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Abstract

In this thesis we study N = 6 superconformal field theories (SCFTs) in three dimensions. Such

theories are highly constrained by supersymmetry, allowing many quantities to be computed exactly.

Yet though constrained, N = 6 SCFTs still exhibit a rich array of behaviors, and in various regimes

can be dual holographically to M-theory on AdS4×S7, IIA string theory on AdS4×CP3, and higher-

spin gravity on AdS4. We will use tools from conformal bootstrap and supersymmetric localization

to study N = 6 theories, both in general and in holographic regimes.

We begin in Chapter 2 by deriving the supersymmetric Ward identities and the superconformal

block expansion for the four-point correlator ⟨SSSS⟩ of stress tensor multiplet scalars S. Chapter 3

then studies the mass-deformed sphere partition function, which can be computed exactly using

supersymmetric localization, and relates derivatives of this quantity to specific integrals of ⟨SSSS⟩.

In Chapter 4 we study the IIA string and M-theory limits of the ABJ family of N = 6 SCFTs.

Using the supersymmetric Ward identities and localization results, we are able to fully determine

the R4 corrections to the ⟨SSSS⟩ correlator in both limits. By taking the flat space limit, we can

compare to the known R4 contribution to the IIA and M-theory S-matrix, allowing us to perform a

check of AdS/CFT at finite string coupling.

In Chapter 5 we study the higher-spin limit of N = 6 theories. Using the weakly broken higher-

spin Ward identity, we completely determine the leading correction to ⟨SSSS⟩ in this limit up to

two free parameters, which for ABJ theory we then fix using localization. Finally, in Chapter 6 we

perform the first numerical bootstrap study of N = 6 superconformal field theories, allowing us to

derive non-perturbative bounds on the CFT data contributing to ⟨SSSS⟩.
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Chapter 1

Introduction

In this thesis we study a class of highly symmetric quantum field theories, N = 6 superconformal

field theories (SCFTs) in three spacetime dimensions. Much like the quantum field theories we

use in particle physics — the Standard Model, QCD, QED, and so on — N = 6 SCFTs have

Poincaré symmetry: they are invariant under translations, rotations, and boosts. But N = 6 SCFTs

are also invariant under two additional kinds of spacetime symmetries: conformal symmetries and

supersymmetries. We will now motivate each of these in turn.

Conformal Symmetry

Physical theories come with characteristic length scales. At distances much greater than this length

scale, the precise details of the short-distance physics become unimportant and so we expect the

theory to become scale-invariant. Under broad but still not entirely understood circumstances,1

scale symmetry is enhanced to the larger group of conformal symmetries, which are the spacetime

transformations which locally look like rotations and rescalings. We therefore expect that at large

distances, quantum field theories (QFTs) should approach conformality. This intuition is formally

captured by the renormalization group (RG), which describes how quantum field theories “flow”

from short distances (the “UV”) to long distances (the “IR”). For UV complete QFTs, the short

distance behavior will also become scale-invariant, and so we can often2 think of QFT as an RG
1It has been shown in 2d and 4d that Lorentzian invariance and unitarity, along with certain technical assumptions,

are sufficient [1,2], but in other spacetime dimensions the situation is less clear. In particular, free Maxwell theory in
3d is scale-invariant theory, satisfies all the conditions of the 2d and 4d results, and yet is not conformally-invariant [3].
It is not known, however, if interacting counterexamples exist. A thorough discussion of these issues can be found
in [4].

2This picture does not quite work for gauge theories in 3d, because as noted in the previous footnote free Maxwell
theory is scale-invariant but not conformally-invariant. Nevertheless, we can still think of a UV-complete QFT as an
RG flow between scale-invariant theories.
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flow between two conformal field theories (CFTs):

CFTUV
QFT

−−−−−−−−→ CFTIR

Studying CFTs thus enables us to map out more generally the space of all QFTs.

Let us give two examples of conformality in physical theories. Consider the Standard Model,

which provides our current best description of particles physics. The only massless particle in the

Standard Model is the photon. At energies much lower than the electron mass,3 we can ignore the

massive particles and describe just the photons by the most famous conformally invariant theory

of them all: Maxwell’s theory of electromagnetism. This theory is classically conformally invariant,

and remains conformally invariant after quantization.4

Another theory believed to be conformally invariant is the critical Ising model, which describes

second order phase transitions in water (and other fluids) at its critical point and in uni-axial magnets

at their critical points. Although at short distances water and uni-axial magnets have very different

behaviors, at long distances they both limit to the same conformal field theory, and so share the

same critical exponents.

Due to the greater amount of symmetry available, CFTs are subject to more stringent consistency

conditions then regular QFTs. This has led to the “conformal bootstrap”, a series of tools for

studying CFTs which focus directly on the CFT itself, rather than relying on a specific lattice

model or Lagrangian description which only flows to the CFT in the infrared. These methods aim

to fully utilize the constraints imposed by conformal symmetry, along with any additional internal

symmetries or supersymmetries. Combining these symmetries with consistency conditions coming

from unitarity and crossing symmetries, conformal bootstrap can be used to constrain and sometimes

even fully solve a CFT. Because conformal bootstrap methods rely on non-perturbative properties of

CFTs, they are particular useful for studying strongly-coupled theories. While the basic bootstrap

philosophy was first articulated in the 1970s [5, 6], it has only been in the last 15 years that the

conformal bootstrap has reached maturity for theories in more than two dimensions.5 In particular,

the numeric conformal bootstrap, first proposed in [7], provides a general method for computing

rigorous bounds on conformal field theories and has led to a vast array of new results — see [8] for
3Technically, the neutrinos are much lighter than the electron, but interact so weakly with ordinary matter that

they can be ignored when studying electromagnetism.
4When coupled to charged matter fields, however, conformality is broken due to the scale-anomaly.
5In two dimensions the conformal group is infinite dimensional, whereas for d ≥ 3 the conformal group is finite

dimensional. For this reason, 2d CFTs are much better understood than their d ≥ 3 cousins, and tools such as the
Virasoro algebra and modular invariance even allow for theories to be solved exactly. No exactly solvable interacting
CFTs in d ≥ 3 are known.
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a recent review. One goal of this thesis will be to perform the first general numeric bootstrap study

of N = 6 SCFTs.

Supersymmetry

Supersymmetries are generated by charges transforming in spinor representations of the Lorentz

group, which anticommute to generate spacetime translations. We can therefore think of them as

the “square root” of a translation. One motivation to study supersymmetric theories is provided by

the Coleman-Mandula [9] and Haag-Łopuszański-Sohnius theorems [10], which show that the only

way to non-trivially extend the Poincaré invariance in d ≥ 3 is with supersymmetries. For technical

reasons these theorems do not directly apply to conformal symmetries, although analogous results

still apply [11, 12]. By combining supersymmetry with conformal symmetry, superconformal field

theories are amongst the most symmetric theories we can study.

Many tools have been developed to study supersymmetric field theories. Non-renormalization

theorems, for instance, can be used to show that the UV divergences which plague most QFTs are

either milder, or, in some cases, even absent entirely. Dynamical phenomena such as confinement,

electro-magnetic duality, and instantons, which we expect to generically occur in gauge theories, are

often amenable to analytic study in supersymmetric settings. Supersymmetric theories therefore

provide a window into the behavior of strongly interacting theories more generally.

In this thesis we will focus on N = 6 superconformal symmetry, which is the next-to-maximal

amount of supersymmetry available in three dimensions.6 With next-to-maximal supersymmetry

comes next-to-maximal analytic control, allowing us to compute many quantities exactly. We will

focus on a specific tool called supersymmetric localization, which allows certain partition functions

to be computed exactly [14, 15]. N = 6 superconformal symmetry also strongly constrains the

matter content and interactions possible in a theory. Indeed, only two families of N = 6 SCFTs are

known [16–19]: Chern-Simons matter theories with gauge groups7

ABJ family: U(N)k × U(N +M)−k ,

OSp family: SO(2)2k × USp(2 + 2M)−k ,

and it is tempting to conjecture that these are the only ones that can exist.
6Interacting conformal field theories in 3d must have N ≤ 8. In addition to this restriction, all N = 7 theories

automatically enhance to N = 8, and so N = 6 is the second greatest amount of supersymmetry available in three-
dimensions [13].

7We list the gauge groups only up to a specific choice of U(1) factors, because, as we conjecture in Section 1.2,
the U(1) factors do not modify the correlators studied in this thesis.
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Holography

We have so far motivated the study of N = 6 superconformal fields theories by noting that they

are amongst the most symmetric and tractable of all QFTs. There is a separate reason to consider

N = 6 superconformal field theories, and this comes from the study not of quantum field theories

but of quantum gravity. Supersymmetry appears to be a necessary ingredient of String Theory,

which is our leading candidate for a theory of quantum gravity. Solutions of string and M theory

on manifolds with boundaries are believed to be described holographically by local quantum field

theories living on said boundaries. Just as N = 6 SCFTs are amongst the most symmetric of all

quantum field theories, their holographic duals are amongst the most symmetric of all string and M-

theory backgrounds. With the analytic control provided by N = 6 supersymmetry, we can perform

many checks of conjectured holographic dualities which are not available in less symmetric theories.

When N is large, the ABJ family of theories is holographically dual to both IIA string theory and

to M theory on AdS4, depending on the value of k [16,17]. This duality is akin to the most famous

AdS/CFT duality, between 4d N = 4 super-Yang Mills and IIB string theory on AdS5 [20]. When

M is large, however, the ABJ family of theories are believed to be dual to a completely different

kind of quantum gravity, known as higher-spin gravity [21]. In higher-spin theories, the graviton is

joined by an infinite number of massless higher-spin particles. While the precise connection between

higher-spin gravity and string theory is not yet clear, that fact that both are holographically dual

to the same family of N = 6 SCFTs is suggestive. Note that while there are N = 8 SCFTs with M

theory duals, SCFTs with IIA or higher-spins duals must have N ≤ 6. The ABJ family of theories

is the most symmetric family of theories exhibiting all three kinds of holographic duals.

Thesis Overview

Having motivated the study of N = 6 SCTs, let us now give an overview of the rest of the thesis.

Our aim is to develop a series of tools to study N = 6 SCFTs. Some of the tools we develop are

general and apply to all such theories, while others are specific to either the stringy or higher-spin

limits. The observable we focus on is the four-point correlator ⟨SSSS⟩, where S is a scalar operator

related by supersymmetry to the stress tensor. This scalar is present in any N = 6 SCFT, and in

interacting theories is always the operator with lowest scaling dimension.

The rest of this introduction gives a more technical overview of topics discussed thus far. In

Section 1.1 we review the properties of conformal and superconformal field theories in three dimen-

sions. We then discuss the construction of super Chern-Simons matter theories in Section 1.2, and

4



describe in detail the ABJ and OSp families of N = 6 SCFTs. Finally in Section 1.3 we review the

holographic dualities relating N = 6 SCFTs to theories of quantum gravity.

Chapter 2 discusses the constraints of superconformal invariance on the four-point function

⟨SSSS⟩. We derive the superconformal Ward identities, which are linear differential equations

satisfied by ⟨SSSS⟩, and which further relate ⟨SSSS⟩ to other four-point correlators. We then

derive the superconformal block expansion for ⟨SSSS⟩. The Ward identities and superblocks ex-

pansions are fundamental tools which we use throughout the thesis. As they rely only on N = 6

superconformal symmetry, they apply to all N = 6 SCFTs.

In Chapter 3 we study constraints from supersymmetric localization. N = 6 SCFTs can be

naturally mapped to the 3-sphere using conformal invariance. On the sphere, they posses certain

mass-deformations — so named because in Lagrangian theories they give mass to the otherwise

massless scalars and fermions — which preserve certain supersymmetries. We focus on two of these

mass-deformations, which we parameterize by m+ and m−. In Lagrangian N = 6 SCFTs (which

includes all known N = 6 theories), the sphere partition function Z(m+,m−) can be computed

exactly using supersymmetric localization for all values ofm±. In Section 3.1 we relate the derivatives

of Z(m+,m−) to integrals of ⟨SSSS⟩. The rest of the chapter then focuses on evaluating derivatives

of Z(m+,m−) explicitly for the ABJ and OSp families in various regimes.

In Chapter 4 we study the large N limit of ABJ theory, which, depending on the precise large N

limit taken, is holographically dual to either M-theory or IIA string theory. To study this limit, we

rewrite ⟨SSSS⟩ in Mellin space. Holographic Mellin amplitudes have a simple analytic structure,

and behave analogously to flat-space scattering amplitudes. Indeed, the Penedones formula [22]

provides a direct mapping between Mellin amplitudes in the boundary CFT and flat-space scattering

amplitudes in the bulk gravitational theory. Motivated by this connection, we study the N = 6 on-

shell spinor-helicity formalism in 4d and use it to classify higher derivative corrections to 4-graviton

scattering in flat-space. Combining the results of this classification with the superconformal Ward

identities, we fully fix the Mellin amplitudes contributing to ⟨SSSS⟩ at large N . To determine

the precise contribution of each Mellin amplitude, we use both the supersymmetric localization

constraints for ABJ derived in Chapter 3, and the known flat-space string and M-theory scattering

amplitudes. Certain coefficients can be computed independently using either localization or from

flat space, allowing us to test the AdS/CFT correspondence to several orders in 1/N .

In Chapter 5 we study N = 6 theories in the higher-spin limit, which are holographically dual to

theories of higher-spin gravity. Theories with unbroken higher-spin symmetries cannot be interacting,

as the constraints of higher-spin symmetry are so stringent as to force all correlation functions

5



to be equal to those of free field theory [11]. We study N = 6 SCFTs where the higher-spin

symmetries are weakly broken. The resulting theories can now have interesting dynamics, but are

still strongly constrained by the weakly broken higher-spin symmetries. We use these constraints

to fix an ansatz for the leading corrections to ⟨SSSS⟩, and then use localization to completely

determine the unknown coefficients in the ansatz for both ABJ and OSp theories at large M .

In Chapter 6, we present the first numeric bootstrap study of the ⟨SSSS⟩ correlator. This

allows us to derive general non-perturbative bounds on the ⟨SSSS⟩ correlator in any N = 6 SCFT.

To impose further constraints, we combine the numeric bootstrap with the localization results of

Chapter 3, allowing us to derive precise bounds on certain physical quantities in specific ABJ theories.

We also find that the bootstrap bounds of a certain protected OPE coefficient appears to be saturated

by the U(1)2M × U(1 +M)2M family of ABJ theories. Assuming this conjecture is true, we can

compute numerically the spectrum of these theories using the extremal functional method. As M

becomes large these theories have weakly broken higher-spin symmetry, allowing us to compare

numeric bootstrap results to the analytic computations performed in Chapter 5.

We finish with a summary of our results and a discussion of future directions in Chapter 7. Four

appendices then follow which discuss various technical details.

This thesis is based on the work with Shai M. Chester and Silviu S. Pufu [23], Shai M. Chester,

Max Jerdee and Silviu S. Pufu [24], and with Shai M. Chester and Max Jerdee [25], edited together

to form a coherent narrative. Chapters 2 and 6 are primarily based on [24], but also include material

from the other two papers. Chapter 4 is based on [23], Chapter 5 is based on [25], and Chapter 3

draws on material from all three papers.

1.1 Conformal Fields Theories with N = 6 Supersymmetry

We will now discuss in more details the implications of conformal and superconformal symmetry in

three dimensions. First we consider conformal symmetry and its implications for CFTs, and then

extend our discussion to N = 6 superconformal symmetry. We then finish by describing the N = 6

stress tensor multiplet, which is present in any local N = 6 SCFT.

1.1.1 Conformal Symmetry

Conformal field theories are widely studied and their properties are discussed in many places. Here

we will focus on the basics needed for the thesis; more detailed discussions aimed towards the

conformal bootstrap can be found, for instance, in [26,27]. The 3d conformal group is defined as the
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group generated by spacetime translations and Lorentz transformations (which together generate

the Poincaré group), along with dilatations

xµ → λxµ (1.1)

and special conformal transformations

xµ → xµ + aµx2

1 + 2x · a+ a2x2
, (1.2)

parameterized by a scalar λ and vector aµ respectively. Together these generate all transformations

x→ x′ which preserve the metric ηµν = diag{−1,+1,+1} up to a scalar factor:

ηµν →
∂x′ρ

∂xµ
∂x′σ

∂xν
ηρσ = Ω(x⃗)2ηµν (1.3)

and which can be continuously connected to the identity map. We will use Pµ, Mµν , D and Kµ to

denote the (anti-hermitian) infinitesimal generators of translations, Lorentz transformations, dilata-

tions and special conformal transformations respectively, defined by the equations

Pµ = ∂µ , Mµν = xµ∂ν − xν∂µ , D = xµ∂µ , Kµ = x2∂µ − 2xµ(x⃗ · ∂) . (1.4)

Together they satisfy the so(3, 2) commutation relations

[Mµν , Pρ] = ηρ(νPµ) , [Mµν ,Kρ] = ηρ(νKµ) , [Mµν ,Mρσ] = ηµ(ρMσ)ν − ην(ρMσ)µ

[D,Pµ] = −Pµ , [D,Kµ] = Kµ , [Kµ, Pν ] = 2Mµν + 2ηµνD

[Mµν , D] = 0 .

(1.5)

As in any Lorentzian theory, we can label local operators O(x⃗) in a conformal field theory by their

spin ℓ = 0 , 12 , 1 , . . . . Because the dilatation generator D commutes with the Lorentz generators

Mµν , we can then simultaneously label operators by their conformal dimension ∆, such that

[D,O(x⃗)] = (−∆+ x⃗ · ∂)O(x⃗) . (1.6)

In particular, the operator O(0) when placed at the origin is an eigenstate of D with eigenvalue ∆.

The generators Pµ and Kµ act to raise and lower the scaling dimension of an operator by one. A

7



primary operator O(0) is an operator which is annihilated by Kµ, while operators constructed from

a primary O(0) by acting with Pµ are called descendants. Note in particular that

O(x⃗) = O(0) + xµ∂µO(0) +
1

2
xµxν∂µ∂νO(0) + . . . , (1.7)

so that O(x⃗) can be written as a sum of O(0) and its descendants.

The conformal group admits three kinds of unitary multiplets. Long multiplets have conformal

dimensions above the unitarity bounds

∆ >



1
2 ℓ = 0

1 ℓ = 1
2

ℓ+ 1 ℓ ≥ 1

(1.8)

Short multiplets occur at the bottom of the continuum in (1.8)

∆ =



1
2 ℓ = 0

1 ℓ = 1
2

ℓ+ 1 ℓ ≥ 1

(1.9)

and satisfy shortening conditions so that certain descendants of the primary vanish. For scalars, the

shortening condition is P 2O(0) = 0, implying that the operator satisfies the Klein-Gordon equation

∂2O(x) = 0 , (1.10)

while for integer spin-ℓ operators, the shortening condition is P ν1Oν1...νℓ(0) = 0, implying that the

symmetric traceless tensor Oν1...νℓ(x) is a conserved current:8

∂ν1Oν1...νℓ(x) = 0 . (1.11)

Finally, the trivial multiplet consists of just the identity operator. This is a scalar with ∆ = 0, and

is annihilated by all Pµ.
8Fermionic operators behave analogously. Short spin-1/2 operators satisfy the massless Dirac equation while

higher-spin fermions are conserved.
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Conformal symmetry fixes the two and three points functions of scalar operators to take the form

⟨Oa(x⃗1)Ob(x⃗2)⟩ =
Cab

x2∆a
12

,

⟨Oa(x⃗1)Ob(x⃗2)Oc(x⃗3)⟩ =
λabc
2

1

x∆a+∆b−∆c
12 x∆b+∆c−∆a

23 x∆c+∆a−∆b
31

,

(1.12)

where Cab is non-zero only if ∆a = ∆b, and where we define xij = |x⃗i − x⃗j |. In a unitary theory

we can always redefine our operators such that Cab = δab, and so will always make this choice

of normalization. Similar formulas hold for spinning operators, whose two-point functions we can

always fix to take the form

⟨Oµ1...µℓ
a (x⃗1)Oν1...νℓb (x⃗2)⟩ = δab

(
I(µ1...µn)(ν1...νn)(x12)

x∆a+ℓa−2
12

− traces
)
,

where Iµ1...µnν1...νn(x12) =

(
δµ1ν1 − xµ1

12x
ν1
12

x212

)
. . .

(
δµnνn − xµn

12 x
νn
12

x212

)
,

(1.13)

and where we use A(µ1...µn) to denote the symmetrization of the tensor Aµ1...µn . Three-point func-

tions between spinning operators may in general include multiple independent conformal structures,

but for the case of two scalars and a third spinning operator there is a unique structure:

⟨Oa(x⃗1)Ob(x⃗2)Oµ1...µℓ
c (x⃗3)⟩ =

√
(1/2)ℓ
2ℓ+2ℓ!

λabc

x∆a+∆b−∆c+ℓ
12 x∆b+∆c−∆1−ℓ

23 x∆c+∆a−∆b−ℓ
31

×
[(

xµ1

13

x213
− xµ1

23

x223

)
. . .

(
xµℓ

13

x213
− xµℓ

23

x223

)
− traces

] (1.14)

where the ℓ dependent factors out front are chosen to match with our conventions for conformal

blocks, to be introduced shortly.

The operator product expansion (OPE) allows us to expand products of operators in terms of

other operators in the theory

Oa(x⃗)Ob(0) =
∑
c

λabcC∆c,ℓc(x⃗, ∂y)Oc(y⃗)
∣∣∣
y⃗=0

, (1.15)

where the differential operator C∆c,ℓc(x⃗, ∂y) is fully fixed by conformal symmetry, and λabc are the

coefficients which appear in (1.14). By repeatedly taking OPEs, all higher-point functions can be

fixed from just the OPE coefficients, conformal dimensions, and spins of local operators. If, for

instance, we take the OPE of the first two operators in a four-point function of identical scalars
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ϕ(x⃗), we find that

⟨ϕ(x⃗1)ϕ(x⃗2)ϕ(x⃗3)ϕ(x⃗4)⟩ =
1

x
2∆ϕ

12 x
2∆ϕ

34

∑
O∈ϕ×ϕ

λ2ϕϕOg∆O,ℓO (U, V ) (1.16)

where U and V are the conformal cross-ratios

U =
x212x

2
34

x213x
2
24

, V =
x214x

2
23

x213x
2
24

, (1.17)

and where g∆,ℓ(U, V ) are the conformal blocks, normalized such that

g∆,ℓ(U, V ) =
Γ(ℓ+ 1/2)

4∆
√
πℓ!

U
∆−ℓ

2

(
(1− V )ℓ +O

(
(1− V )ℓ+1

))
+O

(
U

∆−ℓ
2 +1

)
. (1.18)

At various points throughout the thesis we will need to decompose four-point functions into sums

of conformal blocks. The expression (1.18) is the leading term in an expansion about U ∼ 0 and

V ∼ 1, explicit expressions for which can be found for instance in [28]. As we can see from (1.18),

the expansion organizes around the twist ∆− ℓ and spin ℓ of the operators exchanged.

If we work in Euclidean signature, the order of the ϕ(xi)s in (1.16) does not matter. We can

hence interchange 1↔ 3, and so derive the crossing equation

∑
O∈ϕ×ϕ

λ2ϕϕOg∆O,ℓO (U, V ) =

(
U

V

)∆ϕ ∑
O∈ϕ×ϕ

λ2ϕϕOg∆O,ℓO (V,U) . (1.19)

This gives an infinite number of constraints on conformal dimensions, spins, and OPE coefficients

which may appear in ϕ× ϕ. More general crossing equations can be derived when the operators are

not identical, and not necessarily scalar. Crossing equations are in general quite difficult to analyze,

as the U ∼ 0, V ∼ 1 expansion cannot be applied to both sides of (1.19) simultaneously. In spite of

this difficulty, they provide one of the most fundamental tools used to study conformal field theories,

both analytically and numerically.

1.1.2 N = 6 Superconformal Symmetry

Before introducing the superconformal algebra, let us first recall the basic properties of spinors in

three dimensions. They transform in a two dimensional representation of the Lorentz group, which,

due to the accidental isomorphism so(3) ≈ sp(2), we can think of as an sp(2) fundamental. We

will use indices α , β , . . . to describe such spinors, which we raise and lower with the antisymmetric
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symbol

ϵ12 = −ϵ21 = −ϵ12 = ϵ21 = 1 , (1.20)

so that for any spinor sα we define sα ≡ ϵαβsβ , which in turn implies that sα = ϵαβsβ . Spinor and

vector representations of so(3) are related through the 3d gamma matrices:

(γµ)αβ ≡ (1, σ1, σ3) , (1.21)

which we can use to rewrite the conformal generators as

Pαβ = (γµ)αβPµ , Kαβ = (γµ)αβKµ , Mαβ = γµαγγ
ν
βδϵ

γδMµν . (1.22)

The commutator relations (1.5) can then be rewritten as

[M β
α , Pγδ] = δ βγ Pαδ + δ βδ Pαγ − δ

β
α Pγδ , [D,Pαβ ] = Pαβ ,

[M β
α ,Kγδ] = δ βγ Kαδ + δ βδ Kαγ − δ βα Kγδ , [D,Kαβ ] = −Kαβ ,

[M β
α ,M

δ
γ ] = −δ δαM β

γ + δ βγ M
δ
α , [Kαβ , Pγδ] = 4δ

(α
(γ M

β)
δ) + 4δ α(γ δ

β
δ)D .

(1.23)

To embed the conformal algebra into a large superconformal algebra, we first note that so(3, 2) ≈

sp(4). The conformal algebra is thus a subalgebra of the osp(N|4) superalgebra, which has a maximal

bosonic subalgebra sp(4) ⊕ so(N )R — this turns out to be the only way to extend the 3d confor-

mal algebra with supersymmetric generators.9 The so(N )R subalgebra generate a global SO(N )

symmetry, known as the R-symmetry. We will use indices I , J , . . . to denote SO(N ) vectors. The

so(N )R generators are antisymmetric tensors RIJ which satisfy the commutation relation

[RIJ , RKL] = i
(
δI(LRK)J − δJ(LRK)I

)
. (1.24)

Along with the bosonic sp(4)⊕so(N ) generators, osp(N|4) also includes 2N fermionic generators

QαI and SαI with conformal dimension + 1
2 and − 1

2 respectively, so that

[D,QαI ] =
1

2
QαI , [D,SαI ] = −

1

2
SαI . (1.25)

The Q and S operators anticommute to generate all of the bosonic operators via the anticommutation
9Unlike supersymmetric extensions of the Poincaré algebra, superconformal algebras are highly constrained. A

complete classification for d ≥ 3 is given in [29, 30], and, in particular, superconformal algebras can exist only when
d ≤ 6.
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Irrep Dynkin Label Common Name
1 [000] Trivial
6 [100] Vector
20′ [200] Symmetric
15 [011] Adjoint
84 [022]

Irrep Dynkin Label Common Name
4 [010] Spinor
4̄ [001] Spinor
10 [020]
10 [002]
45 [120]
45 [102]

Table 1.1: Representations of so(6) used in this thesis. The third column gives common names for
the representations, where they exist. Note that so(6) ≈ su(4), but different conventions are used for
the Dynkin labels. In the su(4) notation, the [a1a2a3] representation is instead written as [a2a1a3].

relations

{QαI , QβJ} = 2δIJPαβ , {SαI , SβJ} = −2δIJKαβ ,

{QαI , SβJ} = 2iδIJ (Mαβ − ϵαβD)− 2ϵαβRIJ .

(1.26)

The rest of the commutators in osp(N|4) then follow from sp(4)⊕ so(N )R invariance:

[Kαβ , QγI ] = −i
(
δ αγ S

β
I + δ βγ S

α
I

)
, [Pαβ , S

γ
I ] = −i

(
δ γα QβI + δ γβ QαI

)
,

[M β
α , QγI ] = δ βγ QαI −

1

2
δ βα QγI , [M β

α , S
γ
I ] = −δ

γ
α S

β
I +

1

2
δ βα S

γ
I ,

[RIJ , QαK ] = i (δIKQαJ − δJKQαI) , [RIJ , S
α
K ] = i (δIKS

α
J − δJKSαI) .

(1.27)

Much like how Pµ and Kµ raise and lower conformal dimensions by 1, QαI and SαI raise and

lower conformal dimensions by 1
2 . We define a superconformal primary to be a conformal primary

annihilated by SαI . A superconformal multiplet consists of a superconformal primary, a finite

number of other conformal primaries constructed from the superconformal primary using QαI , and

all of the conformal descendants of these conformal primaries.

Our focus in this thesis is on N = 6 superconformal symmetry, which as we have already noted

is the next-to-maximal amount of supersymmetry possible for an interacting superconformal field

theory in three dimensions. The R-symmetry group is so(6), We can label so(6) irreps by their

Dynkin labels [a1a2a3], and in Table 1.1 we list the so(6) irreps which appear in this thesis. Note

that so(6) ≈ su(4), where the spinorial representation 4 of so(6) is the fundamental representation

of su(4).

Unitary osp(6|4) multiplets are classified in [13,31]. Each multiplet can be labeled by the confor-

mal dimension ∆, spin ℓ, and so(6) R-symmetry irrep r = [a1a2a3] of its superconformal primary.

Unitary multiplets of osp(6|4) fall into three possible classes, depending on their conformal dimen-
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sion. Long multiplets have conformal dimension above the unitarity bound

∆ > ℓ+ a1 +
1

2
(a2 + a3) + 1 (1.28)

and do not satisfy any shortening conditions. Semishort, or A-type, multiplets occur at the bottom

of the continuum in (1.28)

∆ = ℓ+ a1 +
1

2
(a2 + a3) + 1 (1.29)

and satisfy shortening conditions. Finally, if ℓ = 0 we can also have short, or B-type, multiplets

with dimension

∆ = a1 +
1

2
(a2 + a3) , (1.30)

below the end of the lower continuum in (1.28), also obeying shortening conditions. Note that the

division of N = 6 multiplets into long, A-type, and B-type multiplets is analogous to the division

of non-supersymmetric conformal multiplets into long, short and trivial multiplets described in the

previous section. However, while highly constrained by supersymmetry, B-type multiplets still have

non-trivial correlation functions.

Multiplets can furthermore be distinguished by their BPSness, which counts the number of QαI

operators which annihilate the superconformal primary. For generic representations A-type multi-

plets are 1/12-BPS and B-type multiplets are 1/6-BPS, but for specific R-symmetry representations

the multiplets may be higher BPS. We list all possible multiplets in Table 1.2. When describing

multiplets we will often find it useful to use the notation T [a1a2a3]
∆,ℓ to refer to the supermultiplet of

type T , whose superconformal primary has spin ℓ, conformal dimension ∆, and transforms in the

[a1a2a3] under so(6)R.

1.1.3 The N = 6 Stress Tensor Multiplet

All local quantum field theories contain a stress tensor Tµν(x⃗) which acts as the generator of trans-

lations. In a conformal field theory the stress tensor is traceless and has conformal dimension 3.

Conformal invariance fixes its two-point function to be

⟨Tµ1µ2(x⃗1)T
ν1ν2(x⃗2)⟩ =

(
I(µ1µ2)(ν1ν2)(x12)

x2ℓ−1
12

− traces
)
,

where Iµ1µ2ν1ν2(x12) =

(
δµ1ν1 − xµ1

12x
ν1
12

x212

)(
δµ2ν2 − xµ2

12x
ν2
12

x212

)
.

(1.31)
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Type ∆ Spin Multiplet so(6)R BPS
Long > ∆B + ℓ+ 1 ℓ Long [a1a2a3] 0
A ∆B + ℓ+ 1 ℓ (A, 1) [a1a2a3] 1/12

(A, 2) [0a2a3] 1/6

(A,+) [0a20] 1/4

(A,−) [00a3] 1/4

(A, cons.) [000] 1/3

B ∆B 0 (B, 1) [a1a2a3] 1/6

(B, 2) [0a2a3] 1/3

(B,+) [0a20] 1/2

(B,−) [00a3] 1/2

Trivial [000] 1

Table 1.2: Multiplets of osp(6|4) and the quantum numbers of their superconformal primary, where
∆B = a1 +

1
2 (a2 + a3).

With our choice of normalization, the stress tensor satisfies the Ward identity [32]

4π

√
cT
3

∫
d3x ⟨∇µTµν(x⃗)O1(y⃗1) . . .On(y⃗n)⟩ = −

∑
i

⟨O1(y⃗1) . . . ∂νOi(y⃗i) . . .On(y⃗n)⟩ (1.32)

for any arbitrary string of operators Oi(y⃗i). Note that we have chosen to normalize the stress tensor

using the same conventions used in (1.13) for more general spinning operators, which is not the

canonical stress tensor normalization.10 The value of cT depends on the specific CFT in question,

and is a measure of the number of degrees of freedom in the theory. For a free scalar or free Majorana

fermion, cT = 1.

In a superconformal field theory, the stress tensor belongs to a larger supermultiplet, known

as the stress tensor multiplet. For an N = 6 superconformal theory, the stress tensor forms part

of a (B, 2)
[011]
1,0 multiplet. The superconformal primary for this multiplet is a scalar Sab(x⃗) with

dimension 1. This operator transforms in the adjoint of so(6)R, where we use indices a, b = 1 , . . . , 4

to denote su(4) ≈ so(6) fundamental (lower) and anti-fundamental (upper) indices. There are

then three fermions with dimensions 3
2 , χα, Fα and Fα, which transform in the 6, 10, and 10 of

so(6)R respectively. Next we have an additional scalar P ab(x⃗), along with the R-symmetry current

(Jµ)ab(x⃗,X) and a U(1) flavor current jµ(x⃗), each of which have dimension 2. Completing the

multiplet is the supercurrent ψµα(x⃗) with dimension 5
2 , and finally the stress tensor itself, Tµν(x⃗).

10The canonical stress tensor is defined by

Tµν
canonical(x) = 4π

√
cT

3
Tµν(x)

in order to cancel the factors on the left-hand side of (1.32).
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Operator ∆ Spin so(6)R irrep
S 1 0 15 = [011]

χ 3/2 1/2 6 = [100]

F 3/2 1/2 10 = [020]

F̄ 3/2 1/2 10 = [002]

P 2 0 15 = [011]

J 2 1 15 = [011]

j 2 1 1 = [000]

ψ 5/2 3/2 6 = [100]

T 3 2 1 = [000]

Table 1.3: The conformal primary operators in the N = 6 stress tensor multiplet. For each such
operator, we list the scaling dimension, spin, and so(6)R representation.

We list all of these operators in Table 1.3.

1.2 Known N = 6 Superconformal Field Theories

The simplest N = 6 superconformal field theory, and indeed, the only one for which we can compute

correlators exactly, is free field theory. This theory consists of four free complex scalars Φa with

conformal dimension 1
2 , and four free complex fermions Ψαa with conformal dimension 1, along with

their complex conjugates. These scalars and fermions together transform in the (B,+)
[010]
1
2 ,0

and

(B,−)[001]1
2 ,0

supermultiplets, known as hypermultiplets. We compute all correlation functions via

Wick contractions with the two-point functions

⟨Φa(x⃗1)Φ̄b(x⃗2)⟩ =
δab

4πx12
, ⟨Ψαa (x⃗1)Ψ̄βb(x⃗2)⟩ =

iδa
b(γµ)

αβxµ12
4πx212

. (1.33)

Because the free theory has 8 real scalars and 8 real fermions, it has cT = 16, which is the lowest of all

known N = 6 theories. We can also consider a more general free field theory with N hypermultiplets

(Φai ,Ψ
α
ia), which has cT = 16N .

Let us now consider interacting theories. All known N = 6 theories are superconformal Chern-

Simons theories [33] with additional massless matter multiplets, and so we will begin with a lightning

review of these theories more generally.

Let us fix a simple Lie group G, and let Aµ be a gauge field transforming in the adjoint of G.

The Chern-Simons action is then

SCS =
k

4π

∫
Tr
(
A ∧ dA+

2

3
A3

)
, (1.34)
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where the Chern-Simons level k is quantized to ensure invariance under large gauge transformations.

Note that the Chern-Simons action is independent of the metric, and so the theory is topological.

To construct a dynamical N = 2 superconformal theory, we couple the gauge field to complex

scalars ϕi and complex fermions ψi transforming in a (generally reducible) representation r of the

gauge group G. Supersymmetry requires that both ϕ and ψ transform in the same representation

of G. Suppressing the r indices, we can write the N = 2 superconformal Lagrangian [34–36]

SN=2 = SCS +

∫
d3x

(
Dµϕ̄D

µϕ+ iψ̄γµDµψ −
16π2

k2
(ϕ̄τar ϕ)(ϕ̄τ

b
rϕ)(ϕ̄τ

a
r τ

b
rϕ)

− 4π

k
(ϕ̄τar ϕ)(ψ̄τ

a
r ψ)−

8π

k
(ψ̄τar ϕ)(ϕ̄τ

a
r ψ)

)
,

(1.35)

where τar are the generators of G acting on the representation r, with adjoint index a, and where

Dµ ≡ ∂µ + τarA
µ
a is the usual covariant derivative. Due to the integrality of k, it was argued in [36]

that the Lagrangian (1.35) cannot be renormalized except for a possible one-loop shift of k, and so

superconformal invariance is maintained in the full quantum theory.

More general N = 2 Chern-Simons matter theories can be constructed for any semisimple gauge

group (G1)k1 × · · · × (Gn)kn , where each Gi is a simple Lie group (or U(1)) with Chern-Simon level

ki. Once again the matter content consists of complex scalars and fermions transforming in some

general representation of the gauge group. N = 2 theories also allow for superpotential terms built

from the hypermultiplets, although these interactions preserve superconformal invariance if and only

if they are both classically marginal and do not break any flavor symmetries [37,38].

We can construct general N = 3 Chern-Simons matter theories as a special case of N = 2

theories [39–41]. We must simply pair the matter fields ϕi and ψi transforming in r with fields

ϕ̃i and ψ̃i transforming in r̄. The Lagrangian is then the same as the N = 2 Lagrangian (1.35)

(including terms for the ϕ̃ and ψ̃ fields), but with an additional interaction which can be compactly

written in superspace as a superpotential

WN=3-coupling =
4π

k
(Φ̃τaΦ)(Φ̃τaΦ) . (1.36)

Constructing theories with N ≥ 4 is more challenging and is possible only for very specific gauge

groups, Chern-Simons levels, and matter representations. Theories with manifest N = 6 symmetry

were first constructed in [16, 17], following previous work on N = 8 theories [42–44]. The most

general such N = 6 theories were classified in [19], up to discrete quotients that do not affect
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correlators of stress tensor multiplet operators.11 In N = 3 SUSY notation, they are Chern-Simons-

matter theories with two matter hypermultiplets. There are two possible families of gauge groups

and representations:12

SU(N)k × SU(N +M)−k × U(1)LK , Kabqaqb =
1

k

(
1

M +N
− 1

N

)
, (1.37)

for N,M ≥ 1 where the hypermultiplets are in the bifundamental13 of SU(M)× SU(N), and

USp(2 + 2M)k × U(1)LK , Kabqaqb = −
1

2k
, (1.38)

for M ≥ 0 where the hypermultiplets are in the fundamental of USp(2 + 2M). In both cases, the

hypermultiplets have equal and opposite charges qi for i = 1, . . . , L under the U(1)’s. The matrix

Kab is the inverse of the matrix Kab of Chern-Simons levels for the L U(1) gauge groups, and must

satisfy the relations given in (1.37) and (1.38).

As we show in Section 3.4, the S3 partition function for both families of theories is independent of

L, as long as the conditions in (1.37) and (1.38) are obeyed, up to an overall normalization constant.

This leads us to conjecture that all these theories have the same stress tensor multiplet correlators,

so for this sector we only need consider two families of theories. One is the ABJ(M) family14

ABJ family: U(N)k × U(N +M)−k , (1.39)

with M ≤ |k| [16, 17], which is the special case of (1.37) where L = 2 with q1 = q2 = 1 and

K11 = kN , K22 = −k(N +M), and K12 = 0. The other family is what we will dub the “OSp”

family,

OSp family: SO(2)2k × USp(2 + 2M)−k , (1.40)

with M+1 ≤ |k| [17,18], is the L = 1, q = 1 case of (1.38). Sending k → −k gives a parity-conjugate

theory, so without loss of generality we can focus on k > 0.

Various Seiberg dualities are believed to relate N = 2 superconformal matter theories to each
11See [45] for a conjectured classification that takes into account discrete quotients.
12The case SU(N)k × SU(N)−k describes the BLG theories [43,44,46].
13Note that when N = 1 in (1.37), the hypermultiplets are just in the fundamental of SU(1+M) with appropriate

charges under the U(1)’s.
14The special case of ABJ with M = 0 is known as ABJM theory. When N = 1,M = 0, the ABJM theory describes

free field theory, when M = 0 and N > 1, ABJM flows to the product of a free SCFT and a strongly-coupled SCFT,
while for all other parameters ABJM theory has a unique stress tensor.
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other [47–50]. These strong-weak dualities exchange regions of strong and weak Chern-Simons

coupling, and are analogous to Seiberg duality in N = 1 4d theories [51]. Although conjectural, the

proposed dualities have been extensively tested using supersymmetric localization [52–55]. When

applied to N = 6 theories, Seiberg duality imposes the equivalences

U(N)k × U(N +M)−k ←→ U(N)−k × U(N + |k| −M)k ,

SO(2)2k × USp(2 + 2M)−k ←→ SO(2)−2k × USp(2(|k| −M − 1) + 2)k .

(1.41)

The k = 2M ABJ theories are self-dual, with the duality transformation acting as a parity symmetry.

The OSp theories with k = 2M + 1 are likewise self-dual and parity preserving.

Both families of N = 6 theories become tractable in the semiclassical regime, where k → ∞

while M and N are held fixed. In this limit, the gauge couplings become weak and both families

approach free field theory, with N(N +M) free hypermultiplets for the ABJ family and 2M +2 free

hypermultiplets for the OSp family. In particular,

ABJ Family : cT = 16N(N +M) +O(k−2) ,

OSp Family : cT = 16(2M + 2) +O(k−2) ,

(1.42)

so that cT becomes large as we take either M or N to infinity.

We close this section by noting that certainN = 6 theories have enhancedN = 8 supersymmetry.

These include free field theory itself, as the N = 6 hypermultiplet is identical in field content with an

N = 8 hypermultiplet: they both consist of eight real scalars and eight Majorana fermions. Apart

from free field theory, we also have (up to Seiberg duality) the interacting families

BLG: SU(2)k × SU(2)−k

ABJM: U(N)1 × U(N)−1 and U(N)2 × U(N)−2

ABJ: U(N)2 × U(N + 1)−2

(1.43)

each of which are special cases of the ABJ family (1.37). Of these theories, the BLG family, intro-

duced in [42, 44], are manifestly invariant under N = 8 for any integer Chern-Simons level k, while

for the other families, supersymmetry is enhanced from N = 6 to N = 8 due to monopole operators.
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1.3 ABJ Triality

We now review the conjectured ABJ triality relating the large M and large N limits of U(N)k ×

U(N + M)−k ABJ theory to quantum gravity on AdS4. We will begin with a quick review of

AdS/CFT duality, and will then describe the various holographic regimes of ABJ theory.

1.3.1 The AdS/CFT Duality

AdS/CFT duality refers to a number of interconnected dualities between theories of quantum gravity

in Anti-de Sitter space (AdS) and conformal field theories living on the boundary of AdS. The first

proposed AdS/CFT duality was between N = 4 super-Yang Mills in 4d and IIB string theory on

AdS5 [20, 56, 57]. Many more examples are now known, and are reviewed for instance in [58, 59].

Reviews of AdS/CFT focusing on more general aspects of the duality, rather than on specific stringy

instantiations, can be found in [60–62].

We can describe AdS4 with radius L as a hyperboloid in R3,2, that is, as the set of five-dimensional

vectors XA which satisfy the condition

ηABX
AXB = −L2 , where ηAB = diag{−1, 1, 1, 1,−1} . (1.44)

The ηAB bilinear is preserved by the group SO(3, 2), and so the induced metric on (1.44) is auto-

matically invariant under SO(3, 2) isometries. AdS4 is commonly parametrized with the Poincaré

patch coordinates

XI(x⃗, z) =
L

z

(
x⃗,

1− x⃗2 − z2

2
,
1 + x⃗2 + z2

2

)
, (1.45)

where x⃗ is a 3-vector and z > 0 is the radial coordinate which vanishes at the boundary of AdS4.

As we take z → 0 we limit to a null vector

P I(x⃗) = lim
z→0

zXI =

(
x⃗,

1− x⃗2

2
,
1 + x⃗2

2

)
. (1.46)

The space of vectors P I(x⃗) is isometric to R2,1. Note however that the flat metric is an artifact of

our choice of coordinates (1.45). If we were to redefine the radial coordinate

z → Ω(x⃗)z (1.47)

for some scalar function Ω(x⃗), then we would instead limit to a null vector Ω(x⃗)P I(x⃗). Under this
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shift, the boundary metric undergoes a Weyl transformation. In particular, the SO(3, 2) isometries

induce conformal transformations on the boundary, as they relate the boundary metric to itself only

up to Weyl transformations.

The AdS/CFT dictionary relates theories of quantum gravity on AdS with conformal field theories

on the boundary of AdS, and, more precisely, states that the two theories have equal partition

function. To compute the bulk path-integral we must specify boundary conditions for the fields, so

that ϕ(x⃗, z)→ ϕbound(x⃗) as we take z → 0. We then define

ZAdS[ϕbound] =

∫
ϕbound

Dϕ exp (iSAdS[ϕ]) , (1.48)

so that the partition function is a functional of these boundary field configurations. On the CFT

side, we define the partition function as

ZCFT[ϕbound] =

∫
CFT

Dχ exp

(
iSCFT[χ]− i

∫
d3xϕbound(x⃗)O(x⃗)

)
, (1.49)

where O(x⃗) is some operator on the boundary and ϕbound(x⃗) acts a source for the operator. The

AdS/CFT duality then states that these two partition functions are equal:

ZAdS[ϕbound] = ZCFT[ϕbound] . (1.50)

In particular, we can compute local correlation functions on the boundary by taking functional

derivatives of the partition function.

When the bulk theory is free, the boundary is described by generalized free field theory. The

spin and mass of the bulk fields determining the spin and conformal dimension of their boundary

duals. For example, a scalar field ϕ(x⃗, z) of mass M in the bulk is dual to a scalar operator O(x⃗)

on the boundary, with conformal dimension ∆ satisfying

M2L2 = ∆(∆− 3) . (1.51)

We can identify the Hilbert space of single particles states in the bulk with “single-trace” states15

O(x⃗) |0⟩ on the boundary, while n-particle states are dual to “n-trace” states O(x⃗1) . . .O(x⃗n) |0⟩.

Higher-spin fields work in much the same way, with spin ℓ bulk particles dual to spin ℓ boundary
15The terminology “single-trace” and “multi-trace” originates from the Lagrangian description of boundary CFTs

with matrix-like large N limits, where it refers to the number of traces needed to define the operators. But since the
bulk dual of n-trace operators are n-particle states, it has become standard to refer to n-particle states as “n-trace”
even in theories without matrix-like large N limits.
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operators. In particular, a massless spin-ℓ particle, the boundary dual is a conserved current with

ℓ and conformal dimension ∆ = ℓ + 1. The bulk N = 6 supergraviton multiplet is dual to the

N = 6 stress tensor multiplet in the boundary, where the gravitons themselves are dual to the stress

tensors.

Bulk gravitational theories are tractable in the semiclassical limit, where the bulk Newton con-

stant GN is much smaller than the squared radius of AdS L2. In this regime, we can use Witten dia-

grams (which are essentially Feynman diagrams in AdS, supplemented by a special ‘bulk-boundary’

propagator) to systematically compute boundary correlators in an GN/L2 expansion. In particular,

in the semiclassical regime cT is given by [63]

cT =
32L2

8πGN
+O (1)≫ 1 . (1.52)

We thus see that the known N = 6 theories can be dual to semiclassical gravity only if at least one

of M or N is large, so that the boundary theories contain a large number of fields.

1.3.2 Holographic Regimes of ABJ Theory

So far our discussion of AdS/CFT has been general. The most well understood examples of AdS/CFT

duality, however, fall into one of two specific categories:

1. Stringy duals: In these examples, the bulk theory is either a string theory on AdSd×M10−d

or M-theory on AdSd × M11−d, where in either case MD is a compact manifold. In the

semiclassical regime only the massless string modes survive, and so the bulk is described by

supergravity in either 10d or 11d, along with higher derivative corrections. The boundary

theory is a supersymmetric gauge theory with a matrix-like large N limit, and all single trace

operators have spin ≤ 2. The prototypical example is N = 4 super-Yang-Mills in 4d, which is

dual to IIB string theory on AdS5 × S5 [20].

2. Higher-spin duals: In these examples, the bulk theory has an infinite number of higher-spin

massless particles. The boundary theory is a Chern-Simons matter theory with a vector-like

large N limit and an infinite number of higher-spin single trace operators. The prototypical

example is the singlet sector of the O(N) model in 3d, which has a massless higher-spin current

for each even spin ℓ [64].

The U(N)k × U(N +M)−k ABJ theories are particularly interesting because they exhibit both

kinds of holographic duals. When N is large, the theories have a matrix-like large N limit and

21



stringy duals, while when M is large they have a vector-like large M limit and are dual to higher-

spin gravity. This is known as ABJ triality [21], as the large N limit itself exhibits distinct IIA and

M-theory limits.

Let us begin with the large N limit, where we hold M finite. In this limit, the U(N)k × U(N +

M)−k ABJ theories can be interpreted as effective theories on N coincident M2-branes placed at

a C4/Zk singularity in the transverse directions, together with a discrete flux due to M fractional

M2-branes localized at the singularity. We will begin with the N ≫ k5 regime, which is dual to

weakly coupled M-theory on AdS4 × S7/Zk. At low energies, M-theory can be described by 11d

supergravity

S =
1

16π5ℓ911

∫
d11x
√
−G

(
R− 1

2
|F4|2

)
− 1

192π5ℓ911

∫
A3 ∧ F4 ∧ F4 + fermions (1.53)

where R is the Einstein-Hilbert term for the 11d metric G, A3 is a 3-form with field strength

F4 = dA3, and ℓ11 is the 11d Planck length. Eleven dimensional supergravity has an AdS4 × S7/Zk

solution:

ds2 = H−2/3dxµdx
µ +H1/3

(
dr2 + r2ds2S7/Zk

)
F4 = dH−1 ∧ dx0 ∧ dx1 ∧ dx2 ,

with H =
(2L)6

r6
.

(1.54)

The boundary quantities cT and k are related to the AdS radius L and the 11d Planck length ℓ11

via the AdS/CFT relation [16,65]

L9

ℓ911
=

3πk

211
cT + . . . , (1.55)

where the additional terms are subleading at large cT . When k = 1, 2 and M = 0, or k = 2 and

M = 1, the theories have enhanced N = 8 supersymmetry.

Next we consider the strong coupling ’t Hooft limit of ABJ theory. Let us define the ’t Hooft

parameter

λ =
Ñ

k
− 1

3k2
− 1

24
, where Ñ = N +

M

2
− M2

2k
. (1.56)

Taking N to infinity while holding λ fixed, and then taking λ→∞, we find that ABJ theory is dual

to weakly coupled type IIA string theory on AdS4 × CP3 [16]. Unlike M-theory, IIA string theory

has a dimensionless parameter, the string coupling gs. When gs ≪ 1 the theory becomes weakly
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coupled and can be studied using string perturbation theory. The leading order AdS/CFT relations

are [16,65]

L8

ℓ8s
= 4π4λ2 + . . . , g2s =

512λ2

3cT
+ . . . , (1.57)

where both the string length scale ℓs/L and the string coupling gs are small in this double expansion.

The ellipses in (1.57) stand for terms that are suppressed at large cT in both expressions.

To interpolate between the M-theory and IIA regimes, we studythe large N limit with

µ ≡ Ñ

k5
, (1.58)

held fixed. Like the ’t Hooft strong coupling limit, ABJ theory in this limit is dual to type IIA

string theory on AdS4 × CP3, except now the string coupling gs is finite. The AdS/CFT relations

are [16,65]

L8

ℓ8s
=

3cTπ
5√µ

16
√
2

+ · · · , g4s = 32π2µ+ · · · , (1.59)

with corrections suppressed at large cT . We can recover both the finite k and strong coupling ’t Hooft

limit expansions from the finite µ expansion by taking the µ→∞ and µ→ 0 limits respectively, as

we explain at the end of Section 3.2.3.

The final regime we can study at large N is the weak ’t Hooft coupling limit where λ ≪ 1. In

this regime, the boundary theory can be computed using a standard perturbative expansion, but

the bulk theory is strongly coupled. To summarize, we have the following four distinct regimes at

large N and finite M :

M-theory: k finite ,

IIA at Finite String Coupling: µ =
Ñ

k5
finite ,

IIA at Weak String Coupling: λ≫ 1 ,

Semiclassical Boundary: λ≪ 1 .

We will further study the large N limit in Chapter 4.

Let us now turn to the large M limit of U(N)k × U(N +M)−k ABJ theory, with N held finite.

Because the ABJ theories are only defined for k > M , as we take M →∞ we must simultaneously
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take k →∞ as well, and so introduce the parameter

λHS =
M

k
∈ [0, 1] . (1.60)

Seiberg duality relates λHS ↔ 1−λHS. In particular, when λHS = 1
2 the theory is parity preserving,

while λ = 0 describes the free field theory. The bulk dual of ABJ theory in this limit is an N = 6

higher-spin theory, where λHS is dual to the bulk parity-breaking parameter.

