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Recently, noticeable progress has been achieved in the area of high-temperature supercon-
ductors. Maximum temperatures Tc of 250 K (−23◦ C) for LaH10 and 288 K (+15◦ C) for
CSH8 have been reported at megabar pressures. The highest possible Tcs were achieved
by employing hydrides of chemical elements. Empirically, many of these are made of
Madelung-exceptional atoms. Here, the theoretical background is provided to explain this
observation. The, thus far empirical, Madelung rule controls Mendeleev’s law of periodic-
ity. Although the majority of elements do obey this rule, there are some exceptions. Thus,
it is of interest to derive it and its exceptions theoretically in view of experimental find-
ings. As a by-product, such a study yields a plausible explanation of the role of Madelung-
exceptional atoms in the design of high-Tc superconductors. Thus far the atoms obeying
the Madelung rule and its exceptions have been studied with help of relativistic Hartree–
Fock calculations. In this work we reobtain both the rule and the exceptions analytically.
The newly developed methods are expected to be of value in quantum many-body theory
and, in particular, in the theory of high-Tc superconductivity. Ultimately, the new methods
involve some uses of the Seiberg–Witten theory known as the extended Ginzburg–Landau
theory of superconductivity. Using results of Sieberg–Witten theory, the difference between
Madelung-regular and Madelung-exceptional atoms is explained in terms of the topologi-
cal transition. The extension of this single-atom result to solids of the respective elements
is also discussed.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction
1.1 Not too widely known facts about atomic superconductivity
The most essential feature of superconductivity is the Meissner effect—the expulsion of a su-
perconductor from an applied static magnetic field. Such a feature makes all superconductors
diamagnetic. With respect to the external magnetic field all atoms exhibit magnetic proper-
ties as well. It is not immediately clear, though, whether the magnetic properties of individual
atoms survive if they form the bulk solid phase. Hydrogen, the simplest chemical element, al-
ready exhibits a variety of puzzling properties. Although it is studied in every course on quan-
tum mechanics, standard treatments imply that atomic hydrogen should be both paramagnetic
(strongly) and diamagnetic (weakly). In reality, it is diamagnetic only. That is, atomic hydrogen
is already a superconductor! If this is so, will this property survive for solid hydrogen? Surpris-
ingly, there is no mathematically rigorous answer to this question.
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The standard methods of quantum mechanics indicate that paramagnetism should exist for
hydrogen. And, indeed, all other hydrogen-like atoms, e.g. Li, Na, K, Rb, Cs, are indeed para-
magnetic, as experiment and elementary calculation demonstrate. Furthermore, the surprising
atomic diamagnetism of hydrogen is followed by the much anticipated diamagnetism of He
and Be. These observations are misleading, though. Indeed, all noble gases are diamagnetic, as
is Be, but they are not practical superconductors in bulk, and Be under normal ambient pres-
sures is a very bad superconductor. Thus, bulk superconductivity implies diamagnetism, but
the opposite is not true. The diamagnetism of atomic hydrogen is the subject of hundreds of
publications. It can be explained group-theoretically [1], using the theory of quantum chaos
[2], or through perturbation theory of superintegrable systems.1

The diamagnetism of atomic H and paramagnetism of Li, Na, K, Rb, and Cs seemingly
affects their phase diagrams. Li, Na, K, Rb, and Cs readily become metals under normal pres-
sures, while for H this is not possible. In 1935, Eugene P. Wigner and Hillard B. Huntington
[4] predicted that only at pressures above 25 GPa would hydrogen become an alkali metal-like
solid. Some (but not all!) alkali metals under similar pressures will become superconducting [5].
Ashcroft (in 1968) and, independently, Ginzburg (in 1969) predicted that metallized hydrogen
is an ideal candidate to exhibit high-Tc superconductivity [5]. Although superconducting hy-
drogen has not yet been found reliably, many theoretical predictions do exist indicating that su-
perconducting hydrogen might exist at pressures above 450–500 GPa at room temperature and
above. Its superconductivity is believed to be described by the well-studied Bardeen–Cooper–
Schrieffer (BCS) theory and/or its Migdal–Eliashberg modification. The question that imme-
diately emerges is whether there is a way to reduce the pressures for hydrogen while retaining
superconductivity?

The important step in this direction was made by Gilman in 1971 [6]. He suggested using
hydrides, XHn, where X is an atom other than hydrogen and n is the number of hydrogen atoms
attached to it, perhaps under high pressure.2 Gilman’s idea to use hydrides instead of hydrogen
was named chemical precompression. The idea seemed very attractive because of the following
logic behind it: (i) Take an element (metal or not), (ii) apply pressure to it until it becomes
a solid, and (iii) at stages (i) and/or (ii) try to saturate this solid with atomic hydrogen. Such
saturation will eventually create a hydrogen sublattice3 inside the host lattice. The sublattice will
force the hydrogen to act like a solid and, hopefully, this solid will be superconducting under
mild readjustment of external parameters.

From the description of precompression, several questions emerge: How to make an alloy
with a prescribed number n of hydrogen atoms? Is there any relationship between n, Tc, and the
pressure? How stable are hydrogen sublattices? Since these topics were discussed in Ref. [5] this
spares us from an extended discussion here. At the same time, since answering these questions
brings us directly to the subject matter of this paper, we present some additional comments in
the next subsection.

1For example, read the definition of superintegrability in [3]. The study of the sophisticated perturba-
tional theory of superintegrable systems is also mentioned in [3].

2In practice, n may not be an integer.
3There could be more than one sublattice.
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1.2 Reversible hydrides: The peculiar interplay between atomic and bulk
superconductivities studied with Bogoliubov’s method of quasiaverages

In the previous subsection we learned that hydrogen, the lightest atomic superconductors, is ex-
pected to yield under very high pressures the highest possible Tc. Even if this result is achieved
in the laboratory, extremely high pressures make such a project of academic interest only. We do
not discuss here situations inside stellar or planetary cores leading to the emergence of the per-
manent magnetic field around these objects. Thus, focusing attention on hydrides makes more
sense. But the problem of how to make an alloy with a prescribed number of hydrogen atoms
still remains, and hence some requirements should be applied to make the correct selection of
the atom X.

According to [5, p. 45], “in order to obtain the effective metallization of the hydrogen sub-
lattice, it would be more convenient to start from the existing hydrogen-rich molecule since in
this case the hydrogen does not have to be incorporated into a host metal lattice.” No examples
of such hydrated molecules are given in Ref. [5].4 At the same time, Ref. [5, p. 5] comments
on the relationship between n, Tc, and the pressure as follows: “The possibility of predicting
Tc from first principles played a crucial role in the second hydride revolution (dawn of the
2000s) as well as the development of computational tools to predict the crystal structures and
phase diagrams of materials under given thermodynamic conditions.” Nevertheless, Ref. [5,
p. 47] has the following clarification: “rare-earth and actinides are theoretically challenging to
describe, and one can quickly obtain wrong results...” But it is exactly these elements that are
the Madelung-exceptional! They also yield hydrides with the highest Tcs. This quotation from
Ref. [5] provides us with the first compelling reason to study further the Madelung-exceptional
elements. Furthermore, the intuitive belief that the larger n is, the higher Tc should be does
not always work for the following reason. Reference [5, p. 20] states: “systems containing light
mass atoms, like hydrides under pressure, exhibit intrinsically large vibrational displacements
and hence showcase a variety of effects due to strong anharmonicity...” Thus, if high Tcs can-
not be achieved just by increasing n, the focus of attention shifts to the Madelung-exceptional
elements for the following reason. This reason is historical; it is not at all motivated by the
Madelung-exceptionality of elements.

In 1866 Thomas Graham discovered that at 1 atm metallic palladium can absorb hydrogen
in large amounts: 0.58 H atoms per one Pd atom. Since that time, for more than 150 years
the Pd–H2 system has remained the benchmark model for studying metal hydrides, beginning
with PdHx [7]. For this historical reason, the study of superconducting hydrides began with
hydrides of Pd and Th. Incidentally, although both are Madelung-exceptional, nowhere in the
literature is this fact mentioned or emphasized. The motivation came from another observation.
Under normal atmospheric pressure Pd is not a superconductor and Th is an exceptionally
bad superconductor (it has Tc = 1.374 K [8]. At the same time, the hydride PdHx (x � 0.7) is
a superconductor, with Tc � 9 K, and for ThH3.84Tc was found to be 8.35 K [9]. These results
demonstrate that the use of hydrides is a step in the right direction. The problem, nevertheless,
remains. Yes, PdHx and ThH3.84 had noticeably improved their Tcs. upon making hydrides, and
for PdHxTc increases linearly with a linear increase in the fraction of H in PdHx [5, p. 49]. But,
is it possible to regulate the the amount of H in hydrides of other atoms to the extent it was
done in Pd and Th?

4However, based on the results of this paper hydrated molecules made of Madelung-exceptional and
hydrogen atoms are theoretically permissible.
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Yes, computational advancements formally allowed the prediction of Tc for the assigned pres-
sure, but to what extent can these hydrides be recreated in real life? And, as mentioned above,
for Madelung-exceptional atoms the computations are not reliable but the Tcs obtained are
among the highest. Because of this, we focus our attention on Madelung-exceptional atoms. In
doing so, we shall cite extensively the contents of Refs. [10,11].

According to Ref. [10], molecular dissociation of H2 is the first step toward the formation of
hydrides by absorption. Other than Pd, most metals require energy input in order to overcome
the activation barrier. This is achieved by the application of high hydrogen pressures and ele-
vated temperatures. On Pd surfaces, the dissociative absorption of H2 molecules occurs with
little or no activation energy barrier! This fact causes the absorption to be reversible, and there-
fore, following Ref. [11], all hydrides for which the absorption is reversible are called reversible
hydrides. Empirically, it is known [11, p. 31] that all the reversible hydrides working at around
ambient temperature and atmospheric pressure consist of transitional and rare earth metals;
that is, almost all of them are Madelung-exceptional! In particular, very good reversible hy-
drides are made of Pt and Ru [11]. What is the physics behind this phenomenon? The hint is
given by the name: reversible hydrides.

To move forward, we need to have some model of the metal. This will enable us to describe
the absorption–desorption process within the limits of this model. The simplest model of a
metal is some weakly or strongly interacting electron gas on some jellium-like neutralizing back-
ground. It happens that the description of absorption–desorption processes based on such a
model [12] make good sense. Irrespective of the ramifications of a given model, all models are
subject to some constraints of a general nature. These are associated with symmetry. Conser-
vation of energy, momentum, spin, etc. all are consequences of symmetry. More delicate are
the conservation laws associated with, for example, the conservation of particles. These are
connected with (global) gauge invariance symmetry. Also, it matters whether the particles are
bosons or fermions. Photons, phonons, and plasmons are bosons, and they are massless. In su-
perconductivity two fermions forming a Cooper pair become one boson. But this BCS boson
is massive. Bogoliubov developed a very general concept of quasiaverages [13,14] in connection
with his seminal works on superconductivity. It is essential to emphasize that this concept is
far more general than just superconductivity problematics [14]. The concept of quasiaverages
is useful whenever there is some change in symmetry. In the present case, we are dealing with
a fermion system whose number of particles is not conserved.5 This is indicative of the spon-
taneous breakage of the global U(1) symmetry associated with electromagnetism. Within the
framework of superconductivity, details are provided in Sect. 6 and Appendix E.3.

