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Abstract

In this thesis we study A = 6 superconformal field theories (SCFTs) in three dimensions. Such
theories are highly constrained by supersymmetry, allowing many quantities to be computed exactly.
Yet though constrained, N' = 6 SCFTs still exhibit a rich array of behaviors, and in various regimes
can be dual holographically to M-theory on AdSy x S7, ITA string theory on AdS, x CP?, and higher-
spin gravity on AdS;. We will use tools from conformal bootstrap and supersymmetric localization
to study N = 6 theories, both in general and in holographic regimes.

We begin in Chapter 2 by deriving the supersymmetric Ward identities and the superconformal
block expansion for the four-point correlator (SSSS) of stress tensor multiplet scalars S. Chapter 3
then studies the mass-deformed sphere partition function, which can be computed exactly using
supersymmetric localization, and relates derivatives of this quantity to specific integrals of (55S.5).

In Chapter 4 we study the ITA string and M-theory limits of the ABJ family of N' = 6 SCFTs.
Using the supersymmetric Ward identities and localization results, we are able to fully determine
the R* corrections to the (SSSS) correlator in both limits. By taking the flat space limit, we can
compare to the known R* contribution to the IIA and M-theory S-matrix, allowing us to perform a
check of AdS/CFT at finite string coupling.

In Chapter 5 we study the higher-spin limit of /' = 6 theories. Using the weakly broken higher-
spin Ward identity, we completely determine the leading correction to (SS5SS) in this limit up to
two free parameters, which for ABJ theory we then fix using localization. Finally, in Chapter 6 we
perform the first numerical bootstrap study of N' = 6 superconformal field theories, allowing us to

derive non-perturbative bounds on the CFT data contributing to (SSS.S).

iii
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Chapter 1

Introduction

In this thesis we study a class of highly symmetric quantum field theories, N' = 6 superconformal
field theories (SCFTs) in three spacetime dimensions. Much like the quantum field theories we
use in particle physics — the Standard Model, QCD, QED, and so on — A = 6 SCFTs have
Poincaré symmetry: they are invariant under translations, rotations, and boosts. But N’ = 6 SCFTs
are also invariant under two additional kinds of spacetime symmetries: conformal symmetries and

supersymmetries. We will now motivate each of these in turn.

Conformal Symmetry

Physical theories come with characteristic length scales. At distances much greater than this length
scale, the precise details of the short-distance physics become unimportant and so we expect the
theory to become scale-invariant. Under broad but still not entirely understood circumstances,!
scale symmetry is enhanced to the larger group of conformal symmetries, which are the spacetime
transformations which locally look like rotations and rescalings. We therefore expect that at large
distances, quantum field theories (QFTs) should approach conformality. This intuition is formally
captured by the renormalization group (RG), which describes how quantum field theories “flow”

from short distances (the “UV”) to long distances (the “IR”). For UV complete QFTs, the short

distance behavior will also become scale-invariant, and so we can often? think of QFT as an RG

11t has been shown in 2d and 4d that Lorentzian invariance and unitarity, along with certain technical assumptions,
are sufficient [1,2], but in other spacetime dimensions the situation is less clear. In particular, free Maxwell theory in
3d is scale-invariant theory, satisfies all the conditions of the 2d and 4d results, and yet is not conformally-invariant [3].
It is not known, however, if interacting counterexamples exist. A thorough discussion of these issues can be found
in [4].

2This picture does not quite work for gauge theories in 3d, because as noted in the previous footnote free Maxwell
theory is scale-invariant but not conformally-invariant. Nevertheless, we can still think of a UV-complete QFT as an
RG flow between scale-invariant theories.



flow between two conformal field theories (CFTs):

Studying CFTs thus enables us to map out more generally the space of all QFTs.
Let us give two examples of conformality in physical theories. Consider the Standard Model,
which provides our current best description of particles physics. The only massless particle in the

Standard Model is the photon. At energies much lower than the electron mass,>

we can ignore the
massive particles and describe just the photons by the most famous conformally invariant theory
of them all: Maxwell’s theory of electromagnetism. This theory is classically conformally invariant,
and remains conformally invariant after quantization.*

Another theory believed to be conformally invariant is the critical Ising model, which describes
second order phase transitions in water (and other fluids) at its critical point and in uni-axial magnets
at their critical points. Although at short distances water and uni-axial magnets have very different
behaviors, at long distances they both limit to the same conformal field theory, and so share the
same critical exponents.

Due to the greater amount of symmetry available, CFTs are subject to more stringent consistency
conditions then regular QFTs. This has led to the “conformal bootstrap”, a series of tools for
studying CFTs which focus directly on the CFT itself, rather than relying on a specific lattice
model or Lagrangian description which only flows to the CFT in the infrared. These methods aim
to fully utilize the constraints imposed by conformal symmetry, along with any additional internal
symmetries or supersymmetries. Combining these symmetries with consistency conditions coming
from unitarity and crossing symmetries, conformal bootstrap can be used to constrain and sometimes
even fully solve a CFT. Because conformal bootstrap methods rely on non-perturbative properties of
CFTs, they are particular useful for studying strongly-coupled theories. While the basic bootstrap
philosophy was first articulated in the 1970s [5,6], it has only been in the last 15 years that the
conformal bootstrap has reached maturity for theories in more than two dimensions.® In particular,
the numeric conformal bootstrap, first proposed in [7], provides a general method for computing

rigorous bounds on conformal field theories and has led to a vast array of new results — see [8] for

3Technically, the neutrinos are much lighter than the electron, but interact so weakly with ordinary matter that
they can be ignored when studying electromagnetism.

4When coupled to charged matter fields, however, conformality is broken due to the scale-anomaly.

5In two dimensions the conformal group is infinite dimensional, whereas for d > 3 the conformal group is finite
dimensional. For this reason, 2d CFTs are much better understood than their d > 3 cousins, and tools such as the
Virasoro algebra and modular invariance even allow for theories to be solved exactly. No exactly solvable interacting
CFTs in d > 3 are known.



a recent review. One goal of this thesis will be to perform the first general numeric bootstrap study

of N =6 SCFTs.

Supersymmetry

Supersymmetries are generated by charges transforming in spinor representations of the Lorentz
group, which anticommute to generate spacetime translations. We can therefore think of them as
the “square root” of a translation. One motivation to study supersymmetric theories is provided by
the Coleman-Mandula [9] and Haag-Lopuszanski-Sohnius theorems [10], which show that the only
way to non-trivially extend the Poincaré invariance in d > 3 is with supersymmetries. For technical
reasons these theorems do not directly apply to conformal symmetries, although analogous results
still apply [11,12]. By combining supersymmetry with conformal symmetry, superconformal field
theories are amongst the most symmetric theories we can study.

Many tools have been developed to study supersymmetric field theories. Non-renormalization
theorems, for instance, can be used to show that the UV divergences which plague most QFTs are
either milder, or, in some cases, even absent entirely. Dynamical phenomena such as confinement,
electro-magnetic duality, and instantons, which we expect to generically occur in gauge theories, are
often amenable to analytic study in supersymmetric settings. Supersymmetric theories therefore
provide a window into the behavior of strongly interacting theories more generally.

In this thesis we will focus on N' = 6 superconformal symmetry, which is the next-to-maximal

amount of supersymmetry available in three dimensions.®

With next-to-maximal supersymmetry
comes next-to-maximal analytic control, allowing us to compute many quantities exactly. We will
focus on a specific tool called supersymmetric localization, which allows certain partition functions
to be computed exactly [14,15]. N = 6 superconformal symmetry also strongly constrains the

matter content and interactions possible in a theory. Indeed, only two families of N' = 6 SCFTs are

known [16-19]: Chern-Simons matter theories with gauge groups’

ABJ family: U(N)g x U(N + M)_j, ,

OSp family: SO(2)a, x USp(2+2M)_y,

and it is tempting to conjecture that these are the only ones that can exist.

8Interacting conformal field theories in 3d must have N’ < 8. In addition to this restriction, all N' = 7 theories
automatically enhance to N' = 8, and so N = 6 is the second greatest amount of supersymmetry available in three-
dimensions [13].

"We list the gauge groups only up to a specific choice of U(1) factors, because, as we conjecture in Section 1.2,
the U(1) factors do not modify the correlators studied in this thesis.



Holography

We have so far motivated the study of N' = 6 superconformal fields theories by noting that they
are amongst the most symmetric and tractable of all QFTs. There is a separate reason to consider
N = 6 superconformal field theories, and this comes from the study not of quantum field theories
but of quantum gravity. Supersymmetry appears to be a necessary ingredient of String Theory,
which is our leading candidate for a theory of quantum gravity. Solutions of string and M theory
on manifolds with boundaries are believed to be described holographically by local quantum field
theories living on said boundaries. Just as N’ = 6 SCFTs are amongst the most symmetric of all
quantum field theories, their holographic duals are amongst the most symmetric of all string and M-
theory backgrounds. With the analytic control provided by A/ = 6 supersymmetry, we can perform
many checks of conjectured holographic dualities which are not available in less symmetric theories.

When N is large, the ABJ family of theories is holographically dual to both ITA string theory and
to M theory on AdSy, depending on the value of k [16,17]. This duality is akin to the most famous
AdS/CFT duality, between 4d N = 4 super-Yang Mills and IIB string theory on AdSs [20]. When
M is large, however, the ABJ family of theories are believed to be dual to a completely different
kind of quantum gravity, known as higher-spin gravity [21]. In higher-spin theories, the graviton is
joined by an infinite number of massless higher-spin particles. While the precise connection between
higher-spin gravity and string theory is not yet clear, that fact that both are holographically dual
to the same family of A" = 6 SCFTs is suggestive. Note that while there are N’ = 8 SCFTs with M
theory duals, SCFTs with ITA or higher-spins duals must have A < 6. The ABJ family of theories

is the most symmetric family of theories exhibiting all three kinds of holographic duals.

Thesis Overview

Having motivated the study of N' = 6 SCTs, let us now give an overview of the rest of the thesis.
Our aim is to develop a series of tools to study N = 6 SCFTs. Some of the tools we develop are
general and apply to all such theories, while others are specific to either the stringy or higher-spin
limits. The observable we focus on is the four-point correlator (5S5SS), where S is a scalar operator
related by supersymmetry to the stress tensor. This scalar is present in any AN/ = 6 SCFT, and in
interacting theories is always the operator with lowest scaling dimension.

The rest of this introduction gives a more technical overview of topics discussed thus far. In
Section 1.1 we review the properties of conformal and superconformal field theories in three dimen-

sions. We then discuss the construction of super Chern-Simons matter theories in Section 1.2, and



describe in detail the ABJ and OSp families of ' = 6 SCFTs. Finally in Section 1.3 we review the
holographic dualities relating A/ = 6 SCFTs to theories of quantum gravity.

Chapter 2 discusses the constraints of superconformal invariance on the four-point function
(SSSS). We derive the superconformal Ward identities, which are linear differential equations
satisfied by (SSSS), and which further relate (SSSS) to other four-point correlators. We then
derive the superconformal block expansion for (SSS5S). The Ward identities and superblocks ex-
pansions are fundamental tools which we use throughout the thesis. As they rely only on N' = 6
superconformal symmetry, they apply to all ' = 6 SCFTs.

In Chapter 3 we study constraints from supersymmetric localization. N = 6 SCFTs can be
naturally mapped to the 3-sphere using conformal invariance. On the sphere, they posses certain
mass-deformations — so named because in Lagrangian theories they give mass to the otherwise
massless scalars and fermions — which preserve certain supersymmetries. We focus on two of these
mass-deformations, which we parameterize by m and m_. In Lagrangian N/ = 6 SCFTs (which
includes all known A = 6 theories), the sphere partition function Z(m4,m_) can be computed
exactly using supersymmetric localization for all values of m4.. In Section 3.1 we relate the derivatives
of Z(m4,m_) to integrals of (SS5S5S). The rest of the chapter then focuses on evaluating derivatives
of Z(m4, m_) explicitly for the ABJ and OSp families in various regimes.

In Chapter 4 we study the large N limit of ABJ theory, which, depending on the precise large N
limit taken, is holographically dual to either M-theory or ITA string theory. To study this limit, we
rewrite (S55S5) in Mellin space. Holographic Mellin amplitudes have a simple analytic structure,
and behave analogously to flat-space scattering amplitudes. Indeed, the Penedones formula [22]
provides a direct mapping between Mellin amplitudes in the boundary CFT and flat-space scattering
amplitudes in the bulk gravitational theory. Motivated by this connection, we study the /' = 6 on-
shell spinor-helicity formalism in 4d and use it to classify higher derivative corrections to 4-graviton
scattering in flat-space. Combining the results of this classification with the superconformal Ward
identities, we fully fix the Mellin amplitudes contributing to (SSSS) at large N. To determine
the precise contribution of each Mellin amplitude, we use both the supersymmetric localization
constraints for ABJ derived in Chapter 3, and the known flat-space string and M-theory scattering
amplitudes. Certain coefficients can be computed independently using either localization or from
flat space, allowing us to test the AdS/CFT correspondence to several orders in 1/N.

In Chapter 5 we study N = 6 theories in the higher-spin limit, which are holographically dual to
theories of higher-spin gravity. Theories with unbroken higher-spin symmetries cannot be interacting,

as the constraints of higher-spin symmetry are so stringent as to force all correlation functions



to be equal to those of free field theory [11]. We study N/ = 6 SCFTs where the higher-spin
symmetries are weakly broken. The resulting theories can now have interesting dynamics, but are
still strongly constrained by the weakly broken higher-spin symmetries. We use these constraints
to fix an ansatz for the leading corrections to (SSSS), and then use localization to completely
determine the unknown coefficients in the ansatz for both ABJ and OSp theories at large M.

In Chapter 6, we present the first numeric bootstrap study of the (SSSS) correlator. This
allows us to derive general non-perturbative bounds on the (SSSS) correlator in any N/ =6 SCFT.
To impose further constraints, we combine the numeric bootstrap with the localization results of
Chapter 3, allowing us to derive precise bounds on certain physical quantities in specific ABJ theories.
We also find that the bootstrap bounds of a certain protected OPE coefficient appears to be saturated
by the U(1)apr X U(1 + M)ops family of ABJ theories. Assuming this conjecture is true, we can
compute numerically the spectrum of these theories using the extremal functional method. As M
becomes large these theories have weakly broken higher-spin symmetry, allowing us to compare
numeric bootstrap results to the analytic computations performed in Chapter 5.

We finish with a summary of our results and a discussion of future directions in Chapter 7. Four
appendices then follow which discuss various technical details.

This thesis is based on the work with Shai M. Chester and Silviu S. Pufu [23], Shai M. Chester,
Max Jerdee and Silviu S. Pufu [24], and with Shai M. Chester and Max Jerdee [25], edited together
to form a coherent narrative. Chapters 2 and 6 are primarily based on [24], but also include material
from the other two papers. Chapter 4 is based on [23], Chapter 5 is based on [25], and Chapter 3

draws on material from all three papers.

1.1 Conformal Fields Theories with N’ = 6 Supersymmetry

We will now discuss in more details the implications of conformal and superconformal symmetry in
three dimensions. First we consider conformal symmetry and its implications for CFTs, and then
extend our discussion to A/ = 6 superconformal symmetry. We then finish by describing the N' = 6

stress tensor multiplet, which is present in any local N = 6 SCFT.

1.1.1 Conformal Symmetry

Conformal field theories are widely studied and their properties are discussed in many places. Here
we will focus on the basics needed for the thesis; more detailed discussions aimed towards the

conformal bootstrap can be found, for instance, in [26,27]. The 3d conformal group is defined as the



group generated by spacetime translations and Lorentz transformations (which together generate

the Poincaré group), along with dilatations

at — At (1.1)

and special conformal transformations

xH + ata?
H— 1.2
v 142z a+a2z2’ (1.2)

parameterized by a scalar A and vector a* respectively. Together these generate all transformations

x — 2’ which preserve the metric 7, = diag{—1,+1, 41} up to a scalar factor:

ox'P dx'° .
M = o g 0o = QD) (1.3)

and which can be continuously connected to the identity map. We will use P,, M,,, D and K, to
denote the (anti-hermitian) infinitesimal generators of translations, Lorentz transformations, dilata-

tions and special conformal transformations respectively, defined by the equations

P,=0,, My =2,0,-12,0,, D=2"9,, K,=19,—2x,(Z 9). (1.4)

Together they satisfy the s0(3,2) commutation relations

[M,ul/a Pp] = np(uP;L) ) [Muw Kp} = ﬁp(qu) ) [M;uu Mpo] = nu(pMJ)u - nu(pMa)u
[D,PH] = *Puv [D,K“} :K/u [Kmpu] :2Muu+277/wD (1'5)
(M, D] =0.

As in any Lorentzian theory, we can label local operators O(Z) in a conformal field theory by their
spin £ =0, % ,1,.... Because the dilatation generator D commutes with the Lorentz generators

M,,,, we can then simultaneously label operators by their conformal dimension A, such that

[D,0(@)] = (A + & 9)O(). (1.6)

In particular, the operator O(0) when placed at the origin is an eigenstate of D with eigenvalue A.

The generators P, and K, act to raise and lower the scaling dimension of an operator by one. A



primary operator O(0) is an operator which is annihilated by K, while operators constructed from

a primary O(0) by acting with P, are called descendants. Note in particular that
1
O(Z) = 0(0) + 2"90,0(0) + 533“33”8”81,(’)(0) +..., (1.7)

so that O(Z) can be written as a sum of O(0) and its descendants.
The conformal group admits three kinds of unitary multiplets. Long multiplets have conformal

dimensions above the unitarity bounds

z (=0
A>{q (=1 (1.8)
4+1 (>1
Short multiplets occur at the bottom of the continuum in (1.8)
3 =0
A=141 (=1 (1.9)
4+1 (>1

and satisfy shortening conditions so that certain descendants of the primary vanish. For scalars, the

shortening condition is P20(0) = 0, implying that the operator satisfies the Klein-Gordon equation

9*0(x) =0, (1.10)

while for integer spin-¢ operators, the shortening condition is P**O,, . ,,(0) = 0, implying that the

symmetric traceless tensor Oy, . ,,(x) is a conserved current:®

810y, (x) = 0. (1.11)

Finally, the trivial multiplet consists of just the identity operator. This is a scalar with A = 0, and

is annihilated by all P*.

8Fermionic operators behave analogously. Short spin-1/2 operators satisfy the massless Dirac equation while
higher-spin fermions are conserved.



Conformal symmetry fixes the two and three points functions of scalar operators to take the form

S S Cap
(0u(71)04(2)) = <5
)
\ . (1.12)
Oa — O — Oc — _ abe 7
(Ou(T1)Op(72)Oc(73)) T2 A A A B TA A, AT,
where Cy, is non-zero only if A, = A;, and where we define z;; = |Z; — &;|. In a unitary theory

we can always redefine our operators such that Cy, = 6§45, and so will always make this choice
of normalization. Similar formulas hold for spinning operators, whose two-point functions we can

always fix to take the form

(/’Ll"'/"fn)(VLNVn)
o ez = oo 22 )

Aatle—2
712 (1.13)

2 2

M1 .V1 Hn . Un
where [H1HnVieVn(g0) = [ §#171 — ZT12%12 Shntn _ TiaTig
,
T12 T2

and where we use A, . ,,) to denote the symmetrization of the tensor A,, ,, . Three-point func-
tions between spinning operators may in general include multiple independent conformal structures,

but for the case of two scalars and a third spinning operator there is a unique structure:

(1/2)f >\abc
22 (B F B A B A=A BB~ Byt

1251 1251 He 14
x x T T
X {( ég’—g?’)...(;z)’—g‘g)—traces}
T T x7- x
13 23 13 23

where the ¢ dependent factors out front are chosen to match with our conventions for conformal

(O (1) 0p(22)OL 1 (15)) =
(1.14)

blocks, to be introduced shortly.
The operator product expansion (OPE) allows us to expand products of operators in terms of

other operators in the theory

O, (f)@b(()) = Z AabcCAc,fe (fv 8y)OC(g) ) (1~15)

=0

where the differential operator Ca, ¢, (Z, 0y) is fully fixed by conformal symmetry, and Aq. are the
coefficients which appear in (1.14). By repeatedly taking OPEs, all higher-point functions can be
fixed from just the OPE coefficients, conformal dimensions, and spins of local operators. If, for

instance, we take the OPE of the first two operators in a four-point function of identical scalars



¢(Z), we find that

(BE)OE)HE)OE) = 5 gn D MsodaotoU.V) (1.16)

L2 T34 Ocpxo

where U and V are the conformal cross-ratios

2 .2 2 .2
_ T3y _ T74%33
U=—5—>, =5 3 > (1.17)
ré.1 ré.x
13%24 13724

and where ga ¢(U, V) are the conformal blocks, normalized such that

SE AU (v o (@ v +0 (UYL )

gA,f(Ua V) =

At various points throughout the thesis we will need to decompose four-point functions into sums
of conformal blocks. The expression (1.18) is the leading term in an expansion about U ~ 0 and
V ~ 1, explicit expressions for which can be found for instance in [28]. As we can see from (1.18),
the expansion organizes around the twist A — ¢ and spin £ of the operators exchanged.

If we work in Euclidean signature, the order of the ¢(z;)s in (1.16) does not matter. We can

hence interchange 1 <+ 3, and so derive the crossing equation

A
U ¢
E Ai(ﬁOgAO,EO (U7 V) = (V) E )‘%@ﬁong,fo (V, U) : (1'19)
Ocpx¢ O€egpxg

This gives an infinite number of constraints on conformal dimensions, spins, and OPE coefficients
which may appear in ¢ x ¢. More general crossing equations can be derived when the operators are
not identical, and not necessarily scalar. Crossing equations are in general quite difficult to analyze,
as the U ~ 0, V ~ 1 expansion cannot be applied to both sides of (1.19) simultaneously. In spite of
this difficulty, they provide one of the most fundamental tools used to study conformal field theories,

both analytically and numerically.

1.1.2 N = 6 Superconformal Symmetry

Before introducing the superconformal algebra, let us first recall the basic properties of spinors in
three dimensions. They transform in a two dimensional representation of the Lorentz group, which,
due to the accidental isomorphism so(3) =~ sp(2), we can think of as an sp(2) fundamental. We

will use indices a, 8, ... to describe such spinors, which we raise and lower with the antisymmetric

10



symbol

€ = —¢€ = —€12 = €21 = 1, (120)

so that for any spinor s we define s, = €,55”, which in turn implies that s* = ¢*?s5. Spinor and

vector representations of s0(3) are related through the 3d gamma matrices:

(Y)ap = (1,04, 0%), (1.21)

which we can use to rewrite the conformal generators as
Papg=(")apPu,  Kap=(1"apKu,  Map =15, 7556" My . (1.22)

The commutator relations (1.5) can then be rewritten as

[Ma67 Pvﬁ] = 5VBPCV5 + 556]307 - (saBP“ﬂ; ) [Dv Paﬁ] = Paﬁ )
[MaﬁzK'y(S] = 5—yﬂKa6 + agﬁKa'y - 5aBK76 ) [D7Ko<,8] = —Rap, (1'23)
(MS M) = —62M° +6.5M7 (K8, Pys] = 46 M) + 46504 D.

To embed the conformal algebra into a large superconformal algebra, we first note that so(3,2) ~
sp(4). The conformal algebra is thus a subalgebra of the osp(AN]4) superalgebra, which has a maximal
bosonic subalgebra sp(4) & so(N)g — this turns out to be the only way to extend the 3d confor-
mal algebra with supersymmetric generators.” The so(N)g subalgebra generate a global SO(N)
symmetry, known as the R-symmetry. We will use indices I,J,... to denote SO(N') vectors. The

s50(N) g generators are antisymmetric tensors Ry which satisfy the commutation relation
[Rrs, Rir) =i (0r(eRicys — 05 Rioyr) - (1.24)

Along with the bosonic sp(4) ®so(N) generators, osp(N|4) also includes 2 fermionic generators

Qo1 and S,; with conformal dimension +% and —% respectively, so that

D, Qa1] = %Qaz, [D, Sar] = —%Saz. (1.25)

The @ and S operators anticommute to generate all of the bosonic operators via the anticommutation

9Unlike supersymmetric extensions of the Poincaré algebra, superconformal algebras are highly constrained. A
complete classification for d > 3 is given in [29,30], and, in particular, superconformal algebras can exist only when
d<6.
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Irrep | Dynkin Label | Common Name Irrep | Dynkin Label | Common Name
1 [000] Trivial 4 [010] Spinor
6 [100] Vector 4 [001] Spinor
20’ [200] Symmetric 10 [020]
15 [011] Adjoint 10 [002]
84 [022] 45 [120]
45 [102]

Table 1.1: Representations of s0(6) used in this thesis. The third column gives common names for
the representations, where they exist. Note that s0(6) ~ su(4), but different conventions are used for
the Dynkin labels. In the su(4) notation, the [ajazas] representation is instead written as [aza;iag).

relations

{Qar,Qps} =2017Pagp, {Sar, S35} = —2015Kap,

(1.26)
{Qar, 585} =2i615 (Map — €apD) —2€03R1 g .
The rest of the commutators in osp(N[4) then follow from sp(4) @ so(N) g invariance:
[Ka/67 QVI] =—1 (dyasﬁl + 67,&50}) ’ [Paﬁa SWI] = —1 ((56362,6’[ + 5ﬁ’YQaI) s
1 1
(M, Q1] = 6./ Qar — 56(5@71 : [MJP,8%] =—6,75" + 550{35% (1.27)
[Rr7,Qak] =1(01kQas — 6k Qar) [R17,58%] =i (61 S% — 65k S%) .

Much like how P* and K* raise and lower conformal dimensions by 1, Q.7 and S, raise and
lower conformal dimensions by % We define a superconformal primary to be a conformal primary
annihilated by S,;. A superconformal multiplet consists of a superconformal primary, a finite
number of other conformal primaries constructed from the superconformal primary using Q,r, and
all of the conformal descendants of these conformal primaries.

Our focus in this thesis is on N' = 6 superconformal symmetry, which as we have already noted
is the next-to-maximal amount of supersymmetry possible for an interacting superconformal field
theory in three dimensions. The R-symmetry group is s0(6), We can label s0(6) irreps by their
Dynkin labels [ajaz2a3], and in Table 1.1 we list the s0(6) irreps which appear in this thesis. Note
that s0(6) ~ su(4), where the spinorial representation 4 of s0(6) is the fundamental representation
of su(4).

Unitary osp(6]|4) multiplets are classified in [13,31]. Each multiplet can be labeled by the confor-
mal dimension A, spin ¢, and s0(6) R-symmetry irrep r = [ajaqas3] of its superconformal primary.

Unitary multiplets of osp(6|4) fall into three possible classes, depending on their conformal dimen-

12



sion. Long multiplets have conformal dimension above the unitarity bound

1
A>€—|—a1+§(a2+a3)+1 (128)

and do not satisfy any shortening conditions. Semishort, or A-type, multiplets occur at the bottom
of the continuum in (1.28)

1
A:€—|—a1—|—§(a2—|—a3)+1 (1.29)

and satisfy shortening conditions. Finally, if /£ = 0 we can also have short, or B-type, multiplets
with dimension

1
A=a;+ 5((12 +as), (1.30)

below the end of the lower continuum in (1.28), also obeying shortening conditions. Note that the
division of A/ = 6 multiplets into long, A-type, and B-type multiplets is analogous to the division
of non-supersymmetric conformal multiplets into long, short and trivial multiplets described in the
previous section. However, while highly constrained by supersymmetry, B-type multiplets still have
non-trivial correlation functions.

Multiplets can furthermore be distinguished by their BPSness, which counts the number of Q%!
operators which annihilate the superconformal primary. For generic representations A-type multi-
plets are 1/12-BPS and B-type multiplets are 1/6-BPS, but for specific R-symmetry representations
the multiplets may be higher BPS. We list all possible multiplets in Table 1.2. When describing
multiplets we will often find it useful to use the notation ’TA[(T;&Q“S] to refer to the supermultiplet of

type T, whose superconformal primary has spin ¢, conformal dimension A, and transforms in the

[a1aza3] under so0(6)R.

1.1.3 The N = 6 Stress Tensor Multiplet

All local quantum field theories contain a stress tensor T#"(Z) which acts as the generator of trans-
lations. In a conformal field theory the stress tensor is traceless and has conformal dimension 3.

Conformal invariance fixes its two-point function to be

(H1p2)(vive)
(T ()T (7)) = (I “ne) traces) |
2 (1.31)
(Eu’lxyl xﬂ2xl’2
where [H1H2v1V2 (3312) _ (5H1V1 _ 12212) (5#2'/2 _ 12212) .
T12 T1o
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Type A Spin || Multiplet | so(6)r | BPS
Long | >Ap+/(+1 4 Long [a1aza3] 0
A Agp+/+1 / (A, 1) [arazas] | 1/12
(A,2) [Oagas] | 1/6
(A, +) [0a20] 1/4
(4,-) | [00as) | 174
(A, cons.) [000] 1/3
(B,1) [arazas3] | 1/6
(B,2) [Oazas]) | 1/3
(B.,+) | [0a0] | 1/2
(B,-) | [00as) | 1/2
Trivial [000] 1

Table 1.2: Multiplets of osp(6|4) and the quantum numbers of their superconformal primary, where
Ap=a; + %(ag + as).

With our choice of normalization, the stress tensor satisfies the Ward identity [32]

i [T [ 0 (T @O - Ouli)) = = SO - DO - Onli) (132
i
for any arbitrary string of operators O;(%;). Note that we have chosen to normalize the stress tensor
using the same conventions used in (1.13) for more general spinning operators, which is not the
canonical stress tensor normalization.!® The value of ¢; depends on the specific CFT in question,
and is a measure of the number of degrees of freedom in the theory. For a free scalar or free Majorana
fermion, ¢y = 1.

In a superconformal field theory, the stress tensor belongs to a larger supermultiplet, known
as the stress tensor multiplet. For an N' = 6 superconformal theory, the stress tensor forms part
of a (B,Q)[f(l)l] multiplet. The superconformal primary for this multiplet is a scalar S%,(Z) with
dimension 1. This operator transforms in the adjoint of s0(6) g, where we use indices a,b=1,... ,4
to denote su(4) ~ so(6) fundamental (lower) and anti-fundamental (upper) indices. There are
then three fermions with dimensions %, Xa» Fo and F,, which transform in the 6, 10, and 10 of
50(6) g respectively. Next we have an additional scalar P%,(Z), along with the R-symmetry current
(JM)*(#,X) and a U(1) flavor current j*(Z), each of which have dimension 2. Completing the

multiplet is the supercurrent ¢**(Z) with dimension g, and finally the stress tensor itself, T+ (Z).

10The canonical stress tensor is defined by

cr
Té;l;lonical(x) = 47"\/;,1—‘““ (:E)

in order to cancel the factors on the left-hand side of (1.32).
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Operator | A | Spin | s0(6)g irrep
S 1 | 0o | 15=o11]
3/2 | 1/2 | 6= [100]
3/2 | 1/2 | 10 =[020]
3/2 | 1/2 | 10=[002]
2 [ o | 15=1011
2 | 1 | 15=]o11]
2 | 1 — [000]
5/2 | 3/2 | 6=[100]
3 | 2 | 1=]000]

NS> S gl mx

Table 1.3: The conformal primary operators in the A’ = 6 stress tensor multiplet. For each such
operator, we list the scaling dimension, spin, and s0(6) representation.

We list all of these operators in Table 1.3.

1.2 Known N = 6 Superconformal Field Theories

The simplest A/ = 6 superconformal field theory, and indeed, the only one for which we can compute
correlators exactly, is free field theory. This theory consists of four free complex scalars ®¢ with

conformal dimension %, and four free complex fermions ¥ with conformal dimension 1, along with

2 b
[010]

0 and

their complex conjugates. These scalars and fermions together transform in the (B, —|—)

(B, _)[10001] supermultiplets, known as hypermultiplets. We compute all correlation functlons via
3

Wick contractions with the two-point functions

0% 0,0 ()Pt
\Ija \I"Bb — I 12 1.
()P = (1.33)

(@°(71) Py (T2)) =

Because the free theory has 8 real scalars and 8 real fermions, it has ¢ = 16, which is the lowest of all
known N = 6 theories. We can also consider a more general free field theory with N hypermultiplets
(®¢, ), which has ¢p = 16N.

Let us now consider interacting theories. All known N = 6 theories are superconformal Chern-
Simons theories [33] with additional massless matter multiplets, and so we will begin with a lightning
review of these theories more generally.

Let us fix a simple Lie group G, and let A, be a gauge field transforming in the adjoint of G.

The Chern-Simons action is then

_ k 2 3

15



where the Chern-Simons level & is quantized to ensure invariance under large gauge transformations.
Note that the Chern-Simons action is independent of the metric, and so the theory is topological.
To construct a dynamical N' = 2 superconformal theory, we couple the gauge field to complex
scalars ¢; and complex fermions 1; transforming in a (generally reducible) representation r of the
gauge group G. Supersymmetry requires that both ¢ and 1 transform in the same representation

of G. Suppressing the r indices, we can write the A/ = 2 superconformal Lagrangian [34-36]

3 7 7 1672 = 02 b7 a b
s = Sos + [ @ (D60 0 + 109Dy - - (Grtoarto) Grito)

AT~ T 8m
- ?(qur d))(wTr w) - ?

(1.35)
wrm)(ww)) 7

where 72 are the generators of G acting on the representation r, with adjoint index a, and where
Dt = 9 + 72 A# is the usual covariant derivative. Due to the integrality of k, it was argued in [36]
that the Lagrangian (1.35) cannot be renormalized except for a possible one-loop shift of k, and so
superconformal invariance is maintained in the full quantum theory.

More general N' = 2 Chern-Simons matter theories can be constructed for any semisimple gauge
group (G1)g, X -+ X (Gp)g, , where each G; is a simple Lie group (or U(1)) with Chern-Simon level
k;. Once again the matter content consists of complex scalars and fermions transforming in some
general representation of the gauge group. N = 2 theories also allow for superpotential terms built
from the hypermultiplets, although these interactions preserve superconformal invariance if and only
if they are both classically marginal and do not break any flavor symmetries [37,38].

We can construct general N' = 3 Chern-Simons matter theories as a special case of N’ = 2
theories [39-41]. We must simply pair the matter fields ¢; and ; transforming in r with fields
q~5i and 1/?z transforming in . The Lagrangian is then the same as the A/ = 2 Lagrangian (1.35)
(including terms for the ¢~) and 1[1 fields), but with an additional interaction which can be compactly
written in superspace as a superpotential

47

- (BT (PTD) . (1.36)

WN:3—coupling =

Constructing theories with N' > 4 is more challenging and is possible only for very specific gauge
groups, Chern-Simons levels, and matter representations. Theories with manifest N' = 6 symmetry
were first constructed in [16,17], following previous work on A/ = 8 theories [42-44]. The most

general such N/ = 6 theories were classified in [19], up to discrete quotients that do not affect
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correlators of stress tensor multiplet operators.!! In A" = 3 SUSY notation, they are Chern-Simons-
matter theories with two matter hypermultiplets. There are two possible families of gauge groups

and representations:12

1 1 1
L ab — _
SUN)i x SUN + M) x UM, K%y = 7 (M " N) , (1.37)

for N, M > 1 where the hypermultiplets are in the bifundamental'® of SU(M) x SU(N), and

1

— 1.38
g (1.3

USp(2+2M), x U1k | K®qoq = —

for M > 0 where the hypermultiplets are in the fundamental of USp(2 + 2M). In both cases, the
hypermultiplets have equal and opposite charges ¢; for ¢ = 1,..., L under the U(1)’s. The matrix
K9 is the inverse of the matrix K,j, of Chern-Simons levels for the L U(1) gauge groups, and must
satisfy the relations given in (1.37) and (1.38).

As we show in Section 3.4, the S3 partition function for both families of theories is independent of
L, as long as the conditions in (1.37) and (1.38) are obeyed, up to an overall normalization constant.
This leads us to conjecture that all these theories have the same stress tensor multiplet correlators,

so for this sector we only need consider two families of theories. One is the ABJ(M) family'?

ABJ family:  U(N)p x U(N + M) _p, (1.39)

with M < |k| [16,17], which is the special case of (1.37) where L = 2 with ¢; = ¢2 = 1 and
K11 = kN, Kos = —k(N + M), and K13 = 0. The other family is what we will dub the “OSp”

family,

OSp family:  SO(2)a x USp(2 4 2M)_}, , (1.40)

with M +1 < |k| [17,18], is the L = 1, ¢ = 1 case of (1.38). Sending k — —k gives a parity-conjugate
theory, so without loss of generality we can focus on k& > 0.

Various Seiberg dualities are believed to relate N' = 2 superconformal matter theories to each

M See [45] for a conjectured classification that takes into account discrete quotients.

12The case SU(N)j, x SU(N)_;, describes the BLG theories [43,44,46].

13Note that when N = 1 in (1.37), the hypermultiplets are just in the fundamental of SU(1+ M) with appropriate
charges under the U(1)’s.

14The special case of ABJ with M = 0 is known as ABJM theory. When N = 1, M = 0, the ABJM theory describes
free field theory, when M = 0 and N > 1, ABJM flows to the product of a free SCFT and a strongly-coupled SCFT,
while for all other parameters ABJM theory has a unique stress tensor.
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other [47-50]. These strong-weak dualities exchange regions of strong and weak Chern-Simons
coupling, and are analogous to Seiberg duality in A" =1 4d theories [51]. Although conjectural, the
proposed dualities have been extensively tested using supersymmetric localization [52-55]. When
applied to A/ = 6 theories, Seiberg duality imposes the equivalences

UN)gxUN+M)_, +— UMDN)_pxUN+|kl—M)y,

(1.41)
SO(2)ar x USP(2 +2M)_j,  +—  SO(2)_ox x USp(2(|k| — M — 1) +2).

The k = 2M ABJ theories are self-dual, with the duality transformation acting as a parity symmetry.
The OSp theories with &k = 2M + 1 are likewise self-dual and parity preserving.

Both families of N' = 6 theories become tractable in the semiclassical regime, where k& — oo
while M and N are held fixed. In this limit, the gauge couplings become weak and both families
approach free field theory, with N(N + M) free hypermultiplets for the ABJ family and 2M + 2 free

hypermultiplets for the OSp family. In particular,

ABJ Family : ¢y = 16N(N + M) + O(k™?),
(1.42)

OSp Family : ¢y = 16(2M +2) + O(k™?),

so that ¢y becomes large as we take either M or N to infinity.

We close this section by noting that certain A’ = 6 theories have enhanced N' = 8 supersymmetry.
These include free field theory itself, as the A" = 6 hypermultiplet is identical in field content with an
N = 8 hypermultiplet: they both consist of eight real scalars and eight Majorana fermions. Apart

from free field theory, we also have (up to Seiberg duality) the interacting families

BLG:  SU(2)x x SU(2)_y
ABIM:  U(N); x U(N)_y and U(N)g x U(N)_» (1.43)

ABJ: U(N)Q X U(N+ ].)_2

each of which are special cases of the ABJ family (1.37). Of these theories, the BLG family, intro-
duced in [42,44], are manifestly invariant under N' = 8 for any integer Chern-Simons level k&, while

for the other families, supersymmetry is enhanced from A" = 6 to A/ = 8 due to monopole operators.
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1.3 ABJ Triality

We now review the conjectured ABJ triality relating the large M and large N limits of U(N)j x
U(N 4+ M)_, ABJ theory to quantum gravity on AdS,. We will begin with a quick review of

AdS/CFT duality, and will then describe the various holographic regimes of ABJ theory.

1.3.1 The AdS/CFT Duality

AdS/CFT duality refers to a number of interconnected dualities between theories of quantum gravity
in Anti-de Sitter space (AdS) and conformal field theories living on the boundary of AdS. The first
proposed AdS/CFT duality was between N/ = 4 super-Yang Mills in 4d and IIB string theory on
AdSs [20,56,57]. Many more examples are now known, and are reviewed for instance in [58, 59].
Reviews of AdS/CFT focusing on more general aspects of the duality, rather than on specific stringy
instantiations, can be found in [60-62].

We can describe AdS, with radius L as a hyperboloid in R%2, that is, as the set of five-dimensional

vectors X4 which satisfy the condition
napXAXE = —L?, where nap = diag{-1,1,1,1, -1} . (1.44)

The n4p bilinear is preserved by the group SO(3,2), and so the induced metric on (1.44) is auto-
matically invariant under SO(3,2) isometries. AdS, is commonly parametrized with the Poincaré

patch coordinates

1_—*2_ 2 1 =2 2
XI(:ﬁz):(f, 332 z ’ -1—5132—1—2>7
z

where # is a 3-vector and z > 0 is the radial coordinate which vanishes at the boundary of AdS,.

(1.45)

As we take z — 0 we limit to a null vector

1—722 1442
Pl =limzzX'= (7 ) 1.4
(%) = lim 2 (x 2 ' 2 (1.46)

The space of vectors P! () is isometric to R*!. Note however that the flat metric is an artifact of

our choice of coordinates (1.45). If we were to redefine the radial coordinate
z = Q)2 (1.47)

for some scalar function Q(Z), then we would instead limit to a null vector Q(#)P!(F). Under this
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shift, the boundary metric undergoes a Weyl transformation. In particular, the SO(3,2) isometries
induce conformal transformations on the boundary, as they relate the boundary metric to itself only
up to Weyl transformations.

The AdS/CFT dictionary relates theories of quantum gravity on AdS with conformal field theories
on the boundary of AdS, and, more precisely, states that the two theories have equal partition
function. To compute the bulk path-integral we must specify boundary conditions for the fields, so

that ¢(Z, z) = Pbound (Z) as we take z — 0. We then define

ZndsBround] = / Déb exp (iSas[d]) | (1.48)

Pbound

so that the partition function is a functional of these boundary field configurations. On the CFT

side, we define the partition function as

Zewrlnomal = [ Dxexp (z’scm =i / i ¢bound(f)0(a:~*>) , (1.49)

where O(Z) is some operator on the boundary and ¢nound(Z) acts a source for the operator. The

AdS/CFT duality then states that these two partition functions are equal:

Zadas|Pbound] = ZcrT[Pbound] - (1.50)

In particular, we can compute local correlation functions on the boundary by taking functional
derivatives of the partition function.

When the bulk theory is free, the boundary is described by generalized free field theory. The
spin and mass of the bulk fields determining the spin and conformal dimension of their boundary
duals. For example, a scalar field ¢(Z, z) of mass M in the bulk is dual to a scalar operator O(Z)

on the boundary, with conformal dimension A satisfying
M?L? = A(A-3). (1.51)

We can identify the Hilbert space of single particles states in the bulk with “single-trace” states!'®
O(Z) |0) on the boundary, while n-particle states are dual to “n-trace” states O(#1) ... O(Z,) |0).

Higher-spin fields work in much the same way, with spin ¢ bulk particles dual to spin ¢ boundary

15The terminology “single-trace” and “multi-trace” originates from the Lagrangian description of boundary CFTs
with matrix-like large N limits, where it refers to the number of traces needed to define the operators. But since the
bulk dual of n-trace operators are n-particle states, it has become standard to refer to n-particle states as “n-trace”
even in theories without matrix-like large N limits.
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operators. In particular, a massless spin-¢ particle, the boundary dual is a conserved current with
¢ and conformal dimension A = ¢ + 1. The bulk N/ = 6 supergraviton multiplet is dual to the
N = 6 stress tensor multiplet in the boundary, where the gravitons themselves are dual to the stress
tensors.

Bulk gravitational theories are tractable in the semiclassical limit, where the bulk Newton con-
stant G is much smaller than the squared radius of AdS L2. In this regime, we can use Witten dia-
grams (which are essentially Feynman diagrams in AdS, supplemented by a special ‘bulk-boundary’
propagator) to systematically compute boundary correlators in an G /L? expansion. In particular,

in the semiclassical regime cr is given by [63]

3212
B 87TGN

er +0(1)>1. (1.52)

We thus see that the known N = 6 theories can be dual to semiclassical gravity only if at least one

of M or N is large, so that the boundary theories contain a large number of fields.

1.3.2 Holographic Regimes of ABJ Theory

So far our discussion of AdS/CFT has been general. The most well understood examples of AdS/CFT

duality, however, fall into one of two specific categories:

1. Stringy duals: In these examples, the bulk theory is either a string theory on AdSy x Mig_g4
or M-theory on AdS; x Mi1_4, where in either case Mp is a compact manifold. In the
semiclassical regime only the massless string modes survive, and so the bulk is described by
supergravity in either 10d or 11d, along with higher derivative corrections. The boundary
theory is a supersymmetric gauge theory with a matrix-like large N limit, and all single trace
operators have spin < 2. The prototypical example is N' = 4 super-Yang-Mills in 4d, which is
dual to IIB string theory on AdSs x S® [20].

2. Higher-spin duals: In these examples, the bulk theory has an infinite number of higher-spin
massless particles. The boundary theory is a Chern-Simons matter theory with a vector-like
large N limit and an infinite number of higher-spin single trace operators. The prototypical
example is the singlet sector of the O(/N) model in 3d, which has a massless higher-spin current

for each even spin ¢ [64].