We can also study the large M limit of the SO(2)2k ×USp(2+ 2M)−k OSp theories. This time,

the natural definition of λHS is

λHS =
M + 1/2

k
∈ [0, 1] , (1.61)

so that again Seiberg duality maps λHS ↔ 1−λHS. In [18,66] it was argued that the OSp theories are

related to the same N = 6 theory of higher-spin gravity as the ABJ theories, but with an additional

orientifold present. We will study all of these higher-spin theories further in Chapter 5.

For both the ABJ and OSp theories, we can smoothly take λHS → 0, which corresponds to taking

the semiclassical limit k →∞. As a result, we can derive the semiclassical expansion from the large

M limit. This should be contrasted with the large N limit, in which the SUGRA regime and the

semiclassical regime do not overlap.
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Chapter 2

The ⟨SSSS⟩ Superconformal Block

Expansion

In this chapter we derive the superconformal block expansion for the ⟨SSSS⟩ four-point correla-

tor. We begin in Section 2.1 by deriving the constraints on ⟨SSSS⟩ imposed by superconformal

invariance. Supersymmetry also also relates ⟨SSSS⟩ to four-point functions of other stress tensor

multiplet operators, including both ⟨SSPP ⟩ and ⟨PPPP ⟩. In Section 2.2 we restrict the supermul-

tiplets which can appear in the S × S OPE, and hence exchanged in ⟨SSSS⟩, to a small number of

possibilities. We then derive the superconformal Casimir equation in Section 2.3, and use it to fix

all superconformal blocks which may contribute to ⟨SSSS⟩. We close with a discussion of free field

theory.

2.1 Superconformal Ward Identities

2.1.1 Conformal and R-symmetry Invariance

Our primary focus in thesis is the four-point functions of scalar operators in the stress tensor multi-

plet, and in particular, the four-point function ⟨SSSS⟩. To impose superconformal invariance on a

correlator such as ⟨SSSS⟩, it is sufficient to impose conformal invariance, R-symmetry invariance,

and invariance under the Poincaré supercharge QαI ; invariance under SαI then follows automat-

ically from the commutator relations (1.27). Conformal invariance is straightforward to impose.

Embedding space formalisms such as [67,68] provide a straightforward tool to construct all possible

conformally covariant structures which can contribute to a given four-point function.
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To describe so(6) ≈ su(4) representations, we use the vector I , J , . . . and spinorial a , b , . . .

indices, as we did in the Introduction. The vector and spinor representations are related by the

gamma matrices CIab and C
Iab, which convert antisymmetric tensors of the 4 and 4 into the 6. A

convenient basis for these matrices is:

C1 =

 0 σ1

−σ1 0

 , C2 =

 0 −σ3

σ3 0

 , C3 =

iσ2 0

0 iσ2

 ,

C4 =− i

 0 iσ2

iσ2 0

 , C5 = −i

 0 I2

−I2 0

 , C6 = −i

−iσ2 0

0 iσ2

 ,

(2.1)

where σi are the Pauli matrices. We can now introduce index-free notation for the stress tensor

multiplet operators:

S(x⃗,X) = X b
a S

a
b (x⃗) , F (x⃗, Y ) = Y abFab(x⃗) ,

χ(x⃗, Z) = ZIχI(x⃗) , P (x⃗,X) = Xa
bPb

a(x⃗) .

(2.2)

with analogous notation for other operators in the multiplet. To implement tracelessness of S a
b we

impose the condition X a
a = 0, and similarly we impose that the matrix Y ab is symmetric. We can

alternatively think of the matrix X b
a as an antisymmetric tensor X̌IJ via the mapping

X̌IJ = Xa
bC

[I
acC

J]bc
. (2.3)

Similarly, the ZI can also be written as antisymmetric tensors /Zab = CIabZI and /Z
ab

= C
ab

I Z
I .

Imposing R-symmetry invariance now consists of finding all linearly independent ways to constraint

the polarization tensors X, Y and Z in a four-point function.

Let us now write scalar correlators in terms of manifestly conformal and so(6)R invariant struc-

tures. We begin by normalizing the S(x⃗,X) and P (x⃗,X) two-point functions:

⟨S(x⃗1, X1)S(x⃗2, X2)⟩ =
tr(X1X2)

x212
, ⟨P (x⃗1, X1)P (x⃗2, X2)⟩ =

tr(X1X2)

x412
. (2.4)

We then use conformal and R-symmetry invariance to expand:

⟨S(x⃗1, X1)S(x⃗2, X2)S(x⃗3, X3)S(x⃗4, X4)⟩ =
1

x212x
2
34

6∑
i=1

Si(U, V )Bi , (2.5)
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where we define the R-symmetry structures

B1 = tr(X1X2) tr(X3X4) ,

B2 = tr(X1X3) tr(X2X4) ,

B3 = tr(X1X4) tr(X2X3) ,

B4 = tr(X1X4X2X3) + tr(X3X2X4X1) ,

B5 = tr(X1X2X3X4) + tr(X4X3X2X1) ,

B6 = tr(X1X3X4X2) + tr(X2X4X3X1) ,

(2.6)

and where Si are functions of the conformally-invariant cross-ratios (1.17). We can similarly write

⟨S(x⃗1, X1)S(x⃗2, X2)P (x⃗3, X3)P (x⃗4, X4)⟩ =
1

x212x
4
34

6∑
i=1

Ri(U, V )Bi ,

⟨P (x⃗1, X1)P (x⃗2, X2)P (x⃗3, X3)P (x⃗4, X4)⟩ =
1

x412x
4
34

6∑
i=1

Pi(U, V )Bi ,

(2.7)

for ⟨SSPP ⟩ and ⟨PPPP ⟩. The functions Si, Ri and Pi are not independent. By interchanging

1↔ 2 and 1↔ 3, we can derive the crossing relations:

S1(U, V ) = S1
(
U,

1

V

)
, S2(U, V ) = US1

(
1

U
,
V

U

)
, S3(U, V ) =

U

V
S1(V,U) ,

S4(U, V ) = S4
(
U,

1

V

)
, S5(U, V ) = US4

(
1

U
,
V

U

)
, S6(U, V ) =

U

V
S4(V,U) ,

R3(U, V ) = R2

(
U

V
,
1

V

)
, R6(U, V ) = R5

(
U

V
,
1

V

)
,

P1(U, V ) = P1

(
U,

1

V

)
, P2(U, V ) = U2P1

(
1

U
,
V

U

)
, P3(U, V ) =

U2

V 2
P1(V,U) ,

P4(U, V ) = P4

(
U,

1

V

)
, P5(U, V ) = U2P4

(
1

U
,
V

U

)
, P6(U, V ) =

U2

V 2
P4(V,U) ,

(2.8)

In particular, these relations imply that ⟨SSSS⟩ can be uniquely specified by S1(U, V ) and S4(U, V ),

⟨PPPP ⟩ by P1(U, V ) and P4(U, V ), and ⟨SSPP ⟩ by R1(U, V ), R2(U, V ), R4(U, V ), and R5(U, V ).

2.1.2 Discrete Symmetries

Before enforcing Q-invariance, let us first discuss discrete symmetries in N = 6 theories. The stress

tensor multiplet forms a representation not only of the superconformal group OSp(6|4), but also of a

larger supergroup which includes two Z2 transformations: a parity transformation P and a discrete

R-symmetry transformation Z. Individually P and Z may or may not be symmetries of a given
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N = 6 theory, though as we shall see they are symmetries of free field theory.

Let us begin with parity P, which maps xµ → −xµ and so extends the SO(3, 2) conformal group

to O(3, 2). Under parity the R-symmetry current Jµ and stress tensor Tµν must transforms as a

vector and a tensor rather than a pseudovector or a pseudotensor. This then fixes S to transform

as a scalar and P to transform as a pseudoscalar. As a result, the correlators ⟨SSSP ⟩ and ⟨PPPS⟩

violate parity and so must vanish in parity preserving theories.

Now we turn to the discrete R-symmetry Z. This symmetry does not commute with the SO(6)R

R-symmetry, but instead extends it from SO(6)R to O(6)R. Let us define the Z generator so that

it corresponds to the O(6) matrix

ZIJ = diag{−1,−1,−1, 1, 1, 1} (2.9)

that is not part of SO(6). The group O(6) has two 6-dimensional representations: the vector

representation 6+ under which a vector vI transforms as vI → ZIJvJ , and the pseudovector rep-

resentation under which vI → −ZIJvJ . By convention, we take the supercharges to transform as

the 6+.1 The representations of O(6) appearing in the stress tensor multiplet are all antisymmetric

products of the 6+, because we can start with the stress-energy tensor, which is a singlet, and obtain

all other operators by acting with anti-symmetric products of the superconformal generators. Thus:

the rank-0 tensor is the singlet 1+ that is invariant under Z; the rank-1 anti-symmetric tensor is the

6+; the rank-2 anti-symmetric tensor is the adjoint representation 15+; the rank-3 anti-symmetric

tensor, the 20 is irreducible under O(6) but would have been reducible to 10 + 10 under SO(6);

the rank-4 anti-symmetric tensor is the 15− and can also be represented as a rank-2 anti-symmetric

tensor with the same SO(6) transformation properties as the 15+ except for an additional minus sign

under Z; the rank-5 anti-symmetric tensor is the 6− and can also be represented as a pseudovector;

and lastly, the rank-6 anti-symmetric tensor 1− is invariant under SO(6) but it gets multiplied by

(−1) under Z. See Table 2.1 for a list of conformal primaries of the stress tensor multiplet and

the O(6) representations under which they transform. In particular, note that the superconformal

primary S is an O(6) antisymmetric rank-2 pseudotensor. It is not hard to check that ⟨SSSS⟩,

⟨SSPP ⟩, and ⟨PPPP ⟩ always preserve Z, even if this is not a symmetry of the full theory.
1We could have considered the supercharges to transform as a pseudovector, but this choice is related to the first

choice by an SO(6) rotation.
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Operators Tµν ψαµ Jµ Fα S, P χα jµ

O(6) 1+ 6+ 15+ 20 15− 6− 1−

SO(6) 1 6 15 10+ 10 15 6 1

Table 2.1: O(6) and SO(6) assignments for operators in the stress tensor multiplet.

2.1.3 The Q Variations

We now use the Q-supercharge variations to complete our derivation the superconformal Ward

identities on ⟨SSSS⟩. To impose QαI invariance, we need to know the action of the Poincaré

supercharges QαI on the operators in the stress tensor multiplet. Using index-free notation, we find

δα(Z)S(x⃗,X) =
1

4

[
Fα(x⃗,X · /Z) + F

α
(x⃗, /Z ·X)

]
+

1

4
χα(x⃗, X̌ · Z) ,

δα(Z)F β(x⃗, Y ) =
1

2
ϵαβP (x⃗, Y · /Z) + γαβµ Jµ(x⃗, /Z1 · /Z2 − /Z2 · /Z1)

− i

2
γαβµ ∂µS(x⃗, Y · /Z)

δα(Z1)χ
β(x⃗, Z2) =

1

2
ϵαβP (x⃗, /Z1 · /Z2 − /Z2 · /Z1) + Z1 · Z2 iγ

αβ
µ jµ(x⃗) ,

+
i

8
γαβµ ∂µS(x⃗, /Z1 · /Z2 − /Z2 · /Z1) ,

δα(Z)P (x⃗,X) =
i

6

(
γαβµ ∂µFβ(x⃗,X · /Z) + γαβµ ∂µFβ(x⃗, /Z ·X)

)
− i

6
σαβµ ∂µχβ(x⃗, X̌ · Z) ,

etc.

(2.10)

Here, δα(Z) represents the action of ZIQαI on the various operators, and γµ are the 3d gamma

matrices. We have omitted the supersymmetric variations of J, j, ψ, and T as they are not needed

in this thesis. Superconformal Ward identities then follow by imposing that the Q variations of

four-point correlators vanish. To derive the Ward identities on ⟨SSSS⟩, we require that

δ⟨SSSχ⟩ = 0 , δ⟨SSSF ⟩ = 0 . (2.11)

When we expand these expressions, we will find equations relating ⟨SSSS⟩ to various two-scalar,

two-fermion correlators. We have already seen how to expand ⟨SSSS⟩ as a sum of conformal and

R-symmetry structures. We can similarly expand two-scalar, two-fermion correlators; explicit ex-

pressions are given in Appendix A. Note that we only include conformal and R-symmetry structures

which preserve both spacetime parity P and the discrete R-symmetry transformation Z. This is

because ⟨SSSS⟩ itself always preserves both discrete symmetries, and so the superconformal Ward
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Variation Correlators Used Correlators Obtained
δ⟨SSSχ⟩ ⟨SSSS⟩ ⟨SSχχ⟩ ⟨SSχF ⟩ ⟨SSSj⟩
δ⟨SSSF ⟩ ⟨SSSS⟩ ⟨SSFF ⟩ ⟨SSχF ⟩ ⟨SSFF ⟩ ⟨SSSJ⟩
δ⟨SSPχ⟩ ⟨SSχχ⟩ ⟨SSχF ⟩ ⟨SSPP ⟩ ⟨SPχχ⟩ ⟨SPχF ⟩ ⟨SSPP ⟩ ⟨SSPj⟩
δ⟨PPSχ⟩ ⟨SPχχ⟩ ⟨SPχF ⟩ ⟨PPχχ⟩ ⟨PPχF ⟩ ⟨PPSj⟩
δ⟨PPPχ⟩ ⟨PPχχ⟩ ⟨PPχF ⟩ ⟨PPPP ⟩ ⟨PPPj⟩

Table 2.2: Taking supersymmetric variations to compute correlators. By setting the variation in the
first column to zero, we can use the correlators in the second column to compute the correlators in
the third column. For each correlator we only compute the P and Z invariant structures. In the
table we have not included correlators involving F which are related to those with F by Hermitian
conjugation.

identities can only relate ⟨SSSS⟩ to structures in other correlators which also preserve these discrete

symmetries. Indeed, all 4-point superconformal invariants (i.e. invariants under OSp(6|4)) can be

classified as even or odd under P and Z, as explained for instance in Appendix B of [23].

After expanding these expressions and then writing all correlators in a manifestly conformally

invariant and R-symmetry preserving form, we derive the equations

∂US6(U, V ) =
1

2U2

[
− (U3∂U + U2V ∂V )S1 + (1− V + U(V − 1)∂U + UV ∂V )S2

+ (1− U − V − U(1− 2U + U2 − V )∂U + U(1− U)V ∂V )S3

+ (2− U − 2V + 2U(U + V − 1)∂U + 2UV ∂V )S4

− U(1 + 2U(U − 1)∂U + 2UV ∂V )S5 + US6
]
,

∂V S6(U, V ) =
1

2U

[
U(U∂U + (V − 1)∂V )S1 + (1− U∂U − U∂V )S2

+ (1 + U(U − 1)∂U + UV ∂V )S3 + (2− 2U∂U )S4

+ (2U2∂U + 2UV ∂V )S5
]
.

(2.12)

The equations (2.11) also give a number of relations between ⟨SSSS⟩ and various two scalar, two

fermion correlators. We list these identities in Appendix A.

To derive Ward identities relating ⟨SSPP ⟩ to ⟨SSSS⟩, we need to consider a further variation,

δ⟨SSPχ⟩. Using the results of (2.11) and the variation δ⟨SSPχ⟩, we can fully determine ⟨SSPP ⟩,

along with ⟨SPχχ⟩, ⟨SPχF ⟩ and ⟨SPχF̄ ⟩, in terms of ⟨SSSS⟩. The resulting expressions for

Ri(U, V ) in terms of Si(U, V ) can be found in Appendix A. We can then furthermore compute

⟨PPPP ⟩ using the additional variations ⟨PPSχ⟩ and ⟨PPPχ⟩. The variations we consider and

correlators we can compute from these are listed in Table 2.2.
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2.1.4 Parity Odd Superconformal Ward Identity

Now let us turn to the parity odd four-point function ⟨SSSP ⟩. While this correlator will play no

further role in this chapter, it will become important in Chapter 5, where we use it to study the

N = 6 theories with weakly broken higher-spin symmetry.

Conformal and R-symmetry invariance together imply that

⟨S(x⃗1, X1)S(x⃗2, X2)S(x⃗3, X3)P (x⃗4, X4)⟩ =
x13

x212x
3
34x14

6∑
i=1

T i(U, V )Bi , (2.13)

where the Bi are defined as in (2.6), and where T i(U, V ) are functions of the cross-ratios (1.17).

Crossing under 1↔ 3 and 2↔ 3 relates the different T i(U, V ):

T 2(U, V ) = U3/2T 1

(
1

U
,
V

U

)
, T 3(U, V ) =

U

V
T 1(V,U) ,

T 5(U, V ) = U3/2T 4

(
1

U
,
V

U

)
, T 6(U, V ) =

U

V
T 4(V,U) ,

(2.14)

so that ⟨SSSP ⟩ is uniquely specified by T 1(U, V ) and T 4(U, V ). By demanding that the QαI

supersymmetry charge annihilates ⟨SSSF ⟩ and ⟨SSSχ⟩, but this time expanding the correlators

two-scalar, two-fermion correlators using parity violating rather than parity preserving conformal

structures, we derive the superconformal Ward identities

T 5(U, V ) =
1

2U

(
−UT 1(U, V ) + T 2(U, V ) + (1− U)T 3(U, V ) + 2T 4(U, V )

)
,

T 6(U, V ) =
1

2U

(
−UT 1(U, V ) + (V − U)T 2(U, V ) + V T 3(U, V ) + 2V T 4(U, V )

)
.

(2.15)

2.2 The OPE Expansion

Just all conformally invariant four-point functions, we can expand ⟨SSSS⟩ as a sum of conformal

blocks. Because the S transforms in the 15 of so(6)R, any operator which appears in the S×S OPE

must belong to an irreducible representation in the tensor product

15⊗ 15 = 1s ⊕ 15a ⊕ 15s ⊕ 20′
s ⊕ (45a ⊕ 45a)⊕ 84s . (2.16)

When studying the s-channel OPE, the most convenient basis for the R-symmetry structures is one

in which each irreducible representation contributes to a single R-symmetry structure. This leads
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us to define the functions Sr(U, V ) via the equation

S⃗ ·B =

(
S1s

S15a
S15s

S20′
s
S45a⊕45a

S84s

)
,

B =



1 0 0 0 0 0

1
15 − 1

8
1
6

1
24 − 1

8
1
16

1
15

1
8

1
6

1
24

1
8

1
16

− 1
30 0 − 1

6 − 1
12 0 1

8

1
2

1
2

1
2 0 0 0

1
2 − 1

2
1
2 0 0 0


.

(2.17)

These are defined such that in the s-channel each function Sr receives contributions only from

operators transforming in the r, and so can be expanded as a sum of conformal blocks

Sr(U, V ) =
∑

conformal primaries O∆,ℓ,r

a∆,ℓ,rg∆,ℓ(U, V ) , (2.18)

where the sum is taken over all the distinct conformal primary operators O∆,ℓ,r which transform

in the representation r and which appear in the S × S OPE. As usual, ∆ and ℓ are the scaling

dimension and spin, respectively, of O∆,ℓ,r. The operator P also transforms in the 15, and so we

can similarly decompose both ⟨SSPP ⟩ and ⟨PPPP ⟩ into conformal blocks.

Each supermultiplet contains operators with various spins, conformal dimensions and so(6)R

representations. Superconformal symmetry imposes various linear relations on the coefficients a∆,ℓ,r

for operators in a given supermultiplet. We can thus reorganize the conformal block expansion of

⟨SSSS⟩ into a superconformal block expansion, where all operators belonging to a given super-

multiplet are grouped together and the superconformal Ward identities are automatically satisfied

superblock by superblock. Our ultimate task in this chapter will be to derive these superblocks for

⟨SSSS⟩.

Our task in the rest of this section will be to constrain the supermultiplets which may appear in

the S × S OPE. Recall that the full list of unitary supermuliplets of osp(6|4) is given in Table 1.2.

However, not just any operator can appear in S × S, as there are various selection rules at play. As

we have already seen, any operator exchanged must transform one of the representations appearing

in (2.16). Due to 1 ↔ 2 crossing symmetry, even spin operators must be in the 1, 15, 20′, or 84

while odd spin operators must be in the 15, 45, or 45. A large number of supermultiplets contain

operators in at least one of these representations, so by themselves these conditions are not very

32



restrictive.

We can do better by using the fact that S(x⃗,X) is a 1/3-BPS operator, and as such is annihilated

by certain Poincaré supercharges. If Q is a Poincaré supercharge annihilating S(x⃗,X) (for any x⃗ but

a specific X), then it also annihilates S(x⃗,X)S(y⃗, X). We will explore the consequences of this fact

in the next section, and use it to show that any operator in the 20′, 45⊕45 or 84 can only belong to

one of a limited number of supermultiplets. In Section 2.2.2 we then use the superconformal Ward

identities to constrain superblocks in which only operators in the 1 and 15 are exchanged.

2.2.1 Operators in the S × S OPE

Let us begin by writing the generators of osp(6|4) in terms of the so(6) and sp(4) Cartan subalgebras.

The Lie algebra so(6) has a three dimensional Cartan subalgebra, spanned by orthogonal operators2

H1, H2, and H3. The other twelve R-symmetry generators take the form:

R±1,±1,0 , R±1,0,±1 , R0,±1,±1 , R±1,∓1,0 , R±1,0,∓1 , R0,±1,∓1 ,

where for each R the subscripts are correlated and label the weights of each of these generators

under the Cartan subalgebra:

[Hi, Rr1,r2,r3 ] = riRr1,r2,r3 , for i = 1 , 2 , 3 . (2.19)

We take the simple roots of so(6) to be the raising operators

R+ =
{
R1,−1,0 , R0,1,1 , R0,1,−1

}
,

while their corresponding lowering operators are

R− =
{
R−1,1,0 , R0,−1,−1 , R0,−1,1

}
.

A highest weight state is one that is annihilated by each element of R+; the highest weight state of

the 15 is then R1,1,0.
2For instance, in the 6 irrep of so(6)R, we can represent the Cartan generators by the matrices

H1 =

σ2

0
0

 , H2 =

0
σ2

0

 , H3 =

0
0

σ2

 ,

where σ2 is the second Pauli matrix.
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We perform a similar procedure with the conformal group sp(4). We can take one Cartan element

to be the dilatation operator D and the other to be the rotation operator J0. The other two rotation

operators are the raising and lowering operators J±. The Hi, D, and J0 span a Cartan subalgebra

of osp(6|4).

We can now write the osp(6|4) supercharges in terms of their charges under this subalgebra. The

Qs and Ss can be written as

Q±
±1,0,0 , Q±

0,±1,0 , Q±
0,0,±1 , and S±

±1,0,0 , S±
0,±1,0 , S±

0,0,±1 ,

respectively, where the superscript is the J0 charge and the subscripts are the Hi charges. (The sign

in the superscript is uncorrelated with the signs in the subscripts.) Note that the Qs have scaling

dimension +1/2 and the Ss have scaling dimension −1/2, so their charges under dilatation operator

are also manifest in this notation.

Given an irreducible representation of osp(6|4), the highest weight state |∆, ℓ, r⟩ is one which is

annihilated by the raising operators of osp(6|4):

Kµ |∆, ℓ, r⟩ = S±
a,b,c |∆, ℓ, r⟩ = J+ |∆, ℓ, r⟩ = R+ |∆, ℓ, r⟩ = 0 , (2.20)

where R+ ∈ R+, and is an eigenstate of each of the Cartans:

Hi |∆, ℓ, r⟩ = ri |∆, ℓ, r⟩ , D |∆, ℓ, r⟩ = ∆ |∆, ℓ, r⟩ , J0 |∆, ℓ, r⟩ = 2ℓ |∆, ℓ, r⟩ . (2.21)

Here ∆ and ℓ are the conformal dimension and spin of the superconformal primary, and the r =

(r1, r2, r3)’s are the highest weight states of the R-symmetry representation of the superconformal

primary. These weights are related to the Dynkin label [a1a2a3] by the equation

r1 = a1 +
a2 + a3

2
, r2 =

a2 + a3
2

, r3 =
a2 − a3

2
, (2.22)

and always satisfy r1 ≥ r2 ≥ r3.

The highest weight state of the stress tensor multiplet,
∣∣SH〉 , has conformal dimension ∆ = 1,

spin ℓ = 0, and R-symmetry weights (1, 1, 0). It can be created by acting with the operator3 Ŝ1,1,0(0)

3To avoid confusion between the superconformal generators S±
r1,r2,r3 and components of the stress tensor super-

conformal primary Ŝr1,r2,r3 (x⃗), in this section we adopt the convention that the latter operators are always hatted.
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on the vacuum. The stress tensor is a 1/3-BPS multiplet, satisfying the shortening condition

Q
∣∣SH〉 = 0 for all Q ∈ Q+ =

{
Q±

1,0,0 , Q±
0,1,0

}
, (2.23)

which in turn implies that

QŜ1,1,0(x⃗) = 0 for all x⃗ ∈ R3 and all Q ∈ Q+ . (2.24)

This is equivalent to imposing that Ŝ(x⃗,X) has no fermionic descendant in the 64 of so(6). We will

find it useful to further define

Q0 =
{
Q±

0,0,±1

}
, Q− =

{
Q±

−1,0,0 , Q±
0,−1,0

}
, Q = Q+ ∪Q0 ∪Q− (2.25)

along with analogous definitions for the S-supercharges.

Let Φ2,2,0(x⃗) be any operator which appears in the OPE Ŝ1,1,0 × Ŝ1,1,0, and |Φ⟩ = Φ2,2,0(0) |0⟩

the associated state. This is the highest weight state of an 84 multiplet which is annihilated by R+

and Q+. Without loss of generality we can take this operator to be a conformal primary which is

annihilated by J+; if it is not, we can act with the raising operators Kµ and J+ to construct such

an operator. Because any operator S+ ∈ S+ is of the form [K,Q+] for some Q+ ∈ Q, we find that

S+ also annihilates |Φ⟩. So in total, we have the conditions

Q+ |Φ⟩ = J+ |Φ⟩ = R+ |Φ⟩ = S+ |Φ⟩ = Kµ |Φ⟩ = 0

for any R+ ∈ R+ , Q+ ∈ Q+ , S+ ∈ S+ .
(2.26)

Our task it to determine which supermultiplets |Φ⟩ may belong to.

By acting with operators in S on |Φ⟩ we can construct states of lower conformal dimension.

Consider first constructing a state |O′⟩ by acting with all eight supercharges in S0 ∪ S−:

|O′⟩ = S+
0,+1,0S

−
0,+1,0S

+
0,−1,0S

−
0,−1,0S

+
0,0,+1S

−
0,0,+1S

+
0,0,−1S

−
0,0,−1 |Φ⟩ . (2.27)

By assumption |Φ⟩ satisfies (2.26), and it is straightforward to see that |O′⟩ then also satisfies (2.26).

Because the S operators anticommute with themselves, we furthermore find that any operator in

S0 ∪S− annihilates |O′⟩. The state |O′⟩ is therefore annihilated by all of the S and by J+ and R+,

and so either |O′⟩ is the highest weight state of the superconformal primary of the supermultiplet,
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or |O′⟩ = 0. In either case we conclude that there exists some 0 ≤ k ≤ 8 for which acting with any

k + 1 operators from S0 ∪ S− annihilates |Φ⟩, but for which acting with just k operators does not:

|O⟩ = S1 · · ·Sk |Φ⟩ ̸= 0 (2.28)

for some string of k operators Si ∈ S0 ∪ S−. It is again easy to see that |Φ⟩ satisfies (2.26) and is

annihilated by the operators in S0 ∪ S−; we hence conclude that |O⟩ is the highest weight state of

the superconformal primary of the multiplet. Note that the different orderings of the operators Si

in (2.28) are equivalent, up to an overall minus sign.

Let us denote the so(6) weights of |O⟩ by

w = (2, 2, 0) +
∑
i

vi , (2.29)

where vi = (vi1, vi2, vi3) are the so(6) Cartans of the Si we act with in (2.28). Because |O⟩ is a

highest weight state, we must have

w1 ≥ w2 ≥ |w3| , (2.30)

which provides a useful additional constraint on (2.28).

As discussed in the previous section, |O⟩ belongs to one of the three types of unitary represen-

tations of osp(6|4). If |O⟩ is part of a long multiplet, it is annihilated by all of the raising operators

(2.20) but satisfies no other conditions. If instead it belongs to an A-type multiplet it satisfies

shortening conditions [31] (
Q−
q1,q2,q3 −

1

2ℓ
Q+
q1,q2,q3J

−
)
|O⟩ = 0 (2.31)

with the specific weights qi depending on the so(6) weights of |O⟩. Finally, if it is part of a B-type

multiplet, it is annihilated by both Q+
q1,q2,q3 and Q−

q1,q2,q3 for specific weights qi. Furthermore for

B-type multiplets |O⟩ is always a scalar.

With this information out of the way, we now simply enumerate all possibilities for (2.28), subject

to the constraint (2.30). The simplest case is where |Φ⟩ is itself the highest weight primary. Then

we have a (B, 2) multiplet in the 84.

Next let us extend this reasoning to the case

|O⟩ = S1 · · ·Sn |Φ⟩ where Si ∈ S0 . (2.32)
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Because {Q+,S0} consists only of positive R-symmetry generators, we see that |O⟩ is annihilated

by Q+ and hence we still have a (B, 2) multiplet. The possible R-symmetry representations are the

[022] (which is the 84), the [031] and its conjugate [013], and the [040] and its conjugate [004]. We

can however eliminate the [031] possibility, as in this case one needs to act with an odd number of

supercharges to construct an operator in the 84 from the superconformal primary.

Let us next consider the cases

|O⟩ = S1 · · ·SnS±
−1,0,0 |Φ⟩ where Si ∈ S0 , (2.33a)

|O⟩ = S1 · · ·SnS±
0,−1,0 |Φ⟩ where Si ∈ S0 , (2.33b)

|O⟩ = S1 · · ·SnS+
−1,0,0S

−
−1,0,0 |Φ⟩ where Si ∈ S0 . (2.33c)

|O⟩ = S1 · · ·SnS+
0,−1,0S

−
0,−1,0 |Φ⟩ where Si ∈ S0 , (2.33d)

Cases (2.33a) and (2.33c) violate (2.30) and so are not possible. For the other two possibilities we

find that |O⟩ is annihilated by S±
1,0,0 and so |O⟩ must be a B-type multiplet. Using (2.30) we find

that the possible multiplets for (2.33b) are

(B, 1) in the [120] , [102] , or a (B, 2) in the [111] ,

while for (2.33d) we can only have a (B, 1) in the [200]. We can furthermore eliminate the (B, 2) in

the [111] as an option because in this multiplet only fermions transform in the 84.

The next cases to consider are

|O⟩ = S1 · · ·SnS±
−1,0,0S

±
0,−1,0 |Φ⟩ where Si ∈ S0 , (2.34a)

|O⟩ = S1 · · ·SnS±
−1,0,0S

+
0,−1,0S

−
0,−1,0 |Φ⟩ where Si ∈ S0 . (2.34b)

|O⟩ = S1 · · ·SnS±
0,−1,0S

+
−1,0,0S

−
−1,0,0 |Φ⟩ where Si ∈ S0 . (2.34c)

Case (2.34c) violates (2.30) and so is forbidden. For other two cases we find some combination of

Q−
1,0,0 and Q+

1,0,0 annihilate |O⟩, so |O⟩ must be either an A-type or B-type multiplet. For (2.34a)

we find that (2.30) restricts us to an (A,+) or (B,+) in the [020], an (A,−) or (B,−) in the [002], or

an (A, 2) or (B, 2) in the [011]. For (2.34b) we instead find that |O⟩ is an (A, 1) or (B, 1) multiplet

in the [100]. However, we can rule out all B-type multiplets; the (B,±) and (B, 1) only contains
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fermionic operators in the 84, while due to its shortening conditions the (B, 2) does not contain any

operator in the 84. Thus, only the A-type multiplets are possible.

Finally, we have the case

|O⟩ = S1 · · ·SnS+
−1,0,0S

−
0,−1,0S

+
0,−1,0S

−
0,−1,0 |Φ⟩ where Si ∈ S0 . (2.35)

Now |O⟩ need not be annihilated by any supercharges, so it can be a long multiplet. The condition

(2.30) however forces it to be an so(6) singlet. If |O⟩ satisfies any shortening conditions it must be

either a conserved current multiplet or the trivial (vacuum) multiplet, but neither of these contain

an operator in the 84 so they are both ruled out.

We summarize our results in the first 11 lines of Table 2.3, where we give the full list of all

possible superconformal blocks which contain an operator in the 84.

Our next task is to extend our arguments to operators Ψ, Ψ̄ and Ξ in the 45, 45 and 20′ of so(6)

respectively. The highest weight state under so(6) for each of these operators is

Ψ2,1,1 , Ψ̄2,1,−1 , and Ξ2,0,0

respectively, and so if these operators appear in the OPE Ŝ × Ŝ they must appear in

Ψ2,1,1 ∈ Ŝ1,1,0 × Ŝ1,0,1 , Ψ̄2,1,−1 ∈ Ŝ1,1,0 × Ŝ1,0,−1 , and Ξ2,0,0 ∈ Ŝ1,1,0 × Ŝ1,−1,0 .

The shortening conditions on S imply that Q±
1,0,0 annihilates Ŝ1,±1,0 and Ŝ1,0,±1, and so must

annihilate Ψ2,1,1, Ψ̄2,1,−1 and Ξ2,0,0. We can then repeat the analysis previously performed for Φ2,2,0,

and recover the same list of multiplets that we found by analyzing the conditions for the operators in

the 84. We thus conclude that any supermultiplet appearing in S×S not listed in the first 11 lines of

Table 2.3 can contain non-zero contributions only from operators in the adjoint 15 and the singlet

1. We will analyze this case in the next section using the superconformal Ward identities. The

results of this analysis are simple to state. There are only 3 types of supermultiplets in which only

singlets and adjoints contribute: the identity supermultiplet (containing just the identity operator),

the stress tensor multiplet itself, as well as a conserved multiplet (A, cons.) whose superconformal

primary is an so(6) singlet scalar with scaling dimension ℓ+ 1.

Table 2.3 shows a summary of our analyses containing all possible supermultiplets which can

appear in the S × S OPE. By using the superconformal Casimir equation we shall find that most

of these supermultiplets can in fact be exchanged; we mark those that cannot in red.
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Multiplet so(6)R ∆ ℓ Case
(B, 2) [022] = 84 2 0 (2.32)
(B, 1) [200] = 20′ 2 0 (2.33d)
(A,+) [020] = 10 ℓ+ 2 half-integer (2.34a)
(A,−) [002] = 10 ℓ+ 2 half-integer (2.34a)
(A, 2) [011] = 15 ℓ+ 2 integer (2.34a)
(A, 1) [100] = 6 ℓ+ 2 half-integer (2.34b)
Long [000] = 1 > ℓ+ 1 integer (2.35)
(B,+) [040] = 35 2 0 (2.32)
(B,−) [004] = 35 2 0 (2.32)
(B, 1) [120] = 45 2 0 (2.33b)
(B, 1) [102] = 45 2 0 (2.33b)
(A, cons.) [000] = 1 ℓ+ 1 integer Section 2.2.2
(B, 2) [011] = 15 1 0 Section 2.2.2
Trivial [000] = 1 0 0 Section 2.2.2

Table 2.3: Table of superconformal blocks not eliminated by our analysis. The so(6)R, ∆ and
ℓ given the R-symmetry, conformal dimension and spin of the superconformal primary of the ex-
changed multiplet. The rows in red are for multiplets which we do not eliminate, but for which the
superconformal Casimir equation cannot be solved and so no superconformal block exists.

2.2.2 Constraining so(6) Singlets and Adjoints

We will now finish our justification of Table 2.3, finding all superblocks in which the only exchanged

operators are in the 1 or 15. We will analyze this possibility using the superconformal Ward

identities.

Let us fix some supermultiplet M and define

S(M)
r (U, V ) =

∑
(∆,ℓ,r)∈M

a∆,ℓ,rg∆,ℓ(U, V ) (2.36)

to be the contribution from s-channelM exchange to Sr(U, V ). The superconformal Ward identities

apply to each superblock independently, and so S(M)
r (U, V ) must satisfy the Ward identities (2.12).

If we demand that no operators in the 84, 45, 45 or 20′ are exchanged, we then find that

U2∂U

(
S(M)
1 + S(M)

15s

)
+ [2U(U + 2V − 2)∂U + 4UV ∂V − 2(V − 1)]S(M)

15a
= 0

U∂V (S(M)
1 + S(M)

15s
) + [−4U∂U − 2U∂V + 2]S(M)

15a
= 0 .

(2.37)

To make further progress we can consider the correlator ⟨SSPP ⟩. Because both S and P trans-

form in the 15 of so(6), the correlators ⟨SSSS⟩ and ⟨SSPP ⟩ have the same R-symmetry structures.

Since we are interested in s-channel conformal block expansion, we are led to define Pr(U, V ) in an
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analogous fashion to Sr(U, V ) in (2.17).

If s-channel exchange ofM only contributes to the 1 and 15 channels in the ⟨SSSS⟩ correlator,

this must also be true of ⟨SSPP ⟩ and so

P(M)
20′ (U, V ) = P(M)

45⊕45
(U, V ) = P(M)

84 (U, V ) = 0 . (2.38)

Combining this with (2.37) and the Ward identities for Ri(U, V ) given in Appendix A, we find that

DS(M)
1 (U, V ) = DS(M)

15s
(U, V ) = DS(M)

15a
(U, V ) = 0 , (2.39)

where D is the differential operator

D = 2U2∂2U + 2(U + V − 1)∂U∂V + 2UV ∂2V + U∂U + (1 + 2U − V )∂V . (2.40)

Our next step is to rewrite the cross-ratios (U, V ) using radial coordinates (r, η)

U =
16r2

(1 + r2 + 2rη)2
, V =

(1 + r2 − 2rη)2

(1 + r2 + 2rη)2
. (2.41)

Conformal blocks have a relatively simple form in radial coordinates:

g∆,ℓ(r, η) = r∆
∞∑
k=0

r2kp∆,ℓ,k(η) , (2.42)

where each p∆,ℓ,k(η) is polynomial in η [69]. In particular, the leading term is given by

p∆,ℓ,0(η) = Pℓ(η) , (2.43)

where Pn(x) is the nth Legendre polynomial. Since S(M)
r (U, V ) is the sum of a finite number of

conformal blocks, we expect that

S(M)
r (U, V ) = r∆

(
qr(η) +O(r2)

)
(2.44)

for some polynomial qr(η).

Let us translate (2.39) into radial coordinates:

[
r2(r2 − 1)∂2r + 2r3∂r − (r2 − 1)(η2 − 1)∂2η − 2(r2 − 1)η∂η

]
S(M)
r (r, η) = 0 . (2.45)

40



Substituting (2.44) into this equation we find that qr(η) satisfies Legendre’s equation

(1− η2)q′′r (η)− 2ηq′r(η) + ∆(∆− 1)qr(η) = 0 . (2.46)

Hence, qr(η) is a polynomial if and only if ∆ ∈ Z, in which case qr(η) = aP∆+1(η) for some arbitrary

constant a. Since unitarity implies that ∆ ≥ 0, we conclude that S(M)
r (r, η) includes a contribution

from either an operator with twist ∆− ℓ = 1, or else from the identity operator ∆ = ℓ = 0.

All operators in a superconformal multiplet have twist greater than or equal to the twist of

the superconformal primary. Thus, if M is not the trivial supermultiplet, then its superconformal

primary must have twist one. Examining Table 1.2, we see that aside from the stress tensor multiplet

the only other such multiplets are conserved currents: A-type multiplets whose superprimary is an

R-symmetry singlet with conformal dimension ∆ = ℓ+1. We conclude that any superblock in which

the only exchanged operators transform in the 1 or 15 must correspond to the exchange of the

trivial, stress tensor, or a conserved current multiplet.

2.3 Superconformal Casimir Equation

Just as the s-channel conformal blocks are eigenfunctions of the quadratic conformal Casimir when

the Casimir acts only on the first two operators in a four-point function, superconformal blocks

are eigenfunctions of the quadratic superconformal Casimir (see for instance [70, 71] for similar

discussions with less supersymmetry). In the conformal case, this fact implies that the conformal

blocks obey a second order differential equation. In the superconformal case, the equation obeyed

is more complicated because it mixes together four-point functions of operators with different spins.

In the case we are interested in, namely for the four-point function of the stress tensor multiplet

superconformal primary, the superconformal Casimir equation involves both the ⟨SSSS⟩ four-point

function as well as four-point functions of two scalar and two fermionic operators.

Using the conformal generators Mα
β , Pαβ , Kαβ , and D introduced in Section 1.1.2, we can write

the quadratic conformal Casimir as

CC =
1

2
Mα

βMβ
α +D(D − 3)− 1

2
PαβK

αβ , (2.47)

which commutes with all conformal generators. The normalization of Mα
β and D is such that, when
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acting on any conformal primary O∆,ℓ(0),

1

2
Mα

βMβ
αO∆,ℓ(0) = ℓ(ℓ+ 1)O∆,ℓ(0) , DO∆,ℓ(0) = ∆O∆,ℓ(0) . (2.48)

Further, recall that the special conformal generators Kαβ annihilate all conformal primaries, and so

it follows that O∆,ℓ(0) is an eigenstate of the Casimir

CCO∆,ℓ(0) = λC(∆, ℓ)O∆,ℓ(0) , λC(∆, ℓ) ≡ ℓ(ℓ+ 1) + ∆(∆− 3) . (2.49)

Conformal symmetry then implies that this continues to hold away from x⃗ = 0, and so

CCO(x⃗) = λC(∆, ℓ)O(x⃗) . (2.50)

The discussion in the previous paragraph can be generalized to the superconformal case for a

theory with N -extended superconformal symmetry. (We will of course set N = 6 shortly, but let us

keep N arbitrary for now.) The superalgebra now also includes the Poincaré supercharges QαI , the

superconformal charges SαI , and the R-symmetry generators RIJ . Using the osp(N|4) commutation

relations given in Section 1.1.2, it is straightforward to check that the quadratic superconformal

Casimir

CS = CC +ND − 1

2
CR +

i

2
QαIS

α
I , where CR ≡

1

2
RIJRIJ , (2.51)

commutes with all the conformal generators. Here, the R-symmetry generators are such that when

acting on an operator in a representation r of so(N ), we have CR = λR(r), where λR(r) is the

eigenvalue of the quadratic Casimir of so(N ) normalized so that λR(N ) = N − 1. For the case of

so(6) and the various representations we will encounter, we list the quadratic Casimir eigenvalues in

Table 2.4. Equation (2.51) implies that when acting on the superconformal primary operator O∆,ℓ,r

irrep r of so(6) λR(r)
1 0
6 5
15 8
20′ 12

45, 45 16
84 20

Table 2.4: Eigenvalues of CR in the N = 6 case where the R-symmetry algebra is so(6)R.
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of spin ℓ, dimension ∆, and R-symmetry representation r, placed at x⃗ = 0,

CSO(x⃗) = λ(∆, ℓ, r)O(x⃗) , λS(∆, ℓ, r) ≡ λC(∆, ℓ) +N∆− 1

2
λR(r) (2.52)

Superconformal symmetry then implies that if O is any operator in a superconformal multiplet

whose superconformal primary has dimension ∆, spin ℓ and R-symmetry irrep r, we have

CSO = λ(∆, ℓ, r)O . (2.53)

Let us now use the Casimirs above to obtain an equation for the superconformal blocks. Suppose

we have four superconformal primary scalar operators ϕi, i = 1, . . . , 4, of dimension ∆ϕ and R-

symmetry representation rϕ. The four-point function has a conformal block decomposition

⟨ϕ1(x⃗1)ϕ2(x⃗2)ϕ3(x⃗3)ϕ4(x⃗4)⟩ =
1

|x⃗12|2∆ϕ |x⃗34|2∆ϕ

∑
conf primaries

O∆,ℓ,r

c∆,ℓ,r g∆,ℓ(U, V ) . (2.54)

A superconformal block corresponding to the supermultipletMr0
∆0,ℓ0

whose superconformal primary

has quantum numbers (∆0, ℓ0, r0) consists of the conformal primary operators in the sum on the

right-hand side of (2.54) that belong to the same supermultiplet as O∆0,ℓ0,r0 :

⟨ϕ1(x⃗1)ϕ2(x⃗2)ϕ3(x⃗3)ϕ4(x⃗4)⟩
∣∣∣∣
Mr0

∆0,ℓ0

=
1

|x⃗12|2∆ϕ |x⃗34|2∆ϕ

∑
conf primaries

O∆,ℓ,r ∈ Mr0
∆0,ℓ0

c∆,ℓ,r g∆,ℓ(U, V ) .
(2.55)

Let us now applying the superconformal Casimir operator (2.51) on the first two operators only. To

specify which of the four ϕ’s an operator is acting on, let us use a subscript “(12)” if the operator is

acting on ϕ1 and ϕ2 and a superscript “(i)” if the operator acts only on ϕi. From (2.53), we see that

C
(12)
S − C(12)

C +
1

2
C

(12)
R −

2∑
i=1

(
C

(i)
S − C

(i)
C +

1

2
C

(i)
R

)
=
i

2

(
Q

(1)
αI S

(2)α
I +Q

(2)
αI S

(1)α
I

)
. (2.56)

When we apply this expression to (2.55), we act with the Casimirs with upper index (i) on the

left-hand side of the equation, and with the ones with upper index (12) on the right-hand side of

the equation—for instance C(1)
C simply gives λC(∆ϕ, 0), while C(12)

R gives λR(r). Thus, we obtain
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the following relation:

i

2
(⟨(QαIϕ1)(x⃗1)(SαI ϕ2)(x⃗2)ϕ3(x⃗3)ϕ4(x⃗4)⟩ − ⟨(SαI ϕ1)(x⃗1)(QIαϕ2)(x⃗2)ϕ3(x⃗3)ϕ4(x⃗4)⟩)

∣∣∣∣
M∆0,ℓ0,r0

=
1

|x⃗12|2∆ϕ |x⃗34|2∆ϕ

∑
conf primaries

O∆,ℓ,r ∈ Mr0
∆0,ℓ0

α∆,ℓ,rc∆,ℓ,r g∆,ℓ(U, V )

(2.57)

where

α∆,ℓ,r ≡ λS(∆0, ℓ0, r0)− λC(∆, ℓ) +
1

2
λR(r)− 2N∆ϕ . (2.58)

The right-hand side of equation (2.57) can be easily evaluated provided we know all the conformal

primaries occurring in the multiplet Mr0
∆0,ℓ0

. To evaluate the left-hand side, note that

(SαI ϕ)(x⃗) = xµγαβµ (QβIϕ)(x⃗) , (2.59)

and so equation (2.57) becomes

i

2
xµ21γ

αβ
µ ⟨(QαIϕ1)(x⃗1)(QβIϕ2)(x⃗2)ϕ3(x⃗3)ϕ4(x⃗4)⟩

∣∣∣∣
M∆0,ℓ0,r0

=
1

|x⃗12|2∆ϕ |x⃗34|2∆ϕ

∑
conf primaries

O∆,ℓ,r ∈ Mr0
∆0,ℓ0

α∆,ℓ,rc∆,ℓ,r g∆,ℓ(U, V ) .
(2.60)

In general, Ward identities relate the left-hand side of (2.60) to ⟨ϕ1ϕ2ϕ3ϕ4⟩, but these relations may

not be sufficient to completely determine the left-hand side of (2.60) in terms of ⟨ϕ1ϕ2ϕ3ϕ4⟩.

This general discussion can be applied to the case of interest to us, namely the ⟨SSSS⟩ correlator

in 3d N = 6 SCFTs. If we replace ϕi(x⃗i) by S(x⃗i, Xi), then ⟨SSSS⟩ can be expanded in R-symmetry

channels as in (2.5), and so can all the equations above. In particular, we replace c∆,ℓ,r → ci∆,ℓ,rBi

in all these equations, with ci∆,ℓ,r, placed in a row vector, determined in terms of the coefficients

a∆,ℓ,r defined in (2.18) via

ci∆,ℓ,r =

(
a∆,ℓ,1s

a∆,ℓ,15a
a∆,ℓ,15s

a∆,ℓ,20′
s

a∆,ℓ,45a⊕45a
a∆,ℓ,84s

)
B−1 , (2.61)
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with B defined in (2.17). Thus (2.60) becomes

i

2
xµ21γ

αβ
µ ⟨QαIS(x⃗1, X1)QβIS(x⃗2, X2)S(x⃗3, X3)S(x⃗4, X4)⟩

∣∣∣∣
M∆0,ℓ0,r0

=
1

|x⃗12|2 |x⃗34|2
∑

conf primaries
O∆,ℓ,r ∈ Mr0

∆0,ℓ0

α∆,ℓ,rc
i
∆,ℓ,r g∆,ℓ(U, V )Bi ,

(2.62)

with α∆,ℓ,r evaluated in this particular case to

α∆,ℓ,r ≡ λS(∆0, ℓ0, r0)− λC(∆, ℓ) +
1

2
λR(r)− 12 . (2.63)

To determine what operators appear a given supermultiplet and can contribute to S×S, we use the

osp(6|4) characters as explained in Appendix B.

The remaining challenge is to evaluate the left-hand side of (2.62). This can be done by noting

that QαIS(x⃗,X) is a linear combination of the fermions χ, F , and F in the stress tensor multiplet,

as given in (2.10). Consequently, the left-hand side of (2.62) can be written in terms of the functions

Ci,a, E i,a, F i,a, and Gi,a introduced in Appendix A to describe the correlators ⟨SSχχ⟩, ⟨SSχF ⟩,

⟨SSFF ⟩ and ⟨SSFF̄ ⟩. Here, the index i runs over the R-symmetry structures and the index a = 1, 2

runs over the two spacetime structures of a fermion-fermion-scalar-scalar correlator. Denoting

Xn,a = (F1,a,F1,a,G1,a,G2,a,G3,a,G4,a, E1,a, E2,a, E3,a, C1,a, C2,a, C3,a) , (2.64)

where n = 1, . . . , 12, we find

i

2
xµ21γ

αβ
µ ⟨QαIS(x⃗1, X1)QβIS(x⃗2, X2)S(x⃗3, X3)S(x⃗4, X4)⟩

=

∑
i,n βi,n(Xn,1 −

V−U−1
2U Xn,2)Bi

|x⃗12|2 |x⃗34|2
,

(2.65)

with the coefficients βi,n given by

βi,n =



4 4 −32 −4 −4 0 16 16 0 −16 −128 −128

20 4 0 0 0 4 0 0 −16 0 −128 −128

4 20 0 0 0 4 0 0 16 0 −128 −128

−12 −12 0 0 0 4 0 0 0 0 128 128

−4 −8 0 2 −10 −2 −8 −24 −8 0 128 0

−8 −4 0 −10 2 −2 −24 −8 8 0 0 128


. (2.66)
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Thus, equation (2.60) reduces to the 6 equations (one for each i):

12∑
n=1

βi,n

[
Xn,1(U, V )−V − U − 1

2U
Xn,2(U, V )

]∣∣∣∣
Mr0

∆0,ℓ0

=
∑

conf primaries
O∆,ℓ,r ∈ Mr0

∆0,ℓ0

α∆,ℓ,rc
i
∆,ℓ,r g∆,ℓ(U, V ) .

(2.67)

To use this equation to find the coefficients ci∆,ℓ,r of a given superconformal block, we will

also need to expand the fermion-fermion-scalar-scalar correlators on the left-hand side in conformal

blocks corresponding to operators belonging to the supermultiplet Mr0
∆0,ℓ0

. Fortunately, we do not

have to do this for all 24 functions Xn,a because, using the superconformal Ward identities given

in Appendix A, we can completely determine Ci,a, E i,a, F i,a, and Gi,a from Si and F1,a. Since we

have already expanded the Si in conformal blocks,

Si(U, V )
∣∣∣
Mr0

∆0,ℓ0

=
∑

conf primaries
O∆,ℓ,r ∈ Mr0

∆0,ℓ0

ci∆,ℓ,r g∆,ℓ(U, V ) ,
(2.68)

all that is left to do is to also expand F1,a.

The s-channel conformal block decomposition of a fermion-fermion-scalar-scalar four-point func-

tion was derived in [67]. For each conformal primary being exchanged, there are two possible blocks

appearing with independent coefficients. For F1,a, if we denote the corresponding coefficients by

d∆,ℓ,r for the first block and e∆,ℓ,r for the second block, we can then write:

F1,1

F1,2

∣∣∣∣
Mr0

∆0,ℓ0

=
∑

conf primaries
O∆,ℓ,r ∈ Mr0

∆0,ℓ0

d∆,ℓ,r

g∆,ℓ
0

+ e∆,ℓ,r

D1g∆,ℓ

D2g∆,ℓ

 , (2.69)

where g∆,ℓ are the scalar conformal blocks appearing above and D1,2 are differential operators:

D1 = 2 + 2U
[
−2∂V − 2V ∂2V − ∂U + 2U∂2U

]
,

D2 = 4U
[
(V − 1)(∂V + V ∂2V ) + U(∂U + 2V ∂U∂V + U∂2U )

]
.

(2.70)

(Each doublet of functions (Xn,1,Xn,2) appearing on the LHS of (2.67) has a similar block decom-

position, but as mentioned above, we only need this decomposition for (F1,1,F1,2).)

Using the relations between Xn,a, Si and F1,a given in Appendix A together with the decompo-

sitions (2.68) and (2.69), we obtain a system of linear equations for ci∆,ℓ,r, d∆,ℓ,r, and e∆,ℓ,r that has
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to be obeyed for all values of (U, V ). Expanding g∆,ℓ to sufficiently high orders in U is then enough

to determine the linearly-independent solutions of this system of equations, and thus determine the

coefficients ci∆,ℓ,r of the superconformal block corresponding to the supermultiplet Mr0
∆0,ℓ0

.

