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and the Area Law

Ginestra Bianconi
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Abstract: The area law obeyed by the thermodynamic entropy of black holes is one of the

fundamental results relating gravity to statistical mechanics. In this work, we provide a

derivation of the area law for the quantum relative entropy of the Schwarzschild black hole

for an arbitrary Schwarzschild radius. The quantum relative entropy between the metric

of the manifold and the metric induced by the geometry and the matter field has been

proposed in G. Bianconi as the action for entropic quantum gravity leading to modified

Einstein equations. The quantum relative entropy generalizes Araki’s entropy and treats the

metrics between zero-forms, one-forms, and two-forms as quantum operators. Although

the Schwarzschild metric is not an exact solution of the modified Einstein equations of

the entropic quantum gravity, it is an approximate solution valid in the low-coupling,

small-curvature limit. Here, we show that the quantum relative entropy associated to the

Schwarzschild metric obeys the area law for a large Schwarzschild radius. We provide a

full statistical mechanics interpretation of the results.

Keywords: quantum gravity; entropy; black holes; Schwarzschild metric

1. Introduction

The area law satisfied by the thermodynamic entropy of black holes is one of the corner-

stones of quantum gravity [1–3]. The discovery that the entropy, notoriously an extensive

quantity, can obey an area law came as a big surprise of the early findings of Bekenstein [4,5]

and Hawking [6,7] and continues to stimulate theoretical physics explanations. Indeed,

after the discovery of this law, the study of the entropy of black holes [8,9] and the area law

became a testbench for quantum gravity approaches leading to explanations making use of

string theory [10], the holographic principle [11,12], the AdS/CFT correspondence [13], and

in particular the Ryu–Takayanagi formula [14] and loop quantum gravity approaches [15].

The area law is also considered a universal property of condensed matter systems [16,17]

as it has an important interpretation in terms of the entanglement entropy. Interestingly,

recent approaches have provided new insights into black-hole entropy by quantifying the

entanglement entropy of scalar fields near the horizon of black-holes [18,19].

In this work, we discuss the quantum relative entropy of the Schwarzschild black hole.

The quantum relative entropy is a fundamental information theory quantity [20] whose

importance is central in quantum information and the theory of quantum operators [21–24].

Recently, in Ref. [25], the quantum relative entropy has been proposed by G. Bianconi as

the fundamental information theory action for the entropic quantum gravity approach. The

definition of the quantum relative entropy relies on the treatment of the spacetime metric

and the metric induced by the geometry of spacetime and the matter fields as quantum

operators. Note that the idea that the considered manifold is described by two metrics is at

the foundation of the bi-metric gravitation [26,27] as well. However, the treatment of these
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two metrics as quantum operators and the use of the quantum relative entropy between

the two metrics as the action for gravitation make the entropic quantum gravity approach

significant distinct from the bi-metric approach. In the entropic quantum gravity approach,

the action for gravity is the quantum relative entropy between the metric of the considered

manifold and the metric induced by the geometry and the matter field. A fundamental

aspect of the entropic quantum gravity approach is that the two considered metrics are

topological, i.e., they are the direct sum of metrics between zero-forms, one-forms, and

two-forms. Thus, this aspect of the entropic quantum approach is in line with growing

interest in area metrics in quantum gravity [28–31].

The entropic quantum gravity approach leads to modified Einstein equations, which

reduce to the Einstein equations in the low-coupling, small-curvature limit. However,

the action of the entropic quantum gravity is very different from the Einstein–Hilbert

action. Among the important differences, we observe that, thanks to the inclusion of

metrics between two-forms, the entropic quantum gravity action depends explicitly on the

Riemann tensor; therefore, it is not vanishing for a Schwarzschild black hole.

In this work, we perform a derivation of the area law for the quantum relative entropy

associated to the Schwarzschild black hole. It is to be noted that the Schwarzschild metric

is not an exact black-hole solution of the entropic quantum gravity approach; however, it is

a solution in the low-coupling, small-curvature regime. The area law is recovered exactly

in this limit, i.e., when the Schwarzschild radius is very large, although the multiplicative

constants are different than the ones predicted for the thermodynamic entropy. Moreover,

for a small radius, deviations from the area law are observed.

Recently, we have entered a phase of experimental tests of gravity combining results

coming from different experimental sources. This includes, of course, the validation coming

from gravitational wave experiments [32,33] and also includes validations of analogue

gravity [34–36] and the exploration of gravity effects by the means of quantum informa-

tion theory [37–40]. Thus, it is our hope that these results can contribute to providing

experimental probes of the quantum gravity effects in nature.