The U(N)i x U(N + M)_;, ABJ theories are particularly interesting because they exhibit both

kinds of holographic duals. When N is large, the theories have a matrix-like large N limit and
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stringy duals, while when M is large they have a vector-like large M limit and are dual to higher-
spin gravity. This is known as ABJ triality [21], as the large N limit itself exhibits distinct ITA and
M-theory limits.

Let us begin with the large N limit, where we hold M finite. In this limit, the U(N); x U(N +
M)_j, ABJ theories can be interpreted as effective theories on N coincident M2-branes placed at
a C*/Zj, singularity in the transverse directions, together with a discrete flux due to M fractional
M2-branes localized at the singularity. We will begin with the N >> k® regime, which is dual to
weakly coupled M-theory on AdSy x S7/Zj. At low energies, M-theory can be described by 11d
supergravity

_ 1
167549,

/dllx\/ -G (R . ;|F42> ! /A3 A Fy A\ Fy + fermions (1.53)
1

1927509

where R is the Einstein-Hilbert term for the 11d metric G, Az is a 3-form with field strength
Fy = dAs, and fq; is the 11d Planck length. Eleven dimensional supergravity has an AdSy x S7/Z;,

solution:

ds? = H™*daydat + B (dr® + r2dse )

Fy=dH ' ANda® A dat A da?, (1.54)
6
with H = (QLG) .
T

The boundary quantities ¢y and k are related to the AdS radius L and the 11d Planck length #1;
via the AdS/CFT relation [16,65]

Lo 3k

- = ——Cr+..., (1.55)
o

where the additional terms are subleading at large c¢p. When k = 1,2 and M = 0, or £k = 2 and
M = 1, the theories have enhanced A/ = 8 supersymmetry.

Next we consider the strong coupling 't Hooft limit of ABJ theory. Let us define the 't Hooft
parameter

A= — — — — where N=N+—"——-"—1. (1.56)

Taking N to infinity while holding A fixed, and then taking A — oo, we find that ABJ theory is dual
to weakly coupled type ITA string theory on AdS; x CP? [16]. Unlike M-theory, ITA string theory

has a dimensionless parameter, the string coupling g;. When g; < 1 the theory becomes weakly
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coupled and can be studied using string perturbation theory. The leading order AdS/CFT relations
are [16,65]
L# o 5122

= 4rt\2 4 = 1.57
eg ’lT + ) gs 3CT + b ( )

where both the string length scale ¢, /L and the string coupling g, are small in this double expansion.
The ellipses in (1.57) stand for terms that are suppressed at large ¢ in both expressions.

To interpolate between the M-theory and ITA regimes, we studythe large N limit with

=l =

, (1.58)

=
Il

held fixed. Like the 't Hooft strong coupling limit, ABJ theory in this limit is dual to type ITA
string theory on AdSy x CP?, except now the string coupling g, is finite. The AdS /CFT relations
are [16,65]

L8 Berm®/n

with corrections suppressed at large cp. We can recover both the finite k and strong coupling ’t Hooft
limit expansions from the finite p expansion by taking the y — oo and p — 0 limits respectively, as
we explain at the end of Section 3.2.3.

The final regime we can study at large N is the weak 't Hooft coupling limit where A < 1. In
this regime, the boundary theory can be computed using a standard perturbative expansion, but
the bulk theory is strongly coupled. To summarize, we have the following four distinct regimes at

large N and finite M:
M-theory: k finite |
ITA at Finite String Coupling: @ = — finite,
ITA at Weak String Coupling: A>1,

Semiclassical Boundary: AL,

We will further study the large N limit in Chapter 4.
Let us now turn to the large M limit of U(N) x U(N + M)_; ABJ theory, with N held finite.

Because the ABJ theories are only defined for k£ > M, as we take M — oo we must simultaneously
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take kK — oo as well, and so introduce the parameter

M
)\HS:?

€0,1]. (1.60)
Seiberg duality relates Ags <> 1 — Ags. In particular, when Agg = % the theory is parity preserving,
while A = 0 describes the free field theory. The bulk dual of ABJ theory in this limit is an N' = 6
higher-spin theory, where Ags is dual to the bulk parity-breaking parameter.

We can also study the large M limit of the SO(2)ar x USp(2+ 2M)_j, OSp theories. This time,

the natural definition of A\gg is
M+1/2

el (1.61)

AHS =

so that again Seiberg duality maps Apgs <> 1 —Aps. In [18,66] it was argued that the OSp theories are
related to the same A = 6 theory of higher-spin gravity as the ABJ theories, but with an additional
orientifold present. We will study all of these higher-spin theories further in Chapter 5.

For both the ABJ and OSp theories, we can smoothly take Agg — 0, which corresponds to taking
the semiclassical limit £ — co. As a result, we can derive the semiclassical expansion from the large
M limit. This should be contrasted with the large N limit, in which the SUGRA regime and the

semiclassical regime do not overlap.
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Chapter 2

The (5SSS) Superconformal Block

Expansion

In this chapter we derive the superconformal block expansion for the (SSSS) four-point correla-
tor. We begin in Section 2.1 by deriving the constraints on (SS5SS) imposed by superconformal
invariance. Supersymmetry also also relates (SS5SS) to four-point functions of other stress tensor
multiplet operators, including both (SSPP) and (PPPP). In Section 2.2 we restrict the supermul-
tiplets which can appear in the S x S OPE, and hence exchanged in {(SS5S55), to a small number of
possibilities. We then derive the superconformal Casimir equation in Section 2.3, and use it to fix
all superconformal blocks which may contribute to (SSSS). We close with a discussion of free field

theory.

2.1 Superconformal Ward Identities

2.1.1 Conformal and R-symmetry Invariance

Our primary focus in thesis is the four-point functions of scalar operators in the stress tensor multi-
plet, and in particular, the four-point function (SSSS). To impose superconformal invariance on a
correlator such as (SSS5S), it is sufficient to impose conformal invariance, R-symmetry invariance,
and invariance under the Poincaré supercharge ),s; invariance under S,; then follows automat-
ically from the commutator relations (1.27). Conformal invariance is straightforward to impose.
Embedding space formalisms such as [67,68] provide a straightforward tool to construct all possible

conformally covariant structures which can contribute to a given four-point function.
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To describe s0(6) ~ su(4) representations, we use the vector I,J,... and spinorial a,b,...
indices, as we did in the Introduction. The vector and spinor representations are related by the
. —Tab . . . — .
gamma matrices C, and C *” which convert antisymmetric tensors of the 4 and 4 into the 6. A

convenient basis for these matrices is:

0 o1 0 —o3 oo 0
C] = 5 C12 - 3 03 — )
—o1 O o3 O 0 iog
(2.1)
0 o9 0 I —iogg 0
Cy=—1 , Cy=—i , Ce = —1 ,
1o 0 —I, 0 0 1092

where o; are the Pauli matrices. We can now introduce index-free notation for the stress tensor
multiplet operators:

Sz, X)=X,'8,%z), F(ZY) =Y®Fu(1),
(2.2)

X(Z, Z) = Zx1(3), P(Z,X) = X,"P,(Z).

with analogous notation for other operators in the multiplet. To implement tracelessness of S, we
impose the condition X,* = 0, and similarly we impose that the matrix Y ?" is symmetric. We can

alternatively think of the matrix X,” as an antisymmetric tensor X7 via the mapping

(2.3)
Similarly, the Z can also be written as antisymmetric tensors Z,, = CI,Z; and ?ab = C’l;bZI .
Imposing R-symmetry invariance now consists of finding all linearly independent ways to constraint
the polarization tensors X, Y and Z in a four-point function.

Let us now write scalar correlators in terms of manifestly conformal and s0(6) g invariant struc-

tures. We begin by normalizing the S(#, X) and P(Z, X) two-point functions:

. N tr(X; X . . tr(X; X
<S(1‘1,X1)S($2,X2)> = (+2), <P($17X1)P({L‘2,X2)> = # (24)
g T12
We then use conformal and R-symmetry invariance to expand:
1
(S(1, X1)S (&2, X2)S(¥s, X3)S(£4, Xa)) = ——5 Y _S'(U,V)B; (2.5)

L12%34 15
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where we define the R-symmetry structures

By = tr(X; X5) tr(Xs5X,) ,
By = tr(X; X3) tr(X2Xy),
B3 = tr(X1Xy) tr(X2X3),
By = tr(X1 X4 X2 X3) + tr( X3 Xo X4 X1),
Bs = tr(X1 X2 X35Xy) + tr( X, X3 X, X1),

BG = tI‘(XlX3X4X2) + tI‘(XQX4X3X1) s

and where S are functions of the conformally-invariant cross-ratios (1.17). We can similarly write

6
. . . . 1 ;
(S(F1, X1) (2, Xo) P(iis, X3) P(iia, Xa)) = ——¢- > RUU,V)B;,
12434
1 . (2.7)
(P(%1, X1) P (I3, X2) P73, X3) P(Z4, X4)) = szi(U’ V)B;,
12434 ;54

for (SSPP) and (PPPP). The functions S, R* and P! are not independent. By interchanging

14> 2 and 1 < 3, we can derive the crossing relations:

1 1 1 2 (LY 3
s, v)=:s* (U,l) , S(U,Vv)=USs* (1,V> . SS(U, V) =
Vv U'u
3 2 (U 1 6 s (U 1
PHU, V) ="P! (U,1> . PHU,V)=U?P! (1,V) , PHUV) =
Vv U'u
PYU, V) =P* (U,1> . PYUV)=UP? (1,V> , PYUV) =
Vv U'u

In particular, these relations imply that (SSSS) can be uniquely specified by S'(U, V) and S*(U, V),
(PPPP) by PY(U,V) and P*(U,V), and (SSPP) by R'(U,V), R*(U,V), R*(U,V), and R>(U, V).

2.1.2 Discrete Symmetries

Before enforcing Q-invariance, let us first discuss discrete symmetries in ' = 6 theories. The stress

tensor multiplet forms a representation not only of the superconformal group O.Sp(6]4), but also of a

larger supergroup which includes two Z, transformations: a parity transformation P and a discrete

R-symmetry transformation Z. Individually P and Z may or may not be symmetries of a given
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N = 6 theory, though as we shall see they are symmetries of free field theory.

Let us begin with parity P, which maps z# — —z* and so extends the SO(3,2) conformal group
to O(3,2). Under parity the R-symmetry current J* and stress tensor T*” must transforms as a
vector and a tensor rather than a pseudovector or a pseudotensor. This then fixes S to transform
as a scalar and P to transform as a pseudoscalar. As a result, the correlators (SSSP) and (PPPS)
violate parity and so must vanish in parity preserving theories.

Now we turn to the discrete R-symmetry Z. This symmetry does not commute with the SO(6) g
R-symmetry, but instead extends it from SO(6)g to O(6)g. Let us define the Z generator so that

it corresponds to the O(6) matrix

2! = diag{-1,-1,-1,1,1,1} (2.9)

that is not part of SO(6). The group O(6) has two 6-dimensional representations: the vector
representation 6 under which a vector v! transforms as v! — Z7v/ and the pseudovector rep-
resentation under which v/ — —Z1/47. By convention, we take the supercharges to transform as
the 6%.1 The representations of O(6) appearing in the stress tensor multiplet are all antisymmetric
products of the 61, because we can start with the stress-energy tensor, which is a singlet, and obtain
all other operators by acting with anti-symmetric products of the superconformal generators. Thus:
the rank-0 tensor is the singlet 1+ that is invariant under Z; the rank-1 anti-symmetric tensor is the
61 the rank-2 anti-symmetric tensor is the adjoint representation 15" ; the rank-3 anti-symmetric
tensor, the 20 is irreducible under O(6) but would have been reducible to 10 + 10 under SO(6);
the rank-4 anti-symmetric tensor is the 15~ and can also be represented as a rank-2 anti-symmetric
tensor with the same SO(6) transformation properties as the 15" except for an additional minus sign
under Z; the rank-5 anti-symmetric tensor is the 6~ and can also be represented as a pseudovector;
and lastly, the rank-6 anti-symmetric tensor 1~ is invariant under SO(6) but it gets multiplied by
(—1) under Z. See Table 2.1 for a list of conformal primaries of the stress tensor multiplet and
the O(6) representations under which they transform. In particular, note that the superconformal
primary S is an O(6) antisymmetric rank-2 pseudotensor. It is not hard to check that (SSSS),

(SSPP), and (PPPP) always preserve Z, even if this is not a symmetry of the full theory.

I'We could have considered the supercharges to transform as a pseudovector, but this choice is related to the first
choice by an SO(6) rotation.
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Operators | THY | @ | JH Fe S, P | x“ | j*
O(6) 1t | 6t | 15* 20 15~ | 6 | 1~
SO(6) 1 6 15 | 10+10 | 15 | 6 | 1

Table 2.1: O(6) and SO(6) assignments for operators in the stress tensor multiplet.

2.1.3 The ) Variations

We now use the @Q-supercharge variations to complete our derivation the superconformal Ward
identities on (SSSS). To impose @, invariance, we need to know the action of the Poincaré
supercharges (), ; on the operators in the stress tensor multiplet. Using index-free notation, we find

1
T4

50‘(Z)F’B(f, Y)= %GO‘BP(iY E) +’YﬁBJ”(f,Zl '52 -7 ?1)

5(2)8(Z, X) [F“(a‘:’,X )+ F &7 X)] + ix"(f, X.2),

—SS@Y - Z)
B} 1 asnie y 5 = o
5Q(Zl)Xﬁ($7Z2) = 5¢ ﬂP(LZl Lo—Z2-Z1)+ 20 2o Z’YMB]”(l’) ) (2.10)

+ éfyz‘ﬁ(?“S(f, Z, '?2 -7, 'EO,

O 2)P(E X) = ¢ (VPO Fs(E X - 2) + 7 0 Fa(3. 2 X))

- %a—gﬁa“xﬁ(f,f( -7,

etc.

Here, §%(Z) represents the action of Z;Q®! on the various operators, and v, are the 3d gamma
matrices. We have omitted the supersymmetric variations of J, j, %, and T as they are not needed
in this thesis. Superconformal Ward identities then follow by imposing that the @ variations of

four-point correlators vanish. To derive the Ward identities on (5555}, we require that
0(SSSx) =0, 0(SSSF)=0. (2.11)

When we expand these expressions, we will find equations relating (S.55S) to various two-scalar,
two-fermion correlators. We have already seen how to expand (5S5SS) as a sum of conformal and
R-symmetry structures. We can similarly expand two-scalar, two-fermion correlators; explicit ex-
pressions are given in Appendix A. Note that we only include conformal and R-symmetry structures
which preserve both spacetime parity P and the discrete R-symmetry transformation Z. This is

because (SSSS) itself always preserves both discrete symmetries, and so the superconformal Ward
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Variation Correlators Used Correlators Obtained

5(SSSx) | (SSSS) (SSxx) (SSxF) (SS5Sj)
§(SSSF) | (§55S) (SSFF) (SSxF) (SSFF) (SSSJ)
5(SSPyx) | (SSxx) (SSxF) (SSPP) | (SPxx) (SPxF) (SSPP) (SSPj)
S(PPSX) | (SPxx) (SPXF) (PPxx) (PPxF) (PPSj)
0(PPPyx) | (PPxx) (PPxF) (PPPP) (PPPj

Table 2.2: Taking supersymmetric variations to compute correlators. By setting the variation in the
first column to zero, we can use the correlators in the second column to compute the correlators in
the third column. For each correlator we only compute the P and Z invariant structures. In the
table we have not included correlators involving F which are related to those with F by Hermitian
conjugation.

identities can only relate (S55S) to structures in other correlators which also preserve these discrete
symmetries. Indeed, all 4-point superconformal invariants (i.e. invariants under OSp(6]4)) can be
classified as even or odd under P and Z, as explained for instance in Appendix B of [23].

After expanding these expressions and then writing all correlators in a manifestly conformally

invariant and R-symmetry preserving form, we derive the equations

oSS (U, V) = % — (U0 + U*VOy)S* + (1 =V + UV = 1)0y + UV )S?

+(1-U-V-U1-2U+U?-V)oy +U(1-U)Viy)S*
+(2-U -2V +2U(U+V —1)0y +2UVy)S*

—~U(1+2U(U - 1)9y +2UVay)S® + US®| , (2.12)
0y SS(U, V) = % UUy + (V= 1)9)S" + (1 — Udy — Udy ) S
+ (1 +UU - 1)dy +UVOy)S® + (2 — 2U0y)S*

+ (2U20y + 22UV oy )S? | .

The equations (2.11) also give a number of relations between (S5S5S) and various two scalar, two
fermion correlators. We list these identities in Appendix A.

To derive Ward identities relating (SSPP) to (SSSS), we need to consider a further variation,
5(SSPx). Using the results of (2.11) and the variation §(SSPY), we can fully determine (SSPP),
along with (SPxx), (SPxF) and (SPxF), in terms of (SSSS). The resulting expressions for
RYU,V) in terms of S{(U,V) can be found in Appendix A. We can then furthermore compute
(PPPP) using the additional variations (PPSx) and (PPPy). The variations we consider and

correlators we can compute from these are listed in Table 2.2.
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2.1.4 Parity Odd Superconformal Ward Identity

Now let us turn to the parity odd four-point function (SSSP). While this correlator will play no
further role in this chapter, it will become important in Chapter 5, where we use it to study the
N = 6 theories with weakly broken higher-spin symmetry.

Conformal and R-symmetry invariance together imply that

(S(#1, X1)S(Z2, X2)S (X3, X3)P (%4, X4)) = 27” (U, V)B;, (2.13)
x12x34x14
where the B; are defined as in (2.6), and where T%(U, V) are functions of the cross-ratios (1.17).

Crossing under 1 <+ 3 and 2 « 3 relates the different 7(U, V):

1
TV =P (G ) TV = ST,

L v (2.14)

5 3/244
T (U, V)=U"T (U i

U
5)e Ty = ST,

so that (SSSP) is uniquely specified by 71(U,V) and T*(U,V). By demanding that the Qs
supersymmetry charge annihilates (SSSF) and (SSSx), but this time expanding the correlators
two-scalar, two-fermion correlators using parity violating rather than parity preserving conformal

structures, we derive the superconformal Ward identities

T5(U,V) = 21U (-UTHUV)+ T2(U, V) + (1 - U)T*U, V) +2T*(U,V)) ,
h (2.15)
TS5U, V) = 517 (-UT'UV)+(V-U)T*U,V)+VT*U, V) +2VT U, V)) .

2.2 The OPE Expansion

Just all conformally invariant four-point functions, we can expand (SSSS) as a sum of conformal
blocks. Because the S transforms in the 15 of s0(6) g, any operator which appears in the S x S OPE

must belong to an irreducible representation in the tensor product

15215 =1,0 15, ® 15, ® 20', @ (45, © 45,) © 84, . (2.16)

When studying the s-channel OPE, the most convenient basis for the R-symmetry structures is one

in which each irreducible representation contributes to a single R-symmetry structure. This leads
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us to define the functions S, (U, V) via the equation

S'B:<315 Sis5, Sis, S20,  Syus.433, 8845)’

1 0 0 0 0 0
i .1 1 1 1 1
15 8 6 24 8 16
i1 1 1 1 1 (2.17)

B= 15 8 6 24 8 16
1 1 1 1
“3% 0 -5 -1z 0 3§

1 1 1
111 9 0 o0

1 1 1
2 2 3z 0 0 0

These are defined such that in the s-channel each function &, receives contributions only from

operators transforming in the r, and so can be expanded as a sum of conformal blocks

S:(U,V) = > anergac(U, V), (2.18)
conformal primaries Oa ¢,r
where the sum is taken over all the distinct conformal primary operators Oa ¢, which transform
in the representation r and which appear in the S x S OPE. As usual, A and ¢ are the scaling
dimension and spin, respectively, of Oa ¢,. The operator P also transforms in the 15, and so we
can similarly decompose both (SSPP) and (PPPP) into conformal blocks.

Each supermultiplet contains operators with various spins, conformal dimensions and so0(6)g
representations. Superconformal symmetry imposes various linear relations on the coefficients aa ¢,r
for operators in a given supermultiplet. We can thus reorganize the conformal block expansion of
(SSSS) into a superconformal block expansion, where all operators belonging to a given super-
multiplet are grouped together and the superconformal Ward identities are automatically satisfied
superblock by superblock. Our ultimate task in this chapter will be to derive these superblocks for
(SSSS).

Our task in the rest of this section will be to constrain the supermultiplets which may appear in
the S x S OPE. Recall that the full list of unitary supermuliplets of osp(6/4) is given in Table 1.2.
However, not just any operator can appear in S X .S, as there are various selection rules at play. As
we have already seen, any operator exchanged must transform one of the representations appearing
in (2.16). Due to 1 <> 2 crossing symmetry, even spin operators must be in the 1, 15, 20’, or 84
while odd spin operators must be in the 15, 45, or 45. A large number of supermultiplets contain

operators in at least one of these representations, so by themselves these conditions are not very
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restrictive.

We can do better by using the fact that S(#, X) is a 1/3-BPS operator, and as such is annihilated
by certain Poincaré supercharges. If Q is a Poincaré supercharge annihilating S(Z, X) (for any & but
a specific X), then it also annihilates S(#, X)S(7, X). We will explore the consequences of this fact
in the next section, and use it to show that any operator in the 20", 45®45 or 84 can only belong to
one of a limited number of supermultiplets. In Section 2.2.2 we then use the superconformal Ward

identities to constrain superblocks in which only operators in the 1 and 15 are exchanged.

2.2.1 Operators in the S x S OPE

Let us begin by writing the generators of 0sp(6[4) in terms of the s0(6) and sp(4) Cartan subalgebras.
The Lie algebra s0(6) has a three dimensional Cartan subalgebra, spanned by orthogonal operators?

H,, Hs, and Hj3. The other twelve R-symmetry generators take the form:

Rii1 410, Ri10+1, Ro+1+1, Riisi0, Rii1o071, Ro+1,71,

where for each R the subscripts are correlated and label the weights of each of these generators

under the Cartan subalgebra:

[Hy, Ry, ryra) = TRy rgra » fori=1,2.3. (2.19)

We take the simple roots of s6(6) to be the raising operators

R+ = {Rl;*l,o ’ RO,I,I 7R0,1,71} s

while their corresponding lowering operators are

R™={R_11,0,Ro,-1,-1,Ro,-11} -

A highest weight state is one that is annihilated by each element of R*; the highest weight state of

the 15 is then R1)170.

2For instance, in the 6 irrep of 50(6) g, we can represent the Cartan generators by the matrices

o9 0 0
Hy = 0 s Hy = a2 s Hs = 0 s
0 0 [op)

where o9 is the second Pauli matrix.

33



We perform a similar procedure with the conformal group sp(4). We can take one Cartan element
to be the dilatation operator D and the other to be the rotation operator J°. The other two rotation
operators are the raising and lowering operators J*. The H;, D, and J° span a Cartan subalgebra
of 0sp(6]4).

We can now write the 0sp(6]|4) supercharges in terms of their charges under this subalgebra. The

(s and Ss can be written as

+ + + + + +
Qil,0,0ﬂ QO,il,Oﬂ Q0,0,ilﬂ and Si1,0707 So,ﬂ,Oa SO7O,i17

respectively, where the superscript is the J° charge and the subscripts are the H; charges. (The sign
in the superscript is uncorrelated with the signs in the subscripts.) Note that the @s have scaling
dimension +1/2 and the Ss have scaling dimension —1/2, so their charges under dilatation operator
are also manifest in this notation.

Given an irreducible representation of 0sp(6]4), the highest weight state |A, ¢, r) is one which is

annihilated by the raising operators of 0sp(6]4):
KAL) = ST, A L) =TT A r) = RY A £,r) =0, (2.20)
where Rt € R, and is an eigenstate of each of the Cartans:
Hi|A L ry =1 |A4Tr) D|ALr)y=A|A L), JOA ) =20 A, 0,7 . (2.21)

Here A and ¢ are the conformal dimension and spin of the superconformal primary, and the r =
(r1,72,73)’s are the highest weight states of the R-symmetry representation of the superconformal

primary. These weights are related to the Dynkin label [a;aza3] by the equation

_|_ —
r1=a1+a22a3a Tz:w’ 7“32%, (2.22)

and always satisfy r; > ro > r3.

The highest weight state of the stress tensor multiplet, |S¥ > , has conformal dimension A =1,

spin £ = 0, and R-symmetry weights (1,1,0). It can be created by acting with the operator? 5’171,0(0)

3To avoid confusion between the superconformal generators S”:“:177‘277‘3 and components of the stress tensor super-
conformal primary Sy, -, r5 (%), in this section we adopt the convention that the latter operators are always hatted.
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on the vacuum. The stress tensor is a 1/3-BPS multiplet, satisfying the shortening condition
Qls"y=0forall Q € Q" ={QF 0o, Qii0}: (2.23)
which in turn implies that
QS110(F) =0forall 7€ R® and all Q € Q. (2.24)

This is equivalent to imposing that S(Z, X) has no fermionic descendant in the 64 of s0(6). We will

find it useful to further define

Q" ={QFos1}, Q9 ={Q%f 0. Qi_io}, Q=0Q"UQUQ (2.25)

along with analogous definitions for the S-supercharges.

Let ®320(Z) be any operator which appears in the OPE 3’171,0 X 31’1’07 and |®) = $y5(0)]0)
the associated state. This is the highest weight state of an 84 multiplet which is annihilated by R
and Q. Without loss of generality we can take this operator to be a conformal primary which is
annihilated by J7; if it is not, we can act with the raising operators K* and J* to construct such
an operator. Because any operator ST € ST is of the form [K, Q"] for some QT € Q, we find that
ST also annihilates |®). So in total, we have the conditions

QT |®) =J"|®) = RT|®) = ST |®) = K"|®) =0
(2.26)
forany R" e RT, QT € 9T, ST e ST,
Our task it to determine which supermultiplets |®) may belong to.
By acting with operators in & on |®) we can construct states of lower conformal dimension.

Consider first constructing a state |O0’) by acting with all eight supercharges in S°US~:
|0) = S&+1,050,+1,05$—1,050,—1,OSO,O,+1So,o,+150,0,—1so,0,71 D) . (2.27)

By assumption |®) satisfies (2.26), and it is straightforward to see that |O’) then also satisfies (2.26).
Because the S operators anticommute with themselves, we furthermore find that any operator in
S°U S~ annihilates |0’). The state |O') is therefore annihilated by all of the S and by J and RT,

and so either |@’) is the highest weight state of the superconformal primary of the supermultiplet,
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or |O0) = 0. In either case we conclude that there exists some 0 < k < 8 for which acting with any

k + 1 operators from S U S~ annihilates |®), but for which acting with just k operators does not:
|0y =51+ Sk |®) #0 (2.28)

for some string of k operators S; € S® US™. It is again easy to see that |®) satisfies (2.26) and is
annihilated by the operators in S° U S™; we hence conclude that |O) is the highest weight state of
the superconformal primary of the multiplet. Note that the different orderings of the operators .S;
in (2.28) are equivalent, up to an overall minus sign.

Let us denote the s0(6) weights of |O) by
w=(2,2,0)+> v, (2.29)

where v; = (vi1,vi2,v;3) are the so(6) Cartans of the S; we act with in (2.28). Because |O) is a
highest weight state, we must have

w1 > wo > ‘wg‘ 5 (230)

which provides a useful additional constraint on (2.28).

As discussed in the previous section, |O) belongs to one of the three types of unitary represen-
tations of osp(6]4). If |O) is part of a long multiplet, it is annihilated by all of the raising operators
(2.20) but satisfies no other conditions. If instead it belongs to an A-type multiplet it satisfies

shortening conditions [31]
1

( 11_17112,(13 - ﬂ l;,qz,qa‘]_> ‘0> =0 (231)
with the specific weights ¢; depending on the s0(6) weights of |O). Finally, if it is part of a B-type

multiplet, it is annihilated by both QF and Q

. for specific weights ¢;. Furthermore for

41,42,03
B-type multiplets |O) is always a scalar.

With this information out of the way, we now simply enumerate all possibilities for (2.28), subject
to the constraint (2.30). The simplest case is where |®) is itself the highest weight primary. Then
we have a (B, 2) multiplet in the 84.

Next let us extend this reasoning to the case

|O) = 8;---8,|®) where S; € S°. (2.32)
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Because {Q1, 8%} consists only of positive R-symmetry generators, we see that |O) is annihilated
by Q% and hence we still have a (B, 2) multiplet. The possible R-symmetry representations are the
[022] (which is the 84), the [031] and its conjugate [013], and the [040] and its conjugate [004]. We
can however eliminate the [031] possibility, as in this case one needs to act with an odd number of
supercharges to construct an operator in the 84 from the superconformal primary.

Let us next consider the cases

|0) = 81+ 5,55 40 |®) where S; € S°, (2.33a)
|0) = 81+ 8nS5_1,0|®) where S; € 8%, (2.33b)
|0) = 81+ 805, 0057100 |®) where S; € S°. (2.33c)
|0) = 81+ SuS¢ 1,050 1,0 |®) where S; € S8°, (2.33d)

Cases (2.33a) and (2.33c) violate (2.30) and so are not possible. For the other two possibilities we
find that |O) is annihilated by Sljfo,o and so |O) must be a B-type multiplet. Using (2.30) we find

that the possible multiplets for (2.33b) are
(B, 1) in the [120], [102], or a (B,2) in the [111],

while for (2.33d) we can only have a (B, 1) in the [200]. We can furthermore eliminate the (B,2) in
the [111] as an option because in this multiplet only fermions transform in the 84.

The next cases to consider are

|0) = S1+++805%, 4055 _1,0|®) where S; € S°, (2.34a)
|0) = 81+ 80SE) 0058 _1.05.—1,0|®) where S; € S°. (2.34D)
|0) = 81+ 508510571009 1,00 |®) where S; € 8°. (2.34c¢)

Case (2.34c) violates (2.30) and so is forbidden. For other two cases we find some combination of
Q70,0 and Qfo,o annihilate |O), so |O) must be either an A-type or B-type multiplet. For (2.34a)
we find that (2.30) restricts us to an (A, +) or (B, +) in the [020], an (A, —) or (B, —) in the [002], or
an (A,2) or (B,2) in the [011]. For (2.34b) we instead find that |O) is an (A, 1) or (B, 1) multiplet

in the [100]. However, we can rule out all B-type multiplets; the (B,+) and (B, 1) only contains
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fermionic operators in the 84, while due to its shortening conditions the (B,2) does not contain any
operator in the 84. Thus, only the A-type multiplets are possible.

Finally, we have the case
|0) =81+ 905, 0050 1,050 —1.0%, 1,0 |®) where S; € 8%, (2.35)

Now |O) need not be annihilated by any supercharges, so it can be a long multiplet. The condition
(2.30) however forces it to be an s0(6) singlet. If |O) satisfies any shortening conditions it must be
either a conserved current multiplet or the trivial (vacuum) multiplet, but neither of these contain
an operator in the 84 so they are both ruled out.

We summarize our results in the first 11 lines of Table 2.3, where we give the full list of all
possible superconformal blocks which contain an operator in the 84.

Our next task is to extend our arguments to operators ¥, ¥ and = in the 45, 45 and 20’ of s0(6)

respectively. The highest weight state under s0(6) for each of these operators is
Vo, Uy1,-1, and Eagp
respectively, and so if these operators appear in the OPE S xS they must appear in
Wo11 € S1,1,0 X g1,0,1, @2,1,71 S S1,1,0 X 5‘1,0,71 , and Eg00 € gl,l,() X 5'1,71,(%

The shortening conditions on S imply that Qli,o,o annihilates Sl,il,o and S'Lo,il, and so must
annihilate Wy 1, @271,_1 and Ej 9,0. We can then repeat the analysis previously performed for ®; > g,
and recover the same list of multiplets that we found by analyzing the conditions for the operators in
the 84. We thus conclude that any supermultiplet appearing in S x.S not listed in the first 11 lines of
Table 2.3 can contain non-zero contributions only from operators in the adjoint 15 and the singlet
1. We will analyze this case in the next section using the superconformal Ward identities. The
results of this analysis are simple to state. There are only 3 types of supermultiplets in which only
singlets and adjoints contribute: the identity supermultiplet (containing just the identity operator),
the stress tensor multiplet itself, as well as a conserved multiplet (A, cons.) whose superconformal
primary is an s0(6) singlet scalar with scaling dimension ¢ + 1.

Table 2.3 shows a summary of our analyses containing all possible supermultiplets which can
appear in the S x S OPE. By using the superconformal Casimir equation we shall find that most

of these supermultiplets can in fact be exchanged; we mark those that cannot in red.
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Multiplet s0(6) R A 1 Case
(B,2) (022] = 84 2 0 (2.32)
(B,1) 200] = 20" | 2 0 (2.33d)
(A,+) [020] = 10 £+ 2 | half-integer (2.34a)
(A, -) [002] =10 | ¢+2 | half-integer (2.34a)
(4,2) [011] =15 {42 integer (2.34a)
(A, 1) [100] = 6 £+ 2 | half-integer (2.34b)
Long [000] =1 >L+1 integer (2.35)
(B,+) | [040] = 35 2 0 (2.32)
(B, -) (004] = 35 2 0 (2.32)
(B,1) [120] = 45 2 0 (2.33b)
(B, 1) [102] = 45 2 0 (2.33b)
(A, cons.) | [000] =1 l+1 integer Section 2.2.2
(B,2) [011] =15 1 0 Section 2.2.2
Trivial [000] =1 0 0 Section 2.2.2

Table 2.3: Table of superconformal blocks not eliminated by our analysis. The so(6)r, A and
¢ given the R-symmetry, conformal dimension and spin of the superconformal primary of the ex-
changed multiplet. The rows in red are for multiplets which we do not eliminate, but for which the
superconformal Casimir equation cannot be solved and so no superconformal block exists.

2.2.2 Constraining s0(6) Singlets and Adjoints

We will now finish our justification of Table 2.3, finding all superblocks in which the only exchanged
operators are in the 1 or 15. We will analyze this possibility using the superconformal Ward
identities.

Let us fix some supermultiplet M and define

SlsM) (U, v) = Z anergne(U,V) (2.36)

(Al,r)eM
to be the contribution from s-channel M exchange to S, (U, V). The superconformal Ward identities
apply to each superblock independently, and so S (U, V) must satisfy the Ward identities (2.12).

If we demand that no operators in the 84, 45, 45 or 20’ are exchanged, we then find that

U0y (5§M) + 3§Qj>) +2U(U +2V = 2)dy +4UVAy —2(V —1)] SV =0
(2.37)
Uy (ST + SiEY) + [avay — 200y + 2 S = 0.

To make further progress we can consider the correlator (SSPP). Because both S and P trans-
form in the 15 of s0(6), the correlators (SSSS) and (SSPP) have the same R-symmetry structures.

Since we are interested in s-channel conformal block expansion, we are led to define P.(U, V) in an
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analogous fashion to S (U, V) in (2.17).
If s-channel exchange of M only contributes to the 1 and 15 channels in the (SSSS) correlator,

this must also be true of (SSPP) and so

M M M
Pio (U V) =PI (U V) =Pg (U, V) =0, (2.38)

Combining this with (2.37) and the Ward identities for R*(U, V') given in Appendix A, we find that
pSP (U, V) = DSV (U, v) = DSV (U, v) =0, (2.39)
where D is the differential operator
D =2U%F +2(U+V —1)dydy +2UVOy + Udy + (1 +2U — V)0y . (2.40)
Our next step is to rewrite the cross-ratios (U, V') using radial coordinates (r,7)
1672 (1472 —2rn)?

U= (1+7r2+2rm)2’° V= (1+7r242rm)2° (2.41)

Conformal blocks have a relatively simple form in radial coordinates:

o0
gae(r,n) =12 1 pasr(n), (2.42)
k=0

where each pa ¢ () is polynomial in i [69]. In particular, the leading term is given by

paeo(n) = Pu(n), (2.43)

where P, () is the n*"" Legendre polynomial. Since Sr(M)(U7 V) is the sum of a finite number of

conformal blocks, we expect that
S, V) =12 (ge(n) + O(r?)) (2.44)

for some polynomial ¢,.(7).

Let us translate (2.39) into radial coordinates:
[r2(r? = 1D)OZ +2r°0, — (r* = 1)(n* — 1)07 — 2(r® — 1)nd, | SV (r,n) = 0. (2.45)
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Substituting (2.44) into this equation we find that g.(n) satisfies Legendre’s equation

(1 —n*)g!(n) — 2nq.(n) + A(A = 1)ge(n) = 0. (2.46)

Hence, ¢r(n) is a polynomial if and only if A € Z, in which case ¢r(7) = aPa+1(n) for some arbitrary
constant a. Since unitarity implies that A > 0, we conclude that SﬁM)(r, 1) includes a contribution
from either an operator with twist A — ¢ =1, or else from the identity operator A = ¢ = 0.

All operators in a superconformal multiplet have twist greater than or equal to the twist of
the superconformal primary. Thus, if M is not the trivial supermultiplet, then its superconformal
primary must have twist one. Examining Table 1.2, we see that aside from the stress tensor multiplet
the only other such multiplets are conserved currents: A-type multiplets whose superprimary is an
R-symmetry singlet with conformal dimension A = £+ 1. We conclude that any superblock in which
the only exchanged operators transform in the 1 or 15 must correspond to the exchange of the

trivial, stress tensor, or a conserved current multiplet.

2.3 Superconformal Casimir Equation

Just as the s-channel conformal blocks are eigenfunctions of the quadratic conformal Casimir when
the Casimir acts only on the first two operators in a four-point function, superconformal blocks
are eigenfunctions of the quadratic superconformal Casimir (see for instance [70, 71] for similar
discussions with less supersymmetry). In the conformal case, this fact implies that the conformal
blocks obey a second order differential equation. In the superconformal case, the equation obeyed
is more complicated because it mixes together four-point functions of operators with different spins.
In the case we are interested in, namely for the four-point function of the stress tensor multiplet
superconformal primary, the superconformal Casimir equation involves both the (SSS.S) four-point
function as well as four-point functions of two scalar and two fermionic operators.

Using the conformal generators M, ”, P.g, Kqop, and D introduced in Section 1.1.2, we can write

the quadratic conformal Casimir as
1 B «@ 1 af A7
OC = *lwo Wfﬁ + D(D — 3) — *Palg]( 5 (2 )

which commutes with all conformal generators. The normalization of M,” and D is such that, when
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acting on any conformal primary Oa ¢(0),
1
§MQBM5QOA,g(O) = K(f + 1)(9A,g(0> , DOA,g(O) = AOA’g(O) . (2.48)

Further, recall that the special conformal generators K,g annihilate all conformal primaries, and so

it follows that Oa ((0) is an eigenstate of the Casimir
CcOa(0) = Ac(A,0)Oa (0), Ao(A ) =L +1)+ A(A=3). (2.49)
Conformal symmetry then implies that this continues to hold away from & = 0, and so
CeO(Z) = Ao (A 0)O(F) . (2.50)

The discussion in the previous paragraph can be generalized to the superconformal case for a
theory with M-extended superconformal symmetry. (We will of course set N' = 6 shortly, but let us
keep N arbitrary for now.) The superalgebra now also includes the Poincaré supercharges Q,;, the
superconformal charges S/, and the R-symmetry generators R;;. Using the 0sp(N|4) commutation
relations given in Section 1.1.2, it is straightforward to check that the quadratic superconformal
Casimir

1 ) 1
Cs=Cc+ND — §CR+ %QQIS?, where Cr = iR]JRIJ, (2.51)

commutes with all the conformal generators. Here, the R-symmetry generators are such that when
acting on an operator in a representation r of so(N'), we have Cr = Ag(r), where Ag(r) is the
eigenvalue of the quadratic Casimir of s0(N') normalized so that Ag(N) = N — 1. For the case of
50(6) and the various representations we will encounter, we list the quadratic Casimir eigenvalues in

Table 2.4. Equation (2.51) implies that when acting on the superconformal primary operator Oa ¢r

irrep r of s0(6) | Ar(r)
1 0
6 5
15 8
20’ 12
45,45 16
84 20

Table 2.4: Eigenvalues of Cr in the N' = 6 case where the R-symmetry algebra is 50(6)g.
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of spin ¢, dimension A, and R-symmetry representation r, placed at & = 0,
1
Cso(f) = )\(A7€7 I‘)O(f) ) /\S(Aa 67 I') = )\C(A; E) +NA - 5)\}3(1‘) (252)

Superconformal symmetry then implies that if O is any operator in a superconformal multiplet

whose superconformal primary has dimension A, spin £ and R-symmetry irrep r, we have

CsO = XA, 4,1)0. (2.53)

Let us now use the Casimirs above to obtain an equation for the superconformal blocks. Suppose
we have four superconformal primary scalar operators ¢;, ¢ = 1,...,4, of dimension Ay and R-

symmetry representation ry. The four-point function has a conformal block decomposition

R R R R 1
<¢1 ($1)¢2(I2)¢)3(I3)¢)4(I4)> = |f12|2A¢ |f34|2A¢ Z CA L gA,K(U7 V) . (254)

conf primaries
On,er

A superconformal block corresponding to the supermultiplet M X’O’ ¢, Whose superconformal primary
has quantum numbers (Ag, £y, 1) consists of the conformal primary operators in the sum on the

right-hand side of (2.54) that belong to the same supermultiplet as Oa, ¢y ,ro:

. . . . 1
(#1(71) P2 (T2) P3(T3)Pa(Ta)) = 25, 5 2A, Z eaer gae(U V).
MO, T sl

(2.55)

conf primaries
Oner € MX)O‘ZO
Let us now applying the superconformal Casimir operator (2.51) on the first two operators only. To
specify which of the four ¢’s an operator is acting on, let us use a subscript “(12)” if the operator is

acting on ¢1 and ¢2 and a superscript “(¢)” if the operator acts only on ¢;. From (2.53), we see that
2 .
12 12) | 1 a2 i RPN i 1) o(2)a 2) o(Da
c§? —0g? + 50 -y <0g> —c ¢ 20,(%)) =2 (QWs +Qlsf) . (256)
i=1

When we apply this expression to (2.55), we act with the Casimirs with upper index (i) on the
left-hand side of the equation, and with the ones with upper index (12) on the right-hand side of

the equation—for instance C'(C1 ) simply gives Ac(Ag,0), while 01(%12) gives Ag(r). Thus, we obtain
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the following relation:

% (((Qar91)(T1) (ST ¢2)(¥'2) 93 (%3)Pa(T4)) — (ST ¢1)(T1)(Qrat2)(T2)$3(T3)Pa(Ta)))

Mag,eq.ro
1
=15 284 12 1284 Z AALrCALr gA’Z(U’ V)
|$12| “/E34| conf primaries
Oner € MZOO’[O
(2.57)
where

1

anr = As(Qo, o, ro) — Ac(A0) + 5)\1%(1“) —2NAy. (2.58)

The right-hand side of equation (2.57) can be easily evaluated provided we know all the conformal

primaries occurring in the multiplet MX’O ¢,- To evaluate the left-hand side, note that

(S70)(@) = 27" (Qpro) (D). (2.59)

and so equation (2.57) becomes

B (Qurdn) (1) (Qar62) ()63 (T)n (24)

Mag,eg,ro

1
SR, S 28, > anreaer gae(U, V).
|34

(2.60)

|i:12 ‘ conf primaries

ro
On,er € MAy 40

In general, Ward identities relate the left-hand side of (2.60) to (¢1¢2¢p3d4), but these relations may
not be sufficient to completely determine the left-hand side of (2.60) in terms of (¢;Padzp4).

This general discussion can be applied to the case of interest to us, namely the (SSSS) correlator
in 3d N' = 6 SCFTs. If we replace ¢;(Z;) by S(&;, X;), then (SS5SS) can be expanded in R-symmetry
channels as in (2.5), and so can all the equations above. In particular, we replace ca ¢r — ciAJ,rBi
in all these equations, with ciA’“, placed in a row vector, determined in terms of the coefficients
an ¢ defined in (2.18) via

7 _ —1
CA,Z,r_<aA,Z,1S aAL15, QAAL15, (AAL20, QA 45,4075, aA,E,84S>B ) (2.61)
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with B defined in (2.17). Thus (2.60) becomes

21 (Qur S (Fr, X1)QprS (Fa, X2)S (T3, X3)S (%4, X4))

2 Mag.e.x0
1 ) 2.62
=752 > anrCa e 90,0(U, V) B, (26
|I12| |I34| conf primaries
Oner € Mz)olo
with aa ¢ evaluated in this particular case to
1
anr = As(Ao, lo, o) — A (A 0) + 5)\R(r) —12. (2.63)

To determine what operators appear a given supermultiplet and can contribute to S x S, we use the
0sp(6]4) characters as explained in Appendix B.