We performed this analysis for all the multiplets described in Table 2.3. The coefficients ci∆,ℓ,r
for each multiplet are included in the Mathematica attached to the paper [24] which this section is

based on. The multiplets marked in red in Table 2.3 did not give solutions to the system of equations

that determines the ci∆,ℓ,r. For each of the remaining multiplets we found between one and three

solutions. Since any linear combination of superconformal blocks is a superconformal block, we are

free to choose a basis of blocks with specific normalizations. In other words, the coefficients a∆,ℓ,r

in (2.18) can be written as

a∆,ℓ,r =
∑
I

λ2Ia
I
∆,ℓ,r , (2.71)

where I ranges over all superconformal blocks, λ2I are theory-dependent coefficients, and aI∆,ℓ,r rep-

resent the solution to the super-Casimir equation for superconformal block I, normalized according

to our conventions. In Table 2.5, we list all the superconformal blocks as well as enough values for

aI∆,ℓ,r in order to determine the normalization of the blocks.4 A superconformal block GI is simply

Gr
I(U, V ) =

∑
conf primaries

O∆,ℓ,r ∈ Mr0
∆0,ℓ0

aI∆,ℓ,r g∆,ℓ(U, V ) , I ≡Mr0,n
∆0,ℓ0

,
(2.72)

where the index I = Mr0,n
∆0,ℓ0

of the block encodes both the supermultiplet Mr0
∆0,ℓ0

as well as an

integer n = 1, 2, . . . denoting which block this is according to Table 2.5. In the cases where there is

a single superconformal block per multiplet, we omit the index n.

Table 2.5 also includes the P and Z charges relative to that of the superconformal primary, which

are relevant for N = 6 theories that are invariant under these discrete symmetries. We derive P

charges for each superblock by noting that any two primaries O∆,ℓ and O∆′,ℓ′ in a supermultiplet

have the same parity if and only if ∆′−∆ ≡ ℓ′− ℓ mod 2. To derive the Z charges we use the O(6)

tensor product of two pseudo-tensors:

15− ⊗ 15− = 1+
s ⊕ 15+

a ⊕ 15−
s ⊕ 20′+

s ⊕ 90a ⊕ 84+
s . (2.73)

4The (A,+) and (A,−) multiplets are each other’s complex conjugates and must appear together in the S × S
OPE.
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Superconformal block normalization P Z Isolated?

Long[000],n∆,0

n = 1 : (a∆,0,1, a∆+1,0,20′) = (1, 0) + +

n = 2 : (a∆,0,1, a∆+1,0,20′) = (0, 1) − +

Long[000]∆,ℓ , ℓ ≥ 1 odd a∆+1,ℓ+1,15s
= 1 + +

Long[000],n∆,ℓ , ℓ ≥ 2 even
n = 1 : (a∆,ℓ,1, a∆+1,ℓ,1, a∆+1,ℓ,15s) = (1, 0, 0) + +

n = 2 : (a∆,ℓ,1, a∆+1,ℓ,1, a∆+1,ℓ,15s
) = (0, 1, 0) − +

n = 3 : (a∆,ℓ,1, a∆+1,ℓ,1, a∆+1,ℓ,15s
) = (0, 0, 1) − −

(A, 1)
[100],n
ℓ+2,ℓ , ℓ− 1

2 ≥ 1 odd
n = 1 : (aℓ+ 5

2 ,ℓ+
1
2 ,1
, aℓ+ 5

2 ,ℓ+
1
2 ,15s

) = (1, 0) + +

n = 2 : (aℓ+ 5
2 ,ℓ+

1
2 ,1
, aℓ+ 5

2 ,ℓ+
1
2 ,15s

) = (0, 1) + −

(A, 2)
[011]
ℓ+2,ℓ, ℓ ≥ 0 even aℓ+2,ℓ,15s = 1 + − X

(A, 2)
[011]
ℓ+2,ℓ, ℓ ≥ 0 odd aℓ+2,ℓ,15a

= 1 + + X
(A,+)

[020]
ℓ+2,ℓ, ℓ− 1

2 ≥ 0 even aℓ+ 5
2 ,ℓ+

1
2 ,15a

= 1 + X
(A,−)[002]ℓ+2,ℓ, ℓ− 1

2 ≥ 0 even aℓ+ 5
2 ,ℓ+

1
2 ,15a

= 1 + X
(A, cons)[000]ℓ+1,ℓ, ℓ ≥ 0 even aℓ+1,ℓ,1 = 1 + +

(A, cons)[000]ℓ+1,ℓ, ℓ ≥ 1 odd aℓ+2,ℓ+1,15s = 1 + −

(B, 1)
[200]
2,0 a2,0,20′ = 1 + +

(B, 2)
[022]
2,0 a2,0,84 = 1 + + X

(B, 2)
[011]
1,0 a1,0,15s = 1 + − X

Table 2.5: A summary of the superconformal blocks and their normalizations in terms of a few
OPE coefficients. The values a∆,ℓ,r in this table correspond to aI∆,ℓ,r in Eq. (2.71)—we omitted the
index I for clarity. The right-hand column lists whether the superconformal blocks are isolated, as
described in the main text. Note that the (A,±) are complex conjugates and do not by themselves
have well-defined Z parity, but together they can be combined into a Z-even and a Z-odd structure.
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Reflection positivity implies that the coefficients a∆,ℓ,r in (2.18) are non-negative for all r. Be-

cause for each superconformal block in Table 2.5 there exists an operator that receives contributions

only from that block, it follows that the coefficients λ2I in (2.71) are non-negative. This is the reason

why we wrote these coefficients in (2.71) manifestly as perfect squares. They are the squares of real

OPE coefficients.5

Let us end this section by describing the unitarity limits of the long blocks obtained by taking

∆ → ℓ + 1. For the scalar blocks, we obtain (up to normalization) either a spin-0 conserved block

for the parity-even structure or a (B, 1)
[200]
2,0 block for the parity odd structure:

Long[000],1∆,0 → (A, cons)[000]1,0 , Long[000],2∆,0 → (B, 1)
[200]
2,0 . (2.74)

For odd ℓ ≥ 1 there is a single block, which it approaches a spin-ℓ conserved block:

ℓ ≥ 1 odd: Long[000]∆,ℓ → (A, cons)[000]ℓ+1,ℓ . (2.75)

Lastly, for even ℓ ≥ 2 we have three superconformal blocks. The parity even one approaches a

spin-ℓ conserved block, while the parity odd ones approach the two superconformal blocks for the

(A, 1)
[100]
ℓ+3/2,ℓ−1/2 multiplet:

ℓ ≥ 2 even: Long[000],1∆,ℓ → (A, cons)[000]ℓ+1,ℓ ,

Long[000],2∆,ℓ → (A, 1)
[100],1
ℓ+3/2,ℓ−1/2 ,

Long[000],3∆,ℓ → (A, 1)
[100],2
ℓ+3/2,ℓ−1/2 .

(2.76)

Even though the blocks on the RHS of (2.74)–(2.76) involve short or semishort superconformal mul-

tiplets, they sit at the bottom of the continuum of long superconformal blocks. All other short and

semishort superconformal blocks are isolated, as they cannot recombine into a long superconformal

block. In particular, if the correlator ⟨SSSS⟩ contains one of these isolated superconformal blocks,

any sufficiently small deformation of ⟨SSSS⟩ also must, while the other blocks can instead disappear

by recombining into a long block. This distinction will be important when we consider the numerical

bootstrap.
5In other words, for each multiplet for which there are several superconformal blocks, the number of superconformal

3-point structures equals the number of superconformal blocks. This is so because each superconformal 3-point
structure contains different operators from the exchanged multiplet.
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2.4 Examples: GFFT and Free Field Theory

Let us begin by computing ⟨SSSS⟩ in free field theory, which, as we recall from Section 1.2 consists

of four complex scalars Φa(x) and four complex fermions Ψαa , with two-point functions given in

(1.33). Stress tensor multiplet operators are bilinears of the free Φ and Ψ fields, and in particular

S(x⃗,X) = 4πΦa(x⃗)Φ̄b(x⃗)Xa
b , P (x⃗,X) = −2

√
2πiΨ̄αa(x⃗)Ψαb(x⃗)Xa

b . (2.77)

The ⟨SSSS⟩ correlator can then be computed using Wick contractions of Φ and Φ̄, and so we find

that

Sifree-1(U, V ) = Sidisc(U, V ) + Sifree(U, V ) ,

where Si(U, V )disc =

(
1 U U

V
U√
V

0 0 0

)
,

Si(U, V )free =

(
0 0 0 U√

V

√
U√
V

√
U

)
.

(2.78)

Here we have separated out the disconnected correlator Sidisc(U, V ) from the free connected correlator

Sifree(U, V ), both of which play important roles in this thesis.

We can also consider a more general free field theory with N hypermultiplets (Φai ,Ψ
α
ia), which

has cT = 16N . We then define

S(x⃗,X) =
4π

N
Xa

b
N∑
i=1

Φai (x⃗)Φ̄ib(x⃗) , (2.79)

and so find that for this theory

Sifree-N (U, V ) = Sidisc(U, V ) +
1

N
Sifree(U, V ) . (2.80)

In the limit where we take N →∞, all connected correlators vanish and we have what is known as

generalized free field theory (GFFT). All correlation functions can be computed by simply taking

Wick contractions of S using (2.4). It is not a true superconformal field theory because cT →∞ in

this limit, so that the “stress tensor” decouples from all other operators in the theory. Nevertheless,

GFFT is important as it represents the leading term in any 1/cT expansion.

With our superconformal blocks in hand, we can now determine the superconformal decomposi-

tion of both free field theory and generalized free field theory. We will begin with the latter theory.

If we think of the S operators as single-trace, then in the superconformal block decomposition of
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⟨SSSS⟩ only double-trace operators appear. These schematically take the form S∂µ1
· · · ∂µℓ

�pS,

with spin ℓ and conformal dimension 2+ℓ+2p. We can expand the disconnected correlator Sidisc(U, V )

in superconformal blocks, and so produce the CFT data given in Table 2.6.

Now consider the free field theory with N = 1, where the four-point function is given in (2.78).

This four-point function can be expanded into superconformal blocks to give the CFT data listed

in Table 2.6. Note that the same spectrum of supermultiplets contribute to free theory and GFFT,

except that free theory also contains conserved current multiplets for each spin, has a stress tensor

multiplet, and does not have a (B, 1)
[200]
2,0 multiplet.

Sidisc Sifree-1

λ2
(B,2)

[011]
1,0

0 4

λ2
(B,2)

[022]
2,0

2 4

λ2
(B,1)

[200]
2,0

4
3 0

λ2
(A,cons.)[000]ℓ+1,ℓ

for ℓ = 0, 1, 2, . . . 0 4

λ2
(A,2)

[011]
ℓ+2,ℓ

for ℓ = 0, 1, 2, . . . 16
3 , 256

45 , 4096
525 , 32768

3675 , … 8
3 , 32

5 , 3712
525 , 34304

3675 , …

λ2
(A,+)

[002]

ℓ+5/2,ℓ+1/2

for ℓ = 0, 2, . . . 16
9 , 6144

1225 , … 8
3 , 7872

1225 , …

λ2
(A,1)

[100],1

ℓ+7/2,ℓ+3/2

for ℓ = 0, 2, . . . 512
315 , … 64

63 , …

λ2
(A,1)

[100],2

ℓ+7/2,ℓ+3/2

for ℓ = 0, 2, . . . 1024
105 , … 128

21 , …

∆(0,1) 2, 4, … 2, 4, …
∆(0,2) 3, 5, … 3, 5, …
∆ℓ≥1, ℓ odd ℓ+ 2, ℓ+ 4, … ℓ+ 2, ℓ+ 4, …
∆(ℓ≥2,1), ℓ even ℓ+ 2, ℓ+ 4, … ℓ+ 2, ℓ+ 4, …
∆(ℓ≥2,2), ℓ even ℓ+ 3, ℓ+ 5, … ℓ+ 3, ℓ+ 5, …
∆(ℓ≥2,3), ℓ even ℓ+ 3, ℓ+ 5, … ℓ+ 3, ℓ+ 5, …

Table 2.6: Low-lying CFT data for the generalized free field theory (GFFT) Sidisc and the free
theory Sifree. We write ∆(ℓ,n) to denote the scaling dimension of the superblock corresponding to
the structure Long[000],n∆,ℓ .

For both the GFFT theory and the free theory of an N = 6 hypermultiplet, one can alternatively

obtain the CFT data listed in Table 2.6 by performing a decomposition of the correlators in the

analogous N = 8 SCFTs, as described in Appendix C. Indeed, the N = 6 GFFT is a subsector of

the N = 8 GFFT, where the N = 6 stress tensor multiplet is embedded into the N = 8 stress tensor

multiplet. Similarly, as noted in Section 1.2, the N = 6 free field theory has N = 8 supersymmetry.

As a final task, we shall use the free field conformal block decomposition to relate λ2
(B,2)

[011]
1,0

to
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cT . Recall that λ
(B,2)

[011]
1,0

is the OPE coefficient for the three-point function

⟨S(x1, X1)S(x2, X2)S(x3, X3)⟩ =
λ
(B,2)

[011]
1,0

2

tr(X1{X2, X3})√
x12x13x23

, (2.81)

which is related by supersymmetry to the three-point function ⟨SSTµν⟩. This latter three-point

function is completely fixed by the conformal Ward identity (1.32), and so must be proportional to

c
−1/2
T . From this we can conclude that the quantity λ

(B,2)
[011]
1,0

c
1/2
T is completely fixed by supersym-

metry, and so must be the same in all N = 6 theories. Because in free field theory cT = 16 and

λ
(B,2)

[011]
1,0

= 2, we conclude that

λ
(B,2)

[011]
1,0

=
8
√
cT

(2.82)

in any N = 6 superconformal field theory.
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Chapter 3

Exact Results from

Supersymmetric Localization

In this chapter, we discuss the constraints that supersymmetric localization places on scalar four-

point functions in N = 6 theories. Supersymmetric localization is a technique for computing observ-

ables in a supersymmetric field theory which are closed but not exact under certain Q supercharges.

By deforming the path-integral with a term which is Q-exact, in certain favorable conditions the

path-integral will localize onto specific BPS field configurations, reducing the calculation to an or-

dinary integral.

In this thesis we focus on the mass-deformed S3 partition function. Given any conformal field

theory defined on R3, we can define correlators on the sphere S3 by performing a Weyl transform

Osphere(x⃗) = Ω(x⃗)∆Oflat(x⃗) , with Ω(x⃗) =
1

1 + x2

4r2

, (3.1)

where r is the radius of the three-sphere with metric

ds2 = Ω(x⃗)2dx⃗2 . (3.2)

If we place an N = 2 superconformal field theory with a U(1)F flavor current on S3, the theory

admits a real mass deformation

m

∫
S3

d3x⃗

(
iJ

r
+K

)
+O(m2) , (3.3)
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where the operators J(x⃗) and K(x⃗) are scalars with conformal dimension ∆ = 1 and 2 respectively,

belonging to the same superconformal multiplet as the flavor current. This deformation breaks

conformal symmetry, but preserves the S3 isometries. It is furthermore closed, but not exact,

under certain linear combinations of the QαI and SαI supercharges. In the presence of this mass

deformation, supersymmetric localization can be used to compute the S3 partition function Z(m)

exactly.

Now consider N = 6 superconformal theories, which possess both an SO(6)R R-symmetry and

a U(1)F flavor symmetry. When viewed as an N = 2 theory, we can choose a U(1)R subalgebra

to form the N = 2 R-symmetry. There are then three other U(1) generators which commute both

with each other and with the U(1)R, which, from the N = 2 perspective, are the Cartans of a

SO(4) × U(1) flavor symmetry. We can associate to each of these commuting U(1)’s a real mass

parameter, giving us a total of three distinct real mass parameters for any N = 6 theory.

We will focus on just two of these three mass parameters,1

m+

∫
S3

(iJ+ +K+) +m−

∫
S3

(iJ− +K−) +O(m2
±) , (3.4)

where for simplicity we have set the sphere radius r = 1, and where we define

J±(x⃗) =

√
cT

25π
S(x⃗,X±) , K±(x⃗) =

√
2cT
25π

P (x⃗,X∓) ,

with X+ = diag{1,−1, 0, 0} , X− = diag{0, 0, 1,−1} .
(3.5)

The reason for the peculiar normalization of the operators J± and K±, and indeed the term “mass

deformation”, becomes apparent if we consider the precise expression for (3.4) in free field theory.

Recall from Section 1.2 that the N = 6 free field theory consists of an N = 6 hypermultiplet

(Φa,Ψαa ) and its complex conjugate (Φ̄a, Ψ̄
αa). Using the equations (2.77) which relate S and P to

these fields, we can rewrite the mass deformation as

i

∫
d3x⃗

√
g(x⃗)

(
m+

2
|Φ1|2 − m+

2
|Φ2|2 − m−

2
|Φ3|2 + m−

2
|Φ4|2

+
m−

2
|Ψ1|2 −

m−

2
|Ψ2|2 −

m+

2
|Ψ3|2 +

m+

2
|Ψ4|2 +O(m2

±)

)
.

(3.6)

Hence, for free field theories, and more generally for the Lagrangian theories built from free field

theories, the mass deformations quite literally gives masses to the hypermultiplets.
1In terms of symmetries, the two mass parameters that we consider correspond to linear combinations of U(1)F

and one of the Cartans of an SU(2) factor inside SO(4) ∼= SU(2)× SU(2).
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Our plan for the rest of the chapter is as follows. In the next section, we will derive expressions

for various derivatives of Z(m+,m−). These expressions rely only on superconformal symmetry

and so hold in any N = 6 superconformal field theory. In Sections 3.2 and 3.3 we then compute

explicit localization results for the U(N)k × U(N +M)−k ABJ and SO(2)2k × USp(2 + 2M)−k OSp

families of theories, respectively. Finally, in Section 3.4 we show that additional U(1) factors do not

change Z(m+,m−), up to an overall constant. As a result, the localization calculations performed

in this chapter cover all known families of N = 6 Lagrangian theories.

3.1 Integrated Correlators on S3

Our aim in this section is to derive simplified expressions for derivatives of the S3 sphere partition

function Z(m+,m−). Let us begin with the second derivatives of Z(m+,m−):

∂2 logZ

∂m2
+

∣∣∣∣
m±=0

,
∂2 logZ

∂m+∂m−

∣∣∣∣
m±=0

,
∂2 logZ

∂m2
−

∣∣∣∣
m±=0

. (3.7)

Combining (3.5) with the S and P two-point functions (2.4) and then explicitly evaluating the

integrals, we find that [72]

∂2 logZ

∂m2
±

∣∣∣∣
m±=0

=

〈∫
S3

(iJ± +K±)
2

〉
= −π

2cT
64

. (3.8)

Naively, we might expect that the mixed mass derivative should vanish, as

∂2 logZ

∂m+∂m−

∣∣∣∣
m±=0

=

〈(∫
S3

iJ+ +K+

)(∫
S3

iJ− +K−

)〉
=

icT

128
√
2π2

∫
d3x1d

3x2
√
g(x1)

√
g(x2)⟨S(x1, X+)P (x2, X+)⟩ .

(3.9)

Conformal invariance however only requires that ⟨S(x1, X1)P (x2, X2)⟩ vanishes at separated points,

and allows the possibility of a delta function [72,73]

⟨S(x1, X1)P (x2, X2)⟩ = κ tr(X1X2)δ
(3)(x1 − x2) . (3.10)

We hence find that

∂2 logZ

∂m+∂m−

∣∣∣∣
m±=0

=
icTκ

64
√
2
, (3.11)
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and as we shall see κ does not generically vanish in ABJ theory.

Having derived expressions for the second derivatives of Z(m+,m−), we next move onto third

derivatives. It is straightforward to check that these all vanish

∂3 logZ

∂m3
+

∣∣∣∣
m±=0

=
∂3 logZ

∂m2
+∂m−

∣∣∣∣
m±=0

=
∂3 logZ

∂m+∂m2
−

∣∣∣∣
m±=0

=
∂3 logZ

∂m3
−

∣∣∣∣
m±=0

= 0 , (3.12)

because the trace of any three X± matrices always vanish. Finally, we move to fourth derivatives

∂4 logZ

∂m4
+

∣∣∣∣
m±=0

,
∂4 logZ

∂m3
+∂m−

∣∣∣∣
m±=0

,
∂4 logZ

∂m2
+∂m

2
−

∣∣∣∣
m±=0

. (3.13)

Note that because X+ and X− are related by an O(6) transformation and all four-point scalar

correlators are Z-invariant,

∂4 logZ

∂m4
+

∣∣∣∣
m±=0

=
∂4 logZ

∂m4
−

∣∣∣∣
m±=0

,
∂4 logZ

∂m3
+∂m−

∣∣∣∣
m±=0

=
∂4 logZ

∂m+∂m3
−

∣∣∣∣
m±=0

, (3.14)

so that we need only consider the three expressions given in (3.13). We can now directly compute

∂4 logZ

∂m4
+

=

〈(∫
(iJ+ +K+)

)4
〉

conn

+ (2- and 3-pt functions) ,

∂3 logZ

∂m3
+∂m−

=

〈(∫
(iJ+ +K+)

)3(∫
(iJ− +K−)

)〉
conn

+ (2- and 3-pt functions) ,

∂4 logZ

∂m2
+∂m

2
−

=

〈(∫
(iJ+ +K+)

)2(∫
(iJ− +K−)

)2
〉

conn

+ (2- and 3-pt functions) .

(3.15)

where the 2- and 3-point function terms not written in (3.15) come from the O(m2) terms not

written in (3.4). We will not write down these 2- and 3-point function contributions because they

will be automatically taken into account in the final formulas, by analogy with the similar situation

encountered in [74].

While in principle we can evaluate each of these expressions by expanding out (3.15), it is

possible to obtain simpler formulas by making use of the fact that all N ≥ 4 SCFTs in 3d have a 1d

topological sector [75–80]. In general, a 3d N = 4 SCFT has SU(2)H × SU(2)C R-symmetry, and

one can consider 1/2-BPS operators that have scaling dimension ∆ = jH , where jH is the SU(2)H

spin, and are invariant under SU(2)C . Such operators can be written as rank-2jH symmetric tensors

Oa1a2...a2jH (x⃗) where ai = 1, 2 are SU(2)H spinor indices. From these operators, we can construct 1d

topological operators by inserting them on a line, say the line (0, 0, x), and contracting the SU(2)H
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indices with position-dependent polarizations:

ÕR3(x) = Oa1a2...a2jH (0, 0, x)ua1(x) · · ·ua2jH (x) , (3.16)

where we can take2

ua(x) =

1 + ix
2

1− ix
2

 . (3.17)

If we want to express the topological operator in terms of the operator Oa1a2...a2jH when the theory

is placed on S3, we have

Õ(x) = 1(
1 + x2

4

)jH Oa1a2...a2jH (0, 0, x)ua1(x) · · ·ua2jH (x) , (3.18)

where the extra factor accounts for the fact that the operators on R3 and those on S3 differ by a

Weyl factor. In this case, the 1d topological theory lives on a circle parameterized by x, with the

point at x = +∞ being identified with the point at x = −∞.

To connect this discussion to the N = 6 case, let us embed the N = 4 SU(2)H × SU(2)C

R-symmetry into SU(4)R such that SU(2)H corresponds to the top left 2 × 2 block of an SU(4)R

matrix written in the fundamental representation and SU(2)C corresponds to the bottom right 2×2

block. Raising and lowering indices with the epsilon symbol, Eqs. (3.16) and (3.18) applied to S

give

S̃(x) =

(
1 + ix

2

)2
1 + x2

4

S1
2(0, 0, x)−

(
1− ix

2

)2
1 + x2

4

S2
1(0, 0, x) + S1

1(0, 0, x)− S2
2(0, 0, x) (3.19)

on S3 and S̃R3(x) =
(
1 + x2

4

)
S(x) on R3. It is straightforward to check that the superconformal

Ward identities (2.12) imply that the four-point function of S̃R3 , namely

⟨S̃R3(x1)S̃R3(x2)S̃R3(x3)S̃R3(x4)⟩ = S1 +
S2

z2
+

(1− z)2S3

z2

+
2(1− z)S4

z2
− 2(1− z)S5

z
+

2S6

z

∣∣∣∣ U=z2

V=(1−z)2

with z ≡ (x1 − x2)(x3 − x4)
(x1 − x3)(x2 − x4)

,

(3.20)

2In the notation of [78] this choice corresponds to ha
b = (σ3)ab.
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is piece-wise constant.

The advantage of the topological sector is that we can replace the integrated operator
∫
S3 d

3x⃗
√
g(iJ++

K+) by a different operator that is integrated only along the circle. Such a replacement can be rig-

orously justified in the class of N = 4 theories studied in [78–80] where it was shown how one can

obtain a 1d action for the topological sector by using supersymmetric localization in the 3d N = 4

theory. Unfortunately, the theories considered in this thesis fall outside the range of theories stud-

ied in [78–80]. Nevertheless, as explained in Section 3.1 of [81], we expect that such a replacement

should be possible in these theories as well, and in particular that

4π

∫
dx

1 + x2

4

iJ̃(x) =

∫
d3x⃗
√
g(iJ+ +K+) +Q-exact terms , (3.21)

where we define

J̃(x) =

√
cT

64π
S̃(x) . (3.22)

Thus, instead of (3.15), we may write

∂ logZ

∂m4
+

= (4π)4

〈(∫
dx

1 + x2

4

iJ̃(x)

)4〉
conn

,

∂ logZ

∂m3
+∂m−

= (4π)3

〈(∫
d3x⃗
√
g (iJ−(x⃗) +K−(x⃗))

)
,

(∫
dx

1 + x2

4

iJ̃(x)

)3〉
conn

∂ logZ

∂m2
+∂m

2
−

= (4π)2

〈(∫
d3x⃗
√
g (iJ−(x⃗) +K−(x⃗))

)2
(∫

dx

1 + x2

4

iJ̃(x)

)2〉
conn

.

(3.23)

Let us begin with the first equation in (3.23). Because the correlation function ⟨J̃ J̃ J̃ J̃⟩ is

topological, we can place the four operators at any four locations of our choosing and multiply the

answer by (2π)4. Using (3.19), we have

∂ logZ

∂m4
+

=
π4c2T
213

I++[Si] , (3.24)

where

I++[Si] = 2

[
S1 + S

2

z2
+

(1− z)2S3

z2
+

2(1− z)S4

z2
− 2(1− z)S5

z
+

2S6

z

∣∣∣∣ U=z2

V=(1−z)2

]
− 6 , (3.25)

and where the −6 comes from subtracting the disconnected part. The quantity I++[Si] is inde-
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pendent of z. It can be simplified significantly using the conformal block expansion introduced in

Equation (2.18). Indeed, (3.25) can be written as

I++[Si] = 2

[
S1 + S15a

2(z − 2)

z
+ S15s

+ 2S20′ + S45⊕45

4− 2z

z

+ S84
(
16

z2
− 16

z
+

44

15

)]∣∣∣∣ U=z2

V=(1−z)2
− 6 .

(3.26)

Each Sr must be expanded in conformal blocks g∆,ℓ
(
z2, (1− z)2

)
, and as z → 0 these behave as

(z/4)∆ where ∆ is the scaling dimension of the corresponding conformal primary. Since I++ is

independent of z, it follows that the only conformal primaries that can contribute must have either

∆ = 0 in the 1, 15s, 20′ channels, ∆ = 1 in the 15a and 45 ⊕ 45 channels, or ∆ = 2 in the 84

channel. The only ∆ = 0 operator is the identity operator, which appears in the 1 channel with

squared OPE coefficient λ20,0,1 = 1 by convention. The 15a and 45⊕ 45 channels contain only odd

spin operators, and for them ∆ = 1 would violate the unitarity bound. Thus, there are no ∆ = 1

operators contributing to (3.26). Consequently, the only operators that can contribute to (3.26) are

the identity operator and any ∆ = 2 operators in the 84. The only such operator that can appear

in an N = 6 theory is the superconformal primary of the (B, 2)
[022]
2,0 . Because the conformal block

g2,0(U, V ) ≈ U/16 at small U , we find that

I++[Si] = −4 + 2λ2
(B,2)

[022]
2,0

. (3.27)

where λ
(B,2)

[022]
2,0

is the OPE coefficient between two S operators and the (B, 2)
[022]
2,0 supermultiplet.

Combining this with the expression (3.8) for cT , we conclude that

λ2
(B,2)

[022]
2,0

= 2 +
∂4m±

logZ

(∂2m±
logZ)2

∣∣∣∣
m=0

. (3.28)

Now let us move on to simplify the second equation in (3.23). Because correlators of J̃(x) are

topological, we can place the three J̃ operators at 0, 1, and infinity, so that

∂4 logZ

∂3m+∂m−
= 29π6

〈
J̃(0)J̃(1)J̃(∞)

(∫
d3x
√
g(iJ−(x⃗) +K−(x⃗))

)〉
. (3.29)

Next we expand the right-hand correlator using (3.5), (2.5) and (2.13). The ⟨J̃ J̃ J̃J−⟩ correlator
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automatically vanish, and so

∂4 logZ

∂3m+∂m−
= − ic

2
Tπ

2

212
√
2

∫
d3x⃗

(4 + |x⃗|2)|x⃗|

×

(
T 1 (U, V ) + 5T 2 (U, V ) + T 3 (U, V ) + 8T 4 (U, V ) + 2T 6 (U, V )

)∣∣∣∣∣U= 1
|x⃗−ê3|2

V=
|x⃗|2

|x⃗−ê3|2

,
(3.30)

where ê3 = (0, 0, 1). We can then use the superconformal Ward identity (2.15) to eliminate T 6, and

so find that

∂4 logZ

∂3m+∂m−
=− ic2Tπ

2

213
√
2

∫
d3x⃗

(
2T 2

(
1

|x⃗− ê3|2
,
|x⃗|2

|x⃗− ê3|2

)

+ 2T 3

(
1

|x⃗− ê3|2
,
|x⃗|2

|x⃗− ê3|2

)
+ 4T 4

(
1

|x⃗− ê3|2
,
|x⃗|2

|x⃗− ê3|2

))∣∣∣∣∣ .
(3.31)

Switching to spherical coordinates x⃗ = r (sin(θ) sin(ϕ), sin(θ) cos(ϕ), cos(θ)) and then integrating

over ϕ, we arrive at our final expression

∂4 logZ

∂3m+∂m−
= − ic

2
Tπ

2

213
√
2
Iodd

[
T i
]
, (3.32)

where we define the linear functional

Iodd
[
T i
]
= Ĩodd[T 2] + Ĩodd[T 3] + 2Ĩodd[T 4] ,

Ĩodd[T i] =
∫ ∞

0

dr

∫ π

0

dθ 4πr sin θ T i
(

1

1 + r2 − 2r cos θ
,

r2

1 + r2 − 2r cos θ

)
.

(3.33)

Finally, we turn to the last equation in (3.23). Again we use the fact that J̃ is topological to

place the first J̃ at x3 = 0 and the second at x4 = ∞ and multiply by (2π)2. Then, relating all

the operators in the second line of (3.23) to Si and Ri and computing the required traces of M

matrices, we obtain

∂ logZ

∂m2
+∂m

2
−

=
c2T
216

[
Ĩ1[2S1]− 4Ĩ2[2R1 +R2 +R3 + 2R5 + 2R6]

]
, (3.34)

where

Ĩ∆[G] ≡
∫
d3x⃗1 d

3x⃗2
[Ω(x⃗1)Ω(x⃗2)]

3−∆

x⃗2∆12
G
(
x⃗212
x⃗21

,
x⃗22
x⃗21

)
, Ω(x) =

1

1 + x2

4

. (3.35)
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We can evaluate (3.35) as follows. Using rotational symmetry, we can set x⃗1 = (r1, 0, 0) and

x⃗2 = (r2 cos θ, r2 sin θ, 0) and perform the angular integrals which give 4π × 2π = 8π2. Thus

Ĩ∆[G] ≡ 8π2

∫
dr1 dr2 dθ r

2
1r

2
2 sin θ

[(
1 +

r21
4

)(
1 +

r22
4

)]∆−3

(r21 + r22 − 2r1r2 cos θ)∆
G
(
r21 + r22 − 2r1r2 cos θ

r21
,
r22
r21

)
. (3.36)

Let us now change variables by setting r1 = 2ρ and r2 = 2rρ. Then (3.36) becomes

Ĩ∆[G] ≡ 29−2∆π2

∫
dρ dr dθ ρ5−2∆r2 sin θ

[(
1 + ρ2

) (
1 + r2ρ2

)]∆−3 G
(
1 + r2 − 2r cos θ, r2

)
(1 + r2 − 2r cos θ)∆

.

(3.37)

The ρ integral can be done analytically. For the cases of interest, namely ∆ = 1 and 2, the result is

Ĩ1[G] = 27π2

∫
dr dθ r2 sin θ

1− r2 + (1 + r2) log r

(r2 − 1)3
G
(
1 + r2 − 2r cos θ, r2

)
1 + r2 − 2r cos θ

,

Ĩ2[G] = 25π2

∫
dr dθ r2 sin θ

log r

r2 − 1

G
(
1 + r2 − 2r cos θ, r2

)
(1 + r2 − 2r cos θ)2

.

(3.38)

The expression (3.34) can be simplified further after using the Ward identity relating Ri to Si

in equations (A.23)–(A.26), and integrating by parts. We find

Ĩ2[2R1 +R2 +R3 + 2R5 + 2R6] =

∫
dr dθ S1

(
1 + r2 − 2r cos θ, r2

)
×
(
−16π2 sin θ

−1− 5r2 + 5r4 + r6 − 8(r2 + r4) log r

(r2 − 1)3(1 + r2 − 2r cos θ)

)
.

(3.39)

Combining with (3.34), we obtain

∂ logZ

∂m2
+∂m

2
−

=
c2Tπ

2

211

∫
dr dθ sin θ

S1
(
1 + r2 − 2r cos θ, r2

)
1 + r2 − 2r cos θ

. (3.40)

Once again we can view the right-hand side as a linear functional defined on S, defining

I+−[Si] =
∫
dr dθ sin θ

S1
(
1 + r2 − 2r cos θ, r2

)
1 + r2 − 2r cos θ

(3.41)

so that
∂ logZ

∂m2
+∂m

2
−

=
π2c2T
211

I+−[Si]. (3.42)
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3.2 U(N)k × U(N +M)−k Theory

3.2.1 Simplifying the Partition Function

Using supersymmetric localization, the mass-deformed U(N)k×U(N+M)−k partition function can

be reduced to M + 2N integrals [82, 83]:

ZM,N,k(m+,m−)

=

∫
dM+NµdNν

e−iπk(
∑

i µ
2
i−

∑
a ν

2
a)
∏
i<j 4 sinh

2 [π(µi − µj)]
∏
a<b 4 sinh

2 [π(νa − νb)]∏
i,a 4 cosh

[
π(µi − νa) + πm+

2

]
cosh[π(µi − νa) + πm−

2 ]
,

(3.43)

up to an overall m±-independent normalization factor. Our first task will be to write (3.43) as an

N -dimensional integral which prove simpler to evaluate. To achieve this we generalize the methods

of [84], which studied the special case m+ = m− = 0. We are ultimately only interested in computing

Z up to an overall normalization constant Z0 which is independent of m±, and so will ignore any

overall factors.

Our first step is to use the determinant formula:

∏
i<j 2 sinh

xi−xj

2

∏
a<b 2 sinh

ya−yb
2∏

i,a 2 cosh
xi−ya

2

=

N+M∏
i=1

e−
1
2Mxi

N∏
a=1

e
1
2Mya det (A(x, y)) (3.44)

where A(x, y) is the matrix

Aij(x, y) =
θN,i

2 cosh
xi−yj

2

+ e(N+M+1/2−j)yiθj,N+1 , where θi,j =


1 i ≥ j

0 otherwise
, (3.45)

which is proven in [84] using a generalization of the Cauchy determinant formula. Applying this

formula with xi = 2πµi and yi = 2πνi + πm−, we can rewrite (3.43) as

ZM,N,k(m+,m−) = (N +M)! e−
π
2MN(m++m−)

∫
dM+NµdNν

N+M∏
j=1

e−π(ikµ
2
j+2Mµj)

×
N∏
a=1

eπ(ikν
2
a+2Mνa)

2 cosh
[
π(µa − νa) + πm+

2

] N+M∏
j=N+1

e(2(N+M−j)+1)πµj

×
∑

perms σ
(−1)sgn(σ)

N+M∏
i=1

(
θN,σ(i)

2 cosh
[
π(µi − νσ(i)) + πm−

2

] + e(2(N+M−σ(i))+1)πµiθσ(i),N+1

)
,

(3.46)
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where the sum over σ is a sum over all permutations σ(i) of N +M elements.

We next take the Fourier transform of the coshines

1

2 cosh(πp)
=

1

π

∫ ∞

−∞
dx

e2ipx

2 cosh(x)
. (3.47)

The µ and ν integrals then become Gaussian and can be easily performed. We thus find that

ZM,N,k(m+,m−) ∝ e−
π
2MN(m++m−)

×
∑
σ

(−1)σ
(∫

dNx dN+My

N∏
a=1

e−
2i
kπ xa(ya−yσ(a))+

2
kM(ya−yσ(a))+i(xam++yam−)

4 cosh(xa) cosh(ya)

×
N+M∏
l=N+1

[
πe−

iπ
k (N+ 1

2−l)
2

δ (yl + iπ(N +M + 1/2− l)) e i
kπ y

2
l +

2
k (N+1/2−l)yσ(l)

])
.

(3.48)

So long as 2M < |k|+ 1, we can integrate over xi, leaving

ZM,N,k(m+,m−) ∝ e−
π
2MN(m++m−)

∑
σ

(−1)σ
∫

dN+My

N∏
a=1

e
2
kM(ya−yσ(a))+iyam−

4 cosh
[
ya−yσ(a)

k − πm+

2

]
cosh(ya)

×
N+M∏
l=N+1

[
πe−

iπ
k (N+ 1

2−l)
2

δ (yl + iπ(N +M + 1/2− l)) e i
kπ y

2
l +

2
k (N+1/2−l)yσ(l)

]
.

(3.49)

After a change of variable ya → ya/2 and judicious use of the equation
∑
a ya =

∑
a yσ(a) we find

that

ZM,N,k(m+,m−) ∝ e−
π
2MN(m++m−)

∑
σ

(−1)σ
∫

dN+My

N∏
a=1

e
i
2yam−

2 cosh
[
ya
2

]
×

N+M∏
l=N+1

[
πe−

iπ
k (N+ 1

2−l)
2

δ (yl + iπ(N +M + 1/2− l)) e i
4kπ y

2
l −M

k yl
]

× det

(
θN,l

2 cosh
yj−yl+kπm+

2k

+ e
1
k (N+M+1/2−l)yjθl,N+1

)
.

(3.50)

Applying (3.44) again, integrating over yN+1 , . . . , yN+M , and then performing a final change of
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variables ya → 2πya, we arrive at our final expression for the mass-deformed S3 partition function,

ZM,N,k(m+,m−)

=
e−

π
2MNm−Z0

coshN πm+

2

∫
dNy

∏
a<b

sinh2 π(ya−yb)k

cosh
[
π(ya−yb)

k + πm+

2

]
cosh

[
π(ya−yb)

k − πm+

2

]

×
N∏
a=1

 eiπyam−

2 cosh (πya)

M−1∏
l=0

sinh

[
π
(
ya+i(l+1/2)

)
k

]
cosh

[
π
(
ya+i(l+1/2)

)
k − πm+

2

]
 .

(3.51)

3.2.2 Finite M,N, k Calculations

In this section, we will evaluate localization results for small M,N and k. For simplicity we focus

on the single mass case, taking m− = m and m+ = 0, so that

ZM,N,k(m) = Z0e
−π

2MNm

∫
dNy

∏
a<b

tanh2
π(ya − yb)

k

×
N∏
a=1

[
eiπyam

2 cosh (πya)

M−1∏
l=0

tanh
π
(
ya + i(l + 1/2)

)
k

]
.

(3.52)

Let us begin with the case N = 1. We must compute

ẐM,1,k(m) ≡ ZM,1,k(m)

Z0
= e−

π
2Mm

∫ ∞

−∞
dx eiπxmFM,k(x) , (3.53)

where we define

FM,k(x) =
1

2 cosh (πx)

M−1∏
l=0

tanh
π(x+ i(l + 1/2))

k
. (3.54)

All poles of FM,k(x) are located at x = i
2 + iK for K ∈ Z . Furthermore, FM,k(x) is periodic in the

complex plane, with

FM,k(x+ ik) = (−1)kFM,k(x) . (3.55)

By closing the integral (3.53) in the upper-half of the complex, we may therefore reduce it to a finite

sum of poles

ẐM,1,k(m) =
2πie−

π
2Mm

1− (−1)ke−kπm
k−1∑
K=1

Res
x= i

2+iK

[
eiπmxFM,k(x)

]
. (3.56)

We can evaluate the residues and derive analytic expressions for ẐM,1,k(m) for any M and k, and

then compute cT and λ2
(B,2)

[022]
2,0

using (3.8) and (3.28). Table 3.1 lists these quantities for various
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M k 16
cT

λ2
(B,2)

[022]
2,0

1 2 3
4 = 0.75 16

5 = 3.2

3 5+2
√
3

13 ≈ 0.6511 612−62
√
3

169 ≈ 2.986

4 3(π−2)
4(3π−8) ≈ 0.6009 2(512−441π+90π2)

5(8−3π)2 ≈ 2.921

2 4 3(π−4)
15π−52 ≈ 0.5281 4(12544−6936π+945π2)

5(52−15π)2 ≈ 2.715

5 0.4667 2.618

6 0.4309 2.582

3 6 0.4005 2.498

4 8 0.3211 2.381

5 10 0.2674 2.307

6 12 0.2290 2.258

Table 3.1: OPE coefficients 16
cT

and λ2
(B,2)

[022]
2,0

in various U(1)k × U(1 +M)−k ABJ theories.

values of M and k. Note that the analytic results become increasingly elaborate as M and k become

larger, and so we include analytic expressions in Table 3.1 only if a concise expression exists.

The above analysis can be generalized to the N > 1 case by repeatedly integrating over zk. When

N = 2, for instance, we must compute

ZM,2,k(m) = e−
π
2MNm

∫
dz1 dz2 e

iπ(z1+z2)m tanh2
π(z1 − z2)

k

2∏
a=1

FM,k(za) . (3.57)

We evaluate this by first integrating over z1 while fixing |Im(z2)| < k
2 . We can perform this integral

by closing the contour in the upper half complex plane and then summing over the poles, which

occur at

z1 =
iN

2
and z1 = z2 + ik(K + 1/2) ,

where K is a positive integer. Because both K(z) and tanh z are periodic in the complex plane, we

need only sum the poles with imaginary part less than k; the rest can be resummed as a geometric

series. Having integrated over z1, we perform the z2 integral in a similar fashion. For general N we

must repeat this process for each of the N integration variables. We list results in Table 3.2.

3.2.3 Supergravity Limit

We will now study localization in the large N limit. Using the Fermi gas method [85], the localization

formula (3.43) for the mass deformed partition function with M = 0 was computed to all orders in
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M k 16
cT

λ2
(B,2)

[022]
2,0

1 2 0.3177 2.479

3 0.2697 2.384

4 0.2425 2.339

2 4 0.2242 2.302

5 0.1986 2.262

6 0.1822 2.239

3 6 0.1736 2.221

4 8 0.1419 2.175

5 10 0.1201 2.144

6 12 0.1041 2.122

N k 16
cT

λ2
(B,2)

[022]
2,0

2 2 3
8 = 0.375 13

5 = 2.6

3 2 3(π2−10)
45π2−446 ≈ 0.2095 2.309

3 0.1838 2.258

4 2 0.1381 2.195

3 0.1191 2.161

4 0.1071 2.143

Table 3.2: OPE coefficients 16
cT

and λ2
(B,2)

[022]
2,0

in various U(2)k × U(M + 2)−k ABJ theories (left)
and U(N)k × U(N)−k ABJM theories (right)

1/N in [81,86]. The answer, up to overall factors which are independent of m±, is

ZM,N,k(m+,m−) =
eAk(m+,m−)

Ck(m+,m−)1/3
Ai
[
Ñk(N,M)−Bk(m+,m−)

Ck(m+,m−)1/3

]
, (3.58)

where we define the functions

Ñk(N,M) = N +
M

2
− M2

2k
,

Ck(m+,m−) =
2

π2k(1 +m2
+)(1 +m2

−)
,

Bk(m+,m−) =
π2Ck(m+,m−)

3
− 1

6k

(
1

1 +m2
+

+
1

1 +m2
−

)
− k

24
,

Ak(m+,m−) =
A[k(1 + im+)] +A[k(1− im+)] +A[k(1 + im−)] +A[k(1− im−)]

4
,

(3.59)

and where the constant map function A(k) is given by

A(k) = 2ζ(3)

π2k

(
1− k3

16

)
+
k2

π2

∫ ∞

0

dx
x

ekx − 1
log
(
1− e−2x

)
. (3.60)

We will be interested in derivatives of ZM,N,K(m+,m−) at m± = 0, in which case we expect the

non-perturbative corrections to take the form e−
√
Nk and e−

√
N/k. This is the case for Z0,N,K(0, 0),

which has been computed exactly for all N and k in [85, 87–93], and we expect this to continue

to hold true for derivatives of ZM,N,k(m+,m−). We can then apply the large N expansion to the

stringy regimes described in Section 1.3.2: the finite k limit, the strong ’t Hooft coupling limit λ≫ 1,

and the finite µ limit interpolating between the two. Here, as in Section 1.3.2, λ and µ are defined
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by the equations

λ =
Ñk(N,M)

k
− 1

3k2
− 1

24
, µ =

Ñk(N,K)

k5
. (3.61)

We begin by computing cT using (3.8), and find that to all orders in 1/N ,

cT =
32k2A′′(k)

π2
− 64

3π2
−

32
(
3 + 2k2λ

)
Ai′
(
λ
(
π2k4

2

)1/3)
3Ai

(
λ
(
π2k4

2

)1/3) (
2

πk2

)2/3

. (3.62)

Expanding this expression at large N and finite k, we find that

finite k: cT =
64
√
2kN3/2

3π
− 8(12M2 − 12kM + k2 − 16)N1/2

3π
√
2k

+
32(k2A′′(k)− 1)

π2
+O(N−1/2) .

(3.63)

We can likewise expand both ∂4 logZ
∂m4

±
, and ∂4 logZ

∂m2
+∂m

2
−

to all orders in 1/N , although the results are

more complicated. Expanding at large N and then systematically eliminating N in favor of cT , we

find that

finite k: 1

c2T

∂4 logZ

∂m4
±

=
3π2

64

1

cT
+

3
4
3π4/3

2
8
3 k2/3

1

c
5
3

T

+
k4A(4)(k)− 3k2A′′(k)− 3

2cT 2
+O(c

− 7
3

T ) ,

1

c2T

∂4 logZ

∂m2
+∂m

2
−

= −π
2

64

1

cT
+

5π4/3

4 62/3k2/3
1

c
5
3

T

+
k2A′′(k)− 1

2cT 2
+O(c

− 7
3

T ) ,

(3.64)

where we have only shown the lowest couple terms in 1/cT for simplicity. We can evaluate A(4)(k)

and A′′(k) exactly using the definition of (3.60).3 Note that neither expression in (3.64) depend on

M when written as a series in 1/cT . This is because both M and N only enter into the large N

partition function (3.58) through the combined quantity Ñ(N,M), and so when we eliminate N in

favor of cT this also eliminates the M dependence.

Next we consider the strong coupling ’t Hooft limit. Using the large k expansion

A(k) = −ζ(3)
8π2

k2 + 2ζ ′(−1) +
log
[
4π
k

]
6

+

∞∑
g=2

(
2πi

k

)2g−2
4gB2gB2g−2

4g(2g − 2)(2g − 2)!
, (3.66)

derived in [94], where Bn denote the Bernoulli numbers, we can expand (3.62) at large N with λ≫ 1

3For instance, for k = 1, 2 these values are [81]

A′′(1) =
1

6
+

π2

32
, A′′(2) =

1

24
,

A′′′′(1) = 1 +
4π2

5
−

π4

32
, A′′′′(2) =

1

16
+

π2

80
.

(3.65)
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to find that

’t Hooft: cT =

(
128

3π(2λ)1/2
− 64

9π(2λ)3/2
− 32ζ(3)

π4λ2
+O(λ5/2

)
N(N +M)+

+

(
32(5− 6M2)λ1/2

9π
− 80

3π2
+

16(21M2 + 2)

27π
+O(λ−1)

)
+O(N−1) .

(3.67)

We can now expand the fourth-derivatives at large N , and then eliminate N in favor of cT to find

’t Hooft: 1

c2T

∂4 logZ

∂m4
±

=

[
3π2

64
+

9ζ(3)

512
√
2π

1

λ
3
2

+
27ζ(3)2

8192π4

1

λ3
+O(λ−

9
2 )

]
1

cT

+

[
3

2
π
√
2λ− 5

4
− 9ζ(3)

16π2

1

λ
+

15ζ(3)

32
√
2π3

1

λ
3
2

+O(λ−
5
2 )

]
1

c2T
+O(c−3

T ) ,

1

c2T

∂4 logZ

∂m2
+∂m

2
−

=

[
−π

2

64
− 3ζ(3)

512
√
2π

1

λ
3
2

− 9ζ(3)2

8192π4

1

λ3
+O(λ−

9
2 )

]
1

cT

+

[
5

6
π
√
2λ− 5

12
+

3ζ(3)

16π2λ
− 5ζ(3)

32
√
2π3

1

λ
3
2

+O(λ−
5
2 )

]
1

c2T
+O(c−3

T ) .

(3.68)

Once again, the final result does not depend on M to any order in 1/cT . Furthermore note that ζ(3)

and π are the only transcendental numbers that appear to any order in 1/λ and 1/cT expansion.

Finally, for the finite µ limit we can again use the large k expansion of A(k) to compute

finite µ: cT =
64
√
2N8/5

3πµ1/10
− 4
√
2N4/5

3πµ3/10
+

256
√
2MN3/5

15πµ1/10
+O(N2/5) , (3.69)

and then, upon eliminating N in favor of cT ,

finite µ: 1

c2T

∂4 logZ

∂m4
±

=
3π2

64

1

cT
+

3
5
4

(
4
√
2π3√µ+ ζ(3)

)
16 25/8π7/4µ3/8

1

c
7
4

T

− 5

4

1

c2T
+O(c

− 9
4

T ) ,

1

c2T

∂4 logZ

∂m2
+∂m

2
−

= −π
2

64

1

cT
+

20
√
2π3√µ− 3ζ(3)

16 25/833/4π7/4µ3/8

1

c
7
4

T

− 5

12

1

c2T
+O(c

− 9
4

T ) .

(3.70)

Once again, the results do not depend explicitly on M .

From the finite µ limit we can derive both the ’t Hooft limit and the finite k limit by taking

µ→ 0 and µ→∞ respectively. To reproduce the ’t Hooft limit (3.68) we first solve for µ in terms

of λ and cT using (3.8) and (3.61), which at leading order in 1/cT gives

µ =
8192λ4

9c2Tπ
2
+ . . . . (3.71)

We then take the large cT limit followed by the large λ limit. The ζ(3)µ− 3
8 c

− 7
4

T and µ
1
8 c

− 7
4

T terms

give rise to the ζ(3)λ− 3
2 c−1
T and

√
λc−2
T terms in (3.68), respectively.
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k M 16
cT

λ2
(B,2)

[022]
2,0

2 0 0.0361459 2.04699

3 0 0.0301815 2.03842

4 0 0.0265295 2.03342

1 0.0250946 2.03158

6 0 0.0221553 2.02766

1 0.0208109 2.02595

2 0.0200682 2.02501

10 0 0.0178216 2.02218

1 0.0166285 2.02067

2 0.0157899 2.01961

3 0.0152331 2.01891

4 0.0149146 2.01851

Table 3.3: OPE coefficients 16
cT

and λ2
(B,2)

[022]
2,0

in various U(10)k × U(10 +M)−k ABJ theories, as
computed from the all orders in 1/N formula (3.58).

To extract the finite k limit (3.64) from (3.70) we solve for µ in terms of cT and k using (3.8),

which at leading order in 1/cT gives

µ =
(3π)2/3cT

2/3

2
13
3 k

16
3

+ . . . . (3.72)

We then take the large cT limit. In this limit, the ratio c2Tµ−3 is finite, so we must sum infinitely

many terms in the finite µ limit to recover the finite k limit. This infinite sum cancels all the ζ(3)

terms which appear at finite µ. The µ 1
8 c

− 7
4

T term becomes a c−
5
3

T term at finite k.

While we have so far focused on computing the leading large N corrections from (3.58), we can

also use the all orders 1/N expansion as a tool to calculate localization results at finite N . For low

k = 1, 2 and M = 1, 2, some explicit examples were given in [81], where it was shown that the large

N expansion compares well even down to the exact N = 2 result. In Chapter 6, we will study the

U(10)k × U(10 +M)−k ABJ theories for various values of M and k. Using (3.58), we can calculate
16
cT

and λ2
(B,2)

[022]
2,0

for these theories for a range of M,k, and we summarize our results in Table 3.3.

3.2.4 Higher-Spin Limit

We now compute ZM,N,k(m+,m−) at large M and fixed λ = M
k , which is the higher-spin limit of

the U(N)k × U(N +M)−k theory. The special case where m± = 0 has already been considered

in [95], so our task is to generalize their results to non-zero masses.
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To begin, let us define

F1(x) =

M−1
2∑

l=−M−1
2

log tanh

[
π
(
x+ il

)
k

]
− logR(x) ,

F2(x) =

M−1
2∑

l=−M−1
2

log cosh

[
π
(
x+ il

)
k

] (3.73)

where R(x) = cosh (πx) if M is even and R(x) = sinh (πx) if M is odd, and

G(x, m̂+) = log

(
k sinh2 πx√

k

π2x2
sech

[
2πx+ πm̂+

2
√
k

]
sech

[
2πx− πm̂+

2
√
k

])
, (3.74)

where m̂± = k−1/2m±. After a change of variables ya →
√
k
(
xa − iM

2

)
, we find that

ZM,N,k(m̂+, m̂−) ∝
1

coshN πm̂+

2
√
k

∫
dNx

∏
a<b

(xa − xb)2 exp (G(xa − xb, m̂+))

× exp

(∑
a

iπxam̂− + F1

(
xa
√
k
)
+ F2

(
xa
√
k
)
− F2

(√
k

2
(2x− m̂+)

))
.