2. Boltzmann Legacy and the Quantum Relative Entropy for Gravity

Our starting point is the celebrated expression for the entropy given by Boltzmann [41],

which provides a microscopic interpretation of the thermodynamics entropy S = S(E, V)

for a system of given total energy E and volume V, i.e.,

S(E, V) = kB ln W (1)

Here, kB indicates the Boltzmann constant, while W indicates the number of microstate

configurations compatible with the considered macrostate configuration. One classical

result of this formula is that the entropy is extensive. This implies that for a system of locally

interacting set of N identical particles in thermal equilibrium, which can be considered

as the sum of two systems at the same temperature (a system of N1 and a system of N2

particles), the total number of particles N, the total volume V, and the total energy E of the

system can be written as

N = N1 + N2,

V = V1 + V2,

E = E1 + E2,

(2)

where Vi and Ei for i ∈ {1, 2} are the volume and the energy of the two subsystems,

respectively. In this scenario, we have that W obeys

ln W = ln W1 + ln W2 + O(ln N), (3)
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where Wi is the number of microscopic configurations compatible with the subsystem i. It

follows that the entropy S(E, V) is extensive, i.e.,

S(E, V) = S1(E1, V1) + S2(E2, V2) + O(ln N). (4)

Thus, considering a system as composed by n macroscopic subsystems i ∈ {1, 2, . . . , n},

we obtain

S(E, V) = kB

n

∑
i=1

ln Wi. (5)

In gravity, the degrees of freedom are encoded in the spacetime fabric of a d = 4 dimensional

manifold K of Lorentzian signature {−1, 1, 1, 1}, whose geometry is fully described by its

metric gµν. In the entropic quantum gravity proposed in Ref. [25], the topological metric

considered comprises the metric among scalars, the metric among vectors, and the metric

among bivectors defined in K. This is given by

g̃ = 1 ⊕ gµνdxν ⊗ dxν

⊕
[

g(2)

]
µνρσ

(dxµ ∧ dxν)⊗ (dxρ ∧ dxσ).
(6)

where [
g(2)

]
µνρσ

= 1
2

(
gµρgνσ − gµσgνρ

)
. (7)

Additionally the topological metric G̃ induced by the geometry and the matter fields is also

considered; this metric also comprises the direct sum between a metric among scalars G̃(0),

a metric among vectors G̃(0), and a metric among bivectors G̃(1) and is given by

G̃ = G̃(0) ⊕
[

G̃(1)

]
µν

dxµ ⊗ dxν

⊕
[

G̃(2)

]
µνρσ

(dxµ ∧ dxν)⊗ (dxρ ∧ dxσ),
(8)

where at each point p of the manifold K, the matrices G̃(m) with m ∈ {0, 1, 2} are invertible.

The dual metric is given by G̃
⋆

G̃
⋆

= G̃(0) ⊕
[

G̃(1)

]µν
dxµ ⊗ dxν

⊕
[

G̃(2)

]µνρσ(
dxµ ∧ dxν

)
⊗

(
dxρ ∧ dxσ

)
.

(9)

The entropic quantum gravity approach proposed in Ref. [25] considers the following

entropic action for modified gravity given by the quantum relative entropy between G̃ and

g (see Figure 1 for a diagrammatic description), i.e.,

S = 1
ℓd

P

∫ √
|−g|Ldr, (10)

where ℓP =
(
ℏG/c3

)1/2
is the Planck length, and the Lagrangian is given by

L := −Tr ln G̃g̃−1

:= − ln G̃(0) − Tr ln G̃(1)g
−1 − Tr ln G̃(2)g

−1
(2)

.
(11)
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Here, we assume that G̃g̃−1 is positively defined, i.e., G̃(0) > 0 and G̃(1)g
−1, as well as

G̃(2)g
−1
(2)

, are positively defined at each point p of the manifold K. Note that this entropic

action is expressed in terms of the square root of the modular operator ∆1/2

G̃,g̃
given by

G̃g̃−1 = ∆1/2

G̃,g̃
=

√
G̃G̃

⋆
, (12)

thus generalizing the definition of the Araki entropy [21] between quantum operators to

the considered topological metrics g̃ and G̃ (see Ref. [25] for a more detailed discussion).