The remaining challenge is to evaluate the left-hand side of (2.62). This can be done by noting
that Q.7S(%, X) is a linear combination of the fermions x, F, and F in the stress tensor multiplet,
as given in (2.10). Consequently, the left-hand side of (2.62) can be written in terms of the functions
cha, ghe ) Fha and G4 introduced in Appendix A to describe the correlators (SSxx), (SSxF),
(SSFF) and (SSFF). Here, the index 4 runs over the R-symmetry structures and the index a = 1,2

runs over the two spacetime structures of a fermion-fermion-scalar-scalar correlator. Denoting
e — (]:l,a ]:1,(1 gl,a g2,a gS,a g4,a gl,a EQ,LL 53,(1 Cl,a CQ,LL CB,a) (264)
where n =1,...,12, we find

i - - - -
59551735@@15(3317Xl)QﬁIS(l‘%X2)S($37X3)5(I47X4)>
Zi N Bz n(xn,l _ %X'nz)lgz (265)

)

|Z12|” | T4

with the coefficients j; ,, given by

4 4 32 -4 —4 0 16 16 0 —16 —128 —128
20 4 0 0 0 4 0 0 —-16 0 —128 -—128
4 20 0 0 0 4 0 0 16 0 —128 -—128
Bin = (2.66)
-12 -12 0 0 0 4 0 0 0 0 128 128
-4 -8 0 2 10 -2 -8 24 -8 0 128 0
-8 -4 0 -10 2 -2 -24 -8 8 0 0 128



Thus, equation (2.60) reduces to the 6 equations (one for each 7):

12
I e aCael|

ro
n=1 MA()J‘O

= Z an e xCh oy 9ae(U V).

conf primaries
ro
OA,Z,r € MAOJU

(2.67)

To use this equation to find the coefficients 027“ of a given superconformal block, we will
also need to expand the fermion-fermion-scalar-scalar correlators on the left-hand side in conformal
blocks corresponding to operators belonging to the supermultiplet MX)MO. Fortunately, we do not
have to do this for all 24 functions X™* because, using the superconformal Ward identities given
in Appendix A, we can completely determine C**, £4, F%? and G»® from S* and F!%. Since we
have already expanded the S? in conformal blocks,

SUU,V) = Y CaergadUV),

M0
Ag,Lg

(2.68)

conf primaries
ro
Oper € MAO~[O

all that is left to do is to also expand F!®.

The s-channel conformal block decomposition of a fermion-fermion-scalar-scalar four-point func-
tion was derived in [67]. For each conformal primary being exchanged, there are two possible blocks
appearing with independent coefficients. For F1¢, if we denote the corresponding coefficients by

da ¢ for the first block and ea ¢, for the second block, we can then write:

FLl ga. Digae
— > daor +ear ; (2.69)

.7:1’2 ‘MX)O,ZO conf primarries 0 DggAyg
Onexr € MY 40

where ga ¢ are the scalar conformal blocks appearing above and D  are differential operators:

Dy =2+2U [-20y —2VOy — 0y +2U0] |
(2.70)
Dy =4U [(V = 1)(8v + VOy) + U(dy +2VOudy + U;)] .

(Each doublet of functions (X™!, X™2) appearing on the LHS of (2.67) has a similar block decom-
position, but as mentioned above, we only need this decomposition for (Fb!, F1.2).)
Using the relations between X™%, S* and F'+¢ given in Appendix A together with the decompo-

sitions (2.68) and (2.69), we obtain a system of linear equations for ¢}y , ., da ¢.r, and ea ¢, that has
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to be obeyed for all values of (U, V). Expanding ga ¢ to sufficiently high orders in U is then enough
to determine the linearly-independent solutions of this system of equations, and thus determine the
coefficients ¢}y , . of the superconformal block corresponding to the supermultiplet MR o

We performed this analysis for all the multiplets described in Table 2.3. The coefficients ciAy“
for each multiplet are included in the Mathematica attached to the paper [24] which this section is
based on. The multiplets marked in red in Table 2.3 did not give solutions to the system of equations
that determines the CiA,Z,r' For each of the remaining multiplets we found between one and three
solutions. Since any linear combination of superconformal blocks is a superconformal block, we are
free to choose a basis of blocks with specific normalizations. In other words, the coefficients aa ¢,r

in (2.18) can be written as
an e = Ajahr, (2.71)
I

where I ranges over all superconformal blocks, )\% are theory-dependent coefficients, and aIA’ o TEP-
resent the solution to the super-Casimir equation for superconformal block I, normalized according
to our conventions. In Table 2.5, we list all the superconformal blocks as well as enough values for

alA%r in order to determine the normalization of the blocks.? A superconformal block &; is simply

I — ;
6?([]’ V) = Z an.er gA-ﬁ(U? V) ) I'= MrAOoTLZO ) (2.72)
conf primaries :
OA,[,,« € MX}OJO
where the index I = MY"",  of the block encodes both the supermultiplet MY , as well as an
0,%0 0,%0
integer n = 1,2, ... denoting which block this is according to Table 2.5. In the cases where there is

a single superconformal block per multiplet, we omit the index n.

Table 2.5 also includes the P and Z charges relative to that of the superconformal primary, which
are relevant for N' = 6 theories that are invariant under these discrete symmetries. We derive P
charges for each superblock by noting that any two primaries Oa , and Oas ¢ in a supermultiplet
have the same parity if and only if A’— A = ¢ —¢ mod 2. To derive the Z charges we use the O(6)

tensor product of two pseudo-tensors:

15" ®15~ =1} @15} ¢ 15, & 20" ¢ 90, @ 847 . (2.73)

4The (A, +) and (A, —) multiplets are each other’s complex conjugates and must appear together in the S x S
OPE.
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Superconformal block normalization P | Z | Isolated?
Long[OOOL n=1 (aa0,1,aa+41,0,200) = (1,0) + | +
n=2: (aao01,aa+1,0:20)=(0,1) - |+
Long[AO?f], ¢ >1 odd AA+1,041,15, = 1 + | +
n=1 (aae1,an+1,01,an4+1,015,) = (1,0,0) | + | +
Long[ooo]’ £ > 2 even n= (aae1,an+101,0a+1,015,) = (0,1,0) | — | +
n= (ane1,ant101,aa4101s5,) = (0,0,1) | — | —
(4, 1)5?812 - % >1 odd =1: (ae+g,z+§,1vae+g,z+%, 5.) = (1,0) + |+
n= (@ug,u%,laaug,u%,ms) =(0,1) + | -
(A, );1:21]@, ? >0 even r42.015, = 1 + v
(A4,2)1),, €> 0 0dd arias, =1 I
(A, + );fg]e, {—3>0even Qpi5 011 15, + v
(4, )4?82215’ (-3 >0even gy s o415, = 1 + v
(4, coms)H_1 0, £ >0 even agy101 =1 + | +
(A, cons)gff]é, £>1 odd o42.041,15, = 1 +
(B, ) [200] az0,200 =1 + |t
(B, ) 022 az0,84 =1 + |+ v
(B,2 )011 aio1s, =1 + | - v

Table 2.5: A summary of the superconformal blocks and their normalizations in terms of a few
OPE coefficients. The values aa ¢, in this table correspond to aIA o 0 Eq. (2.71)—we omitted the
index I for clarity. The right-hand column lists whether the supeirconformal blocks are isolated, as
described in the main text. Note that the (A, +) are complex conjugates and do not by themselves
have well-defined Z parity, but together they can be combined into a Z-even and a Z-odd structure.
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Reflection positivity implies that the coefficients aa ¢, in (2.18) are non-negative for all r. Be-
cause for each superconformal block in Table 2.5 there exists an operator that receives contributions
only from that block, it follows that the coefficients A? in (2.71) are non-negative. This is the reason
why we wrote these coefficients in (2.71) manifestly as perfect squares. They are the squares of real
OPE coefficients.?

Let us end this section by describing the unitarity limits of the long blocks obtained by taking
A — ¢+ 1. For the scalar blocks, we obtain (up to normalization) either a spin-0 conserved block

for the parity-even structure or a (B, 1)[20()] block for the parity odd structure:
Long[Aoog] T (4, cons)[l(?go] Long[OOO] 2 5 (B, 1)[22780] ) (2.74)
For odd ¢ > 1 there is a single block, which it approaches a spin-¢ conserved block:
£>1 odd: Long[ooo] (A,cons)gfi]e. (2.75)

Lastly, for even ¢ > 2 we have three superconformal blocks. The parity even one approaches a

spin-¢ conserved block, while the parity odd ones approach the two superconformal blocks for the

(A, 1)21_33]/275_1/2 multiplet:
{ > 2 even: Long[OOO] -1 — (4, CODS)EE?,]E )
[000] 2, (100],1
Longa — (4, 1)e+3/2 0—1/2> (276)

[000] 3 (A 1)[100]

Long, 0+3/2,6—1/2 "

Even though the blocks on the RHS of (2.74)—(2.76) involve short or semishort superconformal mul-
tiplets, they sit at the bottom of the continuum of long superconformal blocks. All other short and
semishort superconformal blocks are isolated, as they cannot recombine into a long superconformal
block. In particular, if the correlator (SS5S5.S) contains one of these isolated superconformal blocks,
any sufficiently small deformation of (S55S) also must, while the other blocks can instead disappear
by recombining into a long block. This distinction will be important when we consider the numerical

bootstrap.

5In other words, for each multiplet for which there are several superconformal blocks, the number of superconformal
3-point structures equals the number of superconformal blocks. This is so because each superconformal 3-point
structure contains different operators from the exchanged multiplet.
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2.4 Examples: GFFT and Free Field Theory

Let us begin by computing (SSSS) in free field theory, which, as we recall from Section 1.2 consists

e}
a?’

of four complex scalars ®%(z) and four complex fermions ¥¢, with two-point functions given in

(1.33). Stress tensor multiplet operators are bilinears of the free ® and V¥ fields, and in particular
S(Z,X) = 4nd4(Z) Dy () X",  P(Z,X) = —2V2mi0*(Z)V ., (Z) X" . (2.77)

The (SSSS) correlator can then be computed using Wick contractions of ® and ®, and so we find

that

Sfiree—l(U7 V) = Séisc(U’ V) + Sfree(Uv V) )
where  S"(U,V)aisc = <1 U v & 00 0) : (2.78)

S(va)free <0 0 0 v v \/U) .

Here we have separated out the disconnected correlator Si;..(U, V) from the free connected correlator

Si

free

(U, V), both of which play important roles in this thesis.
We can also consider a more general free field theory with N hypermultiplets (®¢, % ), which

has ¢ = 16 N. We then define

N
47 _
7 X) = " x b alNG . (7 9
) = X" D0 @Rla) (279)
and so find that for this theory
A . 1 .
SErcc-N(Uv V) = Séisc(U’ V) + N‘S;rcc(U7 V) . (280)

In the limit where we take N — oo, all connected correlators vanish and we have what is known as
generalized free field theory (GFFT). All correlation functions can be computed by simply taking
Wick contractions of S using (2.4). It is not a true superconformal field theory because ¢r — oo in
this limit, so that the “stress tensor” decouples from all other operators in the theory. Nevertheless,
GFFT is important as it represents the leading term in any 1/cp expansion.

With our superconformal blocks in hand, we can now determine the superconformal decomposi-
tion of both free field theory and generalized free field theory. We will begin with the latter theory.

If we think of the S operators as single-trace, then in the superconformal block decomposition of
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(SSSS) only double-trace operators appear. These schematically take the form S9,, ---9,,0"S,
with spin £ and conformal dimension 2+/¢+2p. We can expand the disconnected correlator S&;_ (U, V)
in superconformal blocks, and so produce the CFT data given in Table 2.6.

Now consider the free field theory with N = 1, where the four-point function is given in (2.78).
This four-point function can be expanded into superconformal blocks to give the CFT data listed
in Table 2.6. Note that the same spectrum of supermultiplets contribute to free theory and GFFT,

except that free theory also contains conserved current multiplets for each spin, has a stress tensor

multiplet, and does not have a (B, 1)[22,80} multiplet.
H Séisc Sfiree-l

2
A 0 !
Mo 2 4
)\?BJ)[ZQ?)O] 2 0
)\?A ) 1000 for ¢ =0,1,2,... 0 4

,CONS. )1y 1y

2 _ 16 256 4096 32768 8 32 3712 34304
)‘(A,z)ﬁ,,‘fz”Z for £=0,1,2,... 3 45 B25 0 36750 | 3> 5 525 3675
A2 for £=0,2,... 16 6144 - § w2 |

(A7+)£Z(1)5212j+1 , 9 1225 37 1225

512 64

A?A,l)‘[glf;]]’;[Jrs , fOr [ = O, 27 e 3157 637
A2 for £=0,2,... 1024 - 128

(Ao L, 105 2
A(O,l) 2, 47 27 47
Ao,2) 3,5, .. 3,5, .
Ang,EOdd L+2,0+4, .. L+2, 044, ..
Ar>2,1), £ even £4+2, 044, .. +2, 044, ..
Ar>2,2), £ even £+3,0+5, .. £+3, 045, ..
Ar>2,3), £ even £+3,0+5, .. £+3, 045, ..

Table 2.6: Low-lying CFT data for the generalized free field theory (GFFT) S, and the free

theory Sgree. We write A ) to denote the scaling dimension of the superblock corresponding to

the structure Long[AOOZ0 b

For both the GFFT theory and the free theory of an N = 6 hypermultiplet, one can alternatively
obtain the CFT data listed in Table 2.6 by performing a decomposition of the correlators in the
analogous AN/ = 8 SCFTs, as described in Appendix C. Indeed, the AV = 6 GFFT is a subsector of
the A/ = 8 GFFT, where the N' = 6 stress tensor multiplet is embedded into the A/ = 8 stress tensor
multiplet. Similarly, as noted in Section 1.2, the N' = 6 free field theory has ' = 8 supersymmetry.

As a final task, we shall use the free field conformal block decomposition to relate )\(QB pylo1 to
»4)1,0
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B2)l1y is the OPE coefficient for the three-point function
’ 1,0

cr. Recall that )\(
A3 tr(X1{ X2, Xs})

(w1, X0) (w2, X2)S(s, Xa)) = — == — s

(2.81)

which is related by supersymmetry to the three-point function (SST*¥). This latter three-point

function is completely fixed by the conformal Ward identity (1.32), and so must be proportional to

c}l/ %. From this we can conclude that the quantity )\( B,2)l011] clT/ %is completely fixed by supersym-
1<J1,0

metry, and so must be the same in all N/ = 6 theories. Because in free field theory ¢z = 16 and

A 1] = 2, we conclude that

0
(B,2)\%

8
A [011]

B2 T e (2.82)

in any A/ = 6 superconformal field theory.
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Chapter 3

Exact Results from

Supersymmetric Localization

In this chapter, we discuss the constraints that supersymmetric localization places on scalar four-
point functions in N' = 6 theories. Supersymmetric localization is a technique for computing observ-
ables in a supersymmetric field theory which are closed but not exact under certain Q supercharges.
By deforming the path-integral with a term which is Q-exact, in certain favorable conditions the
path-integral will localize onto specific BPS field configurations, reducing the calculation to an or-
dinary integral.

In this thesis we focus on the mass-deformed S3 partition function. Given any conformal field

theory defined on R3, we can define correlators on the sphere S® by performing a Weyl transform

Osphere(Z) = UT) 2 Ogar (%), with  Q(F) = ——-, (3.1)
1+ 1=
where r is the radius of the three-sphere with metric
ds® = Q(7)%da? . (3.2)

If we place an A/ = 2 superconformal field theory with a U(1)r flavor current on S3, the theory

admits a real mass deformation

m/sg 3z (” + K) +0(m?), (3.3)

r
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where the operators J(Z) and K (%) are scalars with conformal dimension A = 1 and 2 respectively,
belonging to the same superconformal multiplet as the flavor current. This deformation breaks
conformal symmetry, but preserves the S isometries. It is furthermore closed, but not exact,
under certain linear combinations of the @,; and S,; supercharges. In the presence of this mass
deformation, supersymmetric localization can be used to compute the S? partition function Z(m)
exactly.

Now consider N' = 6 superconformal theories, which possess both an SO(6) R-symmetry and
a U(1)r flavor symmetry. When viewed as an A/ = 2 theory, we can choose a U(1)g subalgebra
to form the N = 2 R-symmetry. There are then three other U(1) generators which commute both
with each other and with the U(1)g, which, from the N' = 2 perspective, are the Cartans of a
SO(4) x U(1) flavor symmetry. We can associate to each of these commuting U(1)’s a real mass
parameter, giving us a total of three distinct real mass parameters for any A/ = 6 theory.

We will focus on just two of these three mass parameters,’

m+/ (iJy + K )+m_ [ (GJ_+K_)+0(m%), (3.4)
S3 S3

where for simplicity we have set the sphere radius r = 1, and where we define

CT /= o V2r
. S(Z, X4), Ky(Z) = 55 P(Z,X+),

Ji(7) =
(3.5)
with X, = diag{1,-1,0,0},  X_ = diag{0,0,1,~1}.

The reason for the peculiar normalization of the operators J4+ and K4, and indeed the term “mass
deformation”, becomes apparent if we consider the precise expression for (3.4) in free field theory.
Recall from Section 1.2 that the N' = 6 free field theory consists of an N = 6 hypermultiplet
(@, ¥®) and its complex conjugate (®,, U**). Using the equations (2.77) which relate S and P to

these fields, we can rewrite the mass deformation as

i [ @i/ (e - T - Tt Tt
(3.6)

m_ m_ m m
I = TP - Tl T O ).

Hence, for free field theories, and more generally for the Lagrangian theories built from free field

theories, the mass deformations quite literally gives masses to the hypermultiplets.

'In terms of symmetries, the two mass parameters that we consider correspond to linear combinations of U(1)
and one of the Cartans of an SU(2) factor inside SO(4) = SU(2) x SU(2).
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Our plan for the rest of the chapter is as follows. In the next section, we will derive expressions
for various derivatives of Z(m4,m_). These expressions rely only on superconformal symmetry
and so hold in any A/ = 6 superconformal field theory. In Sections 3.2 and 3.3 we then compute
explicit localization results for the U(N ), x U(N + M)_;, ABJ and SO(2)2, x USp(2 + 2M)_j, OSp
families of theories, respectively. Finally, in Section 3.4 we show that additional U(1) factors do not
change Z(my, m_), up to an overall constant. As a result, the localization calculations performed

in this chapter cover all known families of N' = 6 Lagrangian theories.

3.1 Integrated Correlators on S°

Our aim in this section is to derive simplified expressions for derivatives of the S? sphere partition

function Z(my,m_). Let us begin with the second derivatives of Z(m,m_):

0?log Z
om?2.

02 log Z
3m+8m,

0%log Z

‘mi—o am— m+=0

(3.7)

)
’mi—o

Combining (3.5) with the S and P two-point functions (2.4) and then explicitly evaluating the

integrals, we find that [72]

0?log Z
om3

_ </93(iJi + Ki)2> = —WZZT : (3.8)

Naively, we might expect that the mixed mass derivative should vanish, as

sty (UL ) ([ 00))
_— = 1Jy + K iJ_+ K_
8m+3m_ ma=0 S3 + * S3

= %\/TW/d3$1d3$2\/M\/g(I72)<S(.T1,X+)P(x2,X+)>.

‘mi—o

(3.9)

Conformal invariance however only requires that (S(z1, X1)P(z2, X2)) vanishes at separated points,

and allows the possibility of a delta function [72, 73]
(S(w1, X1)P(x2, X2)) = K tr(X1 X)0®) (21 — x2) . (3.10)

We hence find that

0%log Z icrk
T 08s =L , (3.11)
3m+8m_ my=0 64\/5
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and as we shall see xk does not generically vanish in ABJ theory.
Having derived expressions for the second derivatives of Z(my,m_), we next move onto third
derivatives. It is straightforward to check that these all vanish

03 log Z
om3.

_ 03 log Z
o OmZom_

B 03 log Z
~ Omy0m?

B 0*logZ

3
m4 =0 am—

=0, (3.12)

m4 ‘mi_o m4=0

because the trace of any three X matrices always vanish. Finally, we move to fourth derivatives

0*log Z
om?

0*log Z
8m‘18m_

0*log Z
’ om?%.om?.

)

(3.13)

‘mi_() m4=0 m4 =0

Note that because X, and X_ are related by an O(6) transformation and all four-point scalar

correlators are Z-invariant,

0*log Z
om?

B 0*log Z
om*

‘mi_() - ‘mi_o

0*log Z
om3.om_

0*log Z

oW : (3.14)

)

’mi_O ‘mi_o

so that we need only consider the three expressions given in (3.13). We can now directly compute

' log Z !
gL _ <(/ (iJy + K+>> > + (2- and 3-pt functions)
conn

1
om?

M - <(/ (iJy + K+)>3 </ (iJ_ + K_)>> + (2- and 3-pt functions), (3.15)

om3.0m_

conn

Tls7 _ /('J +K)2 /('J +K)2 + (2- and 3-pt functions)
W— tJ4 + 1J_ - - and 3-pt functions) .

conn

where the 2- and 3-point function terms not written in (3.15) come from the O(m?) terms not
written in (3.4). We will not write down these 2- and 3-point function contributions because they
will be automatically taken into account in the final formulas, by analogy with the similar situation
encountered in [74].

While in principle we can evaluate each of these expressions by expanding out (3.15), it is
possible to obtain simpler formulas by making use of the fact that all N' > 4 SCFTs in 3d have a 1d
topological sector [75-80]. In general, a 3d N' = 4 SCFT has SU(2)g x SU(2)¢c R-symmetry, and
one can consider 1/2-BPS operators that have scaling dimension A = jg, where jy is the SU(2) g
spin, and are invariant under SU(2)¢c. Such operators can be written as rank-2jy symmetric tensors
Oala,“_“azm (Z) where a; = 1,2 are SU(2) g spinor indices. From these operators, we can construct 1d

topological operators by inserting them on a line, say the line (0,0, ), and contracting the SU(2) g
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indices with position-dependent polarizations:

Oxs(2) = Oayas...as,,, (0,0, 2)u () - - un (), (3.16)
where we can take?
144
ut(x) = 1 (3.17)
-4

If we want to express the topological operator in terms of the operator Oalazv..asz when the theory

is placed on S3, we have

O) = ———— Ouraganyy (0,0,2)u (@) - ui (z), (3.18)
(1+)
where the extra factor accounts for the fact that the operators on R? and those on S2 differ by a
Weyl factor. In this case, the 1d topological theory lives on a circle parameterized by x, with the
point at x = 400 being identified with the point at x = —oc.
To connect this discussion to the N' = 6 case, let us embed the N' = 4 SU(2)g x SU(2)c
R-symmetry into SU(4)g such that SU(2)y corresponds to the top left 2 x 2 block of an SU(4)r

matrix written in the fundamental representation and SU(2)¢ corresponds to the bottom right 2 x 2

block. Raising and lowering indices with the epsilon symbol, Egs. (3.16) and (3.18) applied to S

give
2 2
- 14z 1— i
S((E) = ﬁf:)512(07 0’ fE) - (1i2)521(0707w) + S11(0,07$) - 522(0,0,1}) (319)
4

on S3 and Sgs(x) = (1 + %2) S(z) on R3. It is straightforward to check that the superconformal
Ward identities (2.12) imply that the four-point function of Sgs, namely
~ ~ 5 ~ S? 1—2)283
(Sgs (1) Srs (w2) Sps (23) ks (z4)) = S' + JoIN %
2(1—2)8*  2(1-2)8° n g

22 P P U2 (3.20)
V=(1-2)>

_|_

(x1 — x2)(3 — T4)
(21— x3)(v2 — 24)

with z =

2Tn the notation of [78] this choice corresponds to he® = (03)4".
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is piece-wise constant.

The advantage of the topological sector is that we can replace the integrated operator |, g8 a3z V9(iJ 4+
K ) by a different operator that is integrated only along the circle. Such a replacement can be rig-
orously justified in the class of N/ = 4 theories studied in [78-80] where it was shown how one can
obtain a 1d action for the topological sector by using supersymmetric localization in the 3d ' =4
theory. Unfortunately, the theories considered in this thesis fall outside the range of theories stud-
ied in [78-80]. Nevertheless, as explained in Section 3.1 of [81], we expect that such a replacement

should be possible in these theories as well, and in particular that

47r/ 1 —Cll—xaﬂ iJ(z) = /dgf\/?(ih + K4 + Q-exact terms, (3:21)
4
where we define
. Jers 3.22
J(z) = 64%5(@' (3:22)

Thus, instead of (3.15), we may write

4
dlogZ ) dx (e
Fmt -~ (47) <</1+ i >) >
3
821{’25 - (47T)3<( / dBf\/g(iJ_(f)JrK_(f))) ( / 11222;}(3;)) >C0nn (3.23)

St = (1) <( [ 7 vais @+ K_(f))>2 ( IE i%iﬂa:)) 2> -

Let us begin with the first equation in (3.23). Because the correlation function (J.J.J.J) is

topological, we can place the four operators at any four locations of our choosing and multiply the

answer by (27)*. Using (3.19), we have

dlogZ wic2 i
o = 213T1++[5 ], (3.24)
+
where
, S (1-2)3%8 2(1-2)8* 2(1-2)8> 28°
A 1 &~ _ _
L[S =2|8"+ 5 +—F—+—— . ~ o ] 6, (3.25)

V=(1-2)?

and where the —6 comes from subtracting the disconnected part. The quantity I, ,[S?] is inde-
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pendent of z. It can be simplified significantly using the conformal block expansion introduced in

Equation (2.18). Indeed, (3.25) can be written as

. 2(z —2 4-2z
I,,[81=2 [51 + Si1s, % + S15, + 25200 + Sa5aa8 P

(6w
84\ 22 z 15

Each &; must be expanded in conformal blocks ga ¢ (22, (1- z)z), and as z — 0 these behave as

(3.26)

:22
V=(1-2z)2

(2/4)® where A is the scaling dimension of the corresponding conformal primary. Since I, is
independent of z, it follows that the only conformal primaries that can contribute must have either
A = 0 in the 1, 15,, 20’ channels, A = 1 in the 15, and 45 @ 45 channels, or A = 2 in the 84
channel. The only A = 0 operator is the identity operator, which appears in the 1 channel with
squared OPE coefficient Aj ; ; = 1 by convention. The 15, and 45 & 45 channels contain only odd
spin operators, and for them A = 1 would violate the unitarity bound. Thus, there are no A =1
operators contributing to (3.26). Consequently, the only operators that can contribute to (3.26) are

the identity operator and any A = 2 operators in the 84. The only such operator that can appear

in an N' = 6 theory is the superconformal primary of the (B, 2)[2?32]. Because the conformal block
g2,0(U, V) ~ U/16 at small U, we find that
i 2
Log[ST = —4+2X28, (3.27)
where /\( B,2)02?) is the OPE coefficient between two S operators and the (B, 2)[2032] supermultiplet.
1<)2,0 ’

Combining this with the expression (3.8) for ¢, we conclude that

4
- O, log Z

>\2 [022] = P ——
(B,2)25 (02, log Z)?

'm_o . (3.28)

Now let us move on to simplify the second equation in (3.23). Because correlators of J(z) are

topological, we can place the three J operators at 0, 1, and infinity, so that

_OlosZ o <j(o)j(1)j(oo> ( / dPay/g(i]-(Z) + K (f)))> : (3.29)

33m+5‘m_

Next we expand the right-hand correlator using (3.5), (2.5) and (2.13). The (JJ.J.J_) correlator
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automatically vanish, and so

0*log Z 771'6%72 3z
Pmydm_ 2122 | (4+|7?)|F|
. X . (3.30)
x [ THUV)+5T>(UV)+ T (U V) +8T* (U V) + 2T (U V) ||, 1 .
\f*élgl2
:If‘f?‘is\r"

where é3 = (0,0,1). We can then use the superconformal Ward identity (2.15) to eliminate 7°, and

so find that
d*log Z _ ickm? B [ 272 1 |Z)?
Bmiom_ 213,/2 |T — é3]2" | % — é3)2

il

1 1 |z?
2773 4T* :
27 (ap ar) HT (|f—é3|2’|f—é3|2>>‘

Switching to spherical coordinates ¥ = r (sin(d) sin(¢), sin(6) cos(¢), cos(d)) and then integrating

over ¢, we arrive at our final expression

otlog Z ickm? ;
sl i r). (332)

where we define the linear functional

Loda [T'] = Toad[T?] + Loaa[T?] + 2Loaa[T?]

o ) (3.33)
Toaa[T] / dr / df 4mrsin§ T ! -
o = ™ s .
dd 0 0 14+7r2—2rcosf’ 1+1r2—2rcosd

Finally, we turn to the last equation in (3.23). Again we use the fact that J is topological to
place the first J at 23 = 0 and the second at x4 = oo and multiply by (27)2. Then, relating all
the operators in the second line of (3.23) to S and R’ and computing the required traces of M

matrices, we obtain

dlog Z _ C% 7 1 7 1 2 3 5 6
where
- Lo QE)Q@E)TS (8, 1 1
I g E/d3$ dsx [ = g 5 5 59 5 Qx) = 7 . 3.35
A[ } 1 2 'I%QA x% x% ( ) 1+ l;; ( )
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We can evaluate (3.35) as follows. Using rotational symmetry, we can set ¥; = (r1,0,0) and

Ty = (ro cosf,rosin 0, 0) and perform the angular integrals which give 47 x 27 = 872, Thus

2

Kl—l—%) (14_%)}&Sg(T%—i—T%—Zﬁchos@ r%) ~ (3.36)

2,2 2 "2
(r? + 13 — 2ryrocos )2 r? r?

IA[G] = 872 / dry dry df r3r3 sin 0

Let us now change variables by setting r; = 2p and ro = 2rp. Then (3.36) becomes

A—3G (1 + 72 — 2rcos 977’2)
(14172 —2rcosf)2

(3.37)

INA[Q] = 2972A7T2/dpd7‘ do p° 2212 sin 6 [(1 +p2) (1 +7‘2p2)]

The p integral can be done analytically. For the cases of interest, namely A =1 and 2, the result is

— 724+ (1+7r2)logr G (14 r* — 2rcosf,r?)
(rz2—1)3 1472 —2rcosf ’

logr G (14 r?—2rcos6,r?)

r2—1 (1472 —2rcosh)?

L[G] = 277? /dr df r*sin 6 !
(3.39)

L[G] = 2°72 /dr df r*sin 6

The expression (3.34) can be simplified further after using the Ward identity relating R? to S*

in equations (A.23)—(A.26), and integrating by parts. We find

L2RY + R? 4+ R? 4+ 2R° + 2RS) = /drd981 (147> —2rcosf,r?)

5 ., —1—=5r2 457t + 76 —8(r2 + %) logr (3.39)
x | =167 sin 6
(r2—=1)3(1 +r2 — 2rcosb)
Combining with (3.34), we obtain
dlog Z A . SY (14 1r? = 2rcosf,r?)
= dr df sin 0 . 3.40
OmZom?* 211 / rav s 1+72—2rcosf (3.40)
Once again we can view the right-hand side as a linear functional defined on S, defining
, St (1+7% —2rcos,r?)
I, _[S8']= [ drdfsinf 41
+-15] / v s 1472 —2rcosé (341)
so that
1 VA 2.2 )
Olog? _mer; (s (3.42)

omiom? 21
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3.2 U(N)py xU(N+ M)_; Theory

3.2.1 Simplifying the Partition Function

Using supersymmetric localization, the mass-deformed U(N)y x U(N + M) _j, partition function can

be reduced to M + 2N integrals [82,83]:

Zym Nk (my,m-)

— /dIVIJrN/J dNV 7“”“(2 ui->,v2) Hi<j 4Sinh2 [’/T(ﬂlz — /u’j)] Ha<b4Sinh2 [W(Va _ l/b)]
Il deosh [x(us — va) + T2 combln(c —va) + 73]

(3.43)

up to an overall my-independent normalization factor. Our first task will be to write (3.43) as an
N-dimensional integral which prove simpler to evaluate. To achieve this we generalize the methods
of [84], which studied the special case m = m_ = 0. We are ultimately only interested in computing
Z up to an overall normalization constant Z; which is independent of m4., and so will ignore any
overall factors.

Our first step is to use the determinant formula:

inh £i=%i ya Yo N+M
[];; 2sinh =5 acp 2sinh

[1; . 2 cosh 54 - H B_EMLHezMya det (A(z,y)) (3.44)

where A(z,y) is the matrix

ONi )y =
Aij(z,y) = 2cosh+ﬂ”] + eWHMAL2=0)wig. o1 where 6, = (3.45)
2 0 otherwise

which is proven in [84] using a generalization of the Cauchy determinant formula. Applying this

formula with z; = 27p; and y; = 27v; + mm_, we can rewrite (3.43) as

N+M
ZyNg(my,m_) = (NJrM)!e*%MN(m**m*)/dMJrN,udNV H o~ (ikpS +2Mpj)

ﬁ e (ikvg+2Mv,) NﬁM (2(N+M—j)+1)
X ™m € - i
ot QCOSh T(fha — Va) + 2+] j=N+1
N+M
91\[ i i
X _ sgn(a) 0 () + (2(N+M*U(Z))+1)m“90 i )
peé U( H (2(:osh Wi = V(i )) T ] ‘ e

(3.46)
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where the sum over o is a sum over all permutations o (i) of N + M elements.

We next take the Fourier transform of the coshines

S N A 3.47
2cosh(mp) ;/_oo . 2cosh(z) (347)

The p and v integrals then become Gaussian and can be easily performed. We thus find that

_x
ZM,N,k(er;mf) x e ZMN(my+m_)

N 2i 2 .
efﬁza(ya*ya(a))‘i’EM(ya*ya(a))+Z(mam++yamf)
—1)U</dN.Z‘dN+My | I

~ 4 cosh(z,) cosh(y,) (3.48)
N+M _ _
< 1 [we—%<N+%‘l)26(yz tin(N + M +1/2 - 1)) eﬁyﬂ%(“”?—”yw} ) .
I=N+1

So long as 2M < |k| + 1, we can integrate over x;, leaving

e* M (Ya—Yo(a))Fiyam—

[w _ ”m+} cosh(yq,)

v a=1 4 cosh

N+M ‘ »
< 1 [we-%<N+%—”26(yz+m(N+M+1/2—z))eﬁyﬂ%(“l/?—l)yww} .
I=N+1

(3.49)

After a change of variable y, — /2 and judicious use of the equation ), v, = >, Yo(a) We find

that
Znn g (my,m_) oc e” ZMN(my+m—) Z(_ / AN+My H 62‘%’”’
AR T = 2 cosh [ %
N+M , ,
i 1 i M
< 1 {We_T(N+5_l) 5y +im(N + M +1/2 — 1)) ewiwti —TM} (3.50)
I=N+1
On,i LN+ M+1/2-1)y;
xdet( - +ek( +M+1/ )y’91N+1 .
i —yi+kmm s
2 cosh #—HETE
Applying (3.44) again, integrating over yn41,...,Yn+um, and then performing a final change of
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variables y, — 2myq,, We arrive at our final expression for the mass-deformed S partition function,

Zn, Nk (M, m_)

_ e~ 5 MNm_ Zy aN sinh2 w
= W Yy 2, cosh {w + %} cosh {M _ %]
a k 2 ' ’ (3.51)
al gimyam— M1 sinh {W]
i | 2eoshi(mya) g o [”(ya“g*l/m) _ m;ur}

3.2.2 Finite M, N, k Calculations

In this section, we will evaluate localization results for small M, N and k. For simplicity we focus

on the single mass case, taking m_ = m and m4 = 0, so that

Zy,Ne(m) = Zoe_%MNm/dNy H tanh? (Yo — )

a<b k
(3.52)
lf_v[ imYam Aﬁlt 7 (ya +i(l +1/2))
ot 2cosh (TYa) Pl k
Let us begin with the case N = 1. We must compute
. A . o0 ,
Zyiak(m) = %(m) = 3MM / dz ™" Fyy () (3.53)
0 —o00
where we define
M-1 .
1 (w+z(l+1/2))
F P tan . 3.54
k() = 2 cosh (7x) 11 k (3:54)

All poles of Fyy(z) are located at « = £ +iK for K € Z. Furthermore, Fi,i(z) is periodic in the

complex plane, with

Fap(z +ik) = (=1)"Fare(x) . (3.55)

By closing the integral (3.53) in the upper-half of the complex, we may therefore reduce it to a finite

sum of poles

27rze zM
_(— —kﬂ'm Z Res Z7l-sz’M,k(x)] . (356)

Za(m) = 1
z—§+lK

We can evaluate the residues and derive analytic expressions for A M,1,5(m) for any M and k, and

then compute cr and )\?B 2022 using (3.8) and (3.28). Table 3.1 lists these quantities for various

1<)2,0
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16 2
Mk et Ap .oy
1| 2 3=0.75 =32
3 | 224 ~0.6511 61216692f ~ 2.986
3(7r 2) 2(512—4417+9072) ~
2 | 4 | 3= ; ~ 0.5281 4“2‘)454(526231@1;94” ) ~2.715
5 0.4667 2.618
6 0.4309 2.582
3] 6 0.4005 2.498
48 0.3211 2.381
5 | 10 0.2674 2.307
6 |12 0.2290 2.258

Table 3.1: OPE coefficients +& T 6 and )\2 5 022 in various U(1)x x U(1 + M)_; ABJ theories.

’ )2,0

values of M and k. Note that the analytic results become increasingly elaborate as M and k become
larger, and so we include analytic expressions in Table 3.1 only if a concise expression exists.
The above analysis can be generalized to the N > 1 case by repeatedly integrating over z;. When

N = 2, for instance, we must compute
Zn2k(m) = efiMNm/dzq dzg eim(1tz2)m a2 2V 22 l H Frare(zq) - (3.57)

We evaluate this by first integrating over z; while fixing |Im(z2)| < g We can perform this integral
by closing the contour in the upper half complex plane and then summing over the poles, which
occur at

N
z1 = % and 21 = z0 + k(K +1/2),

where K is a positive integer. Because both K(z) and tanh z are periodic in the complex plane, we
need only sum the poles with imaginary part less than k; the rest can be resummed as a geometric
series. Having integrated over z1, we perform the 2o integral in a similar fashion. For general N we

must repeat this process for each of the IV integration variables. We list results in Table 3.2.

3.2.3 Supergravity Limit

We will now study localization in the large N limit. Using the Fermi gas method [85], the localization

formula (3.43) for the mass deformed partition function with M = 0 was computed to all orders in
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Mk % )\?B,Q)[ZD?)Q] K g )\(23»2)[2932]

1| 2 (03177 | 2479 2 3 =0.375 B =26
3] 02697 | 2384 32| 2 =19 ~0.2005 | 2309
4 ]0.2425 | 2339 3 0.1838 2.258

2 | 4 |02242 | 2302 42 0.1381 2.195
5 ]0.1986 | 2.262 3 0.1191 2.161
6 | 0.1822 | 2.239 4 0.1071 2.143

3|6 [01736 | 2221

4| 801419 | 2175

5|10 | 01201 | 2.144

6 | 12 | 01041 | 2122

Table 3.2: OPE coefficients g and /\(213 2022 in various U(2)x x U(M + 2)_; ABJ theories (left)
1<72,0

and U(N), x U(N)_; ABJM theories (right)

1/N in [81,86]. The answer, up to overall factors which are independent of my, is

eAk(mim-) Ni(N, M) — By(my,m_)
Z , _) = i — : 3.58
M7N7k(m+’m ) C'k(m+,m_)1/3 ! C’k(m+,m_)1/3 ’ ( )
where we define the functions
Np(N,M) =N + M ME
k ) - 2 2%
Cilimym-) = .
kT4, _ﬂ2k(1+m2+)(1+m%)’ (359)
B ) 72Cr(my,m_) 1 1 N 1 k ’
my,m_) = —————> — — - —
M 3 6k \1+mZ " 1+m2) 24’
Ap(my,m_ ) = Alk(1 +imy)] + A[k(1 —imy)] Z.A[k:(l +im_)] + Ak(1 — im_)] ’
and where the constant map function A(k) is given by
2¢(3) 3 K* [ x _9
= 1-— — log (1 — . 3.60
AR) = Zap ( 16 +7r2/0 v e —qlog(1—¢7) (3.60)

We will be interested in derivatives of Zas v,k (M4, m_) at my = 0, in which case we expect the
non-perturbative corrections to take the form e=VNE and e~ VN/* | This is the case for Zy,nN,kx(0,0),
which has been computed exactly for all N and k in [85,87-93], and we expect this to continue
to hold true for derivatives of Zns n k(m4,m—). We can then apply the large N expansion to the
stringy regimes described in Section 1.3.2: the finite k limit, the strong 't Hooft coupling limit A > 1,

and the finite p limit interpolating between the two. Here, as in Section 1.3.2, A and p are defined
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by the equations

Nu(N M) 11 Ni(N, K)
= — - — =—— .61
A k 3k2 240 M = (3:61)
We begin by computing ¢r using (3.8), and find that to all orders in 1/N,
1/3
2 (34 2k2)) AT A (2K
L BUPAYGR) 64 32 (3 +2k7)) Ai ( (=) ( 2 )2/3 (3.62)
= TSN ) |
T OYE SES I
Expanding this expression at large N and finite k, we find that
64v2kN3/2  8(12M? — 12kM + k% — 16)N'/2  32(k2A" (k) — 1
finite k: cp = _8 * ) + ( Az( ) )—|—O(N71/2).
3 3mv/2k @
(3.63)

4 4
We can likewise expand both 681°§Z , and 88 Qlcz)gzz to all orders in 1/N, although the results are
m3 m3 Om?

more complicated. Expanding at large N and then systematically eliminating IV in favor of c¢p, we

find that
1 0%log Z 2 q /31 KA (k) — 3k2A" (k) — _z
finite k: —278 Oi sl 3Z7T — + AT R) 32A() 3+O(CT§),
¢ Omi 64 cr  25k2/3 e 2cr
3.64

1 9'logZ 2 1 5rd/3 1 K2A"(k) -1 _1 (3.64)
Tﬁ:_ii_’_ 2/3 2/375—'_ 2 +O(CT3)7
cp Oms.0m?= 64 cr 4 62/3k e 2cr

where we have only shown the lowest couple terms in 1/cy for simplicity. We can evaluate A®) (k)
and A" (k) exactly using the definition of (3.60).> Note that neither expression in (3.64) depend on
M when written as a series in 1/cp. This is because both M and N only enter into the large N
partition function (3.58) through the combined quantity N(N, M), and so when we eliminate N in
favor of ¢y this also eliminates the M dependence.

Next we consider the strong coupling 't Hooft limit. Using the large k expansion

_ 3 ou log [#2] & /21i\*"?  49By,Ba, o
AlR) = =g B+ 200+ +gZQ(IJ 05229 ) (3.66)

derived in [94], where B,, denote the Bernoulli numbers, we can expand (3.62) at large N with A > 1

3For instance, for k = 1,2 these values are [81]

2

1 1
A1) =2+ o A@2) = -,
6 32 24
(3.65)
A””(l) =1+ ar? _ L4 .A””(Q) — i + ﬁ
B 5 32"’ 16 80
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to find that

128 64 32¢(3) 5
't Hooft: - - - /2) N(N + M
t Hooft: cr <37r(2/\)1/2 Ir@NE T i + O\ (N + M)+

32(5 — 6M2)A/2 80  16(21M? + 2) o o
e N7,
+ ( or 52 + o +O0(A7) | +0O( )

We can now expand the fourth-derivatives at large IV, and then eliminate N in favor of ¢y to find

(3.67)

1 5'410gZ 1 274(3)2 1 L 1
't Hooft: —- 1 o | 1
PR g e [ 512fm2 stozrt w1 OA )| o
3 5 9¢(3)1 | 15¢(3) 1 N L
* 12 mV2A - 4 16w A 321/2m3 \2 O(A )_ & +O(cz”),

1 8410gZ 72 3¢(3) 1 9¢(3)? _9
ZomZom? | e 1 3+ A=)
¢ Om5.0m=. S 64 512v2mAF 819274 A cr
5 e 5 U(B) 5B 1 o]l
+ 5" 2\ = 15+ Tomon ONERE + O(X )_ z + O(cz”).

Once again, the final result does not depend on M to any order in 1/cy. Furthermore note that ¢(3)
and 7 are the only transcendental numbers that appear to any order in 1/ and 1/cy expansion.

Finally, for the finite p limit we can again use the large k expansion of A(k) to compute

64v2N®/>  4y/2N*Y/5  256\/2M N3/° )
. . o - /5
finite u: ¢ = S yi/10 Sy 3/10 + 15pi/10 + O(N=/?), (3.69)

and then, upon eliminating N in favor of cr,

1 0%0gZ 3721 31 (4V2r®m+((3) 1 5 o
finite u: TL% == ( \/;7/;\4;74 3% ))*7—*74—0(@2),
g Omi 64 cr 16 2°/871/4y, % 4c2 -
1 8410gZ . 71-2 1 20\/77'(3\/» SC( ) 5 1 O 7% .
%W T 6der - 16 25/833/477/4,,3/8 % - E% +O(cep?).

Once again, the results do not depend explicitly on M.
From the finite p limit we can derive both the ’t Hooft limit and the finite k limit by taking
u — 0 and p — oo respectively. To reproduce the 't Hooft limit (3.68) we first solve for p in terms

of A and ¢y using (3.8) and (3.61), which at leading order in 1/cp gives

819274

_ 71
9c2.m2 (3.71)

_z , 7
We then take the large ¢y limit followed by the large A limit. The ((3) ,u_%cT4 and pscp* terms

give rise to the <(3))\_%c;1 and vAcp? terms in (3.68), respectively.
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EIM) g | Mages
2 0 0.0361459 2.04699
3 0 0.0301815 2.03842
4 0 0.0265295 2.03342
1 0.0250946 2.03158
6 0 0.0221553 2.02766
1 0.0208109 2.02595
2 0.0200682 2.02501
10 0 0.0178216 2.02218
1 0.0166285 2.02067
2 0.0157899 2.01961
3 0.0152331 2.01891
4 0.0149146 2.01851

Table 3.3: OPE coefficients g and )\? in various U(10); x U(10 + M)_j;, ABJ theories, as

022
Bag)[Q 0 :

computed from the all orders in 1/N formula (3.58).