(3.75)

We now expand F1(x), F2(x) and G(x) at large M and k, holding x, m̂± and λ fixed. The large M

expansion of F1(x) has already been computed in [95], where it was shown that

F1(x) ≡

M−1
2∑

l=−M−1
2

log tanh
π(x+ il)

k
−R(x) ∼

cos 2x∂λ
k

sinh ∂λ
k

log tan
πλ

2
(3.76)

The right-hand expression should be understood as a formal series expansion, which can be written

more verbosely as

F1(x) =

∞∑
n=0

(−1)nf2n(k, λ)
(2n)!

x2n

k2n−1
,

where f2n(k, λ) =
∞∑
p=0

4n(2− 4p)B2p

(2p)!k2p
∂2p+2n−1
λ log tan

πλ

2
,

(3.77)

and so we find that

F1

(
x
√
k
)
= cons.− 2π csc(πλ)x2 +

1

3
π3(cos(2λπ) + 3) csc3(λπ)

x4

k
+O(k−2) , (3.78)
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Next we expand F2(x) using the Euler-MacLaurin expansion, finding that

F2 (x) =

M−1
2∑

l=−M−1
2

log cosh

[
π
(
x+ il

)
k

]

=
πx2 tan πλ

2

k
−

2π3x2(2x2 + 1) sin4 πλ2
k3 cosπλ

+O(k−5) .

(3.79)

Finally, we can expand G(x) by simply using the Taylor series expansion around k−1/2 = 0, so that

G(x, m̂+) = −
π2(8x2 + 3m̂2

+)

12k
+
π4(224x4 + 360x2m̂2

+ + 15m̂4
+)

1440k2
+O(k−3) . (3.80)

Putting everything together, we have

ZM,N,k(m̂+, m̂−)

∝ 1

coshN πm̂+

2
√
k

∫
dNx

∏
a<b

(xa − xb)2 exp

(
−2π csc(πλ)

∑
a

x2a +O(k−1)

)
.

(3.81)

where all higher order terms are polynomial in x and m̂±. To compute

∂n1+n2ZM,N,k(m̂+, m̂−)

∂n1m̂+∂n2m̂−

∣∣∣∣
m̂±=0

(3.82)

at each order in k−1, all we must do now is evaluate Gaussian integrals of the form

∫
dNx p(xa)

∏
a<b

(xa − xb)2 exp

(
−2π csc(πλ)

∑
a

x2a

)
, (3.83)

where p(xa) is a polynomial in xa. These are just polynomial expectation values in a Gaussian

matrix model. They can be computed at finite N as sums of U(N) Young tableux [96], as described

in detail in Appendix B of [97].

After a little work, we find that

cT =
16Nk sin(πλ)

π
+ 4N2(3 + cos(2πλ))

−
πN

(
16− 18N2 + (1− 14N2) cos(2λπ)

)
3k

+O(k−2) .

(3.84)
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We invert this series to eliminate k in favor of cT , and so find that

λ2
(B,2)

[022]
2,0

= 2 +
8(3 + cos(2πλ))

cT
− 64N2 sin2(πλ)(3 + 5 cos(2πλ))

c2T

−
512N3

(
29− 121

4N2 +
(
44− 19

N2

)
cos(2πλ) +

(
23 + 5

4N2

)
cos(4πλ)

)
sin2(πλ)

3c3T
+O

(
c−4
T

)
,

(3.85)

from which we see that in the limit of large cT , the theory with the lowest value of λ2
(B,2)

[022]
2,0

at fixed

cT is that with λ = 1/2 and N = 1, corresponding to the U(1)2M × U(1 +M)−2M theories. This

family will prove of special interest to us when considering numeric bootstrap bounds. Specializing

to this case, we can easily expand λ2
(B,2)

[022]
2,0

to much higher order in 1/cT :

λ2
(B,2)

[022]
2,0

= 2 +
16

cT
+

1

2

(
16

cT

)2

+
1

12

(
16

cT

)3

+
2

3

(
16

cT

)4

− 217

240

(
16

cT

)5

+
979

480

(
16

cT

)6

− 71291

15120

(
16

cT

)7

+ · · · .
(3.86)

Comparing to the exact values computed in Table 3.1, we find that (3.86) gives answers to within

1% of the exact results already for M = 4.

For the mixed derivatives of logZ, we find that

1

c2T

∂4 logZM,N,k

∂2m+∂2m−

∣∣∣∣
m±=0

= −π
4 sin2(πλ)

256cT
+
π4N2(1− 5 cos(2πλ)) sin2(πλ)

64c2T
+O(c−3

T ) ,

1

c2T

∂4 logZM,N,k

∂3m+∂m−

∣∣∣∣
m±=0

= − iπ
4 sin(2πλ)

512cT
+

5iπ4N2 cos(πλ) sin3(πλ)

32c2T
+O(c−3

T ) .

(3.87)

Note that for each of these quantities, the O(c−1
T ) term is independent of N , the O(c−2

T ) term

is proportional to N2, and further subleading terms have more complicated N dependence. This

overall behavior is expected for the following reason. The U(N)k gauge factor is very weakly coupled

in the higher-spin limit at finite N , so we can construct N2 different “single-trace” operators of

the U(M + N) factor (which are a combined adjoint and singlet of SU(N), where the SU(N)-

adjoint is not a gauge-invariant operator in the full theory), and because of the weak U(N) coupling

the “double-trace” operators constructed from pairs of each of these N2 “single-trace” operators

contribute the same, so we get a factor of N2. Note that it is important to distinguish the single

trace operators in scare quotes from single-trace operators in the usual sense, which are gauge-

invariant.
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Finally, we give the coefficient of the delta function in ⟨SP ⟩, which we can compute using (3.11):

κ =
√
2 tan

(
πλ

2

)
− 32

√
2

cT
N2 csc(πλ) sin4

(
πλ

2

)
+O(c−2

T ) . (3.88)

As promised, this expression does not vanish, and, in fact, is not even invariant under Seiberg duality

λ→ 1− λ.

3.3 SO(2)2k × USp(2 + 2M)−k Theory

3.3.1 Simplifying the Partition Function

We now discuss the mass-deformed sphere partition function for the SO(2)2k × USp(2 + 2M)−k

theory. Using supersymmetric localization, this quantity can be written as an (M + 1)-dimensional

integral [82, 98]:

ZM,k(m+,m−) ∝
∫
dµ dMν e2πik(µ

2−
∑

a ν
2
a)

×
∏
a sinh

2 (2πνa)
∏
a<b sinh

2 [π(νa + νb)] sinh
2 [π(νa − νb)]∏

b cosh
2π(µ−νb)+πm+

2 cosh 2π(µ+νb)+πm+

2 cosh 2π(µ−νb)+πm−
2 cosh 2π(µ+νb)+πm−

2

,

(3.89)

up to an overall m±-independent factor. In this section we shall reduce this expression down to a

single integral. We follow the derivation in [99], which considered the special case m+ = m− = 0.

They however consider the general SO(2N) × USp(2N + 2M) theory, while here we only focus on

the N = 1 case, for which the manifest N = 5 SUSY is enhanced to N = 6.

To ease comparison with [99], we rewrite (3.89):

ZM,k(m+,m−) ∝
∫
dµ dM+1ν e

i
4k̃π

(µ2−
∑

a ν
2
a)

×
∏
a sinh

2 νa
k̃

∏
a<b sinh

2 νa+νb
2k̃

sinh2 νa−νb
2k̃∏

b cosh
(
µ−νb
2k̃

+ πm+

2

)
cosh

(
µ+νb
2k̃

+ πm+

2

)
cosh

(
µ−νb
2k̃

+ πm−
2

)
cosh

(
µ+νb
2k̃

+ πm−
2

)
(3.90)
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with k̃ = 2k. Next we use the Cauchy-Vandermonde determinant, given in (2.6) of [99]:

∏
a sinh

νa
k̃

∏
a<b sinh

νa+νb
2k̃

sinh νa−νb
2k̃∏

b cosh
µ−νb+k̃πm+

2k̃
cosh µ+νb+k̃πm+

2k̃

= det


[

sinh νa
k̃

cosh
µ+k̃πm+−νa

2k̃
cosh

µ+k̃πm++νa

2k̃

]
[
sinh bνa

k̃

]
b=1,...,M

 .

(3.91)

We can simplify this expression by introducing canonical position and momentum operators q̂ and

p̂ which satisfy [q̂, p̂] = 2πik̃. We denote the q̂ eigenstates by |ν⟩, and introduce states |b]] such that

2 sinh
bνa

k̃
= [[b |νa⟩ , (3.92)

allowing us to simplify the lower block of (3.91). The upper block can be simplified using the Fourier

transform, giving us (2.9) of [99]:

sinh νa
k̃

cosh µ+k̃πm+−νa
2k̃

cosh µ+k̃πm++νa
2k̃

∝ ⟨µ|e
ip̂m+

4
1

sinh p̂
2

Π̂− |νa⟩ . (3.93)

We then follow [99] in performing similarity transforms

|µ⟩ → e−
i

4πk̃
p̂2 |µ⟩ , |νa⟩ → e−

i
4πk̃

p̂2 |νa⟩ , (3.94)

so that (3.89) becomes

ZM,k(m+,m−) ∝
∫
dµ dM+1ν det


[
⟨µ|e

ip̂m+
4

1
sinh p̂

2

Π̂− |νa⟩
]

[
[[b|e

i
4πk̃

p̂2 |νa⟩
]
b=1,...,M


× ⟨µ|e

i
4πk̃

p̂2e
i

4πk̃
q̂2e

ip̂m−
4

1

2 sinh p̂
2

Π̂−e
− i

4πk̃
q̂2e−

i
4πk̃

p̂2 |ν1⟩
M∏
a=1

[[a|e−
i

4πk̃
q̂2e−

i
4πk̃ |νa+1⟩

(3.95)

We can now apply (2.12-5) of [99] to simplify the matrix elements, but with the modification

⟨µ|e
i

4πk̃
p̂2e

i
4πk̃

q̂2e
ip̂m−

4
1

2 sinh p̂
2

Π̂−e
− i

4πk̃
q̂2e−

i
4πk̃

p̂2 |ν1⟩

=
πk̃e

im−µ

2

i sinh µ
2

(δ(µ− ν1)− δ(µ+ ν1)) ,

(3.96)
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and so find that

ZM,k(m+,m−) ∝
∫
dµ dM+1ν

∏
a sinh

νa
k̃

∏
a<b sinh

νa+νb
2k̃

sinh νa−νb
2k̃∏

b cosh
µ−νb+k̃πm+

2k̃
cosh µ+νb+k̃πm+

2k̃

× e
im−µ

2 δ(µ− ν1)
sinh µ

2

M∏
m=1

δ(νm+1 − 2πim)

∝ 1

cosh πm+

2

∫
dµ

e
im−µ

2 sinh
[
µ
2k

]
sinh

[
µ
2

]
cosh

[
µ
2k + πm+

2

]
×

∏M
l=1 sinh

[
µ+2πil

4k

]
sinh

[
µ−2πil

4k

]
∏M
l=1 cosh

[
µ+2πil

4k + πm+

2

]
cosh

[
µ−2πil

4k + πm+

2

] .

(3.97)

After a change of variables µ→ 2x and some further simplifications, we arrive at our final expression

for the partition function

ZM,k(m+,m−)

=
Z0

cosh πm+

2

∫
dx

eiπm−x cosh
[
πx
2k

]
cosh

[
πx
2k + πm+

2

]
sinh [πx] cosh

[
πx
k + πm+

2

] M∏
l=−M

sinh
[
π(x+il)

2k

]
cosh

[
π(x+il)

2k + πm+

2

] . (3.98)

3.3.2 Finite M,k Calculations

We now compute cT and λ2
(B,2)

[022]
2,0

for finite values of M and k. Using (3.98) for the case m+ = 0

and m− = m, we find that

ẐM,k(0,m) ≡ ZM,k(0,m)

Z0
=

∫ ∞

−∞
dx eiπmxGM,k(x) (3.99)

where we define

GM,k(x) =
cosh2 πx2k

sinhπx cosh πx
k

M∏
l=−M

tanh
π(x+ il)

2k
. (3.100)

Similarly to FM,k(x) in Section 3.2.2, all poles of GM,k(x) are located at x = iK
2 for K ∈ Z , and

furthermore GM,k(x) is periodic in the complex plane, with

GM,k(x+ 2ik) = GM,k(x) . (3.101)
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M k 16
cT

λ2
(B,2)

[022]
2,0

0 1 1 4

2 3
4 = 0.75 16

5 = 3.2

3 0.6511 2.986

4 0.6009 2.921

1 2 3
4 = 0.75 16

5 = 3.2

3 0.4778 2.648

4 0.3879 2.503

2 4 0.3879 2.503

5 0.3021 2.366

6 0.2603 2.312

3 6 0.2603 2.312

4 8 0.1957 2.225

5 10 0.1568 2.175

6 12 0.1307 2.144

Table 3.4: OPE coefficients 16
cT

and λ2
(B,2)

[022]
2,0

in various SO(2)2k × USp(2 + 2M)−k theories

By closing the integral (3.99) in the upper-half of the complex, we may therefore reduce it to a finite

sum of poles

ẐM,k(m) =
2πi

1− e−2kπm

4k−1∑
K=1

Res
x= iK

2

[
eiπmxGM,k(x)

]
. (3.102)

For small values of M and k we can easily sum over poles, and then compute cT and λ2
(B,2)

[022]
2,0

using (3.8) and (3.28). We list results for various M and k in Table 3.4.

3.3.3 Higher-Spin Limit

We now study the large M expansion of SO(2)2k × USp(2 + 2M)−k sphere partition function, hold-

ing λ = 2M+1
2k fixed. Defining

F̃1(x) =

M∑
l=−M

log tanh

[
π
(
x+ il

)
2k

]
− log sinh (πx) ,

F̃2(x) =

M∑
l=−M

log cosh

[
π
(
x+ il

)
2k

]
,

Ĝ(x, m̂+) = log

cosh
[
πx
2
√
k

]
cosh

[
π(x+m̂+)

2
√
k

]
cosh πm̂+

2
√
k
cosh

[
π(2x+m̂+)

2
√
k

]
 ,

(3.103)
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and then performing a change of variables x = k−1/2y, we find that

ZM,k(m+,m−) ∝
∫
dx exp

(
iπm̂−x+ G̃(x, m̂+) + F̃1(x) + F̃2(x)− F̃2(x+ m̂+)

)
. (3.104)

Each of F̃1(x), F̃2(x) and G̃(x, m̂−) can be expanded at large k with x and m̂± fixed in a completely

analogous fashion to F1(x), F2(x) and G(x, m̂−) respectively, as derived in Section 3.2.4 . We then

find that

ZM,k(m+,m−) ∝
∫
dx exp

(
−π csc(πλ)x2 + . . .

)
, (3.105)

where at each order in k−1 and m̂± the terms in the exponent are polynomial in x. Derivatives of

ZM,k(m+,m−) at m± = 0 now reduce to a number of Gaussian integrals at each order in k−1.

After a little work, we find that

cT =
32k sin(πλ)

π
+ 16 cos2(πλ)− π sin(πλ)[15 + 29 cos(2πλ)]

3k
+O(k−2)

λ2
(B,2)

[022]
2,0

= 2 +
π[3 + cos(2πλ)] csc(πλ)

4k

− π2[39 + 44 cos(2πλ)− 19 cos(4πλ)] csc2(λπ)

128k2
+O(k−3) .

(3.106)

Comparing to the exact results in Table 3.4, we see that already for k = 2 the approximations

(3.106) are within a couple percent of the exact answers. Solving for λ2
(B,2)

[022]
2,0

in terms of cT , we

find

λ2
(B,2)

[022]
2,0

= 2 +
8(cos(2λπ) + 3)

cT
− 32 sin2(πλ)(17 + 23 cos(2πλ))

c2T
+ · · · , (3.107)

from which we see that, at least at large cT , the theory with λ = 1/2 has the smallest value of

λ2
(B,2)

[022]
2,0

. This value of λ2
(B,2)

[022]
2,0

is still larger than that of the U(1)k × U(1 + M)−k theory,

however. By specializing to the λ = 1/2 theory, we can easily compute the large M expansion to

higher orders in 1/cT , finding that

λ2
(B,2)

[022]
2,0

= 2 +
16

cT
+

3

4

(
16

cT

)2

− 25

24

(
16

cT

)3

+
437

64

(
16

cT

)4

− 20997

640

(
16

cT

)5

+
259523

1536

(
16

cT

)6

− 897994667

967680

(
16

cT

)7

+ · · · .
(3.108)
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Finally, for the mixed mass derivatives, we find that

1

c2T

∂4 logZ

∂2m+∂2m−
= −π

4 sin2(πλ)

256cT
− π4(5 + 23 cos(2πλ)) sin2(πλ)

128c2T
+O(c−3

T ) ,

1

c2T

∂4 logZ

∂3m+∂m−
=
iπ4 sin(2πλ)

512cT
− iπ4(30 sin(2πλ)− 23 sin(4πλ))

512c2T
+O(c−3

T ) .

(3.109)

3.4 Additional U(1) Factors

To close this chapter, we will show that given an N = 6 Chern-Simon gauge theory with gauge

group G = SU(N) × SU(N +M) or G = USp(2 + 2M), the S3 partition function for the theory

G × U(1)L is equivalent to that of the theory G × U(1), up to an overall constant. This provides

evidence for our conjecture in Section 1.2 that additional U(1) factors do not affect the ⟨SSSS⟩

correlator.

Note that the mass-deformed S3 partition function for the G×U(1)L can be generically written

as

ZG×U(1)L(m+,m−) =

∫
dχ1 . . . dχN e

iπ
∑

abKabχaχbZG(m+ + 2q · χ,m− + 2q · χ) , (3.110)

where Kab is the matrix of Chern-Simons levels for the U(1)s q = (q1, . . . , qL) are the charges of

the (bi)fundamentals under each U(1), and ZG(m+,m−) is the S3 partition function for the theory

without any U(1) factors. In order for G× U(1)N to have N = 6 supersymmetry, Kab and qa must

satisfy the condition ∑
a,b

Kabqaqb =
1

kG
(3.111)

for some G dependent constant kG, where Kab is the inverse of Kab [19].

To simplify (3.110), we first perform a change of basis of χa such that qa = (1, 0, . . . , 0). Because

Kab is symmetric, we can then perform a second change of basis to χ2 , . . . , χL, so that Kab take

the form

Kab =



K11 K12 0 . . .

K12 1 0 . . .

0 0 1 . . .

...
...

... . . .


. (3.112)
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We can now integrate over χ2 , χ3 , . . . leaving us with

ZG×U(1)L(m+,m−) ∝
∫
dχ1 e

iπ(K11−K2
12)χ

2

ZG(m+ + 2χ1,m− + 2χ1) , (3.113)

We then note that, in this basis, the condition (3.111) becomes:

K11 −K2
12 = kG , (3.114)

and so

ZG×U(1)L(m+,m−) ∝
∫
dχ1 e

iπkGχ
2

ZG(m+ + 2χ1,m− + 2χ1) . (3.115)

We now simply recognize the right-hand side of this equation is the partition function for the G×U(1)

theory, and have hence shown what we set out to prove.
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Chapter 4

String and M-Theory Limits

In this chapter, we will study the string and M-theory limits of the U(N)k × U(N +M)−k ABJ

theory. In these limits the bulk can be described semiclassical, and so CFT correlators can be

computed using bulk Witten diagrams. Though such holographic correlators have been a subject

of study since the early days of the AdS/CFT correspondence [20, 56, 57] (see for example [100–

108] for early work on four-point functions), they are in many cases hard or even impossible to

compute directly. For instance, for higher derivative contact interactions in string theory or M-

theory the full supersymmetric completion of the first correction to the supergravity action is not

completely known (see however [109–112]), and so one cannot even write down the full set of relevant

Witten diagrams. In the past few years, however, it has become clear that in certain cases one

can essentially ‘bootstrap’ the answer using various consistency conditions [65, 74, 113–119]. These

consistency conditions include crossing symmetry, the analytic properties of correlators in Mellin

space, and supersymmetry. In particular, for tree-level Witten diagrams with supergravity and/or

higher derivative vertices in 2d [120–122], 3d [65,117,118], 4d [74,115,116], 5d [123], and 6d [114,119]

maximally supersymmetric theories, these consistency conditions determine the Witten diagrams

contributing to the 4-point functions1 of 1/2-BPS operators up to a finite number of coefficients.

For low orders in the derivative expansion, one can further fix these coefficients using other methods,

such as supersymmetric localization [15, 82] or the relation between the Mellin amplitudes and flat

space scattering amplitudes in 10d or 11d [22,125–129]. In particular, Refs. [65,74,119] showed that

the tree-level Witten diagram corresponding to an R4 contact interaction, which is the first correction

to supergravity in both 10d and 11d, can be completely determined using either supersymmetric
1See also [124] for recent work on holographic five-point functions in the 4d N = 4 super-Yang-Mills theory in the

supergravity approximation.
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localization or the flat space scattering amplitudes. The agreement between the two methods of fixing

the undetermined coefficients in this case provides a precision test of AdS/CFT beyond supergravity.

Our goal in this chapter is to apply analytic bootstrap techniques to the ⟨SSSS⟩ correlator in

U(N)k × U(N +M)−k ABJ theory. Unlike previous studies, the U(N)k × U(N +M)−k theories

have only N = 6, rather than the maximal N = 8, supersymmetry, and so are more challenging

to study. The reason for pursuing this generalization is that it offers the possibility of an unprece-

dented test of AdS/CFT at finite string coupling gs. Indeed, if in ABJ theory we take N to be

large and of the same order as k5, then the holographic dual is a weakly curved AdS4 × CP3 back-

ground of type IIA string theory with finite gs [16]. Using the consistency conditions mentioned

above supplemented by supersymmetric localization results, we will be able to fully determine the

contribution of the R4 contact diagrams to the four-point function of the lowest dimension operator

in the same super-multiplet as the stress tensor. The flat space limit of the Mellin amplitude then

reproduces precisely the R4 contribution to the four-point scattering of super-gravitons in type IIA

string theory as a function of gs. This function receives contributions from genus zero and genus one

string worldsheets [130]. The reason why such a finite gs test of AdS/CFT is not available in the

maximally supersymmetric cases is that in 3d and 6d the bulk dual is an M-theory as opposed to

string theory background, while in the 4d case, whose dual is type IIB string theory on AdS5 × S5,

the required supersymmetric localization result in the limit of large N and finite gs ∝ g2YM is hard

to evaluate due to the contribution of instantons in the localized S4 partition function [15,131–134].

Our primary challenge is to determine the first few tree-level corrections to the correlator ⟨SSSS⟩.

As we shall see in Section 4.1, this task is simplified in Mellin space. Tree-level Mellin amplitudes have

a simple analytic structure, and can be related to flat space scattering amplitudes via the Penedones

formula. In Section 4.2 we study these flat space amplitudes, and solve the problem of computing

tree-level correlators in this simpler setting. Using both the flat space limit and the superconformal

Ward identities derived in Chapter 2, we are then able to compute tree-level corrections up to the

R4 term, which we do in Section 4.3.

With this task solved, we can apply our results to the string and M-theory limits of ABJ. In

Section 4.4 we use the known IIA string theory and M-theory flat space scattering amplitudes to

organize the large cT expansion of ⟨SSSS⟩, and can fix the contributions of certain Mellin amplitudes

by considering their flat space limits. We finish in Section 4.5 by combining certain CFT constraints

and the supersymmetric localization constraints derived in Chapter 3 to completely determine the

first few corrections to ⟨SSSS⟩ at large cT in each of the three stringy limits studied in this chapter.

Certain coefficients can be computed independently from both supersymmetric localization and the
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flat space limit, allowing us to test AdS/CFT beyond supergravity.

4.1 Mellin Space

Holographic correlators are simpler in Mellin space. To compute the Mellin transform of Si(U, V ),

we first compute the connected correlator by subtracting the disconnected part, defined in (2.78),

Siconn(U, V ) ≡ Si(U, V )− Sidisc(U, V ) , (4.1)

and then define M i(s, t) through the equation

Siconn(U, V ) =

∫ i∞

−i∞

ds dt

(4πi)2
U

s
2V

u
2 −1Γ2

[
1− s

2

]
Γ2

[
1− t

2

]
Γ2
[
1− u

2

]
M i(s, t) , (4.2)

where u = 4−s− t. The Mellin transform (4.2) is defined such that a bulk contact Witten diagrams

coming from a vertex with n = 2m derivatives gives rise to a polynomial M i(s, t) of degree m [22].

The two integration contours in (4.2) are chosen such that2

Re(s) < 2 , Re(t) < 2 , Re(u) = 4− Re(s)− Re(t) < 2 , (4.3)

which include all poles of the Gamma functions on one side or the other of the contour. These poles

naturally incorporate the effect of double trace operators [135].

In this chapter we focus on contact Witten diagrams, and in particular aim to find a basis of

Mellin amplitudes that can be used to write the contribution from contact Witten diagrams with

small numbers of derivatives. These Mellin amplitudes must satisfy three constraints:

1. They obey the crossing symmetry requirements

M1(s, t) =M1(s, u) , M2(s, t) =M1(t, s) , M3(s, t) =M1(u, t) ,

M4(s, t) =M4(s, u) , M5(s, t) =M4(t, s) , M6(s, t) =M4(u, t)

(4.4)

coming from the crossing symmetry of the full ⟨SSSS⟩ correlator.

2. They obey the supersymmetric Ward identities derived in Chapter 2. The SUSY Ward iden-

tities not only constrain M i(s, t), but they also allow us to determine the Mellin amplitudes
2This is the correct choice of contour provided that M i(s, t) does not have any poles with Re(s) < 2 or Re(t) < 2

or Re(u) < 2. If this is not the case (such as for the supergravity Mellin amplitude), the integration contour will have
to be modified in such a way that the extra poles are on the same side of the contour as the other poles in s, t, u,
respectively.
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corresponding to correlators of other operators in the stress tensor multiplet.

3. The M i(s, t) and all other Mellin amplitudes related to them by SUSY are polynomials in s, t.

We call the collection of Mellin amplitudes corresponding to four-point functions of operators

in the same super-multiplet a super-Mellin amplitude, and we define the degree of a polynomial

super-Mellin amplitude n to be the highest degree of any component Mellin amplitude.

For fixed m, we will label the Mellin amplitudes obeying these requirements as M i
m(s, t) in cases

where there is a unique such amplitude for a given m or by M i
m,k(s, t) in the cases where there

are multiple such amplitudes indexed by k. These Mellin amplitudes represent a basis for contact

Witten diagrams, with the number of derivatives in the interaction vertex being bounded from below

by 2m.

Note that, in general, supersymmetry relates the contact interactions for bulk fields with various

spins, and in flat space SUSY preserves the number of derivatives of the interaction vertices it relates.

In AdS however, the number of derivatives within a given super-vertex may vary, with the change in

the number of derivatives being compensated by an appropriate power of the AdS radius L. Thus,

it may happen that a four-scalar vertex with a given number of derivatives is part of a supervertex

containing other vertices with more derivatives. The corresponding Mellin amplitudes M i(s, t) will

then have lower degree than those of some four-point function of superconformal descendants of S,

and so M i
n(s, t) may have degree less than n. This fact will be very important in the analysis that

follows.

4.1.1 The Flat-Space Limit

Finding the Mellin amplitudes M i
n(s, t) that obey the conditions listed above is a difficult task, as

satisfying the third condition requires us to calculate Ward identities for many different correlators

and then examine the locality properties of their Mellin amplitudes. We can simplify matters by

first solving an analogous problem for flat space scattering amplitudes.

At large AdS radius, we can recover flat space scattering amplitudes for scalars using the Pene-

dones formula [128]. Applied to the superconformal primary S the relationship is (up to an overall

normalization N (L))

Ai(s, t) = lim
L→∞

N (L)
√
π

∫ κ+i∞

κ−i∞

dα

2πi
eαα− 1

2M i

(
L2

2α
s,
L2

2α
t

)
. (4.5)

Here, κ > 0, and Ai(s, t) is the corresponding 4d flat space scattering amplitude of graviscalars
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(or more precisely a scattering amplitude in 10d string theory or 11d M-theory with the momenta

restricted to lie within 4d and polarizations transverse to this 4d space), computed in the limit

where the AdS radius L is taken to infinity while keeping some other dimensionful length scale ℓUV

fixed. For string or M-theory duals we can take ℓUV to be either the 10d string length or 11d Planck

length, as we will do in Section 4.4.

From (4.5) we expect that each Mellin amplitude M i
m,k(s, t) gives rise to a local N = 6 scattering

amplitudeAim,k(s, t). This mapping should furthermore be one-to-one, since if two amplitudesM i
m,k1

and M i
m,k2

have the same large s, t limit, then their difference M i
m,k1
−M i

m,k2
will be a local Mellin

amplitude with degree at most m − 1. Thus, if we can find all of the number of local scattering

amplitudes of a given degree in s, t, then this will also tell us the number of Mellin amplitudes which

occur at this degree:3

# of degree m scattering amplitudes in 4d SUGRA

= # of degree m Mellin amplitudes in 3d SCFT .

(4.6)

Because the flat space scattering amplitudes are obtained as the large s, t limits of Mellin amplitudes,

finding all crossing-invariant, supersymmetric, and local N = 6 flat space scattering amplitudes is a

strictly simpler problem than finding all Mellin amplitudes with the same properties.

4.2 Scattering Amplitudes with N = 6 Supersymmetry

The toy problem described in the previous section is that of finding four-point scattering amplitudes

corresponding to counterterms in 4d N = 6 supergravity. Spinor helicity and on-shell supersym-

metric methods provide an efficient means to classify allowed counterterms in a theory. They were

first applied to 4d N = 8 in [136, 137], and have subsequently been generalized to other maximally

supersymmetric theories in [138, 139]. In the context of N = 6 supergravity these methods have

been applied to study amplitudes involving bulk graviton exchange [140,141].

We will begin this section with a lightning review of spinor-helicity variables, including their dis-

crete symmetries, before discussing the on-shell superspace formalism as applied to N = 6 theories.

For a much more detailed treatment of spinor-helicity and on-shell methods we recommend [142].

In Section 4.2.3 we apply these methods to classify counterterms in N = 6 supergravity which con-
3At a more abstract level, we can justify the correspondence (4.6) as follows. Local Mellin amplitudes correspond

to bulk contact Witten diagrams, which are themselves in one-to-one correspondence with local counterterms in AdS.
But since AdS is maximally symmetric, local counterterms in AdS are equivalent to local counterterms in flat space.
Since local counterterms in flat space correspond exactly to scattering amplitudes, we find that Mellin amplitudes
and scattering amplitudes are in one-to-one correspondence.
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tribute to four-particle scattering, and discuss their implications for N = 6 SCFTs in Section 4.2.4.

We then close with a discussion of four-particle exchange diagrams in Section 4.2.5.

4.2.1 Spinor-Helicity Review

For massless fermions, the Dirac equation for the wavefunction of 4-component spinors implies

/v±(p) = 0 , u±(p)/p = 0 . (4.7)

Here ± indicated the helicity h = ± 1
2 of the wavefunction. If we take our Dirac matrices to be in

the Weyl basis, namely

γ0 =

0 1

1 0

 , γi =

 0 σi

−σi 0

 , γ5 =

−1 0

0 1

 , (4.8)

where 1 stands for the 2× 2 identity matrix and σi, i = 1, 2, 3 are the standard Pauli matrices, then

the top two components of the Dirac spinor transform in the (1/2, 0) and bottom two in the (0, 1/2)

of SO(3, 1). For a given momentum pµ = (E,E sin θ cosϕ,E sin θ sinϕ,E cos θ), we can then define

the angle and square brackets as

|p⟩ȧ =
√
2E

 cos θ2

sin θ
2e
iϕ

 , |p]a =
√
2E

 sin θ
2

− cos θ2e
iϕ

 ,

[p|a =
√
2E

 cos θ2

sin θ
2e

−iϕ

 , ⟨p|ȧ =
√
2E

 sin θ
2

− cos θ2e
−iϕ

 ,

(4.9)

such that

v+(p) =

|p]a
0

 , v−(p) =

 0

|p⟩ȧ

 ,

u+(p) =

(
[p|a 0

)
, u−(p) =

(
0 ⟨p|ȧ

)
.

(4.10)

are solutions to (4.7). Now consider the scattering of massless particles b±i with helicity ±hi for

i = 1, 2, . . .. We define the scattering amplitude to be:

A[b±1 b
±
2 . . .]δ

(4)(p1 + p2 + . . .) = ⟨a±1 (p1)a
±
2 (p2) . . .⟩ (4.11)
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where a±i (p) is the annihilation operator of the ith particle, annihilating a particle of helicity ±hi and

momentum pi. The amplitude A[b±1 b±2 . . .] must be a Lorentz scalar which transforms covariantly

under the little group transformations.

We will finish by reviewing the discrete symmetries P and CT . Under parity P, we reverse the

spatial components of the momentum of a particle, while leaving the spin unchanged. Flipping the

direction of p⃗ is equivalent to sending θ → π− θ and ϕ→ ϕ±π in (4.9). Under this transformation,

the spinors in the first line of (4.9) get interchanged and so do the spinors on the bottom line. Thus,

parity acts4 as either Paȧ or P ȧa

Paȧ|p⟩ȧ = |p]a , P ȧa|p]a = |p⟩a , [p|aPaȧ = ⟨p|ȧ , ⟨p|ȧP ȧa = [p|a . (4.12)

The effect of parity is hence to swap all angle brackets with square brackets and vice versa, while

leaving all coefficients unchanged. For instance, P(c⟨12⟩) = c[12] for any constant c.

The second discrete symmetry we consider is CT , which is the product of charge conjugation and

time-reversal. Under CT , the spatial components of momentum also flip sign, just like for P, but in

addition CT also implements complex conjugation. Thus, from (4.9), we see that CT acts as either

(CT )ȧḃ or (CT )ab as follows:

(CT )ȧḃ|p⟩
ḃ = ⟨p|ȧ , (CT )ab|p]b = [p|a , ⟨p|ȧ(CT )ȧḃ = |p⟩

ḃ , [p|a(CT )ab = |p]b . (4.13)

Thus, the effect of CT is to flip all the brackets and perform complex conjugation on the coefficients—

for instance CT (c⟨12⟩) = c∗⟨21⟩ for any constant c.

The combined transformation of the two symmetries above, CPT , is a symmetry of all unitary

QFTs. On amplitudes, it acts by exchanging angle brackets with flipped square brackets and vice

versa, and it complex conjugates the coefficients. For instance, CPT (c⟨12⟩) = c∗[21]. Using CPT ,

we can relate a given amplitude to the amplitude of the CPT conjugate particles. For particles b1,

b2, etc. with CPT conjugate particles b1, b2, etc., we have

CPT
(
A[b±1 b

±
2 . . .]

)
= A[b

∓
1 b

∓
2 . . .] . (4.14)

4In terms of the four-component spinors (4.10), the action of parity takes the usual form:

v±(p0,−p⃗) = γ0v±(p0, p⃗) =

(
0 1
1 0

)
v±(p0, p⃗) .
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Φ Particles h+ ψ+ g+ F+ ϕ χ− a−

Helicity +2 +3/2 +1 +1/2 0 −1/2 −1
SU(6)R 1 6 15 20 15 6 1

Ψ Particles a+ χ+ ϕ F− g− ψ− h−

Helicity +1 +1/2 0 −1/2 −1 −3/2 −2
SU(6)R 1 6 15 20 15 6 1

Table 4.1: Massless particles in N = 6 supergravity.

4.2.2 N = 6 On-Shell Formalism

In N = 6 supergravity, the massless particles split into two supermultiplets: a multiplet we denote

by Φ that contains the positive helicity graviton h+, and its CPT conjugate multiplet we denote by

Ψ that contains the negative helicity graviton h−. In addition to the graviton h±, these multiplets

also contain the gravitino ψ±, the gauginos g±, fermions F± and χ±, scalars ϕ, and the graviphoton

a±. Table 4.1 lists the particles in these multiplets, along with their transformation properties under

the SU(6) R-symmetry of N = 6 supergravity. In the on-shell superspace formalism, the Φ and Ψ

superfields are polynomials in the Grassmann variables ηI , with I = 1, . . . 6 transforming in the 6

of SU(6):5

Φ ≡ h+ + ηIψ+
I +

1

2!
ηIηJg+IJ +

1

3!
ηIηJηKF+

IJK +
1

4!2
ηIηJηKηLϵIJKLMNϕ

MN

+
1

5!
ηIηJηKηLηM ϵIJKLMNχ

N− +
1

6!
ηIηJηKηLηMηN ϵIJKLMNa

−

Ψ ≡ a+ + ηIχ+
I +

1

2!
ηIηJϕIJ +

1

3!
ηIηJηKF+

IJK +
1

4!2
ηIηJηKηLϵIJKLMNg

MN

+
1

5!
ηIηJηKηLηM ϵIJKLMNψ

N− +
1

6!
ηIηJηKηLηMηN ϵIJKLMNh

− .

(4.15)

In a four-point superamplitude, such as A[ΦΦΨΨ], each particle i = 1, . . . , 4 is associated to some

Grassmannian variable ηIi . To compute a component scattering amplitude we simply differentiate

with respect to some of the Grassmannian variables while setting all others to zero. For instance:

A[h+h+h+h+] = A[ΦΦΨΨ]

∣∣∣∣∣
ηIi =0

,

A[h+h+h−h−] =

(
6∏

J=1

∂

∂ηJ3

)(
6∏

K=1

∂

∂ηK4

)
A[ΦΦΨΨ]

∣∣∣∣∣
ηIi =0

,

A[ϕ56ϕ56ϕ12ϕ12] =

(
4∏

J=1

∂

∂ηJ1

)(
4∏

K=1

∂

∂ηK2

)(
2∏

L=1

∂

∂ηL3

)(
2∏

M=1

∂

∂ηM4

)
A[ΦΦΨΨ]

∣∣∣∣∣
ηIi =0

.

(4.16)

5Upper I, J,K, . . . indices transform in the 6 of SU(6) while lower I, J,K, . . . indices transform in the 6 of SU(6).
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In this way a superamplitude A encodes all the amplitudes of its component particles.

Up to crossing, there are five possible 4 particle superamplitudes we can construct from Φ and

Ψ. However, under CPT the two supermultiplets Φ and Ψ are conjugates, and their scattering

amplitudes are related by complex conjugation

A[ΨΨΨΨ] = (A[ΦΦΦΦ])∗ , A[ΨΨΨΦ] = (A[ΦΦΦΨ])∗ . (4.17)

This leaves us only three independent superamplitudes, A[ΦΦΨΨ], A[ΦΦΦΨ], and A[ΦΦΦΦ]. Our

task now is to constrain the forms of these superamplitudes, beginning with invariance under super-

symmetry.

As explained in [142], for a given particle i the supermomentum is defined to be

qIi = |i⟩ηIi , q̃Ii = |i]
∂

∂ηIi
, (4.18)

and it satisfies the on-shell SUSY algebra by construction. For a given amplitude the total super-

momentum is thus:

QI =
∑
i

qIi , Q̃I =
∑
i

q̃Ii . (4.19)

Superamplitudes must be annihiliated by these supercharges. For a four-point amplitude such as

A[ΦΦΨΨ] this implies that

QIA[ΦΦΨΨ] = 0 , Q̃IA[ΦΦΨΨ] = 0 . (4.20)

Imposing these conditions uniquely fixes any four-point superamplitudes up to an arbitrary function

of s and t:

A[ΦΦΨΨ] = δ12(Q)
[12]4

⟨34⟩2
f1(s, t) ,

A[ΦΦΦΨ] = δ12(Q)
[12]5⟨14⟩⟨24⟩
⟨34⟩4

f2(s, t) ,

A[ΦΦΦΦ] = δ12(Q)
[12]4

⟨34⟩4
f3(s, t) ,

(4.21)

where the first factor is the Grassmann delta function

δ12(Q) =
1

24

6∏
I=1

4∑
i,j=1

⟨ij⟩ηIi ηIj , (4.22)
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∑
i |hi| A[ΦΦΨΨ] A[ΦΦΦΨ] A[ΦΦΦΦ]

0 A[ϕϕϕϕ] None None
1 A[F+χ−ϕϕ] A[ϕϕϕa+] None

A[ϕϕχ+F−] A[ϕϕF+χ+]

A[ϕχ−χ+ϕ] A[ϕϕg+ϕ]

A[ϕF+F−ϕ]

2 A[F+F+F−F−] A[F+F+F+F−] A[F+F+F+F+]

A[χ−χ−χ+χ+] A[F+F+ψ−χ+] A[g+F+F+ϕ]

A[ϕg+g−ϕ] A[ϕϕψ+F−] A[g+g+ϕϕ]

A[ϕa−a+ϕ] A[ψ+χ−ϕϕ] A[ψ+F+ϕϕ]

A[ϕg+F−F−] A[g+F+χ−ϕ] A[h+ϕϕϕ]

… …
… … … …
6 … … A[h+h+a−a−]

7 … A[h+h+a−h−] None
8 A[h+h+h−h−] None None

Table 4.2: Component amplitudes of each superamplitude, organized by total helicity
∑
i |hi|. Here

hi is the helicity of the ith particle. We have not included amplitudes equivalent to the ones listed
here under crossing.

which is annihilated by both QI and Q̃I , and fi(s, t) are functions of s and t. The delta function

δ12(Q) is automatically invariant under SU(6)R, even if the full theory does not preserve SU(6)R

[137].6 Note that every term in each superamplitude contains exactly 12 Grassmannian variables,

and, as a result, many component amplitudes vanish, including A[h+h+h+h+] = A[ϕϕϕϕ] = 0. See

Table 4.2 for a list of component amplitudes that do not vanish. The angle and square brackets in

(4.21) are required so that the Φ and Ψ components have the correct helicity, which for instance can

be fixed by considering

A[h+h+h−h−] = [12]4⟨34⟩4f1(s, t) ,

A[h+h+h−a−] = [12]5⟨34⟩2⟨14⟩⟨24⟩f2(s, t) ,

A[h+h+a−a−] = [12]4⟨34⟩2f3(s, t) .

(4.23)

Due to CPT invariance, the function f1(s, t) must always be real. We can see this by considering
6In flat space N = 6 the supersymmetry algebra does not require there to be an R-symmetry; it is an accidental

symmetry of the supergravity action. On the other hand, the superconformal algebra does require that at least an
SO(6)R symmetry be present in order for an AdS solution to preserve all supersymmetries of the theory.
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the first equation in (4.23), and then crossing both 1↔ 3 and 2↔ 4 to find that

A[h−h−h+h+] = ⟨12⟩4[34]4f1(s, t) , (4.24)

But the amplitude A[h−h−h+h+] is also related to A[h+h+h−h−] by CPT ,

CPT
(
A[h+h+h−h−]

)
= A[h−h−h+h+] = ⟨12⟩4[34]4f∗1 (s, t) , (4.25)

and from comparing this expression with (4.24) we conclude that f1(s, t) must be real. As a conse-

quence of this, we find that

CT
(
A[h+h+h−h−]

)
= [12]4⟨34⟩4f∗1 (s, t) = A[h+h+h−h−] , (4.26)

and so A[h+h+h−h−] is always CT -even. This relation extends to the full multiplet thus showing

that A[ΦΦΨΨ] is CT -even.

The functions f2,3(s, t), on the other hand, are in general complex, with their real and imaginary

parts corresponding to CT even and odd amplitudes respectively. For instance, if we consider the

third amplitude in (4.23) we see that

CT
(
A[h+h+a−a−]

)
= [12]4⟨34⟩2f∗3 (s, t) (4.27)

and so the amplitude A[h+h+a−a−] is CT even / odd if f3(s, t) is real / pure imaginary. From this we

conclude that A[ΦΦΦΦ] can be thought of as containing two distinct superstructures, one of which

is CT even and the other CT odd. Similar manipulations show that A[ΦΦΦΨ] also contains a CT

even and CT odd structure, corresponding to f2(s, t) purely real and purely imaginary respectively.

So far we have focused on the discrete spacetime symmetries. However, N = 6 superconformal

symmetry also allows a discrete R-symmetry Z, and so it is natural to extend this to N = 6 flat

space scattering amplitudes . Recall that the various particles in the Φ and Ψ multiplets transform

under an SU(6)R R-symmetry

ηI →M I
Jη

J , (4.28)

where M I
J is a unitary matrix with determinant 1. Let us now relax the determinant condition,

and instead consider a more general element of U(6). If we demand that the gravitons h+ and h−
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are preserved under Z, then without loss of generality we can take Z to act as

Z : Φ→ Φ , Ψ→ −Ψ , ηI → iηI . (4.29)

Under both Z and −Z the gauge fields flip sign

Z : a± → −a∓ , g± → −g∓ (4.30)

while the gravitons h± and the graviscalar ϕ are left invariant. The fermions will transform with

additional factors of i:

Z : Ψ± → ±iΨ∓ , F± → ∓iF∓ , χ± → ±iχ∓ . (4.31)

The full symmetry group is now (Z4×SU(6))/Z2, the subgroup of U(6) of matrices with determinant

±1. Note however that only fermion bilinears are physical. As a result, the transformation ηI → −ηI

acts trivially on all amplitudes. After quotienting the SU(6) by this Z2 symmetry, we find that the

symmetry group acting on the amplitudes is Z2 × (SU(6)/Z2), with Z2 = I.

While Z is a discrete R-symmetry of pure supergravity, it may or may not be a symmetry of

the corrections to supergravity, so we can classify the various amplitude structures as Z-even or

Z-odd. Since δ(12)(Q) contains twelve η’s, it is even under Z, and so we conclude that A[ΦΦΨΨ]

and A[ΦΦΦΦ] are even under Z and that A[ΦΦΦΨ] is odd. We can alternatively deduce this from

(4.23), since A[ΦΦΦΨ] contains an amplitude with an odd number of gauge fields, while the other

two amplitudes contain an even number.

To summarize, we have found that there are five linearly independent superamplitudes which

contribute to the scattering of four supergravitons. Two of these structures are both CT and Z

even, and there is a unique superamplitude for each of the other three possible CT and Z parity

combinations.

4.2.3 Counterterms in N = 6 Supergravity

We are now left to constrain the forms of fi(s, t) using locality and crossing symmetry. A tree-level

scattering amplitude is local if and only if it can be written as a polynomial in the spinor helicity

variables [ij] and ⟨ij⟩; note that

s = [12]⟨12⟩ = [34]⟨34⟩ , t = [13]⟨13⟩ = [24]⟨24⟩ , u = [14]⟨14⟩ = [23]⟨23⟩ . (4.32)
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From (4.23) we immediately see that it is not possible for fi(s, t) to contain poles in s, t or u, or else

the amplitudes in (4.23) would lead to non-polynomial expressions. Hence fi(s, t) are necessarily

polynomials for tree-level amplitudes. This is also sufficient, as when fi(s, t) = 1 one can check that

all amplitudes in the superamplitude are local.

Crossing symmetry imposes a series of further constraints. For instance, in (4.23) the amplitudes

must be invariant under interchanging the first and second particles. This gives us the relations

f1,3(s, t) = f1,3(s, u) , f2(s, t) = −f2(s, u) , (4.33)

where u = −s− t is the third Mandelstam variable. The superamplitudes A[ΦΦΦΦ] and A[ΦΦΦΨ]

are also invariant under crossing which exchange the first and third particles, giving rise to the

further conditions:

f2(s, t) = −f2(u, t) , f3(s, t) = f3(u, t) . (4.34)

Together, Eqs. (4.33) and (4.34) suffice to guarantee crossing under all possible permutations.

Having determined the allowed forms of fi(s, t), we can now determine the number of derivatives

in each interaction vertex. To this count each angle and square bracket contribute 1, δ12(Q) con-

tributes 6, and each power of s, t, u contributes 2. For instance, if we set f2(s, t) = sk and consider

the amplitude A[ΦΦΨΨ] = skδ12(Q) [12]4

⟨34⟩2 , it follows that this amplitude comes from an interaction

vertex with 8 + 2k derivatives, namely from an D2kR4 term.

With this in mind, we can now systematically find all local counterterms up to a certain number

of derivatives. In Table 4.3 we list all local counterterms up to 15 derivatives, corresponding to Mellin

amplitudes up to degree 7.5.7 In particular, the first local counterterm has 6 derivatives, is unique,

and contributes only to A[ΦΦΦΦ]. The next local counterterm has 8 derivatives and is also unique

and contributes only to A[ΦΦΨΨ]. There are two 10 derivative counterterms, one contributing to

A[ΦΦΦΦ] and one to A[ΦΦΦΦ], and so on. The counterterm with the lowest number of derivatives

that contributes to A[ΦΦΦΨ] has 15 derivatives and will not be important in this work.

4.2.4 Implications of Flat-Space Amplitudes for N = 6 SCFTs

Having systematically computed the local amplitudes in N = 6 supergravity, we will now discuss

the implications for holographic N = 6 SCFTs. First, we can deduce that there are five independent
7A Mellin amplitude of degree 7.5 would seem to require non-polynomial contributions to M i(s, t). Because

A[ΦΦΦΨ] always violates Z while ⟨SSSS⟩ is Z preserving, the Mellin amplitudes corresponding to A[ΦΦΦΨ] never
contribute to ⟨SSSS⟩ and so M i(s, t) remains a polynomial in s and t.
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deg. f1(s, t) f2(s, t) f3(s, t) Counterterms # sols. even sols.
3 — — 1 F 2R2 2 1
4 1 — — R4 1 1
5 s — s2 + t2 + u2 D4F 2R2 , D2R4 3 2
6 s2, t2 + u2 — stu D6F 2R2 , D4R4 4 3
7 s3, s(t2 + u2) — (s2 + t2 + u2)2 D8F 2R2 , D6R4 4 3

7.5 — (s− t)(t− u)(u− s) — D8FR3 2 0

Table 4.3: Counterterms in N = 6 supergravity, up to 15 derivatives. The last column lists the
number solutions which are CT and Z even.

superconformal invariants in the four-point function of four stress tensor multiplets. This counting

follows from the number of unknown real functions needed to fully determine the scattering ampli-

tudes of supergravitons, one for f1(s, t) and two each for f2(s, t) and f3(s, t), as these latter two

functions are in general complex.

Second, from Table 4.3 we can immediately deduce how many polynomial Mellin super-amplitudes

exist for a given degree in s, t. For instance, at third degree we have a single polynomial super-Mellin

amplitude with scalar component M i
3(s, t), and at fourth degree we additionally have another poly-

nomial super-Mellin amplitude with scalar component M i
4(s, t). Here, by third and fourth degree

we mean that the super-amplitudes that M i
3(s, t) and M i

4(s, t) have degree 3 or 4 for some of the

components of the amplitude, but not necessarily for the scalar components M i
3(s, t) and M i

4(s, t)

themselves. These scalar components may be of less than third and fourth degree, respectively.

In fact, it can be argued that while the scalar component M i
4(s, t) is of degree 4 in s, t, the

scalar component M i
3(s, t) is actually at most quadratic. This is because the leading order behavior

of the super-Mellin amplitudes that M i
3(s, t) and M i

4(s, t) are part of at large s and t must match

the corresponding super-scattering amplitude. Since the M i
3(s, t) amplitude contributes only to the

superamplitude A[ΦΦΦΦ] (as can be seen from Table 4.2), it does not give rise to a scalar scattering

amplitude. Therefore M i
3(s, t) must be at most quadratic, rather than cubic, in s and t. On the other

had, M i
4(s, t) contributes to the superamplitude A[ΦΦΨΨ], and this superamplitude does include a

scalar scattering amplitude, A[ϕϕϕϕ]. Thus, M i
4(s, t) must have degree 4.

We can be more precise and also find the leading large s, t behavior of all ⟨SSSS⟩ Mellin

amplitudes M i(s, t) for which M i(s, t) is of highest degree in the super-Mellin amplitude. (This

means we will be able to find the leading large s, t behavior of M i
4(s, t) but not of M i

3(s, t).) As per

(4.5), the leading large s, t behavior of M i(s, t) comes from the flat space amplitude Ai(s, t). The

only scattering amplitude with a scalar component is A[ΦΦΨΨ] which is fixed in terms of f1(s, t),

and so the leading large s, t behavior of M i(s, t) depends only on f1(s, t). The calculation proceeds in
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two steps. First we compute the amplitude A[ϕABCDϕEFGHϕIJϕKL], where we have made explicit

the SU(6) indices on ϕ and ϕ. We then relate ϕ and ϕ to the CFT operator S a
b , requiring us to

convert the SU(6) structures to SO(6) structures.

To compute A[ϕABCDϕEFGHϕIJϕKL], we must differentiateA[ΦΦΨΨ] with respect to the Grass-

mannian variables:

A[ϕABCDϕEFGHϕIJϕKL] =
∂

∂ηA1
· · · ∂

∂ηL4
A[ΦΦΨΨ]

=
∂

∂ηA1
· · · ∂

∂ηL4
δ12(Q)

[12]4

⟨34⟩2
f1(s, t)

=
[12]4

24⟨34⟩2
f1(s, t)

∂

∂ηA1
· · · ∂

∂ηL4

6∏
M=1

4∑
i,j=1

⟨ij⟩ηMi ηMj .