Figure 1. Diagrammatic sketch of the entropic quantum gravity approach. In this approach the action

is given by the quantum relative entropy between the metric g̃ and the metric G̃ induced by the

matter fields and the geometry of the manifold.

We observe that the action for the entropic quantum gravity approach also admits an

information theory interpretation akin to the Boltzmann entropy. In fact, we have that the

Lagrangian L can be written as

L = −Tr ln G̃g̃−1 = ln W(r), (13)

where W(r) “counts” the degrees of freedom of the geometry, albeit it is in general a real

rather than an integer number. In particular we have

W(r) = G̃−1
(0)

det
(

G̃
−1
(1)g

)
det

(
G̃

−1
(2)g(2)

)
. (14)

Consequently the quantum relative entropy S can be written in a way reminiscent of

Equation (5) as

S = 1
ℓ4

P

∫ √
−|g| ln W(r)dr. (15)

Thus, the quantum relative entropy counts the number of degrees of freedom of the metric

and is associated with the volume over which the integral is performed.

3. Modified Einstein Equations in Vacuum

The entropic quantum gravity approach leads to modified Einstein equations, which

reduce to the Einstein equation in a regime of low coupling (small curvature and low

energies). Here, we are interested in discussing the corresponding modified Einstein

equations in vacuum and showing that the Schwarzschild solutions are approximate

solutions of these modified Einstein equations in the low-coupling regime. In vacuum,
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adopting the units ℏ = c = 1, the expression of the metric induced by the geometry is

assumed (see Ref. [25]) to be given by

G̃ = g̃ − GR̃, (16)

where G is the gravitational constant, and R̃ is given by the topological curvature, com-

prising the Ricci scalar R, the Ricci tensor Rµν, and the Riemann tensor Rµνρσ, i.e.,

R̃ = R ⊕
(

Rµνdxµ ⊗ dxν
)

⊕Rµνρσ(dxµ ∧ dxν)⊗ (dxρ ∧ dxσ).
(17)

Leaving the discussion of the derivation of the modified Einstein equations derived from

the entropic quantum gravity action S to Ref. [25], here, we summarize their structure. The

modified Einstein equations of entropic quantum gravity involve two sets of equations: the

equations for the metric g̃ and the equations for the auxiliary G-fields G̃ (a form of auxiliary

metric as well).

The equations for the G-fields G̃ are given by

G̃
−1

= Ĩ − GR̃g̃−1, (18)

where G̃
−1

is the topological metric comprising a metric among scalars, one among vectors,

and one among bivectors, each equal to the inverse of the corresponding metrics forming

the topological metric G̃, and Ĩ is the topological identity metric.

The modified Einstein equations for the metric g̃ are given by

RG
(µν)

− 1
2 gµν(RG − 2ΛG) +D(µν) = 0, (19)

where
RG = TrF g̃−1

G R̃,

ΛG = 1
2β TrF

(
G̃ − Ĩ − ln G̃

)
,

(20)

with g̃G indicating a “dressed metric” given by

g̃G = G̃
−1

g. (21)

Note that in Equation (19), (µν) indicates the symmetrization of the indices, RG
µν are the

elements or the dressed Ricci tensor given by

RG
µν = G(0)Rµν +

[
G(1)

] ρ

µ
Rρν −

[
G(2)

]
ρ1ρ2µη

R
ηρ1ρ2

ν

+2
[
G(2)

] ηρ1ρ2

µ
Rρ1ρ2νη ,

(22)

while Dµν are the elements depending on second derivatives of the G-field G̃ given by

Dµν =
(
∇ρ∇ρgµν −∇µ∇ν

)
G(0) −∇ρ∇ν

[
G(1)

]
(ρµ)

+ 1
2∇ρ∇ρ

[
G(1)

]
µν

+ 1
2∇ρ∇η

[
G(1)

]
ρη

gµν

+∇η∇ρ
[
G(2)

]
µρνη

+∇ρ∇η
[
G(2)

]
ηµρν

+ 1
2 [∇ρ,∇η ]

[
G(2)

]
ρηµν

.

(23)
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These modified Einstein equations reduce to the Einstein equations in vacuum

Rµν = 0, (24)

only if

G̃
−1

= Ĩ, (25)

i.e., only if

GR̃g̃−1 = 0. (26)

However, the Einstein equations in vacuum remain a good approximation of the modified

Einstein equations as long as

GR̃g̃−1 ≪ Ĩ. (27)

Thus, the Schwarzschild metric can be interpreted only as an approximate solution of the

modified Einstein equations of entropic quantum gravity in vacuum valid in the regime of

small curvature. This implies that if the entropic quantum gravity approach captures the

physics of gravitation, the physical black holes will only be described by the Schwarzschild

metric in a linear approximation valid in the small-curvature regime.