To extract the finite k limit (3.64) from (3.70) we solve for u in terms of ¢y and k using (3.8),

which at leading order in 1/cr gives

3T 2/30T2/3
}L:(Q)lw+ (372)

We then take the large cr limit. In this limit, the ratio c¢Zpu=3

is finite, so we must sum infinitely
many terms in the finite p limit to recover the finite & limit. This infinite sum cancels all the {(3)
terms which appear at finite p. The uéc;% term becomes a c;% term at finite k.

While we have so far focused on computing the leading large N corrections from (3.58), we can
also use the all orders 1/N expansion as a tool to calculate localization results at finite N. For low
k=1,2and M = 1,2, some explicit examples were given in [81], where it was shown that the large
N expansion compares well even down to the exact N = 2 result. In Chapter 6, we will study the

U(10), x U(10 + M) _ ABJ theories for various values of M and k. Using (3.58), we can calculate

% and /\?B 2)l022 for these theories for a range of M, k, and we summarize our results in Table 3.3.
1=)2,0

3.2.4 Higher-Spin Limit

We now compute Zpy n r(my,m_) at large M and fixed A = %,

which is the higher-spin limit of
the U(N)g x U(N + M)_j, theory. The special case where my = 0 has already been considered

in [95], so our task is to generalize their results to non-zero masses.
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To begin, let us define

M—1

2 + l
Fi(z) = Z log tanh M —log R(x),
-
o i) (3.73)
2 (x4 il
Fy(z) = l Z];_l log cosh —

2

where R(x) = cosh (mz) if M is even and R(x) = sinh (rz) if M is odd, and

k sinh2 Iz ) 3 A
. Vi T 4+ T } {27@ ™ }
G X, m =1lo sech sech s 3.74
( ) s ( m2x? |: 2\/E 2\/E ( )

where my = k~Y/2m.. After a change of variables y, — vk (:Ca — %), we find that

. 1
ZM,N’k(m_,_,m_) X —————

N /dN:E H(aza —ap)? exp (G(xq — xp,704))
2k a<b

X exp <Z irxgm_ + Fy (wa\/E) + Iy (:ca\/%) — F (?(2m — mg)) .

cosh
(3.75)

We now expand Fj(z), Fo(x) and G(z) at large M and k, holding x, m4 and X fixed. The large M

expansion of Fj(z) has already been computed in [95], where it was shown that

M-—1
N m(x + il cos 220 A
Fi(z) = Z log tanh retil) R(x) ~ e fi log tan o> (3.76)
S ¢

The right-hand expression should be understood as a formal series expansion, which can be written

more verbosely as

F@ =Y (=) fan(k,A) 2"

oy (2n)! k2n—17
>, 4n(2 — 4P)B A 8.77)
_ (2 - 2p A2p+2n—1 TA
where fo,(k,\) = 1;) o oy log tan 5
and so we find that
2 1 3 3 at -2
F (a:\/%) = cons. — 2w cse(mA)x” + 3™ (cos(2Am) + 3) esc (/\77)? +O0(k™), (3.78)
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Next we expand Fy(z) using the Euler-MacLaurin expansion, finding that

M—1
2

Fy(x) = Z log cosh

. M-1
= 2

7T(£L' + il)
k

(3.79)

mz? tan 5 _2r%2?(22% +1) sin® £ O
k k3 cos mA '

Finally, we can expand G(z) by simply using the Taylor series expansion around k=1/2 =0, so that

) m2(8z% 4 3m2) (2242t + 360223 + 15ml) _
G(x,my) = — o oy TIa077 + L O(k73). (3.80)

Putting everything together, we have

Zm, Nk (14, )

1 (3.81)
X —— /de H(xa —xp)?exp | —2mese(mN) Z 22 +0k™ ).
cosh” T
2Vk a<b a
where all higher order terms are polynomial in x and m+. To compute
oritn2 7 (rr .
M Nk (1 1) ‘ (3.82)
m4+=0

o 77A’L+ om2m_

at each order in k!, all we must do now is evaluate Gaussian integrals of the form

/de p(zq) H(xa — xp)? exp <—27r csc(mA) Z xi) ) (3.83)

a<b

where p(z,) is a polynomial in z,. These are just polynomial expectation values in a Gaussian
matrix model. They can be computed at finite N as sums of U(N) Young tableux [96], as described
in detail in Appendix B of [97].

After a little work, we find that

16Nk si
ey = SONESINN) o is 4 cos(2m))
" ) ) (3.84)
TN (16 — 18N? + (1 — 14N?) cos(2An)) Ly
- % +O(k™?).
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We invert this series to eliminate k in favor of ¢, and so find that

32 o4 8(3 +cos(2mA)) 64N2sin?(7\)(3 + 5cos(27)))
(B.2)55” er cr

512N% (29 — 425 + (44 — 32) cos(2m)) + (23 + 122 ) cos(4mA)) sin® (7))
B 3c3.

from which we see that in the limit of large ¢y, the theory with the lowest value of )\?B 210221 at fixed
»4)2.0

cr is that with A = 1/2 and N = 1, corresponding to the U(1)aps x U(1 + M)_ops theories. This

family will prove of special interest to us when considering numeric bootstrap bounds. Specializing

to this case, we can easily expand )\(23 (022) t0 much higher order in 1/cp:
2,0

2)
N g 10 116N 1 16YT 2 (16T 217 (16)°
(B2)30 er 2 \er 12 \ep 3 \er 240 \ cr
L 979 (16 ° 71201 (16 7+
480 \ cp 15120 \ er

Comparing to the exact values computed in Table 3.1, we find that (3.86) gives answers to within

(3.86)

1% of the exact results already for M = 4.

For the mixed derivatives of log Z, we find that

1 0*log Zar Nk . atsin®(r))  7*N?(1 — 5cos(2m\)) sin?(w\) n

- o(c3
g PmidPm_ |, 25607 64c2, (er”).

3.87
1 0*log Zr Nk _ in*sin(2w))  5imrt N2 cos(m)) sin® (7)) +O(c) (3.87)
g Pmiom_ |, _, 512¢r 32¢2, T

Note that for each of these quantities, the O(cy ') term is independent of N, the O(cp?) term
is proportional to N2, and further subleading terms have more complicated N dependence. This
overall behavior is expected for the following reason. The U (V) gauge factor is very weakly coupled
in the higher-spin limit at finite N, so we can construct N2 different “single-trace” operators of
the U(M + N) factor (which are a combined adjoint and singlet of SU(N), where the SU(N)-
adjoint is not a gauge-invariant operator in the full theory), and because of the weak U(N) coupling
the “double-trace” operators constructed from pairs of each of these N2 “single-trace” operators
contribute the same, so we get a factor of N2. Note that it is important to distinguish the single
trace operators in scare quotes from single-trace operators in the usual sense, which are gauge-

invariant.
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Finally, we give the coefficient of the delta function in (SP), which we can compute using (3.11):

K = V2tan (”;) - 320;/§N2 ese(m)) sin® (”;) +0(c?). (3.88)

As promised, this expression does not vanish, and, in fact, is not even invariant under Seiberg duality

A—=1-—A\

3.3 SO(2)ox x USp(2 4 2M)_j, Theory

3.3.1 Simplifying the Partition Function

We now discuss the mass-deformed sphere partition function for the SO(2)a x USp(2 + 2M)_y
theory. Using supersymmetric localization, this quantity can be written as an (M + 1)-dimensional

integral [82,98]:

Zy(my, m_) « /dﬂ dM ) 2mik(n* =3, v2)

[1, sinh® (2mva) [T, -, sinh” [r(va + 1)) sinh® [w(ve — 1] (3.89)

X 27 (p+vp)+mm_
2

cosh

27 (j— : 2 / 27 (p— m_
HbCOSh (p Vg)—i—ﬂ'rmr cosh w(u+u;)+7rm+ cosh 7 (1 u;)-i—frm

up to an overall m4-independent factor. In this section we shall reduce this expression down to a
single integral. We follow the derivation in [99], which considered the special case m; = m_ = 0.
They however consider the general SO(2N) x USp(2N + 2M) theory, while here we only focus on
the N =1 case, for which the manifest A" = 5 SUSY is enhanced to N = 6.

To ease comparison with [99], we rewrite (3.89):

Zyrg(my,m_) O(_/dﬂdMHVeﬁ(“AZ“ ve)

ah2 Va 2 VatUh 32 Va—Us
[, sinh # Ha<b sinh VA sinh 7

BL—Vhb T4 ptry Tm 2 T™m_ . ptrvy T _
Hbcosh( et s )cosh(—y~€ + =5 )cosh( Tt 3 )cosh( TSR )

X

(3.90)
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with k& = 2k. Next we use the Cauchy-Vandermonde determinant, given in (2.6) of [99]:

inh % - VatVb 3 Vo —V
[1, sinh %= [T, sinh #o% sinh =2~

Hb cosh = l/g,+k7rm+ cosh u+l/b+k7rm+

2k 2k
sinh VT‘I (391)
L, ptkTmy—vg ] ptkrmy +vg
= det cosh T cosh oF
[Sinh b’fa}
E Jp=1,...M

FRRES}

We can simplify this expression by introducing canonical position and momentum operators ¢ and

p which satisfy [, p] = 2wik. We denote the § eigenstates by |v), and introduce states |b]] such that

= [[blva) (3.92)

allowing us to simplify the lower block of (3.91). The upper block can be simplified using the Fourier

transform, giving us (2.9) of [99]:

sinh % ipm 1 .
I o (e sinh éH, Va) - (3.93)
2k

p+l~c7'rm+—l/a

cosh cosh

We then follow [99] in performing similarity transforms
) = T ) ) e TR ) (3.94)

so that (3.89) becomes

'Lp'm.+

[Gule ™5 W ~ lva)]

Zyg(my, m_) oc/dudM+1Vdet
[[ble 77" |1,) |

(3.95)

< ‘647rkp 647rkq2 wzl

H e 47rkq e 47rkp |1/1 |e_ﬁq2@_ﬁ|ya+l>

2sinh p

H:jz

We can now apply (2.12-5) of [99] to simplify the matrix elements, but with the modification

<‘u‘e4n—kp 647.rk(22 lp4 -

H e 47rkq e 47rkp |1/1>

2sinh p
(3.96)

71'];5617”2 -
= == O(p—1) = d(p+mw)),

H
7sinh 5
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and so find that

3 Va 3 Va+Ub i Va—Vp
Hablnhénad}bmh o sinh 7

—uy+k k
[1, cosh £ ”b;f”m+ cosgh Kt tkmmy

Zy(my, m_) oc/dﬂdMHV

im _ [

e T 8(u—1) 1
— .
X W ngl 6(l/m+1 — 27T'Lm)

im (3.97)

1 /d e~z sinh [4]
& Cosh Qs K inh [&] cosh [ £ + T5+]
Hl | sinh [ +27”I} sinh [7”742,:%]

,u+27ml M4 p—22mil T )
L= 1cosh{ + 5+ | cosh | E7 4+ 55

After a change of variables 4 — 2z and some further simplifications, we arrive at our final expression

for the partition function

Zn k(Mg ,m-)
7 / Lo €7 cosh [5F] cosh [ + Tge] p sinh |z (3.98)

cosh 2=+ sinh [rz] cosh [ 2% + 5|

1=—n cosh [w + %}

3.3.2 Finite M,k Calculations

We now compute cr and A% _ ., for finite values of M and k. Using (3.98) for the case m; = 0

(B,2)5

and m_ = m, we find that

~ A 0 e )

Z1,3:(0,m) = M = / dx ™" Gy i () (3.99)

0 —00
where we define
cosh? T2 m(x —|— zl)
2k
= tan 1
Gar k(@) sinh 7z cosh 5* H (3.100)

Similarly to Fask(x) in Section 3.2.2, all poles of G k() are located at x = % for K € Z, and

furthermore Gy 1 (z) is periodic in the complex plane, with

GM,}c(-T + 22k> = GM,k(-T) . (3.101)
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M| k L A2 (5,202
0|1 1 4
2 | 3=075 | =32
3 | 0.6511 2.986
4 | 0.6009 2.921
1|2 ]2=07| =32
3| 04778 2.648
4 | 0.3879 2.503
2 | 4| 03879 2.503
5 | 0.3021 2.366
6 | 0.2603 2.312
3|6 | 0.2603 2.312
4 | 8 | 0.1957 2.225
510 | 0.1568 2.175
6 |12 | 0.1307 2.144

Table 3.4: OPE coefficients 1 ; and )\(B 2022 in various SO(2)a x USp(2 + 2M)_j, theories
2,0

By closing the integral (3.99) in the upper-half of the complex, we may therefore reduce it to a finite

sum of poles

4k—1 )
Res [e"™"*Gari(z)] - (3.102)

_i
T=73

211

1— e—2k7rm,
K=1

ZAM,k(m) =

For small values of M and k we can easily sum over poles, and then compute ¢y and /\(B 2022

using (3.8) and (3.28). We list results for various M and k in Table 3.4.

3.3.3 Higher-Spin Limit

We now study the large M expansion of SO(2)a;, x USp(2 + 2M)_j, sphere partition function, hold-

ing A = 2]\5};% fixed. Defining

Z log tanh (a: —I: Zl) —logsinh (7z) ,
(m + zl)
Z log cosh | == (3.103)

cosh [ \/E] cosh [ﬂ(m;i}”)]

cosh ’m\}% cosh [ﬂzgj;fu)} ’

G(z,my) = log
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and then performing a change of variables x = k~/2y, we find that
Zygp(my, m_) x /dm exp (mm,x + Gz, ) + Fi(z) + Fy(z) — Fy(z + m+)) . (3.104)

Each of Fy(x), Fy(z) and G(x,7_) can be expanded at large k with z and 7 fixed in a completely
analogous fashion to Fi(x), Fa(z) and G(z,7_) respectively, as derived in Section 3.2.4 . We then
find that

Zyp(my,m_) /dx exp (—mese(rA)z® +...) , (3.105)

where at each order in k~! and 74 the terms in the exponent are polynomial in z. Derivatives of
Zyp(my,m_) at my = 0 now reduce to a number of Gaussian integrals at each order in kL.

After a little work, we find that

o — 32k sil(w)\) +16cos2(mA) — 7rsm(7r)\)[15;€29 cos(2m\)] + o)
9 B m[3 4 cos(2w\)] cse(m )
Ay =21 Ak (3.106)
 m[39 + 44 cos(27\) — 19 cos(4mA)] esc? (M) O,

128k2

Comparing to the exact results in Table 3.4, we see that already for £k = 2 the approximations

(3.106) are within a couple percent of the exact answers. Solving for )\?B 2022 in terms of cr, we
1<72,0

find

A

8(cos(2Am) + 3 32sin?(7w\) (17 + 23 cos(2mA
2y 2y MDD 1Y) AT Bosr) 107
12)2,0 cr CT

from which we see that, at least at large cp, the theory with A = 1/2 has the smallest value of

A This value of )\?B pyloea1 15 still larger than that of the U(1)y x U(1 4+ M)_j, theory,

2
022]
(B,2))37 2)5%

however. By specializing to the A = 1/2 theory, we can easily compute the large M expansion to

higher orders in 1/cr, finding that

16 3 /16\% 25 /16\° 437 /16\* 20997 /16)\°
)\2 [022] :2+7+7 — - . I +7 I - T~ -
(B»Q)z,o cr 4 cT 24 cT 64 cr 640 cT

(3.108)
259523 (16)6 897994667 (16)7

1536 \cp 967630 \ cr
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Finally, for the mixed mass derivatives, we find that

1 9*logZ _71'4 sin? (7)) B 74(5 4 23 cos(2w\)) sin?(w\) n

— = o=

2. 0%m. 0%m_ 2567 128¢2. ') (3.109)
1 9'logZ _ ir*sin(2r)\)  in*(30sin(2w)) — 23sin(47))) Lo '

2 Pmiom_  B5l2cr 512¢2. o

3.4 Additional U(1) Factors

To close this chapter, we will show that given an A/ = 6 Chern-Simon gauge theory with gauge
group G = SU(N) x SU(N + M) or G = USp(2 + 2M), the S? partition function for the theory
G x U(1)* is equivalent to that of the theory G x U(1), up to an overall constant. This provides
evidence for our conjecture in Section 1.2 that additional U(1) factors do not affect the (SSSS)
correlator.

Note that the mass-deformed S® partition function for the G x U(1)¥ can be generically written

as
Zaxvayr(my,m-) = /Xm cdxy € 2 KaXaXo 7o (my 4+ 2g - x,m_ +2q - ), (3.110)

where K, is the matrix of Chern-Simons levels for the U(1)s ¢ = (q1,-..,qr) are the charges of
the (bi)fundamentals under each U(1), and Zg(my,m_) is the S3 partition function for the theory
without any U(1) factors. In order for G x U(1)Y to have A = 6 supersymmetry, K, and g, must

satisfy the condition

1
> Kquqy = — (3.111)
a,b kG

for some G dependent constant kg, where K is the inverse of K, [19].

To simplify (3.110), we first perform a change of basis of x, such that ¢, = (1,0,...,0). Because

K,y is symmetric, we can then perform a second change of basis to x2,...,Xxr, so that K, take
the form
K1 Ki2 0
K 1 0 ...
K, = . (3.112)
0 0 1
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We can now integrate over xo,X3,... leaving us with
Zaxuyr(my,m_) o /dX1 e”(K“_Kfz)Xng(er +2x1, m_ +2x1), (3.113)
We then note that, in this basis, the condition (3.111) becomes:
Ky — K% = kg, (3.114)

and so

Zaxu@yr (my,m_) « /dx1 ei”kGXQZg(m+ +2x1,m— +2x1) - (3.115)

We now simply recognize the right-hand side of this equation is the partition function for the GxU(1)

theory, and have hence shown what we set out to prove.
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Chapter 4

String and M-Theory Limits

In this chapter, we will study the string and M-theory limits of the U(N) x U(N + M)_; ABJ
theory. In these limits the bulk can be described semiclassical, and so CFT correlators can be
computed using bulk Witten diagrams. Though such holographic correlators have been a subject
of study since the early days of the AdS/CFT correspondence [20, 56, 57] (see for example [100-
108] for early work on four-point functions), they are in many cases hard or even impossible to
compute directly. For instance, for higher derivative contact interactions in string theory or M-
theory the full supersymmetric completion of the first correction to the supergravity action is not
completely known (see however [109-112]), and so one cannot even write down the full set of relevant
Witten diagrams. In the past few years, however, it has become clear that in certain cases one
can essentially ‘bootstrap’ the answer using various consistency conditions [65,74,113-119]. These
consistency conditions include crossing symmetry, the analytic properties of correlators in Mellin
space, and supersymmetry. In particular, for tree-level Witten diagrams with supergravity and/or
higher derivative vertices in 2d [120-122], 3d [65,117,118], 4d [74,115,116], 5d [123], and 6d [114,119]
maximally supersymmetric theories, these consistency conditions determine the Witten diagrams
contributing to the 4-point functions® of 1/2-BPS operators up to a finite number of coefficients.
For low orders in the derivative expansion, one can further fix these coefficients using other methods,
such as supersymmetric localization [15,82] or the relation between the Mellin amplitudes and flat
space scattering amplitudes in 10d or 11d [22,125-129]. In particular, Refs. [65,74,119] showed that
the tree-level Witten diagram corresponding to an R* contact interaction, which is the first correction

to supergravity in both 10d and 11d, can be completely determined using either supersymmetric

1See also [124] for recent work on holographic five-point functions in the 4d ' = 4 super-Yang-Mills theory in the
supergravity approximation.
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localization or the flat space scattering amplitudes. The agreement between the two methods of fixing
the undetermined coefficients in this case provides a precision test of AdS/CFT beyond supergravity.

Our goal in this chapter is to apply analytic bootstrap techniques to the (SSSS) correlator in
U(N)i x UN + M)_;, ABJ theory. Unlike previous studies, the U(N), x U(N + M)_j, theories
have only A/ = 6, rather than the maximal N' = 8, supersymmetry, and so are more challenging
to study. The reason for pursuing this generalization is that it offers the possibility of an unprece-
dented test of AdAS/CFT at finite string coupling gs;. Indeed, if in ABJ theory we take N to be
large and of the same order as k%, then the holographic dual is a weakly curved AdS; x CP? back-
ground of type ITA string theory with finite g5 [16]. Using the consistency conditions mentioned
above supplemented by supersymmetric localization results, we will be able to fully determine the
contribution of the R* contact diagrams to the four-point function of the lowest dimension operator
in the same super-multiplet as the stress tensor. The flat space limit of the Mellin amplitude then
reproduces precisely the R* contribution to the four-point scattering of super-gravitons in type ITA
string theory as a function of g;. This function receives contributions from genus zero and genus one
string worldsheets [130]. The reason why such a finite gs test of AdS/CFT is not available in the
maximally supersymmetric cases is that in 3d and 6d the bulk dual is an M-theory as opposed to
string theory background, while in the 4d case, whose dual is type IIB string theory on AdSs x S°,
the required supersymmetric localization result in the limit of large N and finite g5 o g%, is hard
to evaluate due to the contribution of instantons in the localized S* partition function [15,131-134].

Our primary challenge is to determine the first few tree-level corrections to the correlator (SSSS).
As we shall see in Section 4.1, this task is simplified in Mellin space. Tree-level Mellin amplitudes have
a simple analytic structure, and can be related to flat space scattering amplitudes via the Penedones
formula. In Section 4.2 we study these flat space amplitudes, and solve the problem of computing
tree-level correlators in this simpler setting. Using both the flat space limit and the superconformal
Ward identities derived in Chapter 2, we are then able to compute tree-level corrections up to the
R* term, which we do in Section 4.3.

With this task solved, we can apply our results to the string and M-theory limits of ABJ. In
Section 4.4 we use the known ITA string theory and M-theory flat space scattering amplitudes to
organize the large ¢ expansion of (5555), and can fix the contributions of certain Mellin amplitudes
by considering their flat space limits. We finish in Section 4.5 by combining certain CFT constraints
and the supersymmetric localization constraints derived in Chapter 3 to completely determine the
first few corrections to (SSSS) at large cr in each of the three stringy limits studied in this chapter.

Certain coefficients can be computed independently from both supersymmetric localization and the
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flat space limit, allowing us to test AdS/CFT beyond supergravity.

4.1 Mellin Space

Holographic correlators are simpler in Mellin space. To compute the Mellin transform of S*(U, V),
we first compute the connected correlator by subtracting the disconnected part, defined in (2.78),
Si

conn

(U, V) =80, V) = Siee (U V), (4.1)
and then define M*(s,t) through the equation

; 0 dsdt s w g o $7 1o t] o uy
i _ v s _ _ U 4.2
Sonn(U,V) /m G VIVETT [1-3]r [1 2]1“ -5y, @

where u = 4 — s —t. The Mellin transform (4.2) is defined such that a bulk contact Witten diagrams
coming from a vertex with n = 2m derivatives gives rise to a polynomial M*(s,t) of degree m [22].

The two integration contours in (4.2) are chosen such that?
Re(s) <2, Re(t) <2, Re(u)=4-Re(s)—Re(t) <2, (4.3)

which include all poles of the Gamma functions on one side or the other of the contour. These poles
naturally incorporate the effect of double trace operators [135].

In this chapter we focus on contact Witten diagrams, and in particular aim to find a basis of
Mellin amplitudes that can be used to write the contribution from contact Witten diagrams with

small numbers of derivatives. These Mellin amplitudes must satisfy three constraints:

1. They obey the crossing symmetry requirements

Ml(sat):Ml(Sau)v MQ(Sat):Ml(t,s)7 MS(S,t):Ml(’U,,t), (44)
M*(s,t) = M*(s,u), MP(s,t) = M*(t,s), MC(s,t) = M*(u,t) .

coming from the crossing symmetry of the full (SSSS) correlator.

2. They obey the supersymmetric Ward identities derived in Chapter 2. The SUSY Ward iden-

tities not only constrain M?(s,t), but they also allow us to determine the Mellin amplitudes

2This is the correct choice of contour provided that M?(s,t) does not have any poles with Re(s) < 2 or Re(t) < 2
or Re(u) < 2. If this is not the case (such as for the supergravity Mellin amplitude), the integration contour will have
to be modified in such a way that the extra poles are on the same side of the contour as the other poles in s, t, u,
respectively.
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corresponding to correlators of other operators in the stress tensor multiplet.

3. The M‘(s,t) and all other Mellin amplitudes related to them by SUSY are polynomials in s, t.
We call the collection of Mellin amplitudes corresponding to four-point functions of operators
in the same super-multiplet a super-Mellin amplitude, and we define the degree of a polynomial

super-Mellin amplitude n to be the highest degree of any component Mellin amplitude.

For fixed m, we will label the Mellin amplitudes obeying these requirements as M} (s,t) in cases
where there is a unique such amplitude for a given m or by M;T x(s,t) in the cases where there
are multiple such amplitudes indexed by k. These Mellin amplitudes represent a basis for contact
Witten diagrams, with the number of derivatives in the interaction vertex being bounded from below
by 2m.

Note that, in general, supersymmetry relates the contact interactions for bulk fields with various
spins, and in flat space SUSY preserves the number of derivatives of the interaction vertices it relates.
In AdS however, the number of derivatives within a given super-vertex may vary, with the change in
the number of derivatives being compensated by an appropriate power of the AdS radius L. Thus,
it may happen that a four-scalar vertex with a given number of derivatives is part of a supervertex
containing other vertices with more derivatives. The corresponding Mellin amplitudes M?(s,t) will
then have lower degree than those of some four-point function of superconformal descendants of .S,
and so M} (s,t) may have degree less than n. This fact will be very important in the analysis that

follows.

4.1.1 The Flat-Space Limit

Finding the Mellin amplitudes M} (s,t) that obey the conditions listed above is a difficult task, as
satisfying the third condition requires us to calculate Ward identities for many different correlators
and then examine the locality properties of their Mellin amplitudes. We can simplify matters by
first solving an analogous problem for flat space scattering amplitudes.

At large AdS radius, we can recover flat space scattering amplitudes for scalars using the Pene-
dones formula [128]. Applied to the superconformal primary S the relationship is (up to an overall
normalization N'(L))

Ai(s, 1) = lim N(L)V7 A o tap (L2 L t) . (4.5)

27ri 20" 20

K—100

Here, x > 0, and A’(s,t) is the corresponding 4d flat space scattering amplitude of graviscalars
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(or more precisely a scattering amplitude in 10d string theory or 11d M-theory with the momenta
restricted to lie within 4d and polarizations transverse to this 4d space), computed in the limit
where the AdS radius L is taken to infinity while keeping some other dimensionful length scale fyv
fixed. For string or M-theory duals we can take £y to be either the 10d string length or 11d Planck
length, as we will do in Section 4.4.

From (4.5) we expect that each Mellin amplitude M,ﬁlyk(s7 t) gives rise to a local ' = 6 scattering
amplitude Aim & (s,t). This mapping should furthermore be one-to-one, since if two amplitudes M, ,’n ks
and Mfmk,z have the same large s, t limit, then their difference Mvin,kl - M}'n’k‘z will be a local Mellin
amplitude with degree at most m — 1. Thus, if we can find all of the number of local scattering

amplitudes of a given degree in s, t, then this will also tell us the number of Mellin amplitudes which

occur at this degree:?

# of degree m scattering amplitudes in 4d SUGRA
(4.6)

= # of degree m Mellin amplitudes in 3d SCFT .

Because the flat space scattering amplitudes are obtained as the large s, ¢ limits of Mellin amplitudes,
finding all crossing-invariant, supersymmetric, and local " = 6 flat space scattering amplitudes is a

strictly simpler problem than finding all Mellin amplitudes with the same properties.

4.2 Scattering Amplitudes with N'= 6 Supersymmetry

The toy problem described in the previous section is that of finding four-point scattering amplitudes
corresponding to counterterms in 4d N = 6 supergravity. Spinor helicity and on-shell supersym-
metric methods provide an efficient means to classify allowed counterterms in a theory. They were
first applied to 4d A/ = 8 in [136,137], and have subsequently been generalized to other maximally
supersymmetric theories in [138,139]. In the context of A = 6 supergravity these methods have
been applied to study amplitudes involving bulk graviton exchange [140,141].

We will begin this section with a lightning review of spinor-helicity variables, including their dis-
crete symmetries, before discussing the on-shell superspace formalism as applied to N/ = 6 theories.
For a much more detailed treatment of spinor-helicity and on-shell methods we recommend [142].

In Section 4.2.3 we apply these methods to classify counterterms in A/ = 6 supergravity which con-

3At a more abstract level, we can justify the correspondence (4.6) as follows. Local Mellin amplitudes correspond
to bulk contact Witten diagrams, which are themselves in one-to-one correspondence with local counterterms in AdS.
But since AdS is maximally symmetric, local counterterms in AdS are equivalent to local counterterms in flat space.
Since local counterterms in flat space correspond exactly to scattering amplitudes, we find that Mellin amplitudes
and scattering amplitudes are in one-to-one correspondence.
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tribute to four-particle scattering, and discuss their implications for N'= 6 SCFTs in Section 4.2.4.

We then close with a discussion of four-particle exchange diagrams in Section 4.2.5.

4.2.1 Spinor-Helicity Review

For massless fermions, the Dirac equation for the wavefunction of 4-component spinors implies

. (p)=0, TaL(p)p=0. (4.7)

Here + indicated the helicity h = j:% of the wavefunction. If we take our Dirac matrices to be in

the Weyl basis, namely

70 = , A= , = 7 (4.8)

where 1 stands for the 2 x 2 identity matrix and o, i = 1,2, 3 are the standard Pauli matrices, then
the top two components of the Dirac spinor transform in the (1/2,0) and bottom two in the (0,1/2)
of SO(3,1). For a given momentum p* = (E, E'sinf cos ¢, E'sinfsin ¢, E cos §), we can then define

the angle and square brackets as

0 s 0
. cos & sin &
lp)* = V2E 2, Ipla=V2E ],
sin gew — Co8 ge“b
(4.9)
CcoSs g sin g
[p|a =V 2F ) ) <p|d =V 2F ) )
sin ge~i? —cos e~
such that
Pla 0
’U+(p) = ) V— (p) = . )
0 p)* (4.10)

Uy (p) = ([pa 0) ;o u-(p) = (0 <p|a> :

are solutions to (4.7). Now consider the scattering of massless particles b;t with helicity +h; for

i=1,2,.... We define the scattering amplitude to be:
APBEDE )0 (1 4o+ ..) = (aE (pr)as (pa) ... (4.11)
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where af (p) is the annihilation operator of the i*® particle, annihilating a particle of helicity +h; and
momentum p;. The amplitude A[bFbs ...] must be a Lorentz scalar which transforms covariantly
under the little group transformations.

We will finish by reviewing the discrete symmetries P and C7. Under parity P, we reverse the
spatial components of the momentum of a particle, while leaving the spin unchanged. Flipping the
direction of p'is equivalent to sending § — 7 — 60 and ¢ — ¢+ 7 in (4.9). Under this transformation,
the spinors in the first line of (4.9) get interchanged and so do the spinors on the bottom line. Thus,

parity acts* as either P4 or P

Pucl)® =Pl P“Pla=p)*,  [P|"Paa= 0la,  (plaP* = [p|*. (4.12)

The effect of parity is hence to swap all angle brackets with square brackets and vice versa, while
leaving all coefficients unchanged. For instance, P(c(12)) = ¢[12] for any constant c.

The second discrete symmetry we consider is CT, which is the product of charge conjugation and
time-reversal. Under CT, the spatial components of momentum also flip sign, just like for P, but in
addition CT also implements complex conjugation. Thus, from (4.9), we see that CT acts as either

(CT),; or (CT)™ as follows:

€Tl = Wlar €Tl =11, WlaCT)y=10)",  PI*CT)" =Iply. (413)

Thus, the effect of CT is to flip all the brackets and perform complex conjugation on the coefficients—
for instance CT (¢(12)) = ¢*(21) for any constant c.

The combined transformation of the two symmetries above, CPT, is a symmetry of all unitary
QFTs. On amplitudes, it acts by exchanging angle brackets with flipped square brackets and vice
versa, and it complex conjugates the coefficients. For instance, CPT (¢(12)) = ¢*[21]. Using CPT,
we can relate a given amplitude to the amplitude of the CP7T conjugate particles. For particles by,

by, etc. with CPT conjugate particles by, by, etc., we have

CPT (A[biby ...)) = A[b by ... (4.14)

4In terms of the four-component spinors (4.10), the action of parity takes the usual form:

0 1
Ui(PO:—mZWOUi(P07@:<1 0) v+ (p%,7) -
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® Particles || AT T | gt F* ) X~ | a”
Helicity 2| 13/2 | 1| 412 o —1/2 | -1
SU(6)r 1 6|15| 20|15 6| 1
U Particles || a* xT | 6| F| g | AT
Helicity 14172 ] 0 —1/2 | -1 | —3/2 | -2
SU(6)r 1 6|15| 20|15 6| 1

Table 4.1: Massless particles in A/ = 6 supergravity.

4.2.2 N =6 On-Shell Formalism

In N = 6 supergravity, the massless particles split into two supermultiplets: a multiplet we denote
by ® that contains the positive helicity graviton ht, and its CPT conjugate multiplet we denote by
U that contains the negative helicity graviton h~. In addition to the graviton h*, these multiplets
also contain the gravitino 1)*, the gauginos g*, fermions F* and y*, scalars ¢, and the graviphoton
a®. Table 4.1 lists the particles in these multiplets, along with their transformation properties under
the SU(6) R-symmetry of N' = 6 supergravity. In the on-shell superspace formalism, the ® and ¥
superfields are polynomials in the Grassmann variables n!, with I = 1,...6 transforming in the 6

of SU(6):5

1 1 1 ,
®=ht 'l + o'’ gl, + gnIanKFFJK + g ek MY
1 1
5,77[77J77K77L77 errkrmMnX” 6,77177J77K77L77M77 €IJKLMNG
(4.15)
1 — 1 1
U =at Xy 4 o' b ' Fle 4 gm0 en o g™
1 _ 1 _
+ et M ey ™+ et N er e
In a four-point superamplitude, such as A[@PT Y], each particle i = 1,...,4 is associated to some

Grassmannian variable /. To compute a component scattering amplitude we simply differentiate

with respect to some of the Grassmannian variables while setting all others to zero. For instance:

ARTRThTRY] = A[@OW Y]

n{ =0
9 S 9
AR = (] 57 ) apovw]| | |
| | <JH=1 oy ) (KQ g > | ] o (4.16)
3100 70 ) 20 B
Algo™ - ond 9K A[DSUT
(070" b12015] (Jl—[_1 877{) (Il__[l 37]5) <Ll_[_1 377§> (H p) M) [ ] "

SUpper I, J, K, ... indices transform in the 6 of SU(6) while lower I, J, K, ... indices transform in the 6 of SU(6).
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In this way a superamplitude A encodes all the amplitudes of its component particles.
Up to crossing, there are five possible 4 particle superamplitudes we can construct from ® and
V. However, under CP7 the two supermultiplets ® and ¥ are conjugates, and their scattering

amplitudes are related by complex conjugation
ATT0T] = (A[PPDD))", APTTD] = (A[PDPDT])". (4.17)

This leaves us only three independent superamplitudes, A[®@®TT], A[®PPV], and A[PPPP]. Our
task now is to constrain the forms of these superamplitudes, beginning with invariance under super-
symmetry.

As explained in [142], for a given particle i the supermomentum is defined to be
. - 4 0
of =lin! . dni =] ol (4.18)
i

and it satisfies the on-shell SUSY algebra by construction. For a given amplitude the total super-

momentum is thus:

Q=3 al, Q=) dn (4.19)

Superamplitudes must be annihiliated by these supercharges. For a four-point amplitude such as

A[®DPU W] this implies that
QIA[®PIT]) =0,  QA[®PDIVY] =0. (4.20)

Imposing these conditions uniquely fixes any four-point superamplitudes up to an arbitrary function

of s and t:
_ o1z 12
A[@PPV] = 512(Q)U2]5<<;‘31<Mf2(3, t), (4.21)
12, [12]
AlQ22P] = 67(Q) f3(s,1),

(34)4

where the first factor is the Grassmann delta function

6 4
5(Q) = 55 [T 3 Gl (422)

I=14,j=1
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>, hil | A[@eww) | A[edow) | A[@209)]

0 Alppdo] None None
1 A[Ftx~é9] Alpppa™] None
AlppxtF~] AlppFrxt]
Alpx~x9] Alppg™ o]
AlpFTF~¢]

[
[
[
[
[
2 | A[FtFTF-F-| | AIFtFTFTF-) | AIFYFTFTFY]
[
[
[
[

[ [

Ax XXt | A[FTFTYTXT] | Algt P ET )
Albgtg~d] Alpgpt F] Algtg* ¢d)
Alpa—ad] | AWtx-6d | AltF*ed
Alogt PP | AlgFrxd) | Alood)

AlhthTa~a™]
AlhThta=h™] None
A[Rthth=h™] None None

Table 4.2: Component amplitudes of each superamplitude, organized by total helicity >, |h;|. Here
h; is the helicity of the i*! particle. We have not included amplitudes equivalent to the ones listed
here under crossing.

which is annihilated by both Q! and Q;, and fi(s,t) are functions of s and ¢t. The delta function
§12(Q) is automatically invariant under SU(6)g, even if the full theory does not preserve SU(6)g
[137].5 Note that every term in each superamplitude contains exactly 12 Grassmannian variables,
and, as a result, many component amplitudes vanish, including A[hThThTh™] = A[pppd] = 0. See
Table 4.2 for a list of component amplitudes that do not vanish. The angle and square brackets in
(4.21) are required so that the ® and ¥ components have the correct helicity, which for instance can

be fixed by considering

AT RTRT) = [1214(34) fa (s, 1),
A[RThTh™a™] = [12]°(34)%(14)(24) fo(s, 1) , (4.23)

AlhThTa~a™] = [12]*(34) f3(s, 1) .

Due to CPT invariance, the function fi(s,t) must always be real. We can see this by considering

6In flat space N = 6 the supersymmetry algebra does not require there to be an R-symmetry; it is an accidental
symmetry of the supergravity action. On the other hand, the superconformal algebra does require that at least an
SO(6) g symmetry be present in order for an AdS solution to preserve all supersymmetries of the theory.
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the first equation in (4.23), and then crossing both 1 <> 3 and 2 +> 4 to find that

A[h~h~hTht] = (12)4[34]* f1 (s, ), (4.24)

But the amplitude A[h~h~h*hT] is also related to A[hThT™h~h~] by CPT,

CPT (A[hThth™h™]) = A[h"h™ kT ht] = (12)*[34]* f{ (s, 1) , (4.25)

and from comparing this expression with (4.24) we conclude that fi(s,t) must be real. As a conse-

quence of this, we find that

CT (A[hthth=h7)) = [1214(34) f1 (s, t) = A[RTRTR™R7], (4.26)

and so A[hthth~h~] is always CT-even. This relation extends to the full multiplet thus showing
that A[®@®UY] is CT-even.

The functions fz 3(s,t), on the other hand, are in general complex, with their real and imaginary
parts corresponding to C7T even and odd amplitudes respectively. For instance, if we consider the

third amplitude in (4.23) we see that

CT (A[hThta~a™]) = [12]*(34)2 3 (s, t) (4.27)

and so the amplitude A[hT™hTa~a"]is CT even / odd if f3(s,t) is real / pure imaginary. From this we
conclude that A[PPPP| can be thought of as containing two distinct superstructures, one of which
is CT even and the other C7 odd. Similar manipulations show that A[®®PY¥] also contains a CT
even and CT odd structure, corresponding to fa(s,t) purely real and purely imaginary respectively.

So far we have focused on the discrete spacetime symmetries. However, N' = 6 superconformal
symmetry also allows a discrete R-symmetry Z, and so it is natural to extend this to N/ = 6 flat
space scattering amplitudes . Recall that the various particles in the ® and ¥ multiplets transform
under an SU(6)g R-symmetry

nt — M7, (4.28)

where M7 ; is a unitary matrix with determinant 1. Let us now relax the determinant condition,

and instead consider a more general element of U(6). If we demand that the gravitons AT and h™
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are preserved under Z, then without loss of generality we can take Z to act as

Z:0 D, T — —U, nt —int. (4.29)

Under both Z and —Z the gauge fields flip sign

Z: ot - —a¥, gt — —gT (4.30)

while the gravitons h* and the graviscalar ¢ are left invariant. The fermions will transform with

additional factors of i:

Z: Ut 5 40T F* — FiFT, Xt = ixT. (4.31)

The full symmetry group is now (Z4 x SU(6))/Za, the subgroup of U(6) of matrices with determinant
+1. Note however that only fermion bilinears are physical. As a result, the transformation ! — —n!
acts trivially on all amplitudes. After quotienting the SU(6) by this Zs symmetry, we find that the
symmetry group acting on the amplitudes is Zy x (SU(6)/Zs), with 22 = I.

While Z is a discrete R-symmetry of pure supergravity, it may or may not be a symmetry of
the corrections to supergravity, so we can classify the various amplitude structures as Z-even or
Z-odd. Since §(')(Q) contains twelve 7’s, it is even under Z, and so we conclude that A[®®T V]
and A[®@PPP| are even under Z and that A[@PPPY] is odd. We can alternatively deduce this from
(4.23), since A[PPPY] contains an amplitude with an odd number of gauge fields, while the other
two amplitudes contain an even number.

To summarize, we have found that there are five linearly independent superamplitudes which
contribute to the scattering of four supergravitons. Two of these structures are both C7T and Z
even, and there is a unique superamplitude for each of the other three possible CT and Z parity

combinations.

4.2.3 Counterterms in A/ = 6 Supergravity

We are now left to constrain the forms of f;(s, ) using locality and crossing symmetry. A tree-level
scattering amplitude is local if and only if it can be written as a polynomial in the spinor helicity

variables [ij] and (ij); note that

s =[12](12) = [34](34), ¢ =[13)(13) = [24)(24),  w = [14](14) = [23](23). (4.32)
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From (4.23) we immediately see that it is not possible for f;(s,t) to contain poles in s,t or u, or else
the amplitudes in (4.23) would lead to non-polynomial expressions. Hence f;(s,t) are necessarily
polynomials for tree-level amplitudes. This is also sufficient, as when f;(s,t) = 1 one can check that
all amplitudes in the superamplitude are local.

Crossing symmetry imposes a series of further constraints. For instance, in (4.23) the amplitudes

must be invariant under interchanging the first and second particles. This gives us the relations

f1,3(s,t) = f13(s,u), fa(s,t) = —fa(s,u), (4.33)

where u = —s — ¢ is the third Mandelstam variable. The superamplitudes A[®PPP] and A[PDPD Y]
are also invariant under crossing which exchange the first and third particles, giving rise to the

further conditions:

fals,t) = =fa(u, ), f3(s,t) = fa(u,t). (4.34)

Together, Eqgs. (4.33) and (4.34) suffice to guarantee crossing under all possible permutations.

Having determined the allowed forms of f;(s,t), we can now determine the number of derivatives
in each interaction vertex. To this count each angle and square bracket contribute 1, §12(Q) con-
tributes 6, and each power of s, t, u contributes 2. For instance, if we set fa(s,t) = s* and consider
the amplitude A[PPVT]| = 5:”“(512(62)%7 it follows that this amplitude comes from an interaction
vertex with 8 + 2k derivatives, namely from an D?*R* term.

With this in mind, we can now systematically find all local counterterms up to a certain number
of derivatives. In Table 4.3 we list all local counterterms up to 15 derivatives, corresponding to Mellin
amplitudes up to degree 7.5.7 In particular, the first local counterterm has 6 derivatives, is unique,
and contributes only to A[®@PPP]. The next local counterterm has 8 derivatives and is also unique
and contributes only to A[®PWYV]|. There are two 10 derivative counterterms, one contributing to

A[®DPP] and one to A[PPPP], and so on. The counterterm with the lowest number of derivatives

that contributes to A[®@PP¥] has 15 derivatives and will not be important in this work.

4.2.4 TImplications of Flat-Space Amplitudes for N =6 SCFTs

Having systematically computed the local amplitudes in N' = 6 supergravity, we will now discuss

the implications for holographic A = 6 SCFTs. First, we can deduce that there are five independent

7A Mellin amplitude of degree 7.5 would seem to require non-polynomial contributions to M?(s,t). Because
A[22P V] always violates Z while (SSSS) is Z preserving, the Mellin amplitudes corresponding to A[®P®W¥] never
contribute to (SSSS) and so M*(s,t) remains a polynomial in s and t.
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deg. fi(s,t) fa(s,t) fa(s,t) Counterterms # sols. | even sols.
3 — — 1 F?R? 2 1
4 1 — — R* 1 1
5 s — s+ t2+u? | D*F?R?, D*R* 3 2
6 52, 62+ u? — stu D°F?R? ) D'R* 4 3
7 | 8% s(t? +u?) — (s> +t* +u*)? | D°F?R*, D°R* 4 3
7.5 — (s —t)(t —u)(u —s) — D®FR? 2 0

Table 4.3: Counterterms in N/ = 6 supergravity, up to 15 derivatives. The last column lists the
number solutions which are CT and Z even.

superconformal invariants in the four-point function of four stress tensor multiplets. This counting
follows from the number of unknown real functions needed to fully determine the scattering ampli-
tudes of supergravitons, one for fi(s,t) and two each for fa(s,t) and f3(s,t), as these latter two
functions are in general complex.