(4.35)

To simplify the process of differentiating δ(12)(Q), we can use SU(6) invariance to expand

A[ϕABCDϕEFGHϕIJϕKL]

= ϵABCDIJϵEFGHKLF1(s, t) + ϵABCDKLϵEFGHIJF2(s, t) + ϵABEFIKϵCDGHJLF3(s, t).

(4.36)

for some functions Fi(s, t). We can then choose specific numbers for each index A through L to

isolate each structure, and hence find that

F1(s, t) = 2s2u(4t− u)f1(s, t) , F2(s, t) = 2s2t(4u− t)f1(s, t) F3(s, t) = −s2tuf1(s, t) . (4.37)

Now we must relate A[ϕϕϕϕ] to ⟨SSSS⟩. To do so, we can rewrite S b
a as an antisymmetric 6× 6

matrix:

ŠIJ = S b
a C

[I
bcC

J]ac
, (4.38)

where recall that CIac are the SO(6) gamma matrices defined in Section 2.1. Up to normalization,

we then find that

ŠIJ −→
flat space

ϕABCDϵ
ABCDIJ + δIAδJBϕAB . (4.39)

This expression for ŠIJ breaks the SU(6) symmetry down to SO(6) due to the presence of the δIA

symbol. Applying this to the four-point function, we find that

⟨ŠI1J1 . . . ŠI4J4⟩ −→
flat space

sum of contracted permutations of A[ϕϕϕϕ]. (4.40)

We must now expand our final answer in terms of the SO(6) structures appearing in (2.5). To do
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so we choose a series of polarization matrices (Xi)
a
b and then define

X̌IJ
i = (Xi)

a
bC

[I
acC

J]bc
. (4.41)

Contracting both sides of (4.40) with matrices XIJ
i , on the left-hand side we find that

⟨ŠI1J1(x⃗1) . . . ŠI4J4(x⃗4)⟩X̌I1J1
1 · · · X̌I4J4

4 ∝ ⟨S(x⃗1, X1) · · ·S(x⃗4, X4)⟩ =
1

x212x
2
34

6∑
i=1

Si(U, V )Bi .

(4.42)

We then Mellin transform and take the flat space limit (4.5) to find that

⟨ŠI1J1(x⃗1) . . . ŠI4J4(x⃗4)⟩X̌I1J1
1 · · · X̌I4J4

4 −→
flat space

N
x212x

2
34

[
A1(s, t)A12A34 + · · ·+A6(s, t)B1342

]
(4.43)

for some overall normalization constant N . Computing the right-hand side of (4.40) is more straight-

forward; we simply contract the XIiJi
i matrices with the various permutations of A[ϕϕϕϕ]. By im-

posing (4.40) for many different matrices (Xi)
a
b we can completely determine Ai(s, t) in terms of

f1(s, t), and upon choosing a suitable value for N , we find that

A1(s, t) = −1

2
tu
(
−s2f1(s, t) + u2f1(u, s) + t2f1(t, s)

)
,

A2(s, t) = −1

2
su
(
s2f1(s, t) + u2f1(u, s)− t2f1(t, s)

)
,

A3(s, t) = −1

2
ts
(
s2f1(s, t)− u2f1(u, s) + t2f1(t, s)

)
,

A4(s, t) = −1

2
stu (uf1(u, s) + tf1(t, s)) ,

A5(s, t) = −1

2
stu (uf1(u, s) + sf1(s, t)) ,

A6(s, t) = −1

2
stu (sf1(s, t) + tf1(t, s)) .

(4.44)

From (4.44), we can also determine f1(s, t) in terms of Ai(s, t):

f1(s, t) = −
1

s3

(
A2(s, t)

u
+
A3(s, t)

t

)
. (4.45)

We can then apply (4.44) to M i
4(s, t), which at large s, t should asymptote to Ai(s, t) with

f1(s, t) = 1 (see Table 4.3). We hence find

M i
4(s, t) =

(
t2u2 s2u2 s2t2 s2tu

2
st2u
2

stu2

2

)
+ subleading in s, t . (4.46)
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4.2.5 Exchange Amplitudes

So far we have considered local contact amplitudes. The only other tree-level diagrams which appear

in four-point functions are exchange diagrams. These can be built up from the on-shell three point

amplitudes using on-shell recursion relations (see for instance chapter 3 of [142]), and so our first

task is to find the allowed three point amplitudes.

Three point amplitudes are subtle due to special kinematics; conservation of momentum implies

that either

[12] = [13] = [23] = 0 or ⟨12⟩ = ⟨13⟩ = ⟨23⟩ = 0 . (4.47)

For real momenta [ij]∗ = ⟨ji⟩ so this would seem to rule out any interesting amplitudes. This issue

is resolved by analytically continuing to complex momenta. Locality and little-group scaling then

uniquely fix three-point functions to take the form:

A[1h12h23h3 ] =



c[12]h1+h2−h3 [13]h1+h3−h2 [23]h2+h3−h1 if h1 + h2 + h3 > 0

c⟨12⟩h3−h1−h2⟨13⟩h2−h1−h3⟨23⟩h1−h2−h3 if h1 + h2 + h3 < 0

c if h1 = h2 = h3 = 0

0 otherwise

(4.48)

where c is an arbitrary constant [142,143]. Superamplitudes must furthermore satisfy the supersym-

metric Ward identities, and this uniquely fixes them to take the form:

A[ΦΦΨ] =
g1

[13]2[23]2
δ(6)([12]η3 + [23]η1 + [31]η2) +

g2⟨12⟩3

⟨13⟩7⟨23⟩7
δ(12)(⟨12⟩η3 + ⟨23⟩η1 + ⟨31⟩η2) ,

A[ΦΦΦ] = g3
[12][13][23]

δ(6)([12]η3 + [23]η1 + [31]η2) ,

(4.49)

where

δ(6)([12]η3 + [23]η1 + [31]η2) =

6∏
I=1

([12]η3I + [23]η1I + [31]η2I) ,

δ(12)(⟨12⟩η3 + ⟨23⟩η1 + ⟨31⟩η2) =
6∏
I=1

(⟨12⟩η3I + ⟨23⟩η1I + ⟨31⟩η2I)2 .

(4.50)

The g1 term in the A[ΦΦΨ] superamplitude corresponds to the usual supergravity three-point func-
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tion, and in particular gives rise to a graviton scattering amplitude

A[h+h+h−] = g1
[12]6

[13]2[23]2
. (4.51)

The g2 and g3 terms both vanish due to crossing symmetry; if we exchange 1↔ 2 then A[ΦΦΦ] and

A[ΦΦΨ] must be even, but this is only possible if g2 = g3 = 0.

Since there is only one supergravity three-point function, we can now determine the corresponding

unique four-point exchange amplitude. Because the tree-level graviton amplitudes in pure super-

gravity are identical to those in pure gravity [142], we can simply use the pure gravity result to

deduce that

fSG
1 (s, t) =

g21
stu

, fSG
2 (s, t) = fSG

3 (s, t) = 0 . (4.52)

We can then substitute this into (4.44) to find that the A[ϕϕϕϕ] amplitude at large s, t is expected

to be

M i
SG(s, t) = g21

(
tu
s

su
t

st
u

s
2

t
2

u
2

)
+ subleading in s, t . (4.53)

4.3 Holographic Correlators with N = 6 Supersymmetry

We will now determine the full form of the first few Mellin amplitudes contributing to ⟨SSSS⟩. We

will begin by fixing M3(s, t), by using the supersymmetric Ward identities and requiring that all

four-scalar and two-scalar, two-fermion amplitudes are polynomial. We then compute the degree

four amplitude M i
4(s, t) and the supergravity amplitude M i

SG(s, t) by reducing the known N = 8

results to N = 6.

4.3.1 Computing M3(s, t)

We can translate the ⟨SSSS⟩ Ward identities (2.12) into Mellin space using the definition of the

Mellin transform M i(s, t) of ⟨SSSS⟩ in (4.2). We then find that the effect of multiplication by

UmV n and of differentiating with respect to U and V corresponds in Mellin space to the operators

ÛmV nM(s, t) =M(s− 2m, t+ 2m+ 2n)
(
1− s

2

)2
m

(
1− t

2

)2

−m−n

(
1− u

2

)2
n
,

∂̂mUM(s, t) =
(s
2
+ 1−m

)
m
Û−mM(s, t) ,

∂̂mV M(s, t) =
(u
2
−m

)
m
V̂ −mM(s, t) .

(4.54)
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Applying these rules to the position space Ward identities (2.12) yields a pair of finite difference

equations for M i(s, t). We now impose the following constraints to find M3:

1. M i
3 must satisfy crossing symmetry (4.4).

2. M i
3 must be a degree 2 polynomial solution of the ⟨SSSS⟩ Ward identity. The ansatz for

M3 is only degree 2, since in the previous section we showed that A3 does not appear in the

scattering of four scalars, so M3 must vanish in the flat space limit.

3. M3 must remain a polynomial when expressed as correlator of other operators in the stress

tensor multiplet using the Ward identities in the previous section.8 The degree of these poly-

nomials is at most 2 if the corresponding flat space amplitude vanishes, and 3 otherwise.

Condition 3 was trivially satisfied in the maximally supersymmetric cases previously considered in

various dimensions [74,118], where polynomial Mellin amplitudes for ⟨SSSS⟩ remained polynomials

for all other stress tensor multiplets correlators. In our case though, we find that just imposing

conditions 1 and 2 leads to five linearly independent solutions: a degree 0, a degree 1, and three

degree 2:

degree 0: M1 = 1 , M4 = 1 ,

degree 1: M1 = s , M4 =
s− 4

2
,

1st degree 2: M1 = (t− 2)(u− 2) , M4 =

(
s− 4

3

)
(s− 2) ,

2nd degree 2: M1 = tu , M4 =
s(s− 4)

2
,

3rd degree 2: M1 = s2 , M4 = s2 + tu− 3s .

(4.55)

To reduce these to a unique amplitude, we must consider the other Ward identities for ⟨SSχχ⟩,

⟨SSχF ⟩, ⟨SSFF ⟩, and ⟨SSFF ⟩ given in Appendix A. To translate these into Mellin space, we

first note that any four-point correlator between two dimension 1 scalars ϕ and two dimension 3/2

fermions ψα(x) takes the form

⟨ϕ(x⃗1)ϕ(x⃗2)ψα(x⃗3)ψβ(x⃗4)⟩ =
i/x
αβ
34

x212x
4
34

H1(U, V ) +
i(/x13/x24/x12)

αβ

2x412x
4
34

H2(U, V ) . (4.56)

8Instead of imposing this requirement, we could alternatively impose the condition that certain operators in the
S × S OPE do not acquire anomalous dimensions. For instance, we can uniquely determine M3 if we impose this
requirement for the spin 0 operators of dimension 2 in the 84, 20′, and 15s irreps of SO(6)R, as well as for the spin 1
operator of dimension 3 in the 45⊕ 45, all of which belong to protected multiplets and do not mix with unprotected
operators.
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We can then define Mellin transforms Mϕϕψψ
i (s, t) of the connected parts of the correlators Hϕϕψψconn,i

by the equations

Hϕϕψψconn,1(U, V ) =

∫ i∞

−i∞

ds dt

(4πi)2
U

s
2V

u
2 −1Γ

[
1− s

2

]
Γ
[
2− s

2

]
Γ2

[
1− t

2

]
Γ2
[
1− u

2

]
Mϕϕψψ

1 (s, t) ,

Hϕϕψψconn,2(U, V ) =

∫ i∞

−i∞

ds dt

(4πi)2
U

s
2V

u
2 −1Γ2

[
2− s

2

]
Γ2

[
1− t

2

]
Γ2
[
1− u

2

]
Mϕϕψψ

2 (s, t) ,

(4.57)

where, as previously, we define u = 4 − s − t. These expressions were derived in [144] using AdS4

Witten diagram calculations. The arguments of the Gamma functions were chosen so that bulk

contact Witten diagrams correspond to polynomial Mellin amplitudes. Using the definition (4.57),

we find that drivatives of U and V and powers of U and V in position space act on Mϕϕψψ
i (s, t) as

∂̂mUM
ϕϕψψ
i (s, t) =

(s
2
+ 1−m

)
m
Û−mMϕϕψψ

i (s, t) ,

∂̂mV M
ϕϕψψ
i (s, t) =

(u
2
−m

)
m
V̂ −mMϕϕψψ

i (s, t) ,

ÛmV nMϕϕψψ
1 (s, t) =Mϕϕψψ

1 (s− 2m, t+ 2m+ 2n)
(
1− s

2

)
m

(
2− s

2

)
m

(
1− t

2

)2

−m−n

(
1− u

2

)2
n
,

ÛmV nMϕϕψψ
2 (s, t) =Mϕϕψψ

2 (s− 2m, t+ 2m+ 2n)
(
2− s

2

)2
m

(
1− t

2

)2

−m−n

(
1− u

2

)2
n
.

(4.58)

For the correlators ⟨SSχχ⟩, ⟨SSχF ⟩, ⟨SSFF ⟩, and ⟨SSFF ⟩, we define their Mellin amplitudes

by Mellin transforming the individual functions of U and V given in Appendix A. For instance, we

can write ⟨SSχχ⟩ in terms of the structures Ca,I(U, V ) defined in (A.4), where the indices a = 1, 2, 3

and I = 1, 2 refer to the various R-symmetry and conformal structures, respectively. The Mellin

transform MSSχχ
a,I (s, t) of these Ca,I(U, V ) is then defined by (4.57). We can relate MSSχχ

a,I (s, t) to

M i(s, t) as

MSSχχ
a,1 =

(
1− s

2

)−1

D̂Cai,1(U, V, ∂U , ∂V )M
i(s, t) ,

MSSχχ
a,2 =

(
1− s

2

)−2

D̂Cai,2(U, V, ∂U , ∂V )M
i(s, t) ,

(4.59)

where the ⟨SSχχ⟩Ward identity DCai,1 is given in position space in (A.5), we express derivatives and

powers of U and V in Mellin space using the rules (4.54), and s-dependent prefactors come from the

difference in the definition of the scalar and fermion Mellin amplitudes in (4.2) and (4.57). We find
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that degree 0 amplitude in (4.55) gives

degree 0: MSSχχ
1,1 (s, t) = 0 , MSSχχ

2,1 (s, t) =
1

16
, MSSχχ

3,1 (s, t) =
2− t
16u

,

MSSχχ
1,2 (s, t) = 0 , MSSχχ

2,2 (s, t) =
1

8t
, MSSχχ

3,2 (s, t) =
1

8u
,

(4.60)

which contain poles, and so must be discarded.

When we apply this method to the Ward identities for ⟨SSFF ⟩ and ⟨SSFF ⟩, a new subtlety

emerges. These Ward identities (A.13), (A.15), and (A.17) depend on both ⟨SSSS⟩ and ⟨SSFF ⟩,

and in particular can be written in terms of not only S1(U, V ) and S4(U, V ), but also the functions

Fa,1(U, V ) for ⟨SSFF ⟩ defined in (A.3), where a = 1, 2 labels the two R-symmetry structures.

To derive the constraints from these Ward identities up to degree 2, we must consider a degree 2

polynomial ansatz for the Mellin transform MSSFF
a,1 (s, t) of Fa,1(U, V ), which satisfies the crossing

relations

MSSFF
1,1 (s, t) =MSSFF

2,1 (s, u) +
(
1− s

2

)
MSSFF

2,2 (s, u) ,

MSSFF
2,1 =MSSFF

1,1 (s, u) +
(
1− s

2

)
MSSFF

1,2 (s, u) ,

MSSFF
1,2 (s, t) = −

(
1− s

2

)
MSSFF

2,2 (s, u) ,

MSSFF
2,2 (s, t) = −

(
1− s

2

)
MSSFF

1,2 (s, u) ,

(4.61)

where the s-dependent prefactors come from the difference in the definition of the fermion Mellin

amplitudes in (4.57) for the two different conformal structures. After imposing the ⟨SSχF ⟩, ⟨SSFF ⟩,

and ⟨SSFF ⟩Ward identities, just as we did for ⟨SSχχ⟩ above, and demanding that all poles vanish,

we find that MSSFF
a,1 (s, t) is completely fixed in terms of M i(s, t) up to degree 2, and that only a

single degree 2 solution for M i(s, t) survives:

M3 : M1
3 = (t− 2)(u− 2) , M4

3 =

(
s− 4

3

)
(s− 2) . (4.62)

Thus we have found the unique degree 3 Mellin amplitude M3(s, t) which contributes to ⟨SSSS⟩.

4.3.2 Computing M4(s, t) and Supergravity Exchange

To compute both M i
4(s, t) and M i

SG(s, t), we can make use of previous results in the literature for

N = 8 SCFTs. Recall that N = 8 SCFTs are special cases of N = 6 SCFTs. The N = 8 stress

tensor multiplet is a superset of the N = 6 stress tensor multiplet. In particular, the superconformal
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primary is a ∆ = 1scalar operator SAB(x⃗) transforming in the 35c irrep of the so(8)R R-symmetry.9

(Here SAB(x⃗), with A,B = 1, . . . , 8 being 8c indices, is a traceless symmetric tensor.) Like in the

N = 6 case, we can use an index-free notation by contracting SAB(x⃗) with a symmetric traceless

8 × 8 matrix XAB . The four-point function of the 35c scalar operator is restricted by conformal

invariance and so(8)R to take the form

⟨S(x⃗1, X1) · · ·S(x⃗4, X4)⟩ =
1

x212x
2
34

[
S1(U, V )A12A34 + S

2
(U, V )A13A24 + S

3
(U, V )A14A23

+ S4(U, V )B1423 + S
5
(U, V )B1234 + S

6
(U, V )B1342

]
,

(4.63)

where we define10

Aij ≡ tr(XiXj) , Bijkl ≡ tr(XiXjXkX l) . (4.64)

The Mellin amplitudes for Si which correspond to contact interactions were found in [65]. With

our definition (4.2) (with Siconn replaced by Siconn and M i replaced by M i), the result in [65] for the

quartic amplitude is

M
1

4 =
1

35
(t− 2)(u− 2)(35tu+ 100s− 112) ,

M
4

4 =
2

35
(s− 2)(35stu− 90(t2 + u2)− 280tu− 324s+ 1072) .

(4.65)

To relate (4.65) to M i
4(s, t) we must relate the so(8)R structures (4.64) to the su(4)R ones

defined in (2.6). Under the decomposition so(8) → su(4), we have 8c → 4 + 4, which implies

35c → 10+ 10+ 15. To select the 15, we restrict the 8× 8 matrices X to take the form

X =
1√
2

[
(ReX)⊗ I2 + (ImX)⊗ (iσ2)

]
, (4.66)

where X is a 4× 4 traceless hermitian matrix, I2 is the 2× 2 identity matrix, and σ2 is the second

Pauli matrix. (See equation (3.16) of [65].11) It is straightforward to check that

A12 = B1 , B1423 =
1

4
B4 , (4.67)

9The fact that this representation is the 35c as opposed to one of the other two 35-dimensional irreducible
representations of so(8)R assumes a choice of the triality frame.

10Despite the use of matrix so(8) polarizations here, the Si
(U, V ) here are equal to the Si(U, V ) in [65].

11The factor of 1/
√
2 is just a choice of normalization.
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with analogous expressions for the rest of the R-symmetry structures in ⟨SSSS⟩. This implies that

Si = Si for i = 1, 2, 3 and Si = 1
4S

i for i = 4, 5, 6 and analogously for the Mellin amplitudes. Thus,

M4 : M1
4 =

1

35
(t− 2)(u− 2)(35tu+ 100s− 112) ,

M4
4 =

1

70
(s− 2)(35stu− 90(t2 + u2)− 280tu− 324s+ 1072) ,

(4.68)

where the other M i
4 are given by crossing (4.4). The Mellin amplitudes M i

4 are normalized so that

at large s, t they obey (4.46).

We can fix the supergravity amplitude M i
SG(s, t) in an identical fashion. The N = 8 supergravity

amplitude was derived in [117]. Using equations (E.1) and (4.8) of [118], and converting to N = 6

notation, we find that

M1
SG = − (t− 2)(u− 2)

s(s+ 2)

(
4Γ
(
1−s
2

)
√
πΓ
(
1− s

2

) − (4 + s)

)
,

M4
SG = −s− 2

2tu

(
2uΓ

(
1−t
2

)
√
πΓ
(
1− t

2

) + 2tΓ
(
1−u
2

)
√
πΓ
(
1− u

2

) + 2s− tu− 8

)
,

(4.69)

where the other M i
SG are given by crossing (4.4). We normalize M i

SG so that at large s, t they obey

(4.53) with g1 = 1. Note that, as an exchange diagram, M i
SG(s, t) contains an infinite series of poles

that correspond to the exchange of stress tensor multiplet operators (or the exchange of the graviton

multiplet in the bulk) and their conformal descendants.

4.4 ABJ Correlators at Large cT

We now fix the first few corrections to ⟨SSSS⟩ in each of the stringy regimes of ABJ described in

Section 1.3.2. In each of these limits, we can use the Penedones formula (4.5) to relate the ⟨SSSS⟩

Mellin amplitude to the four-point scattering amplitudes of gravitons and their superpartners in 11d

(in the M-theory case) or 10d (in the type IIA case) flat space, with momenta restricted to lie within

a four-dimensional subspace. Of course, the flat space limit of the ⟨SSSS⟩ correlator in ABJ theory

cannot give the four-point scattering amplitude of all massless particles in 11d or 10d. Indeed, in

either 11d M-theory or in 10d type IIA string theory, the massless particle spectrum consists of 128

bosons and 128 fermions that are related by maximal SUSY. The flat space limit of the ⟨SSSS⟩

correlator must match the four-point scattering amplitude of only 15 of the 128 bosons, which all

have the property that after restricting their momenta to lie within 4d, they can be thought of as
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scalars from the 4d point of view.12 Note that when using Eq. (4.5), we should keep either the 11d

Planck length ℓ11 or the 10d string length ℓs fixed as we send L → ∞. In other words, we should

more precisely send L/ℓ11 or L/ℓs to infinity.

As we have seen in the previous sections, the ingredients we will use to construct the first few

terms in the large N expansion of the ⟨SSSS⟩ correlator are the Mellin amplitudes

M i
SG(s, t) , M i

3(s, t) , M i
4(s, t) , (4.70)

given in (4.69), (4.62), and (4.68), respectively. M i
SG is the Mellin amplitude corresponding to an

exchange Witten diagram with supergravity vertices. M i
3 is a polynomial Mellin amplitude that

represents the ⟨SSSS⟩ component of a degree 3 super-Mellin amplitude corresponding to a contact

Witten diagram with an F 2R2 contact interaction vertex. Likewise, M i
4 is part of a degree 4 super-

Mellin amplitude corresponding to a contact Witten diagram with an R4 super-vertex. As explained

in Section 4.2, if we apply the Penedones formula (4.5) to each of the Mellin amplitudes (4.70), we

find that
1

L2N (L)
M i

SG(s, t) −→
flat space

AiSG(s, t) =

(
tu
s

su
t

st
u

s
2

t
2

u
2

)
,

1

L6N (L)
M i

3(s, t) −→
flat space

Ai3(s, t) = 0 ,

1

L8N (L)
M i

4(s, t) −→
flat space

Ai4(s, t) =
stu

105
AiSG(s, t) .

(4.71)

Here, the normalization constant N (L) appearing in (4.5) depends on our precise choice of normal-

ization for the ⟨SSSS⟩ correlator. If we normalize this correlator such that the disconnected piece

scales as c0T , then we should take N (L) = N0L
D, where D = 7 for the case of an 11d dual and

D = 6 for the case of a 10d dual.

In addition to (4.70), we will also consider the contact Mellin amplitudes

M i
5,1(s, t) , M i

5,2(s, t) , (4.72)

which are part of degree-5 super-Mellin amplitudes corresponding to D2R4 and D4F 2R2 interaction

vertices, respectively. While in Section 4.3 we did not determine the forms of M i
5,1 and M i

5,2, we

know that such Mellin amplitudes must exist because they must reproduce the scattering amplitudes

in the 3rd line of Table 4.3 in the flat space limit. Upon a convenient choice of normalization, the
12More generally, from all the 4-point CFT correlators of the N = 6 stress tensor multiplet, we would be able to

determine the 4-point scattering amplitudes of precisely half (64 bosons + 64 fermions) of the massless particles of
both 11d M-theory and 10d type IIA string theory.
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flat space limits of the Mellin amplitudes can be taken to be

1

L10N (L)
M i

5,1(s, t) −→
flat space

Ai5,1(s, t) =
1

945
stu

(
s2 + 3t2 + 3u2 · · ·

)
,

1

L10N (L)
M i

5,2(s, t) −→
flat space

Ai5,2(s, t) = 0 .

(4.73)

The Mellin amplitudes M i
SG, M i

3, M i
4, M i

5,1, and M i
5,2 are the only crossing-invariant Mellin ampli-

tudes that obey the SUSY Ward identities and that grow at most as the fifth power of s, t at large

s and t.

We now analyze the (Mellin transform of) the ⟨SSSS⟩ correlator in each of the three large N

stringy limits of ABJ.

4.4.1 Large cT , finite k

Recall from Section 1.3.2 that at large cT limit with k fixed, ABJ theory is dual to M-theory on

AdS4 × S7/Zk, with

L9

ℓ911
=

3πk

211
cT +O(c0T ) , (4.74)

From this relation, the flat space limits (4.71) and (4.73), as well as the requirement that in the

flat space limit the scattering amplitude should have an expansion in ℓ11 times momentum, we infer

that M i(s, t) has the large cT expansion

M i(s, t) =
1

cT
A1

SGM
i
SG +

1

c
13
9

T

[
A3

SGM
i
SG +A3

3M
i
3

]
+

1

c
5
3

T

[
A4

SGM
i
SG +A4

3M
i
3 +A4

4M
i
4

]
+

1

c
17
9

T

[
A5

SGM
i
SG +A5

3M
i
3 +A5

4M
i
4 +A5

5,1M
i
5,1 +A5

5,2M
i
5,2

]
+O(c−2

T ) ,

(4.75)

where Ali,j are k-dependent numerical coefficients. In the flat space limit only the maximal degree

Mellin amplitudes contribute at each order in 1/cT , and so from (4.71) and (4.73) we find that

Ai(s, t) = ℓ911

(
A1

SGAiSG +

(
3kπ

211

)2/3

ℓ611A
4
4Ai4 +

(
3kπ

211

)8/9

ℓ811A
5
5,1Ai5,1 + · · ·

)
. (4.76)

Note that neither Ai3 nor Ai5,2 give rise to scalar scattering amplitudes in flat space, which is

why they do not appear in (4.76). Comparing (4.76) to the known M-theory four-point scattering
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amplitude [145]

A11 = A11
SG

[
1 + ℓ611

1

3 · 27
stu+O(ℓ911)

]
, (4.77)

where A11
SG is the 11d supergravity scattering amplitude, we can immediately deduce that

A4
4

A1
SG

= 35

(
2

9π2k2

)1/3

, A5
5,1 = 0 . (4.78)

Although M i
3 and M i

5,2 do not give rise to scattering amplitudes for the 11d super-gravitons that

are scalars from the 4d point of view, they do contribute to the scattering of other particles in the

same multiplet. The M-theory amplitude (4.77) however encodes the scattering amplitudes for all

such particles, and it does not contain any terms of order ℓ1311 or ℓ1711. From this we conclude that

A3
3 = A5

5,2 = 0 . (4.79)

As a final aside, note that the O(c−2
T ) term (4.75) is not a local Mellin amplitude. It instead

corresponds to the one-loop supergravity term, which is not analytic in s and t. We will not study

this term any further.

4.4.2 ’t Hooft strong coupling limit

We next consider the strong coupling ’t Hooft limit of ABJ theory, whereby we first take N → ∞

with fixed λ (see (1.56) for the definition of λ), and then take λ→∞, holding M finite. As discussed

in Section 1.3.2, in this double limit, ABJ theory is dual to weakly coupled type IIA string theory

on AdS4 × CP3 with

L8

ℓ8s
= 4π4λ2 + . . . , g2s =

512λ2

3cT
+ . . . , (4.80)

Similarly to the M-theory limit discussed above, we can expand M i(s, t) in powers of ℓs/L, with

the appropriate powers of ℓs/L chosen such that after taking the flat space limit, the string theory

scattering amplitude has an expansion in ℓs times momentum. Unlike M-theory however, type

IIA string theory has an additional dimensionless parameter, the string coupling constant gs, that
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governs the strength of string interactions. Simultaneously expanding in both, we find that

M(s, t) =
1

cT

[
B1

SGMSG +
1

λ

(
B3

SGMSG +B3
3M3

)
+

1

λ
3
2

(
B4

SGMSG +B4
3M3 +B4

4M4

)
+

1

λ2
(
B5

SGMSG +B5
3M3 +B5

4M4 +B5
5,1M5,1 +B5

5,2M5,2

)
+O(λ−

5
2 )

]
+

1

c2T

[
λ2B̃1

SGMSG + λ
(
B̃3

SGMSG + B̃3
3M3

)
+
√
λ
(
B̃4

SGMSG + B̃4
3M3 + B̃4

4M4

)
+O(λ0)

]
+O(c−3

T ) ,

(4.81)

where Bli,j and B̃li,j are numerical coefficients. The leading order 1/cT behavior corresponds to

tree-level string theory, and the higher order terms are loop corrections. At fixed order in 1/cT and

1/λ only the maximal degree Mellin amplitudes contribute in the flat space limit, and so we find

that

Ai(s, t) = 3π4

128
g2sℓ

8
s

(
B1

SGAiSG + 2
√
2π3ℓ6sB

4
4Ai4 + 4π4ℓ8sB

5
5,1Ai5,1 + · · ·

)
+

9π4

216
g4sℓ

8
s

(
B̃1

SGAiSG + 2
√
2π3ℓ6sB̃

4
4Ai4 + · · ·

)
.

(4.82)

Although the 1/c2T terms are one-loop corrections, non-analytic Mellin amplitudes will occur first at

λ0/c2T corresponding to the one-loop correction in supergravity. Comparing this to the IIA S-matrix

at weak coupling [146]

A10
IIA = A10

SG

[(
1 + ℓ6s

ζ(3)

32
stu+O(ℓ10s )

)
+ g2s

(
ℓ6s
π2

96
stu+O(ℓ8s)

)
+O(g4s)

]
, (4.83)

we find that
B4

4

B1
SG

=
105ζ(3)

64
√
2π3

,
B̃4

4

B1
SG

=
140
√
2

3π
, B5

5,1 = B̃1
SG = 0 . (4.84)

Like the M-theory amplitude, the type IIA super-amplitude does not contain any terms which could

correspond to M i
3 or M i

5,2, which in 10d contribute at ℓ12s and ℓ16s . We hence conclude that these

terms do not contribute at leading order:

B3
3 = B̃3

3 = B5
5,2 = 0 . (4.85)
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4.4.3 Large cT , finite µ

Finally, consider the large N expansion of ABJ at finite µ. This regime interpolates between the

two limit considered previously. The bulk and boundary quantities are related by the equation

L8

ℓ8s
=

3cTπ
5√µ

16
√
2

+ · · · , g4s = 32π2µ+ · · · , (4.86)

with corrections suppressed at large cT . They imply that M i(s, t) can be expanded at large cT in

terms of M i
n(s, t) as

M i(s, t) =
1

cT
C1

SGM
i
SG +

1

c
3
2

T

[
C3

SGM
i
SG + C3

3M
i
3

]
+

1

c
7
4

T

[
C4

SGM
i
SG + C4

3M
i
3 + C4

4M
i
4

]
+O(c−2

T ) ,

(4.87)

where now Cli,j are µ-dependent numerical coefficients. This expansion is nothing but a reorganized

version of the double expansion (4.81). Unlike in the previous limits, we do not include the two

amplitudes M i
5,1 and M i

5,2 because in this case they contribute at the same order in 1/cT as the

one-loop supergravity Mellin amplitude. Taking the flat space limit of (4.87) we find that

Ai(s, t) = 3π4

128
g2sℓ

8
s

(
C1

SGAiSG + ℓ6s

(
9π8g4s
214

)3/8

C4
4Ai4 +O(ℓ8s)

)
(4.88)

This expression can be compared with the type IIA scattering amplitude at fixed gs, computed

in [147]:

A10
IIA = A10

SG

[
1 + ℓ6sstu

(
ζ(3)

32
+ g2s

π2

96

)
+O(ℓ8s)

]
. (4.89)

Note that the ℓ6s term receives contributions at tree-level and one-loop, and has no further pertur-

bative or non-perturbative corrections.

By comparing (4.89) and (4.88), we conclude that

C4
4

C1
SG

=
35

2π4

(
9π2

32µ3

)1/8(
ζ(3) +

4

3

√
2µπ3

)
. (4.90)

We can recover both the finite k and strong coupling ’t Hooft limit expansions from (4.87) by

taking the µ → ∞ and µ → 0 limits respectively, as we explain at the end of Section 3.2.3. Using

the relations (3.71) and (3.72), we find that the c−
7
4

T term becomes the c−
5
3

T term at finite k, and

gives rise to both the c−1
T λ−

3
2 and c−2

T λ
1
2 terms in the strong coupling ’t Hooft limit.
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4.5 Constraints from CFT Data

In the previous section, we derived general ansaetze (4.75), (4.81) and (4.87) for the Mellin ampli-

tudes M i(s, t) at large cT , and fixed terms that were leading in the flat space limit using the known

10d IIA string theory and 11d M-theory flat space scattering amplitudes. Now we shall use properties

of the U(N)k×U(N +M)−k ABJ theories in order to compute the rest of the unknown coefficients.

First we fix the contribution of the supergravity term using the OPE coefficient λ2
(B,2)

[011]
1,0

. We will

then make use of the large N supersymmetric localization results derived in Chapter 3 to compute

the contributions of the contact terms. In certain cases we shall find that the same coefficients can

be fixed from localization and flat space independently, giving us precision checks of the AdS/CFT

duality beyond supergravity.

4.5.1 Fixing the Supergravity Terms

We begin by noting that, as derived at the end of Section 2.4, cT is related to λ
(B,2)

[011]
1,0

by the

equation

λ2
(B,2)

[011]
1,0

=
64

cT
. (4.91)

The OPE coefficient λ2
(B,2)

[011]
1,0

controls the exchange of the scalar S itself, which is the lowest twist

operator transforming in the 15s. Using (1.18), we then deduce that as we take U → 0 while setting

V = 1,

S15s
(U, 1) = λ2

(B,2)
[011]
1,0

g1,0(U, 1) + · · · =
λ2
(B,2)

[011]
1,0

4

√
U + · · · , (4.92)

Thus, in order to extract λ2
(B,2)

[011]
1,0

, all we need to do is extract the coefficient of
√
U in the small U

expansion of S15s
(U, 1). Note that the disconnected piece Sdisc,15s

(U, 1) = O(U) in this limit. The
√
U term in the small U expansion of S15s(U, 1) must hence come from a pole at s = 1 in the Mellin

amplitude M15s
(s, t)

M15s
≡ 1

6

(
M2 +M3 −M4

)
+

1

2
(M5 +M6) , (4.93)

corresponding to S15s
(U, V ), which is defined in (2.17). Performing the s integral in (4.2) and

picking up the residue at s = 1, we obtain

S15s
(U, 1) = −

√
U

8i

∫ i∞

−i∞
dtΓ2

(
1− t

2

)
Γ2

(
t− 1

2

)
lim
s→1

[
(s− 1)M15s

(s, t)

]
+ · · · , (4.94)
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where the integration contour can be chosen such that Ret < 2. Comparing with (4.92), we have

λ2
(B,2)

[011]
1,0

= − 1

2i

∫ i∞

−i∞
dtΓ2

(
1− t

2

)
Γ2

(
t− 1

2

)
lim
s→1

[
(s− 1)M15s(s, t)

]
. (4.95)

As can be seen from (4.95), only the pole as s→ 1 in M15s
contributes to λ2

(B,2)
[011]
1,0

. Therefore

local Mellin amplitudes cannot contribute to λ2
(B,2)

[011]
1,0

, so the only contribution will come from the

supergravity exchange Mellin amplitude. Indeed, the supergravity exchange amplitude M i
SG(s, t)

does have a pole at s = 1 with a residue independent of t:

lim
s→1

[
(s− 1)MSG,15s

(s, t)

]
= − 1

π
. (4.96)

and thus MSG in each of the expansions presented above contributes to λ2
(B,2)

[011]
1,0

an amount equal

to

1

2πi

∫ i∞

−i∞
dtΓ2

(
1− t

2

)
Γ2

(
t− 1

2

)
= 2π2 . (4.97)

Note that although we have not discussed Mellin amplitudes for loop corrections, by suitably adding

to them an appropriate multiple of MSG we can always define them such that they do not contribute

to the
√
U term, so that λ2

(B,2)
[011]
1,0

is purely fixed by the coefficient of MSG. Since this OPE coefficient

is related to c−1
T via equation (4.91), we conclude that

A1
SG = B1

SG = C1
SG =

32

π2
, B̃1

SG = 0 ,

AlSG = BlSG = B̃lSG = ClSG = 0 , for l > 1 .

(4.98)

The same result was previously for the N = 8 case in [117]. Indeed, the supergravity term does not

depend on k when written in terms of cT , as cT is proportional to the effective 4d Newton constant

GN via the equation (1.52) in any theory where the bulk gravity is semiclassical.

4.5.2 Integrating Holographic Correlators

We now turn to the constraints on ⟨SSSS⟩ from supersymmetric localization. To implement these,

we must compute the linear functionals I++[S] and I+−[S] for each of the Mellin amplitudes M i
SG,

M i
3 and M i

4. Our first step is to rewrite both linear functionals in Mellin space.

Let us begin with I++[S], which, recall, is defined by equation (3.27) in terms of the OPE
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coefficient λ2
(B,2)

[022]
2,0

. This OPE coefficient controls the exchange of an 1/3-BPS operator whose

superprimary is a ∆ = 2 scalar transforming in the 84. The operator provides the lowest twist

contribution to S84(U, V ), and so at small U we find that

S84(U, 1) = λ2
(B,2)

[022]
2,0

g2,0(U, 1) + · · · =
λ2
(B,2)

[022]
2,0

16
U + · · · . (4.99)

The coefficient receives contributions from both the disconnected piece,

Sdisc,84(U, 1) =
1

16

(
U +

U

V

) ∣∣∣∣
V=1

=
U

8
, (4.100)

as well as from the connected piece. To extract the latter contribution we must consider s = 2 pole

in the Mellin integral. The Gamma functions in the definition (4.2) of the Mellin transform have a

double pole at s = 2, so

M84(s, t) =
1

16

(
M2(s, t) +M3(s, t) + 2M4(s, t)

) (4.101)

must vanish at least linearly as s → 2. Combining the contribution of this pole with (4.100), we

have

S84(U, 1) = U

[
1

8
+

i

2π

∫ i∞

−i∞
dtΓ2

(
1− t

2

)
Γ2

(
t

2

)
lim
s→2

M84(s, t)

s− 2

]
+ · · · . (4.102)

We must be careful with the integration contours. As we take s → 2, the the poles in t and

u = 4 − s − t may potentially overlap. For polynomial Mellin amplitudes no problem occurs. But

for the supergravity amplitude, which has a pole both at t = 1 and u = 1, we must be careful to

keep the t-channel poll to the right of the t-contour but the u-channel pole to the left. If we take

the contour 0 < Re(t) < 1, then we have to subtract of the u = 1 pole by hand. Thus, the correct

formula is

S84(U, 1) = U

[
1

8
+ π2 lim

s→2
lim

t→3−s

(u− 1)M84(s, t)

s− 2

+
i

2π

∫ i∞

−i∞
dtΓ2

(
1− t

2

)
Γ2

(
t

2

)
lim
s→2

M84(s, t)

s− 2

]
+ · · · .

(4.103)
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Comparing with (4.99), we extract

λ2
(B,2)

[022]
2,0

= 2 + 16π2 lim
s→2

lim
t→3−s

(u− 1)M84(s, t)

s− 2

+
8i

π

∫ i∞

−i∞
dtΓ2

(
1− t

2

)
Γ2

(
t

2

)
lim
s→2

M84(s, t)

s− 2
,

(4.104)

with the t contour obeying 0 < Re(t) < 1, and so

I++[M
i] = 32π2 lim

s→2
lim

t→3−s

(u− 1)M84(s, t)

s− 2

+
16i

π

∫ i∞

−i∞
dtΓ2

(
1− t

2

)
Γ2

(
t

2

)
lim
s→2

M84(s, t)

s− 2

(4.105)

where again the t contour obeys 0 < Re(t) < 1.

Let us now convert I+−[Si] to Mellin space, using (3.41) and (4.2) to write

I+−[Si] =
∫ ∞

0

dr

∫ π

0

dθ sin θ
S1
(
1 + r2 − 2r cos θ, r2

)
1 + r2 − 2r cos θ

=

∫
ds dt

(4πi)2

(
Γ2
[
1− s

2

]
Γ2

[
1− t

2

]
Γ2

[
s+ t− 2

2

]
M1(s, t)

×
∫ ∞

0

dr

∫ π

0

dθ sin θ
(
1 + r2 − 2r cos θ

)s/2−1
r2−s−t

)
.

(4.106)

The integral of r and θ can now be performed explicitly using

∫ ∞

0

dr

∫ π

0

dθ sin θ
(
1 + r2 − 2r cos θ

)s/2−1
ru−2 =

π1/2Γ
[
s+1
2

]
Γ
[
3−s−t

2

]
Γ
[
t−1
2

]
2Γ
[
1− s

2

]
Γ
[
2− t

2

]
Γ
[
s+t
2

] , (4.107)

and so we find that

I+−[M
i] =

∫
ds dt

(4πi)2
2
√
π

(2− t)(s+ t− 2)
M1(s, t)

× Γ
[
1− s

2

]
Γ

[
s+ 1

2

]
Γ

[
1− t

2

]
Γ

[
t− 1

2

]
Γ

[
s+ t− 2

2

]
Γ

[
3− s− t

2

]
.

(4.108)

Having derived Mellin space expressions for I++[Si] and I+−[Si], we now compute these linear

functionals acting on the Mellin amplitudes M i
SG, M3, and M4. In each case, the integrals are

performed by closing the contours at infinity and then summing over all poles enclosed by the

contours. In some cases, the pole summation is easily done using the Barnes lemma

∫ i∞

−i∞

ds

2πi
Γ(a+ s)Γ(b+ s)Γ(c− s)Γ(d− s) = Γ(a+ c)Γ(b+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
, (4.109)
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which holds for contours for which the poles of each Gamma function lie either entirely to the left

or to the right of the contour.

Let us begin with I+−[M
i] for the polynomial Mellin amplitudes M1

3 (s, t) and M1
4 (s, t). In both

cases the amplitudes take the form (t − 2)(2 − s − t) times a polynomial in s, t, so I+−[Sin] can be

evaluated for n = 3, 4 by writing the integrand as a sum of products of six Gamma functions in

s, t and then applying the Barnes lemma twice. For example, for M1
3 (s, t) = (t − 2)(2 − s − t) we

compute

I+−[M
i
3] =

∫
dsdt

(4πi)2
2
√
π

× Γ
[
1− s

2

]
Γ

[
s+ 1

2

]
Γ

[
1− t

2

]
Γ

[
t− 1

2

]
Γ

[
2− s− t

2

]
Γ

[
3− s− t

2

]
=

∫
dt

4πi
π3/2Γ

[
1− t

2

]
Γ

[
2− t

2

]
Γ

[
t− 1

2

]
Γ

[
t

2

]
=

2π2

3
,

(4.110)

where the last two equalities followed from the Barnes lemma. We can evaluate I+−[Si4] in an

identical fashion, finding that

I+−[M
i
4] =

8

7
π2 . (4.111)

The supergravity Mellin amplitude M1
SG(s, t) (4.69) is also proportional to (t− 2)(2− s− t), but

the remaining function is not a polynomial in s, t and so we must work harder. We compute

I+−[M
i
SG] =

∫
dsdt

(4πi)2
1

4π2s(2 + s)

[√
π(4 + s)Γ

[
1− s

2

]
− 4Γ

[
1− s
2

]]
× Γ

[
s+ 1

2

]
Γ

[
1− t

2

]
Γ

[
t− 1

2

]
Γ

[
s+ t− 2

2

]
Γ

[
3− s− t

2

]
=

∫
ds

4πi

Γ
[
1− s

2

]
Γ
[
s
2

]
Γ
[
s+1
2

]
4πs(2 + s)

[√
π(4 + s)Γ

[
1− s

2

]
− 4Γ

[
1− s
2

]]
= −π2 ,

(4.112)

where in the first equality we used the Barnes lemma, and in the second equality we summed

over poles with the contour 0 < Re(s) < 1. Note that this contour is different from the range

0 < Re(s) < 2 that would follow from (4.3). This is because the supergravity term includes the

stress tensor multiplet superblock, which contribute extra poles that require a more constraining

contour [148].

Finally, we evaluate I++[M
i] for M i

3, M i
4 and M i

SG using (4.105). For the polynomial Mellin
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amplitudes M i
3 and M i

4, the first term in (4.105) vanishes, and in the second term we have

lim
s→2

M3,84

s− 2
= − 1

24
,

lim
s→2

M3,84

s− 2
= −1

5
− 3t(t− 2)

56
.

(4.113)

We now integrate over t using the Barnes lemma, which yields

I++[M
i
3] =

8

3
, I++[M

i
4] =

288

35
. (4.114)

For the supergravity amplitude, the first term in (4.105) gives 8π/3 and in the integrand of the

second term we have

lim
s→2

MSG,84
s− 2

=
(t− 2)Γ

(
1−t
2

)
8
√
πt(t+ 2)Γ

(
1− t

2

) − t2Γ
(
t−1
2

)
16
√
π(t− 2)(t− 4)Γ

(
1 + t

2

)
− t4 − 4t3 − 12t2 + 32t− 32

16t(t− 4)(t2 − 4)
.

(4.115)

We can then compute the integral over t by summing over all poles which lie to the right of the t

contour, and so find that

I++[M
i
SG] = 12 . (4.116)

4.5.3 Fixing ⟨SSSS⟩ with Localization

In the previous section, we computed I++[M ] and I+−[M ] for each of the amplitudes MSG(s, t),

M3(s, t) and M4(s, t) contributing to ⟨SSSS⟩ in the first few orders of the large cT expansion. We

found that
I++[M

i
SG] = 12 , I+−[M

i
SG] = −π2 ,

I++[M
i
3] =

8

3
, I+−[M

i
3] =

2

3
π2 ,

I++[M
i
4] =

288

35
, I+−[M

i
4] =

8

7
π2 .

(4.117)

We can now combine these calculations with the supersymmetric localization results derived in

Chapter 3, using them to constrain the coefficients Ali,j , Bli,j , B̃li,j , and Cli,j . Plugging (4.117)

into (3.24) and (3.42) and using the large N localization results (3.64), (3.68), and (3.70) derived

in Section 3.2.3, we can obtain the following results. First, without using the constraints from

the flat space limit or the constraints (4.98) coming from the superconformal block expansion, the

supersymmetric localization constraints (3.24) and (3.42) reproduce the coefficients in the first line

of (4.98). This is a stringent consistency check on the accuracy of our computations.
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Second, using the constraints (4.98) coming from the superconformal block expansion as an input,

the supersymmetric localization constraints allow us to fix the coefficients at the next two orders in

each of the expansions (4.75), (4.81), and (4.87). The result is

finite k: A4
4 =

2240

(6π4k)2/3
, A3

3 = A4
3 = 0 ,

’t Hooft: B4
3 = −54

√
2ζ(3)

π5
, B4

4 =
105ζ(3)

2
√
2π5

, B̃4
4 =

4480
√
2

3π3
,

B3
3 = B̃3

3 = B̃4
3 = 0 ,

finite µ: C4
3 = −576 23/83

1
4 ζ(3)

π23/4µ3/8
, C4

4 =
2

3
8 280

33/4π23/4

(
4
√
2π3µ

1
8 + 3ζ(3)µ− 3

8

)
,

C3
3 = 0 .

(4.118)

These equations agree with the constraints from the flat space limit, thus providing a very non-trivial

precision test of AdS/CFT.

Third, using both the constraints (4.98) and the constraints coming from the flat space limit as

input, the constraints from supersymmetric localization allow us to conclude that

A5
3 = A5

4 = B5
3 = B5

4 = 0 . (4.119)

We can then plug these values back into (4.75), (4.81), and (4.87) to get our final results

M-theory : M(s, t) =
1

cT

32

π2
MSG(s, t) +

1

c
5
3

T

1120

3π3

(
6π

k2

)1/3

M4(s, t) +O
(
c−2
T

)
,

’t Hooft : M(s, t) =
1

cT

(
32

π2
MSG(s, t) +

3
√
2ζ(3)

4π5

[
35M4(s, t)− 72M3(s, t)

]
λ−

3
2 +O(λ−

5
2 )

)

+
1

c2T

(
4480

√
2

3π3
M4(s, t)λ

1
2 +O(λ0)

)
+O(c−3

T ) ,

fixed µ: M(s, t) =
1

cT

32

π2
MSG(s, t)

+
1

c
7
4

T

(
−576 23/83

1
4 ζ(3)

π23/4µ3/8
M3(s, t) +

2
3
8 280

33/4π23/4

(
4
√
2π3µ

1
8 + 3ζ(3)µ− 3

8

)
M4(s, t)

)

+O
(
c−2
T

)
,

(4.120)

for the leading large cT corrections to the ⟨SSSS⟩ Mellin amplitude in each of three regimes con-

sidered in this chapter.
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Chapter 5

The Higher-Spin Limit

In this chapter we study N = 6 theories with weakly broken higher-spin symmetry. As discussed in

the Introduction, such theories include the U(N)k × U(N +M)−k and SO(2)2k × USp(2 + 2M)−k

theories at large M . By combining the constraints of weakly broken higher-spin symmetry with the

supersymmetric localization results for these theories computed in Chapter 3, we derive the leading

1/cT correction to ⟨SSSS⟩ in the higher-spin limits of both theories. Our strategy parallels that of

the previous chapter, where we studied the string and M-theory limits of ABJ theory. First we fix

an ansatz for ⟨SSSS⟩ at large cT involving only finitely many undetermined coefficients. We then

determine these coefficients for the specific theories of interest using supersymmetric localization.

While the overall strategy may be similar, the structure of the 1/cT expansion in the higher-spin

limit is very different from that of the string and M-theory limits. In the latter case, the bulk

theory contains only single trace operators of spin at most two. If we focus on ⟨SSSS⟩, then at

tree-level the only single trace operators we need to consider are those in the stress tensor multiplet.

Holographic tree-level correlators then consist of a tree-level supergravity exchange diagram whose

form is completely fixed by superconformal symmetry, along with an infinite number of contact

Witten diagrams which appear at increasingly higher powers of 1/cT .

Unlike the supergravity limit, the higher-spin limit has single trace particles of every spin, their

exchange diagrams are not completely fixed by superconformal symmetry, and the contact terms

can no longer be fixed using the flat space limit which does not exist for higher-spin gravity [149].

We will resolve these problems by combining slightly broken higher-spin Ward identities with the

Lorentzian inversion formula [150], as in the recent calculations of the analogous non-supersymmetric

correlator in [151, 152].1 In particular, we will first compute tree-level three-point functions of
1See also [153] for a similar calculation of a spinning non-supersymmetric correlator, as well as [154] for a more
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single trace operators in terms of cT and another free parameter using weakly broken higher-spin

symmetry, which generalizes the non-supersymmetric analysis of [155] to N = 6 theories.2 We then

use these three-point functions to fix the infinite single trace exchange diagrams that appear in

⟨SSSS⟩. Finally, we use the Lorentzian inversion formula to argue that only contact diagrams with

six derivatives or fewer can appear, of which only a single linear combination is allowed by N = 6

superconformal symmetry. In sum, we find that ⟨SSSS⟩ is fixed at O(1/cT ) in the higher-spin limit

in terms of two free parameters.

We then try to fix these two free parameters using the supersymmetric localization constraints

for ∂4 logZ
∂m4

+

∣∣∣
m±=0

and ∂4 logZ
∂m2

+∂m
2
−

∣∣∣
m±=0

derived in Chapter 3. When we do so however, we find that

the constraints are redundant. To resolve this issue we use the weakly broken higher-spin Ward

identities to compute ⟨SSSP ⟩, which we can constrain using ∂4 logZ
∂m3

+∂m−

∣∣∣
m±=0

. With this additional

constraint, we will be able to fix both free parameters for the U(N)k × U(N +M)−k ABJ and

SO(2)2k × USp(2 + 2M)−k OSp theories in terms of the ’t Hooft coupling λ ∼ M
k , whose precise

definition is given in (1.60) and (1.61).3

Our plan for the chapter is as follows. We begin in Section 5.1 by describing the higher-spin con-

served currents, and then study the pseudocharge δ̃(X) associated to the conserved vector Hµ
1 (x,X)

in the scalar conserved current multiplet. In Sections 5.2 and 5.3 we use the pseudoconservation of

the pseudocharge δ̃(X) to derive the general form of ⟨SSSS⟩ and ⟨SSSP ⟩ respectively, and then in

Section 5.4 use supersymmetric localization constraints to completely fix ⟨SSSS⟩. We close in Sec-

tion 5.5 with a discussion of the similarities between our results and those for non-supersymmetric

higher-spin theories.

5.1 Weakly Broken Higher-Spin Symmetry

5.1.1 N = 6 Conserved Currents

The osp(6|4) superalgebra allows two kinds of unitary conserved current multiplets: the (B, 2)
[011]
1,0

stress tensor multiplet, and the (A, cons)[000]ℓ+1,ℓ higher-spin multiplets. We are hopefully by now quite

familiar with the stress tensor multiplet, which we first introduced all the way back in Section 1.1.3.

