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Abstract. A class of quantum superintegrable Hamiltonians defined on a two-dimensional
hyperboloid is considered together with a set of intertwining operators connecting all of them.
It is shown that such intertwining operators close a su(2, 1) Lie algebra and determine the
Hamiltonians through the Casimir operators. The physical states are characterized as unitary
representations of su(2, 1).

1. Introduction
In this work we will consider a quantum system superintegrable living in a two-dimensional
hyperboloid of two-sheets. Although this system is well known in the literature [1]-[6] and can
be dealt with standard procedures [7]-[9], it will be studied here under a different point of view
based on the properties of intertwining operators (IO), a form of Darboux transformations [10].
We will see how this approach can give a simple explanation of the main features of this physical
system. The intertwining operators and integrable Hamiltonians have been studied in previous
references [11]-[14], but we will supply here a thorough non-trivial application by means of this
example. Besides, there are several points of interest for the specific case here considered.

The intertwining operators are first order differential operators connecting different
Hamiltonians in the same class (called hierarchy) and they are associated to separable
coordinates of the Hamiltonians. We will obtain just a complete set of such intertwining
operators, in the sense that any of the Hamiltonians can be expressed in terms of these operators.

In our case the IO’s close an algebraic structure which is the non-compact Lie algebra su(2, 1)
(see [15] for a compact case). This structure allows us to characterize the discrete spectrum and
the corresponding eigenfunctions of the system that constitute a (infinite dimensional) unitary
representation. The construction of such representations is not so standard as for compact Lie
algebras. We will compute the ground state and characterize the representation space of the
wave-functions which share the same energy. Notice that this system includes also a continuum
spectrum, but we will not go into this point here.
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2. Parametrizations of the two-sheet hyperboloid
Let us consider the two-dimensional two-sheet hyperboloid s20 + s21 − s22 = −1, with positive
metric ds2 = −ds20 − ds21 + ds22. On this surface, we define the following Hamiltonian

H` = J2
2 − J2

1 − J2
0 −

l22 − 1
4

s22
+
l21 − 1

4

s21
+
l20 − 1

4

s20
, (1)

where ` = (l0, l1, l2) ∈ R3, and the differential operators

J0 = s1∂2 + s2∂1, J1 = s2∂0 + s0∂2, J2 = s0∂1 − s1∂0, (2)

constitute a realization of the so(2, 1) Lie algebra with Lie commutators

[J0, J1] = −J2, [J2, J0] = J1, [J1, J2] = J0.

The generator J2 corresponds to a rotation around the axis s2, while the generators J0 and J1

give pseudo-rotations (i.e., non-compact rotations) around the axes s0 and s1, respectively. The
Casimir operator

C = J2
0 + J2

1 − J2
2

is the ‘kinetic’ part of the Hamiltonian.
We can parametrize the hyperbolic surface by means of the ‘analogue’ of the spherical

coordinates
s0 = sinh ξ cos θ, s1 = sinh ξ sin θ, s2 = cosh ξ, (3)

where 0 ≤ θ < 2π, 0 ≤ ξ < ∞ and the invariant measure is dµ(ξ, θ) = sinh ξ dξ dθ. In this
coordinate system, the infinitesimal generators (2) have the following expressions

J0 = sin θ ∂ξ + cos θ coth ξ ∂θ, J1 = cos θ ∂ξ − sin θ coth ξ ∂θ, J2 = ∂θ . (4)

Also using these coordinates (3), the Hamiltonian (1) is rewritten as

H` = −∂2
ξ − coth ξ ∂ξ −

l22 − 1
4

cosh2 ξ
+

1
sinh2 ξ

[
−∂2

θ +
l21 − 1

4

sin2 θ
+
l20 − 1

4

cos2 θ

]
. (5)

Therefore, H` can be separated in the variables ξ and θ. Choosing its eigenfunctions Φ
(H`Φ = EΦ) in the form

Φ(θ, ξ) = f(θ) g(ξ), (6)

we get the separated equations

Hθ
l0,l1f(θ) ≡

[
−∂2

θ +
l21 − 1

4

sin2 θ
+
l20 − 1

4

cos2 θ

]
f(θ) = α f(θ) (7)

and [
−∂2

ξ − coth ξ ∂ξ −
l22 − 1

4

cosh2 ξ
+

α

sinh2 ξ

]
g(ξ) = E g(ξ),

where α > 0 is a separation constant.
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3. A complete set of intertwining operators
The second order operator at the l.h.s. of (7) can be factorized in terms of first order operators
[16, 17]

Hθ
l0,l1 = A+

l0,l1
A−l0,l1 + λl0,l1 ,

being
A±l0,l1 = ±∂θ − (l0 + 1/2) tan θ + (l1 + 1/2) cot θ, λl0,l1 = (1 + l0 + l1)2.