Second, from Table 4.3 we can immediately deduce how many polynomial Mellin super-amplitudes
exist for a given degree in s,t. For instance, at third degree we have a single polynomial super-Mellin
amplitude with scalar component M(s,t), and at fourth degree we additionally have another poly-
nomial super-Mellin amplitude with scalar component M} (s,t). Here, by third and fourth degree
we mean that the super-amplitudes that Mi(s,t) and Mj(s,t) have degree 3 or 4 for some of the
components of the amplitude, but not necessarily for the scalar components Mi(s,t) and Mj(s,t)
themselves. These scalar components may be of less than third and fourth degree, respectively.

In fact, it can be argued that while the scalar component Mj(s,t) is of degree 4 in s,t, the
scalar component Mi(s,t) is actually at most quadratic. This is because the leading order behavior
of the super-Mellin amplitudes that Mi(s,t) and Mi(s,t) are part of at large s and ¢ must match
the corresponding super-scattering amplitude. Since the M4 (s,t) amplitude contributes only to the
superamplitude A[PPPP] (as can be seen from Table 4.2), it does not give rise to a scalar scattering
amplitude. Therefore M4 (s, t) must be at most quadratic, rather than cubic, in s and . On the other
had, M{(s,t) contributes to the superamplitude A[®®W¥ V], and this superamplitude does include a
scalar scattering amplitude, A[p¢pd]. Thus, Mi(s,t) must have degree 4.

We can be more precise and also find the leading large s, ¢ behavior of all (§5S5S) Mellin
amplitudes M?(s,t) for which M?(s,t) is of highest degree in the super-Mellin amplitude. (This
means we will be able to find the leading large s,t behavior of M}(s,t) but not of Mi(s,t).) As per
(4.5), the leading large s,t behavior of M®(s,t) comes from the flat space amplitude A’(s,t). The
only scattering amplitude with a scalar component is A[®PW Y] which is fixed in terms of f1(s,t),

and so the leading large s, t behavior of M?(s,t) depends only on fi(s,t). The calculation proceeds in
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two steps. First we compute the amplitude Alpapcpdrrcr®; @5y ], where we have made explicit
the SU(6) indices on ¢ and ¢. We then relate ¢ and ¢ to the CFT operator S,¢, requiring us to
convert the SU(6) structures to SO(6) structures.

To compute A[papcpdrrcu®r ;i1 ), we must differentiate A[®®W W] with respect to the Grass-

mannian variables:

Alpapcpdrrcaudr ) = oy WA[‘I)‘I“I"I’]
1 i
0 0 [12]*
= W .. ﬂ 12(@) <34>2f1(5,t) (4.35)
[12)4 ) 0 o o— ..

To simplify the process of differentiating 6('?)(Q), we can use SU(6) invariance to expand

Alpapcpdrrandrydxr) (4.36)

= 6ABCDI.]GEFGHKLF‘l (57 t) + 6ABCDKLEEFGHIJF‘Z(57 t) + EABEFIKECDGHJLF3(87 t)~

for some functions F;(s,t). We can then choose specific numbers for each index A through L to

isolate each structure, and hence find that
Fi(s,t) = 25%u(4t —u) fi(s,t), Fa(s,t) = 25%t(du —t)fi(s,t) Fs(s,t) = —s*tufi(s,t). (4.37)

Now we must relate A[ppgd] to (SSSS). To do so, we can rewrite S,° as an antisymmetric 6 x 6
matrix:

g1 = g polig?l (4.38)

where recall that CL_ are the SO(6) gamma matrices defined in Section 2.1. Up to normalization,
we then find that

S s $apcpeABOPLI | §IASIBG (4.39)

flat space

This expression for S’/ breaks the SU(6) symmetry down to SO(6) due to the presence of the §74

symbol. Applying this to the four-point function, we find that

(81 [ §laday 5 sum of contracted permutations of A[ppdd|. (4.40)

flat space

We must now expand our final answer in terms of the SO(6) structures appearing in (2.5). To do
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so we choose a series of polarization matrices (X;)% and then define

X1 = (x,)s,cue’ (4.41)
Contracting both sides of (4.40) with matrices X/7, on the left-hand side we find that
1 &
(Shr (@) .. ST (@) X X o (S (@1, Xn) - S(Ea, Xa)) = ——5 3 SHULV)B;.
T12%34 5T
(4.42)

We then Mellin transform and take the flat space limit (4.5) to find that

(G (). SR E) R Xy N A Ay b A5, 1) B
flat space X193y
(4.43)
for some overall normalization constant /. Computing the right-hand side of (4.40) is more straight-
forward; we simply contract the XiI"Ji matrices with the various permutations of A[pdp¢]. By im-

posing (4.40) for many different matrices (X;)% we can completely determine A’(s,?) in terms of

f1(s,t), and upon choosing a suitable value for A/, we find that

A(5,1) = —gtu (= fals, 1) + 0% i) + 2 Fi(1,5))
A2(s, t) = f%su (sQfl(s, t) + uf (u,s) — 2 f (t, s)) ,

A3(s,t) = —%ts (52f1 (5,t) —u?f1(u,s) + 2 fi(t, 5)) ,

; (4.44)
Al(s,t) = —§stu (ufi(u,s) +tfi(t,s)),
Ad(s,t) = —%stu (ufi(u,s) + sfi(s,t)) ,
AS(s,t) = —%stu (sfi(s,t) +tf1(t,s)) .
From (4.44), we can also determine fi(s,t) in terms of A’(s,):
1 [ A2%(s,t)  A3(s,t)
ﬁ@ﬂ—ﬁ( T >. (4.45)

We can then apply (4.44) to Mj(s,t), which at large s,t should asymptote to A’(s,t) with
fi(s,t) =1 (see Table 4.3). We hence find

Mi(&t) = <t2u2 2u2  g2¢2 82% % 81‘5‘2) + subleading in s,t. (4.46)
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4.2.5 Exchange Amplitudes

So far we have considered local contact amplitudes. The only other tree-level diagrams which appear
in four-point functions are exchange diagrams. These can be built up from the on-shell three point
amplitudes using on-shell recursion relations (see for instance chapter 3 of [142]), and so our first
task is to find the allowed three point amplitudes.
Three point amplitudes are subtle due to special kinematics; conservation of momentum implies
that either
[12] =[13] = [23] =0 or (12) = (13) = (23) =0. (4.47)

For real momenta [ij]* = (ji) so this would seem to rule out any interesting amplitudes. This issue
is resolved by analytically continuing to complex momenta. Locality and little-group scaling then

uniquely fix three-point functions to take the form:

c[12]mthe=hs[13]m+hs—h2[93]h2+hs—In if hy + ho+h3 >0
c(12)hs=hi=hz(13)ha=hi=hs (ogyhi—ha=hs if h; 4 hy 4+ hy < 0
A[1hioh2ghs] = (4.48)
¢ if hy =hy =hs =0

0 otherwise

where ¢ is an arbitrary constant [142,143]. Superamplitudes must furthermore satisfy the supersym-

metric Ward identities, and this uniquely fixes them to take the form:

3
ARPY] = o (12)ns + (23] + [31)e) + %wm% +(23)m + (31)m2),
A[22Q] = mﬁﬁ)([l?]% + [23]m1 + [31]72) ,
(4.49)
where
6
5O ([12]ns + (23] + [31]n2) = H ((12)nsr + [23]mr + [31]n21) ,
= (4.50)

6
82 ((12)ms + (23)m + (31)ms) = H ((12)n31 + (23)mr + (31)n2r)? .

The g; term in the A[®®P¥] superamplitude corresponds to the usual supergravity three-point func-
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tion, and in particular gives rise to a graviton scattering amplitude

[12)°

ARThTR] =91 TP

(4.51)
The g2 and g3 terms both vanish due to crossing symmetry; if we exchange 1 +» 2 then A[®PP| and
A[®D U] must be even, but this is only possible if go = g3 = 0.

Since there is only one supergravity three-point function, we can now determine the corresponding
unique four-point exchange amplitude. Because the tree-level graviton amplitudes in pure super-
gravity are identical to those in pure gravity [142], we can simply use the pure gravity result to
deduce that

2
g
1SG<87t) = ﬁv QSG(Svt) - ??G(Sat) =0. (452)

We can then substitute this into (4.44) to find that the A[¢ppg] amplitude at large s,t is expected

to be

s t u 2

Mig(s,t) = g} <t“ suoostos L ;) + subleading in s, t. (4.53)

4.3 Holographic Correlators with A/ = 6 Supersymmetry

We will now determine the full form of the first few Mellin amplitudes contributing to (SSSS). We
will begin by fixing M3(s,t), by using the supersymmetric Ward identities and requiring that all
four-scalar and two-scalar, two-fermion amplitudes are polynomial. We then compute the degree
four amplitude M} (s,t) and the supergravity amplitude M} (s,t) by reducing the known N = 8

results to AN/ = 6.

4.3.1 Computing M;(s,1)

We can translate the (S555) Ward identities (2.12) into Mellin space using the definition of the
Mellin transform M?(s,t) of (SSSS) in (4.2). We then find that the effect of multiplication by
U™V™ and of differentiating with respect to U and V corresponds in Mellin space to the operators

_— s\ 2 £\ 2 u\ 2
UmV”M(s,t):M(s—2m,t+2m+2n)(1—2)m<1—2>_ ) (1—7) ,

@”M(s,t) = (g +1- m)m U""M(s,t), (4.54)

o M (s, 1) :(g - m) VM (s,t).

m
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Applying these rules to the position space Ward identities (2.12) yields a pair of finite difference

equations for M*(s,t). We now impose the following constraints to find Ms:
1. Mi must satisfy crossing symmetry (4.4).

2. Mi must be a degree 2 polynomial solution of the (SSSS) Ward identity. The ansatz for
M3 is only degree 2, since in the previous section we showed that Az does not appear in the

scattering of four scalars, so M3 must vanish in the flat space limit.

3. M3 must remain a polynomial when expressed as correlator of other operators in the stress
tensor multiplet using the Ward identities in the previous section.® The degree of these poly-

nomials is at most 2 if the corresponding flat space amplitude vanishes, and 3 otherwise.

Condition 3 was trivially satisfied in the maximally supersymmetric cases previously considered in
various dimensions [74,118], where polynomial Mellin amplitudes for (5S5SS) remained polynomials
for all other stress tensor multiplets correlators. In our case though, we find that just imposing
conditions 1 and 2 leads to five linearly independent solutions: a degree 0, a degree 1, and three

degree 2:

degree 0: M'=1, M*=1,

degree 1: M =s, M4:S;47
1st degree 2: M' = (t —2)(u—2), M* = (s - g) (s—2), (4.55)
2nd degree 2: Mlztu, M425(572—4)7
3rd degree 2: M =52, M* = s% +tu— 3s.

To reduce these to a unique amplitude, we must consider the other Ward identities for (SSxx),
(SSYF), (SSFF), and (SSFF) given in Appendix A. To translate these into Mellin space, we
first note that any four-point correlator between two dimension 1 scalars ¢ and two dimension 3/2

fermions *(z) takes the form

()8 @) @) = L1 g0, v) + Ptad Dy oy (s

x12x34 21’12%4

8Instead of imposing this requirement, we could alternatively impose the condition that certain operators in the
S x S OPE do not acquire anomalous dimensions. For instance, we can uniquely determine M3 if we impose this
requirement for the spin 0 operators of dimension 2 in the 84, 20’, and 15, irreps of SO(6) g, as well as for the spin 1
operator of dimension 3 in the 45 @ 45, all of which belong to protected multiplets and do not mix with unprotected
operators.
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We can then define Mellin transforms M M'W(s t) of the connected parts of the correlators H2¥Y,

conn,?

by the equations

i dsdt s u s s t U
¢¢¢¢ _ Sy %] s 92 Y 2 o u PP
e _/ UiV rfi 2]F{2 2}1“ {1 2}1‘ K Q}Ml (s,1),
Higmta(U :/ - dt e [2 B g} L [1 B ;] r {1 B %} M (s 1),

(4.57)

where, as previously, we define u = 4 — s — t. These expressions were derived in [144] using AdS4
Witten diagram calculations. The arguments of the Gamma functions were chosen so that bulk
contact Witten diagrams correspond to polynomial Mellin amplitudes. Using the definition (4.57),

we find that drivatives of U and V' and powers of U and V in position space act on Mi‘z"z”l”l’(s7 t) as

B MO (s, 1) :(% +1- m)mﬁ*mM;f“f’W(s, 1),
M (5,8) =(5 —m) VIIMI(s,1),

2
J— ¢ 2
TmVaMEP (s, 8) =MP?"¥ (s — 2m, t + 2m + 2n) (1 - %) (2 - g) <1 - > (1 . 9) ,

i 2 £\ 2 2
TmVaMEP (s, 8) =MP?“¥ (s — 2m, ¢ + 2m + 2n) (2 - g) (1 - 2) (1 - 3) .

(4.58)

For the correlators (SSxx), (SSxF), (SSFF), and (SSFF), we define their Mellin amplitudes
by Mellin transforming the individual functions of U and V given in Appendix A. For instance, we
can write (SSxx) in terms of the structures C*! (U, V') defined in (A.4), where the indices a = 1,2, 3
and I = 1,2 refer to the various R-symmetry and conformal structures, respectively. The Mellin
transform Mi}%‘x(s,t) of these C*1(U, V) is then defined by (4.57). We can relate Mti‘?xx(s,t) to
Mi(s,t) as

M = (1 f) D,

9 at,l

S\ 2 —/—
MEP = (1= 2) DG LU V.00, 0v)M'(s,1).

(Uu VJ 8U7 aV)]\4i(8u t) B
(4.59)

where the (SSyyx) Ward identity ’Dm 1 is given in position space in (A.5), we express derivatives and
powers of U and V' in Mellin space using the rules (4.54), and s-dependent prefactors come from the

difference in the definition of the scalar and fermion Mellin amplitudes in (4.2) and (4.57). We find
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that degree 0 amplitude in (4.55) gives

1 2t
degree 0:  Myy(s,t) =0, Myy™(s;t) = =, Mzy(s,t) = ——,
, ’ 16 ’ 16u (4.60)
1 1 :
SS SS SS
My (s,t) =0, Myy*(s,t) = 8t’ My 5 (s,t) = 8u’

which contain poles, and so must be discarded.

When we apply this method to the Ward identities for (SSFF) and (SSFF), a new subtlety
emerges. These Ward identities (A.13), (A.15), and (A.17) depend on both (SSSS) and (SSFF),
and in particular can be written in terms of not only S*(U, V) and S*(U, V'), but also the functions
FoL(U, V) for (SSFF) defined in (A.3), where a = 1,2 labels the two R-symmetry structures.
To derive the constraints from these Ward identities up to degree 2, we must consider a degree 2
polynomial ansatz for the Mellin transform M7 75 (s,t) of F*!(U, V), which satisfies the crossing

relations

MESTF (s,) = MESF (s,0) + (1= 5 ) MEST7 (s, ),

2
MESFF = MEFFF (s,0) + (1 2) MEEF (s5,w),
2 (4.61)
S
M (s,1) = — (1 3) MESTF(s,),
MESFF(s,8) = = (1= 3 ) MESTF (s,u),

where the s-dependent prefactors come from the difference in the definition of the fermion Mellin
amplitudes in (4.57) for the two different conformal structures. After imposing the (SSxF), (SSFF),
and (SSFF) Ward identities, just as we did for (SSxx) above, and demanding that all poles vanish,
we find that M(f‘fFF(s,t) is completely fixed in terms of M*(s,t) up to degree 2, and that only a

single degree 2 solution for M?*(s,t) survives:
Ms: My =(t—2)(u—2), Mg*:(s—)(s—Q). (4.62)
Thus we have found the unique degree 3 Mellin amplitude Ms(s,t) which contributes to (SSSS).

4.3.2 Computing M,(s,t) and Supergravity Exchange

To compute both Mj(s,t) and Mi(s,t), we can make use of previous results in the literature for
N = 8 SCFTs. Recall that N' = 8 SCFTs are special cases of N' = 6 SCFTs. The N/ = 8 stress

tensor multiplet is a superset of the N = 6 stress tensor multiplet. In particular, the superconformal
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primary is a A = lscalar operator S 4 (&) transforming in the 35, irrep of the so(8)z R-symmetry.”
(Here S (&), with A,B = 1,...,8 being 8, indices, is a traceless symmetric tensor.) Like in the
N = 6 case, we can use an index-free notation by contracting Ssp(%) with a symmetric traceless
8 x 8 matrix X 4. The four-point function of the 35, scalar operator is restricted by conformal

invariance and s0(8) g to take the form

. o 1 |- — — - - o
(S(#1, X1) - S(¥4, X4)) = 5~ Sl(U, V)Ai12A34 + 82(U7 V)Ai13A24 + SB(U, V) A14A23

Ti5T
1234 (4.63)
—4 — —5 — —6 —
+8 (U,V)Bia23 +S (U,V)Bi2za +S (U, V)Bi3a2| ,
where we define'©
Zij = tr(yiyj) , Eijkl = tr(yiyjykyl) . (464)

The Mellin amplitudes for S which correspond to contact interactions were found in [65]. With

our definition (4.2) (with S? L and Mi replaced by Mi)7 the result in [65] for the

conn

replaced by S

conn

quartic amplitude is

1
My = —(t — 2)(u — 2)(35tu + 100s — 112),

3 (4.65)
M, = 55 (5 = 2)(35stu — 90(1% + u®) — 2801w — 3245 +1072)..

To relate (4.65) to Mj(s,t) we must relate the so(8)g structures (4.64) to the su(4)g ones
defined in (2.6). Under the decomposition s0(8) — su(4), we have 8. — 4 + 4, which implies

35, — 10+ 10 + 15. To select the 15, we restrict the 8 x 8 matrices X to take the form

— 1
X =—|(ReX)® I + (ImX) ® (i02)| , (4.66)
V2
where X is a 4 x 4 traceless hermitian matrix, I5 is the 2 x 2 identity matrix, and o is the second
Pauli matrix. (See equation (3.16) of [65].11) Tt is straightforward to check that
1

Ay =By, Biass = 134, (4.67)

9The fact that this representation is the 35. as opposed to one of the other two 35-dimensional irreducible
representations of s0(8)p assumes a choice of the triality frame.
P R y

10Despite the use of matrix so(8) polarizations here, the gi(U, V') here are equal to the S;(U,V) in [65].
11The factor of 1/\/5 is just a choice of normalization.
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with analogous expressions for the rest of the R-symmetry structures in (§55S5). This implies that

Si=8" fori= 1,2,3 and S* = igi for i = 4,5,6 and analogously for the Mellin amplitudes. Thus,

1
My M} = —(t —2)(u — 2)(35tu + 100s — 112)

35 (4.68)

1
%(3 — 2)(35stu — 90(t* + u?) — 280tu — 324s + 1072),

My

where the other M} are given by crossing (4.4). The Mellin amplitudes M} are normalized so that
at large s, ¢ they obey (4.46).

We can fix the supergravity amplitude MéG(s7 t) in an identical fashion. The N = 8 supergravity
amplitude was derived in [117]. Using equations (E.1) and (4.8) of [118], and converting to N = 6

notation, we find that

(4.69)

where the other M{, are given by crossing (4.4). We normalize M{, so that at large s, ¢ they obey
(4.53) with g1 = 1. Note that, as an exchange diagram, M (s,t) contains an infinite series of poles
that correspond to the exchange of stress tensor multiplet operators (or the exchange of the graviton

multiplet in the bulk) and their conformal descendants.

4.4 ABJ Correlators at Large cp

We now fix the first few corrections to (SSSS) in each of the stringy regimes of ABJ described in
Section 1.3.2. In each of these limits, we can use the Penedones formula (4.5) to relate the (S55S)
Mellin amplitude to the four-point scattering amplitudes of gravitons and their superpartners in 11d
(in the M-theory case) or 10d (in the type IIA case) flat space, with momenta restricted to lie within
a four-dimensional subspace. Of course, the flat space limit of the (SSSS) correlator in ABJ theory
cannot give the four-point scattering amplitude of all massless particles in 11d or 10d. Indeed, in
either 11d M-theory or in 10d type ITA string theory, the massless particle spectrum consists of 128
bosons and 128 fermions that are related by maximal SUSY. The flat space limit of the (SSSS)
correlator must match the four-point scattering amplitude of only 15 of the 128 bosons, which all

have the property that after restricting their momenta to lie within 4d, they can be thought of as
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scalars from the 4d point of view.'? Note that when using Eq. (4.5), we should keep either the 11d
Planck length ¢1; or the 10d string length ¢ fixed as we send L — oco. In other words, we should
more precisely send L/¢1; or L/¢, to infinity.

As we have seen in the previous sections, the ingredients we will use to construct the first few

terms in the large N expansion of the (S5S5S) correlator are the Mellin amplitudes

MéG(Sat) ) Mé(S,t) ) Mi(S,t) ) (470)

given in (4.69), (4.62), and (4.68), respectively. M is the Mellin amplitude corresponding to an
exchange Witten diagram with supergravity vertices. M3 is a polynomial Mellin amplitude that
represents the (S55S) component of a degree 3 super-Mellin amplitude corresponding to a contact
Witten diagram with an F2R? contact interaction vertex. Likewise, M} is part of a degree 4 super-
Mellin amplitude corresponding to a contact Witten diagram with an R* super-vertex. As explained

in Section 4.2, if we apply the Penedones formula (4.5) to each of the Mellin amplitudes (4.70), we

find that X
mMSG(S;t) ﬂa@ice ASG(S7t) = <t: % %t % % g) :
1 . '
NN : - 4.71
LSN(L) 3(s,t) ﬂatTp;ce Ai(s, t) =0, (471)
1 ] ; stu .
— M} t 7 Ay | .
IL8N(L) 4(s, )ﬂatT)pace Ay (s, 1) 05 Lals,t)

Here, the normalization constant N (L) appearing in (4.5) depends on our precise choice of normal-
ization for the (SSSS) correlator. If we normalize this correlator such that the disconnected piece
scales as ¢, then we should take N'(L) = NyLP, where D = 7 for the case of an 11d dual and
D = 6 for the case of a 10d dual.

In addition to (4.70), we will also consider the contact Mellin amplitudes

ngl(s,t) ) Mga(s,t) ) (4.72)

which are part of degree-5 super-Mellin amplitudes corresponding to D?R* and D*F2R? interaction
vertices, respectively. While in Section 4.3 we did not determine the forms of Mg‘yl and Mg'yg, we
know that such Mellin amplitudes must exist because they must reproduce the scattering amplitudes

in the 3rd line of Table 4.3 in the flat space limit. Upon a convenient choice of normalization, the

12More generally, from all the 4-point CFT correlators of the N = 6 stress tensor multiplet, we would be able to
determine the 4-point scattering amplitudes of precisely half (64 bosons + 64 fermions) of the massless particles of
both 11d M-theory and 10d type IIA string theory.
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flat space limits of the Mellin amplitudes can be taken to be

1 i i 1
W(L)Maﬂsat) fat space 5.1(5,8) = gz stu <52 + 3t + 3u? > ; W
1 , : '
M ,(s,t Lo(s,t)=0.
LlON(L) 5,2(5a ) ﬁa@ce A5,2(57 ) 0

The Mellin amplitudes MSin M3, M, Mg}l, and Mg)z are the only crossing-invariant Mellin ampli-
tudes that obey the SUSY Ward identities and that grow at most as the fifth power of s,t¢ at large
s and t.

We now analyze the (Mellin transform of) the (SSSS) correlator in each of the three large N

stringy limits of ABJ.

4.4.1 Large cp, finite £

Recall from Section 1.3.2 that at large cp limit with k fixed, ABJ theory is dual to M-theory on
AdSy x S7/Zy, with

Lo 3k

=T o), (4.74)
11

From this relation, the flat space limits (4.71) and (4.73), as well as the requirement that in the
flat space limit the scattering amplitude should have an expansion in £1; times momentum, we infer

that M?(s,t) has the large cr expansion

i 1 i 1 i i 1 i i i
M*(s,t) :aAéGMSG + = [Adc M + ASMG] + = [AseMic + AsMj + AfM}]

, °r er (4.75)
+ I [A3o Mg + ASMG + ASM] + A% | M + A% M ,] + O(cr?),
Cr

where AQJ» are k-dependent numerical coefficients. In the flat space limit only the maximal degree

Mellin amplitudes contribute at each order in 1/er, and so from (4.71) and (4.73) we find that

i i 3km\Y/? i 3km\Y° i
Al(s,t) = 4 <A§GASG + <211> 031 ALAG + (211) CHAS AL+ (4.76)

Note that neither A% nor Agz give rise to scalar scattering amplitudes in flat space, which is

why they do not appear in (4.76). Comparing (4.76) to the known M-theory four-point scattering
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amplitude [145]

1
AU Z AL [1 O st 0(5?1)} , (4.77)

where AélG is the 11d supergravity scattering amplitude, we can immediately deduce that

Aﬁ ( 9 > 1/3
4 =35(-—== , A2, =0. (4.78)
Alg 9m2k2 ’

Although M and M, 5’2 do not give rise to scattering amplitudes for the 11d super-gravitons that
are scalars from the 4d point of view, they do contribute to the scattering of other particles in the
same multiplet. The M-theory amplitude (4.77) however encodes the scattering amplitudes for all

such particles, and it does not contain any terms of order £13 or £}7. From this we conclude that
A} =A%, =0. (4.79)

As a final aside, note that the O(c;?) term (4.75) is not a local Mellin amplitude. Tt instead
corresponds to the one-loop supergravity term, which is not analytic in s and ¢. We will not study

this term any further.

4.4.2 ’t Hooft strong coupling limit

We next consider the strong coupling 't Hooft limit of ABJ theory, whereby we first take N — oo
with fixed X (see (1.56) for the definition of A), and then take A — oo, holding M finite. As discussed
in Section 1.3.2, in this double limit, ABJ theory is dual to weakly coupled type IIA string theory
on AdS, x CP? with
L8 512)2
6—8:4774)\2+..., gfz

S

. 4.80
T s (4:30)

Similarly to the M-theory limit discussed above, we can expand M'(s,t) in powers of ¢s/L, with
the appropriate powers of £,/L chosen such that after taking the flat space limit, the string theory
scattering amplitude has an expansion in ¢, times momentum. Unlike M-theory however, type

ITA string theory has an additional dimensionless parameter, the string coupling constant g, that
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governs the strength of string interactions. Simultaneously expanding in both, we find that

1 1 1
M(s,t) = o {BéGMSG +5 (BdgMsc + B3Ms) + I (BéaMsc + B3M;s + BiMy)

1
>\2
1
cr
A

+VA (BdaMsa + BiMs + BiMy ) + O)| + 07,

+ (BgGMSG + B3M; + Bi M + B§,1M5,1 + B§,2M5,2) + O()\_g)

(4.81)

where Bll»’j and ij are numerical coefficients. The leading order 1/cp behavior corresponds to
tree-level string theory, and the higher order terms are loop corrections. At fixed order in 1/cr and

1/X only the maximal degree Mellin amplitudes contribute in the flat space limit, and so we find

that
. 3 4 ) ‘ |
Ai(s,1) = Toog6S (Blole + 2Var BBIAL +4n SBY, AL, + )
(4.82)
97t - ) o
+ S5 94 (BlaAic +2Var GBI + ) .

Although the 1/c2 terms are one-loop corrections, non-analytic Mellin amplitudes will occur first at
AY/cZ corresponding to the one-loop correction in supergravity. Comparing this to the ITA S-matrix

at weak coupling [146]

3 2
Ay = Ase [(1 + zg%)stu + 0(5;0)> +92 (zggﬁstu + O(zi)) + O(g;*)] : (4.83)
we find that
B} 105¢(3) B} 140v2 5 m1
Bl " eavar’ Bl o~ ar B, =Big=0. (4.84)

Like the M-theory amplitude, the type ITA super-amplitude does not contain any terms which could
correspond to M5 or M ,, which in 10d contribute at ¢}? and £}°. We hence conclude that these

terms do not contribute at leading order:

B3=B}=B,=0. (4.85)
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4.4.3 Large cr, finite g
Finally, consider the large N expansion of ABJ at finite y. This regime interpolates between the
two limit considered previously. The bulk and boundary quantities are related by the equation

L8 3erm®
L _8SermyVib sy (4.86)

I 16v/2
with corrections suppressed at large cy. They imply that M?(s,t) can be expanded at large cr in

terms of M} (s,t) as

i 1 i 1 i i 1 i i i -
M*(s,t) :aC%GMSG + Il [C8a M + C3M;] + T [CaMég + CsMj + CiMi] + O(cr?)
Cr Cr

(4.87)

where now C’f ; are p-dependent numerical coefficients. This expansion is nothing but a reorganized
version of the double expansion (4.81). Unlike in the previous limits, we do not include the two
amplitudes M{; and M, because in this case they contribute at the same order in 1/cp as the
one-loop supergravity Mellin amplitude. Taking the flat space limit of (4.87) we find that

3t

i 248 1 qi 6 97895 o/ 4 4i 8
A'(s,t) = @gsgs CsaAsa + L5 o4 Cy AL +0(£5) (4.88)

This expression can be compared with the type IIA scattering amplitude at fixed gs, computed
in [147]:

2
Ay = AL {1 + (8stu (C?E;’) + g§g6> + O(éf)} : (4.89)

Note that the £5 term receives contributions at tree-level and one-loop, and has no further pertur-

bative or non-perturbative corrections.

By comparing (4.89) and (4.88), we conclude that
ct 35 (o2 \'® 1
CT; =5 (32u3) <<(3) + 3«/2/”?3) : (4.90)

We can recover both the finite k& and strong coupling 't Hooft limit expansions from (4.87) by

taking the p — oo and p — 0 limits respectively, as we explain at the end of Section 3.2.3. Using
_z _s

the relations (3.71) and (3.72), we find that the ¢;.* term becomes the c¢,.® term at finite k, and

gives rise to both the c}l)\*% and C;Q)\% terms in the strong coupling 't Hooft limit.
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4.5 Constraints from CFT Data

In the previous section, we derived general ansaetze (4.75), (4.81) and (4.87) for the Mellin ampli-
tudes M?(s,t) at large c7, and fixed terms that were leading in the flat space limit using the known
10d ITA string theory and 11d M-theory flat space scattering amplitudes. Now we shall use properties
of the U(N) x U(N + M)_j, ABJ theories in order to compute the rest of the unknown coefficients.
First we fix the contribution of the supergravity term using the OPE coefficient A?B,z)[ﬂ,”' We will
then make use of the large N supersymmetric localization results derived in Chapter 3 to compute
the contributions of the contact terms. In certain cases we shall find that the same coefficients can

be fixed from localization and flat space independently, giving us precision checks of the AdS/CFT

duality beyond supergravity.

4.5.1 Fixing the Supergravity Terms

We begin by noting that, as derived at the end of Section 2.4, cr is related to )\(B 9yl011] by the
’ 1,0

equation

64
2 _
)\(B$2)[1(3})1] - a . (491)

The OPE coefficient )\?B 2ot controls the exchange of the scalar S itself, which is the lowest twist
) 1,0

operator transforming in the 155. Using (1.18), we then deduce that as we take U — 0 while setting

V=1,

011

2
(B.2)1%"
S15,(U.1) = X2, o gLo(U,1) 4 - = == U+ (4.92)

Thus, in order to extract /\?B 2011l all we need to do is extract the coefficient of v/U in the small U
’ 1,0

expansion of Sys, (U, 1). Note that the disconnected piece Sqisc,15,(U,1) = O(U) in this limit. The

VU term in the small U expansion of S5, (U, 1) must hence come from a pole at s = 1 in the Mellin

amplitude M5, (s,t)

M15 =

s

(M?+ M? — M*) + %(M5 + M%), (4.93)

[N

corresponding to Sy, (U, V), which is defined in (2.17). Performing the s integral in (4.2) and

picking up the residue at s = 1, we obtain

S1s5. (U, 1) = VU dt T2 (1 - t) r? (tl) lim {(5 —1)Mys, (5,t)| + -+, (4.94)

g 2 2 s—1

—100
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where the integration contour can be chosen such that Ret < 2. Comparing with (4.92), we have

L[ t t—1
2 - 2(1_Y)p2 . _
)\(B,2)[10_(1)1] Y / dtT (1 2) T (2 ) lgﬂ% l:(s 1)]\415S (S, t) . (495)

—100

2 o Therefore

As can be seen from (4.95), only the pole as s — 1 in My5_ contributes to /\(B 2)
»4)1,0

local Mellin amplitudes cannot contribute to )\?B g0t SO the only contribution will come from the
»2)1,0
supergravity exchange Mellin amplitude. Indeed, the supergravity exchange amplitude M¢(s,t)

does have a pole at s = 1 with a residue independent of ¢:

1
lim | (s — 1)Msg 15, (s,1)| = —

s—1 ™

(4.96)

2
11y an amount equal

and thus Mgq in each of the expansions presented above contributes to )\(B 200
»4)1,0

to

L[ t t—1
— dtT? (1 — - |T?( —— | =27°. 4.97
27 ) o (2><2>” 97
Note that although we have not discussed Mellin amplitudes for loop corrections, by suitably adding
to them an appropriate multiple of Mgg we can always define them such that they do not contribute

to the VU term, so that /\?B gyl011] is purely fixed by the coefficient of Mgg. Since this OPE coefficient

)10

is related to ¢! via equation (4.91), we conclude that

32 ~
AéG:BéG:C§G:7> Big =0,

i (4.98)
Al = Bl = Bl = Ci =0, for I > 1.

The same result was previously for the N'= 8 case in [117]. Indeed, the supergravity term does not
depend on k when written in terms of ¢, as ¢ is proportional to the effective 4d Newton constant

Gy via the equation (1.52) in any theory where the bulk gravity is semiclassical.

4.5.2 Integrating Holographic Correlators

We now turn to the constraints on (SSSS) from supersymmetric localization. To implement these,
we must compute the linear functionals I, | [S] and I _[S] for each of the Mellin amplitudes M,
M and M}. Our first step is to rewrite both linear functionals in Mellin space.

Let us begin with I, ,[S], which, recall, is defined by equation (3.27) in terms of the OPE

109



coefficient )\QB (0221 This OPE coefficient controls the exchange of an 1/3-BPS operator whose

(B,2)35

superprimary is a A = 2 scalar transforming in the 84. The operator provides the lowest twist

contribution to Sg4(U, V'), and so at small U we find that

2
A [022]

Ssa(U,1) = )\?372)[2032]9270((], D= TMU 4 (4.99)

The coefficient receives contributions from both the disconnected piece,

1 U

Sdisc,84(U7 1) = T4 (U + >

=% = == (4.100)

;
V=1 8

as well as from the connected piece. To extract the latter contribution we must consider s = 2 pole
in the Mellin integral. The Gamma functions in the definition (4.2) of the Mellin transform have a

double pole at s = 2, so

1

M84(S,t) = 16

(M?(s,t) + M?(s,t) +2M*(s,t)) (4.101)

must vanish at least linearly as s — 2. Combining the contribution of this pole with (4.100), we

have

Ssa(U, 1) = U[; + i _o; dtT? (1 - ;) r? (;) lim Mj“_(zt)} 4 (4.102)
We must be careful with the integration contours. As we take s — 2, the the poles in ¢ and
u = 4 — s — t may potentially overlap. For polynomial Mellin amplitudes no problem occurs. But
for the supergravity amplitude, which has a pole both at ¢ = 1 and u = 1, we must be careful to
keep the t-channel poll to the right of the ¢-contour but the w-channel pole to the left. If we take
the contour 0 < Re(t) < 1, then we have to subtract of the uw = 1 pole by hand. Thus, the correct
formula is

1 — )M,
Ssa(U,1) = U[8+7r2 lim lim (T D Msa(s,t)

s—2t—>3—s S — 2

i [P t t\ .. Mgy(s,t)
— r?(1—-)r2(=)lim —>-
+27T di ( 2) (2)51—% s—2 +

—100

(4.103)
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Comparing with (4.99), we extract

(u - 1)M84(S,t)
Aoy =2+ 10m limg lim o0

o (4.104)

100 M

+§ dt T2 1_2 2 t limM,
T J_iso 2 2)s=2 s§—2
with the ¢ contour obeying 0 < Re(t) < 1, and so
—1)M,
I [M]=32r*lim lim (w=1)Msa(s, )
s—2t—3—s s—2
(4.105)

167 M,
+ 161 dt r2(i— t 2 t lim M
T J_iso 2 2)s=2 s—2

where again the ¢t contour obeys 0 < Re(t) < 1.

Let us now convert I [S?] to Mellin space, using (3.41) and (4.2) to write

Sl / d/d9 0 1+r —27"00597“)
" sin 1472 —2rcosf

- / (ijj)i <r2 [1 - ;} r? {1 ~ ;} r? [SJ’;_Q} M'(s,1) (4.106)

X / dr/ df sin 0 (1 + 72 _92rcos 9)5/2*1 7“2_5_’5),
0 0

The integral of r and 6 can now be performed explicitly using

o s/t oy AL [T [P D[
/ dr/ df sinf (1+ 1> — 2rcosf) rT? = 2T 7] T l2s %] T [323] , (4.107)
and so we find that
in [ dsdt 2/ 1
LM = / ar @ neri—2 L EY w108)

1 t t—1 t—2 —s—1
xF[l—f}I‘ stliph -ty r|it p3zszth
2 2 2 2 2 2
Having derived Mellin space expressions for I, [S?] and I, _[S¢], we now compute these linear
functionals acting on the Mellin amplitudes MéG, Ms, and My. In each case, the integrals are

performed by closing the contours at infinity and then summing over all poles enclosed by the

contours. In some cases, the pole summation is easily done using the Barnes lemma

0 ds _ Tla+ )b+ d)I'(b+c)I'(b+d)
/ D0+ )b+ 5)Te — 5)T(d — 5) = e S (4.109)

—100
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which holds for contours for which the poles of each Gamma function lie either entirely to the left
or to the right of the contour.
Let us begin with I, _[M?] for the polynomial Mellin amplitudes M3 (s,t) and M} (s,t). In both

cases the amplitudes take the form (¢t —2)(2 — s — t) times a polynomial in s,t, so I, _[S!] can be

n
evaluated for n = 3,4 by writing the integrand as a sum of products of six Gamma functions in
s,t and then applying the Barnes lemma twice. For example, for M3 (s,t) = (t — 2)(2 — s — t) we
compute

L) = [ (v

e b L

<l eg e[S

(4.110)

where the last two equalities followed from the Barnes lemma. We can evaluate I, _[Si] in an
identical fashion, finding that
I,_[M}]]= %ﬂQ. (4.111)

The supergravity Mellin amplitude Mg (s,t) (4.69) is also proportional to (¢t —2)(2 — s —t), but

the remaining function is not a polynomial in s,¢ and so we must work harder. We compute

t-iio) = [ o VAo [ 5] o [

x5 e [ e 3

/dsF[l—g]F[;}r[sgl} {\/77(4+5)F{1;}41“{1_SH

4mi 4dws(2 + s) 2

(4.112)

:77T’

where in the first equality we used the Barnes lemma, and in the second equality we summed
over poles with the contour 0 < Re(s) < 1. Note that this contour is different from the range
0 < Re(s) < 2 that would follow from (4.3). This is because the supergravity term includes the
stress tensor multiplet superblock, which contribute extra poles that require a more constraining
contour [148].

Finally, we evaluate I, [M?] for M3, M} and M{. using (4.105). For the polynomial Mellin
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amplitudes M3 and M}, the first term in (4.105) vanishes, and in the second term we have

. Msgqe 1
51—% s—2 - 7% ’
4.113
. Ms g4 1 3t(t—2) ( )
lim —— = —— — ———= .
s—=2 §—2 5} 56
We now integrate over ¢ using the Barnes lemma, which yields
; 8 5 288
Ley[Ms] =5, LeMi] = o (4.114)

For the supergravity amplitude, the first term in (4.105) gives 87/3 and in the integrand of the

second term we have

o Msasa (=20 (F) £r ()
s=2 s—2  8ymt(t+2)L (1—-1L) 16ym(t—2)(t—4) (14 %)
ot =4t — 1267 32t - 32
16t(t — 4)(t2 — 4)

(4.115)

We can then compute the integral over ¢ by summing over all poles which lie to the right of the ¢

contour, and so find that

Iy [Mig] =12, (4.116)

4.5.3 Fixing (SSS5S) with Localization

In the previous section, we computed I, [M] and I_[M] for each of the amplitudes Msc(s,t),

M;(s,t) and My(s,t) contributing to (SSSS) in the first few orders of the large cr expansion. We

found that
I—H—[Mé(ﬂ =12, I—‘r—[MéG] = _7‘-2’
) 8 - 2
Iy [M3] = 3> I [Mg] = §7T27 (4.117)
i 288 a8
I [My] = 35 I [My] = ?W2~

We can now combine these calculations with the supersymmetric localization results derived in

Chapter 3, using them to constrain the coefficients Al ., B! Eﬁ)j,

2] 2V

and C’f)j. Plugging (4.117)
into (3.24) and (3.42) and using the large N localization results (3.64), (3.68), and (3.70) derived
in Section 3.2.3, we can obtain the following results. First, without using the constraints from
the flat space limit or the constraints (4.98) coming from the superconformal block expansion, the
supersymmetric localization constraints (3.24) and (3.42) reproduce the coefficients in the first line

of (4.98). This is a stringent consistency check on the accuracy of our computations.
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Second, using the constraints (4.98) coming from the superconformal block expansion as an input,
the supersymmetric localization constraints allow us to fix the coefficients at the next two orders in

each of the expansions (4.75), (4.81), and (4.87). The result is

finite k: Al = 7(6734235)2/3 , A3 =A3=0,
't Hooft: ~ Bj = 7754\/35(3) ,  Bi= 120%7(:;) ,  Bi= %ﬁ;ﬁ :

Bi=B}=Bi=0, (4.118)
finite u: Ccd = —W7 Cy = 332/‘2172r§3(’)/4 (4\/§7r3u% + 3C(3)N_%> 7

C3=0.

These equations agree with the constraints from the flat space limit, thus providing a very non-trivial
precision test of AdS/CFT.
Third, using both the constraints (4.98) and the constraints coming from the flat space limit as

input, the constraints from supersymmetric localization allow us to conclude that

A=A =B} =B]=0. (4.119)

We can then plug these values back into (4.75), (4.81), and (4.87) to get our final results

132 11120 /67 "/° _
M-theory :  M(s,t) = gﬁMSG(Svt) T E 33 (kQ) My(s,1) + O (c7%) |
Cr

t Hooft : M(s, 1) = <7?;2MSG(S,?§) + % [35My(s,t) — T2M3(s,t)] A" % + O(A‘E))

% 33
1 32
fixed p:  M(s,t) = —— Msg(s,t)

CT7T2

1 ( 576 23/33%¢(3) 28280

L (4480\@%1(3, DR 4+ O(AO)> +0(c3?),

7
4
Cr

+0(c7?)

a 1 3
T\~ M)t (4v2rut + 3¢(3)n 8)M4(s,t)>

(4.120)

for the leading large c¢p corrections to the (SS5S5S) Mellin amplitude in each of three regimes con-

sidered in this chapter.

114



Chapter 5

The Higher-Spin Limit

In this chapter we study A = 6 theories with weakly broken higher-spin symmetry. As discussed in
the Introduction, such theories include the U(N)y x U(N + M)_j and SO(2)2r x USp(2 + 2M) _,
theories at large M. By combining the constraints of weakly broken higher-spin symmetry with the
supersymmetric localization results for these theories computed in Chapter 3, we derive the leading
1/er correction to (5SSS) in the higher-spin limits of both theories. Our strategy parallels that of
the previous chapter, where we studied the string and M-theory limits of ABJ theory. First we fix
an ansatz for (SSSS) at large ¢ involving only finitely many undetermined coefficients. We then
determine these coefficients for the specific theories of interest using supersymmetric localization.

While the overall strategy may be similar, the structure of the 1/cy expansion in the higher-spin
limit is very different from that of the string and M-theory limits. In the latter case, the bulk
theory contains only single trace operators of spin at most two. If we focus on (SSSS), then at
tree-level the only single trace operators we need to consider are those in the stress tensor multiplet.
Holographic tree-level correlators then consist of a tree-level supergravity exchange diagram whose
form is completely fixed by superconformal symmetry, along with an infinite number of contact
Witten diagrams which appear at increasingly higher powers of 1/cyp.