Unlike the stress tensor multiplet, the (A, cons)[000]ℓ+1,ℓ multiplets are semishort rather than short, and

direct diagrammatic approach.
2Note that [155] applies to higher-spin theories with only one single trace operator of each spin. This excludes the

N = 6 higher-spin theories we consider, whose single trace spectrum includes one higher-spin multiplet of each spin
plus the stress tensor multiplet, whose component operators includes multiple operators of each spin.

3We will use λ rather than λHS throughout this Chapter to refer to the ’t Hooft coupling in the higher-spin limit.
It should not be confused with the ’t Hooft coupling in the large N regime!
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contain conserved currents with spin greater than two. When ℓ > 0 superconformal primary for the

multiplet is a spin-ℓ conserved current Bℓ(x⃗), and the bosonic descendants of Bℓ(x⃗) are conserved

currents Hℓ+1(x⃗,X), Jℓ+2(x⃗,X), and Tℓ+3(x⃗) with spins ℓ + 1, ℓ + 2 and ℓ + 3 respectively. The

bottom and top components Bℓ and Tℓ+3 are R-symmetry singlets, while the middle two components

Hℓ+1 and Jℓ+2 transform in the 15. There is also a scalar higher-spin multiplet (A, cons)[000]1,0 whose

primary B0(x⃗) is a dimension 1 scalar. This multiplet has the same structure as the ℓ > 0 higher-spin

multiplets, except that it also contains an additional scalar C0(x⃗) with dimension 2. We normalize

all of these operators so that

⟨J µ1...µℓ

ℓ (x⃗1)J ν1...νℓℓ (x⃗2)⟩ =
(
I(µ1...µn)(ν1...νn)(x12)

x2ℓ−1
12

− traces
)
,

⟨Kµ1...µℓ

ℓ (x⃗1, X1)Kν1...νℓℓ (x⃗2, X2)⟩ = tr(X1X2)

(
I(µ1...µn)(ν1...νn)(x12)

x2ℓ−2
12

− traces
)
,

where Iµ1...µnν1...νn(x12) =

(
δµ1ν1 − xµ1

12x
ν1
12

x212

)
. . .

(
δµnνn − xµn

12 x
νn
12

x212

)
,

(5.1)

for operators Jℓ and Kℓ transforming in the 1 and 15 of the so(6)R R-symmetry respectively.

We will sometimes find it convenient to think of the stress tensor multiplet as being the ℓ = −1

conserved current multiplet. To this end, we relabel the R-symmetry current J1(x⃗,X) and the stress

tensor T2(x⃗), as they are the natural continuations of the Jℓ(x⃗,X) and Tℓ(x⃗) families of conserved

currents.

We restrict our attention to theories where the single-trace operators consist of a stress tensor

multiplet, along with a single higher-spin multiplet (A, cons)[000]ℓ+1,ℓ for each ℓ = 0 , 1 , 2 , . . . . This,

in particular, is the spectrum of free field theory, and also of ABJ theory at large M . We list the

single-trace operator content of such theories in Table 5.1. Observe that for each spin ℓ ≥ 2 the

bosonic conserved currents come in pairs, so that for each Bℓ(x⃗) and Hℓ(x⃗) there is a Tℓ(x⃗) and

Jℓ(x⃗) respectively with the same quantum numbers but belonging to different SUSY multiplets. As

we shall see, these pairs of operators are mixed by the higher-spin conserved currents.

Let us now consider three-point functions between the scalars S, P and a conserved current J .
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Higher-Spin Multiplet
Spin Stress-tensor Spin 0 Spin 1 Spin 2 Spin 3 . . .
0 15+ 15 1+ 1
1/2 6+ 10+ 10 6
1 1+ 15 15 1
3/2 6 10+ 10 6
2 1 15 15 1
5/2 6 10+ 10 6
3 1 15 15 1
7/2 6 10+ 10 6
4 1 15 15 . . .
...

...
... . . .

Table 5.1: Single trace operators for higher-spin N = 6 CFTs.

Conformal invariance, R-symmetry, and crossing symmetry together imply that

⟨ϕ(x⃗1, X1)ϕ(x⃗2, X2)J µ1...µℓ

ℓ (x⃗3)⟩ =


λϕϕJ tr (X1X2) Cµ1...µℓ

ϕϕℓ (xi) even ℓ

0 odd ℓ

⟨ϕ(x⃗1, X1)ϕ(x⃗2, X2)Kµ1...µℓ

ℓ (x⃗3, X3)⟩ =


λϕϕKtr ({X1, X2}X3) Cµ1...µℓ

∆ϕ∆ϕℓ
(xi) even ℓ

λϕϕKtr ([X1, X2]X3) Cµ1...µℓ

∆ϕ∆ϕℓ
(xi) odd ℓ

(5.2)

where we define the conformally covariant structure4

Cµ1...µℓ

∆1∆2ℓ
(xi) =

√
(1/2)ℓ
2ℓ+2ℓ!

(
xµ1

13

x213
− xµ1

23

x223

)
. . .

(
xµℓ

13

x213
− xµℓ

23

x223

)
1

x∆1+∆2−1
12 x∆2−∆1+1

23 x∆1−∆2+1
31

. (5.3)

Note that ⟨SPJ ⟩ automatically vanishes when J is a conserved current, as C∆1∆2ℓ is not conserved

unless ∆1 = ∆2.

In Chapter 2 we computed the superconformal blocks for ⟨SSSS⟩, which relate the OPE coef-

ficients of operators in the same supermultiplet. We also derived superconformal Ward identities

relating ⟨SSSS⟩ to ⟨SSPP ⟩, and so can use these to derive the superconformal block expansion for

⟨SSPP ⟩. Using the results of that chapter, we find every integer ℓ there is a unique superconfor-

mal structure between two S operators and the supermultiplet (A, cons)[000]ℓ+1,ℓ. For even ℓ the OPE
4Our choice of prefactors multiplying Cϕ1ϕ2ℓ is such that the three-point coefficients λϕ1ϕ2O match the OPE

coefficients multiplying the conformal blocks in Chapter 2.
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coefficients are all related to λSSBℓ
via the equations5

λSSBℓ
= λSSHℓ+1

= λSSJℓ+2
= λ

(A,cons)[000]ℓ+1,ℓ

, λSSTℓ+3
= 0 ,

λPPBℓ
= −ℓλSSBℓ

, λPPHℓ+1
= −(ℓ+ 1)λSSBℓ

,

λPPJℓ+2
= −(ℓ+ 2)λSSBℓ

, λPPTℓ+3
= 0 ,

(5.4)

while for odd ℓ the OPE coefficients are related to λSSTℓ+3
:

λSSHℓ+1
= λSSJℓ+2

= λSSTℓ+3
= λ

(A,cons)[000]ℓ+1,ℓ

, λSSBℓ
= 0 ,

λPPBℓ
= 0 , λPPHℓ+1

= (ℓ+ 1)λSSTℓ+3
,

λPPJℓ+2
= (ℓ+ 2)λSSTℓ+3

, λPPTℓ+3
= (ℓ+ 3)λSSTℓ+3

.

(5.5)

Note that λSSTℓ+3
vanishes for even ℓ, and λSSBℓ

for odd ℓ, simply as a consequence of 1↔ 2 crossing

symmetry. The superconformal blocks for the stress tensor and the scalar conserved current have

the same structure (where we treat the stress tensor block as having spin −1), with the additional

equations
λSSS = λSST2 = λ

(B,2)
[011]
1,0

=
8
√
cT

, λSSP = λPPS = λPPP = 0 ,

λSSC0 = λPPC0 = 0 ,

(5.6)

for the scalars S and P , and dimension 2 scalar C0, in the stress tensor and the scalar conserved

current multiplet respectively.

5.1.2 The so(6) Pseudocharge

Having reviewed the properties of conserved current multiplets in N = 6 theories, we now consider

weakly breaking the higher-spin symmetries. We will follow the strategy employed in [155] and

use the weakly broken higher-spin symmetries to constrain three-point functions. Unlike that paper

however, which studies the non-supersymmetric case and so considers the symmetries generated by a

spin 4 operator, we will instead focus on the spin 1 operator Hµ
1 (x⃗,X). While itself not a higher-spin

conserved current, it is related to the spin 3 current T3(x⃗) by supersymmetry.
5The superconformal blocks themselves relate λ2

SSHℓ+1
or λ2

SSTℓ+3
to λ2

SSO and λSSOλPPO for all superdescen-
dants O of Bℓ. Although the superconformal blocks do not fix the sign of λSSO, we can always redefine O → −O so
that λSSO/λSSBℓ

or λSSO/λSSTℓ+3
is positive.
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We begin by using H1(x⃗) to define a pseudocharge:

δ̃(X)O(0) = 1

4π

∫
|x|=r

dS ·H1(x⃗,X)O(0)
∣∣∣∣
finite as r→0

. (5.7)

The action of δ̃(X) is fixed by the 3-points functions ⟨H1OO′⟩. Because Hµ
1 has spin 1, it must

act in the same way on conformal primaries as would any other spin 1 conserved current. In

particular, it relates conformal primaries to other conformal primaries with the same spin and

conformal dimension.

Now consider the action of δ̃(X) on an arbitrary three-point function. We can use the divergence

theorem to write:

δ̃(X)
〈
O1(y⃗1)O2(y⃗2)O3(y⃗3)

〉
= − 1

4π

∫
Rr

d3x ⟨∇ ·H1(x⃗,X)O1(y⃗1)O2(y⃗2)O3(y⃗3)⟩
∣∣∣∣
finite r→0

,
(5.8)

where Rr is the set of x⃗ ∈ R3 for which |x⃗ − y⃗i| > r for each yi. If the operator Hµ
1 (x,X) were

conserved, the right-hand side of this expression would vanish, and we would find that correlators

were invariant under δ̃(X). When the higher-spin symmetries are broken, however, ∇ · H1 will

no longer vanish and so (5.8) will give us a non-trivial identity: a pseudoconservation rule for the

pseudocharge.

In the infinite cT limit, ∇ · H1 is a conformal primary distinct from Hµ
1 . In order to work out

what this primary is, we can use the N = 6 multiplet recombination rules [13]:6

Long[000]∆,0 −→
∆→1

(A, cons)[100]1,0 ⊕ (B, 1)
[200]
2,0 ,

Long[000]∆,ℓ −→
∆→ℓ+1

(A, cons)[100]ℓ+1,ℓ ⊕ (A, 1)
[100]
ℓ+3/2,ℓ−1/2 for ℓ > 0 .

(5.9)

From this we see that, unlike the other conserved current multiplets, the scalar conserved current

multiplet recombines with a B-type multiplet, the (B, 1)
[200]
2,0 . The only such multiplet available in

higher-spin N = 6 SCFTs at infinite cT is the double-trace operator S[a
[bS

c]
d], whose descendants

are also double-traces of stress tensor operators. From this we deduce that

∇ ·H1(x⃗,X) = − α
√
cT

Φ(x⃗,X) + fermion bilinears +O(c−1
T )

with Φ(x⃗,X) = Xa
b

(
Sbc(x⃗)P

c
a(x⃗)− P bc(x⃗)Sca(x⃗)

)
,

(5.10)

6For the decomposition of the superconformal blocks associated to these multiplets, see equations (2.74) through
(2.76).

120



where α is some as yet undetermined coefficient. We then conclude that

δ̃(X)⟨O1O2O3⟩ =
α

4π
√
cT

∫
d3x ⟨Φ(x⃗,X)O1O2O3⟩+ fermion bilinears +O(cT

−3/2) , (5.11)

where we have left the regularization of the right-hand integral implicit.

Consider the case where O1, O2 and O3 are any three bosonic conserved currents. In this case,

⟨ΦO1O2O3⟩ ∼ c−3/2
T and so

δ̃(X)⟨O1O2O3⟩ = O(c
−3/2
T ) . (5.12)

We thus find that, at leading order in the 1/cT expansion, these three-point functions are invariant

under δ̃(X). This is a strong statement, allowing us to import statements about conserved currents

and apply them to H1.

We will now consider the R-symmetry current J1, which has the same quantum numbers as H1,

and let us define

δ(X)O(0) = 1

4π

∫
|x|=r

dS · J1(x⃗)O(0)
∣∣∣∣
finite as r→0

, (5.13)

which generates the so(6)R symmetry. Because any correlator of both J1 and H1 is conserved under

δ(X) and δ̃(X) at leading order, the (pseudo)charges δ(X) and δ̃(X) form a semisimple Lie algebra.7

The so(6)R symmetry implies the commutator relations

[δ(X), δ(Y )] = ζδ([X,Y ]) , [δ(X), δ̃(Y )] = ζδ̃([X,Y ]) , (5.14)

for some non-zero constant ζ, while

[δ̃(X), δ̃(Y )] = ζδ([X,Y ]) + 2γδ̃([X,Y ]) , (5.15)

for some additional γ. Note that both the second equation in (5.14) and the first term in (5.15) are

fixed by the same conformal structure in the three-point function ⟨H1H1J1⟩, which is why they are

both proportional to ζ. We can now define charges δL(X) and δR(X) by the equations

δ(X) = ζ (δL(X) + δR(X)) , δ̃(X) = ζLδL(X) + ζRδR(X) ,

with ζL = γ +
√
ζ2 + γ2 , ζR = γ −

√
ζ2 + γ2 ,

(5.16)

7Note that this Lie algebra structure only holds when δ(X) and δ̃(X) act on spinning single trace operators, so
that (5.12) holds. In particular, equation (5.14) and (5.15) are true when δ(X) and δ̃(X) act on such operators.
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which satisfy the commutator relations

[δL(X), δL(Y )] = δL([X,Y ]) , [δL(X), δR(Y )] = 0

[δR(X), δR(Y )] = δR([X,Y ]) .

(5.17)

These are precisely the commutation relations of an so(6) × so(6) Lie algebra, where the δL(X)

generates the left-hand and δR(X) the right-hand so(6) respectively.

As we have showed previously, three-point functions of bosonic conserved currents are δ̃(X)

invariant at leading order in the large cT expansion. As a consequence, the higher-spin operators

Hℓ(x⃗,X) and Jℓ(x⃗,X) will together form representations of so(6)×so(6). There are two possibilities.

Either both operators transform in the adjoint of the same so(6), or instead the operators split into

left and right-handed operators

J Lℓ (x⃗,X) = − cos(θℓ)Hℓ(x⃗,X) + sin(θℓ)Jℓ(x⃗,X) ,

J Rℓ (x⃗,X) = − sin(θℓ)Hℓ(x⃗,X) + cos(θℓ)Jℓ(x⃗,X) ,

(5.18)

with some mixing angle θℓ, such that

δ̃(X)J Lℓ (y⃗, Y ) = ζLJ Lℓ (y⃗, [X,Y ]) , δ̃(X)J Rℓ (y⃗, Y ) = ζRJ Rℓ (y⃗, [X,Y ]) . (5.19)

As we shall see in the next section, it is this latter possibility which is actually realized in all theories

for which λSSB0
̸= 0.

5.1.3 Pseudocharge Action on Scalars

So far we have been avoiding the scalars S and P . Because the Hµ
1 (x⃗,X) eats a bilinear of S and P ,

correlators involving these scalars are not automatically conserved at leading order, and so we can

not assign these operators well-defined so(6)× so(6) transformation properties. The action of δ̃(X)

is, however, still fixed by the delta function appearing in the three-point functions

⟨SO∇ ·H1⟩ and ⟨SÔ∇ ·H1⟩

when O and Ô are scalars of dimension 1 and 2 respectively. Let us now work through the possibil-

ities, beginning with δ̃(X)S(y⃗, Y ).
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To fix δ̃(X)S(y⃗, Y ), we must evaluate

⟨δ̃(X)S(0, Y )O(ê3)⟩ =
1

4π

∫
|x|=r

dS · ⟨H1(x⃗,X)S(0, Y )O(ê3)⟩

∣∣∣∣∣
finite as r→∞

(5.20)

for general operators O(ê3) located at ê3 = (0, 0, 1). We first note that the right-hand side of (5.20) is

only non-zero if O is a scalar with conformal dimension 1. For this special case, conformal invariance

implies that

⟨H1(x⃗,X)S(0, Y )O(ê3)⟩ = fSOH1
(X,Y )Cµ1,1,1(0, ê3, x⃗)

=
fSOH1

(X,Y )

4

(
(ê3 − x)µ

|ê3 − x|2
− xµ

|x|2

)
1

|x||x− ê3|
,

(5.21)

where fSOH1
(X,Y ) is a function of X and Y whose exact form depends on the so(6)R properties of

O. Substituting this into (5.20), we find that

⟨δ̃(X)S(0, Y )O(ê3)⟩ = −
1

4
fSOH1

(X,Y ) . (5.22)

The only two dimension 1 scalars in higher-spin N = 6 theories are S(y⃗, Y ) itself and B0(x⃗). For

S, we apply (5.22) with O(ê3) = S(ê3, Z) to find that8

⟨δ̃(X)S(0, Y )S(ê3, Z)⟩ = −
λSSH1

tr([Y, Z]X)

4
= −λSSH1

4
⟨S(0, [X,Y ])S(ê3, Z)⟩ , (5.23)

while for B0 we find that

⟨δ̃(X)S(0, Y )B0(ê3)⟩ = −
λSB0H1

tr(XY )

4
= −λSB0H1

tr(XY )

4
⟨B0(0)B0(ê3)⟩ . (5.24)

However, as we will now show, λSB0H1 = 0. To see this, we compute:

δ̃(X)⟨S(0, Y )SH1⟩ = ⟨δ̃(X)S(0, Y )SH1⟩+ · · · = −
λSB0H1

tr(XY )

4
⟨B0(0)S0H1⟩+ . . . , (5.25)

where the additional terms come from the variations of the second S and H1, and from the multiplet

recombination. Note that δ̃(X)⟨S(0, Y )SH1⟩ contains a term proportional to λ2SB0H1
tr(XY ). But

it is straightforward to check that no additional term appears in either
〈
S(0, Y )δ̃(X) (SH1)

〉
or in

⟨SP̃H1⟩ with the right R-symmetry structure needed to cancel such a contribution, and so conclude
8Throughout this section and the next, we will abuse notation slightly and use λO1O2O3

to refer to the leading
large cT behavior of the OPE coefficient, which for three single trace operators scales as c

−1/2
T .
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that λSB0H1
= 0. Having exhausted the possible operators that could appear in δ̃(X)S(y, Y ), we

conclude that

δ̃(X)S(y⃗, Y ) = −λSSH1

4
S(y, [X,Y ]) = −λSSB0

4
S(y, [X,Y ]) . (5.26)

We can constrain δ̃(X)P (y⃗, Y ) in much the same way, except now we have to consider not only

the single trace operators P and C0, but also double-trace operators built from S and B0, and in

particular

S2(y⃗, Y ) ≡ Y ab
(
Sbc(y⃗)S

c
a(y⃗)−

1

4
δabS

c
d(y⃗)S

d
c(y⃗)

)
,

SB0(y⃗, Y ) ≡ Y abSba(y⃗)B0(y⃗) .

(5.27)

The most general expression we can write is

δ̃(X)P (y⃗, Y ) = κ0P (y⃗, [X,Y ]) + κ1S
2(y⃗, [X,Y ]) + κ2SB0(y⃗, [X,Y ])

+ µ1tr(XY )O1(y⃗) + µ2O2(y⃗, {X,Y }) + µ3S(y⃗, X)S(y, Y ) ,

(5.28)

where O1(y) is some linear combination of SabSba and B2
0 , and O2 is some linear combination of P ,

S2 and SB0. By computing ⟨δ̃PP ⟩ we find that

κ0 = −1

4
λPPH1

=
1

4
λSSH1

. (5.29)

If we instead consider ⟨δ̃POi⟩, we find that µi are proportional to OPE coefficients λPPOi , but can

then check that the δ̃⟨PPH1⟩ Ward identity is satisfied if and only if µi = 0.

Computing κ1 and κ2 will prove somewhat more involved. Let us begin with δ̃(X)⟨SSP ⟩. As

listed in equation (5.6), supersymmetry forces both ⟨SSP ⟩ and ⟨SPP ⟩ to vanish. Expanding the

left-hand side of the higher-spin Ward identity, we thus find that

δ̃(X)⟨SSP (y3, Y3)⟩ = κ1⟨SSS2(y⃗3, [X,Y3])⟩ , (5.30)

while expanding the right-hand side we instead find that

δ̃(X)⟨SSP (y3, Y3)⟩ = −
α
√
cT
⟨SSS̃(y⃗3, [X,Y3])⟩ . (5.31)
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Equating these two expressions, we conclude that

κ1 =
αλSSS
4
√
cT

. (5.32)

The variation δ̃(X)⟨SB0P ⟩ is a little trickier, as ⟨SPB0⟩ does not vanish at O(c
−1/2
T ). It is

instead related by supersymmetry to the three-point function ⟨SPH1⟩, so that

λSPH1

λSPB0

=

√
2(∆ + 1)

∆
−→
∆→1

2 , (5.33)

where ∆ is the conformal dimension of B0. We can then in turn relate λSPH1
to α using the multiplet

recombination formula (5.10), and so find that

λSPB0 = −1

2
λSPH1 =

2α
√
cT

. (5.34)

Now that we have computed λSPB0 , let us turn to δ̃⟨SPB0⟩. Expanding this using (5.38), we

find that

δ̃(X)⟨S(y⃗1, Y1)P (y⃗2, Y2)B0(y⃗3)⟩

=
1

2
λSSB0

⟨S(y⃗1, Y1)P (y⃗2, [X,Y2])B0(y⃗3)⟩+ κ2⟨S(y⃗1, Y1)SB(y⃗2, [X,Y2])B0(y⃗3)⟩ .
(5.35)

But if we instead use the multiplet recombination rule, we find that

δ̃(X)⟨S(y⃗1, Y1)P (y⃗2, Y2)B0(y⃗3)⟩ =
α
√
cT

〈
S(y⃗1, Y1)S̃(y⃗2, [X,Y2])B0(y⃗3)

〉
, (5.36)

where we dropped ⟨P̃PB0⟩ as it vanishes due to supersymmetry. Equating the two expressions and

solving for κ2, we conclude that

κ2 = −αλSSB0

4
√
cT

. (5.37)

Putting everything together, we conclude

δ̃(X)S(y⃗, Y ) = −1

4
λSSB0S(y⃗, [X,Y ]) ,

δ̃(X)P (y⃗, Y ) =
1

4
λSSB0

P (y⃗, [X,Y ]) +
αλSSS
4
√
cT

S2(y⃗, [X,Y ]) +
αλSSB0

4
√
cT

SB0(y⃗, [X,Y ]) ,
(5.38)
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5.2 ⟨SSSS⟩ in the Higher-Spin Limit

We now derive the four-point function ⟨SSSS⟩, proceeding in two steps. First we use pseudocharge

pseudoconservation to compute the three-point functions ⟨SSJ ⟩ between two scalars S and a higher-

spin conserved current J . Combining these three-point functions with the Lorentzian inversion

formula, we can then fix ⟨SSSS⟩ up to two free parameters. With this achieved, we then use the

superconformal Ward identities to compute ⟨SSPP ⟩ and ⟨PPPP ⟩ from ⟨SSSS⟩.

5.2.1 Three-Point Functions

Let us begin by considering the three-point function of two scalars with a spin ℓ conserved current

OLℓ (y⃗, Y ) transforming in the left-handed 15, so that

δ̃(X)OLℓ (y⃗, Y ) = ζLOLℓ (y⃗, [X,Y ]) , (5.39)

and consider the weakly broken δ̃(X) Ward identity:

δ̃(X)⟨S(y⃗1, Y1)S(y⃗2, Y2)OLℓ (y⃗3, Y3)⟩

=
α

4π
√
cT

∫
d3xXa

b⟨S(y⃗1, Y1)Sbc(x⃗)⟩⟨P ca(x⃗)S(y⃗2, Y2)OLℓ (y⃗3, Y3)⟩

− α

4π
√
cT

∫
d3xXa

b⟨S(y⃗1, Y1)Sca(x⃗)⟩⟨P bc(x⃗)S(y⃗2, Y2)OLℓ (y⃗3, Y3)⟩+ 1↔ 2 .

(5.40)

Defining the operators S̃(x⃗,X) and P̃ (x⃗,X) to be the “shadow transforms” [156] of S(x⃗,X) and

P (x⃗,X) respectively:

S̃(x⃗,X) =
1

4π

∫
d3z

|x⃗− z⃗|4
S(z⃗, X) , P̃ (x⃗,X) =

1

4π

∫
d3z

|x⃗− z⃗|2
P (z⃗, X) , (5.41)

we can then rewrite the Ward identity as:

δ̃(X)⟨S(y⃗1, Y1)S(y⃗2, Y2)OLℓ (y⃗3, Y3)⟩

=
α
√
cT

(
⟨P̃ (y⃗1, [X,Y1])S(y⃗2, Y2)OLℓ (y⃗3, Y3)⟩+ ⟨S(y⃗1, Y1)P̃ (y⃗2, [X,Y2])OLℓ (y⃗3, Y3)⟩

)
.

(5.42)

Our task now is to expand correlators in this Ward identity in terms of conformal andR-symmetry
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covariant structures. Using (5.2), the left-hand side of (5.42) becomes

δ̃(X)⟨S(y⃗1, Y1)S(y⃗2, Y2)OLℓ (y⃗3, Y3)⟩

=

(
ζL +

λSSH1

4

)
λSSOL

ℓ
tr ([Y1, Y2]±[X,Y3]) C11ℓ(y⃗i) ,

(5.43)

where [Yi, Yj ]± is a commutator when ℓ is even, and anticommutator when ℓ is odd. To evaluate the

right-hand side we first note that, using both conformal and R-symmetry invariance,

⟨S(y⃗1, Y1)P (y⃗2, Y2)OLℓ (y⃗3, Y3)⟩

=
(
λ+
SPOL

ℓ

tr ([Y1, Y2]±Y3) + λ−
SPOL

ℓ

tr ([Y1, Y2]∓Y3)
)
C12ℓ(y⃗i) ,

(5.44)

for some OPE coefficients λ±
SPOL

ℓ

. Because the operator OLℓ (y⃗, Y ) is not conserved at finite cT , this

three-point function does not necessarily vanish at O(c
−1/2
T ). We can then compute the shadow

transform using the identity [157]

∫
d3z

|z⃗ − x⃗1|2∆1−6
Cµ1...µℓ

∆1,∆2,ℓ
(z⃗1, x⃗2, x⃗3)

=
π3/2Γ

(
∆1 − 3

2

)
Γ
(
∆2−∆1+2

2

)
Γ
(
4+2ℓ−∆1−∆2

2

)
Γ (3−∆1) Γ

(
∆1+∆2−1

2

)
Γ
(
2ℓ+∆1−∆2+1

2

) Cµ1...µℓ

3−∆1,∆2ℓ
(x⃗1, x⃗2, x⃗3) .

(5.45)

Putting everything together, we conclude that

λ+
SPOL

ℓ

= − (λSSB0 + 4ζL)ℓ!

π3/2Γ(ℓ+ 1/2)

λSSOL
ℓ

√
cT

α
, λ−

SPOL
ℓ

= 0 . (5.46)

So far we have considered the weakly broken Ward identity for the three-point function ⟨SSOLℓ ⟩,

but it is straightforward to repeat this exercise with the variations

δ̃⟨SPOLℓ ⟩ =
α
√
cT

(
⟨P̃POLℓ ⟩ − ⟨SS̃OLℓ ⟩

)
,

δ̃⟨PPOLℓ ⟩ = −
α
√
cT

(
⟨S̃POLℓ ⟩+ ⟨PS̃OLℓ ⟩

)
.

(5.47)

Expanding each of these correlators and using (5.45), we find that

λPPOL
ℓ
=

(
4ζL + λSSB0

4ζL − λSSB0

)
ℓλSSOL

ℓ
, 16ζ2L − λ2SSB0

=
2α2π2

cT
. (5.48)
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Applying the same logic to a right-handed operator ORℓ (x⃗,X), we immediately see that

λPPOR
ℓ
=

(
4ζR + λSSB0

4ζR − λSSB0

)
ℓλSSOR

ℓ
, 16ζ2R − λ2SSB0

=
2α2π2

cT
. (5.49)

In particular, taking the last equations of (5.48) and (5.49) and combining them with (5.16), we find

that

ζL = −ζR = ζ . (5.50)

As we saw in the previous section, ζ fixes the action of the R-symmetry charge δ(X), which, unlike

δ̃(X), is exactly conserved in any N = 6 theory. We can therefore relate it to the three-point

function ⟨SSJ1⟩, and thus to the OPE coefficient λSSS :

ζ = −1

4
λSSJ1 = −1

4
λSSS . (5.51)

We now apply (5.48) and (5.49) to the operators Hℓ and Jℓ. Recall that these operators either

transform identically under so(6), or they split into left-handed and right-handed operators. Let us

begin with the possibility that they transform identically under so(6)× so(6), and assume without

loss of generality that both are left-handed. Combining (5.48) with the superblocks (5.4) and (5.5),

we find that

(−1)ℓλSSHℓ
=

(
λSSS − λSSB0

λSSS + λSSB0

)
λSSHℓ

, −(−1)ℓλSSJℓ =
(
λSSS − λSSB0

λSSS + λSSB0

)
λSSJℓ . (5.52)

Because λSSS ̸= 0, the only way to satisfy these equations is if λSSB0
= 0. We know however that

λSSB0 is nonzero for generic higher-spin N = 6 CFTs, such as for ABJ theories, and in particular

does not vanish in free field theory. We therefore conclude that is not possible for Hℓ and Jℓ to

transform identically under so(6)× so(6).

We now turn to the second possibility, that Hℓ and Jℓ recombine into left and right-handed

multiplets J Lℓ and J Rℓ under so(6)× so(6), satisfying

λPPJL
ℓ
=

(
λSSS − λSSB0

λSSS + λSSB0

)
ℓλSSJL

ℓ
, λPPJR

ℓ
=

(
λSSS + λSSB0

λSSS − λSSB0

)
ℓλSSJR

ℓ
. (5.53)

We can then use the superconformal blocks (5.4) and (5.5) to find that

λPPHℓ
= (−1)ℓℓλSSHℓ

, λPPJℓ = (−1)ℓ+1ℓλSSJℓ , (5.54)
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and, from (5.18), we see that

λSSJL
ℓ
= λSSHℓ

cos θℓ + λSSJℓ sin θℓ , λSSJR
ℓ

= −λSSHℓ
sin θℓ + λSSJℓ cos θℓ

λPPJL
ℓ
= λPPHℓ

cos θℓ + λPPJℓ sin θℓ , λPPJR
ℓ

= −λPPHℓ
sin θℓ + λPPJℓ cos θℓ .

(5.55)

Combining (5.53), (5.54), and (5.55) together, we have 8 equations which are linear in the 8 OPE

coefficients. Generically, the only solution to these equations will be the trivial one where all of OPE

coefficients vanish. However, if we set

θℓ =
π

4
+
nπ

2
for n ∈ Z , (5.56)

then we find that the equations become degenerate, allowing non-trivial solutions. By suitably

redefining the conserved currents Hℓ → −Hℓ we can always fix n = 0 so that λSSHℓ
≥ 0, and can

then solve the equations to find that

λSSHℓ
=


λSSS

λSSB0
λSSJℓ ℓ is even

λSSB0

λSSS
λSSJℓ ℓ is odd .

(5.57)

To complete our derivation, we simply note that from the superblocks (5.4), (5.5) and (5.6) that

λSSJℓ+2
= λSSHℓ+1

, λSSJ1 = λSSS , λSSH1 = λSSB0 , (5.58)

so that

λSSHℓ+1
=


λSSS ℓ is even

λSSB0
ℓ is odd .

(5.59)

Let us now apply (5.59) to two special cases: free field theory and parity preserving theories. In

free field theory the higher-spin currents remain conserved, so that α = 0 and hence, using (5.48), we

find that λSSB0
= λSSS . We conclude that each conserved current supermultiplet must contribute

equally to ⟨SSSS⟩, which is precisely what we found in Section 2.4.

For parity preserving theories, supersymmetry requires that S is a scalar but that P is a pseu-

doscalar. As we see from (5.10), the operator Hµ
1 eats a pseudoscalar, and so is also a pseudovector

rather than a vector. Parity preservation then requires that λSSB0 = 0, and so we conclude that

for parity preserving theories only conserved current supermultiplets with odd spin contribute to

⟨SSSS⟩. Note that this does not apply to free field theory (which is parity preserving), because Hµ
1
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remains short.

5.2.2 Ansatz for ⟨SSSS⟩

In the previous section we showed that the OPE coefficient between two S operators and a conserved

current is completely fixed by Hµ
1 pseudo-conservation in terms of λSSS and λSSB0

. Our task now

is to work out the implications of this for the ⟨SSSS⟩ four-point function.

As shown in [151] using the Lorentzian inversion formula [150], Si(U, V ) is fully fixed by its

double discontinuity up to a finite number of contact interactions in AdS. More precisely, we can

write:

Si(U, V ) = Sidisc(U, V ) +
1

cT

(
Siexchange(U, V ) + Sicontact(U, V )

)
+O(c−2

T ) . (5.60)

Here the disconnected correlator is defined as in (2.78). The Siexchange(U, V ) term is any CFT

correlator with the same single trace exchanges as Si(U, V ), and with good Regge limit behavior so

that the Lorentzian inversion formula holds. Finally, Sicontact(U, V ) is a sum of contact interactions

in AdS with at most six derivatives, which contribute to CFT data with spin two or less. We will

focus on each of these last two contributions in turn.

Let us begin with the exchange term. In higher-spinN = 6 theories the only single trace operators

are conserved currents, and their contributions to ⟨SSSS⟩ are fixed by the OPE coefficients computed

in the previous section. We can write the superconformal blocks for the conserved currents in the

original Bi basis of R-symmetry structures as

Gistress tensor(U, V ) = giS(U, V ) + giJ1(U, V ) + giT2
(U, V ) ,

Gicons,ℓ(U, V ) = giBℓ
(U, V ) + giHℓ+1

(U, V ) + giJℓ+2
(U, V ) + giTℓ+3

(U, V ) ,

(5.61)

where we define

giBℓ
(U, V ) = giTℓ

(U, V ) = gℓ+1,ℓ(U, V )×


(
1 0 0 0 0 0

)
even ℓ ,

0 odd ℓ ,

giBℓ
(U, V ) = giTℓ

(U, V ) = gℓ+1,ℓ(U, V )×


(
−1 0 0 0 1 1

)
even ℓ ,(

0 0 0 0 1 −1
)

odd ℓ .

(5.62)

These superconformal blocks can be derived by expanding each Sr(U, V ) as a sum of conformal

blocks using the OPE coefficients (5.4), (5.5) and (5.6), and then using (2.17) to convert back to the

130



basis Si(U, V ) of R-symmetry structures. We can now write

1

cT
Siexchange(U, V ) = λ2SSS

(
Gistress tensor(U, V ) +

∑
odd ℓ

Gicons,ℓ(U, V )

)

+ λ2SSB0

∑
even ℓ

Gicons,ℓ(U, V ) + crossing + double trace terms ,
(5.63)

where the double trace terms are some combination of contact terms required so that Siexchange(U, V )

has good Regge behavior.

To make further progress, we note that

1

4

(
Gistress tensor(U, V ) +

∑
ℓ

Gicons,ℓ(U, V ) + crossing
)

= Sifree(U, V ) , (5.64)

where Sifree(U, V ) is the connected correlator in the N = 6 free field theory defined in (2.78). This

equality can be verified using the superconformal block decomposition of ⟨SSSS⟩ in free field theory

computed in Section 2.4. Because Sifree(U, V ) is a correlator in a unitary CFT, it is guaranteed to

have the necessary Regge behavior required for the Lorentzian inversion formula.

Having derived an expression for the sum of odd and even conserved current superblocks, let us

turn to the difference. Note that for ℓ > 0, each contribution from Bℓ, Jℓ+1, Hℓ and Tℓ+1 appearing

in an even superblock comes matched with contributions from Tℓ, Jℓ+1, Hℓ, and Bℓ+1 from an

odd superblock. We thus find that if we take the difference between the odd and even blocks, the

contributions from spinning operators will cancel, leaving us only with the scalar conformal blocks

Gistress tensor(U, V ) +
∑

odd ℓ

Gicons,ℓ(U, V )−
∑

even ℓ

Gicons,ℓ(U, V ) = giS(U, V )− giB0
(U, V ) . (5.65)

On their own, the difference of two conformal blocks does not have good Regge behavior. We

can however replace these conformal blocks with scalar exchange diagrams in AdS. Such exchange

diagrams do have good Regge behavior, and the only single trace operators that appears in their

OPE have the same quantum numbers as the exchanged particle. Using the general scalar exchange

diagram computed in [22], and inverting (2.17) to convert from the s-channel R -symmetry basis to

Si(U, V ), we find that9

S1scal(U, V ) = − 2U

π5/2
D̄1,1, 12 ,

1
2
(U, V ) ,

S4scal(U, V ) =
U

π5/2

[
D̄ 1

2 ,1,1,
1
2
(U, V ) + D̄1, 12 ,1,

1
2
(U, V )

]
,

(5.66)

9Our conventions for D̄-functions can be found in Appendix D .
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which has been normalized so that the exchange of S itself contributes equally to Sifree(U, V ) and

S1scal(U, V ). Using (2.82) to eliminate λ2SSS in favor of c−1
T , we arrive at our ansatz for the exchange

contribution:

1

cT
Siexchange(U, V ) =

1

cT

(
(16− a1(λ))Sifree(U, V ) + a1(λ)Siscal(U, V )

)
, (5.67)

where a1(λ) is related to λ2SSB0
by the equation

a1(λ) = 8−
cTλ

2
SSB0

8
. (5.68)

Because λ2SSB0
is always positive in unitary theories, a1(λ) ≤ 8.

Now that we have an expression for the exchange terms, let us now turn to the contact terms.

As already noted, Sicontact(U, V ) must be a sum of contact Witten diagrams that contribute to CFT

data of spin two or less, which in Mellin space requires the correlator to be a polynomial of degree at

most two. Furthermore, because our theory is supersymmetric these contact Witten diagrams must

also preserve N = 6 supersymmetry. In Chapter 4 we solved the task of computing all such Mellin

amplitudes, and found that there was a unique solution, M3(s, t). Converting this Mellin amplitude

to position space using equation (D.4), we find that

S1cont(U, V ) = 4UV D̄2,2,3,1(U, V ) ,

S4cont(U, V ) = 4U

(
D̄1,1,1,3(U, V )− 4

3
D̄1,1,2,2(U, V )

)
.

(5.69)

Putting everything together, we arrive at our ansatz for ⟨SSSS⟩ in higher-spin N = 6 theories:

Si(U, V ) = Sidisc(U, V )

+
1

cT

(
(16− a1(λ))Sifree(U, V ) + a1(λ)Siscal(U, V ) + a2(λ)Sicont(U, V )

)
+O(c−2

T ) .
(5.70)

5.2.3 ⟨SSPP ⟩ and ⟨PPPP ⟩

Given our ansatz for ⟨SSSS⟩, we will now derive expressions for ⟨SSPP ⟩ and ⟨PPPP ⟩ using the

superconformal Ward identities derived in Chapter 2. Applying these identities to the various terms

in our ansatz (5.70), we find that for the disconnected term

R1
disc(U, V ) = 1 , Ridisc(U, V ) = 0 for i = 2 , . . . , 6 ,

P1
disc(U, V ) = 1 , P4

disc(U, V ) = 0 ,

(5.71)
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and for the free connected term

Rifree(U, V ) = 0 , P1
free(U, V ) = 0 , P4

free(U, V ) =
U2(U − V − 1)

4V 3/2
, (5.72)

both of which can be checked against their expressions in free field theory. For the scalar exchange

term, we find

R1
scal(U, V ) = 0 , R2

scal(U, V ) =
4U

π2
, R4

scal(U, V ) =
2U(U − V − 1)

π2V
,

R5
scal(U, V ) = − 2U

π2V
+

U2

2π5/2
D̄1,2, 12 ,−

1
2
(U, V ) , Piscal(U, V ) = 0 ,

(5.73)

where we use the D̄ function relations in (D.5) to relate derivatives of D̄ functions to each other.

Finally, for the degree 2 contact term ⟨SSPP ⟩ is given by

R1
cont(U, V ) = −4U2

3

(
4D̄2,2,1,1 − 6D̄2,2,2,2 + 15D̄4,2,1,3 + 15D̄3,2,2,3 − 30D̄3,2,1,2

)
R2

cont(U, V ) = 4U2
(
D̄3,2,2,3 − 2D̄2,2,2,2

)
, R4

cont(U, V ) = 4U2
(
5D̄3,2,2,3 − 2D̄2,2,2,2

)
,

R5
cont(U, V ) = 8U2

(
4

3
D̄2,2,1,1 − 6(D̄2,2,2,2 + D̄3,2,1,2) + 5D̄3,2,2,3 +

5

2
(D̄2,2,3,3 + D̄4,2,1,3)

)
.

(5.74)

We will not need the equivalent expression for ⟨PPPP ⟩.

5.3 ⟨SSSP ⟩ in the Higher-Spin Limit

Our task in this section is to use the weakly broken higher-spin Ward identities to compute ⟨SSSP ⟩.

Recall from Section 2.1.4 that the correlator ⟨SSSP ⟩ can be written in terms of six functions

T i(U, V ), but, due to the crossing relations (2.14), we only need to specify T 1(U, V ) and T 4(U, V )

in order to complete fix ⟨SSSP ⟩.

Acting with the pseudocharge δ̃(X) on ⟨SSSP ⟩, we find that

δ̃(X)⟨S(y⃗1, Y1)S(y⃗2, Y2)S(y⃗3, Y3)P (y⃗4, Y4)⟩

=
α√
N

(〈
P̃ (y⃗1, [X,Y1])S(y⃗2, Y2)S(y⃗3, Y3)P (y⃗4, Y4)

〉
+ 1↔ 2 + 1↔ 3

−
〈
S(y⃗1, Y1)S(y⃗2, Y2)S(y⃗3, Y3)S̃(y⃗4, [X,Y4])

〉)
.

(5.75)
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To expand the right-hand side of this identity, we define

⟨S(x⃗1, X1)S(x⃗2, X2)S(x⃗3, X3)S̃(x⃗4, X4)⟩ =
x13

x212x
3
34x14

6∑
i=1

S̃i(U, V )Bi ,

⟨S(x⃗1, X1)S(x⃗2, X2)P̃ (x⃗3, X3)P (x⃗4, X4)⟩ =
x13

x212x
3
34x14

6∑
i=1

R̃i(U, V )Bi ,

(5.76)

where S̃i(U, V ) and R̃i(U, V ) can be computed by taking the shadow transform of ⟨SSSS⟩ and

⟨SSPP ⟩. To expand the left-hand side, we use (5.38) and SO(6)R invariance to write

δ̃(X)⟨S(y⃗1, Y1)S(y⃗2, Y2)S(y⃗3, Y3)P (y⃗4, Y4)⟩

=
1

2
λSSB0

⟨S(y⃗1, Y1)S(y⃗2, Y2)S(y⃗3, Y3)P (y⃗4, [X,Y4])⟩

+ κ1
〈
S(y⃗1, Y1)S(y⃗2, Y2)S(y⃗3, Y3)S

2(y⃗4, [X,Y4])
〉

+ κ2 ⟨S(y⃗1, Y1)S(y⃗2, Y2)S(y⃗3, Y3)SB0(y⃗4, [X,Y4])⟩ .

(5.77)

The two double-trace terms can each be expanded at O(c
−3/2
T ) as a product of a two-point and a

three-point function, so that for instance

〈
S(y⃗1, Y1)S(y⃗2, Y2)S(y⃗3, Y3)SB0(y⃗4, Y4)

〉
= ⟨S(y⃗1, Y1)S(y⃗2, Y2)B0(y⃗4)⟩ ⟨S(y⃗3, Y3)S(y⃗4, Y4)⟩+ permutations +O(c

−3/2
T ) .

(5.78)

We can then solve (5.75) to find that it fully fixes ⟨SSSP ⟩ in terms of ⟨SSSS⟩ and ⟨SSPP ⟩:

T 1(U, V ) = − 2α

λSSB0

√
cT

(
R̃1(U, V ) + S̃1(U, V )−

λ2SSB0

8

√
U

)
,

T 4(U, V ) = − 2α

λSSB0

√
cT

(
R̃4(U, V ) + S̃4(U, V ) +

λ2SSS
8

U

(
1 +

1√
V

))
.

(5.79)

To calculate T i(U, V ) for the various contributions to our ⟨SSSS⟩ ansatz, we must compute the

shadow transforms of both ⟨SSSS⟩ and ⟨SSPP ⟩, which, using (5.76) we can express in terms of

functions

S̃i(U, V ) =
x334x14
x13

∫
d3z

4π|z⃗ − x⃗4|4
Si
(
x2
12|x⃗3−z|2
x2
13|x⃗2−z⃗|2 ,

|x⃗1−z⃗|2x2
23

x2
13|x⃗2−z⃗|2

)
|x⃗3 − z⃗|2

,

R̃i(U, V ) =
x334x14
x13

∫
d3z

4π|z⃗ − x⃗3|2
Pi
(
x2
12|x4−z⃗|2

|x⃗1−z⃗|2x2
24
,
x2
14|x⃗2−z⃗|2

|x⃗1−z⃗|2x2
24

)
|x⃗4 − z⃗|4

.

(5.80)
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Let us begin with the free connected term, for which

S1free(U, V ) = Rifree(U, V ) = 0 , (5.81)

so that the only non-trivial computation is

S̃4free(U, V ) =
x212x

3
34x14

x213x23

∫
d3z

4π|z⃗ − x⃗4|4
1

|x⃗1 − z⃗||x⃗2 − z⃗|
. (5.82)

We can evaluate this integral using the star-triangle relation

∫
d3z

|x⃗1 − z⃗|2∆1 |x⃗2 − z⃗|2∆2 |x⃗3 − z⃗|2∆3
=

(
3∏
i=1

Γ
(
3
2 −∆i

)
Γ(∆i)

)
π3/2

xd−2∆3
12 xd−2∆2

13 xd−2∆1
23

, (5.83)

and so find that

S̃4free(U, V ) = −1

2

√
U3

V
. (5.84)

Next we turn to the contact term. As shown in Appendix D, the shadow transform of a D-

function is another D-function:

∫
d3y

|x⃗4 − y⃗|6−2r4
Dr1,r2,r3,r4(x⃗1, x⃗2, x⃗3, y⃗) =

π3/2Γ
(
r4 − 3

2

)
Γ(r4)

Dr1,r2,r3,3−r4(x⃗1, x⃗2, x⃗3, x⃗4) . (5.85)

When we write
Sicont(U, V )

x212x
2
34

and R
i
cont(U, V )

x212x
4
34

in terms of D-functions, the result is a sum of D-functions multiplied by rational functions of x2ij .

Using the identity [158]

4r1r2x
2
12Dr1+1,r2+1,r3,r4 − 4r3r4x

2
34Dr1,r2,r3+1,r4+1

= (r1 + r2 − r3 − r4)(3− r1 − r2 − r3 − r4)Dr1,r2,r3,r4 .

(5.86)

along with its crossings, we can always rearrange the integrands in (5.80) into a form such that we

can apply (5.85) term by term.

Finally, we turn to the exchange term. To compute the shadow transform for this term, we use
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equation (D.3) to rewrite the D̄ functions as conformal integrals

S̃1scal(U, V ) = − 2

π5/2

x334x14x
2
12

x313

∫
d3z

4π|z⃗ − x⃗4|4
D̄1,1, 12 ,

1
2

(
x2
12|x⃗3−z⃗|2
x2
13|x⃗2−z⃗|2 ,

|x⃗1−z⃗|2x2
23

x2
13|x⃗2−z⃗|2

)
|x⃗2 − z⃗|2

= − 1

2π4

x212x14x
3
34

x13

∫
d3z d3w

|z⃗ − x⃗4|4|w⃗ − x⃗1|2|w⃗ − x⃗2|2|w⃗ − x⃗3||w⃗ − z⃗||z⃗ − x⃗3|
.

(5.87)

Performing the integral over z using the star-triangle relation (5.83), we then find that the integral

over w can also be performed using the star-triangle relation, and so

S̃1scal(U, V ) =
√
U . (5.88)

We can evaluate S̃4scal in a similar fashion, finding that

S̃4scal(U, V ) = −1

2
U

(
1 +

1√
V

)
. (5.89)

Now we turn to computing R̃iscal(U, V ). Because ultimately our goal is to compute ⟨SSSP ⟩,

we only need R̃1
scal(U, V ) and R̃4

scal(U, V ), as these suffice to compute T̃ 1(U, V ) and T̃ 4(U, V ). But

R1
scal(U, V ) = 0, and R̃4

scal(U, V ) can be computed by using the star-triangle relation term by term,

so that

R̃1(U, V ) = 0 R̃4 =
(
√
U −

√
V − 1)

2
√
V

. (5.90)

Having computed all of the needed shadow transforms, we can now write our final expression

for ⟨SSSP ⟩. Substituting our results into (5.79) and the using (5.48) and (5.68) to simplify the

prefactor on the right-hand side of 10

2α

λSSB0

√
cT

=
1

π

√
2a1(λ)

8− a1(λ)
, (5.91)

we find that

T i(U, V ) = − 1

π

√
2a1(λ)

8− a1(λ)

×

(
(16− a1(λ))T ifree(U, V ) + a1(λ)T iscal(U, V ) + a2(λ)T icont(U, V )

)
+O(c−2

T ) ,

(5.92)

10Because equation (5.48) gives an expression for α2, it only fixes α up to an overall sign. Note that this sign is
determined by the sign convention for P , such that by redefining P → −P we can always fix α ≥ 0. This choice turns
out to also be consistent with our conventions in Chapter 3.
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where we define

T 1
free(U, V ) = −

√
U , T 4

free(U, V ) = −1

2

(√
U3

V
− U − U√

V

)
,

T 1
scal(U, V ) = +

√
U , T 4

scal(U, V ) =
1

2

(√
U3

V
− U − U√

V

)
,

T 1
cont(U, V ) =

8π1/2

3
UV

(
2UD̄2,3,2,2 + 2V D̄1,3,3,2 − 2D̄2,2,3,2 − 3D̄1,2,2,2

)
,

T 4
cont(U, V ) = −32π1/2

3
U2
(
UD̄3,3,1,2 − D̄2,2,1,2

)
.

(5.93)

It is not hard to check that each of these contributions individually satisfies the ⟨SSSP ⟩ supercon-

formal Ward identity (2.15).

We conclude by applying (5.93) to parity preserving theories, where ⟨SSSP ⟩ must vanish. We

see that this is possible only if a1 = 8 and a2 = 0, and so conclude that

Si(U, V ) = Sidisc(U, V ) +
8

cT

(
Sifree(U, V ) + Siscal(U, V )

)
+O(c−2

T ) , (5.94)

in such theories. In particular, we see that

λ2SSB0
=

8(8− a1)
cT

= 0 , (5.95)

just as argued at the end of Section 5.2.1.

5.4 Constraints from Localization

We will now fix the two unknown coefficients a1(λ) and a2(λ) in ⟨SSSS⟩ using supersymmetric

localization. To do so we will first need to compute the integrated constraints for the functions Sifree,

Siscal, Sicont and their ⟨SSSP ⟩ equivalents. We can then use the localization results of Chapter 3 to

fix both parameters in the U(N)k × U(N +M)−k ABJ and SO(2)2k × USp(22M)−k OSp theories.

Having fully determines the leading large cT correction to ⟨SSSS⟩ in both theories, we decompose

the result into superconformal blocks, allowing us to compute the leading corrections to certain OPE

coefficients and conformal dimensions.
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5.4.1 Integrating Higher-Spin Correlators

Let us begin by computing I++ and I+− for the free connected scalar correlator Sifree(U, V ). We can

immediately read of λ2
(B,2)

[022]
2,0

from Table 2.6, and so

I++[Sifree] = 2λ2
(B,2)

[022]
2,0

[Sifree] = 4 , (5.96)

while because S1free(U, V ) = 0, using (3.42) we find

I+−[Sifree] = 0 . (5.97)

Computing Iodd for T ifree(U, V ) = −T iscal(U, V ) is also straightforward. Combining (5.93) and (3.33),

we can just directly compute

Iodd
[
T ifree

]
= −Iodd

[
T iscal

]
= −4π

∫
dr dθ

sin θ

r2 − 2r cos θ + 1
= −2π3 . (5.98)

The rest of the integrated correlator computations are more tractable in Mellin space. We already

computed I++ and I+− for Sicont(U, V ) in Section 4.5.2 by using its Mellin transform M i
3(s, t),

I++[Sicont] = I++[M
i
3] =

8

3
, I+−[Sicont] = I+−[M

i
3] =

2

3
π2 . (5.99)

We will likewise find it convenient to convert Siscal(U, V ) to Mellin space, where

M1
scal(s, t) = −

2Γ
(
1−s
2

)
π5/2Γ

(
2−s
2

) , M4
scal(s, t) =

Γ
(
1−t
2

)
π5/2Γ

(
2−t
2

) + Γ
(
1−u
2

)
π5/2Γ

(
2−u
2

) . (5.100)

To compute I++[M
i
scal] we simply note that

Mscal,84(s, t) =
1

8
(M2

scal(s, t) +M3
scal(s, t) + 2M4

scal(s, t)) = 0 , (5.101)

and so from (4.105) we find that

I++[Siscal] = 0 . (5.102)

To compute I+−[Siscal], we use (4.108) to compute

I+−[M
i
scal] = −

4

π

∫
dt du

(4πi)2
sec π(t+u)2

(t− 2)(u− 2)
Γ

(
2− t
2

)
Γ

(
t− 1

2

)
Γ

(
2− u
2

)
Γ

(
u− 1

2

)
. (5.103)
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Using Mathematica, we can evaluate this integral numerically to arbitrary high precision, and find

that, to within the numerical error,

I+−[Siscal] = −π2 . (5.104)

Finally, let us turn to Iodd[T icont], which we also evaluate in Mellin space. Let us begin by defining

Mellin amplitudes for ⟨SSSP ⟩ through the equation

T i(U, V ) =

∫
ds dt

(4πi)2
N i(s, t)Us/2V u/2−1

× Γ
(
1− s

2

)
Γ

(
3− s
2

)
Γ

(
1− t

2

)
Γ

(
3− t
2

)
Γ
(
1− u

2

)
Γ

(
3− u
2

)
,

(5.105)

where u = 5− s− t. Just like for ⟨SSSS⟩, the s and t contours are defined to satisfy

Re(s) < 2 , Re(t) < 2 , Re(u) < 2 , (5.106)

which include all poles of the Gamma functions on one side or the other of the contour [135]. The

crossing equations (2.14) imply that

N1(s, t) = N1(s, u) , N2(s, t) = N1(t, s) , N3(s, t) = N1(u, t) ,

N4(s, t) = N4(s, u) , N5(s, t) = N4(t, s) , N6(s, t) = N4(u, t) .