The case of reversible hydrides falls into this category. Indeed, the absorption process begins
with H2 breaking into two H atoms, each having a proton and an electron. Both are fermions.
When the pair of H atoms enters the bulk solid, it donates two electrons (fermions) to the in-
teracting electron gas and two protons (fermions) to the jelly. Since the process is reversible,
the two H atoms can emerge back at the surface. Since the bulk system is not particle conserv-
ing, such a reversible process requires no energy for it to happen. This picture is missing one
very important ingredient: the absorption–desorption process just described is not valid for all
solids (metallic or not)! It is only valid for solids made of hydrides of Madelung-exceptional
atoms since these atoms (and only these!) are superconducting, as explained in Appendices E.4

5For example, a hydride molecule in the simplest case.
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and E.5. In the previous subsection we argued that the H atom is also superconducting since it is
diamagnetic. Since such Madelung-exceptional solids are reversible hydrides, this makes these
solids nontraditional superconductors in the way just described. This makes sense because Pd
is not a superconductor without H atoms. The presence of H, in whatever amounts, makes it
superconducting in the conventional sense. The same is true for other Madelung-exceptional
elements. The results just presented allow us to formulate the content of the rest of this work.

1.3 Organization of the rest of the paper
In Sect. 2 we present basic facts about atomic physics that allow us to introduce definitions
of Madelung-regular and Madelung-exceptional atoms. In Sect. 3 we explain what makes
Madelung-exceptional atoms exceptional. We argue that (a) Madelung-exceptionality is a rel-
ativistic phenomenon, and (b) the application of relativistic methods known in the physics lit-
erature makes all atoms Madelung-exceptional. This creates the first fundamental problem:
how to disentangle the Madelung-exceptional atoms from the Madelung-regular? In Sect. 3
we explicitly explain what features make atoms Madelung-regular. In reading Sects. 2 and 3
the reader is encouraged to read Appendices A, B, and C; they are not optional! Section 4
is meant to prepare the reader for new information. For this purpose we have converted the
results of Sect. 3 into an equivalent geometrical/topological form, allowing us to account for
the effects of covariance, gauge invariance (local and global), etc. This conversion was influ-
enced by the work of Schrödinger on the Dirac electron in a gravitational field. In doing so
we have used the original work by Schrödinger [15], written in German, as well as its English
translation [16]. The results of Sect. 4 allow us to bring into play the results of Seiberg–Witten
(S–W) theory in Sect. 5. Although this theory, according to its author [17], is just a sophisti-
cated extension of the Ginzburg–Landau theory of superconductivity, to our knowledge there
have been no precedents, until this paper, explicitly demonstrating (using physical terminol-
ogy) the connection of the S–W formalism with that for superconductivity. This is done here
with the purpose of demonstrating that mathematically the transition from Madelung-regular
to Madelung-exceptional atomic behavior is of a topological nature. The case of Madelung-
regular atoms requires for its description the concept of a spin manifold, while Madelung-
exceptional atoms can “live” only on spinc manifolds. Since the spinc and spin manifolds are
topologically different, the transition from Madelung-regular to Madelung-exceptional atoms
is topological in nature. The definition of spinc manifolds in the mathematical literature [18]
is devoid of any traces of physics. Being motivated by the physics of reversible hydrides, dis-
cussed in Sect. 1.2, we found a physical interpretation of spinc manifolds in terms of known
concepts of BCS superconductivity, e.g. using the Bogoliubov–De Gennes equations. Details
are provided in Appendices D and E.

Finally, in Appendix F we further simplify the concept of spinc manifolds and test this sim-
plified definition using known examples of electron filling patterns for Madelung-exceptional
and regular atoms. The S–W formalism also allows us to demonstrate, in Appendix C, that the
number of Madelung-exceptional elements is always finite and always holds only for heavier
atoms, where the relativistic effects are nonnegligible.

In Sect. 6 we discuss two problems: (a) the problem of extending the single-atom results just
obtained to solids of macroscopic sizes, and (b) provided that problem (a) is solved, will these
solids remain superconductive? Section 7 is devoted to a summary and discussion.
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2. Some facts about the periodic system of elements
2.1 Madelung-regular vs. Madelung-exceptional atoms
Although the quantum-mechanical description of multielectron atoms and molecules is con-
sidered to be a well-developed domain of research, a recently published book [19] indicates that
there are still many topics to be addressed. The quantum-mechanical description of a multi-
electron atom (with atomic number Z and infinitely heavy nucleus) begins with writing down
the stationary Schrödinger equation,

Ĥ�(r1, r2, . . . , rZ ) = E�(r1, r2, . . . , rZ ), (1)

with the Hamiltonian

Ĥ = −
Z∑

i=1

�
2

2m
∇2

i −
Z∑

i=1

Ze2

ri
+ 1

2

Z∑
i, j=1
i �= j

e2

ri j
. (2)

Bohr’s Aufbauprinzip postulates that the atom with atomic number Z is made of Z electrons
added in succession to the bare atomic nucleus. At the initial stages of this process the electrons
are assumed to occupy the one-electron levels of the lowest energy. Mathematically, this process
is described in terms of the one-electron eigenvalue problem,

Ĥiψ�i (ri) =
[

− �
2

2m
∇2

i + Ve (ri)
]
ψ�i (ri) = εnl (i)ψ�i (ri), i = 1 ÷ Z, (3)

where Ve (ri) is made of the combined nuclear potential −Ze2

ri
and the centrally symmetric

Hartree–Fock-type potential F (ri) for the ith electron coming from the presence of the rest
of the atomic electrons. The fact that F (ri) is indeed centrally symmetric was demonstrated in
Ref. [20]. It is fundamentally important for our calculations. The symbol �i indicates the ith
entry in the set made out of hydrogen-like quantum numbers for individual electrons. Based on
this, the concept of an orbital is associated with the major quantum number n having its ori-
gin in studies of the hydrogen atom. In the quantum many-body system described by Eq. (3),
however, it makes more sense to associate the concept of an orbital with the description of the
somehow labeled (say, by interaction with a photon, when studied spectroscopically) the ith
electron moving in the centrally symmetric potential Ve (ri). The quantum motion in such a
potential should cause the hydrogen quantum numbers n, l, m, and ms to change into hydrogen-
like6since the hydrogen atom eigenvalue problem is now replaced by the eigenvalue problem for
the labeled ith electron in the centrally symmetric potential Ve (ri), which is different from the
Coulombic.

The actual implementation of this observation is presented in this work from a new stand-
point. It is known that the number of electrons allowed to sit on such a redefined orbital is
determined by the Pauli exclusion principle. With increasing Z the electrons are expected to oc-
cupy successive orbitals according to Bohr’s Aufbau scheme until the final ground state electron
configuration is reached. This is achieved by using the assumption made by Bohr that an atom
with Z electrons is made from a atom with Z − 1 electrons by (a) changing the nuclear charge
by +1 and simultaneously adding one additional electron. In such an imaginary process it is
assumed that the quantum numbers of electrons in the Z − 1 atom remain unchanged [21].

The problem with the Aufbauprinzip just described lies in the assumption that the guid-
ing principle in designing the final ground state electron configuration has two compo-
nents: (a) knowledge of the hydrogen-like wave functions supplying (labeled by) the quantum

6See, for example, Sect. 3.3.
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boxes/numbers �i, and (b) the Pauli principle mathematically restated in the form of fully an-
tisymmetric wave function �(r1, r2, . . . , rZ ). Although mathematically it is just an exterior dif-
ferential form, the existing treatments do not use the Hodge–De Rham theory of differential
forms to describe the Pauli principle. In this work this is corrected.

Should requirements (a) and (b) be sufficient, then the familiar hydrogen-like quantum num-
bers n, l, m, and ms for hydrogen would make the filling of electronic levels proceed according
to the Fock n-rule:

The Fock n-rule: With increasing Z, the nl orbitals are filled in order of increasing n.

This rule already leads to problems for lithium [19, p. 330]. As a result, the n-rule was replaced
by the (n, l) rule:

The hydrogenic (n, l) rule: With increasing Z, the orbitals are filled in order of increasing n,
while for a fixed n the orbitals are filled in order of increasing l.

After Z = 18 the (n, l) rule breaks down as well. Therefore, it was subsequently replaced by
the (n + l, n) rule of Madelung:

The Madelung (n + l, n) rule: With increasing Z, the orbitals are filled in order of increasing
n + l = N. For fixed N, the orbitals are filled in order of increasing n.

This rule was included by Madelung in Ref. [21] in the form of Appendix 11 describing the
filling of the periodic table. In the same Appendix 11 Madelung confesses that: (a) the filling
rule is strictly empirical, and (b) as such, it does possess some exceptions. The Madelung rule
and its exceptions require theoretical explanation.

By organizing the elements in periods of constant n + l and in groups of constant l, ml, and ms,
period doubling emerges naturally and leads to the sequence of periods 2–2–8–8–18–18–32–32.
Using the apparatus of dynamical group theory in Ref. [19], the period doubling was recreated.
The application of group-theoretic methods to periodic systems has occurred repeatedly in the
past. To our knowledge, the most notable results are presented in [22, Chapter 6]. Much later,
those results were independently reobtained in Ref. [19]. Should the Madelung rule be without
exceptions, the results just mentioned would be sufficient. However, the existing exceptions for
some transition metals, lanthanides, and actinides indicate that the use of dynamical group
theory methods alone is not sufficient. As result, in this work we describe alternative methods
enabling us to explain the Madelung rule and its exceptions.

The problem of finding a theoretical explanation of the Madelung rule attracted the attention
of Demkov and Ostrovsky (D–O) [23]. They used methods that were not group theoretic, en-
abling them to guess Ve (ri) correctly. This was achieved by taking into account the implications
of the Bertrand theorem of classical mechanics [24]. It imposes apparently insurmountable re-
strictions on the selection of Ve (ri): for spherically symmetric potentials only the Coulombic
−Ze2

ri
and the harmonic oscillator kr2 potentials allow dynamically closed orbits. The theoret-

ical treatment of multielectron atoms before D–O was confined either to the study of spectra
of classically and quantum mechanically chaotic systems or to uses of variational (relativistic
or otherwise) Hartree–Fock spectral calculations. Beginning with the motion of electrons in
the helium atom, the classical (and, hence, the semiclassical!) dynamics of electrons in multi-
electron atoms is believed to be chaotic. The seminal Ref. [25] is an excellent introduction to
this topic. Bethe and Jackiw [20] had already noticed that the Hartree–Fock Ve (ri) is centrally
symmetric. This brings into question the issue of the description of a multielectron atom at the
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semiclassical level. D–O found a seemingly innovative approach to the spectral problem. They
applied the optical–mechanical analogy in which the Maxwell fish-eye potential was used in-
stead of the Coulombic potential for the hydrogen atom. D–O believed that such a replacement
might help them to cope with the multielectron effects while maintaining agreement with the
Bertrand theorem. To do so, they (a) replaced the Coulomb potential by the fish-eye potential,
and (b) used conformal transformations applied to the fish-eye potential aimed at conformally
deforming this potential in such a way that it correctly represented the multielectron effects.
At the level of classical mechanics D–O demonstrated the equivalence (for the hydrogen atom)
between the Hamilton–Jacobi equations employing the Maxwell fish-eye and the Coulombic
potentials. In Appendix B we reproduce the necessary details and comment on some flaws in
the D–O reasoning. At the quantum level D–O believed that “The Maxwell’s fish-eye problem
is closely related to the Coulomb problem.” Being aware of Ref. [26], D–O nevertheless under-
estimated the nature of the connection between the Coulombic and optical (fish-eye) problems.
The assumption of only a “close relationship” caused D–O to replace Eq. (3) with[