Unlike the supergravity limit, the higher-spin limit has single trace particles of every spin, their
exchange diagrams are not completely fixed by superconformal symmetry, and the contact terms
can no longer be fixed using the flat space limit which does not exist for higher-spin gravity [149].
We will resolve these problems by combining slightly broken higher-spin Ward identities with the
Lorentzian inversion formula [150], as in the recent calculations of the analogous non-supersymmetric

correlator in [151,152].! 1In particular, we will first compute tree-level three-point functions of

1See also [153] for a similar calculation of a spinning non-supersymmetric correlator, as well as [154] for a more
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single trace operators in terms of ¢y and another free parameter using weakly broken higher-spin
symmetry, which generalizes the non-supersymmetric analysis of [155] to N = 6 theories.? We then
use these three-point functions to fix the infinite single trace exchange diagrams that appear in
(SSSS). Finally, we use the Lorentzian inversion formula to argue that only contact diagrams with
six derivatives or fewer can appear, of which only a single linear combination is allowed by N' = 6
superconformal symmetry. In sum, we find that (SSSS) is fixed at O(1/er) in the higher-spin limit
in terms of two free parameters.

We then try to fix these two free parameters using the supersymmetric localization constraints

&*log Z
3mi

8*log Z

for and DT o derived in Chapter 3. When we do so however, we find that
Zom2

m4=0 m4 =0

the constraints are redundant. To resolve this issue we use the weakly broken higher-spin Ward
identities to compute (SSSP), which we can constrain using 8?:%% B With this additional
constraint, we will be able to fix both free parameters for the U(N), x U(N + M)_;, ABJ and
SO(2)2r, x USp(2 + 2M)_, OSp theories in terms of the 't Hooft coupling A ~ %, whose precise
definition is given in (1.60) and (1.61).3

Our plan for the chapter is as follows. We begin in Section 5.1 by describing the higher-spin con-
served currents, and then study the pseudocharge & (X) associated to the conserved vector H' (z, X)
in the scalar conserved current multiplet. In Sections 5.2 and 5.3 we use the pseudoconservation of
the pseudocharge 6(X) to derive the general form of (SSSS) and (SSSP) respectively, and then in
Section 5.4 use supersymmetric localization constraints to completely fix (SSSS). We close in Sec-

tion 5.5 with a discussion of the similarities between our results and those for non-supersymmetric

higher-spin theories.

5.1 Weakly Broken Higher-Spin Symmetry

5.1.1 N =6 Conserved Currents
The osp(6/4) superalgebra allows two kinds of unitary conserved current multiplets: the (B, 2)[10’(1)1]

stress tensor multiplet, and the (A, cons)gﬂJ ] , higher-spin multiplets. We are hopefully by now quite

familiar with the stress tensor multiplet, which we first introduced all the way back in Section 1.1.3.

Unlike the stress tensor multiplet, the (A, cons)gflo}z multiplets are semishort rather than short, and

direct diagrammatic approach.

2Note that [155] applies to higher-spin theories with only one single trace operator of each spin. This excludes the
N = 6 higher-spin theories we consider, whose single trace spectrum includes one higher-spin multiplet of each spin
plus the stress tensor multiplet, whose component operators includes multiple operators of each spin.

3We will use A rather than \yg throughout this Chapter to refer to the ’t Hooft coupling in the higher-spin limit.
It should not be confused with the 't Hooft coupling in the large N regime!

116



contain conserved currents with spin greater than two. When ¢ > 0 superconformal primary for the
multiplet is a spin-¢ conserved current By(Z), and the bosonic descendants of By(Z) are conserved
currents Hyy1 (%, X), Joyo(Z, X), and Tyy3(Z) with spins £ + 1, £ + 2 and ¢ + 3 respectively. The
bottom and top components By and T3 are R-symmetry singlets, while the middle two components
Hyiy and Jyyo transform in the 15. There is also a scalar higher-spin multiplet (A, cons) [1(380] whose
primary Bg(Z) is a dimension 1 scalar. This multiplet has the same structure as the £ > 0 higher-spin

multiplets, except that it also contains an additional scalar Cy(Z) with dimension 2. We normalize

all of these operators so that

I(N1~~.U'7L)(V1"'V”)
(T me (@) T (2r)) = ( 20—1 (e12) —traces) )

T12
J(B1pn) (vivn)
(@, X T (@, X)) = tr( X1 X xu)—traces , (5.1)
]Cgl He X ]ngl ve X (X X i (
T12
where TH1HnVi¥n (o) = [ §H17 — % | sparn — M
2%y x2, ’

for operators J; and K, transforming in the 1 and 15 of the s0(6) g R-symmetry respectively.

We will sometimes find it convenient to think of the stress tensor multiplet as being the ¢ = —1
conserved current multiplet. To this end, we relabel the R-symmetry current J; (#, X) and the stress
tensor T5(Z), as they are the natural continuations of the Jy(#, X) and T;(Z) families of conserved
currents.

We restrict our attention to theories where the single-trace operators consist of a stress tensor
multiplet, along with a single higher-spin multiplet (Acons)&ofg]z for each £ = 0,1,2,.... This,
in particular, is the spectrum of free field theory, and also of ABJ theory at large M. We list the
single-trace operator content of such theories in Table 5.1. Observe that for each spin £ > 2 the
bosonic conserved currents come in pairs, so that for each By(Z) and Hy(Z) there is a Ty(Z) and
Ji(Z) respectively with the same quantum numbers but belonging to different SUSY multiplets. As
we shall see, these pairs of operators are mixed by the higher-spin conserved currents.

Let us now consider three-point functions between the scalars S, P and a conserved current 7.
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Higher-Spin Multiplet
Spin | Stress-tensor  Spin 0 Spin 1 Spin 2 Spin 3
0 15+ 15 1+1
1/2 | 6+10+10 6
1 1+15 15 1
3/2 6 10 + 10 6
2 1 15 15 1
5/2 6 10 + 10 6
3 1 15 15 1
7/2 6 10 +10 6
4 1 15 15

Table 5.1: Single trace operators for higher-spin N’ = 6 CFTs.

Conformal invariance, R-symmetry, and crossing symmetry together imply that

>\ Jtr (X1X2)CM1“'ME (33@> even g
(B, X0)o (i, Xo) T () = o

0 odd /¢
(5.2)
/\¢¢;Ctr ({Xl, X2}X3) CZI 'AWZZ(J}Z‘) even ¢
(¢(Z1, X1)(T2, Xo) Ky (%3, X3)) = e
Apsrctr ([ X1, Xo]X3) CALU (i) odd £
where we define the conformally covariant structure*
C#1~~-M (J)) — (1/2)5 (xll% _ $§L§> . (zﬁ — 1‘%) 1 . (53)
JASPAVY ANad 24+2) 33%3 1%3 x%g x%g x1A21+A2—1x§32—A1+1x§11—A2+1

Note that (SPJ) automatically vanishes when J is a conserved current, as Ca,a,¢ is not conserved
unless Ay = Ao.

In Chapter 2 we computed the superconformal blocks for (SSSS), which relate the OPE coef-
ficients of operators in the same supermultiplet. We also derived superconformal Ward identities
relating (SSS5S) to (SSPP), and so can use these to derive the superconformal block expansion for
(SSPP). Using the results of that chapter, we find every integer ¢ there is a unique superconfor-

mal structure between two S operators and the supermultiplet (A4, cons)gf?]g. For even ¢ the OPE

40ur choice of prefactors multiplying Cp,poe is such that the three-point coefficients Ay, 4,0 match the OPE
coefficients multiplying the conformal blocks in Chapter 2.
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coefficients are all related to Agsp, via the equations®

ASSB, = ASSHy11 = ASSJos = A(A,cons)gf?}z ) AssTyys =0,
AppB, = —{AssB, , Appi,, = —(+1)AssB,, (5:4)
APPJiy = —(£+2)AssB, » Appr,.; =0,
while for odd ¢ the OPE coefficients are related to Asst,, ,:
ASSHeys = ASSJera = ASSTira = A4 cons)2%, > Assp, =0,
App, =0, ApPHu = (+1)AssT,. 4 (5.5)
APPJis = (L +2)AsST0 s APPTy s = (L4 3)AssT4s -

Note that AgsT,, , vanishes for even /£, and Agsp, for odd £, simply as a consequence of 1 <+ 2 crossing
symmetry. The superconformal blocks for the stress tensor and the scalar conserved current have
the same structure (where we treat the stress tensor block as having spin —1), with the additional
equations

8
ASSS:)\SSTQ :)\(372)[107(1)1] :\/j, )‘SSP:APPS:)\PPP:(),

er (5.6)
Assc, = Appc, =0,
for the scalars S and P, and dimension 2 scalar Cp, in the stress tensor and the scalar conserved

current multiplet respectively.

5.1.2 The so0(6) Pseudocharge

Having reviewed the properties of conserved current multiplets in A/ = 6 theories, we now consider
weakly breaking the higher-spin symmetries. We will follow the strategy employed in [155] and
use the weakly broken higher-spin symmetries to constrain three-point functions. Unlike that paper
however, which studies the non-supersymmetric case and so considers the symmetries generated by a
spin 4 operator, we will instead focus on the spin 1 operator H{'(Z, X). While itself not a higher-spin

conserved current, it is related to the spin 3 current T5(&) by supersymmetry.

5The superconformal blocks themselves relate )\?S'SH[,H or >\~25'5T1.+3 to )‘%SO and AgssoAppo for all superdescen-
dants O of By. Although the superconformal blocks do not fix the sign of Aggsp, we can always redefine O — —O so
that )‘SSO/ASSB[ or ASSO/ASST@H& is positive.
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We begin by using H; (%) to define a pseudocharge:

~ 1

5(X)0(0) = .- ds - Hy(,X) O(0) . (5.7)

|z|=r finite as r—0
The action of §(X) is fixed by the 3-points functions (H;OO’). Because H! has spin 1, it must
act in the same way on conformal primaries as would any other spin 1 conserved current. In
particular, it relates conformal primaries to other conformal primaries with the same spin and
conformal dimension.

Now consider the action of & (X) on an arbitrary three-point function. We can use the divergence

theorem to write:

3(X){O1(i11) O2(#2) O3 (33) )

/ &z (V - Hy (T, X)O1 (71) Oa(72) O3(73)) :

finite r—0

(5.8)

where R, is the set of ¥ € R? for which |# — ;| > r for each y;. If the operator H} (z, X) were
conserved, the right-hand side of this expression would vanish, and we would find that correlators
were invariant under S(X ). When the higher-spin symmetries are broken, however, V - Hy will
no longer vanish and so (5.8) will give us a non-trivial identity: a pseudoconservation rule for the
pseudocharge.

In the infinite ¢y limit, V - Hy is a conformal primary distinct from H}'. In order to work out

what this primary is, we can use the A" = 6 multiplet recombination rules [13]:

[000] [100] [200]
Longx o — (A, cons); o @ (B, 1)2)0 ,

(5.9)

[000]

Longay’ — (A, cons)){t), @ (4,1))0%) for £>0.

A e+3/25 1/2

From this we see that, unlike the other conserved current multiplets, the scalar conserved current
multiplet recombines with a B-type multiplet, the (B, 1)[2%80]. The only such multiplet available in
higher-spin A/ = 6 SCFTs at infinite cr is the double-trace operator S [“[bSC] 4, Whose descendants

are also double-traces of stress tensor operators. From this we deduce that

V- -Hi(#,X)= —LCI)(f, X) + fermion bilinears + O(cy")
ver (5.10)
with ®(Z, X) = X%, (5°.(Z)P°o (&) — P’(%)S% (7)) ,

6For the decomposition of the superconformal blocks associated to these multiplets, see equations (2.74) through
(2.76).
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where « is some as yet undetermined coefficient. We then conclude that

= «

(X)(010:03) = Irer

/d?’x (®(F, X)O10:03) + fermion bilinears + O(cp™%/2) (5.11)

where we have left the regularization of the right-hand integral implicit.
Consider the case where 01, Oy and O3 are any three bosonic conserved currents. In this case,
(2010203) ~ 0;3/2 and so
5(X)(010,05) = 0(c;*"?) . (5.12)

We thus find that, at leading order in the 1/cr expansion, these three-point functions are invariant
under & (X). This is a strong statement, allowing us to import statements about conserved currents
and apply them to H;.

We will now consider the R-symmetry current J;, which has the same quantum numbers as Hy,

and let us define
1

T ar

5(X)0(0) ds - J1(£)O(0) , (5.13)

|z|=r finite as r—0
which generates the s0(6) g symmetry. Because any correlator of both J; and H; is conserved under
§(X) and 6(X) at leading order, the (pseudo)charges (X) and §(X) form a semisimple Lie algebra.”

The 50(6) z symmetry implies the commutator relations
[6(X),6()] = ¢o(IX. Y], [6(X),8(Y)] = ¢o(X,Y]), (5.14)
for some non-zero constant, ¢, while
[6(X),8(Y)] = ¢5(1X, Y]) +298([X. Y]), (5.15)

for some additional 7. Note that both the second equation in (5.14) and the first term in (5.15) are
fixed by the same conformal structure in the three-point function (H; H;J1), which is why they are

both proportional to (. We can now define charges ¢ (X) and dz(X) by the equations

6(X) = ¢(6L(X) +0r(X)) , 0(X) = (Lo (X) + (ror(X), (516)
with  ¢p=7+/(2++2, Cr=7—-VC+72,

"Note that this Lie algebra structure only holds when §(X) and S(X) act on spinning single trace operators, so
that (5.12) holds. In particular, equation (5.14) and (5.15) are true when §(X) and §(X) act on such operators.
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which satisfy the commutator relations

r(X), 0 (Y)] = oL([X,Y]),  [62(X),6r(Y)] =0 (5.17)
0r(X),0r(Y)] = 6r([X,Y]).

These are precisely the commutation relations of an so(6) x s0(6) Lie algebra, where the 1 (X)
generates the left-hand and 6z (X) the right-hand s0(6) respectively.

As we have showed previously, three-point functions of bosonic conserved currents are S(X )
invariant at leading order in the large cr expansion. As a consequence, the higher-spin operators
Hy(Z, X) and J, (&, X) will together form representations of s0(6) X s0(6). There are two possibilities.
Either both operators transform in the adjoint of the same s0(6), or instead the operators split into

left and right-handed operators

TJE(@E X) = cos(0e)Ho(Z, X) + sin(8) Jo(Z, X),

(5.18)
jKR(fv X) = - Sin(QE)Hl(fv X) + COS(QZ)JK(fv X) )
with some mixing angle 6y, such that
dX)TFGY) =T @IX YY), 3X)TF@GY) = I G X, Y]). (5.19)

As we shall see in the next section, it is this latter possibility which is actually realized in all theories

for which Agsp, # 0.

5.1.3 Pseudocharge Action on Scalars

So far we have been avoiding the scalars S and P. Because the H{'(#, X) eats a bilinear of S and P,
correlators involving these scalars are not automatically conserved at leading order, and so we can
not assign these operators well-defined s0(6) x s0(6) transformation properties. The action of §(X)

is, however, still fixed by the delta function appearing in the three-point functions

(SOV - Hy) and (SOV - Hy)

when O and O are scalars of dimension 1 and 2 respectively. Let us now work through the possibil-

ities, beginning with 5(X)S(§’, Y).
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To fix 6(X)S(7,Y), we must evaluate

1

" 4r

(3(X)8(0,Y)O(é5)) / _as (H,(Z, X)S(0,Y)O(é3)) (5.20)

finite as r—o00
for general operators O(é3) located at é3 = (0,0, 1). We first note that the right-hand side of (5.20) is
only non-zero if O is a scalar with conformal dimension 1. For this special case, conformal invariance

implies that

(H1 (7, X)S(0,Y)O(5)) = fsom (X, Y)Cl11(0, é5,7)
_ fsom, (X,Y) ((ég —z)* M > 1

4 s =22 T[22 ) Jallz — &

(5.21)

where fsom, (X,Y) is a function of X and Y whose exact form depends on the s0(6) g properties of

O. Substituting this into (5.20), we find that
< R 1
(F(X)S(0,Y)0(es) = 7 Fsom (X.Y). (522)

The only two dimension 1 scalars in higher-spin /' = 6 theories are S(¢,Y) itself and By (&). For
S, we apply (5.22) with O(é3) = S(é3, Z) to find that®
~ _)\SSHltI“([Y, Z]X) _/\SSH1

(0(X)S(0,Y)S(es, 2)) = A = =S5 (S0, [X,Y)S(Es, 2)) (5.23)

while for By we find that

B )\SBOHltr(XY) _ )\SBOHltr(XY)

(6(X)S(0,Y)Bo(e3)) = . = . (Bo(0)Bo(é3)) - (5.24)

However, as we will now show, Agp,r, = 0. To see this, we compute:

< 7)\SBOH1tr(XY)

5(X)(S(0,Y)SH,) = (6(X)S(0,Y)SH,) +--- = . (Bo(0)SoHy) + ...,  (5.25)

where the additional terms come from the variations of the second S and H;, and from the multiplet
recombination. Note that §(X)(S(0,Y)SH;) contains a term proportional to Aep,m, tr(XY). But
it is straightforward to check that no additional term appears in either <S (0,Y)6(X) (SH 1)> or in

(SPH 1) with the right R-symmetry structure needed to cancel such a contribution, and so conclude

8Throughout this section and the next, we will abuse notation slightly and use Ao, 0,05 to refer to the leading

large ¢t behavior of the OPE coefficient, which for three single trace operators scales as c;l/ 2,
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that Asp,m, = 0. Having exhausted the possible operators that could appear in S(X )S(y,Y), we
conclude that

5085 Y) = = 515y, [X, V]) = - 255 (g, [X, V). (5.26)

We can constrain 6 (X)P(7,Y) in much the same way, except now we have to consider not only

the single trace operators P and Cj, but also double-trace operators built from S and By, and in

particular
2(~ — ya b (=~ qc (7 1 a Q¢ (7\Qd (7
S5Y) = ¥ (S%S"a () - 16954
(5.27)
SBo(#,Y) = Y*S%(5)Bo(¥) -
The most general expression we can write is
S(X)P(5.Y) = roP(.[X,Y]) + m18(. [X, Y]) + w28 Bo (3. [X, Y]) (5.25)

+ patr(XY)O1(§) + p202(9,{ X, Y'}) + usS(4, X)S(y, Y),

where O;(y) is some linear combination of S5 b, and Bg, and O, is some linear combination of P,

52 and SBy. By computing <5PP> we find that

1 1
=—-A =-A . 5.29
Ko 1 PPH = 7ASsH, (5.29)
If we instead consider <SP(’)i>, we find that p; are proportional to OPE coefficients Appe,, but can
then check that the 6(PPH;) Ward identity is satisfied if and only if p; = 0.
Computing #; and ky will prove somewhat more involved. Let us begin with §(X)(SSP). As
listed in equation (5.6), supersymmetry forces both (SSP) and (SPP) to vanish. Expanding the

left-hand side of the higher-spin Ward identity, we thus find that
S(X)(SSP(ys, Y3)) = w1(SSS* (3is, [X, Ya])) , (5.30)
while expanding the right-hand side we instead find that

~ «

S(X)(SSP(ys,Y3)) = _ﬁ<555(g3’ [X,Y3])). (5.31)
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Equating these two expressions, we conclude that

aAsss (5.32)

= 4./CT

The variation 6(X)(SByP) is a little trickier, as (SPBy) does not vanish at 0(0;1/2) It is

instead related by supersymmetry to the three-point function (SPH;), so that

>\SPH1 o Q(A + 1)
_ T, (5.33)

ASPB,
where A is the conformal dimension of By. We can then in turn relate Agpp, to o using the multiplet

recombination formula (5.10), and so find that

1 2a
)\SPBD = —5)\SPH1 == TT . (534)

Now that we have computed Agpp,, let us turn to 5<SPB0>. Expanding this using (5.38), we

find that
d(X)(S (71, Y1) P (52, Y2) Bo(3s))
1 (5.35)
= 5AssB, (S (1, Y1) P42, [X, Ya]) Bo(93)) + r2(S (51, Y1) S B (32, [X, Y2]) Bo(43)) -
But if we instead use the multiplet recombination rule, we find that
~ . . . o . ~ .
6(X)(S (41, Y1) P (42, Y2) Bo(33)) = <S(y1,Y1)S(y2, (X, Yz])Bo(y3)> ; (5.36)
N

where we dropped <15PBO> as it vanishes due to supersymmetry. Equating the two expressions and

solving for ko, we conclude that
aAssB,
= - . 5.37
Putting everything together, we conclude
(5.38)

§(X)S(7,Y) = —EASSBOS(?J, (X,Y)]),

~ . 1 . al . a o N
S(OP.Y) = s, P [X,Y]) + 2= 201X, Y]) + 222 SB(d (X, YD),
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5.2 (55S5S) in the Higher-Spin Limit

We now derive the four-point function (5SSS), proceeding in two steps. First we use pseudocharge
pseudoconservation to compute the three-point functions (SS.J) between two scalars S and a higher-
spin conserved current J. Combining these three-point functions with the Lorentzian inversion
formula, we can then fix (SSSS) up to two free parameters. With this achieved, we then use the

superconformal Ward identities to compute (SSPP) and (PPPP) from (SS5S5S).

5.2.1 Three-Point Functions

Let us begin by considering the three-point function of two scalars with a spin ¢ conserved current

OF(7,Y) transforming in the left-handed 15, so that
S(X)Of (5,Y) = CLOF(F, [X,Y]), (5.39)

and consider the weakly broken 6(X) Ward identity:

S(X)(S (i, Y1)S (i, Y2)OF (if3, Y3))

/ B X (S, V1) SPe(3)) (PCa(F) S (§2, Ya) OF (5, Va)) (5.40)

o«
YN

- g [ XS VS U@ P DS 2 V) OF i i) 41 602,

Defining the operators S(#, X) and P(&, X) to be the “shadow transforms” [156] of S(#, X) and

P(#, X) respectively:

41
5 T Ar |x—2‘]4 X), zZ,X T ir |x—2‘]2 X, (5.41)
we can then rewrite the Ward identity as:
0(X)(S (i1, Y1) (§2, Y2) OF (i3, Y3))
a N . (5.42)
= e (<P( X, H})S(ﬁz,Ya)Oﬁ(ﬁs,Ys»+<S(g1,Y1)P(g2,[X,yz])@g(g&yg))) _

Our task now is to expand correlators in this Ward identity in terms of conformal and R-symmetry
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covariant structures. Using (5.2), the left-hand side of (5.42) becomes

S(X) (S (i1, Y1) S (i, Y2)OF (if3, Y3))
(5.43)

A -
= (CL + Si}h) )\ssolLtF([YhYﬂi[X, Ys]) Crie(%i)

where [Y;, Yj]+ is a commutator when £ is even, and anticommutator when £ is odd. To evaluate the

right-hand side we first note that, using both conformal and R-symmetry invariance,

(S(51, Y1) P(§2, Y2)OF (i3, Y3))

(5.44)
= (M poptr (V2. Yol ¥5) + Agpoy tr (V1. Yol Ya) ) Crae(3)

for some OPE coefficients A\

spoL- Because the operator (’)EL(;J, Y') is not conserved at finite cp, this

three-point function does not necessarily vanish at O(c;'”). We can then compute the shadow

transform using the identity [157]

d3z oL
|2 — 7,|281-6 Ay Ry (21, T2, )
3 Ay—Ai+2 4420—A1—A (5.45)
_ m32T (A — 3) T (Re=pud2) P (4420 2)Cm__w —
T (3 _ Al) T (A1+2A2—1) r (2£+A1;A2+1) 3—A1,A50 » L2,
Putting everything together, we conclude that
v+ - (QAssp +4¢)l! Assorv/er N (5.46)
SPOF 7320 (0 +1/2) o ’ SPOF ' ’

So far we have considered the weakly broken Ward identity for the three-point function (SSOL),

but it is straightforward to repeat this exercise with the variations

3(SPOF) = % (<15Pof> - <s§o}>) :
cr

(5.47)
5(PPOF) = ——— ((SPO}) + (PSOF)) .
(PPOF) = - ((5POF) +(PSOF) )
Expanding each of these correlators and using (5.45), we find that
4CL + Assi 2 2 20272
A = =>=—=2=2) ¢\ 16¢7 — A =—. 5.48
PPO%‘ <4<L o )\SSBO> SSO%‘ ) CL SS By cr ( )
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Applying the same logic to a right-handed operator OF (7, X), we immediately see that

4Cr + AssB,
4¢r — AssB,

20272

(5.49)
cr

Appor = ( ) tAssor 16¢% — Mésp, =

In particular, taking the last equations of (5.48) and (5.49) and combining them with (5.16), we find

that

L=—Cr=C(. (5.50)

As we saw in the previous section, ¢ fixes the action of the R-symmetry charge §(X ), which, unlike
S(X ), is exactly conserved in any N/ = 6 theory. We can therefore relate it to the three-point

function (SS.J1), and thus to the OPE coefficient Aggsg:

1

1
¢ = _iASSJI = _Z)\SSS, (5.51)

We now apply (5.48) and (5.49) to the operators Hy and Jy. Recall that these operators either
transform identically under s0(6), or they split into left-handed and right-handed operators. Let us
begin with the possibility that they transform identically under s0(6) x s0(6), and assume without
loss of generality that both are left-handed. Combining (5.48) with the superblocks (5.4) and (5.5),

we find that

Asss — AssB ‘ Asss — AssB
1) = (2222270 ) )\ —(=1)\ = 2222279 ) )\ . 5.52
(=1 Assm, (Asss + )\S'S'Bo) S5He (=1) Assu. Asss + AssB, 587 (5.52)

Because Asgs # 0, the only way to satisfy these equations is if Agsp, = 0. We know however that
AssB, is nonzero for generic higher-spin A/ = 6 CFTs, such as for ABJ theories, and in particular
does not vanish in free field theory. We therefore conclude that is not possible for Hy; and J; to
transform identically under so(6) x s0(6).

We now turn to the second possibility, that Hy and J; recombine into left and right-handed

multiplets J/ and J/* under s0(6) x s0(6), satisfying

AsSs — AssB > (/\SSS+)\SSB >
AP =\ Yoo doaan ) Pssars Appar =\ 3 oo ) Pssan- 5.53
eIt ()‘SSS + AssB, SSI¢ PPIf Asss — AssB, 587 (5:53)

We can then use the superconformal blocks (5.4) and (5.5) to find that

Appr, = (—1)“\ssm, » Appy, = (=1)"sss, (5.54)
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and, from (5.18), we see that

)‘S'SJ,ZL = ASSH( Ccos 9@ + /\SSJz sin 9@ R ASSJZR = 7)\5'5]{@ sin 9@ + )\SSJe Ccos 9@ (5 55)

)\ppjeL = Appm, cosfy+ Appy,sinby, )\ppjeR = —Appp,sinfy + Appy, cos by .

Combining (5.53), (5.54), and (5.55) together, we have 8 equations which are linear in the 8 OPE
coefficients. Generically, the only solution to these equations will be the trivial one where all of OPE
coefficients vanish. However, if we set

™

b=

+ % forn € Z, (5.56)

then we find that the equations become degenerate, allowing non-trivial solutions. By suitably
redefining the conserved currents Hy — —H, we can always fix n = 0 so that Aggsm, > 0, and can

then solve the equations to find that

Asss :
Nesn — Noane Assg, {iseven (5.57)
: .
AssBg :
Nsss Assg, ¢isodd.

To complete our derivation, we simply note that from the superblocks (5.4), (5.5) and (5.6) that

ASSJiio = ASSH 1 » Assg, = Asss, ASSH, = ASSBy (5.58)

so that

Asss L is even
ASSHppy = (5.59)

Assp, {isodd.

Let us now apply (5.59) to two special cases: free field theory and parity preserving theories. In
free field theory the higher-spin currents remain conserved, so that & = 0 and hence, using (5.48), we
find that Agsp, = Asss. We conclude that each conserved current supermultiplet must contribute
equally to (SSSS), which is precisely what we found in Section 2.4.

For parity preserving theories, supersymmetry requires that S is a scalar but that P is a pseu-
doscalar. As we see from (5.10), the operator H}' eats a pseudoscalar, and so is also a pseudovector
rather than a vector. Parity preservation then requires that Assp, = 0, and so we conclude that
for parity preserving theories only conserved current supermultiplets with odd spin contribute to

(SSSS). Note that this does not apply to free field theory (which is parity preserving), because H}'
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remains short.

5.2.2 Ansatz for (SSSS)

In the previous section we showed that the OPE coefficient between two S operators and a conserved
current is completely fixed by HY" pseudo-conservation in terms of Asss and Agsp,. Our task now
is to work out the implications of this for the (SS5S5S) four-point function.

As shown in [151] using the Lorentzian inversion formula [150], S*(U,V) is fully fixed by its
double discontinuity up to a finite number of contact interactions in AdS. More precisely, we can
write:

exchange

. . 1 . .
S'UV) = ShaeUV) + — (Shecrange (U3 V) + Stomact U V) + 073 (5.60)
T

Here the disconnected correlator is defined as in (2.78). The S! U,V) term is any CFT

xchange(
correlator with the same single trace exchanges as S*(U, V), and with good Regge limit behavior so

that the Lorentzian inversion formula holds. Finally, S¢

 ontact (U, V) is a sum of contact interactions

in AdS with at most six derivatives, which contribute to CFT data with spin two or less. We will
focus on each of these last two contributions in turn.

Let us begin with the exchange term. In higher-spin N' = 6 theories the only single trace operators
are conserved currents, and their contributions to (5555} are fixed by the OPE coefficients computed
in the previous section. We can write the superconformal blocks for the conserved currents in the

original B basis of R-symmetry structures as

6étress tensor(U7 V) = g;lS’<U7 V) + 931 (Uv V) + gé“g (Ua V) ) (5 61)
Z;:OIIS,E(U7 V) = g’LB[(U7 V) + g%@_*_l (U7 V) + g’f]g.*_g (U7 V) + g’iT[_'_g (U7 V) ’
where we define
. . (1 0000 0> even £,
9B, (Uv V) =97, (Uv V) = glJrl,Z(Ua V) X
0 odd ¢,
(5.62)
(—1 0001 1) even £,

giBz (U7 V) = gé"@ (U7 V) = g@-l—l,f(Ua V) X

(0 00 0 1 1> odd £.

These superconformal blocks can be derived by expanding each S.(U,V) as a sum of conformal

blocks using the OPE coefficients (5.4), (5.5) and (5.6), and then using (2.17) to convert back to the
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basis S*(U, V) of R-symmetry structures. We can now write

1 .
E exchange(U V) - )‘SSS (ngtress tensor Z ®cons 0 )
odd £ (563)
+ Aesm, Z Qﬁionsyg(U, V') + crossing + double trace terms,
even £

where the double trace terms are some combination of contact terms required so that Sexchange(U V)

has good Regge behavior.

To make further progress, we note that

4 <®;tress tensor(U V + Z QScons £ U V) + CI‘OSSing) = Sfiree(U’ V) ’ (564)

where S} (U, V) is the connected correlator in the N' = 6 free field theory defined in (2.78). This
equality can be verified using the superconformal block decomposition of (SSSS) in free field theory
computed in Section 2.4. Because Sfiree(U, V') is a correlator in a unitary CFT, it is guaranteed to
have the necessary Regge behavior required for the Lorentzian inversion formula.

Having derived an expression for the sum of odd and even conserved current superblocks, let us
turn to the difference. Note that for ¢ > 0, each contribution from By, Jy11, Hy and Ty appearing
in an even superblock comes matched with contributions from T, Jyy1, Hy, and By4q from an
odd superblock. We thus find that if we take the difference between the odd and even blocks, the

contributions from spinning operators will cancel, leaving us only with the scalar conformal blocks

6;1}1‘655 tensor Z ®COHb L Z 6cons N U V - gS(U V) giBo (Ua V) : (565)
odd ¢ even /

On their own, the difference of two conformal blocks does not have good Regge behavior. We
can however replace these conformal blocks with scalar exchange diagrams in AdS. Such exchange
diagrams do have good Regge behavior, and the only single trace operators that appears in their
OPE have the same quantum numbers as the exchanged particle. Using the general scalar exchange
diagram computed in [22], and inverting (2.17) to convert from the s-channel R -symmetry basis to

SH(U,V), we find that?

U

Sscal( ) = 75/2 Dl,l,;,;(U V) ( )
5.66
U
Sha(UV) = =55 [Dya1 y (UV)+ Dy g1y (U V)]

90ur conventions for D-functions can be found in Appendix D .
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which has been normalized so that the exchange of S itself contributes equally to Sf..

(U, V) and
81

1 (U, V). Using (2.82) to eliminate A% ¢ in favor of ¢;,*, we arrive at our ansatz for the exchange

contribution:

LS e U V) = = (16 = a1 (\)Siee (U, V) + a2 (NS (U, V) (5.67)

exchange cr scal

where a;()) is related to AZgp, by the equation

CT)‘%SBD
ar(A) =8 — —s (5.68)
Because Aggp, is always positive in unitary theories, a;()) < 8.
Now that we have an expression for the exchange terms, let us now turn to the contact terms.

As already noted, S?

contact

(U, V) must be a sum of contact Witten diagrams that contribute to CFT
data of spin two or less, which in Mellin space requires the correlator to be a polynomial of degree at
most two. Furthermore, because our theory is supersymmetric these contact Witten diagrams must
also preserve N’ = 6 supersymmetry. In Chapter 4 we solved the task of computing all such Mellin
amplitudes, and found that there was a unique solution, Mj3(s,t). Converting this Mellin amplitude
to position space using equation (D.4), we find that

St

cont

(U, V) =4UV D35 31(U, V),

s a4y

) 4 (5.69)
St (U V) =4U (Dl,l,l,g(U, V) — gD1 122U, V)> )

Putting everything together, we arrive at our ansatz for (S5S5S) in higher-spin A/ = 6 theories:

S’L(Ua V) = SélSC(U7 V)
1 )

+ a ((16 - al()‘))slgree(U7 V) +a (A)Sical((L V) + GQ()‘)Séont(U’ V)) + 0(6;2) .

(5.70)

5.2.3 (SSPP) and (PPPP)

Given our ansatz for (SSS5S), we will now derive expressions for (SSPP) and (PPPP) using the
superconformal Ward identities derived in Chapter 2. Applying these identities to the various terms

in our ansatz (5.70), we find that for the disconnected term

RL(UV)=1, LU V)=0fori=2,...,6,

(5.71)
’Péisc(Uv V) =1, ,P(Lilisc(U’ V) =0,
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and for the free connected term

VAU -V —1)

SR e (5.72)

%ree(U7 V) =0, Pflree(Uv V) =0, Péree(Uv V) =

both of which can be checked against their expressions in free field theory. For the scalar exchange

term, we find

4 2 -V -1
RLLUV)=0, R2,UV)=T  pi vy VD
m2 eavs
I | (5.73)
Rscal(Uv V) = _7T2V + 27T5/2 DI,Q,%,fé (U7 V) ) szcal(Uﬂ V) = 07

where we use the D function relations in (D.5) to relate derivatives of D functions to each other.

Finally, for the degree 2 contact term (SSPP) is given by

4U% | _ _ _ _
Riont(U, V) = —3 (4D221,1 —6D2222 + 15Dy 21,3+ 15D3 223 — 30D3.2,1 2)
RZ(U. V) =4U? (D3 223 —2D2222) , Reont (U, V) =4U? (5D3923 —2Ds2020) ,  (5.74)
4 _ _ _ _ 5 - _
Riont(Ua V)= 8U? <3D2,2,1,1 —6(D2222+ D3212)+5D3223+ §(D2,2,3,3 + D4,2,1,3)> .

We will not need the equivalent expression for (PPPP).

5.3 (SSSP) in the Higher-Spin Limit

Our task in this section is to use the weakly broken higher-spin Ward identities to compute (SSSP).
Recall from Section 2.1.4 that the correlator (SSSP) can be written in terms of six functions
THU, V), but, due to the crossing relations (2.14), we only need to specify 7 (U, V) and T*(U,V)
in order to complete fix (SSSP).

Acting with the pseudocharge §(X) on (SSSP), we find that

8(X)(S(§1,Y1)S (G, Y2)S (G5, Y3) P(§, Ya))

- ( (P, [X YIS @, Va)S( Vo) P Y2)) +1 024163 (575)

~ (80, Y (7. YaS(i. ¥ S0 LX. D)) ).
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To expand the right-hand side of this identity, we define

(S(1, X1)S(Ta, X2)S(T5, X3)S(Z4, X4)) = Zsz (U, V)B;,
551237341’14 (5.76)

(S(#1, X1)S (%2, X2) P(i3, X3) P(%4, X4)) = ZR’ (U,V)B;,
551255545314
where S*(U, V) and R¥(U,V) can be computed by taking the shadow transform of (SSSS) and
(SSPP). To expand the left-hand side, we use (5.38) and SO(6) g invariance to write

N(X) (S, Y1)S (Y2, Y2)S (3, Y3) P (ia, Ya))

= %/\SSBO (S(71,Y1)S (42, Y2) S (43, Y3) P(ijs, [X, Ya]))
(5.77)

+ k1 (S(§1, Y1) S (i, Y2) S (43, Y3) S (§a, [X, Ya)) )

+ K2 (S(1,Y1)S (Y2, Y2)S(43, Y3) S Bo (41, [X, Y4])) -

The two double-trace terms can each be expanded at O(c}g/ 2) as a product of a two-point and a

three-point function, so that for instance

(S(71, Y1)S (52, Y2) S (43, Y3) S Bo (4, Ya))

(5.78)
= (S(41, Y1)S (72, Y2) Bo (i) (S (i3, Y3)S (i, Ya)) + permutations + O(cz*?) .
We can then solve (5.75) to find that it fully fixes (SSSP) in terms of (SSSS) and (SSPP):
1 2 51 51 )‘?S'SBO
THU, V)= ——F—— (RYU, V) + SY(U, V) - 2250VT )
AssBov/CT 8 (5.79)
20 ~ 5 N 1 .
TYUV)= ——"— <R4 UV)+SYU,V) + SSSU(1+)) .
(U,Vv) Nssmover (U, V) (U, V) 3 Nz

To calculate T¢(U, V) for the various contributions to our (SSSS) ansatz, we must compute the
shadow transforms of both (SSSS) and (SSPP), which, using (5.76) we can express in terms of

functions

3 3 Si (m§2|£3—z|2 |m1—5|2f0§3)
S’*’Z(U V) _ .’17341;14 d z {L’%SI"Z"Q*EIQ’ I%g‘fg*glz
- An|7 — 7 T3 — 22
13 4 3

)

(5.80)

g P (e i)

|f1—2‘25‘7§4 ’ |m1—z|zm§4

~ . 3
Ri(U, V) = T34t /

13 47T|2—f3|2 ‘f4 —Z|4
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Let us begin with the free connected term, for which

Sflree(U’ V) = free(U V) (581)

so that the only non-trivial computation is

2 .3 3
~ TioX34T14 d°z 1
Sp (U V) = 12234 / . 5.82

fr%( ’ ) $%3.’L‘23 4m |5— f4|4 |fl — EHfg — 7] ( )

We can evaluate this integral using the star-triangle relation

/ = = ﬁ o) - (5.83)
Ty — Z]281|Zy — Z]282| 23 — FESE e ['(A;) x‘liz 2A3xfd 2A2xd 280 7 '
and so find that

- 1 [yUs

Séee(Uv V) = _5 7 . (584)

Next we turn to the contact term. As shown in Appendix D, the shadow transform of a D-

function is another D-function:

d3y oL L w3/27 ry— 2 I,
/WDTLTQW:;,TAL(xlax?ax37y) = IWDm,rz,rsﬁ—m (xlax27w33x4) . (5'85)
When we write
cont(U V) and cor;t(U V)
x12x34 x12x34

in terms of D-functions, the result is a sum of D-functions multiplied by rational functions of xfj

Using the identity [158]

2 2
4T1T2x12D7‘1+1,T2+1,7‘3,T4 - 47‘3r4x34DT1,T2,T3+17T4+1 ( )
5.86

= (7"1 +ro —1r3 — 7‘4)(3 —T1—T2—T3— 7"4)Dr1m2,7"a,r4 .

along with its crossings, we can always rearrange the integrands in (5.80) into a form such that we
can apply (5.85) term by term.

Finally, we turn to the exchange term. To compute the shadow transform for this term, we use
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equation (D.3) to rewrite the D functions as conformal integrals

_ 2 2
w1o|Fs—Z" |F1—Z|"25,
3 2 3 D11 F=— —
2 1’34$14$12/ d°z 1,1,5,5 (z%\zrz—z\z’ x74|F2—Z]?

Ssca = 7 _ 7 T
(U V) 73/2  z3, Am|Z — B4 )4 |7y — 22 (5.87)

1 m12m14x34/ d3z d3
T ont |Z — Zy|*|W — T4 2|00 — Ba|2i0 — 5| |id — 2]|Z— &3]

Performing the integral over z using the star-triangle relation (5.83), we then find that the integral

over w can also be performed using the star-triangle relation, and so
Seal(U,V) =VU. (5.88)
We can evaluate S2_| in a similar fashion, finding that

Sscal(U7 V) = 7%(] (1 + \/]-V) . (589)

Now we turn to computing R’ (U, V). Because ultimately our goal is to compute (SSSP),

scal

we only need RL (U, V) and R, (U, V), as these suffice to compute 7(U, V) and T*(U, V). But

scal

1
Rscal

(U, V) =0, and R, (U, V) can be computed by using the star-triangle relation term by term,

so that
(VU -VV -1
WV '

Having computed all of the needed shadow transforms, we can now write our final expression

RY U, V)=0 R'= (5.90)

for (SSSP). Substituting our results into (5.79) and the using (5.48) and (5.68) to simplify the

prefactor on the right-hand side of °

2 1 2a1(A)
B e A VA 5.91
)\SSBow/CT ™ 8 — al()\) ( )

we find that

i _ 1 2y
TOV) = m\l 8 —ai()\) (5.92)

X ((16 = a1 (M) Tgzee(U, V) + a1(N) T (U, V) + a2 (A) Teons (U, V)) +0(ep?)

10Because equation (5.48) gives an expression for a2, it only fixes a up to an overall sign. Note that this sign is
determined by the sign convention for P, such that by redefining P — — P we can always fix « > 0. This choice turns
out to also be consistent with our conventions in Chapter 3.
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where we define

UV =T, Tiwv)=—L(JL v L

free\“> ) free\“>» 9 % \/‘7 )

1 U3 U
TaaUV)=+VU,  TL,OV)=5|\—5-U-—],
w.V) =3 (Y& -v-2 -

1 8771/2 = — _ _

Teont (U, V) = 3 UV(QUD2,3,2,2 +2VDi332—2D32392 — 3D1,2,2,2) ;
32m1/2 _ _

Teont (U, V) = — 3 U? (UD3g31,2— Dap12) -

It is not hard to check that each of these contributions individually satisfies the (SSSP) supercon-
formal Ward identity (2.15).
We conclude by applying (5.93) to parity preserving theories, where (SSSP) must vanish. We

see that this is possible only if a; = 8 and as = 0, and so conclude that

. . 8 . ,
S'(UV) = Saiee(U, V) + — (Stree(U, V) + Sical(U, V) + O(e7%) (5.94)
T
in such theories. In particular, we see that
Nesp, = SE—m) _ g, (5.95)
cr

just as argued at the end of Section 5.2.1.

5.4 Constraints from Localization

We will now fix the two unknown coefficients a1(A) and as(\) in (SSSS) using supersymmetric

localization. To do so we will first need to compute the integrated constraints for the functions S}

ree’

K2
SCOH

Si

scal?

fix both parameters in the U(N), x U(N + M)_;, ABJ and SO(2)ar x USp(22M)_j OSp theories.

. and their (SSSP) equivalents. We can then use the localization results of Chapter 3 to
Having fully determines the leading large ¢r correction to (SSSS) in both theories, we decompose

the result into superconformal blocks, allowing us to compute the leading corrections to certain OPE

coefficients and conformal dimensions.
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5.4.1 Integrating Higher-Spin Correlators

Let us begin by computing I and I _ for the free connected scalar correlator Sf . (U, V). We can
immediately read of )\?B o) (022] from Table 2.6, and so
»2)2.0
I++[Sfree} = 2)‘(3 2)2032 [Sfree] =4, (596)
while because St (U, V) = 0, using (3.42) we find
I+* [SfZ:rcc] =0. (597)

Computing I,qq for 7 V) =—T% (U, V) is also straightforward. Combining (5.93) and (3.33),

I‘CC(

we can just directly compute

sin 0

=—273. 5.98
2 _2rcosf+1 T ( )

Iodd [ﬁiee] = _Iodd scal = 47T/d7“d(9

The rest of the integrated correlator computations are more tractable in Mellin space. We already

computed I, and I, _ for S¢ (U, V) in Section 4.5.2 by using its Mellin transform Mi(s,t),

i i _ 8 i i _ 2
I++[Scont] = I++[M3} = gv [Scont} - [M3] = 771—2 . (599)
We will likewise find it convenient to convert S’..,;(U, V') to Mellin space, where
21—\(1—3) ( f) (1 u)
M, ) = ——m Mo (s, t) = 2 2 5.100
scal(s ) 71'5/2F (2;5) acal(s ) 71_5/ ( t) 71'5/2F (22u) ( )
To compute I [M?,,|] we simply note that
MSC&1,84(S’ t) ] (Mscal(s t) + Mscal(s t) + 2Mscal( )) = 07 (5101)
and so from (4.105) we find that
I—‘r-‘r [Sscml] 0. (5102)

To compute I, _[S!

scal] ’

vt = [t ()0 (50 ()0 (55) - e

we use (4.108) to compute
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Using Mathematica, we can evaluate this integral numerically to arbitrary high precision, and find
that, to within the numerical error,

I—‘r—[ bl:cal] = _7T2' (5104)

Finally, let us turn to Ioqq[72 ], which we also evaluate in Mellin space. Let us begin by defining

Mellin amplitudes for (SSSP) through the equation

i dsdt i s u/2—
T(U7V):/(4m,)2N(s,t)U [2yu/2-1

3 ; 34 3 (5.105)
xr(1—f)r Yr(i-L)r (2=t r(1—9)r vy,
2 2 2 2 2 2
where u = 5 — s — t. Just like for (S555S), the s and ¢ contours are defined to satisfy
Re(s) <2, Re(t) <2, Re(u) <2, (5.106)

which include all poles of the Gamma functions on one side or the other of the contour [135]. The
crossing equations (2.14) imply that
N'(s,t) = N'(s,u), N2(s,t) = N'(t,s), N3(s,t) = N*(u,t),

(5.107)
N4(s,t) = N(s,u), NO°(s,t) = N*(t,s), NS(s,t) = N*(u,t).

