroth cohomology is equal for all spaces considered as their structure in dimension
zero and one agree. The spaces Ay and A; are generated by dual generators {vg, vi}
and {e7, e}, e}, respectively. Using the relation

dpar = a0, (A.29)
between the boundary and co-boundary maps for some o € A,_1, one computes
0107 (e1) = vy (Oheg) = v (vy — 1) = —1, (A.30)

which is the same as 6,v] applied to the other edges. Analogously, one finds

5105 (e1) = 01v5(€e2) = 01v3(e3) = 1. (A.31)
One realizes that 6,v5 = —d;v}, and thus ker(0;) = SpanQ{UT — v} and
H(X) = spang{vy — vy} ~ Q, (A.32)

Jorallk € [1,3]. The first cohomology is given by the quotient of the kernel of 62 and the
image of §;. The former is for X, the entire space A3. For X, and X3 a general linear
combination

(52(k16’{ + kge;‘ + kgﬁi)(f) = (klei -+ k2€; + k3€§>(€2 — 61) (A33]
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Jor f € Ay vanishes only if k; = ky. Hence, ker(0y) = spang{e], 3, e5}/spang{e] — e3}.
The map 0, is the same for all spaces that are considered here. Its image is given by
im(d;) = spang{dvf, 61v]}/spang{div] + d1v7}. This can be seen by computing 6,v}(e)

and 61v3(e) for e € Cy and realizing 6,v; = —d,v,. Consequently,
H'(X,) = spang{e], €5, €5}/ (spang {610}, 6107}/ spang {d1vf + d107}) ~ Q7 (A.34)
H'(Xi) = (spang{e}, €3, €5}/ spang{e} — e3})/(spang{div], 610} }/ spang{d1v] + 610} })
~Q, (A.35)

Jork € {2,3}. This can be interpreted geometrically as well as algebraically as described
in the below. Furthermore, in physics force fields that are in cohomology are of special
significance and are called conservative. In general for a 2-simplex [ bounded by the
edges a1, as, and ag one has ¢ (5) = YP(a1) + Y (as) — Y(ag) for some ¢ € A,. This
measures the deviation of v from being additive with respect to the paths aias and asg.
Alternatively, consider the equation ) = dp for some ¢ € A. If such ¢ exists, then i) = 0
due to 6> = 0. Thus, §1) can be regarded as a local obstruction to finding such ¢. If this
local obstruction vanishes, then (according to the definition of cohomology) )] € H' and,
further, it vanishes if Y = J¢ has a solution. As the boundary map of this class vanishes
due to its construction it can be seen as the global obstruction to solving 1) = d¢.

At last the second cohomology is given. As A3 = 0 for all spaces considered the kernel
of 03 isspang{ f*| f € Ca}. The image of 6, is spang{dz€], 6263}/ spang{dse] +daes} for Xy
and X3. This is due to the fact that €} is in the kernel of §, and that

del(f)=—1, and des(f) =1, (A.36)

for f € Cs. Computing the cohomology yields

Hy(Xy) = {0}, (A.37)
Hy(X5) = spang{ 1 }/(spang{dse], 02e5}/ spang{dae] + d2e5}) ~ {0}, (A.38)
Hy(X3) = spang{ f7, fy }/(spang{dae], dae5 }/ spang{dae] + daes}) ~ Q. (A.39)
Concluding,
(Q (Q (Q
H(X;)=¢{QaQ , H.(X5)=4¢Q ) H.(X3)=¢Q , (A.40)
{0} {0} (Q
(Q (Q (Q
H*(X;)=4Q* H* (X3)=<¢Q : H*(X3)=<¢Q (A.41)
({0} ({0} @
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SCIENTIFIC APPENDICES B

Calculations and data

B.1 Expansion data in topological recursion

In this appendix for different sets of expansion data related to the spectral curve of
topological recursion, see Section 2.2, explicit relations as well as tables are provided.

B.1.1 Closed expression for 33 ,; in terms of x5,

In the following a closed expression for the expansion coefficients {35, },.en is provided.
First, note that

35,00 = 01=0 (B.1)

trivially. Then, consider 33,; for p = 1 and write 31; = 33,1, dropping the index
indicating the ramification point. By recalling the definition one computes

= v2/2(2) — 2(a) = /To(z — B) 1+Zﬁ(z—5)n

~vat-nY (1) (Z Tt —ﬁ)”) e

k=0
where the square-root was expanded. Assuming absolute convergence of the inner
sum, one can iteratively use the Cauchy product formula for sums as

(Z <n+”2>!<z‘6>”) 3 [Z i

riz

(z—=pP)". (B.3)

Due to the fact that r; > 1 the sum over £ gives only non-zero contributions as long as
k < n. Reordering one finds