− �
2

2m
∇2

i + Ve (ri)
]
ψ (ri) = 0. (4)

Equation (4) looks different from Eq. (3). Equation (3) is an eigenvalue spectral problem,
while Eq. (4) is the Sturmian problem. That is to say, for the Sturmian-type problem to be well
defined, the parameters entering into Ve (ri) must be quantized. Such quantization of parame-
ters makes Sturmian and eigenvalue problems equivalent. To prove this equivalence is nontrivial
but possible; it was overlooked by D–O. Reference [3] demonstrates that even though Eqs. (3)
and (4) produce exactly the same spectrum, only Eq. (4) can be subjected to conformal trans-
formations while Eq. (3) cannot. That such transformations lead to the correct reproduction
of multielectron effects and are compatible with the extended Bertrand theorem is also demon-
strated in Ref. [3]. Compatibility with the Bertrand theorem had become possible only thanks
to the seminal work of Ref. [27], in which the results of the classical Bertrand theorem [24]
valid in flat Euclidean three-dimensional space were extended to static spherically symmetric
spacetimes of general relativity. By design, the motion in such curved spacetimes takes place on
closed orbits. Thus, our task was to demonstrate that the classical/semiclassical limit of Eq. (4)
with the appropriately deformed D–O potential leads to the motion in generalized Bertrand
spacetimes found in Ref. [27]. In Ref. [3] such a demonstration was performed. Thus, for the
first time the place of gravity effects in a testable realistic quantum-mechanical problem was
found.7 In addition, in Ref. [3] the connection between the deformed D–O potential and the
Hartree–Fock Ve (ri) potential was found. These achievements enable us to make the further
progress described in this work.

3. Beyond the canonical Madelung rule
3.1 The origin of the Madelung rule anomalies
In the previous section we defined the Madelung rule. The opposite of this definition can be
taken as the definition of Madelung-exceptions. Reference [19] leaves us with the impression
that the correct mathematical understanding of the empirical Madelung rule can be obtained
only using results from dynamical group theory, while the D–O results suggest an alternative

7More accurately, following J. A. Wheeler, we have to use the term “geometrodynamics” instead of
gravity. Recall, that Wheeler’s geometrodynamics is just an elaboration on the unified theory of gravity
and electromagnetism proposed by G. I. Rainich in 1925.
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approach which was significantly improved in Ref. [3]. If this is so, is there in this formalism
room for the description of Madelung-exceptional elements?

From Sect. 1, it follows that the Madelung exceptions are observed among some transition
metals, lanthanides, and actinides. The electronic structure of these elements has been stud-
ied thus far with the help of the relativistic Hartree–Fock methods [28]. A major new problem
emerges: Will the results of solving Eq. (4) developed in detail in Ref. [3] survive the relativistic
extension? Only such an extension may yield results compatible with that for the Madelung-
exceptional atoms. The most difficult issue in doing so is the following: Since the nonrelativistic
results already obtained are capable of deriving the regular Madelung rule quantum mechan-
ically, the relativization of these results will make all chemical elements anomalous since the
standard [28] formalism works indiscriminately for all atoms.

The S–W theory helps to solve this puzzle. This can be achieved in several steps.

3.2 Preparing the nonrelativistic results for relativistic extension
This extension can be achieved by using some facts about the quantization of the hydrogen
atom model Hamiltonian that are not well known. These results will serve as a reference point.
In particular, in a specially chosen system of units the dimensionless Hamiltonian Ĥ for the
hydrogen atom is given in the operator form as

Ĥ = p2 − 2
r
. (5)

The Laplace–Runge–Lenz vector A0 is given by

A0 = x
r

+ 1
2

(L × p − p × L), (6)

with the angular momentum operator L defined as usual by L = x × p. It is convenient to
normalize A0 as follows:

A =

⎧⎪⎨
⎪⎩

A0(−H )
1
2 for E < 0,

A0 for E = 0,

A0 = (H )
1
2 for E > 0.

(7)

Here it is assumed that Ĥ�E = E�E and E = H. By introducing two auxiliary angular momenta
J(α), α = 1, 2, such that J(1) = 1

2 (L + A) and J(2) = 1
2 (L − A), and using known commutation

relations for L etc. we arrive at

J(α) × J(α) = iJ(α), α = 1, 2,

[J(1), J(2)] = 0. (8)

Taking into account that L · A = 0 we also obtain two Casimir operators: L · A = 0 = A · L
and L2 + A2. The Lie algebras J(α) × J(α) = iJ(α), α = 1, 2, are the algebras of rigid rotators
for which the eigenvalues jα (jα + 1) are known from standard texts on quantum mechanics.
The peculiarity of the present case lies in the fact that J(1)2 = J(2)2. This constraint leads us
to the requirement jα = jβ = j. The topological meaning of this requirement is explained in [3].
In short, the eigenvalue equation for the standard quantum-mechanical rigid rotator is that for
the Laplacian living on a two-sphere S2. Since in the present case we have two rigid rotators,
each of them should have its own sphere S2. However, the constraint jα = jβ = j causes these two
spheres to be identified with each other pointwise. Topologically, such a pointwise identification
leads to the three-sphere S3. Group theoretically, the same result can be restated as so(4) �
so(3)⊕so(3).
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With this background we are ready to relativize these results.

3.3 Sketch of the derivation of the Madelung-regular rule
To make sure that our relativization procedure is compatible with previously obtained results
[3], we begin by restoring these results in a new fashion using the results of the previous subsec-
tion. For this purpose, the observation that the three-dimensional rigid rotator has the eigen-
values and eigenfunctions of the Laplacian “living” on an S2,

L2Ylm(θ, φ) = l (l + 1)Ylm(θ, φ), (9)

is helpful. Notice, however, that L2 = L2
x + L2

y + L2
z and Lx = iD23, Ly = iD31, Lz = iD12, where

Dαβ = −xα

∂

∂xβ

+ xβ

∂

∂xα

, α < β = 1, 2, . . . , d, (10)

and d is the dimensionality of space. Now let Ax = iD14, Ay = iD24, Az = iD34. If L2 represents
the Laplacian on S2, the combination L2 + A2 ≡ L2 represents the Laplacian on S3 embed-
ded in four-dimensional Euclidean space [22]. That is, instead of the more familiar study of a
three-dimensional rigid rotator “living” on the two-sphere S2, the eigenvalue problem for the
hydrogen atom in fact involves studying the spectrum of the rigid rotator on S3. This fact was
realized initially by Fock [29]. The three Euler angles α, θ , and φ on S3 replace the more familiar
θ , φ angles used on the two-sphere.

The eigenvalue, Eq. (9), is now replaced by

L2Ynlm(α, θ, φ) = InlYnlm(α, θ, φ). (11a)

This result coincides with that obtained in Appendix C, Eq. (C1). Here we have manifestly
spherically symmetric wave functions with indices n, l, m. This result is immediately applicable
to the hydrogen atom [22]. It corresponds to the choice γ = 1 in Eq. (C5). The choice γ = 1/2
in the potential, Eq. (B4), results in a shift in the indices in Eq. (11a) leading to

L2Yn+l,lm(α, θ, φ) = In+l,lYn+l,lm(α, θ, φ) (11b)

in accord with the qualitative arguments made in Sect. 2. In spite of the apparent simplicity of
the transition from Eq. (11a) to Eq. (11b), and taking account of the results of Appendices B
and C, lengthy calculations [3] are still required. For the hydrogen atom the spectrum associated
with Eq. (11a) is obtained in Appendix C, Eq. (C3), hile for the multielectron atom obeying the
regular Madelung rule, the spectrum associated with Eq. (11b) is given below, in Eq. (27). Now
we are in a position to develop the theory explaining the Madelung-exceptional atoms.

3.4 Uncovering the source of the Madelung rule exceptions via relativization of
previous results

This task can be completed in several steps. First, we notice that in the standard three-
dimensional calculations the hydrogen spectrum is determined by the eigenvalues of the radial
equation [

−1
2

(
d2

dr2
+ 2

r
d
dr

− l (l + 1)
r2

)
+ V (r)

]
REl (r) = EREl (r). (12)

Here, the total wave function �E = FEl (r)Ylm(θ, φ), Ylm(θ, φ) = rlYlm(θ, φ), REl(r) = rlFEl(r),
and V (r) = −Ze2

r , m = 1, � = 1. The combination FEl (r)Ylm(θ, φ) can be rewritten in terms of
Ynlm(α, θ , φ) as demonstrated in Ref. [3] in accord with Ref. [22]. Therefore, it is sufficient to
look at three-dimensional results. They can always be mapped into S3 via inverse stereographic
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projection. Next, this observation allows us, following Refs. [30,31], to use the Pauli matrices
σ i in order to rewrite L2 = (σ · L) (σ · L + 1). This identity permits us then to write the total
momentum J as J = L + 1

2σ . After that, it is convenient to introduce the operator K = σ ·
L + 1 already used by Dirac [32] in his treatment of the hydrogen atom with the help of the
Dirac equation. Using this operator it is possible to obtain the identity K2 = J2 + 1

4 , � = 1.
The eigenvalues of K, denoted as κ, are known to be κ = ±1, ±2, … (0 is excluded). Use of
these results implies:

l = l (κ ) =
{

κ if κ is positive,
|κ| − 1 if κ is negative,

j = j(κ ) = |κ| − 1
2
. (13)

The above results were presented with a purpose not discussed at all in the standard texts on
quantum mechanics. Specifically, at the classical level the Kepler trajectories can be determined
with help of the vector A only [33]. This fact suggests that the quantum analog of A should
produce an eigenvalue spectrum identical to that obtained using Eq. (12). This is indeed the
case. To demonstrate this, we introduce the operator N such that (N )2 = (σ · A)2 + (K)2. Since
it can be shown that σ · A and K anticommute, it also becomes possible to write

N = σ · A + K. (14)

Denote the eigenvalues of N as ±N. Then, it is possible to demonstrate that

σ · A|N,κ, m〉 = (N2 − κ
2)1/2|N, −κ, m〉. (15)

It is also possible to demonstrate that N � E with E as defined in Eq. (12). With the help of
this result it is then possible to write the exact equivalent of the radial equation, Eq. (12). It is
given by [

1
r2

d
dr

r2 d
dr

− K(K + 1)
r2

+ 2Ze2

r
− k2

]
FN,l (κ )(r) = 0. (16)

Here, k2 = 2|E|, m = 1, � = 1. Reference [31] explains how the wave function |N, −κ, m〉 is
related to FN, l(κ)(r). Also, K(K + 1) = l (κ )(l (κ ) + 1).

The results just presented not only demonstrate that the quantum version of the Laplace–
Runge–Lenz operator leads to an eigenvalue problem identical to the standard eigenvalue prob-
lem, Eq. (13), for the hydrogen atom presented in every textbook on quantum mechanics, but,
in addition, they also permit us to perform their relativization in the most natural manner, thus
allowing a seamless match of relativistic results with those known from nonrelativistic quantum
mechanics.

