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Abstract: The area law obeyed by the thermodynamic entropy of black holes is one of the
fundamental results relating gravity to statistical mechanics. In this work, we provide a
derivation of the area law for the quantum relative entropy of the Schwarzschild black hole
for an arbitrary Schwarzschild radius. The quantum relative entropy between the metric
of the manifold and the metric induced by the geometry and the matter field has been
proposed in G. Bianconi as the action for entropic quantum gravity leading to modified
Einstein equations. The quantum relative entropy generalizes Araki’s entropy and treats the
metrics between zero-forms, one-forms, and two-forms as quantum operators. Although
the Schwarzschild metric is not an exact solution of the modified Einstein equations of
the entropic quantum gravity, it is an approximate solution valid in the low-coupling,
small-curvature limit. Here, we show that the quantum relative entropy associated to the
Schwarzschild metric obeys the area law for a large Schwarzschild radius. We provide a
full statistical mechanics interpretation of the results.
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1. Introduction

The area law satisfied by the thermodynamic entropy of black holes is one of the corner-
stones of quantum gravity [1-3]. The discovery that the entropy, notoriously an extensive
quantity, can obey an area law came as a big surprise of the early findings of Bekenstein [4,5]
and Hawking [6,7] and continues to stimulate theoretical physics explanations. Indeed,
after the discovery of this law, the study of the entropy of black holes [8,9] and the area law
became a testbench for quantum gravity approaches leading to explanations making use of
string theory [10], the holographic principle [11,12], the AdS/CFT correspondence [13], and
in particular the Ryu-Takayanagi formula [14] and loop quantum gravity approaches [15].
The area law is also considered a universal property of condensed matter systems [16,17]
as it has an important interpretation in terms of the entanglement entropy. Interestingly,
recent approaches have provided new insights into black-hole entropy by quantifying the
entanglement entropy of scalar fields near the horizon of black-holes [18,19].

In this work, we discuss the quantum relative entropy of the Schwarzschild black hole.
The quantum relative entropy is a fundamental information theory quantity [20] whose
importance is central in quantum information and the theory of quantum operators [21-24].
Recently, in Ref. [25], the quantum relative entropy has been proposed by G. Bianconi as
the fundamental information theory action for the entropic quantum gravity approach. The
definition of the quantum relative entropy relies on the treatment of the spacetime metric
and the metric induced by the geometry of spacetime and the matter fields as quantum
operators. Note that the idea that the considered manifold is described by two metrics is at
the foundation of the bi-metric gravitation [26,27] as well. However, the treatment of these
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two metrics as quantum operators and the use of the quantum relative entropy between
the two metrics as the action for gravitation make the entropic quantum gravity approach
significant distinct from the bi-metric approach. In the entropic quantum gravity approach,
the action for gravity is the quantum relative entropy between the metric of the considered
manifold and the metric induced by the geometry and the matter field. A fundamental
aspect of the entropic quantum gravity approach is that the two considered metrics are
topological, i.e., they are the direct sum of metrics between zero-forms, one-forms, and
two-forms. Thus, this aspect of the entropic quantum approach is in line with growing
interest in area metrics in quantum gravity [28-31].

The entropic quantum gravity approach leads to modified Einstein equations, which
reduce to the Einstein equations in the low-coupling, small-curvature limit. However,
the action of the entropic quantum gravity is very different from the Einstein—Hilbert
action. Among the important differences, we observe that, thanks to the inclusion of
metrics between two-forms, the entropic quantum gravity action depends explicitly on the
Riemann tensor; therefore, it is not vanishing for a Schwarzschild black hole.

In this work, we perform a derivation of the area law for the quantum relative entropy
associated to the Schwarzschild black hole. It is to be noted that the Schwarzschild metric
is not an exact black-hole solution of the entropic quantum gravity approach; however, it is
a solution in the low-coupling, small-curvature regime. The area law is recovered exactly
in this limit, i.e., when the Schwarzschild radius is very large, although the multiplicative
constants are different than the ones predicted for the thermodynamic entropy. Moreover,
for a small radius, deviations from the area law are observed.