The Hamiltonian can be also rewritten in terms of the triplet (A±l0−1,l1−1, λl0−1,l1−1)

Hθ
l0,l1 = A−l0−1,l1−1A

+
l0−1,l1−1 + λl0−1,l1−1 = A+

l0,l1
A−l0,l1 + λl0,l1 . (8)

In this way we can determine a hierarchy of Hamiltonians

· · · , Hθ
l0−n,l1−n, · · · , H

θ
l0−1,l1−1, H

θ
l0,l1 , H

θ
l0+1,l1+1, · · · , Hθ

l0+n,l1+n, · · · (9)

satisfying the following recurrence relations

A−l0−1,l1−1H
θ
l0−1,l1−1 = Hθ

l0,l1A
−
l0−1,l1−1, A+

l0−1,l1−1H
θ
l0,l1 = Hθ

l0−1,l1−1A
+
l0−1,l1−1 .

Hence, the operators {A±l0+n,l1+n}n∈Z are intertwining operators and act as transformations
between the eigenfunctions of the hierarchy of Hamiltonians (9),

A−l0−1,l1−1 : fl0−1,l1−1 → fl0,l1 , A+
l0−1,l1−1 : fl0,l1 → fl0−1,l1−1,

where the subindex refers to the corresponding Hamiltonian of the hierarchy.
We can define new operators in terms of A±l0,l1 and a diagonal operator Al0,l1 = (l0 + l1)I

acting in the following way in the space of eigenfunctions

Â− fl0,l1 :=
1
2
A−l0,l1 fl0,l1 , Â+ fl0,l1 :=

1
2
A+
l0,l1

fl0,l1 , Â fl0,l1 := −1
2

(l0 + l1) fl0,l1 .

It can be shown from (8) that Â−, Â+ and Â satisfy the commutation relations of a su(2) Lie
algebra, i.e.

[Â−, Â+] = −2 Â, [Â, Â±] = ±Â±.

The ‘fundamental’ states, f0
l0,l1

, of the su(2) representations are determined by the relation
A−l0,l1 f

0
l0,l1

(θ) = 0. They are

f0
l0,l1(θ) = N (cos θ)l0+1/2 (sin θ)l1+1/2,

where N is a normalization constant. These functions are regular and square-integrable when
l0, l1 ≥ −1/2. Since Â fl0,l1 ≡ −1

2 (l0 + l1) fl0,l1 , then j = 1
2 (l0 + l1) and the dimension of the

unitary representation will be 2j + 1 = l0 + l1 + 1.
Now, observe that because the IO’s A±l0,l1 depend only on the θ-variable, they can act also as

IO’s of the total Hamiltonian H` (5) and its global eigenfunctions Φ` (6), leaving the parameter
l2 unchanged (in this framework we will use three-fold indexes)

A−`′H`′ = H`A
−
`′ , A+

`′H` = H`′A
+
`′ ,

where ` = (l0, l1, l2) and `′ = (l0 − 1, l1 − 1, l2). In this sense, all the above relations can be
extended under this global point of view.
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3.1. Pseudo-spherical coordinates around s1
These coordinates are obtained from the non-compact rotations about the axes s0 and s1,
respectively. In this way we obtain the following parametrization of the hyperboloid

s0 = coshψ sinhχ, s1 = sinhψ, s2 = coshψ coshχ . (10)

The expressions of the so(2, 1) generators in these coordinates are

J0 = −tanhψ sinhχ∂χ + coshχ ∂ψ, J1 = ∂χ, J2 = sinhχ∂ψ − tanhψ coshχ ∂χ .

The explicit expression of the Hamiltonian (1) is now

H` = −∂2
ψ − tanhψ ∂ψ +

l21 − 1
4

sinh2 ψ
+

1
cosh2 ψ

[
−∂2

χ +
l20 − 1

4

sinh2 χ
−

l22 − 1
4

cosh2 χ

]
.