(5.107)

Using (5.105), we can rewrite Iodd[T i] in terms of its Mellin transform N i(s, t). The integrals over

r and θ become tractable, and so we find that

Iodd[N
i] = −8π9/2

∫
ds dt

(4πi)2
N i(s, t) csc(πs) csc(πt) csc(πu) (sin(πs) + sin(πt) + sin(πu))

(s− 2)(s− 3)
. (5.108)

We can convert T icont into Mellin space using (D.4):

N1
cont(s, t) = −

2π1/2

3
(t− 2)(u− 2) , N4

cont(s, t) = −
2π1/2

3
(s− 2)2 . (5.109)

and then compute

Iodd[N
i
cont] = −

64π5

3

∫
ds dt

(4πi)2
csc(πs) csc(πt) csc(πu) (sin(πs) + sin(πt) + sin(πu))

= −64π5

∫
ds dt

(4πi)2
csc(πs) csc(πt)

= −4π3 .

(5.110)
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To summarize the results of this section, we have found that

I++

[
Sifree

]
= 4 , I+−

[
Sifree

]
= 0 , Iodd

[
T ifree

]
= −2π3

I++

[
Siscal

]
= 0 , I+−

[
Siscal

]
= −π2 , Iodd

[
T iscal

]
= 2π3

I++

[
Sicont

]
=

8

3
, I+−

[
Sicont

]
=

2

3
π2 , Iodd

[
T icont

]
= −4π3

(5.111)

5.4.2 Applying the Constraints

We are now finally in a position to fully fix the coefficients ai(λ) in higher-spin ABJ theory. Let us

begin with the parity even constraints. Combining the expressions in Section 3.1 with our ansatz

for ⟨SSSS⟩ and the integrated correlators computed in the previous section, we find that

1

cT

(
32− 2a1(λ) +

4

3
a2(λ)

)
= λ2

(B,2)
[022]
2,0

∣∣∣
1/cT

,

−a1(λ) +
2

3
a2(λ) = lim

cT→0

211

π4cT

∂4 logZ

∂m2
+∂m

2
−

∣∣∣∣
m±=0

.

(5.112)

Note however that these equations are redundant, and in particular they imply that

∂4 logZ

∂m2
+∂m

2
−

∣∣∣∣
m±=0

=
cTπ

4

211

(
16 + cT

(
2− λ2

(B,2)
[022]
2,0

))
+O(c0T ) , (5.113)

regardless of the values of ai(λ). Solving the parity even constraints (5.112) with either the local-

ization results (3.85) and (3.87) for the U(N)k × U(N +M)−k theory or (3.106) and (3.109) for the

SO(2)2k × USp(2 + 2M)−k theory (the localization results are identical at leading order in c−1
T ), we

find that

a2(λ) =
3

2
a1(λ) + 6 cos(2λπ)− 6 . (5.114)

To solve for a1(λ), we now turn to the parity odd constraint

√
a1(λ)

8− a1(λ)
(8− a1(λ) + a2(λ)) =

211i

π4cT

∂4 logZ

∂3m+∂m−
+O(c−1

T ) , (5.115)

which also follows from combining the results of Section 3.1 with the integrated correlators computed

in the previous section. Substituting (5.114) into (5.115) and squaring both sides, we find that

a1(λ)(a1(λ) + 12 cos(2πλ) + 4)2

2(8− a1(λ))
= 32 sin2(2πλ) , (5.116)
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which upon further rearrangement becomes the cubic equation

(
a1(λ)− 8 sin2(πλ)

) (
a1(λ)

2 + 4(5 cos(2πλ) + 3)a1(λ) + 256 cos2(πλ)
)
. (5.117)

This has three solutions for a1(λ). However, two of these solutions are not real for all λ ∈ [0, 12 ] and

so we discard them as non-physically. We therefore conclude that

a1(λ) = 8 sin2(πλ) , (5.118)

which in turn implies that

a2(λ) = 0 . (5.119)

Substituting these values into our ansatz for ⟨SSSS⟩, we arrive at the expression

Si(U, V ) = Sidisc(U, V ) +
8

cT

[
(2− sin2(πλ))Sifree(U, V ) + sin2(πλ)Siscal(U, V )

]
+O(c−2

T ) (5.120)

We can then also use our expressions for ⟨SSSP ⟩, ⟨SSPP ⟩ and ⟨PPPP ⟩ computed in Sections 5.2.3

and 5.3 to find that

T i(U, V ) = −8
√
2

cTπ
sin(2πλ)T ifree(U, V ) +O(c−2

T ) ,

Ri(U, V ) = Ridisc(U, V ) +
8

cT
sin2(πλ)Riscal(U, V ) +O(c−2

T ) ,

Pi(U, V ) = Pidisc(U, V ) +
8

cT
(2− sin2(πλ))Pifree(U, V ) +O(c−2

T ) .

(5.121)

and so, as desired, we have computed the leading 1/cT correction to each of these correlators in the

higher-spin limit. Note that, when expressed in terms of λ and cT our final results are identical for

the ABJ and OSp theories, and are independent of N .

So far in this chapter we have focused on the large M expansion. We can, however, safely take

λ ∼ M
k → 0 and so rearrange the large M expansion into the semiclassical large k expansion. Using

our final expression (5.120) for ⟨SSSS⟩ at large M , along with expressions for cT in terms of M,N

and k computed in Chapter 3, we find that in the U(N)k × U(N +M)−k ABJ theory,

Si(U, V ) = Sidisc(U, V ) +
1

N(M +N)
Sifree(U, V ) +O(k−2) ,

T i(U, V ) =

√
2M

N(M +N)k
T ifree(U, V ) +O(k−2) .

(5.122)
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and for the SO(2)2k × USp(2 + 2M)−k theory,

Si(U, V ) = Sidisc(U, V ) +
1

2M + 2
Sifree(U, V ) +O(k−2) ,

T i(U, V ) =
1

k
√
2
T ifree(U, V ) +O(k−2) .

(5.123)

5.4.3 Extracting CFT Data

Having computed the leading correction to ⟨SSSS⟩ at large M , we will now expand our answer in

superblocks

Sr(U, V ) =
∑

I∈S×S
λ2IG

r
I(U, V ) (5.124)

as defined in Section 2.3. At large cT the CFT data takes the form

λ2I = λ2I,disc +
1

cT
λ2I,tree +O(c−2

T ) , ∆I = ∆I,disc +
1

cT
∆I,tree +O(c−2

T ) , (5.125)

and so using (5.124) we find that

Sr(U, V )

=
∑

I∈S×S

[
λ2I,disc +

1

cT

(
λ2I,tree + λ2I,disc∆I,tree∂∆

)
+O(c−2

T )

]
Gr
I(U, V )

∣∣
∆=∆disc

.
(5.126)

Comparing this general superblock expansion to the explicit correlator in (5.120), we can extract the

CFT data at GFFT and tree-level by expanding both sides around U ∼ 0 and V ∼ 1. Expressions

for the U ∼ 0 and V ∼ 1 expansion of the D̄ functions in Sscal are given in Appendix D .

Note that there are two cases where we cannot extract tree-level CFT data from the tree-level

correlator. If operators are degenerate at GFFT we cannot distinguish them at tree-level, and

the coefficient of the logarithm will contain contributions from the anomalous dimensions of all the

degenerate operators. We can lift this degeneracy either by computing other correlators at tree-level,

or by computing ⟨SSSS⟩ at higher order in 1/cT .

The second case where the anomalous dimension cannot be computed occurs when an operator

first appears at tree-level. In this case its tree-level anomalous dimension cannot be extracted from

tree-level ⟨SSSS⟩ because λ2I,GFFT = 0, and so we would need to compute ⟨SSSS⟩ at 1-loop in

order to extract the tree-level anomalous dimension.
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We will now show the results of the CFT data extraction. For the semishort multiplets,11 we

find the squared OPE coefficients:

ℓ ≥ 0 even : λ2
(A,+)

[002]

ℓ+5/2,ℓ+1/2

=
π(ℓ+ 1)(ℓ+ 2)Γ(ℓ+ 2)2

2Γ
(
ℓ+ 5

2

)2
+

8

cT

[
(2− sin2(πλ))

4ℓ(ℓ+ 1)5Γ
(
ℓ+1
2

)4
π(ℓ+ 2)Γ

(
ℓ+ 5

2

)2 + sin2(πλ)S
(A,+)

[002]

ℓ+5/2,ℓ+1/2

]
+O(c−2

T ) ,

ℓ ≥ 0 even : λ2
(A,2)

[011]
ℓ+2,ℓ

=
π(ℓ+ 2)Γ(ℓ+ 1)Γ(ℓ+ 3)

(2ℓ+ 3)Γ
(
ℓ+ 3

2

)2
+

8

cT

[
− (2− sin2(πλ))

22ℓ+1(2ℓ+ 3)Γ
(
ℓ+1
2

)2
Γ
(
ℓ+3
2

)2
πΓ
(
ℓ+ 5

2

)2 + sin2(πλ)S
(A,2)

[011]
ℓ+2,ℓ

]
+O(c−2

T ) ,

ℓ ≥ 0 odd : λ2
(A,2)

[011]
ℓ+2,ℓ

=
πΓ(ℓ+ 2)Γ(ℓ+ 4)

(2ℓ2 + 7ℓ+ 6)Γ
(
ℓ+ 3

2

)2
+

8

cT

[
(2− sin2(πλ))

22ℓ+1(2ℓ+ 3)Γ
(
ℓ
2 + 1

)4
πΓ
(
ℓ+ 5

2

)2 + sin2(πλ)S
(A,2)

[011]
ℓ+2,ℓ

]
+O(c−2

T ) ,

ℓ ≥ 0 even : λ2
(A,1)

[100],2

ℓ+7/2,ℓ+3/2

=
πΓ(ℓ+ 3)Γ(ℓ+ 5)

Γ
(
ℓ+ 5

2

)
Γ
(
ℓ+ 9

2

)
+

8

cT

[
− (2− sin2(πλ))

22ℓ+7Γ
(
ℓ+3
2

)2
Γ
(
ℓ+5
2

)2
πΓ
(
ℓ+ 5

2

)
Γ
(
ℓ+ 9

2

) + sin2(πλ)S
(A,1)

[100],2

ℓ+7/2,ℓ+3/2

]
+O(c−2

T ) ,

(5.127)

where the contributions SI from the scalar exchange term Siscal are given in Table 5.2. Note that

we did not include the result for λ2
(A,1)

[100],1

ℓ+7/2,ℓ+3/2

, since it cannot be unambiguously extracted from

⟨SSSS⟩ at O(c−1
T ) due to mixing with the single trace operators, as we discuss next.

For the long multiplets, we first consider the single trace approximately conserved current multi-

plets with superprimary Bℓ, starting with ℓ = 0. For generic λ when parity is not a symmetry, we ex-

pect this multiplet at cT →∞ to contribute to both n = 1, 2 structures of the GLong[000],n
∆,0

superblock

at unitarity ∆ = 1, where recall from (2.74) that we can formally identify GLong[000],2
1,0

= G
(B,1)

[200]
2,0

and GLong[000],1
1,0

= G
(A,cons)[000]1,0

. For each structure, we find the OPE coefficients

λ2Long[000],1
1,0

=
64

cT
(1− sin2(πλ)) +O(c−2

T ) ,

λ2Long[000],2
1,0

=
4

3
+O(c−1

T ) ,

(5.128)

where the n = 2 structure starts at O(c0T ) since GLong[000],2
1,0

= G
(B,1)

[200]
2,0

appears in the GFFT, while

the n = 1 starts at O(c−1
T ) since GLong[000],1

1,0
= G

(A,cons)[000]1,0
does not appear at GFFT. Note that

11We already computed the short multiplet λ2

(B,2)
[022]
2,0

in Chapter 3 using supersymmetric localization.
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λ2
Long[000],1

1,0

is what we called λSSB0
from Section 5.1, and vanishes for the parity preserving λ = 1/2

theory as discussed before. For N > 1 we cannot unambiguously determine the O(c−1
T ) correction

to λ2
Long[000],2

1,0

using just tree-level ⟨SSSS⟩,12 since we cannot distinguish it from the correction to

λ2
(B,1)

[200]
2,0

, which can be explicitly constructed in any U(N)−k × U(N +M)k theory with N > 1.13

To unmix these degenerate operators, we would need to compute ⟨SSSS⟩ at O(c−2
T ), in which

case the O(c−1
T ) correction to λ2

Long[000],2
1,0

will multiply the anomalous dimension, so that it can be

unambiguously read off. The O(c−1
T ) anomalous dimension should be the same for either structure,

but in practice we can only extract it from tree-level ⟨SSSS⟩ using the GLong[000],2
1,0

structure, because

that is the only structure whose OPE coefficient is O(c0T ). From this structure we find

∆(0,2) = 1 +
128

π2cT
sin2(πλ) +O(c−2

T ) . (5.130)

For the GLong[000],1
1,0

structure, the tree-level anomalous dimension would first appear in ⟨SSSS⟩ at

O(c−2
T ), since the leading order OPE coefficient starts at O(c−1

T ).

Next, we consider the single trace approximately conserved currents with superprimary Bℓ and

even ℓ > 0. For generic λ parity is not a symmetry, and so we expect this multiplet at cT → ∞ to

contribute to both n = 1, 2 structures of the GLong[000],n
∆,ℓ

superblock at unitarity ∆ = ℓ + 1, where

recall from (2.74) that we can formally identify GLong[000],2
ℓ+1,ℓ

= G
(A,1)

[100],1

ℓ+3/2,ℓ−1/2

and GLong[000],1
ℓ+1,ℓ

=

G
(A,cons)[000]ℓ+1,ℓ

. For each structure, we find the OPE coefficients

ℓ > 0 even : λ2Long[000],1
ℓ+1,ℓ

=
64

cT
(1− sin2(πλ)) +O(c−2

T ) ,

ℓ > 0 even : λ2Long[000],2
ℓ+1,ℓ

=
π(ℓ+ 2)Γ(ℓ+ 3)Γ(ℓ+ 4)

3Γ
(
ℓ+ 5

2

)
Γ
(
ℓ+ 9

2

) +O(c−1
T ) ,

(5.131)

where the n = 2 structure start at O(c0T ) since GLong[000],2
ℓ+1,ℓ

= G
(A,1)

[100],1

ℓ+3/2,ℓ−1/2

appears in the GFFT,

while the n = 1 starts at O(c−1
T ) since GLong[000],1

ℓ+1,ℓ

= G
(A,cons)[000]ℓ+1,ℓ

does not appear at GFFT. Note

that λ2
Long[000],1

ℓ+1,ℓ

is what we called λSSBℓ
from Section 5.1, and vanishes for the parity preserving

λ = 1/2 theory as discussed before. We did not write the O(c−1
T ) correction to λ2

Long[000],2
ℓ+1,ℓ

, since we

cannot distinguish it from the correction to λ2
(A,1)

[100],1

ℓ+7/2,ℓ+3/2

using just tree-level ⟨SSSS⟩. To unmix

12For N = 1, the unambiguous tree-level correction will then be

λ2

Long[000],2
1,0

=
4

3
+

8

cT

[
−

4

3
(2− sin2(πλ)) +

32

3π2
sin2(πλ)

]
+O(c−2

T ) . (5.129)

13In particular, at GFFT one can construct two (B, 1)
[200]
2,0 operators, one using adjoints of the SU(N) gauge group

factor and one using singlets. The latter (B, 1)
[200]
2,0 is what is eaten by the conserved current at tree-level, while the

former remains. For N = 1, there is of course no adjoint, which is why the extra (B, 1)
[200]
2,0 does not exist.

145



these degenerate operators, we would need to compute ⟨SSSS⟩ at O(c−2
T ), in which case the O(c−1

T )

correction to λ2
Long[000],2

ℓ+1,ℓ

will multiply the anomalous dimension, so that it can be unambiguously

read off. The O(c−1
T ) anomalous dimension should be the same for either structure, but in practice

we can only extract it from tree-level ⟨SSSS⟩ using the GLong[000],2
ℓ+1,ℓ

structure, because that is the

only structure which contributes at O(c0T ). From this structure we find

ℓ > 0 even : ∆(ℓ,2) = ℓ+ 1 +
8ℓ(2ℓ+ 1)(2ℓ+ 3)2(2ℓ+ 5)(2ℓ+ 7)

π2(ℓ+ 1)2(ℓ+ 2)3(ℓ+ 3)2cT
sin2(πλ) +O(c−2

T ) . (5.132)

For the Long[000],1ℓ+1,ℓ structure, the tree-level anomalous dimension first contributes to ⟨SSSS⟩ at

O(c−2
T ), as discussed above.

Finally, we consider the single trace approximately conserved current multiplets with superpri-

mary Bℓ for odd ℓ > 0. In this case there is just a single structure, which from (2.74) is identified

at unitarity with GLong[000]
ℓ+1,ℓ

= G
(A,cons)[000]ℓ+1,ℓ

. We find the tree-level OPE coefficient

ℓ > 0 odd : λ2Long[000]
ℓ+1,ℓ

=
64

cT
+O(c−2

T ) , (5.133)

which is what we called λSSTℓ+3
from Section 5.1, and does not depend on λ as discussed before. We

would need to compute ⟨SSSS⟩ at O(c−2
T ) in order to extract the tree-level anomalous dimension.

We now move on to the double trace long multiplets. We will only consider the lowest twist

in each sector, since higher twist double trace long multiplets are expected to be degenerate, so

we cannot extract them from just ⟨SSSS⟩. For twist two, we find that only GLong[000],1
ℓ+2,ℓ

receives

contributions for all even ℓ:

ℓ ≥ 0 even : ∆(ℓ,1) = ℓ+ 2− 128(2ℓ+ 3)(2ℓ+ 5)

π2(ℓ+ 1)(ℓ+ 3)(ℓ+ 4)cT
sin2(πλ) +O(c−2

T ) ,

λ2Long[000],1
ℓ+2,ℓ

=
π(ℓ+ 4)Γ(ℓ+ 1)Γ(ℓ+ 3)

2Γ
(
ℓ+ 1

2

)
Γ
(
ℓ+ 7

2

)
+

8

cT

[
− (2− sin2(πλ))

4ℓ+1ℓΓ
(
ℓ+1
2

)2
Γ
(
ℓ+3
2

)2
πΓ
(
ℓ+ 1

2

)
Γ
(
ℓ+ 7

2

) + sin2(πλ)SLong[000],1
ℓ+2,ℓ

]
+O(c−2

T ) .

(5.134)
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For odd ℓ at twist two, only GLong[000]
ℓ+2,ℓ

receives contributions:

ℓ > 0 odd : ∆(ℓ,1) = ℓ+ 2 +O(c−2
T ) ,

λ2Long[000]
ℓ+2,ℓ

=
πℓΓ(ℓ+ 2)Γ(ℓ+ 4)

2Γ
(
ℓ+ 5

2

)
Γ
(
ℓ+ 7

2

)
+

8

cT

[
(2− sin2(πλ))

4ℓ+2Γ
(
ℓ
2 + 1

)2
Γ
(
ℓ
2 + 2

)2
πΓ
(
ℓ+ 5

2

)
Γ
(
ℓ+ 7

2

) + sin2(πλ)SLong[000]
ℓ+2,ℓ

]
+O(c−2

T ) ,

(5.135)

where note that the tree-level corrections to the anomalous dimension vanish. For twist three, we

find that both GLong[000],2
ℓ+3,ℓ

and GLong[000],3
ℓ+3,ℓ

receive contributions for all even ℓ, though only the former

receives an anomalous dimension:

ℓ ≥ 0 even : ∆′
(ℓ,2) = ℓ+ 3 +

128(2ℓ+ 5)(2ℓ(ℓ+ 4) + 5)

π2(ℓ+ 1)(ℓ+ 3)(ℓ+ 4)(ℓ+ 5)cT
sin2(πλ) +O(c−2

T ) ,

λ2Long[000],2
ℓ+3,ℓ

=
πΓ(ℓ+ 3)Γ(ℓ+ 4)

3(2ℓ+ 3)Γ
(
ℓ+ 1

2

)
Γ
(
ℓ+ 9

2

)
+

8

cT

[
(2− sin2(πλ))

4ℓ+3(ℓ+ 2)Γ
(
ℓ+1
2

)
Γ
(
ℓ+3
2

)
Γ
(
ℓ+5
2

)2
3π(ℓ+ 4)(2ℓ+ 3)Γ

(
ℓ+ 1

2

)
Γ
(
ℓ+ 9

2

) + sin2(πλ)SLong[000],2
ℓ+3,ℓ

]
+O(c−2

T ) ,

λ2Long[000],3
ℓ+3,ℓ

=
πΓ(ℓ+ 2)Γ(ℓ+ 5)

(2ℓ+ 3)Γ
(
ℓ+ 1

2

)
Γ
(
ℓ+ 9

2

)
+

8

cT

[
(2− sin2(πλ))

4ℓ+3Γ
(
ℓ+1
2

)
Γ
(
ℓ+3
2

)
Γ
(
ℓ+5
2

)2
π(2ℓ+ 3)Γ

(
ℓ+ 1

2

)
Γ
(
ℓ+ 9

2

) + sin2(πλ)SLong[000],3
ℓ+3,ℓ

]
+O(c−2

T ) ,

(5.136)

where ∆′
(ℓ,2) denotes that these are the second lowest dimension operators in their sector that we

consider, after the single trace operators with twist one.

5.5 Discussion

Our main result in this chapter is the tree-level expression for ⟨SSSS⟩ in both U(N)k×U(N+M)−k

and SO(2)2k×USp(2+2M)−k ABJ theory in the higher-spin large M,k limit as a function of finite

λ. It is instructive to compare our N = 6 correlators ⟨SSSS⟩ in (5.120) and ⟨PPPP ⟩ in (5.121) to

the tree-level correlator of the scalar single trace quasibosonic Oqb and quasifermionic Oqf operators
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for non-supersymmetric vector models in [151]:

⟨Oqb(x⃗1)Oqb(x⃗2)Oqb(x⃗3)Oqb(x⃗4)⟩ =
1

x212x
2
34

8

cT

[
√
U +

√
U

V
+

U√
V

− 2

π
5
2

sin2
(
πλqb
2

)(
UD̄1,1, 12 ,

1
2
(U, V ) + UD̄1,1, 12 ,

1
2
(V,U) + D̄1,1, 12 ,

1
2

( 1
U
,
V

U

))]
,

(5.137)

and

⟨Oqf (x⃗1)Oqf (x⃗2)Oqf (x⃗3)Oqf (x⃗4)⟩

=
1

x412x
4
34

2

cT

[
U2(U − V − 1)

V 3/2
−
√
U(U − V + 1)−

√
U(U + V − 1)

V
3
2

]
.

(5.138)

To facilitate comparison we converted the parameters in [151] to the notation of [160]:

1

Ñ
=

2

cT
, λ̃qb = tan(

πλqb
2

) . (5.139)

The four-point functions are then those of a U(Nqb)kqb Chern-Simons matter theory with ’t Hooft

coupling

λqb ≡
Nqb
kqb

(5.140)

and either a complex scalar for the quasibosonic case, or a complex fermion for the quasifermionic

case. We should compare the quasibosonic case correlator to ⟨SSSS⟩, as both S and Oqb are scalars

with ∆ = 1 at tree-level, and the quasifermionic correlator to ⟨PPPP ⟩, as both P and Oqf are

pseudoscalars with ∆ = 2 at tree-level.

The N = 6 correlators are structurally similar to those of the quasibosonic and quasifermionic

theories. In all of these cases, the contact terms allowed by the Lorentzian inversion formula vanish.

For both the quasiboson and ⟨SSSS⟩, the tree-level correlator includes a free connected term and a

scalar exchange term, while for the quasifermion and ⟨PPPP ⟩ only a free connected term appears.

For the N = 6 theory both ⟨SSSS⟩ and ⟨PPPP ⟩ depend on λ through sin2(πλ), while in the

nonsupersymetric case only the quasiboson depends on λqb, and with slightly different periodicity

sin2(
πλqb

2 ).14

Although both the quasiboson and ⟨SSSS⟩ correlators contain a scalar exchange term, their

physical origin is quite different in each case. In the quasibosonic case it was shown in [155] that

for spin ℓ single trace operators Jℓ, all tree-level ⟨OqbOqbJℓ⟩ were the same as the free theory except
14The factor of two discrepancy in the periodicity between the ABJ case and the non-supersymmetric case is

discussed in Section 6.2 of [21].
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for J0 ≡ Oqb, which depends on λqb. The scalar exchange then appears so as to compensate for

the fact that tree-level ⟨OqbOqbOqb⟩ is not given by the free theory result. In the N = 6 case, we

found that the tree-level three-point functions between two S’s and a higher-spin multiplet are given

by the free theory result only for odd ℓ, while for even ℓ they are all proportional to the same λ

dependent coefficient. The contribution of the exchange diagrams for the even and odd spin single

trace long multiplets, which at tree-level coincide with conserved supermultiplets, exactly canceled

so that only the scalar exchange diagrams remains.

We showed that the contact terms allowed by the Lorentzian inversion formula for ⟨SSSS⟩

vanished by combining localization results with the ⟨SSSP ⟩ four-point function computed using

the weakly broken Ward identity. There is in fact a possible alternative argument that only uses

N = 6 superconformal symmetry, and so would apply to any N = 6 higher-spin theory. N = 6

superconformal symmetry only allows a single contact term with four derivatives or fewer, which

thus contributes to spin two or less as allowed by the large M Lorentzian inversion formula [150].

But as we saw in the previous chapter, Sicont, which corresponds to the Mellin amplitude M3(s, t),

should really be thought of as a six derivative contact term. The six derivatives contributions vanish

for ⟨SSSS⟩ but would appear in correlators such as ⟨SSJJ⟩. Since six derivative contact terms

generically contribute to spin three CFT data in correlators of non-identical operators [161], they

would be disallowed by the Lorentzian inversion formula for correlators with spin [162], which would

then disallow the putative four derivative ⟨SSSS⟩ contact term.

As further evidence for this, Sicont(U, V ) contributes to a scalar long multiplet which contains

a spin three descendant. This spin three descendant happens to not contribute to the ⟨SSSS⟩

superblock, but could well appear in the ⟨SSJJ⟩ superblock. It would be interesting to derive the

superconformal Ward identity that explicitly relates ⟨SSJJ⟩ to ⟨SSSS⟩, so that we could verify this

alternative argument for the vanishing of the contact term. Our tree-level result would then just

be fixed in terms of a single free parameter, analogous to a recent argument in [151, 152] showing

that the contact terms must vanish in non-supersymmetric theories due to the higher-spin Ward

identities.

This chapter relied almost exclusively on the CFT side of the higher-spin AdS/CFT duality. This

is mostly because supersymmetric higher-spin gravity is still poorly understood. The only known

formulation so far is in terms of Vasiliev theory [21, 163–169], which is just a classical equation of

motion with no known action, and so cannot be used to compute loops. Even on the classical level,

it has been difficult to regularize the calculation of various correlation functions [170,171]. Recently,

a higher-spin action has been derived in [172] for the O(N) free and critical vector models, which
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manifestly reproduces the correct CFT results to all orders in 1/N . If this construction could be

extended to N = 6, then it is possible that the bulk dual of ⟨SSSS⟩ could be computed and the

absence of contact terms understood from the bulk perspective.
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Chapter 6

Numeric Conformal Bootstrap

Numerical bootstrap techniques provide one of the few general tools applicable to non-perturbative

conformal field theories; for recent reviews see [8, 26, 173]. Bootstrap studies with extended super-

symmetry have so far however only been performed for operators that belong to half-BPS supermul-

tiplets [70, 76, 81, 174–191].1 Consequently, general constraints on the space of such SCFTs have so

far been explored only when these SCFTs preserve the maximal amount of supersymmetry in their

respective dimensions, because only then does the stress tensor sit in a half-BPS multiplet. Our aim

in this chapter is to perform a general study of N = 6 SCFTs, where the stress tensor multiplet only

a third-BPS.2

We begin in Section 6.1 by deriving the crossing equations for ⟨SSSS⟩, using the superconformal

blocks computed in Chapter 2. We then study general numerical bounds on OPE coefficients and

conformal dimensions in Section 6.2. In particular, we find that the U(1)2M ×U(1 + 2M)−2M ABJ

theory is very close to saturating the lower bounds on the short λ2
(B,2)

[022]
2,0

OPE coefficient, and

so we can derive a conjectural spectrum for this theory using the extremal functional method. In

Section 6.3 we restrict our attention to specific ABJ theories by using supersymmetric localization

results as input to the bootstrap, allowing us to find small islands in OPE space for these theories.

We close in Section 6.4 with a short discussion.
1See, however, [192,193].
2Half-BPS multiplets in 3d N = 6 SCFTs have been studied in [194].
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6.1 Crossing Equations

The crossing equations for ⟨SSSS⟩ are written in (2.8). For the s-channel superblock expansion the

nontrivial constraint is the one given by crossing (x1, X1)↔ (x3, X3). In terms of the Sr(U, V ) basis

in (2.17), we can write the crossing equations (2.8) using a 6-component vector

di(U, V ) =



15F−,1s + 80F−,45a⊕45a
+ 64F−,84s

F−,15a
+ F−,45a⊕45a

− 4F−,84s

3F−,15s
− 12F−,45a⊕45a

+ 16F−,84s

3F−,20′
s
− 2F−,45a⊕45a

+ 2F−,84s

15F+,1s
− 15F+,15s

− 60F+,20′
s
− 60F+,45a⊕45a

− 56F+,84s

3F+,15a
− 3F+,15s

− 9F+,20′
s
− 3F+,45a⊕45a

+ 14F+,84s


, (6.1)

where we define

F±,r(U, V ) ≡ V 2Sr(U, V )± U2Sr(V,U) . (6.2)

Combining the crossing equations with the superconformal block decomposition derived in Chapter 2,

we can then define a function diI(U, V ) for each superconformal block I listed in Table 2.5 by replacing

each Sr(U, V ) in di(U, V ) by Gr
I(U, V ) as defined in (2.72). In terms of these diI(U, V ), the crossing

equations can now be written as

0 = diId +
64

cT
di
(B,2)

[011]
1,0

+
∑

I ̸=Id,(B,2)[011]1,0

λ2I d
i
I , (6.3)

where we normalize the squared OPE coefficient of the identity multiplet to λ2Id = 1, and parame-

terize our theories by the value of

λ2
(B,2)

[011]
1,0

=
64

cT

(see (2.82)). The sum in (6.3) should then be understood as running over all other superconformal

blocks for multiplets appearing in the S × S OPE.

These six crossing equations are in fact redundant due to N = 6 superconformal symmetry,

akin to the N = 8 case studied in [178, 179]. It is important to remove these redundancies, as

otherwise they lead to numerical instabilities in the bootstrap algorithm. As in [179], we eliminate

redundancies by rewriting the functions F±,r(U, V ) as sums of superconformal blocks. We then
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expand in z, z̄ derivatives as

F+,r(U, V ) =
∑

p+q=even
s.t. p≤q

2

p!q!

(
z − 1

2

)p(
z̄ − 1

2

)q
∂pz∂

q
z̄F+,r(U, V )|z=z̄= 1

2
,

F−,r(U, V ) =
∑

p+q=odd
s.t. p<q

2

p!q!

(
z − 1

2

)p(
z̄ − 1

2

)q
∂pz∂

q
z̄F−,r(U, V )|z=z̄= 1

2
,

(6.4)

where z, z̄ are written in terms of U, V as

U = zz̄ , V = (1− z)(1− z̄) . (6.5)

We then truncate these sums to a finite number of terms by imposing that

p+ q ≤ Λ , (6.6)

and then consider the finite dimensional matrix d̃(p,q)i whose rows as labeled by i = 1, . . . 6 are those

of di, and whose columns as labeled by (p, q) are the coefficients of the ∂pz∂
q
z̄Sr(U, V )|z=z̄= 1

2
that

appear in each entry of di after expanding like (6.4) using the definition (6.2) of F±,r(U, V ) in terms

of Sr(U, V ). Finally, we check numerically to see which crossing equations are linearly independent

for each value of Λ, and find that a linearly independent subspace for any Λ is given by

{d3 , d4 , d5 , d6} , (6.7)

where we include all nonzero z, z̄ derivatives for the crossing equations listed.3

We now have all the ingredients to perform the numerical bootstrap using the crossing equations

(6.3), where we restrict to the linearly independent set of crossing equations (6.7). We can derive

numerical bounds on both OPE coefficients and conformal dimensions using numerical algorithms

that are by now standard (see for instance [179,195]) and can be implemented using SDPB [196,197].

In each case, the numerical algorithms involve finding functionals α that act on the vector of functions

di(U, V ) and return a linear combination of derivatives of these functions evaluated at the crossing-

symmetric point U = V = 1/4. In all the numerical studies presented below, we will restrict the

total derivative order Λ defined in (6.6) to be Λ = 39, and we will only consider acting with α on

blocks that have spin up to ℓmax = 50.
3In the analogous N = 8 case studied in [178], the linearly independent set consisted of just one crossing equation

with all of its derivatives, as well as a second crossing equation with only derivatives in z.

153



6.2 Numeric Bootstrap Bounds

6.2.1 Short OPE Coefficients

We begin by deriving numerical bootstrap bounds on the squared OPE coefficients λ2
(B,2)

[011]
1,0

= 64
cT

and λ2
(B,2)

[022]
2,0

that were computed using supersymmetric localization in specific N = 6 SCFTs from

the ABJ family in the Chapter 3.

We first derive a lower bound on cT that applies to all N = 6 SCFTs. To do so, we consider

linear functionals α satisfying

α(di
(B,2)

[011]
1,0

) = 1 ,

α(diI) ≥ 0 , for all superconf. blocks I /∈ {Id, (B, 2)[011]1,0 } .
(6.8)

From (6.3), the existence of such an α implies

64

cT
≤ −α(diId) . (6.9)

We performed such a numerical study, and we found

cT ≥ 15.5 , (6.10)

where recall that cT = 16 corresponds to the theory of a free N = 6 massless hypermultiplet, which

also has N = 8 SUSY. The bound (6.10) can be compared to the analogous N = 8 bound cT ≥ 15.9

computed in [81] with Λ = 43. In both cases, we expect the numerics should converge to cT ≥ 16 in

the infinite Λ limit, as there are no known N = 6 SCFTs with cT smaller than 16. The fact that the

N = 6 bound (6.10) is weaker than the N = 8 one suggests that the N = 6 numerics are slightly

less converged than the N = 8 numerics. In the remainder of this thesis we will only show results

for cT ≥ 16.

Let us now compute bounds on the squared OPE coefficient λ2
(B,2)

[022]
2,0

as a function of cT . In

general, to computer upper and lower bounds on the OPE coefficient of an isolated superblock I∗
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U(1)2M⨯U(1+M)-2M

SO(2)4M+2⨯USp(2+2M)-(2M+1)

 = 8

 = 6

0.2 0.4 0.6 0.8 1.0

16

cT

2.5

3.0

3.5

4.0

λ
(B,2)2,0

[022]
2

Figure 6.1: Upper and lower bounds on the λ2
(B,2)

[022]
2,0

OPE coefficient in terms of the stress tensor
coefficient cT , where the orange shaded region is allowed, and the plot ranges from the generalized
free field theory (GFFT) limit cT → ∞ to the free theory cT = 16. The black lines denote the
N = 6 upper/lower bounds computed in this work with Λ = 39, the blue lines denotes the N = 8
upper/lower bounds computed in [81] with Λ = 43. The red and orange dots denote the exact
values in Tables 3.1 and 3.4 for the U(1)2M ×U(1+M)−2M and SO(2)4M+2×USp(2+2M)−(2M+1)

theories, respectively, for M = 1, 2, . . . , while the gray dots denote the GFFT and free theory values
from Table 2.6.

appearing in (6.3), we consider linear functionals α satisfying

α(diI∗) = s , s = 1 for upper bounds, s = −1 for lower bounds ,

α(diI) ≥ 0 , for all short and semi-short I /∈ {Id, (B, 2)[011]1,0 , I∗} ,

α(diI) ≥ 0 , for all long I with ∆I ≥ ℓ+ 1 .

(6.11)

The existence of such an α implies that

if s = 1, then λ2I∗ ≤ −α(diId)−
64

cT
α(di

(B,2)
[011]
1,0

) ,

if s = −1, then λ2I∗ ≥ α(diId) +
64

cT
α(di

(B,2)
[011]
1,0

) ,

(6.12)

thus giving us both an upper and a lower bound on λ2I∗ . Using this procedure, our numerical study

gives the upper and lower bounds shown in black in Figure 6.1. On the same plot, we indicated

in blue the bounds obtained with Λ = 43 in the N = 8 case, as derived in [81]. While the upper

bounds for the N = 6 and N = 8 cases are very similar and likely differ only because of the different
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value of Λ that was used, the lower bounds are qualitatively different. Indeed, the N = 6 and N = 8

lower bounds meet at 16
cT

= 0, 1, and at around .71, where the N = 8 bound has a kink.4 At other

values of 16
cT

, the N = 6 lower bound is significantly weaker than the N = 8 one.

In Chapter 3, we noted that at large cT , the U(1)2M × U(1 +M)−2M theory had the minimal

value of λ2
(B,2)

[022]
2,0

of all theories studied. In Figure 6.1 we hence plot the analytic value of λ2
(B,2)

[022]
2,0

for various U(1)2M × U(1 +M)−2M theories in red, and note that they appear to come very close

to saturating the lower bound in Figure 6.1. For comparison, we also show the SO(2)4M+2 ×

USp(2M + 2)−(2M+1) theories in orange, which lie slightly above the U(1)2M ×U(1+M)−2M dots.

We hence conjecture that, in the infinite Λ limit, the U(1)2M × U(1 +M)−2M theory saturates the

numerical lower bound on λ2
(B,2)

[022]
2,0

.

At the boundary of the allowed and forbidden region, it is believed that there is a unique solution

to the crossing equation and the CFT data can be extracted using the extremal functional method

[198–200].5 One application of this method has been to the 3d Ising model, which was argued

to saturate the lower bound on the coefficient cT which appears in the stress tensor two-point

function [200, 202]. As we have just seen, it appears that the U(1)2M × U(1 +M)−2M ABJ theory

saturates the lower bound on λ2
(B,2)

[022]
2,0

, and so should be amenable to a precision bootstrap study.

This is reminiscent of the N = 8 case in [81], where the U(N)2 × U(N + 1)−2 theory was found to

saturate the corresponding lower bound.

At large M , the U(1)2M × U(1 +M)−2M ABJ theory has weakly broken higher-spin symmetry.

We computed ⟨SSSS⟩ in the higher-spin limit in Chapter 5; the U(1)2M × U(1 +M)−2M theory

has λ = 1
2 and so is parity preserving. Using the results of Section 5.4.3, we can thus compute the

tree-level corrections to the U(1)2M ×U(1+M)−2M theory, and will compare them to the extremal

functional results in the next section.

6.2.2 Semishort OPE Coefficients

Let us now discuss upper and lower bounds on OPE coefficients for isolated superconformal blocks

that appear in ⟨SSSS⟩. The isolated superconformal blocks are listed in Table 2.5. They consist of

those superblocks which do not appear on the RHS of (2.74)–(2.76), and so are unable to recombine

with other short multiplets to become long. This includes all semishort multiplets in Table 2.5

except for (A, 1)
[100],n
ℓ+2,ℓ .

Using the algorithm presented in (6.11)–(6.12), we determined such bounds as shows in Figure 6.2.
4This N = 8 kink was previously observed in [76,178].
5Ref. [201] showed that it is sometimes possible that there could be several extremal functionals, but in all cases

that were studied they produced the same CFT spectrum.
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In these plots, our Λ = 39 N = 6 upper/lower bounds are shown in black, and they can be compared

to the Λ = 43 N = 8 bounds computed in [81], which in these figures are shown in blue. As in

Figure 6.1 discussed above, in all these plots, the N = 6 and N = 8 lower bounds meet at around
16
cT
∼ .71. Note that the N = 6 upper/lower bounds do not converge at the GFFT and free theory

points yet, whose exactly known values were listed in Table 2.6 and are denoted by gray dots, which

is evidence that they are not fully converged. The exception is the bound on the OPE coefficient

for (A,+)
[002]
ℓ+2,ℓ, which is our most constraining plot.

In addition to the upper and lower bounds, in Figure 6.2 we also plot in dashed red the values

of the OPE coefficients as extracted from the extremal functional under the assumption that the

lower bound of Figure 6.1 is saturated. As we can see, the extremal functional values for the OPE

coefficients come close to saturating several of the bounds in this figure, but not all.

We further include on these plots the tree-level results for U(1)2M × U(1 +M)−2M computed

in Section 5.4.3, shown in green. For comparison, we also include the tree-level results in the

supergravity limit as computed in [117, 203] are shown in orange. Recall that the supergravity

results apply to the leading large cT correction to both the M-theory and string theory limits. As

first noted in [203] and visible in these plots, they match the large cT regime of the N = 8 lower

bounds.6 For N = 6, we see in all these plots that the tree-level results approximately match the

conjectured U(1)2M × U(1 +M)−2M spectrum in the large cT regime. Curiously, the conjectured

spectrum approximately coincides with the N = 6 lower bounds for λ2
(A,+)

[020]

ℓ+5/2,ℓ+1/2

and λ2
(A,2)

[011]
ℓ,ℓ+2

with odd ℓ, but not for λ2
(A,2)

[011]
ℓ,ℓ+2

with even ℓ.7

The N = 6 numerics are not completely converged yet, which can be seen from the fact that at

cT → ∞ the numerics do not exactly match the GFFT value shown as a grey dot. On the other

hand, it has been observed in many previous numerical bootstrap studies [76,81, 174–176,178] that

the bounds change uniformly as precision is increased, so that the large cT slope is still expected to

be reasonably accurate, even if the intercept is slightly off. In Table 6.1, we compare the coefficient

of the 1/cT term as read off from the numerics at large cT to the tree-level results, and find a good

match for between the extremal functional and the analytic results. The match is especially good

for the most protected quantities, which are the 1/4-BPS λ2
(A,+)

[020]

ℓ+5/2,ℓ+1/2

. In fact, this quantity is

so constrained that it is difficult to distinguish by eye between the N = 8 and N = 6 numerical

and analytical results in Figure 6.2. Nevertheless, the exact tree correction for supergravity and
6We have converted the N = 8 results in [203] to N = 6 using the superblock decomposition Appendix C.
7Recall that, as described in Table 2.5, the superblocks for λ2

(A,2)
[011]
ℓ,ℓ+2

have completely different structures for

even/odd values of ℓ.
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Figure 6.2: Upper and lower bounds on various semishort OPE coefficients squared in terms of cT ,
where the orange shaded regions are allowed, and the plots ranges from the GFFT limit cT →∞ to
the free theory cT = 16. The black lines denote the N = 6 upper/lower bounds computed in this
thesis with Λ = 39, the blue lines denote the N = 8 upper/lower bounds computed in [81] with
Λ = 43. The red dotted lines denotes the spectrum read off from the functional saturating the lower
bound on λ2

(B,2)
[022]
2,0

, which we conjecture is the U(1)2M ×U(1+M)−2M theory. The green dashed

lines denote the O(c−1
T ) correction for the U(1)2M × U(1 +M)−2M theory computed in this work,

while the orange dashed lines denote the O(c−1
T ) correction for the supergravity limit of ABJM

theory as computed in [117,203]. The gray dots denote the GFFT and free theory values.
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CFT data Extremal Functional Tree level HS Tree level SUGRA
λ2
(A,+)

[002]

5/2,1/2

11.9 64
9 + 1280

27π2 ≈ 11.91 − 5120
27 + 17920

9π2 ≈ 12.11

λ2
(A,+)

[002]

9/2,5/2

18.7 13824
1225 + 90112

1225π2 ≈ 18.74 − 2490368
1225 + 10633216

525π2 ≈ 19.18

λ2
(A,2)

[011]
2,0

−45 − 64
3 −

256
π2 ≈ −47.27 − 1024

3 + 2560
π2 ≈ −81.96

λ2
(A,2)

[011]
4,2

−18 − 1024
175 −

16384
175π2 ≈ −15.34 − 262144

105 + 5472256
225π2 ≈ −32.36

λ2
(A,2)

[011]
3,1

−6 256
45 −

16384
135π2 ≈ −6.61 − 131072

135 + 28672
3π2 ≈ −2.54

λ2
(A,2)

[011]
5,3

−10 4096
1225 −

524288
3675π2 ≈ −11.11 − 16777216

3675 + 495976448
11025π2 ≈ −7.14

∆(0,1) −16 − 160
π2 ≈ −16.21 − 1120

π2 ≈ −113.48
∆(0,2) 16 128

π2 ≈ 12.97 − 1120
π2 ≈ −113.48

Table 6.1: The 1/cT correction to the conformal dimensions ∆0,1 and ∆0,2 for the lowest dimension
Long[000],1∆,0 and Long[000],2∆,0 operators, respectively, as well as the OPE coefficients squared of various
semishort operators. The extremal functional results come from a large cT fit to the functional that
we conjecture applies to the U(1)2M × U(1 +M)−2M theory, and corresponds to the dashed red
lines in Figure 6.2. The analytic tree-level results of the higher-spin theory are those for U(1)2M ×
U(1 +M)−2M , computed in Chapter 5 of this thesis, and the analytic results for supergravity were
computed in [117,203].

tree-level U(1)2M × U(1 +M)−2M are different, as we can see from Table 6.1.

6.2.3 Bounds on Long Scaling Dimensions

Lastly, we will study bounds on the conformal dimensions of long multiplets. To find upper bounds

on the scaling dimension ∆∗ of the lowest dimension operator in a long supermultiplet with spin ℓ∗

that appears in (6.3), we consider linear functionals α satisfying

α(diId) +
64

cT
α(di

(B,2)
[011]
1,0

) = 1 ,

α(diI) ≥ 0 , for all short and semi-short I /∈ {Id, (B, 2)[011]1,0 } ,

α(diI) ≥ 0 , for all long I with ∆I ≥ ∆′
I ,

(6.13)

where we set all ∆′
I to their unitarity values except for ∆′

I∗. If such a functional α exists, then

this α applied to (6.3) along with the reality of λI would lead to a contradiction. By running this

algorithm for many values of (cT ,∆′
I∗) we can find an upper bound on ∆′

I∗ in this plane.

Since for the long multiplets Long[000]∆,ℓ of even spin ℓ there are several superconformal blocks (two

for ℓ = 0 and three for ℓ ≥ 2), we can ask what the upper bound on ∆ is independently for each

superconformal structure Long[000],n∆,ℓ . To be explicit, we denote by ∆(ℓ,n) the bound obtained from

the structure Long[000],n∆,ℓ . (For odd ℓ, we simply denote the bound by ∆ℓ.).
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For general N = 6 SCFTs, the bounds for different n need not be the same, but we do expect

that a long multiplet Long[000]∆,ℓ in a generic N = 6 SCFTs will contribute to all superconformal

structures and, if this is the case, the lowest dimension long multiplet must obey all the bounds

obtained separately from each superconformal structure. Since the superconformal structures are

distinguished by they parity P and Z charges (see Table 2.5), in an SCFT that preserves these

symmetries, ∆(ℓ,n) represents the upper bound on the lowest long multiplet with the P and Z

charges that correspond to the structure Long[000],n∆,ℓ as given in Table 2.5.

Let us begin with bounds on scalar long multiplets. We show the bounds for the parity even

structure Long[000],1∆,0 in Figure 6.3. The bound appears to smoothly interpolate between the gener-

alized free field value of 2 at 16
cT

= 0 and the free field value of 1 at 16
cT

= 1. This can be compared

to the N = 8 bounds, plotted in blue, which is of course always lower than the N = 6 bound, but

exhibits a kink at 16
cT
∼ .71 where the two bounds appear to meet. We also show the extremal

functional, conjectured to be the U(1)2M × U(1 + 2M)−2M theory, and see that it coincides with

the N = 6 upper bound. The green and orange dashed lines plot the tree-level result for higher-spin

theory and SUGRA respectively, which as we can see approximately match the N = 6 and N = 8

bounds respectively.

Now let us consider the bounds for the parity odd scalar structure Long[000],1∆,0 . Recall that, as per

(2.74), the unitarity limit of the Long[000],2∆,0 superconformal block is the (B, 1)
[200]
2,0 superconformal

block, so our bound on ∆(0,2) depends on whether we assume that a (B, 1)
[200]
2,0 multiplet appears

in the S × S OPE. If we assume that there are no (B, 1)
[200]
2,0 operators that appear in the S × S

OPE, then we obtain the bound in bottom plot of Figure 6.3. As we can see from this figure, the

bound ∆0,2 smoothly goes from the GFFT value 1 at 16
cT

= 0 to the free theory value 3 at 16
cT

= 1.

The extremal functional, shown in red, comes extremely close to the upper bound, and both match

match reasonably well with the tree-level result for the U(1)2M × U(1 + 2M)−2M theory.

For comparison we also show the N = 8 upper bound computed in [81], computed with no

assumptions about the spectrum. For this reason, the N = 6 bounds need not be above the N = 8

bounds. Indeed, it was shown in [76] that all N = 8 SCFTs with 16
cT

< .71 contain a short multiplet

(namely the (B, 2)
[0200]
2,0 ) that upon reduction to N = 6 includes a (B, 1)

[200]
2,0 multiplet.8 It may also

seem curious that in bottom plot of Figure 6.3, at cT = 16, where the free theory has in fact N = 8

SUSY, the lowest operator (marked by a gray dot) that contributes to the Long[000],2∆,0 block does not

obey the N = 8 bound in blue. This is because in that case the Long[0000]∆,0 multiplet that gives the

N = 8 bound is replaced by an N = 8 conserved current multiplet (A, cons.)[0000]1,0 which no longer
8See (C.4) for the reduction of N = 8 superconformal blocks to N = 6 ones.
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Figure 6.3: Upper bounds on the scaling dimension of the lowest dimension ℓ = 0 long multiplet
as a function of cT , for the Long[000],1∆,0 (top) and Long[000],2∆,0 (bottom) superconformal structures.
The black lines denote the N = 6 upper bounds computed here with Λ = 39, the blue lines denote
the N = 8 upper bounds computed in [81] with Λ = 43, and we shade the allowed region orange.
The red dotted lines denote the extremal functional spectrum saturating the λ2

(B,2)
[022]
2,0

lower bound,
which we conjecturally identify with the U(1)2M × U(1 +M)−2M theory. The green dashed lines
denote the O(c−1

T ) correction for the U(1)2M ×U(1 +M)−2M theory computed in Chapter 5, while
the orange dashed lines denote the O(c−1

T ) correction for the supergravity limit of ABJM theory as
computed in [117,203]. The gray dots denote the GFFT and free theory values.
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contributes to the Long[000],2∆,0 . The gray dot in Figure 6.3 instead comes from a Long[0000]2,0 multiplet

in N = 8.

Next we study bounds on long multiplets of spin ℓ = 1 and ℓ = 2. Let us begin with Figure 6.4,

which shows the bounds on P even, Z even, superblock for ℓ = 1 and ℓ = 2. These bounds smoothly

interpolate between the values of the corresponding conformal dimensions at the free N = 6 hyper-

multiplet theory at 16
cT

= 1 and the GFFT at 16
cT

= 0. This behavior is distinct from the N = 8

bounds, which exhibit a kink at 16
cT
∼ .71. We do not show extremal functional results for these

plots because our numerics are not yet sufficiently accurate. In particular, we expect that the ℓ = 1

multiplet should become approximately conserved current at large cT , but this will be particularly

hard to see because, as a single trace operator, its OPE coefficient starts at O(c−1
T ).

The bounds on the other ℓ = 2 long superconformal blocks, the Long[000],2∆,2 and Long[000],3∆,2 , are

shown in Figure 6.5. At unitarity these superblocks become the (A, 1)[100],1ℓ+5/2,ℓ+1/2 and (A, 1)
[100],2
ℓ+5/2,ℓ+1/2,

as per (2.76), and so our bounds depend on what assumptions we make about the presence of these

operators. Our first results is that if we assume the (A, 1)
[100],2
7/2,3/2 and (A, 1)

[100],3
7/2,3/2 do not appear in

the S×S OPE, then the long multiplet bounds are at the unitarity bound. This in turn implies that

our assumption was false, and so we conclude all N = 6 SCFTs must contain (A, 1)
[100]
7/2,3/2 multiplets!

This is consistent with the result in [76] that all N = 8 SCFTs must contain an N = 8 (A, 2)
[0020]
3,1

multiplet, which reduces to the (A, 1)
[100]
7/2,3/2 N = 6 multiplet as per (C.4).