The control parameter of this relativistic generalization is the fine structure constant α =
e2

c�
. In the limit α = 0, Eq. (16) is recovered as required. Since it is structurally identical to

Eq. (12), the nonrelativistic spectrum is preserved. For α > 0, Eq. (17) is replaced by a very
similar equation, [

1
r2

d
dr

r2 d
dr

− 
(
 + 1)
r2

+ 2αZE
c�r

− k2
]
�N,l (γ κ )(r) = 0. (17)

Here, to avoid confusion when comparing with the original sources, we have restored �, c, and
m. In particular, k2 = [(m2c4 − E2)/c2

�
2], 
 is the Lippmann–Johnson operator


 = K + iαZρ1σ · ř, (18)
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ř = x
r , and ρ1÷ρ3, σ 1÷σ 3 are the 4 × 4 matrices defined in Ref. [32]. Instead of the eigenvalue

κ for K one now has to use γ κ, so that, upon diagonalization, 
(
 + 1) = l(γ κ)(l(γ κ) + 1) and

l (γ κ ) =
{

γ κ = ∣∣κ2 − (αZ)2 ∣∣1/2
for γ κ > 0,

|γ κ| − 1 = ∣∣κ2 − (αZ)2 ∣∣1/2 − 1 for γ κ < 0.
(19)

Mathematically, Eqs. (16) and (17) look almost the same, and in fact their solution can be
reconstructed from the solution of the radial eigenvalue, Eq. (12), discussed in any book on
quantum mechanics. Details are given in Appendix A.

The difference between these equations lies only in redefining the parameter l. In the non-
relativistic case the combination l(κ)(l(κ) + 1) is the same as l(l + 1) as required, while in the
relativistic case we should replace l by l(γ κ). By replacing l in Eq. (12) by l(γ κ) it is immediately
clear that the Madelung rule in its canonical formulation is no longer valid.

4. New physics behind the Madelung rule anomalies
4.1 The Madelung rule and its anomalies explained with help of Schrödinger’s work on

the Dirac electron in a gravitational field
In 1932, the paper by Schrödinger [15] on the Dirac electron in a gravitational field was pub-
lished. Historically, Dirac [32] came up with his equation in 1928, driven by the observation
that the Schrödinger equation is not Lorentz invariant. By correcting this deficiency Dirac un-
covered the spin of the electron. In 1927 the spin was artificially inserted into Schrödinger’s
equation by Pauli. Schrödinger immediately got interested in Dirac’s equation and wanted to
study how Dirac’s formalism might be affected by gravity. The rationale for doing so is given
in Schrödinger’s paper. The modern viewpoint is presented below. In this subsection we discuss
Schrödinger’s results in the light of their relevance to the description of the Madelung rule and
its exceptions in view of the relevance of Volker Perlick’s work [27] on the generalized Bertrand
theorem to spectral problems of atomic physics. In [3], the generalized Bertrand theorem was
used to derive the regular Madelung rule. To explain the exceptions we need to relativize the
calculations already presented. This process was initiated in Sect. 3 and Appendix A.

We begin with the Dirac equation,

iγ a∂aψ − mψ = 0, (20a)

in which the Dirac gamma matrices γ a obey the Clifford algebra anticommutation rule γ aγ b

+ γ bγ a = 2ηab, a, b = 1÷4, where ηab is the matrix enforcing the Minkowski spacetime signa-
ture {1, −1, −1, −1}. As is well known, the equivalence principle of general relativity locally
allows the elimination of the effects of gravity (e.g., recall the falling elevator gedanken exper-
iment). Mathematically, this can be achieved by the introduction of the vierbein ea

μ(x) so that
ea
μ(x)eb

ν (x)ηab = gμν (x) and eμ
a (x)eν

b(x)gμν = ηab(x). Thus, the vierbeins carry in themselves the
effects of gravity since the metric tensor gμν(x) carries the information about gravity.

Introducing these effects into Eq. (20a) can be done as follows. First, the anticommutator
γ aγ b + γ bγ a = 2ηab is replaced by γ μγ ν + γ νγ μ = 2gμν with the help of the relationship
γ μ = eμ

a γ a. Here, the Greek indices μ and ν refer to the four-dimensional spacetime, while
the Latin indices a, b refer to the Lorentzian (more generally, to the Poincaré) frames. The
Lorentzian frames are used to describe rotations in the four-dimensional spacetime of special
relativity, while the Poincaré frames account for translations in addition. The partial derivative
∂μ is now replaced by the covariant derivative

∇μψ = ∂μψ + 
μψ, (21)
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where


μ(x) = − i
4
ωabμ(x)σ ab, σ ab = i

2
[γ a, γ b], (22)

and

ωa
bμ = ea

ν∂μeν
b + ea

νeρ

b
ν
ρμ. (23)

In the simplest case 
ν
ρμ is the standard Levi-Civita connection determined by the metric tensor

gμν . The presence of the term ea
ν∂μeν

b in Eq. (23) is responsible for the torsion effects. These are
absent in canonical general relativity. The extension of general relativity accounting for torsion
effects is known as Einstein–Cartan gravity [34]. Use of Eq. (21) converts the flat-space Dirac
Eq. (20a) into that in the curved space,

iγ μ∇μψ − mψ = 0. (20b)

Instead of Eq. (20b) we can consider the following equation:

0 = (−iγ μ∇μψ − mψ )(iγ ν∇νψ − mψ )

= γ μγ ν (∇μ∇ν + ∇ν∇μ + ∇μ∇ν − ∇ν∇μ + m2)ψ

= (
gμν∇μ∇ν + m2 + 1

8 Rαβδηγ
μγ νγ δγ η

)
ψ, (20c)

where we used the identity [16](∇α∇β − ∇β∇α

)
ψ = 1

8 Rαβδηγ
δγ ηψ (24)

along with the Clifford algebra anticommutator identity γ μγ ν + γ νγ μ = 2gμν . Here, Rαβδη is
the Riemannian curvature tensor. The above equation can be rearranged further [35], yielding
the equivalent final result: (

gμν∇μ∇ν + m2 + R
4

)
ψ = 0. (20d)

Here, R is the scalar curvature. As demonstrated in Refs. [3,36], the mass term m2 is not essential
and can be eliminated by the appropriate substitutions. In the case of the fish-eye potential this
is discussed in Appendix B. Reference [3, Sects. 3 and 5] demonstrates that Eq. (20d) (with m =
0) is exactly equivalent to Eq. (4). In the mathematical literature such an equation is known as
one of the Weitzenbock–Lichnerowicz equations [35,37]; another example is given in Eq. (25)
below. Additional information is presented in Appendix E.2.

These types of equations are discussed further below in the context of the Seiberg–Witten
theory. The scalar curvature R in Eq. (20d) can be identified with the potential, Eq. (B4) (with
γ = 1/2; see Appendix B). That this chosen scalar curvature coincides with the curvature of
the Bertrand space was demonstrated in Ref. [3] and, independently, in Ref. [38]. The obtained
result, Eq. (20d), is incomplete, though. To make it complete, following Schrödinger [15] we
have to modify the definition of the covariant derivative in Eq. (21). That is, we have to replace
∇μ = ∂μ + 
μ by ∇Aμ = ∂μ + 
μ − ieAμ, where Aμ is some kind of vector (e.g. electromagnetic)
potential. With such a replacement, Eq. (20d) is now replaced by(

gμν∇μ∇ν + m2 + R
4

+ ie
2

σ abF (A)ab

)
ψ = 0, F (A)ab = ∂aAb − ∂bAa. (25)

This is the final result obtained by Schrödinger. In the mathematical literature the same equa-
tion is also known as a Lichnerowicz–Weitzenbock equation (more on this is presented in Ap-
pendix E.2). Most calculations in S–W theory involve the use of this equation [39]. The signs
of the i and e factors in Eq. (25) can be correctly restored. For this, we have to put 
μ = 0 in
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the covariant derivative ∇μ and then consult a book on quantum electrodynamics, e.g. Ref. [40,
Eq. (2.73)].

Equations (16) and (17) can now be related to Eqs. (20d) and (25). Specifically, by setting the
fine structure constant α in the Lippmann–Johnson operator to zero we arrive at Eq. (20d).
For nonzero α we have to use Eq. (25) instead. Important details are presented below. This
kind of logic, common in the physics literature [40], does not take into account finer details,
e.g. topological considerations, etc. In the next subsection we initiate the discussion of this
topic.

4.2 The topological transition between Madelung-regular and Madelung-exceptional
atoms

The results just presented now permit us to explain the origins of the Madelung rule exceptions
mainly using arguments familiar from the physics literature. This explanation and the results
of Appendices E and F will provide an answer to the question of why, for most elements, the
relativistic effects are negligible, and why, without exceptions, they are significant for describing
atoms exhibiting Madelung rule exceptions. To proceed, it is helpful to make several additional
comments:

(i) The term ie
2 σ abFab in Eq. (25) is responsible for the relativistic effects. Without this term,

Eq. (25) is converted into Eq. (4) in which Ve (r) is represented by R
4 . By identifying

Eqs. (4) and (21d) we must identify R
4 with V(r), Eq. (B4), in which γ = 1/2.

(ii) The relativistic Eqs. (17) and (25) are equivalent, even though mathematicians prefer to
work with Eq. (25) for deep reasons to be explained below.

(iii) The relativistic Eq. (17) and nonrelativistic Eq. (16) look almost the same. Thanks to
Ref. [41], these equations can be made to look exactly the same (up to the difference in the
meaning of the constants in these equations). This is demonstrated in the Appendix A.
Because of this circumstance, all the results obtained in Ref. [3] for the nonrelativistic
case can now be transferred to the relativistic case unchanged.

(iv) It is of interest to derive the spectrum of the Dirac–Coulomb problem by using the meth-
ods developed in Appendix A via replacing the Coulomb potential with the fish-eye po-
tential first, and then by applying the results from Ref. [41]. This is done in Appendices B
and C.

In Appendix B we demonstrate the equivalence of the Coulomb and fish-eye classical and
quantum problems, while in Appendix C we demonstrate how the hydrogen atom spectrum
(both nonrelativistic and relativistic) can be obtained using the fish-eye potential. The treatment
of multielectron atoms with help of the deformed fish-eye potential, Eq. (B4), then follows the
same steps as outlined in the Appendix C. Additional details are given in Ref. [3].

With this background, following Ref. [40, p. 75], we can now write down the fine structure α

expansion for the spectrum of the hydrogen atom (� = 1):

En j = mc2 − mc2α2Z2

2ñ2
− α4Z4mc2

2ñ4

[
n

j + 1
2

− 3
4

]
+ O(α6). (26)

Here, ñ = nr + l + 1 in accord with results of Appendix C, and j = 1
2 ,

3
2 , . . . , ñ − 1

2 . The α4

relativistic correction in fact comes directly from the spin–orbital interaction [40, pp. 73–75].
Since this fact is well known but of fundamental importance for this paper, it will be discussed
in detail below within the context of S–W theory. In the meantime, by using the deformed fish-
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eye potential, Eq. (B4) (γ = 1/2), and, by repeating the calculations described in Appendices B
and C using this deformed potential, the limit α = 0 is obtained.