This Hamiltonian can be separated in the variables ψ and χ considering the eigenfunctions Φ of
H` (H` Φ = E Φ) as Φ(χ, ψ) = f(χ) g(ψ). We obtain the two folllowing(separated) equations

Hχ
l0,l2

f(χ) ≡

[
−∂2

χ +
l20 − 1

4

sinh2 χ
−

l22 − 1
4

cosh2 χ

]
f(χ) = α f(χ), (11)

[
−∂2

ψ − tanhψ ∂ψ +
l21 − 1

4

sinh2 ψ
+

α

cosh2 ψ

]
g(ψ) = E g(ψ),

with α a separation constant. The second order operator at the l.h.s. of (11) can be factorized
as a product of first order operators

Hχ
l0,l2

= B+
l0,l2

B−l0,l2 + λl0,l2 = B−l0−1,l2−1B
+
l0−1,l2−1 + λl0−1,l2−1, (12)

being

B±l0,l2 = ±∂χ + (l2 + 1/2) tanhχ+ (l0 + 1/2) cothχ, λl0,l2 = −(1 + l0 + l2)2. (13)

In this case the intertwining relations take the form

B−l0−1,l2−1H
χ
l0−1,l2−1 = Hχ

l0,l2
B−l0−1,l2−1, B+

l0−1,l2−1H
χ
l0,l2

= Hχ
l0−1,l2−1B

+
l0−1,l2−1,

and imply that these operators B± connect eigenfunctions in the following way

B−l0−1,l2−1 : fl0−1,l2−1 → fl0,l2 , B+
l0−1,l2−1 : fl0,l2 → fl0−1,l2−1 .

The operators B±l0,l2 can be expressed in terms of ξ and θ using relations (3) and (10)

B±l0,l2 = ±J1 + (l2 + 1/2) tanh ξ cos θ + (l0 + 1/2) coth ξ sec θ,

where J1 is given by (4). We define new operators in the following way

B̂− fl0,l2 :=
1
2
B−l0,l2 fl0,l2 , B̂+ fl0,l2 :=

1
2
B+
l0,l2

fl0,l2 , B̂ fl0,l2 := −1
2

(l0 + l2) fl0,l2 ,

and, having in mind the expressions (12) and (13), we can prove than they close the su(1, 1) Lie
algebra

[B̂−, B̂+] = 2 B̂, [B̂, B̂±] = ±B̂±.
As the Lie algebra su(1, 1) is non-compact its unitary representations are infinite dimensional.
In particular, we will be interested in those having a ground state annihilated by the lowering
operator.

The IO’s B± can be considered as intertwining operators of the Hamiltonians H` and their
eigenfunctions Φ`, similarly to the IO’s A± described before (in this situation we will also use
three-fold indexes but now with l1 remaining unchanged).
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3.2. Pseudo-spherical coordinates around s0
These coordinates are obtained from the noncompact rotations about the axes s1 and s0,
respectively. They give rise to the parametrization

s0 = sinhφ, s1 = coshφ sinhβ, s2 = coshφ coshβ, (14)

where the generators take the form

J0 = ∂β, J1 = coshβ ∂φ − tanhφ sinhβ ∂β, J2 = −sinhβ ∂φ + tanhφ coshβ ∂β.

Now, the Hamiltonian is

H` = −∂2
φ − tanhφ∂φ +

l20 − 1
4

sinh2 φ
+

1
cosh2 φ

[
−∂2

β +
l21 − 1

4

sinh2 β
−

l22 − 1
4

cosh2 β

]
,

that can be separated in the variables β in terms of the eigenfunctions Φ (H` Φ = E Φ) such
that Φ(β, φ) = f(β) g(φ) in the following way

Hβ
l1,l2

f(β) ≡

[
−∂2

β +
l21 − 1

4

sinh2 β
−

l22 − 1
4

cosh2 β

]
f(β) = α f(β), (15)

[
−∂2

φ − tanhφ∂φ +
l20 − 1

4

sinh2 φ
+

α

cosh2 φ

]
g(φ) = E g(φ),

with α a separation constant. The second order operator at the l.h.s. of expression (15) can be
factorized as a product of first order operators

Hβ
l1,l2

= C+
l1,l2

C−l1,l2 + λl1,l2 = C−l1+1,l2−1C
+
l1+1,l2−1 + λl1+1,l2−1,

being

C±l1,l2 = ±∂β + (l2 + 1/2) tanhβ + (−l1 + 1/2) cothβ, λl1,l2 = −(1− l1 + l2)2.

These operators C±l1,l2 give rise to the intertwining relations

C+
l1+1,l2−1H

β
l1,l2

= Hβ
l1+1,l2−1C

+
l1+1,l2−1 C−l1+1,l2−1H

β
l1+1,l2−1 = Hβ

l1,l2
C−l1+1,l2−1,

which imply that

C−l1+1,l2−1 : fl1+1,l2−1 → fl1,l2 , C+
l1+1,l2−1 : fl1,l2 → fl1+1,l2−1 .