Finally, we can derive revised bounds on these superblocks under the assumption that the S×S

OPE contains the (A, 1)
[100],2
7/2,3/2 and (A, 1)

[100],3
7/2,3/2 superblocks. As we can see from Figure 6.5, we

found that the bounds ∆(2,n) are slightly above 5 for all cT , with little dependence on cT . This is

consistent with the value at both GFFT and free theory. For comparison, we also show the second

lowest operator for N = 8 theories, which corresponds to the lowest long spin 2 N = 8 operator.9

We do not show any extremal functional results for these plots, because we do not yet have sufficient

numerical precision.

6.3 Islands for Semishort OPE Coefficients

In the previous section we discussed numerical bounds that apply to all 3d N = 6 SCFTs. In

particular, we noticed that the upper/lower bounds on (A,+)
[002]
ℓ+2,ℓ for ℓ = 1/2, 5/2 were extremely

9It may again seem curious that at cT = 16, where the free theory has N = 8 SUSY, the gray dot does not obey
the N = 8 bound. At exactly the free theory point, this N = 8 operator becomes a conserved current which no longer
decomposes to a parity odd N = 6 long multiplet, which is why the N = 6 free theory value of the second lowest
operator, denoted by the second lowest gray dot, does not coincide with the 16

cT
→ 1 limit of the N = 8 upper bound.
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Figure 6.4: Upper bounds on the conformal dimensions as a function of cT . The top plot shows
the bounds on the lowest ℓ = 1 long multiplet (for which there is a unique conformal structure).
The bottom plot shows the bounds for the parity even ℓ = 2 long multiplet, corresponding to the
Long[000],1∆,2 superconformal block. The black line denotes the N = 6 upper bound computed in here
with Λ = 39, the blue line denote the N = 8 upper bound computed in [81] with Λ = 43, and we
shade the allowed region orange. The gray dots denote the GFFT and free theory values from
Table 2.6.
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Figure 6.5: Upper bounds on the scaling dimension of the lowest dimension ℓ = 2 long multiplet
in terms of cT for the Long[000],2∆,2 (top) and Long[000],3∆,2 (bottom) superconformal structures, which
for parity preserving theories have the opposite parity as the superprimary, and for Z preserving
theories has the same charge for Long[000],2∆,2 and the opposite charge for Long[000],3∆,2 . The black line
denotes the N = 6 upper bound computed in here with Λ = 39, the blue line denote the N = 8
upper bound computed in [81] with Λ = 43, and we shade the allowed region orange. The gray
dots denote the GFFT and free theory values from Table 2.6.
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Figure 6.6: Islands in the space of the semi-short OPE coefficients λ2
(A,+)

[002]

5/2,1/2

, λ2
(A,+)

[002]

9/2,5/2

(to

be defined precisely later) for U(N)k × U(N)−k ABJM theory for various N, k. These bounds are
derived from the N = 6 bootstrap with Λ = 39 derivatives, and with the short OPE coefficients (i.e.
cT and λ2

(B,2)
[022]
2,0

) fixed to their values in each theory using the exact localization results of [76] for
N = 2, 3, 4 as shown in Table 3.2 and the all orders in 1/N formulae in [81] for N = 10 as shown in
Table 3.3.

constraining. This implies that for a given value of cT , we could find a small island in the space of

OPE coefficients (λ2
(A,+)

[002]

5/2,1/2

, λ2
(A,+)

[002]

9/2,5/2

) using the OPE island algorithm described in the previous

subsection.

To make these islands even smaller and correlate them to specific physical theories, we can impose

values of cT and λ2
(B,2)

[022]
2,0

computed using supersymmetric localization in Chapter 3. Such islands

were found for N = 8 SCFTs in [76,179], and we ow find similar islands for N = 6 theories. We show

our results for U(N)k × U(N)−k for a variety of N, k in the Figure 6.6. Note that the islands are

small enough that we can distinguish each value of N and k, which allows us to non-perturbatively

interpolate between M-theory at small k and Type IIA at large k.

One difficulty with trying to fix a physical theory by imposing two exactly computed quantities,

cT and λ2
(B,2)

[022]
2,0

, is that the most general N = 6 ABJ theory has gauge group U(N)k×U(N+M)−k

and so is described by 3 parameters M,N, and k. While for physical theories these parameters should

be integers, we expect that the numerical bootstrap should find theories with any real value of these

parameters, so we are effectively trying to parameterize a 3-dimensional space of theories. Since
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Figure 6.7: Islands in the space of the semi-short OPE coefficients λ2
(A,+)

[002]

5/2,1/2

, λ2
(A,+)

[002]

9/2,5/2

for

U(10)10 × U(10 +M)−10 ABJ theory for M < k/2 = 5. These bounds are derived from the N = 6
bootstrap with Λ = 39 derivatives, and with cT and λ2

(B,2)
[022]
2,0

fixed to their values in each theory
using the all orders in 1/N localization formulae in [81] for N = 10. Note that the axes describe a
very narrow range in parameter space.

we are only imposing two quantities, these islands are expected to have a finite area even at high

numerical precision corresponding to the third direction in “theory space”. Thankfully, this third

direction appears to be very small. We can quantify this by fixing N = k = 10 and computing

islands for several different values of M ≤ k/2 = 5. As shown in Figure 6.7, the island is not very

sensitive to the value of M < N , which explains why we were able to get such small islands in a

3-dimensional space by just imposing two values of the parameters.

6.4 Discussion

In this chapter we studied N = 6 theories non-perturbatively using the numerical conformal boot-

strap. In particular, by inputting the exact values of cT and λ2
(B,2)

[022]
2,0

for a given ABJ theory,

we found precise rigorous islands in the space of semishort OPE coefficients that interpolate be-

tween M-theory at small k and type IIA string theory at k ∼ N . We also conjectured that in

the infinite precision limit, the numerical lower bound on λ2
(B,2)

[022]
2,0

is saturated by the family of

U(1)2M×U(1+M)−2M theories, which allowed us to non-rigorously read off all CFT data in ⟨SSSS⟩
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using the extremal functional method. Interestingly, in the regime of large cT we found a spin zero

long multiplet whose scaling dimension approaches a zero spin conserved current multiplet at large

cT , as expected from weakly broken higher-spin symmetry.

There are several ways we can improve upon our 3d N = 6 bootstrap study. From the numerical

perspective, it will be useful to improve the precision of our study. This is parameterized by the

parameter Λ defined previously. While we used Λ = 39 in this work, which is close to the Λ = 43

values used in the analogous N = 8 studies [81, 179], for N = 6 this value has not led to complete

convergence. For instance, we found the lower bound cT ≥ 15.5, compared to the N = 8 result

cT ≥ 15.9; both are expected to converge to the free theory cT = 16. More physically, we expect

that approximately conserved currents should appear in the extremal functional that conjecturally

describes the U(1)2M ×U(1 +M)−2M theory. We found such an operator in the zero spin sector as

shown in Figure 6.3, but do not yet have sufficient precision to see them for higher-spin. The main

obstacle to increasing Λ at the moment is not SDPB, which due to the recent upgrade [197] can

easily handle four crossing equations at very high Λ, but simply the difficulty in computing numerical

approximations to the superblocks at large Λ. In particular it would be extremely useful to have

an efficient code for approximations of linear combinations of conformal blocks with ∆ dependent

coefficients around the crossing symmetric point. Currently the code scalar_blocks code, found

on the bootstrap collaboration website,10 is only able to efficiently compute single conformal blocks.

We could also make further use of localization to improve our results. In this chapter we only

considered constraints from cT and λ2
(B,2)

[022]
2,0

, but ABJ is parameterized by three parameters M,N ,

and k. For this reason there are not enough constraints to uniquely pick out a single ABJ theory

and so we should not expect our islands to shrink indefinitely as we increase Λ. We think this is the

reason why the islands shown in Figure 6.6, while small, are still much bigger than the N = 8 islands

computed in [179]. In Chapter 3 we studied a third quantity ∂4 logZ
∂m2

+∂m
2
−

which constrains ⟨SSSS⟩,

however, it is not yet known how to use this to constrain the numerical bootstrap in our case.

Perhaps the method used in [204], where a similar integrated constraint was successfully imposed

on the numerical bootstrap of a certain supersymmetric 2d theory, could be applied to our case.

Another option would be to look at a larger system of correlators, such as those involving fermions

or ⟨SSSP ⟩. This would allow us to impose parity, which would restrict the set of known N = 6

SCFTs to a few families such as U(N)k × U(N)−k parameterized by only two parameters each.

10This code can be found at https://gitlab.com/bootstrapcollaboration/scalar_blocks/blob/
master/Install.md.
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Chapter 7

Conclusion

In this thesis we studiedN = 6 superconformal field theories. Our results can be roughly divided into

two classes: those which apply to all N = 6 SCFTs, and those which apply to specific holographic

regimes. In the former class we have the supersymmetric Ward identities and superconformal block

expansion for ⟨SSSS⟩ derived in Chapter 2, the supersymmetric localization constraints derived in

Chapter 3, and the numerical conformal bootstrap results in Chapter 6. The latter class of results

includes the holographic expressions for ⟨SSSS⟩ derived in Chapter 4 for the string and M-theory

regimes and in Chapter 5 for higher-spin theories.

Throughout this thesis we made use of the fact that derivatives of the mass-deformed sphere

partition function can be computed exactly using supersymmetric localization. We have not yet

exhausted all of the constraints these provide. As explained in Chapter 3, in addition to the two

masses m± considered in this thesis, N = 6 theories admit a third mass deformation, m̃, and on top

of this we can also consider placing the theory on a squashed sphere parameterized by squashing

parameter b [83] (with b = 1 corresponding to the round case). This leads to a much larger number of

four derivative constraints to consider, although not all of these are necessarily independent. In [97]

it was shown that in ABJ theory at large N , the only independent four derivative quantities are

∂4m±
logZ , ∂3m+

∂m− logZ , ∂2m+
∂2m−

logZ , ∂2m+
∂2m̃ logZ ,

all evaluated at m± = m̃ = 0 and b = 1. Of these, only the last quantity, which is complex, was not

studied in this thesis. It would be interesting to work out whether these redundancies are specific

to ABJ at large N , or whether they hold for more general N = 6 theories as a consequence of the

superconformal Ward identities.
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In either case, it should be possible to derive the integrated constraint imposed by ∂2m+
∂2m̃ logZ,

and to derive expressions for ∂2m+
∂2m̃ logZ at both large N and large M . With these results, we

could then have enough constraints to extend our calculation in Chapter 4 to degree six. As shown

in Table 4.3, we have one degree 3, one degree 4, two degree 5, and three degree 6 local Mellin

amplitudes. With the flat space limit we can fix all three degree 6 terms, while we have just enough

parity-even localization constraints to then fix the other four Mellin amplitudes. Unfortunately,

however, this would not provide us with any additional checks of AdS/CFT beyond the ones already

considered in this thesis. For N = 8 ABJM theory we can make further progress due to the enhanced

supersymmetry. In [118] ⟨SSSS⟩ was computed up to the D4R4 term, corresponding to a degree 6

Mellin amplitude, and it seems likely that this could be extended up to the degree 8 D6R4 term.

Apart from supersymmetric localization, another potential source of exactly computable quan-

tities for N = 6 theories is from integrability. It would be interesting to try to match integrability

results for the lowest dimension singlet scaling dimension in the leading large N ’t Hooft limit at

fixed λ’t Hooft = N/k and M = 0, computed in [205, 206], to numerical bootstrap results, where we

use inputs from supersymmetric localization to constrain ourselves to the relevant ABJM theories.

For this to work we would need to compute the derivatives of the mass deformed free energy in

the 1/N expansion at finite λ’t Hooft. In fact, the zero mass free energy has already been computed

in this limit in [91] by applying topological recursion to the Lens space L(2, 1) matrix model, so

computing cT and λ2
(B,2)

[022]
2,0

should correspond to just computing two- and four-body operators in

this matrix model. This could potentially lead to the first precise comparison between integrability

and the numerical conformal bootstrap.

In both the large N limits studied in Chapter 4 and the large M limit studied in Chapter 5, we

focused our attention on tree-level correlators. A logical next step would be to extend these results

to 1-loop. In [207] it was shown that 1-loop corrections to holographically correlators can in general

be computed from the “square” of the tree-level anomalous dimensions. The challenge here is that

these double traces are generally degenerate, and to compute the 1-loop correction they must first

be unmixed. One-loop corrections for supergravity and for the R4 term have been computed in

both 4d N = 4 theories [208–212] and 6d (2, 0) theories [213], and it should be possible to extend

these calculations to both 3d N = 6 and N = 8 theories in the supergravity limit. No similar

calculations have so far been performed for higher-spin theories, although the mixing problem in

non-supersymmetric case was considered in [214].

While in this thesis we focused on N = 6 SCFTs, many of the tools we have developed should

generalize to theories with less supersymmetry. The next logical step is to study N = 5 supercon-

169



formal theories, and in particular the N = 5 O(N1)2k ×USp(N2)−k Chern-Simons matter theories,

of which the SO(2)2k ×USp(2 + 2M)−k theories considered in this thesis are merely a special case.

The ABJ quadrality of [66] extends the ABJ triality by relating the bulk duals of these theories to

those of ABJ with an additional orientifold. From the string theory perspective, these theories are

obtained by orientifolding the brane construction of the U(N)k × U(N +M)−k theory, so that the

O(N1)2k ×USp(N2)−k theories are dual to type IIA string theory on AdS4×CP3/Z2. In the string

or M-theory limit, orientifolding changes the single trace spectrum, such that certain tree-level cor-

relators vanish, and the 1-loop corrections are suitably modified [213]. The O(N1)2k × USp(N2)−k

also have two distinct higher-spin limits, where N1 ≫ N2 or N2 ≫ N1. The orientifold does not

affect the single trace spectrum aside from reducing the supersymmetry when N1 ̸= 2 from N = 6

to N = 5, so we expect that the general structure of the N = 5 tree-level correlator should be very

similar to our N = 6 result. The precise dependence on λ could still be different, as that depends

on the Lagrangian of the specific theory, as well as the specific form of the N = 5 version of the

N = 6 integrated constraints discussed in this thesis. To fully fix the correlator, one might also need

to consider integrated constraints involving the squashed sphere, as computed in [83,97,215,216].

We could also study less supersymmetric theories in 3d with the numeric conformal bootstrap.

For both N = 4 and N = 5 superconformal field theories the superprimary of the stress tensor

multiplet remains a scalar. It should hence be feasible to generalize the strategy employed in

Chapter 2 to derive the superconformal blocks for these theories, and then use these superblocks

to perform a numeric bootstrap study. We could similarly study the superprimary for a conserved

current multiplet in N = 2 or N = 3; for N = 4 theories the multiplet is half-BPS and have been

studied in [184]. Many localization results exist which could be applied to each of these cases.

Let us finish by considering the broader picture. As we discussed in the introduction, our

motivation for studying N = 6 SCFTs was two-fold: the theories provide highly symmetric examples

of quantum field theories, and, through holography, they provide highly symmetric examples of

AdS/CFT duality. By studying N = 6 SCFTs, we may hope to gain a more general insight into the

space of possible quantum field theories, and into the behavior of quantum gravity.

On the former front, we already have a classification of all Lagrangian N = 6 SCFTs, and it

would be extremely interesting to understand whether other N = 6 exist. Perhaps insight into the

classification problem could be gained through a deeper understanding of the structure of observables

that can be computed through supersymmetric localization. Or perhaps a better understanding of

the superconformal crossing equations could yield insight. The conformal bootstrap itself is still in

its infancy, and a precise understanding of why certain theories saturate bootstrap bounds, or which
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theories can be isolated using the bootstrap, is still lacking. N = 6 theories provide a constrained

setting in which one could try to explore these more general questions.

On the holographic front, an ambitious goal would be to derive string and M-theory scattering

amplitudes beyond those quantities protected by supersymmetry. While in string theory we can

systematically compute scattering amplitudes in perturbation theory, no similar method is known

for M-theory. Studying ABJ theory, whether through the numeric bootstrap or with some other

method, provides one possible avenue to fully compute the M-theory S-matrix.

Another goal would be to understand how to relate the stringy limits of ABJ theory with the

higher-spin limit. The higher-spin limit is in many ways more tractable than the stringy limits, and

so one could hope that understanding AdS/CFT in the former case may give insight into AdS/CFT in

the latter. Conversely, stringy theories of quantum gravity are in many ways much better understood

than their higher-spin cousins, and so by studying how ABJ theory interpolates between these two

theories we may hope to gain insight into both types of quantum gravity.
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Appendix A

Supersymmetric Ward Identities

We begin by listing general expressions for two-scalar, two-fermion correlators which are invari-

ant under both conformal and so(6)R symmetry. As explained in Section 2.1 we restrict to those

structures which are P and Z invariant:

⟨S(x⃗1, X1)S(x⃗2, X2)χ
α(x⃗3, Z3)χ

β(x⃗4, Z4)⟩

=
i/x
αβ
34

x212x
4
34

[
Tr(X1X2)(Z3 · Z4)C1,1 + (Z3X̌1X̌2Z4)C2,1 + (Z3X̌1X̌2Z4)C3,1

]
+
i(/x13/x24/x12)

αβ

2x412x
4
34

[
Tr(X1X2)(Z3 · Z4)C1,2 + (Z3X̌1X̌2Z4)C2,2 + (Z3X̌1X̌2Z4)C3,2

]
,

(A.1)

⟨S(x⃗1, X1)S(x⃗2, X2)χ
α(x⃗3, Z3)F

β(x⃗4, Y4)⟩

=
i/x
αβ
34

x212x
4
34

[
Tr(X1X2Y4 /Z3)E1,1 + Tr(X2X1Y4 /Z3)E2,1 + Tr(X2Y4X

T
1 /Z3)E3,1

]
+
i(/x13/x24/x12)

αβ

2x412x
4
34

[
Tr(X1X2Y4 /Z3)E1,2 + Tr(X2X1Y4 /Z3)E2,2 + Tr(X2Y4X

T
1 /Z3)E3,2

]
,

(A.2)

⟨S(x⃗1, X1)S(x⃗2, X2)F
α(x⃗3, Z3)F

β(x⃗4, Y4)⟩

=
i/x
αβ
34

x212x
4
34

[(
ϵabcd(X1)

a
eY

eb
1 (X2)

c
fY

fd
2

)
F1,1 +

(
ϵabcd(X1)

a
eY

eb
2 (X2)

c
fY

fd
1

)
F2,1

]
+
i(/x13/x24/x12)

αβ

2x412x
4
34

[(
ϵabcd(X1)

a
eY

eb
1 (X2)

c
fY

fd
2

)
F1,2 +

(
ϵabcd(X1)

a
eY

eb
2 (X2)

c
fY

fd
1

)
F2,2

]
,

(A.3)
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⟨S(x⃗1, X1)S(x⃗2, X2)F
β
(x⃗3, Y 3)F

α(x⃗4, Y4)⟩

=
i/x
αβ
34

x212x
4
34

[
Tr(X1X2)Tr(Y4Y 3)G1,1 + Tr(Y4Y 3X2X1)G2,1

+ Tr(Y4Y 3X2X1)G3,1 + Tr(Y4XT
2 Y 3X1)G4,1

]
+
i(/x13/x24/x12)

αβ

2x412x
4
34

[
Tr(X1X2)Tr(Y4Y 3)G1,2 + Tr(Y4Y 3X2X1)G2,2

+ Tr(Y4Y 3X2X1)G3,2 + Tr(Y4XT
2 Y 3X1)G4,2

]
.

(A.4)

We will now give the Ward identities for two-scalar, two-fermion correlators. We will begin with

⟨SSχχ⟩ and ⟨SSχF ⟩, which can be derived from δ⟨SSSχ⟩. We will omit those functions of the

cross-ratios that are related to these under crossing. The expressions for ⟨SSχχ⟩ are:

C1,1 = − 1

2U

(
U2∂V S1(U, V ) + 4U2∂US1(U, V ) + 4U2∂US5(U, V ) + U(V − U)∂V S2(U, V )

+ U(−U + V − 1)∂US2(U, V ) + UV ∂V S3(U, V ) + U(U + V − 1)∂US3(U, V )

+ 2UV ∂V S4(U, V ) + 2U(V − 1)∂US4(U, V )− 4US1(U, V )− 3US5(U, V )− US6(U, V )

+ (U − V + 1)S2(U, V )− (V − 1)S3(U, V ) + (U − 2V + 2)S4(U, V )
)
, (A.5)

C2,1 = − 1

32U

(
U2∂US2(U, V ) + U2∂US3(U, V )− U2∂V S1(U, V ) + U(U + V )∂V S2(U, V )

+ UV ∂US2(U, V )− U∂US2(U, V ) + UV ∂V S3(U, V ) + UV ∂US3(U, V )− U∂US3(U, V )

+ 2UV ∂V S4(U, V ) + 2UV ∂US4(U, V )− 2U∂US4(U, V )− US2(U, V ) + US4(U, V )

+ US5(U, V )− US6(U, V )− V S2(U, V ) + S2(U, V )− V S3(U, V ) + S3(U, V )− 2V S4(U, V )

+ 2S4(U, V )
)
, (A.6)

C1,2 =
1

2
(U((3V + 1)∂V S1(U, V ) + 3U∂US1(U, V )− ∂V S2(U, V )− ∂US2(U, V )

+ (U − 1)∂US3(U, V )− 2∂US4(U, V ) + V (∂V S3(U, V ) + 4∂V S5(U, V )) + 4U∂US5(U, V ))

+ S2(U, V ) + S3(U, V ) + 2S4(U, V )) , (A.7)

C2,2 =
1

32
(U((V − 1)∂V S1(U, V ) + U∂US1(U, V ) + ∂V S2(U, V )− ∂US2(U, V ) + V ∂V S3(U, V )

+ (U − 1)∂US3(U, V )− 2∂US4(U, V )) + S2(U, V ) + S3(U, V ) + 2S4(U, V )) . (A.8)
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The expressions for ⟨SSFχ⟩ are:

E1,1 = − V ∂V S2(U, V )− (V − 1)∂US2(U, V )− V ∂V S3(U, V )− (U + V − 1)∂US3(U, V )

− 2V ∂V S4(U, V )− 2(V − 1)∂US4(U, V )− 2U∂US5(U, V )

+
(V − 1)S2(U, V )

U
+

(V − 1)S3(U, V )

U
+ S5(U, V ) + S6(U, V )− (U − 2V + 2)S4(U, V )

U
,

(A.9)

E3,1 = − U(∂V S2(U, V ) + ∂US2(U, V )− ∂US3(U, V )) + S2(U, V )− S3(U, V ) , (A.10)

E1,2 = U(−∂US2(U, V ) + V ∂V S3(U, V ) + (U − 1)∂US3(U, V )− 2∂US4(U, V ) + 2V ∂V S5(U, V )

+ 2U∂US5(U, V )) + S2(U, V ) + S3(U, V ) + 2S4(U, V ) , (A.11)

E3,2 = U(∂V S2(U, V )− V ∂V S3(U, V )− U∂US3(U, V )) . (A.12)

Next we shall give expressions for ⟨SSFF ⟩ and ⟨SSFF ⟩, which can be computed from δ⟨SSSF ⟩.

Unlike the previous correlators, we cannot completely fix these in terms of ⟨SSSS⟩. We will instead

also leave F1,1(U, V ) and F2,1(U, V ) undetermined. We then find that the other components of

⟨SSFF ⟩ are:

F2,1(U, V ) =
1

V

(
− 4UV ∂V S4(U, V )− 4UV ∂US4(U, V )− 2(U − 2V )S4(U, V )

+ (U − V )F1,1(U, V ) + F1,2(U, V )
)
, (A.13)

F2,2(U, V ) = − 1

V

(
U
(
− 4V ∂V S4(U, V )− 2S4(U, V ) + F1,1(U, V )

)
+ F1,2(U, V )

)
. (A.14)

Furthermore, by imposing conservation on ⟨SSSJ⟩, we find that F1,1(U, V ) and F2,1(U, V ) are
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constrained by the Ward identities:

F1,1(U, V ) =
1

3U
2U3(U + 2V − 2)∂2US1(U, V ) + 2U2V (U + 2V − 2)∂2V S1(U, V )

+ U2(U + 2V − 2)∂US1(U, V ) + 2U2(U + V − 1)(U + 2V − 2)∂U∂V S1(U, V )

− 2U2(U + 2V − 2)∂2US2(U, V )− 2U2V (U + 2V − 2)∂2US3(U, V )

+ 8U2V (U − V + 1)∂2US4(U, V )− 2UV 2(U + 2V − 2)∂2V S3(U, V )

+ 8UV 2(U − V + 1)∂2V S4(U, V ) + U(2U − V + 1)(U + 2V − 2)∂V S1(U, V )

− 2UV (U + 2V − 2)∂2V S2(U, V ) + U(U + 2V − 2)∂US2(U, V )

− 2U(U + V − 1)(U + 2V − 2)∂U∂V S2(U, V )− (U − 1)U(U + 2V − 2)∂US3(U, V )

− 2UV (U + V − 1)(U + 2V − 2)∂U∂V S3(U, V ) + 4(U − 1)U(U − V + 1)∂US4(U, V )

+ 8UV (U − V + 1)(U + V − 1)∂U∂V S4(U, V )

− (U − 2V + 2)(U + 2V − 2)∂V S2(U, V )

+ V (U + 2V − 2)(−3U + 2V − 2)∂V S3(U, V )

+ 4V (U − V + 1)(3U − 2V + 2)∂V S4(U, V )− 2U
(
U2 − U(2V + 1)

+ (V − 1)2
)
∂UF1,1(U, V ) +

(
U2(1− 2V ) + U(4V + 3)(V − 1)

− 2(V − 1)3
)
∂V F1,1(U, V ) +

(
U2 − 3U(V + 1) + 2(V − 1)2

)
∂V F1,2(U, V )

+ U(−U + V − 1)∂UF1,2(U, V )− (U + 2V − 2)S2(U, V )− (U + 2V − 2)S3(U, V )

+ 4(U − V + 1)S4(U, V ) , (A.15)

F1,2(U, V ) =
1

3

(
2U3∂2US1(U, V ) + 2U2V ∂2V S1(U, V ) + U2∂US1(U, V )

+ 2U2(U + V − 1)∂U∂V S1(U, V )− 2U2∂2US2(U, V )− 2U2V ∂2US3(U, V )

− 4U2V ∂2US4(U, V )− 2UV 2∂2V S3(U, V )− 4UV 2∂2V S4(U, V )

+ U(2U − V + 1)∂V S1(U, V )− 2UV ∂2V S2(U, V ) + U∂US2(U, V )

− 2U(U + V − 1)∂U∂V S2(U, V )− (U − 1)U∂US3(U, V )

− 2UV (U + V − 1)∂U∂V S3(U, V )− 2(U − 1)U∂US4(U, V )

− 4UV (U + V − 1)∂U∂V S4(U, V )− (U − 2V + 2)∂V S2(U, V )

+ V (−3U + 2V − 2)∂V S3(U, V ) + 2V (−3U + 2V − 2)∂V S4(U, V )

+ U(U − V + 1)∂UF1,1(U, V ) + 2U∂UF1,2(U, V ) +
(
U(V + 1)

− (V − 1)2
)
∂V F1,1(U, V ) + (U + V − 1)∂V F1,2(U, V )− S2(U, V )− S3(U, V )

− 2S4(U, V )
)
. (A.16)
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We also find the following expressions for ⟨SSFF ⟩:

G1,1(U, V ) =
1

U

(
− 2U2∂US1(U, V )− 4U2∂US5(U, V )− 2UV ∂V S3(U, V )

− 2U(U + V − 1)∂US3(U, V )− 4UV ∂V S4(U, V )− 4U(V − 1)∂US4(U, V )

+ 2US1(U, V ) + 2US5(U, V ) + 2(V − 1)S3(U, V )− 2(U − 2V + 2)S4(U, V )

+ (U − V + 1)F1,1(U, V ) + F1,2(U, V )
)
, (A.17)

G2,1(U, V ) =
1

U

(
4U2∂US5(U, V )− 2UV ∂V S2(U, V )− 2U(V − 1)∂US2(U, V ) + 2UV ∂V S3(U, V )

+ 2U(U + V − 1)∂US3(U, V ) + 4UV ∂V S4(U, V ) + 4U(V − 1)∂US4(U, V )

− 2US5(U, V ) + 2US6(U, V ) + 2(V − 1)S2(U, V )− 2(V − 1)S3(U, V )

+ 2(U − 2V + 2)S4(U, V )− (U − 2V + 2)F1,1(U, V )− 2F1,2(U, V )
)
, (A.18)

G4,1(U, V ) =
1

V
U
(
2V
(
∂V S2(U, V ) + ∂US2(U, V ) + ∂US3(U, V ) + 2(∂V S4(U, V ) + ∂US4(U, V )))

+ 2S4(U, V )−F1,1(U, V )
)
−F1,2(U, V )

)
− 2
(
S2(U, V ) + S3(U, V ) + 2S4(U, V )

)
,

(A.19)

G1,2(U, V ) = 2U
(
U∂US1(U, V ) + (U − 1)∂US3(U, V )− 2∂US4(U, V ) + V (∂V S1(U, V )

+ ∂V S3(U, V ) + 2∂V S5(U, V )) + 2U∂US5(U, V )
)
+ 2S3(U, V ) + 4S4(U, V )

−F1,1(U, V ) , (A.20)

G2,2(U, V ) = − 2U
(
∂US2(U, V ) + V ∂V S3(U, V ) + (U − 1)∂US3(U, V )− 2∂US4(U, V )

+ 2V ∂V S5(U, V ) + 2U∂US5(U, V )
)
+ 2S2(U, V )− 2S3(U, V )− 4S4(U, V )

+ 2F1,1(U, V ) + F1,2(U, V ) , (A.21)

G4,2(U, V ) =
1

V

(
U(−2V (∂V S2(U, V ) + V ∂V S3(U, V ) + U∂US3(U, V ) + 2∂V S4(U, V ))− 2S4(U, V )

+ F1,1(U, V )) + F1,2(U, V )
)
−F1,2(U, V ) . (A.22)

Next we give expressions for ⟨SSPP ⟩, which can be derived by considering the supersymmetric
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variation δ⟨SSPχ⟩:

R1(U, V ) = 2V 2∂2V S2(U, V ) + 2V 2∂2V S3(U, V ) + 4V 2∂2V S4(U, V ) + 2V (U + V − 1)∂U∂V S2(U, V )

+ 2UV ∂2US2(U, V )− V (−3U + 2V − 2)∂V S3(U, V )

U
+ 2V (U + V − 1)∂U∂V S3(U, V )

+ 2UV ∂2US3(U, V ) + 4V (U + V − 1)∂U∂V S4(U, V ) + 4UV ∂2US4(U, V )

+ 2V ∂V S5(U, V )− 2V ∂V S6(U, V ) +
V (U − 2V + 2)∂V S2(U, V )

U

+
4V (U − V + 1)∂V S4(U, V )

U
− U∂US1(U, V )− (V + 1)∂US2(U, V )

− (−U + V + 1)∂US3(U, V )− 2(−U + V + 1)∂US4(U, V )− 2U∂US6(U, V ) + S1(U, V )

− (U − 2(V + 1))S4(U, V )

U
+ S5(U, V ) + S6(U, V ) +

(V + 1)S2(U, V )

U

+
(V + 1)S3(U, V )

U
, (A.23)

R2(U, V ) = − U2∂US1(U, V )− 2U2V ∂2US1(U, V )− 4U2V ∂2US5(U, V )− 2UV 2∂2V S1(U, V )

− 4UV 2∂2V S5(U, V ) + 2V 2∂2V S2(U, V ) + 2V 2∂2V S3(U, V ) + 4V 2∂2V S4(U, V )

− 2UV (U + V − 1)∂U∂V S1(U, V ) + 2UV ∂2US2(U, V ) + 2UV ∂2US3(U, V )

+ 4UV ∂2US4(U, V )− 2(U − 1)U∂US5(U, V )− 4UV (U + V − 1)∂U∂V S5(U, V )

− 2U∂US6(U, V )− V (3U − 2V + 2)∂V S1(U, V )− (V + 1)∂US2(U, V )

+ 2V (U + V − 1)∂U∂V S2(U, V )− (−U + V + 1)∂US3(U, V )

+ 2V (U + V − 1)∂U∂V S3(U, V )− 2(−U + V + 1)∂US4(U, V )

+ 4V (U + V − 1)∂U∂V S4(U, V )− 2V (3U − 2V + 1)∂V S5(U, V )− 2V ∂V S6(U, V )

+
V (U − 2V + 2)∂V S2(U, V )

U
− V (−3U + 2V − 2)∂V S3(U, V )

U

+
4V (U − V + 1)∂V S4(U, V )

U
− S5(U, V ) + S6(U, V ) +

(V + 1)S2(U, V )

U

+
(V + 1)S3(U, V )

U
− (U − 2(V + 1))S4(U, V )

U
, (A.24)
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R4(U, V ) = − 1

2

(
2
(
− 2U2 − (U + 3)V + U + 2V 2 + 1

)
∂V S5(U, V ) + 2U2∂US1(U, V )

+ 2U2(2U + V − 1)∂2US1(U, V ) + 4U2(U + V − 1)∂2US5(U, V )

+
(
4U2 + U − 2(V − 1)2

)
∂V S1(U, V )−

(
U2 + U(4− 3V ) + 2(V − 1)2

)
∂V S2(U, V )

U

−
2
(
U2 + U − 2(V − 1)2

)
∂V S4(U, V )

U

−

(
(U(2U − 1)− 4)V − 2(U + 1)(U − 1)2 − 2V 2

)
∂V S3(U, V )

U

+ 2UV (2U + V − 1)∂2V S1(U, V ) + 2U(U + V − 1)(2U + V − 1)∂U∂V S1(U, V )

− 2U(2U + V − 1)∂2US2(U, V )− 2U
(
V − (U − 1)2

)
∂2US3(U, V )

− 4U(U + V − 1)∂2US4(U, V ) + 4UV (U + V − 1)∂2V S5(U, V ) + 2(U − 1)U∂US5(U, V )

+ 4U(U + V − 1)2∂U∂V S5(U, V ) + 2U∂US6(U, V )− 2V (2U + V − 1)∂2V S2(U, V )

+ (3U + V − 1)∂US2(U, V )− 2(U + V − 1)(2U + V − 1)∂U∂V S2(U, V )

− 2V
(
V − (U − 1)2

)
∂2V S3(U, V ) + (U + V − 1)∂US3(U, V )

+ 2
(
(U − 1)2 − V

)
(U + V − 1)∂U∂V S3(U, V )− 4V (U + V − 1)∂2V S4(U, V )

+ 2(U + V − 1)∂US4(U, V )− 4(U + V − 1)2∂U∂V S4(U, V ) + 2(U + V − 1)∂V S6(U, V )

+ S5(U, V )− S6(U, V )− (3U + V − 1)S2(U, V )

U
− (2U + V − 1)S3(U, V )

U

− (3U + 2V − 2)S4(U, V )

U

)
, (A.25)

R5(U, V ) = − 1

2

(
− 2U2∂2US1(U, V )− 2V 2∂2V S3(U, V )− 4V 2∂2V S4(U, V ) + 2UV ∂2V S1(U, V )

+ 2U(U + V − 1)∂U∂V S1(U, V )− 2U(U + V )∂2US2(U, V )− 2UV ∂2US3(U, V )

− 4UV ∂2US4(U, V ) + 2U∂US6(U, V ) + (U − 2V + 2)∂V S1(U, V )

− 2V (U + V )∂2V S2(U, V ) + (U + V + 1)∂US2(U, V )

− 2(U + V − 1)(U + V )∂U∂V S2(U, V )− (U − V − 1)∂US3(U, V )

− 2V (U + V − 1)∂U∂V S3(U, V )− 2(U − V − 1)∂US4(U, V )

− 4V (U + V − 1)∂U∂V S4(U, V )− 2V ∂V S5(U, V ) + 2V ∂V S6(U, V )

− (U + V )(U − 2V + 2)∂V S2(U, V )

U
− V (3U − 2V + 2)∂V S3(U, V )

U

− 4V (U − V + 1)∂V S4(U, V )

U
− S5(U, V )− S6(U, V )− (U + V + 1)S2(U, V )

U

− (V + 1)S3(U, V )

U
− (−U + 2V + 2)S4(U, V )

U

)
. (A.26)
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Appendix B

Characters of osp(6|4)

In this appendix we review the character formulas of osp(6|4), which were computed in [31], as well

as their decomposition under osp(6|4)→ so(3, 2)⊕so(6). This decomposition was used in Chapter 2

to determine which conformal primaries reside in each supermultiplet appearing in the S × S OPE.

The osp(6|4) characters are defined in terms of the quantum numbers and generators given in

Section 2.2 as

χ(∆;j;r)(s, x, y) ≡ TrR(∆;j;r)

(
s2Dx2J3yH1

1 yH2
2 yH3

3

)
. (B.1)

Their explicit form for the multiplets we consider are

χ
(A,±)
(∆;j;r,r,r)(s, x, y) = s2∆P (s, x)

2∑
a1 ,a2 ,a3=0

1∑
ā1 ,ā2 ,ā3=0

sa1+a2+a3+ā1+ā2+ā3χ2j+ā1+ā2+ā3(x)

×

(
3∏
i=1

χjai
(x)

)
χ(r+ā1−a1 ,r+ā2−a2 ,±r±ā3∓a3)(y) , (B.2)

χ
(B,+)
(∆;0;r,r,r)(s, x, y) = s2∆P (s, x)

2∑
a1 ,a2 ,a3=0

sa1+a2+a3

(
3∏
i=1

χjai
(x)

)
χ(r−a1 ,r−a2 ,r−a3)(y) , (B.3)
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χ
(A,n)
(∆;j;r1,...,r1,rn+1,...,r3)

(s, x, y) = s2∆P (s, x)

2∑
a1 ,a2 ,a3=0

2∑
ān+1,...,ā3=0

1∑
ā1,...,ān=0

sa1+a2+a3+ā1+ā2+ā3χ2j+ā1+···+ān(x)

×

(
3∏

i=n+1

χjāi
(x)

)(
3∏
i=1

χjai
(x)

)
χ(r1+ā1−a1 ,r2+ā2−a2 ,r3+ā3−a3)(y) ,

(B.4)

χ
(B,n)
(∆;0;r1,...,r1,rn+1,...,r3)

(s, x, y) = s2∆P (s, x)

2∑
a1 ,a2 ,a3 ,ān+1,...,ā3=0

sa1+a2+a3+ān+1+···+ā3

(
3∏

i=n+1

χjāi
(x)

)

×

(
3∏
i=1

χjai
(x)

)
χ(r1−a1,...,r1−an,rn+1+ān+1−an+1,...,r3+ā3−a3)(y) ,

(B.5)

where the long multiplet corresponds to (A, 0), we define ja ≡ a (mod 2), the su(2) and so(6)

characters are

χj(x) =
xj+1 − x−j−1

x− x−1
, (B.6)

χr(y) =
det
[
y
rj+3−j
i + y

−rj−3+j
i

]
+ det

[
y
rj+3−j
i − y−rj−3+j

i

]
2
∏

1≤i<j≤3(yi + y−1
i − yj − y

−1
j )

, (B.7)

and the function P (s, x) is related to the so(3, 2) character and takes the form

P (s, x) =
1

1− s4
∞∑
n=0

s2nχ2n(x) . (B.8)

The products of the su(2) characters in (B.2)–(B.5) are easily transformed into sums of such

characters by decomposing su(2) tensor products. After doing so, we see that (B.2)–(B.5) become

sums over so(3, 2)⊕ so(6) characters, as desired.1

1Sometimes the so(6) characters in (B.2)–(B.5) appear with negative Dynkin labels. One can then try to use the
identity

χrω (y) = (−)ℓ(ω)χr(y) ,

to obtain a character with non-negative Dynkin labels. In this identity ω is an element of the so(6) Weyl group S4,
rω = ω(r + ρ) − ρ is a Weyl reflection, ρ = (2, 1, 0) is the Weyl vector, and (−)ℓ(ω) is the signature of the Weyl
transformation. If there is no Weyl transformation such that rω correspond to non-negative integer Dynkin labels,
then χr = 0.
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Appendix C

Decomposing N = 8 Superblocks to

N = 6

In this appendix we discuss how the superblocks that appeared in the four-point function of the

N = 8 stress tensor superprimary S decompose into the N = 6 superblocks discussed for ⟨SSSS⟩

in the main text. This serves as both a consistency check of our N = 6 superblocks, and also allows

us to translate the N = 8 numerical bootstrap results of [76, 81, 178, 179] into N = 6 language,

which we use to compare to the N = 6 results in Chapter 6. S transforms in the 35c of the N = 8

R-symmetry group SO(8), which decomposes to SO(6)× U(1) as

35→ 150 ⊕ 102 ⊕ 10−2 , (C.1)

so S decomposes to S as well as the superprimaries of the multiplets (B,+)0201,0 and (B,−)0021,0 that

are charged under U(1). Since we are only interested in correlators of S, we will always restrict to

U(1) singlets when decomposing from N = 8 to N = 6 in this appendix, which we will denote using

an arrow instead of an equality.

The N = 8 multiplets that appear in S × S are listed in Table C.1.1 We can decompose the

characters for these superblocks, as computed in [178], into the characters of the N = 6 superblocks
1In [178], the long multiplet was denoted as (A, 0).
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Type (∆, ℓ) so(8)R irrep spin ℓ BPS
(B,+) (1, 0) 35c = [0020] 0 1/2
(B,+) (2, 0) 294c = [0040] 0 1/2

(B, 2) (2, 0) 300 = [0200] 0 1/4

(A,+) (ℓ+ 2, ℓ) 35c = [0020] even 1/4

(A, 2) (ℓ+ 2, ℓ) 28 = [0100] odd 1/8

(A, cons.) (ℓ+ 1, ℓ) 1 = [0000] even 5/16

Long ∆ ≥ ℓ+ 1 1 = [0000] even 0

Table C.1: The possible superconformal multiplets in the S×S OPE. The so(3, 2)⊕so(8)R quantum
numbers are those of the superconformal primary in each multiplet.

as computed from the previous Appendix to get the following decomposition of multiplets:

(B,+)
[0020]
1,0 → (B, 2)

[011]
1,0 ,

(B,+)
[0040]
2,0 → (B, 2)

[022]
2,0 ,

(B, 2)
[0200]
2,0 → (B, 2)

[022]
2,0 ⊕ (B, 1)

[200]
2,0 ⊕ (A, 2)

[011]
2,0 ⊕ (A, 0)

[000]
2,0 ,

(A,+)
[0020]
ℓ+2,ℓ → (A,+)

[020]
ℓ+5/2,ℓ+1/2 ⊕ (A,−)[002]ℓ+5/2,ℓ+1/2 ⊕ (A, 2)

[011]
ℓ+2,ℓ ⊕ (A, 2)

[011]
ℓ+3,ℓ+1 ,

(A, 2)
[0100]
ℓ+2,ℓ → (A, 2)

[011]
ℓ+2,ℓ ⊕ (A, 2)

[011]
ℓ+3,ℓ+1 ⊕ 2× (A, 1)

[100]
ℓ+5/2,ℓ+1/2 ⊕ (A, 0)

[000]
ℓ+3,ℓ+1 ⊕ (A, 0)

[000]
ℓ+2,ℓ ,

Long[0000]∆,ℓ → Long[000]∆,ℓ ⊕ Long[000]∆+1,ℓ−1 ⊕ 2× Long[000]∆+1,ℓ ⊕ Long[000]∆+1,ℓ+1 ⊕ Long[000]∆+2,ℓ ,

(A, cons.)[0000]ℓ+1,ℓ → (A, cons.)[000]ℓ+1,ℓ ⊕ (A, cons.)[000]ℓ+2,ℓ+1 ,

(C.2)

where 2× denotes that the multiplet appears twice.

The N = 8 stress tensor correlator was written in [178] in the basis

⟨S(x⃗1, Y1)S(x⃗2, Y2)S(x⃗3, Y3)S(x⃗4, Y4)⟩ =
1

x212x
2
34

[
S1(U, V )Y 2

12Y
2
34 + S2(U, V )Y 2

13Y
2
24 + S3(U, V )Y 2

14Y
2
23

+ S4(U, V )Y13Y14Y23Y24 + S5(U, V )Y12Y14Y23Y34 + S6(U, V )Y12Y13Y24Y34

]
,

(C.3)

where Y are so(8) null vectors. As shown in Section 4.3.2,2 this decomposes to the N = 6 basis in
2This was for a basis of SO(8) matrices X, but as noted there its the exact same decomposition for the basis of

Y ’s.
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(2.5) as

{S1 ,S2 ,S3 ,S4 ,S5 ,S6} → {S1 ,S2 ,S3 , 4S4 , 4S5 , 4S6} . (C.4)

Finally, we can decompose the explicit N = 8 superblocks GM[d1d2d3d4]

∆,ℓ

(U, V ) given in [178] into the

N = 6 superblocks GM[d1d2d3]

∆,ℓ

(U, V ) given in the attached Mathematica file to get

G
(B,+)

[0020]
1,0

→ 1

4
G

(B,2)
[011]
1,0

,

G
(B,+)

[0040]
2,0

→ 1

4
G

(B,2)
[022]
2,0

,

G
(B,2)

[0200]
2,0

→ 1

16
G

(B,2)
[022]
2,0

+
1

3
G

(A,2)
[011]
2,0

+
4

35
GLong[000],1

2,0
+

1

8
G

(B,1)
[200]
2,0

,

G
(A,+)

[0020]
ℓ+2,ℓ

→ 1

4
G

(A,2)
[011]
ℓ+2,ℓ

+
(4 + ℓ)2

(5 + 2ℓ)(7 + 2ℓ)
G

(A,2)
[011]
ℓ+3,ℓ+1

+
1 + ℓ

4 + 2ℓ
G

(A,+)
[020]

ℓ+5/2,ℓ+1/2

,

G
(A,2)

[0020]
ℓ+2,ℓ

→ −1

4
G

(A,2)
[011]
ℓ+2,ℓ

− (3 + ℓ)2

(3 + 2ℓ)(5 + 2ℓ)
G

(A,2)
[011]
ℓ+3,ℓ+1

− ℓ2

3 + 4ℓ(2 + ℓ)
GLong[000]

ℓ+2,ℓ

− (5 + ℓ)2

(7 + 2ℓ)(9 + 2ℓ)
GLong[000],1

ℓ+3,ℓ+1

− 1 + ℓ

9 + 3ℓ
G

(A,1)
[000],1

ℓ+5/2,ℓ+1/2

−G
(A,1)

[000],2

ℓ+5/2,ℓ+1/2

,

GLong[0000]
∆,ℓ

→ GLong[000],1
∆,ℓ

+
4(ℓ− 1)2(−∆+ ℓ+ 1)(∆ + ℓ)

(2ℓ− 1)(2ℓ+ 1)(ℓ−∆)(∆ + ℓ+ 1)
GLong[000]

∆+1,ℓ−1

+
4∆(−∆+ ℓ+ 1)(∆ + ℓ)

3(∆ + 2)(ℓ−∆)(∆ + ℓ+ 1)
GLong[000],2

∆+1,ℓ

+
4(−∆+ ℓ+ 1)(∆ + ℓ)

(ℓ−∆)(∆ + ℓ+ 1)
GLong[000],3

∆+1,ℓ

+
4(ℓ+ 1)(ℓ+ 2)(∆ + ℓ)(∆ + ℓ+ 2)

(2ℓ+ 1)(2ℓ+ 3)(∆ + ℓ+ 1)(∆ + ℓ+ 3)
GLong[000]

∆+1,ℓ+1

+
4(∆ + 4)2(−∆+ ℓ+ 1)(∆ + ℓ)

(2∆ + 5)(2∆ + 7)(ℓ−∆)(∆ + ℓ+ 1)
GLong[000],1

∆+2,ℓ

,

G
(A,cons.)[0000]ℓ+1,ℓ

→ G
(A,cons.)[000]ℓ+1,ℓ

+G
(A,cons.)[000]ℓ+2,ℓ+1

,

(C.5)

where for GLong[0000]
∆,0

we should ignore the GLong[000]
∆+1,−1

and GLong[000],3
∆+1,0

terms on the RHS, and rescale

GLong[000],2
∆+1,0

by ∆−1
∆+2 .
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Appendix D

D̄ Functions

In this appendix, we list useful properties of D and D̄ functions. By definition, the D function is

the quartic contact Witten diagram

Dr1,r2,r3,r4(xi) =

∫
AdS4

dz

4∏
i=1

GriB∂(z, x⃗i) , GrB∂(z, x⃗) =

(
z0

z20 + (z⃗ − x⃗)2

)r
(D.1)

and the D̄ function is defined in terms of the D function as

D̄r1,r2,r3,r4(U, V ) =
x

1
2

∑4
i=1 ri−r4

13 xr224

x
1
2

∑4
i=1 ri−r1−r4

14 x
1
2

∑4
i=1 ri−r3−r4

34

2
∏4
i=1 Γ(ri)

π
3
2Γ
(

−3+
∑4

i=1 ri
2

)Dr1,r2,r3,r4(xi) . (D.2)

When
∑
i ri = 3, this definition of D̄ becomes singular, however, for that special case we can

alternatively define:

D̄r1,r2,r3,r4(U, V ) =

∏4
i=1 Γ(ri)

π3/2

x3−2r4
13 x2r224

x3−2r1−2r4
14 x3−2r3−2r4

34

∫
d3x

4∏
i=1

1

|x⃗− x⃗i|2ri
. (D.3)

D̄ functions take a particularly simple form in Mellin space:

D̄r1,r2,r3,r4(U, V ) =

∫ ∞

−i∞

ds dt

(4πi)2
U

1
2 (s+r1−r2)V

1
2 (u−r1−r2)Γ

(
r1 + r2 − s

2

)
Γ

(
r3 + r4 − s

2

)
× Γ

(
r1 + r3 − t

2

)
Γ

(
r2 + r4 − t

2

)
Γ

(
r1 + r4 − u

2

)
Γ

(
r2 + r3 − u

2

)
.

(D.4)

Using (D.4), polynomial Mellin amplitudes can be converted into sums of D̄ functions multiplied by

powers of U and V .
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We can relate D̄r1,r2,r3,r4(U, V ) to each other using the relations [158,217]

D̄r1+1,r2+1,r3,r4 = −∂U D̄r1,r2,r3,r4 ,

D̄r1,r2,r3+1,r4+1 =

(
r3 + r4 − r1 − r2

2
− U∂U

)
D̄r1,r2,r3,r4 ,

D̄r1,r2+1,r3+1,r4 = −∂V D̄r1,r2,r3,r4 ,

D̄r1+1,r2,r3,r4+1 =

(
r1 + r4 − r2 − r3

2
− V ∂V

)
D̄r1,r2,r3,r4 ,

D̄r1,r2+1,r3,r4+1 = (r2 + U∂U + V ∂V ) D̄r1,r2,r3,r4 ,

D̄r1+1,r2,r3+1,r4 =

(
r1 + r2 + r3 − r4

2
+ V ∂V + U∂U

)
D̄r1,r2,r3,r4 ,

(D.5)

which can easily be checked using the Mellin space expression (D.4). In particular, we can combine

the first and second equations of (D.5) to derive D function relation

4r1r2x
2
12Dr1+1,r2+1,r3,r4 − 4r3r4x

2
34Dr1,r2,r3+1,r4+1

= (r1 + r2 − r3 − r4)(3− r1 − r2 − r3 − r4)Dr1,r2,r3,r4 ,

(D.6)

which, along with its crossings, will prove useful when computing shadow transforms Chapter 5.

The shadow transform of a D-function is another D-function:

∫
d3y

|x⃗4 − y⃗|6−2r4
Dr1,r2,r3,r4(x⃗1, x⃗2, x⃗3, y⃗) =

π3/2Γ
(
r4 − 3

2

)
Γ(r4)

Dr1,r2,r3,3−r4(x⃗1, x⃗2, x⃗3, x⃗4) . (D.7)

This identity is a straightforward consequence of the fact that the shadow transform of a bulk-

boundary propagator is another bulk-boundary propagator [218]:

∫
d3y

|x⃗− y⃗|6−2r
GrB∂(z, y⃗) =

π3/2Γ
(
r − 3

2

)
Γ(r)

G3−r
B∂ (z, x⃗) , (D.8)

Finally, when computing the superconformal expansion of Si(U, V ) in the higher-spin limit in

Chapter 3, we will need to compute the U ∼ 0, V ∼ 1 expansion of certain D̄ functions. General
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expressions are given [219], and applying these to the cases of interest to us, we find that

D̄1,1, 12 ,
1
2
(U, V ) =

∞∑
m,n=0

πUm(1− V )n
(

Γ(m+ 1
2 )Γ(m+n+ 1

2 )
2

√
UΓ(2m+n+1)

− Γ(m+1)2Γ(m+n+1)2

Γ(m+ 3
2 )Γ(2m+n+2)

)
m!n!

,

D̄ 1
2 ,1,1,

1
2
(U, V ) = −

∞∑
m,n=0

[
2Um(1− V )nΓ

(
m+ 1

2

)2
(m+ n)!2

m!2n!Γ
(
2m+ n+ 3

2

) (
ψ(m+ n+ 1)− ψ

(
2m+ n+

3

2

)

+ ψ

(
m+

1

2

)
− ψ(0)(m+ 1)

)
+

1

2
logU

]
,

D̄1, 12 ,1,
1
2
(U, V ) =

∞∑
m,n=0

[√
πUm(1− V )nΓ

(
m+ 1

2

)
Γ(2m+ 2n+ 1)

4m+nm!n!Γ
(
2m+ n+ 3

2

) (
2ψ

(
2m+ n+

3

2

)

− 2ψ(2m+ 2n+ 1)− ψ
(
m+

1

2

)
+ ψ(m+ 1) + log(4)

)
+

1

2
logU

]
,

(D.9)

where ψ(x) is the Digamma function. Note in particular the logU dependence in the last two

expressions.
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