Using (5.105), we can rewrite Ioqa[7?] in terms of its Mellin transform N?(s,t). The integrals over

r and 6 become tractable, and so we find that

; dsdt N'(s,t)csc(nms)csc(nt) ese(mu) (sin(ms) + sin(mt) + sin(mu))
Ioqa[N'] = -8 9/2/ : . (5.108
aalN'] T (4mi)? (s —2)(s—3) ( )
We can convert T2 . into Mellin space using (D.4):
92 1/2 ) 1/2
Nowls,8) = ==5=(t=2)(u=2),  Niw(s,) =="5—(s=27.  (5.109)
and then compute
; 4n® [ dsdt
Toad[NYont] = o / 87 cse(ms) ese(nt) ese(mu) (sin(ws) + sin(wt) + sin(7w))
3 (4mi)?
dsdt
= —64r° / @71)2 csc(ms) ese(nt) (5.110)

= —473.
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To summarize the results of this section, we have found that

[SfYGE} = ’ [Sfree] =Y, Iodd [ﬁiee} = _27('3
[ scal} =0, I - [ ;cal] =—n?, Ioda [Tca} =273 (5.111)
. 8 2
I++ [Séom} = g’ [Séont] = §7T27 odd [7;01’1 } = 47'('3

5.4.2 Applying the Constraints

We are now finally in a position to fully fix the coefficients a;(A) in higher-spin ABJ theory. Let us
begin with the parity even constraints. Combining the expressions in Section 3.1 with our ansatz

for (SSS5S) and the integrated correlators computed in the previous section, we find that

1 4 )
g (32 — 2&1()\) + 3&2(/\)) /\(B 2)[022] 1/(‘T
— — = lim — ———M—
“ 3(12 cr—0 7T4CT Bmiam% m=0
Note however that these equations are redundant, and in particular they imply that
84 log Z CT7T4
nZom| = am 16 +cr(2- Afsza?l +0(c}), (5.113)
—Imy= )

regardless of the values of a;(A). Solving the parity even constraints (5.112) with either the local-
ization results (3.85) and (3.87) for the U(N)y x U(N + M)_y, theory or (3.106) and (3.109) for the
SO(2)ar x USp(2 + 2M)_y, theory (the localization results are identical at leading order in c.'), we
find that

as(2) = gal()\) +6cos(2\) — 6. (5.114)

To solve for a;()), we now turn to the parity odd constraint

ar(N) 21 9tlog Z

(8 —ar1(\) +az(N) = +O(cpt), (5.115)

mter 3mypOm_
which also follows from combining the results of Section 3.1 with the integrated correlators computed

in the previous section. Substituting (5.114) into (5.115) and squaring both sides, we find that

ai(N)(ar(\) + 12 cos(27) + 4)?

2B V) = 32sin%(27)) (5.116)
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which upon further rearrangement becomes the cubic equation
(a1(A) — 8sin*(wA)) (a1(N)? 4+ 4(5cos(2mA) + 3)a1(A) + 256 cos® (7)) . (5.117)

This has three solutions for a; (). However, two of these solutions are not real for all A € [0, %] and

so we discard them as non-physically. We therefore conclude that
ar(\) = 8sin?(7)), (5.118)

which in turn implies that

az(\) =0. (5.119)

Substituting these values into our ansatz for (SSSS), we arrive at the expression

S’L(Ua V) = Séisc(Uv V) + ci (2 - SiIl2 (ﬂ'/\))‘sfiree(U7 V) + SiIl2 (7T>‘) écal(U’ V)] + 0(0;2) (5120)
T

We can then also use our expressions for (SSSP), (SSPP) and (PPPP) computed in Sections 5.2.3
and 5.3 to find that

TZ(Ua V) = _8\/§ sin(27'r/\) fiee(Ua V) + 0(01_“2) y

cTT

Ri(U7 V) = éiSC(Uﬂ V) + Ci Sin2 (W)‘)RécaI(Uv V) + 0(6;2) ’ (5121)
T

. ) 8 .
PHU,V) = Plise(U, V) + —(2 = sin® (TA)) Phee (U, V) + O(er?) -
T

and so, as desired, we have computed the leading 1/cr correction to each of these correlators in the
higher-spin limit. Note that, when expressed in terms of A\ and cr our final results are identical for
the ABJ and OSp theories, and are independent of N.

So far in this chapter we have focused on the large M expansion. We can, however, safely take
A~ % — 0 and so rearrange the large M expansion into the semiclassical large k expansion. Using
our final expression (5.120) for (SSSS) at large M, along with expressions for ¢r in terms of M, N
and k computed in Chapter 3, we find that in the U(N); x U(N + M)_j; ABJ theory,

1

N(M + N)

i _ V2M ;
T (U, V)= N(M £ Nk e

Si(U’ V) = Sélisc(U7 V) + Sfiree(U7 V) + O(k_z) ’
(5.122)

(U V)+0(k™?).
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and for the SO(2)ax x USp(2 + 2M)_j theory,
7 . Qt 1 7 —2
S (U7 V) - Sdisc(Ua V) + oM + 2Sfree(U7 V) + O(k ) )
. 1

T(U, V)= o e (U, V) +O0(k7?).

(5.123)

5.4.3 Extracting CFT Data

Having computed the leading correction to (SSSS) at large M, we will now expand our answer in

superblocks

S(U V)= Y NeyU,V) (5.124)

IeSxS

as defined in Section 2.3. At large ¢r the CFT data takes the form
2 2 L -2 1 -2
)\I = )‘I,disc + E)‘I,tree + O(CT ) ’ AI = AI,disc + aAl,tree + O(CT ) y (5125)

and so using (5.124) we find that

S:(U,V)

2 L e 2 —2 r (5.126)
= Z )‘I,disc + — ()‘I,trcc + )\LdjSCAI,treeaA) + O(CT ) QSI(Ua V)|A:Adisc .
1€SxS ‘T

Comparing this general superblock expansion to the explicit correlator in (5.120), we can extract the
CFT data at GFFT and tree-level by expanding both sides around U ~ 0 and V ~ 1. Expressions
for the U ~ 0 and V ~ 1 expansion of the D functions in Sy are given in Appendix D .

Note that there are two cases where we cannot extract tree-level CFT data from the tree-level
correlator. If operators are degenerate at GFFT we cannot distinguish them at tree-level, and
the coefficient of the logarithm will contain contributions from the anomalous dimensions of all the
degenerate operators. We can lift this degeneracy either by computing other correlators at tree-level,
or by computing (SS5S5S) at higher order in 1/cp.

The second case where the anomalous dimension cannot be computed occurs when an operator
first appears at tree-level. In this case its tree-level anomalous dimension cannot be extracted from
tree-level (SSSS) because )\%GFFT = 0, and so we would need to compute (SSSS) at 1-loop in

order to extract the tree-level anomalous dimension.
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We will now show the results of the CFT data extraction. For the semishort multiplets,!! we

find the squared OPE coefficients:

¢>0even: A’ _ m(l+ 1)L+ 200+ 2)?
= . (A,+)L(f52]/2,z+1/2 or (£+ 2)2

440+ 1)°T (1)
+ s (2 —sin*(7)\)) (L+1°T (5 )2 + SiDQ(TF)\)S(A 1ylo02] +0(c?),
cr 7T(€—|-2)F (g_|_ g) 045/2,041/2
0> 0oven: A2 _ o m(l+2)T 0+ 1)+ 3)
= (4,25 (204 3)0 (0 + ;)2
2
8 o 2T (T ()0, i
+ ol (2 —sin“(7A)) T %)2 + sin (WA)S(AQ)EOJ:;& + O(cr?),
(>00dd: X o = 70 +2)T'(0 +4)
- ADiiae (22 470+ 6)T (0 +3)°
8 2241(20 4 3)T (& + 1)°
+ — | (2 — sin?(7)\)) 2 +sin?(7\)S 11, +0(cp?),
cr al (€+g)2 (A2)¢) T
7€+ 3)T'(L + 5)
£>0even: M =
B (A, l)zf'?/g 0+3/2 I (f -+ %) I (5 —+ 9)
2 2
8 oo ZTTE) T(5) -
— | =-(2-= A NS [100],2
* cT ( S (T( )) nl (f + g) 1 + %) +sin (ﬂ— ) (4, 1)e+7/2 £43/2 * O(CT )’
(5.127)

where the contributions S; from the scalar exchange term S!_, are given in Table 5.2. Note that

we did not include the result for A2 [100],1 , since it cannot be unambiguously extracted from
(A’1)£+7/Y2,2+3/2

(SSSS) at O(cp') due to mixing with the single trace operators, as we discuss next.

For the long multiplets, we first consider the single trace approximately conserved current multi-
plets with superprimary By, starting with £ = 0. For generic A when parity is not a symmetry, we ex-
pect this multiplet at ¢ — 0o to contribute to both n = 1, 2 structures of the ®Long[§?g%" superblock

at unitarity A = 1, where recall from (2.74) that we can formally identify QﬁLong[ooo],z =& (B,1)220]
1,0

and QﬁLong[ooo],l =6 For each structure, we find the OPE coefficients
1,0

(A,cons) [1?80] :

2 s = o (1= sin?(A)) + O(cr?).

A
Lon
B0 or (5.128)

4 _
ALong[OOO] 2= 3 +O(cr'),

where the n = 2 structure starts at O(c%) since QﬁLong[ooo],z =6 [200] appears in the GFFT, while
1,0

(B:1)3.0

the n = 1 starts at O(c}l) since QﬁLong[ooo],l =06 000] does not appear at GFFT. Note that
1,0

(A,cons); o

11We already computed the short multiplet )\? in Chapter 3 using supersymmetric localization.

022
B2)2%
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)\io Ql000L1 is what we called Agsp, from Section 5.1, and vanishes for the parity preserving A = 1/2
Nng1.,0

theory as discussed before. For N > 1 we cannot unambiguously determine the O(c;') correction
to /\2 10002 using just tree-level (SSSS),!? since we cannot distinguish it from the correction to
)\(B 12000 which can be explicitly constructed in any U(N)_; x U(N + M);, theory with N > 1.13
To unmix these degenerate operators, we would need to compute (SSSS) at O(c:;z)7 in which
case the O(c;l) correction to )‘ionggﬂgﬂw will multiply the anomalous dimension, so that it can be
unambiguously read off. The O(c;l), anomalous dimension should be the same for either structure,

but in practice we can only extract it from tree-level (S5SS) using the QﬁLong[ooo],z structure, because
1,0

that is the only structure whose OPE coefficient is O(c%). From this structure we find

128 _
Apay =1+ or sin?(7A) + O(c?) . (5.130)

For the 6Long[10,go],1 structure, the tree-level anomalous dimension would first appear in (SSSS) at
O(c3?), since the leading order OPE coefficient starts at O(cp").

Next, we consider the single trace approximately conserved currents with superprimary B, and
even ¢ > 0. For generic A parity is not a symmetry, and so we expect this multiplet at ¢ — oo to

contribute to both n = 1,2 structures of the QﬁLong[ooo],n superblock at unitarity A = £ 4 1, where
ALl

recall from (2.74) that we can formally identify QSLongEOff}f = 6(14»1)%2}'21,@_1/2 and QﬁLong[ﬁf’f}f =
o] For each structure, we find the OPE coefficients

(A,cons)[z(ffh :

64
£>0even: M\ [000]1:CT(1_SIH( A) + O(cr )»

ponere (5.131)
7l +2)T(L+3)T(L+4) 1 ’
£>0even: M\ = + 0 ,
Y Menel? T T BT (04 DT (04 9) (er’)
where the n = 2 structure start at O(c%.) since & (oooj,2 = & [100],1 appears in the GFFT,
Long, 1, (4, 1)1/+3/2 0—1/2
while the n = 1 starts at O(c;l) since & ooo,1 = & woo; does not appear at GFFT. Note
Long“_ll (A,cons)“_ll

that A2 0oo,1 is what we called Aggp, from Section 5.1, and vanishes for the parity preserving
Npi1,e

A = 1/2 theory as discussed before. We did not write the O(c;l) correction to A2 [000],2+ Since we

041,20

using just tree-level (§5S5S). To unmix

Long

cannot distinguish it from the correction to A2 (100],1
(A 1)17+7/2 £4+3/2

12For N = 1, the unambiguous tree-level correction will then be

4 8 4 32 _
oool2 = 3 + — | — =(2 —sin?(7))) +33 s1n2(7r)\) +0(cp?). (5.129)

A2
Long; cr 3

131n particular, at GFFT one can construct two (B, 1)[2 o) operators, one using adjoints of the SU(N) gauge group

factor and one using singlets. The latter (B, 1); 200] is what is eaten by the conserved current at tree-level, while the
[200]

former remains. For N = 1, there is of course no adjoint, which is why the extra (B, 1) o does not exist.
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these degenerate operators, we would need to compute (SSSS) at O(c;?), in which case the O(c;!)

correction to )\i ooy,> Will multiply the anomalous dimension, so that it can be unambiguously
ONEyt1,e

read off. The O(c;') anomalous dimension should be the same for either structure, but in practice
we can only extract it from tree-level (SSSS) using the 6Long[ooo],z structure, because that is the
41,4

only structure which contributes at O(c%). From this structure we find

80(20 + 1)(20 + 3)%(20 +5)(20 +7) .

{>0even: Ay =L+1+ T2(0 4+ 1)2(0 + 2)3(€ + 3)2c

n?(7\) + O(cz?).  (5.132)

For the LongL +1]’ structure, the tree-level anomalous dimension first contributes to (SSSS) at
O(cp?), as discussed above.

Finally, we consider the single trace approximately conserved current multiplets with superpri-
mary By for odd ¢ > 0. In this case there is just a single structure, which from (2.74) is identified

at unitarity with & nglo0 = =6 . We find the tree-level OPE coefficient

[000]
Sot1e (A,cons)ZJr

12

64
(>00dd: N 00 = — +0(c;?), (5.133)

Lon, NEyy1,0 cr
which is what we called Asst, , from Section 5.1, and does not depend on A as discussed before. We
would need to compute (SSSS) at O(c;?) in order to extract the tree-level anomalous dimension.
We now move on to the double trace long multiplets. We will only consider the lowest twist

in each sector, since higher twist double trace long multiplets are expected to be degenerate, so

we cannot extract them from just (SSSS). For twist two, we find that only &

[o00],1 Teceives
Longz+2’e

contributions for all even £:

128(2¢ +3)(20 +5)
20+ 1) (0 +3)({ + 4)er
e _ w0+ 4+ DI+ 3)
Longg2h' oD ((4+ DT (0+ 1)
8 4 (5T (43

. 92 2 12
+ a - (2—5111 (W)‘)) = (Z—f— %) ( %) + sin (W)‘)SLong;fgel +O(CT )

¢>0even: Agy=~L+2— n?(7A) + O(cp?),

(5.134)

146



For odd ¢ at twist two, only G| 000 receives contributions:
ONgy oy

>00dd: Agyy=L+2+0(cr?),

32 (0 +2)I'(L +4)
Longl’y), — oT (C+2)T(0+ 1)
8 AT ()T (427,
+ o (2 —sin“(7w))) AT+ DT+ D) + sin (ﬂA)SLonngg] +0(cr?),

(5.135)

where note that the tree-level corrections to the anomalous dimension vanish. For twist three, we

find that both S, £1000].2 and & Longl00].3 receive contributions for all even £, though only the former
F+3 £ 1€+3 4

receives an anomalous dimension:

128(20 + 5)(26(¢ + 4) + 5)
PU+ )3+ H)E+5)er
\2 . AT+ 3T+ 4)

Longis”  3(20+3)L (0 + 3)T (¢ +3)

£>0even: Al =L0+3+ n*(7\) + O(c;?),

3 443(0 4 2)T (@il)p(lﬁ)p(u)?

= (2 = sin? 2 2 2
T (2 ~sin (”A))3W(£+4)(2£+3) T(+HT(e+9) I (TS g g0 +0(er?)
K _ al(e+2r(+5)
Longr s (20+3)L (€ + )T (0 +2)

8 202 4£+3P( 42_ )F(Z;:&)F(@f) 2

2 — [000],
+CT (2 —sin“(7wA)) AT ((+ T (0 +2) +sin”(7A)S, fooo], +0(cr?),
(5.136)

where Al(z 2) denotes that these are the second lowest dimension operators in their sector that we

consider, after the single trace operators with twist one.

5.5 Discussion

Our main result in this chapter is the tree-level expression for (S.5S5S) in both U(N )i x U(N+M)_j,
and SO(2)ar x USp(2+2M)_;, ABJ theory in the higher-spin large M, k limit as a function of finite
A. Tt is instructive to compare our N’ = 6 correlators (SSSS) in (5.120) and (PPPP) in (5.121) to

the tree-level correlator of the scalar single trace quasibosonic Oy, and quasifermionic O,y operators
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for non-supersymmetric vector models in [151]:

<qu(fl)qu(f2)0qb(fg)0qb(f4)> = \/54_ \/g_’_ %

1 8
2 2 .
L19x34 CT

(5.137)
2 . TA b — — — 1V
T LB sin® ( 2q ) (UDLL;,;(U» V)+ UD1,1,%,%(V7 U)+ Dl,l,%,%(ﬁa U)> ] )
and
(Oqs (#1)Oq s (¥2) O (3) O (Z4))
5.138)
1 2 [rrw-v-1 TW+v-1 (
S S Ll ) oW -y YOOV -1
Tiyx3, o7 V3/ Vs
To facilitate comparison we converted the parameters in [151] to the notation of [160]:
1 2 ~ TAgh
o Agp = tan( 5 ) (5.139)

The four-point functions are then those of a U(Ngp)x,, Chern-Simons matter theory with 't Hooft
coupling
N,

Agp = ki’ (5.140)
qb

and either a complex scalar for the quasibosonic case, or a complex fermion for the quasifermionic
case. We should compare the quasibosonic case correlator to (SSSS), as both S and O, are scalars
with A = 1 at tree-level, and the quasifermionic correlator to (PPPP), as both P and O are
pseudoscalars with A = 2 at tree-level.

The N = 6 correlators are structurally similar to those of the quasibosonic and quasifermionic
theories. In all of these cases, the contact terms allowed by the Lorentzian inversion formula vanish.
For both the quasiboson and (SSSS), the tree-level correlator includes a free connected term and a
scalar exchange term, while for the quasifermion and (PPPP) only a free connected term appears.
For the N' = 6 theory both (SSSS) and (PPPP) depend on A through sin®(7)), while in the
nonsupersymetric case only the quasiboson depends on A4, and with slightly different periodicity
sinQ(%).14
Although both the quasiboson and (SSSS) correlators contain a scalar exchange term, their
physical origin is quite different in each case. In the quasibosonic case it was shown in [155] that

for spin ¢ single trace operators J, all tree-level (O, OgpJ¢) were the same as the free theory except

14The factor of two discrepancy in the periodicity between the ABJ case and the non-supersymmetric case is
discussed in Section 6.2 of [21].
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for Jo = Og, which depends on Ag. The scalar exchange then appears so as to compensate for
the fact that tree-level (Og,OgOgp) is not given by the free theory result. In the N’ = 6 case, we
found that the tree-level three-point functions between two S’s and a higher-spin multiplet are given
by the free theory result only for odd ¢, while for even ¢ they are all proportional to the same A
dependent coefficient. The contribution of the exchange diagrams for the even and odd spin single
trace long multiplets, which at tree-level coincide with conserved supermultiplets, exactly canceled
so that only the scalar exchange diagrams remains.

We showed that the contact terms allowed by the Lorentzian inversion formula for (SS5SS)
vanished by combining localization results with the (SSSP) four-point function computed using
the weakly broken Ward identity. There is in fact a possible alternative argument that only uses
N = 6 superconformal symmetry, and so would apply to any N = 6 higher-spin theory. N = 6
superconformal symmetry only allows a single contact term with four derivatives or fewer, which
thus contributes to spin two or less as allowed by the large M Lorentzian inversion formula [150].

But as we saw in the previous chapter, S} which corresponds to the Mellin amplitude Ms(s,t),

ont
should really be thought of as a six derivative contact term. The six derivatives contributions vanish
for (SSSS) but would appear in correlators such as (SSJJ). Since six derivative contact terms
generically contribute to spin three CFT data in correlators of non-identical operators [161], they
would be disallowed by the Lorentzian inversion formula for correlators with spin [162], which would
then disallow the putative four derivative (SSSS) contact term.

As further evidence for this, S, (U, V) contributes to a scalar long multiplet which contains
a spin three descendant. This spin three descendant happens to not contribute to the (SS5SS)
superblock, but could well appear in the (SSJJ) superblock. It would be interesting to derive the
superconformal Ward identity that explicitly relates (SSJJ) to (SSSS), so that we could verify this
alternative argument for the vanishing of the contact term. Our tree-level result would then just
be fixed in terms of a single free parameter, analogous to a recent argument in [151,152] showing
that the contact terms must vanish in non-supersymmetric theories due to the higher-spin Ward
identities.

This chapter relied almost exclusively on the CFT side of the higher-spin AdS/CFT duality. This
is mostly because supersymmetric higher-spin gravity is still poorly understood. The only known
formulation so far is in terms of Vasiliev theory [21,163-169], which is just a classical equation of
motion with no known action, and so cannot be used to compute loops. Even on the classical level,
it has been difficult to regularize the calculation of various correlation functions [170,171]. Recently,

a higher-spin action has been derived in [172] for the O(N) free and critical vector models, which
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manifestly reproduces the correct CFT results to all orders in 1/N. If this construction could be
extended to N' = 6, then it is possible that the bulk dual of (SSSS) could be computed and the

absence of contact terms understood from the bulk perspective.
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Chapter 6

Numeric Conformal Bootstrap

Numerical bootstrap techniques provide one of the few general tools applicable to non-perturbative
conformal field theories; for recent reviews see [8,26,173]. Bootstrap studies with extended super-
symmetry have so far however only been performed for operators that belong to half-BPS supermul-
tiplets [70,76,81,174-191].} Consequently, general constraints on the space of such SCFTs have so
far been explored only when these SCFTs preserve the maximal amount of supersymmetry in their
respective dimensions, because only then does the stress tensor sit in a half-BPS multiplet. Our aim
in this chapter is to perform a general study of N' = 6 SCFTs, where the stress tensor multiplet only
a third-BPS.2

We begin in Section 6.1 by deriving the crossing equations for (5555, using the superconformal
blocks computed in Chapter 2. We then study general numerical bounds on OPE coefficients and
conformal dimensions in Section 6.2. In particular, we find that the U(1)aps X U(1 +2M)_ops ABJ
theory is very close to saturating the lower bounds on the short )\?BQ)[;EQ] OPE coefficient, and
so we can derive a conjectural spectrum for this theory using the extremf;ml functional method. In
Section 6.3 we restrict our attention to specific ABJ theories by using supersymmetric localization

results as input to the bootstrap, allowing us to find small islands in OPE space for these theories.

We close in Section 6.4 with a short discussion.

1See, however, [192,193].
2Half-BPS multiplets in 3d N = 6 SCFTs have been studied in [194].

151



6.1 Crossing Equations

The crossing equations for (55SS) are written in (2.8). For the s-channel superblock expansion the
nontrivial constraint is the one given by crossing (z1, X1) <> (23, X3). In terms of the S, (U, V') basis

in (2.17), we can write the crossing equations (2.8) using a 6-component vector

15F_ 1, +80F_ 45 o5, + 64F- g4,
F_15, + F_ 45,018, — 4F- 84,

FO.V) = 3F_ 15, —12F_ 45 475, + 161 84, , 6.1)

3F_ 200 —2F_ 45 oq5, +2F 84,

15F 1, — 15F, 15, — 60F a0, — 60F, 45 w75, — 56 g4,

3FY 15, — 3Fy 15, — 9Fy 200 — 3F, 45 aa5, + 14F 84,

where we define

Fy (U, V) = V23S (U, V) £ US.(V,U) . (6.2)

Combining the crossing equations with the superconformal block decomposition derived in Chapter 2,
we can then define a function d% (U, V') for each superconformal block I listed in Table 2.5 by replacing
each S (U, V) in d'(U, V) by &%(U, V) as defined in (2.72). In terms of these d%(U, V), the crossing

equations can now be written as

; 64 . ,
— el (2 2 5
O=diat  dpappt 2. Ndi, (6.3)
1£1d,(B,2) !
where we normalize the squared OPE coefficient of the identity multiplet to A\}; = 1, and parame-

terize our theories by the value of
64
M2 =—
B2 T ep

(see (2.82)). The sum in (6.3) should then be understood as running over all other superconformal
blocks for multiplets appearing in the S x .S OPE.

These six crossing equations are in fact redundant due to A/ = 6 superconformal symmetry,
akin to the N' = 8 case studied in [178,179]. It is important to remove these redundancies, as
otherwise they lead to numerical instabilities in the bootstrap algorithm. As in [179], we eliminate

redundancies by rewriting the functions Fy (U, V) as sums of superconformal blocks. We then
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expand in z, Z derivatives as

B 2 N (- o
F+7r(U,V)— Z ZTq' Zii 275 z 2F+71‘(U7V)|z:2:

Nl

pjktq:ezen
o 2 1\’ 1\? (64)
— i _ - A P Hd o1
FaV)= 5 (s3] (5o 5) #OE Oy
p+g=odd
s.t. p<q
where z, Z are written in terms of U,V as
U=2z, V=>01-2)(1-2). (6.5)
We then truncate these sums to a finite number of terms by imposing that
p+qg<A, (6.6)

and then consider the finite dimensional matrix cAlgp 9 whose rows as labeled by i =1,...6 are those

1 that

z=zZ=3

of di, and whose columns as labeled by (p,q) are the coefficients of the 92018, (U, V)|
appear in each entry of d* after expanding like (6.4) using the definition (6.2) of Fy (U, V) in terms
of §:(U, V). Finally, we check numerically to see which crossing equations are linearly independent

for each value of A, and find that a linearly independent subspace for any A is given by

{d® d*,d° d°Y, (6.7)

where we include all nonzero z, Z derivatives for the crossing equations listed.?

We now have all the ingredients to perform the numerical bootstrap using the crossing equations
(6.3), where we restrict to the linearly independent set of crossing equations (6.7). We can derive
numerical bounds on both OPE coefficients and conformal dimensions using numerical algorithms
that are by now standard (see for instance [179,195]) and can be implemented using SDPB [196,197].
In each case, the numerical algorithms involve finding functionals « that act on the vector of functions
d'(U,V) and return a linear combination of derivatives of these functions evaluated at the crossing-
symmetric point U = V = 1/4. In all the numerical studies presented below, we will restrict the
total derivative order A defined in (6.6) to be A = 39, and we will only consider acting with a on

blocks that have spin up to £y = 50.

31n the analogous N = 8 case studied in [178], the linearly independent set consisted of just one crossing equation
with all of its derivatives, as well as a second crossing equation with only derivatives in z.
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6.2 Numeric Bootstrap Bounds

6.2.1 Short OPE Coefficients

2 — 64

B2 T er

We begin by deriving numerical bootstrap bounds on the squared OPE coefficients A
and A?B,Q foz2 that were computed using supersymmetric localization in specific ' = 6 SCFTs from
the ABJ family in the Chapter 3.

We first derive a lower bound on ¢ that applies to all N/ = 6 SCFTs. To do so, we consider

linear functionals « satisfying

a<d(B,2)[1‘f§11) =1, ©3)
a(dy) >0, for all superconf. blocks I ¢ {Id, (B, 2)[1(?(1)1]}.
From (6.3), the existence of such an o implies
64 ;
— < —a(dy) - (6.9)
or
We performed such a numerical study, and we found
er > 155, (6.10)

where recall that ¢ = 16 corresponds to the theory of a free N/ = 6 massless hypermultiplet, which
also has A/ = 8 SUSY. The bound (6.10) can be compared to the analogous N' = 8 bound ¢y > 15.9
computed in [81] with A = 43. In both cases, we expect the numerics should converge to ey > 16 in
the infinite A limit, as there are no known A" = 6 SCFTs with ¢y smaller than 16. The fact that the
N = 6 bound (6.10) is weaker than the N/ = 8 one suggests that the N' = 6 numerics are slightly
less converged than the A/ = 8 numerics. In the remainder of this thesis we will only show results
for er > 16.

Let us now compute bounds on the squared OPE coefficient \?

(8,202 as a function of ¢7. In

,0
general, to computer upper and lower bounds on the OPE coefficient of an isolated superblock I*
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Figure 6.1: Upper and lower bounds on the )\?B p)l022 OPE coefficient in terms of the stress tensor
»4)2.0

coefficient cp, where the orange shaded region is allowed, and the plot ranges from the generalized
free field theory (GFFT) limit ¢y — oo to the free theory ¢r = 16. The black lines denote the
N = 6 upper/lower bounds computed in this work with A = 39, the blue lines denotes the N’ = 8
upper/lower bounds computed in [81] with A = 43. The red and dots denote the exact
values in Tables 3.1 and 3.4 for the U(1)ans x U(1+ M) _ops and SO(2)ans42 X USP(2+2M ) _(apr41)
theories, respectively, for M = 1,2, ..., while the gray dots denote the GFFT and free theory values
from Table 2.6.

appearing in (6.3), we consider linear functionals « satisfying

a(db.) =s, s =1 for upper bounds, s = —1 for lower bounds,
a(dy) >0, for all short and semi-short I ¢ {Id, (B, 2)[1(3(1)1],1*} , (6.11)
a(dy) >0, for all long I with A; > (41,

The existence of such an « implies that

. i 64 i
if s =1, then M, < —al(diy) — aa(d(372)[0(1)1])’
" (6.12)

, 64
if s = —1, then N> a(diy) + aa(d(B?)[ffé”) ,

thus giving us both an upper and a lower bound on A?.. Using this procedure, our numerical study
gives the upper and lower bounds shown in black in Figure 6.1. On the same plot, we indicated
in blue the bounds obtained with A = 43 in the N/ = 8 case, as derived in [81]. While the upper

bounds for the N' = 6 and N = 8 cases are very similar and likely differ only because of the different
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value of A that was used, the lower bounds are qualitatively different. Indeed, the N'=6 and N' =8
lower bounds meet at g =0, 1, and at around .71, where the A = 8 bound has a kink.? At other
values of g, the N' = 6 lower bound is significantly weaker than the A/ = 8 one.

In Chapter 3, we noted that at large cr, the U(1)apr X U(1 + M)_2ps theory had the minimal

2

value of )\?B 2ylo2z] of all theories studied. In Figure 6.1 we hence plot the analytic value of /\(B 2ylo2z]
’ 2,0

for various U (21;2 M X U(1 4+ M)_sp theories in red, and note that they appear to come very close
to saturating the lower bound in Figure 6.1. For comparison, we also show the SO(2)4pr42 X
USp(2M + 2)_(2n141) theories in orange, which lie slightly above the U(1)ans x U(14 M) _2ps dots.
We hence conjecture that, in the infinite A limit, the U(1)2ps x U(1 + M)_aps theory saturates the
numerical lower bound on /\?3’2)[20,32].

At the boundary of the allowed and forbidden region, it is believed that there is a unique solution
to the crossing equation and the CFT data can be extracted using the extremal functional method
[198-200].° One application of this method has been to the 3d Ising model, which was argued

to saturate the lower bound on the coefficient ¢y which appears in the stress tensor two-point

function [200,202]. As we have just seen, it appears that the U(1)2ps x U(1+ M)_opr ABJ theory

2
(B,2)

This is reminiscent of the A/ = 8 case in [81], where the U(N)g x U(N + 1)_5 theory was found to

saturates the lower bound on A o221 and so should be amenable to a precision bootstrap study.
saturate the corresponding lower bound.

At large M, the U(1)apr X U(1 4+ M)_ops ABJ theory has weakly broken higher-spin symmetry.
We computed (SSSS) in the higher-spin limit in Chapter 5; the U(1)apr x U(1 + M)_aps theory
has A = % and so is parity preserving. Using the results of Section 5.4.3, we can thus compute the
tree-level corrections to the U(1)apr X U(1+ M)_2ps theory, and will compare them to the extremal

functional results in the next section.

6.2.2 Semishort OPE Coefficients

Let us now discuss upper and lower bounds on OPE coefficients for isolated superconformal blocks

that appear in (SSSS). The isolated superconformal blocks are listed in Table 2.5. They consist of

those superblocks which do not appear on the RHS of (2.74)—(2.76), and so are unable to recombine

with other short multiplets to become long. This includes all semishort multiplets in Table 2.5
[100],n

except for (A4,1), 5

Using the algorithm presented in (6.11)—(6.12), we determined such bounds as shows in Figure 6.2.

4This N = 8 kink was previously observed in [76,178].
5Ref. [201] showed that it is sometimes possible that there could be several extremal functionals, but in all cases
that were studied they produced the same CFT spectrum.
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In these plots, our A = 39 N = 6 upper/lower bounds are shown in black, and they can be compared
to the A = 43 N/ = 8 bounds computed in [81], which in these figures are shown in blue. As in
Figure 6.1 discussed above, in all these plots, the N/ = 6 and N = 8 lower bounds meet at around
g ~ .71. Note that the A/ = 6 upper/lower bounds do not converge at the GFFT and free theory
points yet, whose exactly known values were listed in Table 2.6 and are denoted by gray dots, which
is evidence that they are not fully converged. The exception is the bound on the OPE coefficient
for (A, +)E0+022,]27 which is our most constraining plot.

In addition to the upper and lower bounds, in Figure 6.2 we also plot in dashed red the values
of the OPE coeflicients as extracted from the extremal functional under the assumption that the
lower bound of Figure 6.1 is saturated. As we can see, the extremal functional values for the OPE
coeflicients come close to saturating several of the bounds in this figure, but not all.

We further include on these plots the tree-level results for U(1)ap x U(1 + M)_opr computed
in Section 5.4.3, shown in green. For comparison, we also include the tree-level results in the
supergravity limit as computed in [117,203] are shown in orange. Recall that the supergravity
results apply to the leading large ¢ correction to both the M-theory and string theory limits. As
first noted in [203] and visible in these plots, they match the large ¢y regime of the N' = 8 lower
bounds.® For N = 6, we see in all these plots that the tree-level results approximately match the

conjectured U(1)aps X U(1 + M)_ops spectrum in the large ¢p regime. Curiously, the conjectured

2
[020] and A [o11]

spectrum approximately coincides with the A" = 6 lower bounds for A\?
04+5/2,041/2 (A72)£,1.+2

(A,+)

with odd ¢, but not for A2

(42011 with even £.7

/012

The N = 6 numerics are Ii(j': completely converged yet, which can be seen from the fact that at
cr — 00 the numerics do not exactly match the GFFT value shown as a grey dot. On the other
hand, it has been observed in many previous numerical bootstrap studies [76,81,174-176,178] that
the bounds change uniformly as precision is increased, so that the large cp slope is still expected to
be reasonably accurate, even if the intercept is slightly off. In Table 6.1, we compare the coefficient
of the 1/cr term as read off from the numerics at large ¢r to the tree-level results, and find a good
match for between the extremal functional and the analytic results. The match is especially good
for the most protected quantities, which are the 1/4-BPS A2 (020] . In fact, this quantity is
(At)ess/o,041/2

so constrained that it is difficult to distinguish by eye between the N' = 8 and N/ = 6 numerical

and analytical results in Figure 6.2. Nevertheless, the exact tree correction for supergravity and

6We have converted the N/ = 8 results in [203] to A/ = 6 using the superblock decomposition Appendix C.

"Recall that, as described in Table 2.5, the superblocks for A2 have completely different structures for

(A,Q)[OII]

0,042
even/odd values of £.
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Figure 6.2: Upper and lower bounds on various semishort OPE coefficients squared in terms of cr,
where the orange shaded regions are allowed, and the plots ranges from the GFFT limit ¢z — oo to
the free theory cr = 16. The black lines denote the N/ = 6 upper/lower bounds computed in this
thesis with A = 39, the blue lines denote the AN/ = 8 upper/lower bounds computed in [81] with
A = 43. The red dotted lines denotes the spectrum read off from the functional saturating the lower

bound on )\?B 2)l0221> which we conjecture is the U(1)aps X U(1+ M) _aps theory. The green dashed
»4)2.0

lines denote the O(cy.') correction for the U(1)apr x U(1 4+ M)_gps theory computed in this work,
while the dashed lines denote the O(c;l) correction for the supergravity limit of ABJM
theory as computed in [117,203]. The gray dots denote the GFFT and free theory values.
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CFT data | Extremal Functional Tree level HS Tree level SUGRA
Mo, 1.9 5420~ 11 SEFINTTPNETRT
A(A,+)9°/°22]5 /2 18.7 55 o ~ 1874 —24192023568 + 10033216 ~ 19.18
)\?AB)E),E” —45 —8 — 20 ~ —47.27 —1024 4 2500 ~ —81.96
A azosy —18 — 1024 _ 10384 ~ —15.34 | 262U 547236 o 3936
Mazio K B g6l | T B gy
Nrap 10 000 _ g2 y1q1 | T | simes 714
A1) —16 1620 ~ —16.21 17130 —113.48
A2 16 128 ~ 12.97 120 11348

Table 6.1: The 1/er correction to the conformal dimensions Ag 1 and Ag o for the lowest dimension

Long[OOO] ! and Long[OOOL operators, respectively, as well as the OPE coefficients squared of various

semishort operators. The extremal functional results come from a large cr fit to the functional that
we conjecture applies to the U(1)aps X U(1 + M) _aps theory, and corresponds to the dashed red
lines in Figure 6.2. The analytic tree-level results of the higher-spin theory are those for U(1)2ps X
U(1+ M)_op, computed in Chapter 5 of this thesis, and the analytic results for supergravity were
computed in [117,203].

tree-level U(1)ap X U(1 + M)_ops are different, as we can see from Table 6.1.

6.2.3 Bounds on Long Scaling Dimensions

Lastly, we will study bounds on the conformal dimensions of long multiplets. To find upper bounds
on the scaling dimension A* of the lowest dimension operator in a long supermultiplet with spin £*

that appears in (6.3), we consider linear functionals « satisfying

64

a( id) (dq(B 2)[011]) 1 s
a(d?) >0, for all short and semi-short I ¢ {Id, (B, 2)[1(?(1)1]}, (6.13)
a(d}) >0, for all long I with Ay > A%,

where we set all A} to their unitarity values except for A,. If such a functional o exists, then
this « applied to (6.3) along with the reality of A; would lead to a contradiction. By running this

algorithm for many values of (¢p, A},) we can find an upper bound on A’ in this plane.

[000]

Since for the long multiplets Long, ," of even spin ¢ there are several superconformal blocks (two

for £ = 0 and three for ¢ > 2), we can ask what the upper bound on A is independently for each

1000}

superconformal structure Long, . To be explicit, we denote by A, ) the bound obtained from

000}

the structure Long, , . (For odd ¢, we simply denote the bound by A,.).
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For general N/ = 6 SCFTs, the bounds for different n need not be the same, but we do expect

in a generic N' = 6 SCFTs will contribute to all superconformal

that a long multiplet Long[g?; }

structures and, if this is the case, the lowest dimension long multiplet must obey all the bounds
obtained separately from each superconformal structure. Since the superconformal structures are
distinguished by they parity P and Z charges (see Table 2.5), in an SCFT that preserves these

symmetries, A ,) represents the upper bound on the lowest long multiplet with the P and Z

charges that correspond to the structure Long[gog I as given in Table 2.5.

Let us begin with bounds on scalar long multiplets. We show the bounds for the parity even

structure Longg(}g M Figure 6.3. The bound appears to smoothly interpolate between the gener-

alized free field value of 2 at % = 0 and the free field value of 1 at % = 1. This can be compared
to the N' = 8 bounds, plotted in blue, which is of course always lower than the A" = 6 bound, but
exhibits a kink at g ~ .71 where the two bounds appear to meet. We also show the extremal
functional, conjectured to be the U(1)apr X U(1 4+ 2M)_ops theory, and see that it coincides with
the A" = 6 upper bound. The green and orange dashed lines plot the tree-level result for higher-spin
theory and SUGRA respectively, which as we can see approximately match the N'= 6 and N' =8

bounds respectively.

Now let us consider the bounds for the parity odd scalar structure Long[AOOg 11 Recall that, as per

[000],

(2.74), the unitarity limit of the LongA’g [200]

2 superconformal block is the (B, 1)270 superconformal

block, so our bound on A,y depends on whether we assume that a (B, 1)[2%80] multiplet appears

in the S x S OPE. If we assume that there are no (B, 1)[22’80} operators that appear in the S x .S

OPE, then we obtain the bound in bottom plot of Figure 6.3. As we can see from this figure, the
bound Ag e smoothly goes from the GFFT value 1 at g = 0 to the free theory value 3 at g =1.
The extremal functional, shown in red, comes extremely close to the upper bound, and both match
match reasonably well with the tree-level result for the U(1)aas x U(1 4 2M)_op theory.

For comparison we also show the A/ = 8 upper bound computed in [81], computed with no
assumptions about the spectrum. For this reason, the A" = 6 bounds need not be above the N' = 8

bounds. Indeed, it was shown in [76] that all ' = 8 SCFTs with g < .71 contain a short multiplet

[200]
0

(namely the (B, 2)[2?(2)00]) that upon reduction to A" = 6 includes a (B, 1);, ' multiplet.® Tt may also

seem curious that in bottom plot of Figure 6.3, at ¢y = 16, where the free theory has in fact N' =8

SUSY, the lowest operator (marked by a gray dot) that contributes to the Long[AO%) 12 hlock does not

obey the A/ = 8 bound in blue. This is because in that case the Long[AO?g 0] multiplet that gives the

[0000]
1,0

N = 8 bound is replaced by an N' = 8 conserved current multiplet (A, cons.) 7 which no longer

8See (C.4) for the reduction of N = 8 superconformal blocks to A/ = 6 ones.
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Figure 6.3: Upper bounds on the scaling dimension of the lowest dimension ¢ = 0 long multiplet
as a function of e, for the L01r1g[AO(,)g]’1 (top) and Long[AO?g )2 (bottom) superconformal structures.
The black lines denote the A/ = 6 upper bounds computed here with A = 39, the blue lines denote
the N/ = 8 upper bounds computed in [81] with A = 43, and we shade the allowed region orange.

The red dotted lines denote the extremal functional spectrum saturating the /\?B 2)lo22 lower bound,
»4)2.0

which we conjecturally identify with the U(1)2ps x U(1 4+ M)_ops theory. The green dashed lines
denote the O(c;') correction for the U(1)gar x U(1 4 M) _2ps theory computed in Chapter 5, while
the orange dashed lines denote the O(c;l) correction for the supergravity limit of ABJM theory as
computed in [117,203]. The gray dots denote the GFFT and free theory values.
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[000] 2 (0000]

contributes to the Long, 5"". The gray dot in Figure 6.3 instead comes from a Long; , — multiplet

in N =38.

Next we study bounds on long multiplets of spin ¢ =1 and ¢ = 2. Let us begin with Figure 6.4,
which shows the bounds on P even, Z even, superblock for / = 1 and ¢ = 2. These bounds smoothly
interpolate between the values of the corresponding conformal dimensions at the free N’ = 6 hyper-
multiplet theory at g = 1 and the GFFT at g = 0. This behavior is distinct from the N' = 8
bounds, which exhibit a kink at g ~ .71. We do not show extremal functional results for these
plots because our numerics are not yet sufficiently accurate. In particular, we expect that the ¢/ =1
multiplet should become approximately conserved current at large cp, but this will be particularly

hard to see because, as a single trace operator, its OPE coefficient starts at O(c;l).

[000],2 [ooo}

The bounds on the other ¢ = 2 long superconformal blocks, the Long A2 and Longx , are
shown in Figure 6.5. At unitarity these superblocks become the (A4, 1)21_32}/2 4172 and (4, 1)&1_32]/22 +1/2)

as per (2.76), and so our bounds depend on what assumptions we make about the presence of these

(100], 100],3 .
7/2, 3/2 d (A4, 1)[7/2 ]3/2 do not appear in

operators. Our first results is that if we assume the (A4, 1)
the S xS OPE, then the long multiplet bounds are at the unitarity bound. This in turn implies that

our assumption was false, and so we conclude all A" = 6 SCFTs must contain (A4, 1)71/020]3 /2 multiplets!

This is consistent with the result in [76] that all N' = 8 SCFTs must contain an N = 8 (4,2)3 [0020]

[100]

multiplet, which reduces to the (A, 1)7/2 3/2

N = 6 multiplet as per (C.4).