Relevantly, however, we observe that the quantum relative entropy S between G̃

and g̃, given by Equation (16) is defined for any metric, not only for the metric satisfying

the mentioned equations for modified gravity. Thus, in the next section, we address the

challenge of evaluating the quantum relative entropy S of the Schwarzschild metric.

4. Quantum Relative Entropy of the Schwarzschild Black Hole

In this section, our goal is to provide the derivation of the quantum relative entropy of

the Schwarzschild black hole. In particular, we show that the quantum relative entropy of

the Schwarzschild black hole follows an area law for large Schwarzschild radii. The starting

point is the observation that the quantum relative entropy defining the entropic quantum

gravity approach is not vanishing for a Schwarzschild black hole as it depends explicitly

on the Riemann tensor and not just exclusively on the Ricci scalar and the Ricci tensor. This

allows us to directly calculate the quantum relative entropy of the Schwarzschild black

hole as a function of its Schwarzschild radius.

The Schwarzschild black hole defines the static and spherically symmetric metric

ds2 = −
(

1 − Rs
r

)
dt2 +

(
1 − Rs

r

)−1
dr2 + r2dΩ2, (28)

where, in units ℏ = c = 1, Rs defines the Schwarzschild radius given by

Rs = 2GM, (29)

and where dΩ2 = dθ2 + sin2 θdφ2. This is the unique static and spherically symmetric

metric solution to the Einstein equations

Rµν = 0. (30)

As discussed in the previous section, however, this is only the approximate solution to the

entropic quantum gravity equations in vacuum, valid for small curvatures.

As mentioned before, the goal here is to calculate the quantum relative entropy S
defined in Equations (10) and (11) for the Schwarzschild metric defined in Equation (28). To
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this end, we calculate explicitly the product between the metric induced by the geometry

G̃ in vacuum (Equation (16)) and the topological metric g̃−1, i.e.,

G̃g̃−1 = Ĩ − GR̃g̃−1. (31)

By performing this straightforward calculation, we obtain

G̃g−1 = 1 ⊕ 1µdxµ + ∆
ρσ

µν dxµ ∧ dxν ⊗ dxρ ∧ dxσ, (32)

where

∆
ρσ

µν =
(

1 − GR
ρσ

µν

)
. (33)

We then calculate the non-zero elements of the Riemann tensor R
ρσ

µν associated to the

Schwarzschild metric to be

R tr
tr = R

θφ
θφ = Rs

r3 ,

R tθ
tθ = R

tφ
tφ = R rθ

rθ = R
rφ

rφ = − Rs
2r3 .

(34)

Inserting these expressions in the Lagrangian L defined in Equation (11), we obtain

L = −Tr ln ∆ = − ln

[(
1 − GRs

r3

)2(
1 + GRs

2r3

)4
]

, (35)

where the trace of the logarithm of an area metric is defined as the trace of the matrix

resulting from the flattened tensor as discussed extensively in Ref. [25]. Here the Lagrangian

L is defined as long as ∆ is positively defined, i.e., for

r > r0 = (GRs)
1/3 =

(
2G2M

)1/3
. (36)

We define the entropy of the Schwarzschild black hole as

S(Rs, τ) = − 1
ℓ4

P

∫ τ
0 dt

∫ Rs

r0
dr

∫
dΩ

√
−|g|Tr ln G̃g̃−1

= − 1
ℓ4

P

∫ τ
0 dt

∫ Rs

r0
dr

∫
dΩ

√
−|g|Tr ln ∆.

Since the integral has the lower bound r0, if follows that this entropy is defined only for

Rs > r0, which implies Rs >
√

G. Moreover, we observe that when performing the integral

over time, in the expression for S , we consider the dimensional scale

τ = κ−1τ′ = 4GMτ′, (37)

where κ−1 = 4GM is the surface gravity. This way, we derive the explicit expression for

the quantum relative entropy of the Schwarzschild black hole as a function of its radius Rs

and of τ′ given by

S(Rs, τ′) = 32πMτ′
3G

[
3R3

s ln R3
s + 3GRs ln

(
3
2

)

−
(

R3
s − GRs

)
ln
(

R3
s − GRs

)

−2
(

R3
s +

GRs
2

)
ln
(

R3
s +

GRs
2

)]
.