Recently, we have entered a phase of experimental tests of gravity combining results
coming from different experimental sources. This includes, of course, the validation coming
from gravitational wave experiments [32,33] and also includes validations of analogue
gravity [34-36] and the exploration of gravity effects by the means of quantum informa-
tion theory [37—40]. Thus, it is our hope that these results can contribute to providing
experimental probes of the quantum gravity effects in nature.

2. Boltzmann Legacy and the Quantum Relative Entropy for Gravity

Our starting point is the celebrated expression for the entropy given by Boltzmann [41],
which provides a microscopic interpretation of the thermodynamics entropy S = S(E, V)
for a system of given total energy E and volume V, i.e.,

S(E,V) =kglnW (1)

Here, kg indicates the Boltzmann constant, while W indicates the number of microstate
configurations compatible with the considered macrostate configuration. One classical
result of this formula is that the entropy is extensive. This implies that for a system of locally
interacting set of N identical particles in thermal equilibrium, which can be considered
as the sum of two systems at the same temperature (a system of N; and a system of N,
particles), the total number of particles N, the total volume V, and the total energy E of the
system can be written as

N = Ni + Ny,
V=V +V, )
E=E| + E,

where V; and E; for i € {1,2} are the volume and the energy of the two subsystems,
respectively. In this scenario, we have that W obeys

InW=InW; +InW, +O(InN), (3)
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where W; is the number of microscopic configurations compatible with the subsystem i. It
follows that the entropy S(E, V) is extensive, i.e.,

S(E, V) = S1(E1, V1) + S2(Ea, V2) + O(In N). 4)

Thus, considering a system as composed by n macroscopic subsystems i € {1,2,...,n},
we obtain i}
S(E,V)=kp '21 InW;. 5)
i=
In gravity, the degrees of freedom are encoded in the spacetime fabric of a d = 4 dimensional
manifold K of Lorentzian signature {—1,1,1,1}, whose geometry is fully described by its
metric ;. In the entropic quantum gravity proposed in Ref. [25], the topological metric
considered comprises the metric among scalars, the metric among vectors, and the metric

among bivectors defined in K. This is given by

§ = 1®gudx’ @dx" 6
® [8(2)} ng(dx“ Adx") @ (dxP A dx7). ©)
where
_1
{8(2)} wor 2 (8up8ve — &uogup)- )

Additionally the topological metric G induced by the geometry and the matter fields is also
considered; this metric also comprises the direct sum between a metric among scalars G(O),

a metric among vectors é(o)/ and a metric among bivectors é(l) and is given by

G = 6(0) D [é(l)}yvdx” ® dxV

e[Go] (@t ndx) @ (dx ndx?),
wpo

(®)

where at each point p of the manifold /X, the matrices CNJ(m) with m € {0,1,2} are invertible.

The dual metric is given by G*

~ % ~ ~ 1w
G = G(O) © [G(l)} dXV & dxy

® {é(z)} yvpa( (9)

dxy Ndxy) @ (dxp Adxg).

The entropic quantum gravity approach proposed in Ref. [25] considers the following
entropic action for modified gravity given by the quantum relative entropy between G and
g (see Figure 1 for a diagrammatic description), i.e.,

S =g [VI=gltdr, (10)
where (p = (AG/c?) !/2 is the Planck length, and the Lagrangian is given by

L = —TrinGg!

n - ) B 11
= —InG —TrinGyg 1—TrlnG(2)g(2%- "
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Here, we assume that Gg~! is positively defined, i.e., @(0) > 0 and é(l) ¢!, as well as
G ) g(;, are positively defined at each point p of the manifold K. Note that this entropic

action is expressed in terms of the square root of the modular operator Ag g%

Gyl =al2= VGG*, (12)

thus generalizing the definition of the Araki entropy [21] between quantum operators to

given by

the considered topological metrics § and G (see Ref. [25] for a more detailed discussion).