Z):\/x_og 5n:o+5n>1i(1,éz> 2 Hr+2

k=1 ri+-+rp=n i=1
that is

- 8)", (B.4)

Tz

= -1 k B.5
311 - S 9 (B.5)
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In order to compute 33,, when p > 1 one raises the above expression to the p-th power
and again expands using the Cauchy product formula according to

(C(2))P = <Za1,n+1(z - B)”“) => [ > H51,5j+1] (z— ).  (B.6)

n=0 Lsi+-+sp=n j=1
SjZO

Thus,
p
sspi = Y |31 fori>p>1. (B.7)
s1+-+sp=l j=1
s;=1
For negative p = —q < 0 one needs to invert the power series (B.6). This yields the

recursive formula

-1
(56,(]74) ) l = —q,
38,—ql = l+q (B.8)

L [ >—
36’%%:135,(]7%-&-(1 5ﬂ’ ql=i> q

All other coefficients 33, vanish.

B.1.2 Closed expression for yg, and 3, in terms of {5, and 351

Reversely to the previous section, here a closed expressions for the moduli of the spec-
tral curve yg, and xg, in terms of {3, and 33;; are deduced. Therefore, consider
first

y(z) = Z tp2(Ca(2))" = Z%kﬁ [Z 3pa(Z — B)l] : (B.9)

k>0 k>0 1>k

With the convention 35, = 0 if [ > k the sums can be exchanged as

Z L8, k+2 [Z 3.k1(2 — ﬁ)l] = Z Z tgnsdpni(z — B) = Z [Z tB,k+256,k,l] (z—p)".

k>0 1>k 1>0 k>0 >0 Lkt
(B.10)
Reading off yields
15,3358,1.1 5 n=20,
Ysn = 18, k42 38,k,nt1 (B.11)
(n+1)! > LR et n=1,
k<nd1 3,3 35,1,1

as 3351 = 0 for k£ > 1 Secondly, similarly to the above, one can also express the x5, in
terms of the 35 ;,;. Note, however, that this is in practice not particularly helpful, as in
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order to obtain the 35, one already needs z(z). Nevertheless, for the sake of symmetry
consider using the product formula for infinite sums

2
2(2) — x(a) = (Gu(2))” = 255,1,1(2 - B)| = Z Z 3p0dp1s| (2= B) . (B.12)
>1 121 Lr+s=l
Therefore,
38,1,138,1,1 = 235225 n=0,
Lon = (nt2)! 38,1,m38,1,s _ (n+2)!38,2,n42 n>1 (B.13)
2 38,1,538,1,5 2 35,22 = -

r+s=I1+2

B.1.3 First t5; and fﬁ,k in terms of x3, and yg

Using the algorithm described in Section 2.2.3, the Tables B.1.1 and B.1.2 give the first
few coefficients ?3; and f;ik, in terms of x3,, and yg .

L.k
90
212
69,%0(—501 +3y1)

% (—1221y1+522 —3z2+12y5 )
Q

72
m:ﬁg (9022y1 —90z1y2 —4522y1 — 4023 +4520 21 —9z3+45ys3 )
— AN 72 (—8409:?1,11 +84022y2+840x221 y1 —480z1 y3 —14423y1 —36022y2+3852F —6302222 +168z371
17280.
“o 110523 —24z4+144y4 )
7136530953 (42001‘11y1742001?3/276300‘rgm§y1+252Oz§y3+1512x3x1y1+37801211y27945x1y4+945xgy1718914111
—56723y2—94572y3 — 196025 +4200z223 —1260z327 — 15752321 +2522471 +3782273 —27x5+189y5)
435455% (—900900:c§y1 +900900z 1 y2+1801800z2 23 y1 —5544002 3 y3 —498960x372y1 — 12474007272 y2
+226800x%y4 —623700x%z1 y1+90720x421y1+272160x321Yy2+453600x221y3 —60480x1 Y5
9 +136080z223y1 —8640z5y1 +17010023y2 —30240x4y2 —60480z3y3 — 75600224 +42542528
—1126125z227 +360360x323 +675675232% 831602422 —249480z 27371 +12960 521 —5197523
+1360822+22680z2x4—1080z6 +8640y6)

N (OO bW

(0]