(38)

In the limit Rs ≫ 1, we find that S(Rs, τ′) is linear in the Schwarzschild radius Rs, i.e.,

S(Rs, τ′) = 32πMτ′ ln
(

3
2

)
Rs, (39)
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and thus, for τ′ = τ′
1 + τ′

2, we find

S(Rs, τ′) = S
(

Rs, τ′
1

)
+ S(Rs, τ′

2), (40)

and for R = Rs,1 + Rs,2 with Rs,i ≫ 1,

S(Rs, τ′) = S(Rs,1, τ′) + S(Rs,2, τ′). (41)

In the above expression, we have considered Rs as an independent variable from M. Let us

now impose that Rs = 2GM and consider the change of variables such that the entropy

becomes a function of M and τ′, i.e., S = S(M, τ′). For Rs ≫ 1, i.e., M ≫ 1, the black-hole

entropy obeys the area law with

S(M, τ′) ≃ SA = C A
4G , (42)

where the area A of the black hole is given by

A = 16πG2M2, (43)

and the multiplicative constant C is given by

C = 16 ln(3/2)τ′ ≃ τ′ × 6.48744 . . . . (44)

It follows that the quantum relative entropy S retains at the same time its information theory

interpretation as a quantity that evaluates the local degree of freedom of the geometry,

integrated over the volume of the black hole, while it can account for the emergence of the

area law of the black-hole entropy.

For 0 < Rs −
√

G ≪ 1, we obtain

S(M, τ′) ≃ 32πMτ′
3

(
B − 2 ln

(
Rs/

√
G − 1

))(
Rs −

√
G
)

,

with B = 2 − 4 ln 3 + 2 ln 2. Thus, S → 0 as R →
√

G . We define the temperature of the

black hole as
1
T = ∂S

∂M , (45)

obtaining, in the limit M ≫ 1,

T → TH
C , (46)

where TH is Hawking’s temperature T−1
H = 8πGM. In the limit Rs →

√
G and

M → 1/
(

2
√

G
)

, we obtain instead

T ≃
[
− 64π

√
Gτ′

3 ln
(

Rs√
G
− 1

)]−1
→ 0. (47)

The quantum relative entropy of the Schwarzschild metric S divided by its asymptotic

expression SA given by Equation (42) is plotted in Figure 2 as a function of Rs for G = 1.

We note that if entropic quantum gravity captures the true physics of gravitation, the

quantum relative entropy of the Schwarzschild black hole only provides an approximation

for the entropy of physical black holes, valid in the limit for large Schwarzschild radii,

where the integral defining S is dominated by the terms of the small curvature. Thus, the

limit Rs ≃
√

G is the one in which the entropy of the Schwarzschild metric most deviates

from the entropy of the black hole described by the entropic quantum gravity equation

of motion.
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Figure 2. The quantum relative entropy of the Schwarzschild metric S divided by its asymptotic

expression SA = CA/(4G), obeying the area law, is plotted as a function of the Schwarzschild radius

Rs for G = 1.

5. Conclusions

In conclusion, in this work, we considered the quantum relative entropy of a

Schwarzschild black hole. The quantum relative entropy is the central action in the entropic

quantum gravity proposed in Ref. [25]. It evaluates the quantum relative entropy between

the metric associated with the considered manifold and the metric induced by the geometry

and the matter field. This metric depends on the curvature not only through the Ricci

scalar and the Ricci tensor but also through the Riemann tensor. In particular, it does not

vanish for the Schwarzschild black hole that has a non-vanishing Riemann tensor. Here,

we reinterpreted the Schwarzschild black-hole metric in the light of the entropic quantum

gravity approach proposed in Ref. [25]. Although the Schwarzschild metric is not the exact

solution of the modified Einstein equations obtained from the entropic quantum gravity

approach, rather only an approximate solution, here, we calculated its associated quantum

relative entropy. We showed that despite the fact that the quantum relative entropy was

defined as the integral over the interior of the Schwarzschild black hole, the quantum

relative entropy obeyed the area law in the limit of a large Schwarzschild radius.

This work can be expanded in several directions. On one hand, embracing the en-

tropic quantum gravity approach will entail solving the modified Einstein equations for

the corresponding black hole. On the other hand, it would be important to provide an

interpretation of the quantum relative entropy in light of the second quantization of the

theory. Both directions are likely to provide new quantum information insights into the

entropic quantum gravity approach, which might hopefully be testable experimentally.
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