L =-TrinGz!

/\

~

8

G
\/

Figure 1. Diagrammatic sketch of the entropic quantum gravity approach. In this approach the action
is given by the quantum relative entropy between the metric § and the metric G induced by the
matter fields and the geometry of the manifold.

We observe that the action for the entropic quantum gravity approach also admits an
information theory interpretation akin to the Boltzmann entropy. In fact, we have that the
Lagrangian £ can be written as

L=-TrinGg ! = InW(r), (13)

where W(r) “counts” the degrees of freedom of the geometry, albeit it is in general a real
rather than an integer number. In particular we have

W(r) = Gl det(é(}% 3) det(é(; 8)- (14)

Consequently the quantum relative entropy S can be written in a way reminiscent of
Equation (5) as

S = é [/ —1g/InW(x)dr. (15)

Thus, the quantum relative entropy counts the number of degrees of freedom of the metric
and is associated with the volume over which the integral is performed.

3. Modified Einstein Equations in Vacuum

The entropic quantum gravity approach leads to modified Einstein equations, which
reduce to the Einstein equation in a regime of low coupling (small curvature and low
energies). Here, we are interested in discussing the corresponding modified Einstein
equations in vacuum and showing that the Schwarzschild solutions are approximate
solutions of these modified Einstein equations in the low-coupling regime. In vacuum,
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adopting the units 7 = ¢ = 1, the expression of the metric induced by the geometry is
assumed (see Ref. [25]) to be given by

G=g¢-GR, (16)

where G is the gravitational constant, and Ris given by the topological curvature, com-
prising the Ricci scalar R, the Ricci tensor Ry, and the Riemann tensor R0, i.e.,

R = R (Ryvdx? @ dx)

17
B Rype (dxh A dx’) @ (dxP A dx). (17)

Leaving the discussion of the derivation of the modified Einstein equations derived from
the entropic quantum gravity action S to Ref. [25], here, we summarize their structure. The
modified Einstein equations of entropic quantum gravity involve two sets of equations: the
equations for the metric § and the equations for the auxiliary G-fields G (a form of auxiliary
metric as well).

The equations for the G-fields G are given by

¢ '=1-GR7 1, (18)

where G s the topological metric comprising a metric among scalars, one among vectors,
and one among bivectors, each equal to the inverse of the corresponding metrics forming
the topological metric G, and Tis the topological identity metric.

The modified Einstein equations for the metric g are given by

R(g;,n/) - %gﬂ‘/(Rg - ZAQ) + D(yv) =0, (19)
where .
Re = Trrg; R,
g | F8g e N (20)
Ag = #Tre(G-T-ng),
with gg indicating a “dressed metric” given by
=0 'g (21)

Note that in Equation (19), (uv) indicates the symmetrization of the indices, Rgl, are the
elements or the dressed Ricci tensor given by

0
Rgv _ Ry + R,, — R 110102
1 Go)R; Wngp(zl)] uof [g@)}mpzw ! (22)
+2 {g(z)} " Ry o0

while Dy, are the elements depending on second derivatives of the G-field G given by
D = (VPVpgu = ViVy)G(o) = VPV, [9(1)}

Lye 1gevn
+3909, (G| A {Q(l)}pﬂgw

oG], + V|90
+3[9¢,97][G)|

(pn)
(23)
nupv

v’
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These modified Einstein equations reduce to the Einstein equations in vacuum
Ruw =0, (24)
only if
¢ ' =T (25)
ie., only if
GRg !'=0. (26)

However, the Einstein equations in vacuum remain a good approximation of the modified
Einstein equations as long as
GRI <L (27)

Thus, the Schwarzschild metric can be interpreted only as an approximate solution of the
modified Einstein equations of entropic quantum gravity in vacuum valid in the regime of
small curvature. This implies that if the entropic quantum gravity approach captures the
physics of gravitation, the physical black holes will only be described by the Schwarzschild
metric in a linear approximation valid in the small-curvature regime.