Finally, we can derive revised bounds on these superblocks under the assumption that the S x .S
OPE contains the (A4, 1)[71/020]3;2 d (4, 1)71/02O 30 superblocks. As we can see from Figure 6.5, we
found that the bounds A, ) are slightly above 5 for all er, with little dependence on cr. This is
consistent with the value at both GFFT and free theory. For comparison, we also show the second
lowest operator for N = 8 theories, which corresponds to the lowest long spin 2 ' = 8 operator.’

We do not show any extremal functional results for these plots, because we do not yet have sufficient

numerical precision.

6.3 Islands for Semishort OPE Coefficients

In the previous section we discussed numerical bounds that apply to all 3d N/ = 6 SCFTs. In

particular, we noticed that the upper/lower bounds on (A, "’)ﬂ)‘i}e for £ = 1/2,5/2 were extremely

91t may again seem curious that at ¢y = 16, where the free theory has A/ = 8 SUSY, the gray dot does not obey
the N' = 8 bound. At exactly the free theory point, this N’ = 8 operator becomes a conserved current which no longer
decomposes to a parity odd N' = 6 long multiplet, which is why the A/ = 6 free theory value of the second lowest
operator, denoted by the second lowest gray dot, does not coincide with the % — 1 limit of the A/ = 8 upper bound.
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Figure 6.4: Upper bounds on the conformal dimensions as a function of ¢p. The top plot shows
the bounds on the lowest £ = 1 long multiplet (for which there is a unique conformal structure).
The bottom plot shows the bounds for the parity even ¢ = 2 long multiplet, corresponding to the
Long[goéJ 11 superconformal block. The black line denotes the ' = 6 upper bound computed in here
with A = 39, the blue line denote the A/ = 8 upper bound computed in [81] with A = 43, and we
shade the allowed region orange. The gray dots denote the GFFT and free theory values from

Table 2.6.
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Figure 6.5: Upper bounds on the scaling dimension of the lowest dimension ¢ = 2 long multiplet
in terms of cr for the Lorlg[AO?2O )2 (top) and Long[AO?QO b3 (bottom) superconformal structures, which

for parity preserving theories have the opposite parity as the superprimary, and for Z preserving
theories has the same charge for Long[AO?g 12 and the opposite charge for Long[AO(A)Q0 I3 The black line
denotes the N' = 6 upper bound computed in here with A = 39, the blue line denote the ' = 8
upper bound computed in [81] with A = 43, and we shade the allowed region orange. The gray

dots denote the GFFT and free theory values from Table 2.6.
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Figure 6.6: Islands in the space of the semi-short OPE coefficients A2 , A2 (to
5/2,1/2 9/2,5/2

be defined precisely later) for U(N)g x U(N)_r ABJM theory for various N, k. These bounds are

derived from the N' = 6 bootstrap with A = 39 derivatives, and with the short OPE coefficients (i.e.

cr and )\(B )[022]) fixed to their values in each theory using the exact localization results of [76] for

N = 2,3,4 as shown in Table 3.2 and the all orders in 1/N formulae in [81] for N = 10 as shown in
Table 3.3.

(A+ )[002] (A, +)[002]

constraining. This implies that for a given value of ¢y, we could find a small island in the space of

OPE coefficients (\?

(A,4)lo02 SN2 ozy ) using the OPE island algorithm described in the previous

s/2172 (Atlosns)
subsection.

To make these islands even smaller and correlate them to specific physical theories, we can impose
values of ¢p and )\?B,Z)[;?] computed using supersymmetric localization in Chapter 3. Such islands
were found for A" = 8 SCFTs in [76,179], and we ow find similar islands for A' = 6 theories. We show
our results for U(N); x U(N)_y, for a variety of N,k in the Figure 6.6. Note that the islands are
small enough that we can distinguish each value of N and k, which allows us to non-perturbatively
interpolate between M-theory at small &k and Type ITA at large k.

One difficulty with trying to fix a physical theory by imposing two exactly computed quantities,
cr and )\?B,Q)[;?], is that the most general N' = 6 ABJ theory has gauge group U(N ) x U(N +M) _
and so is described by 3 parameters M, N, and k. While for physical theories these parameters should

be integers, we expect that the numerical bootstrap should find theories with any real value of these

parameters, so we are effectively trying to parameterize a 3-dimensional space of theories. Since
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Figure 6.7: Islands in the space of the semi-short OPE coefficients \? 002] > A2 (0oz;  for
(A+ )5/2,1/2 (A’+)9/2,5/2

U(10)10 x U(10 + M)_19 ABJ theory for M < k/2 = 5. These bounds are derived from the N'= 6
bootstrap with A = 39 derivatives, and with ¢y and /\( 2022 fixed to their values in each theory

using the all orders in 1/N localization formulae in [81] for N = 10. Note that the axes describe a
very narrow range in parameter space.

we are only imposing two quantities, these islands are expected to have a finite area even at high
numerical precision corresponding to the third direction in “theory space”. Thankfully, this third
direction appears to be very small. We can quantify this by fixing N = k = 10 and computing
islands for several different values of M < k/2 = 5. As shown in Figure 6.7, the island is not very
sensitive to the value of M < N, which explains why we were able to get such small islands in a

3-dimensional space by just imposing two values of the parameters.

6.4 Discussion

In this chapter we studied N' = 6 theories non-perturbatively using the numerical conformal boot-

strap. In particular, by inputting the exact values of ¢y and A2 022 for a given ABJ theory,

(B,2)55
we found precise rigorous islands in the space of semishort OPE coefﬁmentb that interpolate be-
tween M-theory at small k& and type ITA string theory at k& ~ N. We also conjectured that in
the infinite precision limit, the numerical lower bound on A? .., is saturated by the family of

(B,2)Y%
U(1)ap XU (14 M) _2ps theories, which allowed us to non-rigorously read off all CFT data in (SSSS)
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using the extremal functional method. Interestingly, in the regime of large ¢ we found a spin zero
long multiplet whose scaling dimension approaches a zero spin conserved current multiplet at large
cr, as expected from weakly broken higher-spin symmetry.

There are several ways we can improve upon our 3d N = 6 bootstrap study. From the numerical
perspective, it will be useful to improve the precision of our study. This is parameterized by the
parameter A defined previously. While we used A = 39 in this work, which is close to the A = 43
values used in the analogous N = 8 studies [81,179], for ' = 6 this value has not led to complete
convergence. For instance, we found the lower bound ey > 15.5, compared to the N' = 8 result
cr > 15.9; both are expected to converge to the free theory ¢ = 16. More physically, we expect
that approximately conserved currents should appear in the extremal functional that conjecturally
describes the U(1)apr X U(1+ M) _ops theory. We found such an operator in the zero spin sector as
shown in Figure 6.3, but do not yet have sufficient precision to see them for higher-spin. The main
obstacle to increasing A at the moment is not SDPB, which due to the recent upgrade [197] can
easily handle four crossing equations at very high A, but simply the difficulty in computing numerical
approximations to the superblocks at large A. In particular it would be extremely useful to have
an efficient code for approximations of linear combinations of conformal blocks with A dependent
coefficients around the crossing symmetric point. Currently the code scalar_blocks code, found
on the bootstrap collaboration website,'° is only able to efficiently compute single conformal blocks.

We could also make further use of localization to improve our results. In this chapter we only

2

(820220 but ABJ is parameterized by three parameters M, N,

considered constraints from ¢ and A
and k. For this reason there are not enough constraints to uniquely pick out a single ABJ theory
and so we should not expect our islands to shrink indefinitely as we increase A. We think this is the
reason why the islands shown in Figure 6.6, while small, are still much bigger than the A" = 8 islands
computed in [179]. In Chapter 3 we studied a third quantity (fﬂ;i% which constrains (5555},
however, it is not yet known how to use this to constrain the numerical bootstrap in our case.
Perhaps the method used in [204], where a similar integrated constraint was successfully imposed
on the numerical bootstrap of a certain supersymmetric 2d theory, could be applied to our case.
Another option would be to look at a larger system of correlators, such as those involving fermions

or (SSSP). This would allow us to impose parity, which would restrict the set of known N = 6

SCFTs to a few families such as U(N)y x U(N)_j parameterized by only two parameters each.

10This code can be found at https://gitlab.com/bootstrapcollaboration/scalar_blocks/blob/
master/Install.md.
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Chapter 7

Conclusion

In this thesis we studied N' = 6 superconformal field theories. Our results can be roughly divided into
two classes: those which apply to all N' = 6 SCFTs, and those which apply to specific holographic
regimes. In the former class we have the supersymmetric Ward identities and superconformal block
expansion for (SSSS) derived in Chapter 2, the supersymmetric localization constraints derived in
Chapter 3, and the numerical conformal bootstrap results in Chapter 6. The latter class of results
includes the holographic expressions for (SSSS) derived in Chapter 4 for the string and M-theory
regimes and in Chapter 5 for higher-spin theories.

Throughout this thesis we made use of the fact that derivatives of the mass-deformed sphere
partition function can be computed exactly using supersymmetric localization. We have not yet
exhausted all of the constraints these provide. As explained in Chapter 3, in addition to the two
masses m4 considered in this thesis, NV = 6 theories admit a third mass deformation, m, and on top
of this we can also consider placing the theory on a squashed sphere parameterized by squashing
parameter b [83] (with b = 1 corresponding to the round case). This leads to a much larger number of
four derivative constraints to consider, although not all of these are necessarily independent. In [97]
it was shown that in ABJ theory at large N, the only independent four derivative quantities are

8;‘;& log Z , 8;?;”8,”7 logZ, 02 0% logZ, 82”8% log Z ,

my Tm

all evaluated at m4+ = m = 0 and b = 1. Of these, only the last quantity, which is complex, was not
studied in this thesis. It would be interesting to work out whether these redundancies are specific
to ABJ at large N, or whether they hold for more general ' = 6 theories as a consequence of the

superconformal Ward identities.

168



In either case, it should be possible to derive the integrated constraint imposed by 872n+ 02 log Z,
and to derive expressions for 872n+ 02 log Z at both large N and large M. With these results, we
could then have enough constraints to extend our calculation in Chapter 4 to degree six. As shown
in Table 4.3, we have one degree 3, one degree 4, two degree 5, and three degree 6 local Mellin
amplitudes. With the flat space limit we can fix all three degree 6 terms, while we have just enough
parity-even localization constraints to then fix the other four Mellin amplitudes. Unfortunately,
however, this would not provide us with any additional checks of AdS/CFT beyond the ones already
considered in this thesis. For N'= 8 ABJM theory we can make further progress due to the enhanced
supersymmetry. In [118] (SSSS) was computed up to the D*R* term, corresponding to a degree 6
Mellin amplitude, and it seems likely that this could be extended up to the degree 8 DSR* term.

Apart from supersymmetric localization, another potential source of exactly computable quan-
tities for N' = 6 theories is from integrability. It would be interesting to try to match integrability
results for the lowest dimension singlet scaling dimension in the leading large N 't Hooft limit at
fixed Mg oot = N/k and M = 0, computed in [205,206], to numerical bootstrap results, where we
use inputs from supersymmetric localization to constrain ourselves to the relevant ABJM theories.
For this to work we would need to compute the derivatives of the mass deformed free energy in
the 1/N expansion at finite A goofr. In fact, the zero mass free energy has already been computed
in this limit in [91] by applying topological recursion to the Lens space L(2,1) matrix model, so
computing cr and A(2372)[2?32] should correspond to just computing two- and four-body operators in
this matrix model. This could potentially lead to the first precise comparison between integrability
and the numerical conformal bootstrap.

In both the large NV limits studied in Chapter 4 and the large M limit studied in Chapter 5, we
focused our attention on tree-level correlators. A logical next step would be to extend these results
to 1-loop. In [207] it was shown that 1-loop corrections to holographically correlators can in general
be computed from the “square” of the tree-level anomalous dimensions. The challenge here is that
these double traces are generally degenerate, and to compute the 1-loop correction they must first
be unmixed. One-loop corrections for supergravity and for the R* term have been computed in
both 4d A = 4 theories [208-212] and 6d (2,0) theories [213], and it should be possible to extend
these calculations to both 3d A/ = 6 and N/ = 8 theories in the supergravity limit. No similar
calculations have so far been performed for higher-spin theories, although the mixing problem in
non-supersymmetric case was considered in [214].

While in this thesis we focused on N' = 6 SCFTs, many of the tools we have developed should

generalize to theories with less supersymmetry. The next logical step is to study A/ = 5 supercon-
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formal theories, and in particular the N =5 O(Ny)ax X USp(N3)_ Chern-Simons matter theories,
of which the SO(2)ar x USp(2 + 2M)_j, theories considered in this thesis are merely a special case.
The ABJ quadrality of [66] extends the ABJ triality by relating the bulk duals of these theories to
those of ABJ with an additional orientifold. From the string theory perspective, these theories are
obtained by orientifolding the brane construction of the U(N), x U(N + M)_j, theory, so that the
O(N1)ar X USp(N2)_j, theories are dual to type ITA string theory on AdSy x CIP3/Z2. In the string
or M-theory limit, orientifolding changes the single trace spectrum, such that certain tree-level cor-
relators vanish, and the 1-loop corrections are suitably modified [213]. The O(Ny)ax x USp(Na) g
also have two distinct higher-spin limits, where Ny > Ny or Ny > N;. The orientifold does not
affect the single trace spectrum aside from reducing the supersymmetry when N; # 2 from N = 6
to N =5, so we expect that the general structure of the A/ = 5 tree-level correlator should be very
similar to our N' = 6 result. The precise dependence on A could still be different, as that depends
on the Lagrangian of the specific theory, as well as the specific form of the N/ = 5 version of the
N = 6 integrated constraints discussed in this thesis. To fully fix the correlator, one might also need
to consider integrated constraints involving the squashed sphere, as computed in [83,97,215,216].

We could also study less supersymmetric theories in 3d with the numeric conformal bootstrap.
For both N/ = 4 and N/ = 5 superconformal field theories the superprimary of the stress tensor
multiplet remains a scalar. It should hence be feasible to generalize the strategy employed in
Chapter 2 to derive the superconformal blocks for these theories, and then use these superblocks
to perform a numeric bootstrap study. We could similarly study the superprimary for a conserved
current multiplet in /' = 2 or N' = 3; for N' = 4 theories the multiplet is half-BPS and have been
studied in [184]. Many localization results exist which could be applied to each of these cases.

Let us finish by considering the broader picture. As we discussed in the introduction, our
motivation for studying /' = 6 SCFTs was two-fold: the theories provide highly symmetric examples
of quantum field theories, and, through holography, they provide highly symmetric examples of
AdS/CFT duality. By studying N' = 6 SCFTs, we may hope to gain a more general insight into the
space of possible quantum field theories, and into the behavior of quantum gravity.

On the former front, we already have a classification of all Lagrangian NV = 6 SCFTs, and it
would be extremely interesting to understand whether other A/ = 6 exist. Perhaps insight into the
classification problem could be gained through a deeper understanding of the structure of observables
that can be computed through supersymmetric localization. Or perhaps a better understanding of
the superconformal crossing equations could yield insight. The conformal bootstrap itself is still in

its infancy, and a precise understanding of why certain theories saturate bootstrap bounds, or which
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theories can be isolated using the bootstrap, is still lacking. N' = 6 theories provide a constrained
setting in which one could try to explore these more general questions.

On the holographic front, an ambitious goal would be to derive string and M-theory scattering
amplitudes beyond those quantities protected by supersymmetry. While in string theory we can
systematically compute scattering amplitudes in perturbation theory, no similar method is known
for M-theory. Studying ABJ theory, whether through the numeric bootstrap or with some other
method, provides one possible avenue to fully compute the M-theory S-matrix.

Another goal would be to understand how to relate the stringy limits of ABJ theory with the
higher-spin limit. The higher-spin limit is in many ways more tractable than the stringy limits, and
so one could hope that understanding AdS/CFT in the former case may give insight into AdS/CFT in
the latter. Conversely, stringy theories of quantum gravity are in many ways much better understood
than their higher-spin cousins, and so by studying how ABJ theory interpolates between these two

theories we may hope to gain insight into both types of quantum gravity.
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Appendix A

Supersymmetric Ward Identities

We begin by listing general expressions for two-scalar, two-fermion correlators which are invari-
ant under both conformal and so(6) symmetry. As explained in Section 2.1 we restrict to those

structures which are P and Z invariant:

(S(&1, X1)S(F2, X2) X (T3, Z3)X" (T4, Z4))

7 v .~
— x¢x [Tr(Xng)(Zd Z)CH + (23X, X2 Z4)CH + (23X1X224)c371} (A.1)
1234

—(¢1§§24f12) l:TI‘(XlXQ)(Zg . Z4)Cl"2 + (ZgX1X2Z4)CZ’2 + (Z3X1XQZ4)CB’2:| y
1234

<S(fhX1)S(52,X2)Xa(537Zs)FB(f4,Y4)>

aﬁ (A.2)
=] {Tr(xlxgnzg)el 1 T (X X Ve Z5)E% + Te(XoYa XY Z5)E% 1}
33129534
(¢1§f24f712) {TT(X1X2Y4Z3)51’2 + Tr(Xo X Y3 Z5)E%% + TF(X2Y4X1TZ3)53’2} )
1234
(S(&1, X1)S(Z2, Xo)F* (&3, Z3)FP (%4, Ya))
(2
x¢x4 [(eabcd(xl)“eiqeb(xg)“fyg NF 4 (avea(X1)% Y5 (X2)%, Y d)#vl} (A.3)
1234
(¢ Fout 1)’ e c a e c
1233?12;7;; (Eabcd(Xl) eylb(X2) J"Yzfd)]:L2 + (Gabcd(Xl) eYQb(X2) }"Y1fd)]'—2’2 )
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(S(Z1,X1)S (T, Xo)F (&3, YV 3)F (T4, Y3))

. a3 —
i 57
_ 2¢344 [Tr( X1 X0)Tr(Y,Y3)GH + Tr(VaY 3 X0 X;)G*!

Li2T34

+ Tr(YaY 3 X2 X1)G%! + Tr(Yy X5 YV X1)G! (A.4)

4

i of - -
+ (¢13¢424¢12) |:TI'(X1X2)TI‘(}/4Y3)QL2 + TI'(Y4Y3X2X1)Q272
2x75T3

+ Tr(YaY3X2X1)G3? + Tr(YVa X1 V3X,)G42 | .

We will now give the Ward identities for two-scalar, two-fermion correlators. We will begin with

(SSxx) and (SSxF), which can be derived from 6(SSSx). We will omit those functions of the

cross-ratios that are related to these under crossing. The expressions for (SSxy) are:

Cl,l _

62,1 —

61,2 _

C272 _

L
2U

+U(-U+V —1)oyS*(U, V) + UVoyS*(U, V) + UU +V —1)oyS*(U, V)

(U20V31(U, V) +4U%0ySY(U, V) + 4U%0yS* (U, V) + U(V — U)oy S*(U, V)

+2U0VoySH U, V) 4+ 2U(V — 1)0ySH(U, V) —4USH (U, V) — 3US(U, V) — USS (U, V)

F (U -V +1D)S2U,V) — (V- DS3U, V) + (U — 2V +2)S4(U, V)) : (A.5)

L
320

+UVOyS*(U, V) —UdyS*(U, V) +UVOyS*(U, V) +UVIyS*(U, V) — UdyS* (U, V)

(U26U52(U, V) + U9y S3(U, V) — U0y SHU, V) + U(U + V)dyS2(U,V)

+2U0VoySY U, V) 4+ 20VoyS* (U, V) — 200y SY (U, V) — US*(U, V) + USY(U, V)
+US(U, V) -US*(U, V) - VS*(U, V) + S*(U,V) = VS3(U,V) + S*(U,V) - 2VS*(U, V)
+ 284U, V)) : (A.6)

%(U((BV + 1)y SY (U, V) + 3U0ySHU, V) — 0y S*(U, V) — 0y S*(U, V)

+ (U - 1)opS*(U, V) — 200S* (U, V) + V(0yS*(U, V) + 40y S> (U, V) + 4Udy S (U, V))

+ 82U, V) +S3(U, V) + 254U, V), (A7)
1

33
+ (U - 1)y S3(U, V) — 20uyS*(U,V)) + S2(U, V) + S3(U, V) + 284U, V)) . (A.8)

UV =1)0ySYU, V) +U0ySY U, V) + 0y S*(U, V) — 0y S*(U, V) + VayS*(U, V)
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The expressions for (SSFx) are:

EV = —VoySAH(U, V) — (V= 1)ouS*(U, V) = VouS*(U, V) — (U +V — 1)y S* (U, V)

— 2V SYU, V) = 2(V — 1)y S* (U, V) — 200y S3(U, V)

N (V- 1)52(U, V) N (V- 1)53(U, V) CSUV) 1 SOV - (U -2V +U2)S4(U, V) ’

(A.9)

M = —UOvS*(U,V) +uyS*(U,V) = uS*(U,V)) + S*(U, V) = S*(U, V), (A.10)
EV2 =U(—0yS*(U,V) + VoyS* (U, V) + (U —1)0yS*(U, V) — 20pS*(U, V) + 2VoyS® (U, V)

+2U0yS* (U, V) + S3(U, V) + S3(U, V) + 284U, V), (A.11)
E¥? =UyS*(U, V) - VoyS*(U, V) —UdyS3 (U, V)). (A.12)

Next we shall give expressions for (SSFF) and (SSFF), which can be computed from §(SSSF).
Unlike the previous correlators, we cannot completely fix these in terms of (S55S). We will instead
also leave FLH(U, V) and F21(U, V) undetermined. We then find that the other components of
(SSFF) are:

FrLU,v) = ! ( —4UV Oy S (U, V) —4UVOySHU, V) — 2(U — 2V)S* (U, V)

Vv
+ (U - V)FYY U, V) + FR(U, V)) , (A.13)
F22U V)= — %(U( —4VoyS* (U, V) = 28" (U, V) + FHH (U, V) + F2(U, V)) . (A.14)

Furthermore, by imposing conservation on (SSSJ), we find that F41(U, V) and F21(U, V) are
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constrained by the Ward identities:

FLH U V) = %QUB(U +2V —2)03SY(U, V) + 2U2V (U + 2V — 2)02.S* (U, V)
+U(U +2V = 2)0yS* (U, V) +2U%(U + V = 1)(U + 2V — 2)9ydy S* (U, V)
—2U3(U +2V —2)03S*(U, V) — 22UV (U 4 2V — 2)05S*(U, V)
+8UV(U =V + 1)9ESHU, V) = 2UVAHU + 2V — 2)93S3(U, V)
+8UVA(U -V + 1)9ESN U, V) + UQQU — V + 1)(U 4 2V — 2)dyS*(U,V)
—2UV(U 42V —2)03S*(U, V) + U(U +2V - 2)oyS*(U,V)
—UU 4V = 1)(U +2V —2)0ydvS*(U, V) — (U — 1)U(U + 2V —2)0yS*(U, V)
—2UV(U+V = 1)(U 42V - 2)oyoyS* (U, V) + 4U — 1)U(U -V + 1)9yS*(U, V)
+8UV(U =V + 1)(U +V —1)dydyS*(U, V)
— (U -2V +2)(U +2V —2)oyS*(U, V)
+ V(U +2V —2)(=3U + 2V — 2)ayS*(U, V)
FAV(U —V +1)(3U — 2V + 2)8y SHU, V) — zU(U2 U@V +1)
(V- 1)2)6Uf1=1(U, V) + (U2(1 V) 4 UMV 4 3)(V — 1)
=2V = D))oy FH O, V) + (U2 = 3U(V 1) + 2V = 1)) oy FH2(U, V)
+U(-U+V =10y F2U, V) — (U 42V - 2)S*(U, V) — (U + 2V — 2)S*(U, V)
+4(U -V 4+1)SYU, V), (A.15)
FL2U, V) = %(2(]38?]31(& V) 4 202V S\ (U, V) + U0y 8 (U, V)
+2U%(U 4V — 1)0ydy S (U, V) — 2U20%:S*(U, V) — 2U*VOERS3 (U, V)
—AUPVOLSHU, V) — 2UV20%.83(U, V) — 4UV?20%.8* (U, V)
+UQU -V 4+ 1)0ySYU,V) - 2UVIZS*(U, V) + UdyS*(U,V)
—2U(U+V = 1)0ydyS*(U, V) — (U = 1)UdyS*(U, V)
—2UV(U +V —1)yoyS3(U,V) = 2(U = 1)Uy S* (U, V)
— AUV (U +V — 1)0pdyS*(U, V) — (U — 2V +2)0yS*(U, V)
+V(=3U + 2V —2)0yS*(U, V) + 2V (=3U + 2V — 2)oyS*(U, V)
LU~V + D)oy FYNU,V) + 200y FY2(U,V) + (U(V +1)
(- 1)2)8V]:171(U, V) + (U+V =1y FY2(U, V) - S2(U, V) — S3(U, V)
— 284U, V)) . (A.16)
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We also find the following expressions for (SSFF):

gl,l([]7 V) —

g2,l(U’ V) —

gl (U, v) =

gl,Z(U’ V) —

G*A(U,V) =

g2 U, v) =

1
U( U209y SHU, V) — 4U?0y S5 (U, V) — 20V Ay S3(U,V)

—2U(U+V —1)0yS*(U, V) —4UV Oy SH(U,V) — 4U(V — 1)0yS*(U,V)
+2USH (U, V) +2US*(U, V) 4+ 2(V — 1)S3(U, V) — 2(U — 2V 4 2)S*(U, V)

+ (U~ V + DFSNU, V) + FLA(U, V)) : (A.17)

%(4U28U85(U, V) —20VoyS*HU, V) —2U(V — 1)0yS*(U, V) + 20V oy S* (U, V)

+2U(U +V = 1)0yS*(U, V) +4UV Oy SHU, V) +4U(V — 1)oyS* (U, V)

—2US*(U, V) +2USS(U, V) +2(V — 1)S*(U, V) — 2(V — 1)S*(U, V)

LU — 2V + 2)SHU,V) — (U — 2V + 2)FEY U, V) — 2F12(U, V)) , (A.18)
SU (27 (v SH WU, V) + 0uS* (W, V) + 0S¥ U, V) + 20 SH (U, V) + 008 (U, V)
284U, V) — FRY(U, V)) — FL(, V)) - 2(32(U, V) + 83U, V) + 284, V)) ,

(A.19)
2U<U8U81(U, V) 4+ (U = )0y S*(U,V) — 20uSHU, V) + V(9ySH (U, V)
+ v S3(U, V) 4 20y S%(U,V)) 4 200y S° (U, V)) +283(U, V) + 484 (U, V)
— FLY vy, (A.20)
U (8U82(U, V) + VoySHU, V) + (U — 1)ayS* (U, V) — 208U, V)
+2VoyS*(U, V) + 2U0y S* (U, V)) +28%(U, V) = 283(U, V) — 4S*(U, V)
+2FY N U V) + FR2(U, V), (A.21)

%(U(—QV(&VSQ(U, V) +VoyS3(U, V) +UdyS*(U, V) + 20y SHU, V) — 284U, V)

+FHOV)) + FRUY)) - FRU,V). (A.22)

Next we give expressions for (SSPP), which can be derived by considering the supersymmetric
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variation §(SSPy):

RY U, V) =2V20LS*(U, V) + 2V20L S (U, V) + 4V205.SY (U, V) + 2V(U + V — 1)0y oy S*(U, V)

V(=3U + 2V — 2)0y S*(U, V)
U

+2UVOZS}(U, V) +4V(U +V —1)0ydy SHU, V) + 4UV 8% S* (U, V)

V(U =2V +2)0yS2(U, V)
U

—UoySHU, V) — (V +1)0yS%(U, V)

+2UV3S*(U, V) — +2V(U +V — 1)9ydyS*(U, V)

+2VoyS*(U, V) — 2Voy S (U, V) +

4V(U =V 4+ 1oy SYU, V)
+ U
—(~U+V+1)ouS*(U, V) —2(-U +V +1)oyS* (U, V) — 200y S (U, V) + SHU, V)
(U -2V +1))S*U,V) (V+1)8%(U,V)

_ 5 6
i +S°(U,V)+S°(U, V) + U

(V+1)S3(U,V)
+
U
RA2(U,V) = —U?0ySH(U,V) — 2U*VOESY (U, V) — AUV 93 S° (U, V) — 2UV20%. S (U, V)

(A.23)

—AUV2OELS (U, V) 4+ 2V20L S (U, V) + 2V20L S* (U, V) + 4V203 S* (U, V)
—2UV(U 4V = 1)0ydyS*(U, V) + 2UVOES* (U, V) + 2UVOES* (U, V)
+4UVOES* (U, V) = 2(U = 1)UdyS® (U, V) —4UV (U +V — 1)dydyS° (U, V)
—2U0yS%(U, V) — V(3U — 2V +2)0ySH(U, V) — (V + 1)0yS*(U, V)
+2V(U +V = 1)opdvS*(U, V) — (U +V + 1)y S3* (U, V)

+2V(U 4V = 1)opdyS3 (U, V) = 2(=U + V + 10y SH(U, V)

+4V(U +V = 1)opdyS* (U, V) — 2V (3U — 2V 4+ 1)oyS* (U, V) — 2V S°(U, V)
N V(U -2V +2)0yS*(U, V)  V(=3U +2V —2)9yS3(U,V)

U U

_ 4 2
LAV v+;)avs UY) _ gy 4 s, vy + VDS W)

U
U 1)53(0', V) (U-2(V +U1))S4(U, V) (A.24)
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1
RYUV) = =3 (2( U2~ (U+3)V+U+2V2+ 1)8VS5(U, V) + 2029y, SH(U, V)
+2U%(2U +V — 1)0iSY (U, V) + 4U*(U +V — 1)03S*(U, V)

(U2 LU —3V)+ 2V — 1)2)avs2(U, V)
U

+ (4U2 YU -2V — 1)2)8V81(U, V) —

2(U2 YU -2V — 1)2)8v84(U, V)
a U
((U(2U 1))V - 2U + 1)U — 1) — 2V2)8VS3(U, V)
U
+2UV(2U +V - 1)0gSH U, V) +2U(U +V —1)(2U +V — 1)9ydy S* (U, V)

—UQU+V — 1S U, V) — 2U(v (- 1)2)8%83(U, 1)

—4U(U +V = 1)0gSHU, V) +4UV(U +V — 193 S°(U, V) + 2(U — 1)Uy S* (U, V)
+4U(U +V = 1)20y0yS* (U, V) + U0y S5 (U, V) — 2V(2U +V — 1)0%.S*(U, V)
+@BU +V = 1)0yS*(U,V) —2(U+V —1)(2U +V — 1)9yovS*(U, V)

- QV(V (- 1)2)3353(& V) + (U+V = 1)3yS3U,V)

+ 2((U 12 v) (U +V — 1)aydyS*U,V) — 4V (U + V — 19284, V)
+2(U+V = 1)0ySY (U, V) —4(U +V = 1)?0y0y SHU, V) +2(U +V — 1)y S°(U, V)

+SNU,V) — SYULV) — (BU+V —1)8*(U,V) U+ V - DS}, V)

U U
(83U +2V — 2)S4(U, V)
- = ) : (A.25)

R(U, V)= — %( —2U%03SY (U, V) — 2V202.83(U, V) — 4V29LS* (U, V) 4+ 20V 8281 (U, V)

+2U(U +V — 1)opdySHU, V) — 2U(U + V)OES* (U, V) — 2UVOES* (U, V)
—AUVOLSHU, V) +2U00ySS(U, V) + (U — 2V + 2)0ySH(U, V)
—2V(U+V)ogS* (U, V) + (U +V + 1)0yS*(U,V)

—2U+V - 1)(U+V)oyovS*(U,V) — (U -V —1)0yS* (U, V)

—2V(U +V — 1)y S*(U, V) —2(U -V —1)dySYU, V)

— 4V (U +V = 1)0pdyS*(U, V) — 2VayS*(U, V) + 2Vay S5 (U, V)
(U+V)U -2V +2)oyS?(U, V) V(3U -2V +2)ovS*(U, V)

U U

LWV DWSHUY) gy sy - &

U+V+1)S%(U,V)
U

U
3 N 4
B (V+1)3 U, v) ( U+2V4[r]2)8 (U,V)). (A.26)
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Appendix B

Characters of osp(6|4)

In this appendix we review the character formulas of 0sp(6]4), which were computed in [31], as well
as their decomposition under osp(6|4) — s0(3,2) ®s0(6). This decomposition was used in Chapter 2
to determine which conformal primaries reside in each supermultiplet appearing in the S x .S OPE.

The osp(6|4) characters are defined in terms of the quantum numbers and generators given in

Section 2.2 as
X(A;j;r)(s,x,y) = TI"R(A;j;w (32Dx2‘]3y{{1y52y53) ) (Bl)

Their explicit form for the multiplets we consider are

2 1
(A,£) _2A a14aztaz+ai+az+a
X(A;j;r,r,’r)(saxay) =s""P(s,x) E E U TOTATOTRT N o) vay tas+as (T)

a1 ,az2 ,a3=0 a ,az ,az=0

3
X (H Xja; ($)> X(r+a1—ay ,r+as—as ,+rtasFas) (y) ) (BQ)
=1

2 3
B,+ 1+az+az
XEA;0;2“7T,T)(S7 Z y> = SZAP(S’ ‘r) Z s et (H Xia; <x)> X(r—a1,r—az ”"*a3)(y) ’ (B'3)

ai ,a2 ,a3=0 =1
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2 2
A’ P a a a-
a (s my) =4 P(s,2) Y > Yo smtertetntatGy g e (2)

X(A§j§rlv~--yT17T7L+17~-

X
—
=
~
2l
=
S~—
N———
—e
>
<
Bl
—
=
=
5
+
S\
|
5
S
+
Q
N
|
Q
N
3
+
Ql
w
|
S
w
PN

i=n+1 1=1
(B.4)
2 3
B, Gi1teta
XEA;S;)Tl7~~-,7"17Tn+17~~-,7"3)(S’ Z y) = SQAP(S’ 33) Z sal+a2+a3+a e H Xjaz‘ (1‘)
a1 ,az,as ,Gn41,--.,a3=0 i=n+1
3
X H Xjai (:L’) X(m—a1,...,rl—an,rn+1+an+1—an,+1,.4.,r3+&3—a3)(y) )
=1
(B.5)

where the long multiplet corresponds to (A,0), we define j, = a (mod 2), the su(2) and so(6)

characters are

xjlx) = ——————, (B.6)

x—ax !

det [y 713

3

ri+3—j _ —rj—3+j

+ det [yl Y;

+ y;’l‘j *3+,]:|

X (y) = = -
2H1§i<j§3(yi +¥; 't Yi —Y; Y

and the function P(s,z) is related to the so(3,2) character and takes the form

o0

1
1—s4

n=

P(s,z) = 52X on () . (B.8)
0

The products of the su(2) characters in (B.2)—(B.5) are easily transformed into sums of such
characters by decomposing su(2) tensor products. After doing so, we see that (B.2)—(B.5) become

sums over 50(3,2) @ s0(6) characters, as desired.!

1Sometimes the so(6) characters in (B.2)-(B.5) appear with negative Dynkin labels. One can then try to use the
identity

xe (1) = (=) “xa(y)

to obtain a character with non-negative Dynkin labels. In this identity w is an element of the s0(6) Weyl group Sq,
Y = w(r + p) — p is a Weyl reflection, p = (2,1,0) is the Weyl vector, and (7)4(“’) is the signature of the Weyl
transformation. If there is no Weyl transformation such that r“ correspond to non-negative integer Dynkin labels,
then x; = 0.

180



Appendix C

Decomposing N = 8 Superblocks to
N =6

In this appendix we discuss how the superblocks that appeared in the four-point function of the
N = 8 stress tensor superprimary S decompose into the ' = 6 superblocks discussed for (SSSS)
in the main text. This serves as both a consistency check of our A' = 6 superblocks, and also allows
us to translate the N/ = 8 numerical bootstrap results of [76,81,178,179] into N' = 6 language,
which we use to compare to the ' = 6 results in Chapter 6. S transforms in the 35, of the N’ = 8

R-symmetry group SO(8), which decomposes to SO(6) x U(1) as

35 — 150 & 10, & 10_5, (C.1)

so S decomposes to S as well as the superprimaries of the multiplets (B, +)7% and (B, —){% that
are charged under U(1). Since we are only interested in correlators of S, we will always restrict to
U(1) singlets when decomposing from A/ = 8 to A/ = 6 in this appendix, which we will denote using
an arrow instead of an equality.

The N' = 8 multiplets that appear in S x S are listed in Table C.1.! We can decompose the

characters for these superblocks, as computed in [178], into the characters of the N' = 6 superblocks

'In [178], the long multiplet was denoted as (A, 0).
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Type (A 0) 50(8) R irrep | spin £ | BPS

(B, +) (1,0) 35.=1[0020] | 0 | 1/2
(B, +) (2,0) | 294.=[0040] | O | 1/2
(B,2) (2,0) 300=1[0200] | 0 | 1/4
(A, +) (L+2,0) 35. =1[0020] | even | 1/4
(A,2) | (¢+2.0 | 28=[0100] | odd | 1/8
(A,cons.) | (£+1,¢) 1 =[0000] | even | 5/16
Long A>l+1 1 =[0000] | even 0

Table C.1: The possible superconformal multiplets in the S x S OPE. The s0(3,2)®s0(8)z quantum
numbers are those of the superconformal primary in each multiplet.

as computed from the previous Appendix to get the following decomposition of multiplets:

0020 011
B - B2%Y,

0040 022
(B»+)[2,0 ] - (BvQ)[2,] ] )

0200 022 200 011 000
(B.25: = B2 e B, 105 e A2 e A,050",

0020 020 002 011 011
(4, +)£+2,e} - (4, +)£+5]/2,z+1/2 @ (4, _)£+5]/2,e+1/2 @ (4, 2)L+2}e @ (4, 2)£+3,]e+1 ;

42057 = @Alhl el o2 x (4D, 1 © (4050 @ (4,005,
Long[g?fo} — Long[AO?f] ® Long[AO(jrol]yé_1 ® 2 x Long[ﬁ(ﬂ’e ® Long[AO(_ﬂ’Hl @ Long[AO(f%,[ ,
(A, cons.)gfioz] — (A, cons.)&off’]z @ (4, cons.)gfg’]Hl ,
(C.2)

where 2x denotes that the multiplet appears twice.

The N = 8 stress tensor correlator was written in [178] in the basis

i 1 [— — —
<S($1,Y1)S(.7J2,Y2)S(£E3,Y},)S(.CC47Y4)> =2 .32 81(U7V)Y122Y324 +82(U7 V)Y123Y224 + 83(U7 V)Y124Y223

T19T34

+ ﬂ(Ua V)Y13Y14)63Y24 + §(U; V)Y12Y14Yé3y34 + @(U, V)Y12Y13Y24Y34 )

(C.3)

where Y are s0(8) null vectors. As shown in Section 4.3.2,2 this decomposes to the A" = 6 basis in

2This was for a basis of SO(8) matrices X, but as noted there its the exact same decomposition for the basis of
Y’s.
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(2.5) as

{81,582 ,83 ,8%,85,85) — {S',8%,8%,45*,48° 48} . (C.4)

Finally, we can decompose the explicit N' = 8 superblocks & 1 d2d3ds] (U, V) given in [178] into the
ALl

N = 6 superblocks 6, (a1 dzas] (U, V) given in the attached Mathematica file to get
ALl

1

O = g

1
6(3 Jr)20([))40] — 6(3 2)[022] s

1 1 4
6(372)[2??)00] — EQS(B 2)20§2 1+ 56(1472)[207(1)11 + £®L0ng[0001 1+ 6(3,1)[;30] ,

1 (4+ 0)* 1+¢
Canz 7 10l T a0 A, T i1 2P,
& . 1 Lo (3+10)2 2

(4,2)°57 A5 T B20(5+20) Ak 3402+ 0) Crong22,

3 (5+ 0)? & 144 1+ _ &
(7T+20)(9+20) Longz+3]z+1 9+ 3¢ (A1 e(fg]/; e41/2 (4, l)z(fg]/; et1/2
AC1PEAH DALY
- D)2+ D)= A)(A++1) Lomexil,
ANCALF DALY AT DAL
BA LU —A A+l D) ot T TE A AT e 1) Cronskd
AADEHDA+OA+L+2)
20+ 1)(20+3) (A + £+ 1)(A+ £+ 3) Longx¥ .
4A+4)2(-A+ 0+ 1)(A+0) &
2A+5)2A+7)(€ — A)(A+L+1) LongRyl)

@Long[nooo] — QﬁLong[ooo] 1+

& [0000 — & oo} + & 000
(A,cons. )l,+1 [] (A,cons. )l,+1 P (A,corls.)[prl]@+1 ’

(C.5)

where for & glo000] we should ignore the & o) and & (ooo],3 terms on the RHS, and rescale
Lon Lon. Atl,—1 Lo A+1.0
—1

QsLongAOOJrOL0 by AF2-

183



Appendix D

D Functions

In this appendix, we list useful properties of D and D functions. By definition, the D function is

the quartic contact Witten diagram

and the D function is defined in terms of the D function as

I T4 g 4
D (U, V) = Tiy T3 2[ 1y T(rs)
TR T T 33l rimri—ra 3300 ri—ra—ra 3 =343
Zig T3y w2l 2

) Dry 1y rg,ra (z4) - (D.2)

When ) .r; = 3, this definition of D becomes singular, however, for that special case we can

alternatively define:

4 3—-2 2 4
D (U V) _ Hi:l F(Tz) L3 7‘437222 /d?’l‘ H # ] (D3)
T1,72,73,74 \ V> 7T3/2 I§Z2T1_2T4l‘§4_2r3_2r4 bl |f _ fi‘Zm

D functions take a particularly simple form in Mellin space:

= ° dsdt 1 1o ri4re—s T3 Ty — S
Dy v v (U V) = Uz (stri—ra)y 3 (u—ri—r2) +
1,72,73, 4( ’ ) [2 (4 i)2 I 5 | 5

r+ry—t ro +14 — 1 r+ry—u ro +1r3—Uu
er() e (e e (e r ()

Using (D.4), polynomial Mellin amplitudes can be converted into sums of D functions multiplied by

(D.4)

powers of U and V.
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We can relate Dy, 1, 5.4 (U, V) to each other using the relations [158,217]

DT1+1>T2+1J’3,T4 - _aUDT1,T2J’3,T4 )
(7"3 + 74 -7 —

wl]
|

r1,72,r3+1,ra+1 —

T9 =
2 - UaU) D7'1,T277'3,T4 )

wl]
I

_aVDTl yT2,73,T4

T H+Tr4—T0—T
ri+1,r2,m3,ra+1 = 2

r1,m2+1,r3+1,rg
(D.5)

]

3 _
- VaV) D7"177“2»7"37T4 )

DT17T2+17T3,T4+1 = (TQ +Udy + VaV) Drl,T27T3,T4 ’
_ <r1+r2+r3r

4 _
DT1+1,T27T3+1,T4 9 + VaV + UaU) DT17T2J’3,T4 ;

which can easily be checked using the Mellin space expression (D.4). In particular, we can combine

the first and second equations of (D.5) to derive D function relation

2 2
41179079 Dy 1,09 +1,05,74 — 47372034 Dry g rg 41,0041 D6)
D.6

=(r+ry—r3— 7“4)(3 —ri—T2—T3— 7"4)Dr1,r2,r3,r4 )

which, along with its crossings, will prove useful when computing shadow transforms Chapter 5.
The shadow transform of a D-function is another D-function:

w2 (11 )

F(’I“4) Drl,rz,r3,3—r4(flyf%f?n'f4) . (D7)

d’y G o
/WDm,m,m,m(fﬂh$27333yy) =

This identity is a straightforward consequence of the fact that the shadow transform of a bulk-

boundary propagator is another bulk-boundary propagator [218]:

d3y . . 32T (r — 3 ., .
/W Bo(2,¥) = MG%a (2,7), (D.8)

Finally, when computing the superconformal expansion of S'(U, V) in the higher-spin limit in

Chapter 3, we will need to compute the U ~ 0, V ~ 1 expansion of certain D functions. General
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expressions are given [219], and applying these to the cases of interest to us, we find that

o 7.r(]7n(1 _ V)n <F(m+§)r(m+n+;)2 - F(m+1)2F(m+n+1)2)

_ \/ﬁF(QernJrl) F(m+§)1"(2m+n+2)
Dl,l,%,%(Ua V)= Z min! : ;
m,n=0 o
e’} 2
- 20m(1L—=V)"T (m+ 3)" (m+mn)!? 3
Dy 1 (U V)=~ ZO e (vim+n+1)-v 2mtn+ S

)

+9 (m—&-;) —z/;(°>(m+1)) +%logU

Um(1-V)"I'(m+ ) T(2m+2n+1
VaU™ (1= V)T (m + 3) (m3 n )(21/1 m ot D
4mtnmIn)l (2m 4+ n + 3) 2

RUASESDS

m,n=0

)

—2p(2m+2n+1)— ¢ (m—i—;) +w(m+1)+log(4)) —&—%logU

(D.9)

where ¥ (z) is the Digamma function. Note in particular the logU dependence in the last two

expressions.
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