To achieve it requires replacing ñ by ñ + l in Eq. (C3), resulting in the regular Madelung rule
(� = 1):

Enl = mc2 − me2Z2

2 (ñ + l )2 . (27)

For α �= 0 a simple-minded use of the expansion in Eq. (26) in Eq. (27) leads to entirely wrong
results. The relativistic effects cannot be neglected for the hydrogen atom, as is well known.
They are responsible for the fine structure spectrum. Simple-minded application of the same
logic to multielectron atoms then leads us to the conclusion that, based on the methods utilized
thus far, the treatment of Madelung-exceptional atoms cannot acquire special status. Either
all atoms should obey the standard Madelung rule or they should all be exceptional. The res-
olution of this paradoxical situation is obtained by providing ramifications to item (ii) above.
That is, we now need to explain why mathematicians prefer to work with Eq. (25) instead of
Eq. (17). Very deep results in mathematics based on the theory of fiber bundles and spinor bun-
dles (see, e.g., Refs. [37, pp. 152–154] or [35, pp. 40–41]) imply that Eq. (21d) makes sense only
for spin manifolds. That is, the quantum-mechanical description of atoms exhibiting canonical
Madelung-regular behavior should be described exclusively using Eq. (20d).

The relativistic fine structure effects are accounted for with help of Eq. (25). This equation
lives on spinc-type manifolds [35,37,42]. A description of the transition from atoms obeying
the regular Madelung rule to atoms obeying the exceptional Madelung rule cannot be achieved
with help of known perturbational methods since it is topological in nature. It is topological
since the spin and spinc manifolds are topologically different. They cannot be smoothly trans-
formed into each other.

This circumstance will be explained in detail below. Before doing so, we would like to explain
the difference between the spin and spinc manifolds using terminology familiar to chemists and
physicists. More mathematically rigorous results are presented in the appendices, culminating
in Appendix E.4. The differences between these manifolds lie in the differences in the underlying
spin symmetry. Topology and symmetry are intertwined, as is well known. More specifically,
the results depend upon whether the underlying manifold M is orientable or not. Topologically,
this is described in terms of the first Stiefel–Whitney class w1(M). For an orientable manifold,
w1(M) = 0. If, in addition, the manifold can carry the spin structure (Appendix D), the sec-
ond Stiefel–Whitney class w2(M) should also be zero. This is beautifully explained in Ref. [43,
pp. 404–405].

A manifold M which can carry spinc is described in terms of the requirement [44, p. 123] c1(M)
= w2(M) mod 2. Here, c1(M) is the first Chern class. For the spin manifolds w2(M) = 0, and this
relation breaks down. This explains why spin and spinc are topologically different manifolds.
However, such an explanation does not describe the underlying physics well; this is explained
in Appendices E and F. Locally, in language familiar to physicists, it is sufficient to look at the
difference between, say, the set of compass arrows (dipoles), emphasizing the orientability of
the space in which they live, and the set of nematic molecules (dipoles without charges at the
ends), emphasizing the nonorientability of the projective spaces which they supposedly illus-
trate. It is instructive to check whether such a simplified physical description can be used to
visualize spin and spinc structures. In Appendix F we check whether such a simplified descrip-
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tion of the spin and spinc structures makes sense when applied to Madelung-exceptional atoms.
Such a simplified treatment should be considered only as qualitative/nonrigorous; a rigorous
treatment in presented in Appendix E.

With these remarks behind us, we still have to demonstrate the equivalence of Eqs. (17)
and (25) in order to demonstrate that the relativistic corrections come (in part) from the spin–
orbital interactions. The ramifications of such a demonstration will link the Hund rule, the LS,
JJ, and LSJ coupling schemes, to the spin � spinc topological transition. Following Ref. [40,
p. 74], without loss of generality we have, for the centrally symmetric Coulombic field,

ie
2

σ abFab = ±ieσ · E = ±iZα
σ · ř
r2

, (28)

where ř is a unit vector. A quick look at Eqs. (17) and (18) allows us to realize that the re-
sult just obtained enters into the Lippman–Johnson operator, Eq. (18). Thus, at least for the
case of a single electron, Eqs. (17) and (25) do coincide. And if this is so, by applying the
Foldy–Wouthuysen transformation to Eq. (17) we obtain, in the first order in α, the spin–orbit
coupling interaction term [40, pp. 69–75]. This means that Eq. (17) contains information on
spin–orbit coupling to all orders in α, and therefore spares us from adding the spin–orbital
correction to the nonrelativistic Hamiltonian. The situation with this term becomes more com-
plicated for multielectron atoms; detailed calculations are presented in Refs. [45,46].

These papers, and the references therein, indicate that, very fortunately, the complicated ex-
pressions can be squeezed back into the known spin–orbital interaction Hamiltonian for the
hydrogen atom with an appropriately redefined coupling constant to be determined experi-
mentally. This fact does not affect the analytical structure of Eq. (17), and therefore the exact
mapping from the relativistic to the nonrelativitic case described in Appendix A remains intact.
Since the spin–orbit interaction Hamiltonian is a first order in α result, it surely cannot com-
pete with the topological arguments in Refs. [37, pp. 152–154] or [35, pp. 40–41] that are valid
to all orders in α. These facts, and those in Appendix F, explain the nature of the Madelung
rule anomalies at the physical level of rigor.

5. Using Seiberg–Witten theory to explain the normal to superconducting topological
transition at the atomic level
In Sect. 1.1 we noticed that the diamagnetic properties of the hydrogen atom make it a super-
conductor at the atomic level. None of other hydrogen-like atoms, e.g. Li, Na, K, Rb, or Cs,
are diamagnetic. In fact, they are all paramagnetic. At the same time, not at all surprisingly,
all noble gases are diamagnetic. The hypothesis by Ashcroft and Ginzburg about hydrogen
superconductivity raises the following questions:

(i) If atomic hydrogen is a superconductor (since it is subject to the Meissner effect), can we
call the noble gases superconductors?

(ii) If condensed and solidified, will all these elements become superconducting?
(iii) Under appropriate pressure–temperature conditions, will all these elements become at

least conductors?
(iv) Are there properties, other than zero resistivity, that indicate that a given solid is a super-

conductor?

Some answers to questions (i)–(iii) can be found in Ref. [5]. As for question (iv), we would
like to mention the following. Historically, Madelung-exceptional palladium is the first element
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allowing us to find an answer to question (iv). In Sect. 1.2 we stated that Pd is not a super-
conductor but PdHx is. Here, as in Sect. 1.2, we are talking first about PdHx under ambient
pressure.

Negligibly small amounts of absorbed hydrogen make palladium superconducting, and its
Tc rises directly proportionally to the amount of absorbed H. Since the absorption is reversible
(that is, it costs zero energy), palladium is a fantastic catalyst and hydrogen storage provider [11].
The property of reversible absorption allows application to solid palladium of the method of
quasiaverages developed by Bogoliubov [13,14]. Although this method was eventually applied
to many order–disorder phase transitions, it was initially applied to BCS superconductors. The
method of quasiaverages explains why the superconducting condensate is not number conserv-
ing. That is, the number of Cooper pairs in the superconducting condensate is not conserved.
Below, we argue that (a) all Madelung-exceptional atoms are superconductors in the sense of
the conventional mathematical description of superconductivity using either the Ginzburg–
Landau framework or the more sophisticated Seiberg–Witten theory, and (b) this property at
the level of individual atoms survives solidification due to experimentally observed reversible
absorption, the quality shared by all Madelung-exceptional elements [11].

To demonstrate (a), it is instructive to first reconsider the equivalence between Eqs. (17)
and (25). Thus far we have used plausible arguments following Ref. [40, p. 74]. These plau-
sible arguments can be made rigorous using results of the S–W formalism. For the sake of
space, we expect our readers to have some familiarity with this formalism, at least at the level
of Refs. [37,42]. To expedite matters, we also recommend reading at least the first couple of
pages of the review in Ref. [40].

For our first step, i.e. to restore Eq. (28) using the S–W equations, we shall follow Refs. [42,47].
Using these, it is sufficient to consider these equations in the flat Minkowski spacetime R1, 3. In
such a case the covariant derivative ∇Aμ = ∂μ + 
μ − ieAμ should have 
μ = 0. For compati-
bility with Refs. [42,47] we rewrite ∇μ as ∇μ = ∂μ + Aμ. Then, the first of the S–W equations
can be written as

γ μ∇Aμψ = 0. (29)

To write the second S–W equation, it is essential to keep in mind the origin of these equations.
At first look, it appears that it is sufficient to consult Refs. [37] or [17]. From both sources
the S–W equations emerge as generalizations of the Ginzburg–Landau (G–L) equations of
superconductivity. Thus, the solutions of the S–W equations must contain vortices/monopoles,
typical solutions of the G–L equations. At the very advanced level, this fact was reconfirmed in
Ref. [48]. In the present case, our Eq. (25), although included in the S–W formalism, requires
some additional explanation. This is presented in Appendix E, thus making our atomic physics
problem an intrinsic part of the S–W formalism.

At the same time, the treatment of the G–L equations typically begins with writing the G–L
functional whose variation produces the set of G–L equations.

Self-duality considerations then allow the calculations to be simplified considerably and the
order of these equations to be reduced from two to one. A very detailed exposition of this topic
is given in Ref. [49, Chapters 5 and 6]. Such a reduction was first performed in the context of
the Yang–Mills fields by Bogomolny, whose methodology was extended to S–W theory, where
first-order self-dual equations are also used.
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Reference [47] also uses this reduction. The S–W solution thus obtained, even though it repro-
duces the result, Eq. (28), is not L2 normalizable. Similar cases of L2-normalizable solutions
are discussed in Ref. [50]. For S–W monopoles on Kähler and symplectic manifolds, a more
advanced treatment is presented in Ref. [51], which essentially uses the results of Ref. [48].

With these remarks we return to Eq. (25) without the mass term, which can be eliminated as
explained in Refs. [3,36]. Let DA = γ μ∇Aμ; then, using the massless Eq. (25), we obtain∫

M

(
D+

A ψ̄,DAψ
)

dvol =
∫
M

{
(∇+

A ψ̄, ∇Aψ )2 + R
4

(ψ̄, ψ ) + 1
2

(F +(A)ψ̄, ψ )
}

dvol = 0, (30)

where we used the Hermitian scalar product (,) and the self-dual portion of F(A), i.e. F (A)+ =
1
2 (F (A) + ∗F (A)). The notion of a spinor bundle (Appendix D) allowed us to write F(A)ψ =
F(A)+ψ [52, p. 76]. The result, Eq. (30), should be compared with the standard G–L functional,

SG–L(A, ψ ) =
∫
M

{
(∇Aψ )2 + ∣∣F (A)+

∣∣2 + R
4

|ψ |2 + 1
8

|ψ |4
}

dvol . (31)

To make Eqs. (30) and (31) coincide formally, following Ref. [37], we need (a) to write the two-
form F(A)+ as F (A)+ = F (A)+i jγ

i ∧ γ j , and (b) to assume that F (A)+i j = 1
4 (γi · γ jψ, ψ ). Here,

· represents Clifford multiplication (Appendix D). After that, we formally obtain

SS–W(A, ψ ) =
∫
M

{
(DAψ )2 + ∣∣F (A)+ − 1

4 (γi · γ jψ, ψ )γ i ∧ γ j
∣∣2

}
dvol = SG–L(A, ψ ), (32)

leading to the first, Eq. (29), and the second,

F (A)+ = 1
4 (γi · γ jψ, ψ )γ i ∧ γ j, (33)

of the S–W equations. Such a Bogomolny-type calculation depends on the assumption in
Eq. (33) playing a crucial role in the S–W formalism but, thus far, this is not implied by the
atomic physics formalism. This deficiency is corrected in Appendix E.