Table B.1.1: This lists the first expansion coefficients or times tg;, of y(z) at the rami-
fication point z = 3 expressed in terms of the parameters z,, = 23, and ¥y, = yg -
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k tak
1 NEn )
0| log 82853 log(sﬂyo
355 )
1 _ t;f 72411.0 (12x1y1—5x%+3x2—12y2)
9t2
8,5 1 3 2,2 2 4 2
9 2% 5 @ (30;t1y1 +6x7yy —30x{y2—32z2x1y1 —1221y1y2+2021 y3+623Y1 +1272Yy2 — 1527 +252227
_ 15tg 7 —Tx3x1 —4x§+x4+6y§—6y4)
t P
3,3
» et (1080023 y1 4180027y —1080027 y2+24023 3 —22200w223 y1 —360023y1 y2+ 720023 ys
2B 0 —1920z222y?+180023y3 +6360x323y1 — 72023y y2+15000z223 Y2 +120022 Y1 Y3
mtﬁ,:z —3000z2y4+360z371y3 472071 y1 Y5+ 79202321 y1 —12002471y1 —33602371 Y2
3 +% +26402221y1y2—6000z221 Y3 — 120021 y2y3 —36021 Y1 y4+840z1 Y5 — 720223
,55€,3 —1800z2x3Yy1 +120x5y1—1920w%y2+360$4y2—360x3y1y2+840x3y3+960x2y4
-5 :f —55252$+14775z221—4830x323 —89002322 +1130z42% 43360222371 —180T521
’ +660137189:p§7300129&;+15167240y§’+360y2y47120y6)

Table B.1.2: This lists the first expansion coefficients or dual times f@k of the Laplace
transform of dy(z) at the ramification point z = 3 in terms of the parameters z, = x4,
and y, = yg,,. These coefficients are dual to the times 5} (see Table B.1.1) and their
relation is provided in the second column.

B.2 Data supporting conjecture about logarithmic con-
cavity of all normalized Ehrhart polynomials asso-
ciated to intersection numbers

In Section 3.2 it is conjectured that logarithmic concavity of the f*- and h*-vector of
the Ehrhart polynomial associated to intersection numbers of the form

dl . . o dn
/ 1—% (B.14)
./\797”,4_1 1 - ¢n+1

holds true for general (d;); € N" for n € N beyond the case of (1,..., 1), which is treated
in Theorems 3.1.2 and 3.2.5 proved in Sections 3.5.1 and 3.5.2. Here, the numerical
data supporting this conjecture is collected.

Table B.2.1 lists the f*- and h*-vectors of the Ehrhart polynomials corresponding to
intersection numbers specified through (d;); € T for

T={211), (2,2,1), (2,2,2), (5,1,1), (5,5,1), (5,5,5)}. (B.15)

In the logarithmic plots in Figure B.2.1, one can observe the concave shape of the f*-
and h*-vectors associated to these. In order to verify log-concavity numerically, that is
if

a; > a; 1a;41, (B.16)
for a € {f*, h*}, define

")/Z(a) = aiflai%»l/a? fOI‘ Z - N . (B. 17)
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Figure B.2.1: This depicts the on the left the f*-, i.e. (f])ic[o,s,]- and on the right
the absolute value of the h*-coefficients, i.e. (h;);c[o,,]. @ssociated to vectors d listed
in Equation (B.15) on a logarithmic scale. The upper panels depict the coefficients
corresponding to (2,1, 1) (light blue triangles), (2,2, 1) (dark blue squares), and (2,2, 2)
(purple pentagon) - the lower panels those to (5, 1, 1) (light blue triangles), (5,5, 1) (dark
blue squares), and (5,5, 5) (purple pentagon).

This ratio is well-defined as long as a; # 0. As the sequences considered here have no
internal zeros, one can therefore calculate %(a) as long as i = 0,...,%,, where 7, is the

highest ¢ such that a; # 0. In order to define 7; at the beyond the classical domain, set
%(a) = ( for negative i and if i > i,.

If the sequence (a;);cy is log-concave, then %(a) < 1 for all « € N. See Table B.2.2 for a
verification of this for all vectors (d;); € T
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d f* h*

(2,1,1) || (810, 14850, 56808, 73872,31104) (810, —3240, 4860, —3240, 810)

(2,2,1) || (113400, 1043280, 3363768, (113400, —567000, 1134000,
4984416, 3483648, 933120) —1134000, 567000, —113400)

(2,2,2) || (567000, 12312000, 70201080, (567000, —3402000, 8505000,
175718160, 220838400, 137168640, | —11340000, 8505000, —3402000,
33592320) 567000)

(5,1,1) || (1871100,111068496, (1871100, —13097700,
1181882988, 4917186648, 39293100, —65488500,
10150059456, 11142852480, 65488500, —39293100,
6248171520, 1410877440) 13097700, —1871100)

(5,5,1) || (12795710447520, (12795710447520,
545672898650880), —140752814922720,
7514237614403520, 703764074613600,
51028612339985280, —2111292223840800,
203286770565167520, 4222584447681600,
517792118624161920, —5911618226754240,
880212456654612480, 5911618226754240,
1013640585479262720, —4222584447681600,
783018965116846080, 2111292223840800,
389338243761438720, —703764074613600,
112781704966963200, 140752814922720,
14481697524940800) —12795710447520)