Relevantly, however, we observe that the quantum relative entropy S between G
and g, given by Equation (16) is defined for any metric, not only for the metric satisfying
the mentioned equations for modified gravity. Thus, in the next section, we address the
challenge of evaluating the quantum relative entropy S of the Schwarzschild metric.

4. Quantum Relative Entropy of the Schwarzschild Black Hole

In this section, our goal is to provide the derivation of the quantum relative entropy of
the Schwarzschild black hole. In particular, we show that the quantum relative entropy of
the Schwarzschild black hole follows an area law for large Schwarzschild radii. The starting
point is the observation that the quantum relative entropy defining the entropic quantum
gravity approach is not vanishing for a Schwarzschild black hole as it depends explicitly
on the Riemann tensor and not just exclusively on the Ricci scalar and the Ricci tensor. This
allows us to directly calculate the quantum relative entropy of the Schwarzschild black
hole as a function of its Schwarzschild radius.

The Schwarzschild black hole defines the static and spherically symmetric metric

-1
a2 = —(1-B)ap + (1-&) a2+ 2d0?, (28)
where, in units # = ¢ = 1, R; defines the Schwarzschild radius given by
Rs =2GM, (29)

and where dO? = d6? + sin? 0d¢?. This is the unique static and spherically symmetric
metric solution to the Einstein equations

Ry = 0. (30)

As discussed in the previous section, however, this is only the approximate solution to the
entropic quantum gravity equations in vacuum, valid for small curvatures.

As mentioned before, the goal here is to calculate the quantum relative entropy S
defined in Equations (10) and (11) for the Schwarzschild metric defined in Equation (28). To
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this end, we calculate explicitly the product between the metric induced by the geometry
G in vacuum (Equation (16)) and the topological metric g Lie,

Gy 1=1-GRg . (31)
By performing this straightforward calculation, we obtain
Gy~ ' =16 Lydxt + A 7dx! A dx¥ @ dx, A dxg, (32)

where
AL = (1 - GRny). (33)

We then calculate the non-zero elements of the Riemann tensor Ryf 7 associated to the
Schwarzschild metric to be

t — 0 _ R

Rt'r‘ r — Reqij — .,.73/ (p < (34)
0 _ — 0 _ e __ s

Rt9t - Rt(P - er)r - Rnp - 23

Inserting these expressions in the Lagrangian £ defined in Equation (11), we obtain

E-—TrlnA-—ln{(l—%)2<1+GRS)4}, (35)

2r3

where the trace of the logarithm of an area metric is defined as the trace of the matrix
resulting from the flattened tensor as discussed extensively in Ref. [25]. Here the Lagrangian
L is defined as long as A is positively defined, i.e., for

r>ry = (GRy)* = (262M)""°. (36)
We define the entropy of the Schwarzschild black hole as

S(Ry) = —f Jy Ji=dr [ O/ —[g[TrinGg !
- —é fOTdtfrI;S dr [ dQy/—|g|TrInA.

Since the integral has the lower bound ry, if follows that this entropy is defined only for
Rs > ry, which implies R; > +/G. Moreover, we observe that when performing the integral
over time, in the expression for S, we consider the dimensional scale

T =17 =4GMT, (37)

where k! = 4GM is the surface gravity. This way, we derive the explicit expression for
the quantum relative entropy of the Schwarzschild black hole as a function of its radius R
and of 7’ given by

S(Ry,T) = 2ZMT[3R3INR} +3GR;In(3)
— (R — GR;) In(R2 — GRs) (38)
—2(R3+ ) In(R3 + S ).