With these results established, it follows from Eq. (31) that in the case when the scalar curva-
ture R > 0, the set of S–W equations just defined contains only the trivial solution A = 0, ψ =
0. The identity

1
2
� |�|2 = (∇+

A ∇A�, �) − (∇A�, ∇A�) (34a)

implies

1
2
� |�|2 ≤ (∇+

A ∇A�, �). (34b)

Using Eq. (30) in this inequality, we obtain

� |ψ |2 ≤ −R
2

|ψ |2 − (F +(A)ψ̄, ψ ). (35a)

By comparing Eqs. (30) and (31) we can rewrite the last result as

� |ψ |2 ≤ −R
2

|ψ |2 − 1
4

|ψ |4 . (35b)

This result can be integrated. If the boundary conditions are chosen appropriately, such an in-
tegration along with use of the Cauchy–Schwartz inequality and normalization of ψ produces

1
2

∫
M

|ψ |4 dvol ≤ −
∫
M

R |ψ |2 dvol ≤
∫
M

R2dvol . (36)
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Following Ref. [37] and using Eqs. (31)–(33), we finally obtain∫
M

∣∣F (A)+
∣∣2

dvol ≤
∫
M

R2

4
dvol . (37)

Up to extra factor of 1
4 on the righrt-hand side, this inequality coincides with the inequality

in Eq. (3.5) obtained in Ref. [53]. In our case, the inequality obtained should be interpreted
differently. The scalar curvature (the product of electron–electron interactions) controls the ex-
istence or otherwise of the spinc phase since F(A)+ can be used only when such spinc structures
are topologically permitted. That is, the Madelung anomalies typically cannot occur in atoms
with low electron content. This, physically plausible, result can be considerably enhanced using
the concept of the moduli space. Very much like in the Yang–Mills case, the S–W functional
as well as the S–W equations should be invariant with respect to gauge transformations. In
the present case the gauge group G is made of maps f from M to S1. Suppose u ∈ G; then, the
gauge transformations of the S–W equations are described by (not to be confused with scalar
multiplication)

(A, ψ ) −→ (A + 2u−1du, u−1ψ ). (38)

The moduli space M is formally defined as a quotient,

M = solutions/G. (39)

The most relevant for us is the case when M = 0. In such a case the S–W equations possess
only a finite number of localized solutions. This fact provides justification for the existence
of a finite number of Madelung-anomalous solutions. In Appendix C we outline a different
approach to this result. Surprisingly, in the version of S–W theory considered in Ref. [53], the
case M = 0 also happens to be the most interesting one. It is associated with the fact that the
manifold M possesses an almost complex structure [35, p. 89]. In physical language, this means
that the (semi)classical limit of quantum mechanics on such manifolds is well defined because
they admit well-defined classical trajectories. This conclusion was reached by Witten [53] in his
first original paper on the subject.

Mathematically, the condition M = 0 occurs for manifolds M for which

c1(L2)2[M] = 3τ [M] + 2χ [M], 2c(L) = c(L2). (40)

Here, τ [M] is the signature and χ [M] is the Euler characteristic of M, while c1(L) is the first
Chern class of the line bundle L (connected with S1 for spinc manifolds as explained in Ap-
pendix D). A connection with the Atiyah–Singer index theorem can be seen directly from
Ref. [35, p. 64]. It is associated with the vanishing of the second Chern class c2(S+

n ⊗ L)[M].
Here, S+

n is part of the spinor bundle defined in Appendix D. In Appendix E.4 a physically
motivated explanation of spinc manifolds is given. This is associated with the phenomenon of
superconductivity. Such an explanation is plausible since the S–W theory is reducible to the
G–L theory whose origins are in superconductivity [17].

6. From Madelung-exceptional atoms to Madelung-exceptional solids
To our knowledge, this work elucidates for the first time the superconducting nature of
Madelung-exceptional atoms. Historically, however, the study of superconductivity at small
scales has its beginnings in nuclear physics. It was initiated immediately after the development
of superconductivity theory in metals and alloys [54,55]. Obviously, for atomic nuclei as much
as for the hydrogen atom or Madelung-exceptional atoms, there is no point in talking about
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macroscopic evidence of superconductivity. Superconductivity for these systems should be un-
derstood in terms of Bogoliubov’s quasiaverages, introduced in Sect. 1.2. This means that the
breaking of U(1) gauge invariance associated with nonconservation of Cooper pairs is math-
ematically reflected in the emergence of quasiaverages [13,14]. At the scale of atomic nuclei,
superconductive properties should be studied spectroscopically since the U(1) invariance and
its violation is related to the electromagnetic field.

By extending this direction of thought, P. W. Anderson formulated the following problem
in 1959 [56]. Suppose we have a metallic superconductor. Suppose that we can make a pow-
der from it containing smaller and smaller grains. Then, there will be a grain size such that
it will lose its superconducting properties. Notice, though, that such grains are expected to be
larger in size than the atomic nuclei. Nevertheless, if in nuclear physics the concept of super-
conducting nuclei is firmly established spectroscopically, the same must be true for the super-
conducting grains. The spectroscopy of such granular materials was discussed in great detail
in Ref. [57]. Since the spectroscopy works for granular superconductors, it should also work
for the Madelung-exceptional atoms. At the same time, when solids are made of such atoms,
the reversible hydrogen absorption becomes indicative of Bogoliubov’s quasiaverages. Then, it
becomes appropriate to talk about superconductivity by applying the concept of quasiaverages
to the reversible absorption. To do so requires the Madelung-exceptional metal to be placed in
a gaseous hydrogen environment.

Since nuclear excitations are, in fact, excitations of the quark–gluon plasma, nuclear spec-
troscopy should seamlessly merge with the spectroscopy of hadrons, and hence with excitations
of the Yang–Mills fields. Such a line of research was initiated in Refs. [58,59]. This fact allows
us to reduce the discussion in this section to the minimum. Also, it is fortunate that some of
the methods we are about to discuss have recently found their place in chemistry [60].

In view of the comments just made, and to put things in the correct perspective, we would still
like to make several remarks. First, Eqs. (4) and (25) are manifestations of the Weitzenbock
formula,

D2ψ = 0, where D2 = ∇∗∇ + K. (41)

Here, D2, defined in Eq. (E12), is the Hodge Laplacian. For the spin manifolds K = RS, im-
plying that we are dealing with Eq. (4), while for the spinc manifolds K = RS + FS; see, e.g.,
Eq. (E16), and we are dealing with Eq. (25). As explained in Appendix E.4., superconductivity
takes place on spinc manifolds only.

Second, the Hodge Laplacian, Eq. (41), is just the linearized analog of the respective Hodge-
like Laplacian-type equation for the Yang–Mills fields [61]. Thus, nuclear superconductivity
excitations are, in fact, also excitations of the Yang–Mills fields. Reference [59] is devoted en-
tirely to the study of the millennium Yang–Mills gap problem; it is hoped that the present work
might eventually provide its own contribution to the gap problem.

Following Refs. [58,59], as well as Refs. [62,63], and using Eq. (E20), we begin with the Hamil-
tonian, Ĥ = Ĥ0 + ĤV , and replace the matrix element V (0)

kk′ by the constant −g. The resulting
Hamiltonian is then given by Ref. [59, Eq. (5.42)], i.e.

Ĥ =
∑

f

2ε f N̂ f − g
∑

f

∑
f ′

b̂+
f b̂ f , (42)

where N̂f = 1
2 (c+

f +c f + + c+
f −c f −), b̂ f = c f −c f +. Here, the operators c+

f σ
and cf σ , σ =

±, obey the usual anticommutation relations for fermions: {c f σ , c+
f ′ σ ′ } = δσσ ′δ f f ′ . Having
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these results defined, it is convenient to introduce the seniority operator [62]: ν̂ f = c+
f +c f + −

c+
f −c f −. This takes care of the number of unpaired fermions at each level f. By construction,

[Ĥ, N̂f ] = [Ĥ, ν̂ f ] = 0. These commutators permit us to make a subdivision Ĥ = Ĥ1 + Ĥ2 and
to count configurations beginning with the situation when g = 0 since the eigenvalues νf of the
seniority operator ν̂ f (0 and σ ) remain unaffected by g. In such a case, let Ĥ1 describe the states
without Cooper pairs, i.e. it describes the Hilbert space sector for which νf = σ . Accordingly, Ĥ2

is to be associated with the sector for which νf = 0. Such a subdivision produces a remarkable
and unexpected result: the matrix elements of Ĥ2 are calculated with help of the bosonic-type
commutation relations. These are:

[b̂ f , N̂f ′ ] = δ f f ′b f , [b̂ f , b̂+
f ] = δ f f ′ (1 − 2N̂f ′ ). (43)

Even though these are bosonic commutators, they are nontraditional ones. In the traditional
case we would have [b̂ f , b̂+

f ] = δ f f ′ . To bypass the emerging difficulty is equivalent to solving
the eigenvalue problem for the Hamiltonian, Eq. (42). This was done in Ref. [62], but more
elegantly in Ref. [63]. The problem was reduced to finding the spectrum of the Richardson–
Gaudin one-dimensional spin chain. Its excitation spectrum resembles that for the nonideal
Bose gas. Before writing down this spectrum of H, we define �n as the pair degeneracy of the
level n, i.e. �n is the number of values of f for which εf = εn. Omitting all the details given in
Refs. [58,59,62,63], we introduce the function F(E) via

F (E ) =
∑

n

�n(2εn − E )−1 (44)

so that the spectrum for just one Cooper pair is obtained graphically using the equation F(E) =
g−1. This equation was initially obtained in Ref. [64]. It paved the way for the development of
the BCS theory of superconductivity. To extend this result for many Cooper pairs, Richardson
assumed that the wave function for H is made of a symmetrized product of N Cooper pair wave
functions so that the total energy of the N pairs is the sum of the respective energies of the N
Cooper pairs. This assumption allows us to write the spectrum as

F (Epi ) = g−1
i , gi = g

[
1 + 2g

N∑
j �=i

(Epj − Epi )
−1

]−1

; i = 1, . . . , N. (45)

The results presented serve only to introduce the reader to more complicated problems such
as (a) crossover from the atomic limit to the bulk metal, and (b) the effects of finite temper-
atures. The crossover problem (even including the temperature effects) was discussed in detail
in Ref. [57, Sect. 5]. Since this review was published in 2001, we decided to provide up-to-date
(2020–2021) results. In Ref. [65] the results of

Ref. [62] were further elaborated. In Refs. [66,67] the results of Ref. [57] were significantly
elaborated. In Ref. [68] results on nanoclusters of high-temperature superconductors were re-
ported.

7. Summary and discussion
The study of high-temperature superconductors [5] cannot progress without discoveries of new
guiding principles. The purpose of this paper is to supply several

such. These are based on theoretical explanations of several empirical observations, and
are (a) the majority of Madelung-exceptional elements yield the highest Tcs to date, and
(b) Madelung exceptionality is linked with the property of reversible hydrogen absorption
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yielding exceptionally high concentration hydrides of these elements (see Refs. [10,11] and
Ref. [69, pp. 79–84]). Madelung-exceptional elements have been in use until now without em-
phasis on their Madelung exceptionality. Empirically, this exceptionality was noticed due to the
unusual property of reversible hydrogen absorption. In this regard the most notable example
is palladium. The electronic structure of palladium (Appendix F) makes it a benchmark ob-
ject of study, and it is not too surprising that it was Pd that was used initially in cold fusion
experiments.8

The empirical ability to absorb a large amount of hydrogen singled out Madelung-exceptional
metals as likely candidates for high-Tc superconductors. The fact that the hydrogen absorption
is reversible (under the appropriate experimental conditions [70]) caused us to use Bogoliubov’s
method of quasiaverages [13,14] associated, in the present case, with Cooper pair nonconser-
vation. This property is characteristic of superconductivity.