(5,5,5) || (1935093730525956000, (1935093730525956000,
313789090270595940000, —29026405957889340000,

11148733407647723025600,
170915024328944674363200,
1457161238790939517466400,
7848475852338743842836000,
28721323128140529351696000,
74592064602862919259840000,
141024211328158390374912000,
196484612524240769351884800,
201914238092811385946112000,
151331816708387046014976000,
80505819140360989468262400,
28821324615457982172364800,
6230468372491573552742400,
614848852548510547968000)

203184841705225380000,
—880467647389309980000,
2641402942167929940000,
—5811086472769445868000,
9685144121282409780000,
—12452328155934526860000,
12452328155934526860000,
—9685144121282409780000,
5811086472769445868000,
—2641402942167929940000,
880467647389309980000,
—203184841705225380000,
29026405957889340000,
—1935093730525956000)

Table B.2.1: Here the f*- and h*-vectors associated to vectors d € T listed in Equa-
tion (B.15) are presented.
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d H A7) ‘ ()

(2,1,1) || (0,0.2087,0.0003,7.9-1078,0) (0,0.375,0.4444,0.375,0)

(2,2,1) || (0,0.3505,0.0001,9.1- 1077, (0.,0.4,0.5,0.5,0.4,0)
4.5-10713,0)

(2,2,2) || (0.,0.2626,3.0-1074,7.0 - 10710, (0.,0.4167,0.5333,0.5625, 0.5333,
6.4-10715,3.7-1072°)0) 0.4167,0.)

(5,1,1) || (0,0.1793,6.1-1077,2.5- 10713, (0,0.4286,0.5556, 0.6, 0.6, 0.5556,
2.6-107%,1.3-107%7,4.5-107%.0) | 0.4286,0)

(5,5,1) || (0,0.3229,6.4-1072,1.1-10717, (0,0.4545,0.6,0.6667,0.7,0.7143,
3.1-10727,2.2-107%7,6.4 - 10748, 0.7143,0.7,0.6667,0.6,0.4545,0)
1.1-107%%,1.5-107%%,2.5 - 10~%°,

6.2 - 10791, 0)

(5,5,5) || (0.,0.2191,3.3- 10712, 1.8 - 10724, (0,0.4667,0.6190, 0.6923, 0.7333,
7.2-107%.3.7-107%2,3.6 - 10757, 0.7576,0.7714,0.7778,0.7778,
1.0-107%,1.1-107%8,6.7 - 107117, 0.7714,0.7576,0.7333,0.6923,
2.5-107131,9.6- 10718 4.7-1071%1 | 0.6190,0.4667,0)

3.9-107189 6.6 - 1071% 0)

Table B.2.2: Here the ratios y(f ") and 'y(h*) defined in Equation (B.17) associated to
vectors d € T listed in Equation (B.15) are presented.

B.2.1 Numerical methods

The data presented in the previous section was generated and analyzed using the soft-
ware mathematica [Wol20]. Therefore, an object was defined, that allows to extract
the data of the f*-vector, which is defined in Equation (3.6), from an arbitrary polyno-
mial poly of given degree n. The source code is provided in the following.

(x Define the function fvecfunc, which takes a polynomial in g and an integer n
returns its f™—vector up to f"+_n)

Clear [ fvecfunc, pol, fvec, i, k]
fvecfunc|[poly_, n_] :=
Module [
{pol = poly,
fvec = {poly /. g = 1}},
For[i = 1, i <= n, i++,
Sfveclower = AppendTo[ fvec, (poly/.g—>i+1) — Sum|[Binomial[i, k] fvec|[k
+1]], {k, O, i—1}]]
Ig

Jfvec




120 Scientific Appendices B. Calculations and data




Formal Appendices






123




124 Formal Appendix C. Curriculum Vitae




ForRMAL APPENDIX D

Illustration note

The illustrations on the top of pages on which chapters start are inspired from various
sources and figures.

Introduction:
https://www.researchgate.net/publication/303697433_Solitons/figures,
https://www.artspace.com/augustus-goertz/uncertainty-principle-from-the-quantum-
series.

Chapter 1 - Field theories on non-comunutative space:
https://events.theory.nipne.ro/gap/index.php/18-student-circle/math-resources/92-
noncommutative-geometry-a-la-connes.

Chapter 2 - The moduli space of curves and topological recursion:
https://upload.wikimedia.org/wikipedia/commons/b/bf/A_triangulation_of_the_torus
%2C_with_bounding_box_fixed.svg.

Conclusions:
https://en.wikipedia.org/wiki/Drawing Hands
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