In this case, C±l1,l2 can also be expressed in terms of ξ and θ using relations (3) and (14)

C±l1,l2 = ±J0 + (l2 + 1/2) tanh ξ sin θ + (−l1 + 1/2) coth ξ csc θ,

where J0 is given by (4). Now, the new operators are defined as

Ĉ− fl1,l2 :=
1
2
C−l1,l2 fl1,l2 Ĉ+ fl1,l2 :=

1
2
C+
l1,l2

fl1,l2 Ĉ fl1,l2 := −1
2

(l2 − l1)fl1,l2 .

They satisfy the commutation relations of the su(1, 1) algebra

[Ĉ−, Ĉ+] = 2 Ĉ, [Ĉ, Ĉ±] = ±Ĉ±.

As in the previous cases, we can consider the IO’s C± as connecting global Hamiltonians H`

and their eigenfunctions, having in mind that now the parameter l0 is unaltered.
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4. Algebraic structure of the intertwining operators
If we consider together all the IO’s that have appeared in section 3 (Â±, Â, B̂±, B̂, Ĉ±, Ĉ), in
addition to the above algebras su(2) and su(1, 1), we find that they close the Lie algebra su(2, 1)
since they satisfy the following commutation relations

[Â+, B̂+] = 0 [Â−, B̂−] = 0 [Â+, B̂−] = −Ĉ− [Â−, B̂+] = Ĉ+

[Ĉ+, B̂+] = 0 [Ĉ−, B̂−] = 0 [Ĉ+, Â+] = −B̂+ [Ĉ−, Â−] = B̂−

[Ĉ+, B̂−] = −Â− [Ĉ−, B̂+] = Â+ [Ĉ+, Â−] = 0 [Ĉ−, Â+] = 0

[Â, B̂+] = 1
2B̂

+ [Â, B̂−] = −1
2B̂
− [B̂, Â+] = 1

2Â
+ [B̂, Â−] = −1

2Â
−

[Ĉ, B̂+] = 1
2B̂

+ [Ĉ, B̂−] = −1
2B̂
− [Ĉ, Â+] = −1

2Â
+ [Ĉ, Â−] = 1

2Â
−

[Â, Ĉ−] = 1
2 Ĉ
− [Â, Ĉ+] = −1

2 Ĉ
+ [B̂, Ĉ−] = −1

2 Ĉ
− [B̂, Ĉ+] = 1

2 Ĉ
+

[Â, B̂] = 0 [Â, Ĉ] = 0 [B̂, Ĉ] = 0 .

Obviously su(2, 1) includes as subalgebras the Lie algebras su(2) and su(1, 1) defined in the
previous section 3. The second order Casimir operator of su(2, 1) can be written as follows

C = Â+Â− − B̂+B̂− − Ĉ+Ĉ− +
2
3

(
Â2 + B̂2 + Ĉ2

)
− (Â+ B̂ + Ĉ) .

It is worthy noticing that in our differential realization we have Â− B̂ + Ĉ = 0, and that there
is another generator

C′ = l1 + l2 − l0
commuting with the rest of generators. Hence, adding this new generator C′ to the other ones
we get the Lie algebra u(2, 1).

The eigenfunctions of the Hamiltonians H` that have the same energy support a unitary
representation of su(2, 1) and also they are characterized by a value of C and other of C′. In
fact, we can show that

H` = −4 C +
1
3
C′2 − 15

4
.

These representations can be obtained, as usual, starting with a fundamental state annihilated
by the lowering operators A−, C− and B−

A−` Φ0
` = C−` Φ0

` = B−` Φ0
` = 0 . (16)

Solving equations (16) we find

Φ0
` (ξ, θ) = N(cos θ)l0+1/2(sin θ)1/2(cosh ξ)l2+1/2(sinh ξ)l0+1,

where ` = (l0, 0, l2). From Φ0
` we can get the rest of eigenfunctions in the representation using

the raising operators A+, B+ and C+.

5. Concluding remarks
In this work we have built a set of intertwining operators for a superintegrable system defined on
a two-sheet hyperboloid and we have found that they close a non-compact su(2, 1) Lie algebra
structure.
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We have shown how these IO’s can be very helpful in the characterization of the
physical system by selecting separable coordinates, determining the eigenvalues and building
eigenfunctions.

The IO’s can also be used to find the second order integrals of motion for a Hamiltonian
H` and their algebraic relations, which is the usual approach to (super) integrable systems.
However, we see that it is much easier to deal directly with the IO’s, which are more elementary
and simpler, than with constants of motion.

Our program in the near future is the application of this method to wider situations. Besides,
in principle, we can also adapt the method to classical versions of such systems. On this aspect
we must remark that some symmetry procedures usually considered only for quantum systems
can be extended in an appropriate way to classical ones [18].
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