As argued in Sect. 6, the phenomenon of superconductivity exists at many scales [71]. When
looking at the Madelung-exceptional elements, one should not anticipate all of them to be
superconductors in traditional sense without a hydrogen environment. But once such an en-
vironment is provided (under appropriate pressure–temperature conditions), they all become
superconductors in the traditional sense. This is indeed the case, for example, for Pd. Pd is not a
superconductor, but in the presence of a small amount of gaseous hydrogen it becomes super-
conducting under usual ambient conditions (see Sect. 1.2). Since superconductivity is observed
at scales ranging from atomic nuclei to neutron stars [71], it is only natural to search for su-
perconductivity at atomic scales, which is what was done in this paper. It is demonstrated here
analytically (by nontrivially solving the quantum many-body problem and invoking some re-
sults from S–W theory) that only Madedulng-exceptional atoms possess the superconducting
property. This might be detected spectroscopically eventually. By solving exactly the quantum
many-body problem at the level of a single atom, we briefly sketched ways of extending the
results obtained to atomic clusters by relying on methods developed for superconducting clus-
ters. Since the size of the cluster is an adjustable parameter in these calculations, the problem
of crossover, from atomic scales to the scales of bulk metals, was briefly outlined as well. In this
regard, Ref. [72] might serve as an excellent point of departure for further studies.

Supplementary data
Supplementary material is available at PTEPHY online.
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Appendix A. Mapping the Dirac equation into a Schrödinger-like equation
Following Ref. [41], we employ the system of units in which c = 1 and � = 1. Then, taking into
account that in discussing Eqs. (16) and (17) we introduced the factors K in the nonrelativis-
tic case and 
 in the relativistic, we argued for the combinations K(K + 1) = l (κ )(l (κ ) + 1) =
l (l + 1) in the nonrelativistic case and 
(
 + 1) = l(γ κ)(l(γ κ) + 1) in the relativistic. Therefore,

8See https://en.wikipedia.org/wiki/Cold_fusion.
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Eq. (17) acquires the form[
1
r2

d
dr

r2 d
dr

− l (γ κ )(l (γ κ ) + 1)
r2

+ 2ZEe2

r
+ E2 − m2

]
RN,l (γ κ )(r) = 0. (A1)

The nonrelativistic l is now replaced by the relativistic κ = ±(
j + 1

2

)
and γ κ = ±[κ − (Ze2)2];

see Eq. (19). In the case of a discrete spectrum, m2 − E2 > 0. Therefore, it is convenient to
introduce new variables as follows: μ = [m2 − E2]1/2, ρ = 2μr, and ω = 4Ze2E/μ. In terms of
these variables, Eq. (A1) acquires the standard form of the radial equation for the hydrogen
atom: [

1
ρ2

d
dρ

ρ2 d
dρ

− l (κ )(l (κ ) + 1)
ρ2

+ ω

4ρ
− 1

4

]
RN,l (γ κ )(ρ ) = 0; (A2)

see, e.g., Ref. [73, Eq. (16.7)]. This transformation allows us to apply unchanged the methodol-
ogy developed in Ref. [3] for proving the standard Madelung rule.

Appendix B. Mapping of the Coulombic potential problem into the fish-eye problem:
Emergence of conformal invariance
As demonstrated by Schrödinger in his first paper on quantum mechanics, the standard
Schrödinger equation (

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
ϕ = 2m

�2
(E − V )ϕ (B1)

can be obtained variationally from the Hamilton–Jacobi equation [36]

ψ2
x + ψ2

y + ψ2
z = 2m(E − V ), (B2)

where ψ � � ln ϕ. Next, following Ref. [26], we use the canonical change of variables ξ = ψx,
η = ψy, ζ = ψz; x = ωξ , y = ωη, z = ωζ subject to the condition ψ + ω = xξ + yη + zζ in
Eq. (B2). When V is the attractive Coulombic potential and such transformations are applied
to Eq. (B2), the result is

1
2

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
ϕ + βn

(
1

1 + x2 + y2 + z2

)2

ϕ = 0, (B3)

where βn =
(

Ze
En

)2
. the chain of transformations just described converts the eigenvalue problem

for Eq. (B1) into the Sturmian problem for Eq. (B3). The Coulombic potential VC = const
r in

Eq. (B1) is converted into Maxwell’s fish-eye potential VF = const′

1+(r/a)2 , r2 = x2 + y2 + z2. Here, a
is a constant; in Eq. (B3) we select a = 1.

The conversion into the Sturmian problem has an additional advantage. It converts Eq. (3)
into the conformally invariant Eq. (4) [3]. The use of conformal transformations then allows us
to recreate exactly the effects of many-body electron–electron interactions (at this stage of our
study, formally, without explicit accounting for the spin–spin interactions). These are accom-
modated into the formalism with help of the results of Sect. 4 and Appendix E. The application
of conformal transformations to Eq. (B3) converts Maxwell’s fish-eye potential VF into its con-
formally deformed form:

V (r) ≡ V (x, y, z) = −
(a

r

)2
[

n0

(r/a)−γ + (r/a)γ

]2

. (B4)

This results in the replacement Veff = VF in Eq. (4) by V(r), Eq. (B4). The details are given in
Ref. [3]. The application of scaling analysis, the simplest of conformal transformations, indi-
cates that only two exponents γ are permissible. Using γ = 1 recreates the Coulombic fish-eye
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potential for the hydrogen atom. Using γ = 1/2 recreates the multielectron effects for any multi-
electron atom. Furthermore, using Eq. (B4) with γ = 1/2 numerically produces exactly the same
results as those known for the Hartree–Fock potential. The value of the constant βn is not af-
fected by the use of conformal transformations. The additional bonus of using V(r), Eq. (B4),
comes from the very nontrivial exact conversion of V(r) into the potential obtained by Perlick
[27] in his studies of the generalized Bertrand theorem.

Appendix C. Calculation of hydrogen and Madelung-regular atomic spectra, and an
alternative explanation of the discreteness of moduli space
Appendix C.1 Calculation of the spectrum
To treat the accidental degeneracy in the spectrum of the hydrogen atom, Fock developed an
entirely new method of solving the spectral problem [36] by considering the solution of this
problem on S3. Since Eq. (B3) is not an eigenvalue but the Sturmian problem, we cannot apply
the Fock method as such. However, we do apply his idea of replacing the treatment of Eq. (B3)
in R3 by the treatment on S3 in accord with the results of Sect. 3.3.

By lifting Eq. (B3) to S3 it is converted to Eq. (11a), in which we have to present Ynlm(α, θ ,
φ) as �nl(α)Ylm(θ , ϕ) so that Eq. (11a) acquires the form[

l (l + 1)

sin2
α

− ∂2

∂α2
− 2 cot α

∂

∂α

]
�nl (α) = Inl�nl (α). (C1)

Here, Inl = − (Ze)2

2|En| in the nonrelativistic case. In the relativistic case we have to make the re-

placement l → l(κ) and write Inl = (
ω
4

)2
. All the details are given in Appendix A and must be

performed considering that E is describing bound states. Next, we write x = cos α and, by rewrit-
ing �nl(α) in terms of such a variable and representing it in the form �nl(α) = (1 − x2)l/2Fnl(x),
Eq. (C1) is converted into

(1 − x2)
d2

dx2
Fnl (x) − (2x + 1)x

d
dx

Fnl (x) + [Inl − (l (l + 2)]Fnl (x) = 0. (C2)

This is the equation for the Gegenbauer polynomials. Using this fact, we obtain, after some
calculation, Inl = (n + l + 1)2 − 1 ≡ ñ2 − 1. Now let ñ = 2F + 1. Then, ñ2 − 1 = 4F (F + 1).
Using this information, consider, instead of Eq. (11a) (i.e. Eq. (C1)) the equation L2Ynlm =
(Inl − E )Ynlm, in which E is the fixed parameter. The necessity of doing this is explained in
Ref. [3, Sect. 4 and Appendix F]. To determine the value of this parameter we analyze the
equation Inl − E = 4F(F + 1). By selecting −E = −1 we obtain Inl = (2F + 1)2, implying

− (Ze)2

2 |Enl | = ñ2 or Enl = − (Ze)2

2ñ2
= − (Ze)2

2(n + l + 1)2
(Schrödinger spectrum). (C3)

Here, n = nr in the standard quantum-mechanical notation. For the Dirac case we also obtain(ω

4

)2
= (nr +l (γ κ ) + 1)2 (Dirac spectrum), (C4)

where ω is defined in Appendix A. The result, Eq. (C4), coincides with Ref. [41, Eq. (3.26)]. By
restoring c, �, and hence α, and using Eq. (C4), we reobtain the known Dirac spectrum.

The Madelung-regular spectrum emerges as a solution of Eq. (11b). In view of the fact that
Eq. (11b) emerges as a modification of Eq. (11a) caused by the change from γ = 1 to γ =
1/2 in Eq. (B4), Eq. (C1) changes accordingly. This leads to some changes in Eq. (C2) while
keeping Inl = − (Ze)2

2|En| unchanged. Due to the changes in Eq. (C2), the spectrum, i.e. Eq. (C3),
also changes, resulting in Eq. (27). The details are given in Ref. [3].
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Appendix C.2 Discretness of the moduli space
As follows from the results of Sect. 5, we need to provide evidence that, upon relativization, not
all atoms become Madelung exceptional. We would like to achieve this by using the inequality
in Eq. (36). In this inequality we choose M = S3. On S3 we shall use properly normalized
spherical eigenfunctions Yn + l„ lm(α, θ , ϕ) as defined in Eq. (11b); see also Ref. [22]. Accounting
for relativistic effects leads to the replacement of the quantum number l by l(γ κ) as defined in
Eq. (A1). Also, instead of Inl = − (Ze)2

2|En| = ñ2, in view of Eq. (C3) we have to use (Inl)2 (for R2),
where now Inl = (nr + l(γ κ) + 1)2, in view of Eq. (C4).

Since the area of S3 is a known constant, the inequality in Eq. (36), is regulated by the charge
Z of the atomic nucleus. When the inequality becomes an equality in Eq. (36), it provides a
complicated equation for Z whose acceptable solutions should be only in terms of nonnegative
integer Zs. It is clear, then, that there could only be a countable number of Zs or no Zs at all. The
last case brings us back to the Madelung-regular case which does not require such an inequality.
This is so because the result from the Eq. (36) equality will not contain the parameter Z at all,
and therefore neither the inequality, Eq. (36), nor the equality originating from Eq. (36) make
physical or even mathematical sense when Z is absent. That is, relativistic effects are completely
ignored.

Appendix D. Spin structures: Group-theoretical and topological aspects
In Sect. 4.1. the anticommutator relation defining the Clifford algebra was presented. In this
and the next appendix we develop the quantum many-body formalism using Clifford algebras.
We begin with the following.