In the limit Rs >> 1, we find that S(R;, ') is linear in the Schwarzschild radius R;, i.e.,

S(Rs,T') = 32nM7' In(3)Rs, (39)
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and thus, for 7 = 1] + 7}, we find
S(Rs, ') = S(Rs, 1) + S(Rs, 1), (40)
and for R = R, 1 + Rsp with R ; > 1,
S(Rs, T') = S(Rs1,T') + S(Rsp, T'). (41)

In the above expression, we have considered R; as an independent variable from M. Let us
now impose that R; = 2GM and consider the change of variables such that the entropy
becomes a function of M and 7, i.e,, S = S(M, t’). For R > 1,1i.e., M > 1, the black-hole
entropy obeys the area law with

S(M,T) =84 =C4, (42)

where the area A of the black hole is given by
A =167G*M?, (43)

and the multiplicative constant C is given by
C=16In(3/2)T ~ 7' x 6.48744. ... (44)

It follows that the quantum relative entropy S retains at the same time its information theory
interpretation as a quantity that evaluates the local degree of freedom of the geometry,
integrated over the volume of the black hole, while it can account for the emergence of the
area law of the black-hole entropy.

For 0 < R; — v/G < 1, we obtain

S(M,7') = 2 (B —21n(R,/ VG ~1) ) (R, = VG),

with B=2—4In3+2In2. Thus, S — 0 as R — v/G. We define the temperature of the
black hole as

1 _ 9§
obtaining, in the limit M > 1,

T— 14, (46)
where Ty is Hawking’s temperature Tﬁl = 8nGM. In the limit R; — /G and
M—1/ (2\@) , we obtain instead

~ | _64n/GT' Ry -1
T -8l ( & _1)] " o 47)

The quantum relative entropy of the Schwarzschild metric S divided by its asymptotic
expression S, given by Equation (42) is plotted in Figure 2 as a function of R for G = 1.

We note that if entropic quantum gravity captures the true physics of gravitation, the
quantum relative entropy of the Schwarzschild black hole only provides an approximation
for the entropy of physical black holes, valid in the limit for large Schwarzschild radii,
where the integral defining S is dominated by the terms of the small curvature. Thus, the
limit Ry ~ /G is the one in which the entropy of the Schwarzschild metric most deviates
from the entropy of the black hole described by the entropic quantum gravity equation
of motion.
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Figure 2. The quantum relative entropy of the Schwarzschild metric S divided by its asymptotic
expression Sy = CA/(4G), obeying the area law, is plotted as a function of the Schwarzschild radius
Rs for G = 1.

5. Conclusions

In conclusion, in this work, we considered the quantum relative entropy of a
Schwarzschild black hole. The quantum relative entropy is the central action in the entropic
quantum gravity proposed in Ref. [25]. It evaluates the quantum relative entropy between
the metric associated with the considered manifold and the metric induced by the geometry
and the matter field. This metric depends on the curvature not only through the Ricci
scalar and the Ricci tensor but also through the Riemann tensor. In particular, it does not
vanish for the Schwarzschild black hole that has a non-vanishing Riemann tensor. Here,
we reinterpreted the Schwarzschild black-hole metric in the light of the entropic quantum
gravity approach proposed in Ref. [25]. Although the Schwarzschild metric is not the exact
solution of the modified Einstein equations obtained from the entropic quantum gravity
approach, rather only an approximate solution, here, we calculated its associated quantum
relative entropy. We showed that despite the fact that the quantum relative entropy was
defined as the integral over the interior of the Schwarzschild black hole, the quantum
relative entropy obeyed the area law in the limit of a large Schwarzschild radius.

This work can be expanded in several directions. On one hand, embracing the en-
tropic quantum gravity approach will entail solving the modified Einstein equations for
the corresponding black hole. On the other hand, it would be important to provide an
interpretation of the quantum relative entropy in light of the second quantization of the
theory. Both directions are likely to provide new quantum information insights into the
entropic quantum gravity approach, which might hopefully be testable experimentally.
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