Appendix D.1 Vector and spinor representations of Clifford algebras
Let V be some vector space of dimension n over R and g be some nondegenerate bilinear form
on V. The Clifford algebra Cl(V, g) is an associative algebra with unit defined by

Cl (V, g) = T (V )
I (V, g)

, (D1)

where T(V) is the tensor algebra and I(V, g) is the ideal created by x⊗x + g(x, x)1 for all x ∈ V.
If we define a map x → c(x) such that x⊗x + g(x, x)1 → c(x)⊗c(x) + g(c(x), c(x))1, then

there is a unique algebra homeomorphism: Cl(V, g(x)) → Cl(c(V), g(c(x)). In such a fashion,
in Sect. 4.1 we replaced γ aγ b + γ bγ a = 2ηab by γ μγ ν + γ νγ μ = 2gμν so that the c-map is
γ μ = eμ

a γ a. Clearly, other options for c-maps are also possible.
Now let (e1, …, en) be a g-orthonormal basis of V; then

{e0 := 1, ek := ei1 · · · eik | 1 ≤ i1 < · · · < ik ≤ n; 0 ≤ k ≤ n} (D2)

is the basis of Cl(V, g) with dimension dimCl (V, g) = 2n. There is a canonical isomorphism
of vector spaces (as algebras) between the exterior algebra and the Clifford algebra, �∗V −→
Cl (V, g), i.e.

ei1 ∧ · · · ∧ eik → ei1 · · · eik . (D3)

This fact is compatible with the observation that the ideal I(V, g = 0) in Eq. (D1) converts the
Clifford algebra into the Grassmann algebra. Thus, the Clifford algebra is a deformation of
the Grassmann algebra. The canonical isomorphism, Eq. (D3), makes it possible (and mathe-
matically even necessary) to replace all Grassmann algebra results in physics literature by those
involving the Clifford algebra. More details are presented in Appendix E.
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The above isomorphism does not depend on the choice of the basis of V. The anti-
automorphism t of Cl(V, g) is defined as (ei1 · · · eik )t = eik · · · ei1 (= (−1)

k(k−1)
2 ei1 · · · eik ). Thus,

ei1 · · · eik (ei1 · · · eik )t = 1 (if k is even) or −1 (if k is odd). Using these definitions we are in a
position to define the Pin(V ) and Spin(V ) groups. Specifically, Pin(V ) is the group of elements
a ∈ Cl(V, g) such that

Pin(V ) : {a = e1 · · · ek | g(ei, ei) = 1 for all i = 1 ÷ k}, (D4a)

while

Spin(V ) : {a = e1 · · · e2k | g(ei, ei) = 1 for all i = 1 ÷ 2k}. (D4b)

By design, for Spin(V ) aat = 1. Let ρ(a)v = avat, v ∈ V; then one can construct a surjective
homeomorphism ρ (Pin(V )) → O(V ), while using Spin(V ) results in ρ (Spin(V )) → SO(V ).
By employing these homeomorphisms it can be demonstrated that the group Spin(V ) is uni-
versal double cover of the group SO(V). Its kernel is determined by the equation ρ(a)v = v for
all v ∈ V.

Since in this case aat = 1, we can rewrite the same equation as av = va, producing the kernel
(fixed point): a = ±1. The result obtained allows us to make a further step by defining the
Spinc(V) group. To do so requires some preparation. First, we have to define the complexified
Clifford algebra ClC(V ) = Cl (V, g) ⊗R C. Second, we have to define the chirality operator 


via


 = ime1 · · · en ∈ ClC(V ) (D5)

so that m = n/2 for n even and m = (n + 1)/2 for n odd. Evidently, 
2 = 1 and 
v = v
 for
even n, and 
v = −v
 for odd n. That is, 
 is an involution operator. This induces a (somewhat
involved) decomposition of ClC(V) into ClC(V)± parts. Third, in the V ⊗ C space we must
(a) introduce a subspace W made of vectors

η j = 1√
2

(e2 j−1 − e2 j ), j = 1, . . . , m, (D6)

and (b) extend (to C) the Hermitian scalar product in such a way that

〈ηi, η j〉C = 0 for all j. (D7)

This is done with the purpose of introducing the dual space W̄ via

η̄ j = 1√
2

(e2 j−1 + e2 j ), j = 1, . . . , m, (D8)

so that, instead of Eq. (D7), we obtain

〈η j, η̄ j〉C ≡ ∥∥η j
∥∥ for all j. (D9)

Clearly, Eq. (D9) has a quantum-mechanical meaning to be amplified below.

Definition 1. The spinor space Sn is defined as an exterior algebra ∧W of V (whose dimension
is n).

Let v = w + w̄. Then, for all s ∈ Sn = ∧W, the endomorphism EndC(Sn) denoted as ρ(w) is
defined as

ρ(w)s :=
√

2ε(w)s, (D10a)

ρ(w̄)s := −
√

2i(w̄)s. (D10b)
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Here, s = η j1 ∧ · · · ∧ η jk , 1 ≤ j1 < ··· < jk ≤ m, ε(η j )s = η j ∧ η j1 ∧ · · · ∧ η jk , and

i(η̄ j )s :=
{

0 if j �= { j1, . . . , jk},
(−1)l−1

η̄ j ∧ · · · ∧ (η̄)0
l ∧ · · · ∧ η jk if j = jl .

(D11)

Here, (η̄)0
l denotes the term absent in the exterior product. The operator ρ possesses the group

representation property: ρ(vw) = ρ(v)ρ(w). The chirality operator, 
, when rewritten in terms
of η and η̄, allows us to decompose Sn for even n as

Sn = S+
n ⊕ S−

n . (D12)

Here, S+
n and S−

n are eigenfunctions (half-spinors) of the operator 
 whose eigenvalues are ±1.

Definition 2. The representation ρ of Spin(V ) given by Eqs. (D10a) and (D10b) on the spinor
space Sn is called a spinor representation. The same, but on S+

n and S−
n , is called a half-spinor

representation.

A spinor representation is a unitary presentation [35]. It preserves the Hermitian product.
Therefore, it is ideally suited for quantum-mechanical calculations.

To extend these results for odd n, it is helpful to know [37] that (a) for dimV = 2n, ClC(V ) �
C2n×2n

, and (b) for dimV = 2n + 1, ClC(V ) � C2n×2n ⊕ C2n×2n
. With this information, the odd-

dimensional space V does not create additional problems. The spinor and half-spinor represen-
tations admit unique extension to Spinc(V ).

Definition 3. A group Spinc(V ) is a subgroup of the multiplicative group of units (that is, of
elements having an inverse) of ClC(V). It is generated as a surjective mapping Spin(V ) × S1 −→
Spinc(V ), where S1 is the unit circle in C. If a ∈ Spin(V ) and z ∈ S1 then the kernel of this
mapping is az = 1, implying a = z−1 ∈ Spin(V ) ∩ S1.

Definition 4. Spinc(V ) is isomorphic to Spin(V ) ×Z2 S1, where the Z2 action identifies (a, z)
with ( − a, −z). Spinc(V ) yields a nontrivial double covering Spinc(V ) −→ SO(V) × S1.

The physical meaning of Spinc(V ) has never been discussed in the mathematical literature. It
is explained in Sect. E.4.

Appendix D.2 Spinor and Clifford bundles
If TM is the tangent bundle of M, the Riemannian metric on M reduces the structure group
of TM to SO(n), n = dim M. This fact allows us to design the associated principal bundle P
over M with fiber SO(n). Such an associated bundle is called a Clifford bundle (see below). In
general relativity such a bundle is known as a frame bundle [34]. The uses of the vierbeins ea

μ(x)
in Sect. 4.1 reflect just this fact. Spinorial analysis elevates this concept one level above that just
described. Specifically, it begins with the following definition.

Definition 5. A spin structure on M is synonymous to designing the principal bundle P̃ over M
with the fiber Spin(n) (universal double cover of SO(n)) for which the quotient of each fiber by
the center ±1 is isomorphic to the frame bundle just defined.

Definition 6. A Riemannian manifold with a fixed spin structure is called a spin manifold.

Since the fiber Spin(n) operates on the spinor space Sn, Eq. (D12), and, for even n, also on
the half-spinor spaces S+

n and S−
n , it becomes possible to talk about the spinor bundle in this

context.
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Definition 7. The spinor bundle Sn is defined as

Sn = P̃ ×Spin(n) Sn. (D13)

This definition is to be contrasted with the definition of a Clifford bundle.

Definition 8. The bundles Cl(P) and ClC(P) defined as

Cl (P) = P ×SO(n) Cl (V ), (D14a)

ClC(P) = P ×SO(n) ClC(V ) (D14b)

are called Clifford bundles.

From the definition of Clifford bundles it follows that the creation of such bundles does
not require spin or spinc structures. However, they can exist on such structures as well. This is
studied further in the next appendix in the context of Dirac operators. The fundamental issue
is: if there is a connection between the Clifford and spinor bundles, what physics does such
a connection describe? To answer this question requires the introduction of many nontrivial
facts, as described below.

Appendix E. Dirac operators on Clifford and spinor bundles
The purpose of this appendix is to demonstrate that Eq. (25) as obtained by Schrödinger ac-
counts for all quantum many-body effects for the atomic multielectron system. At present, rela-
tivistic many-body effects are treated with the help of the relativistically extended Hartree–Fock
variational methods [28]. In the nonrelativistic limit the Hartree–Fock calculations end up with
the eigenvalue in Eq. (3). It does not obey the superposition principle, though. This happens
to be a fundamental problem for the development of the quantum mechanics of many-body
systems, as explained in detail in Ref. [74], which calls equations like Eq. (3) De Broglie-type.

Reference [74] argues that the formalism of second quantization, essential for the develop-
ment of quantum field theory, is applicable only to Schödinger-type equations for which the
superposition principle holds. This is also explained in Ref. [75, p. 108].

Ignoring the supersposition principle makes the underlying equations formally purely classi-
cal. That is, in such equations the Planck constant � can be eliminated by appropriate changes
of variables and rescaling. This paradoxical situation is explained in detail in Ref. [36]. To our
knowledge, in the physics literature the second quantization method is used in many-fermion
theory with or without taking account of the superposition principle [76]. In this work, we
strictly follow the philosophy of Ref. [74] since it is in formal accord with the Hodge–de Rham
theory whose basics we describe below.

We remind the reader that Hodge–de Rham theory is used thus far in Abelian and non-
Abelian gauge field theories, and therefore in the gauge-theoretic formulations of gravity.

Appendix E.1 Clifford algebra versus second quantization
A quick and very informative introduction to the formalism of second quantization is given in
Refs. [75,76]. From these, it follows that such a formalism was initially designed to treat the pro-
cesses involving interactions of light with matter. Since photons (bosons) are relativistic objects,
this requires fermions to be treated relativistically as well, i.e. with the help of the Dirac equa-
tion. However, many books on second quantization begin with the canonical anticommutation
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relations given by

{ai, a+
j } = δi j, {ai, a j} = 0, {a+

i , a+
j } = 0. (E1a)

From these relations the relativistic aspects of the second quantization of fermions are not at
all apparent! However, following Ref. [77], we can correct this deficiency. This is accomplished
by introducing the auxiliary operators êi = ai − a+

i , ê+
i = ai + a+

i . Using these operators along
with Eq. (E1a), we immediately obtain

{êi, ê j} = −{ê+
i , ê+

j } = −2δi j, {êi, ê+
j } = 0. (E2)

A quick look at the commutators following Eq. (20a) allows us to recognize in these anticom-
mutators the already familiar Clifford algebra. This allows us to define the Dirac-like operator
d = ∑

i
a+

i ∇i and its adjoint d+ = − ∑
i

ai∇i ≡ δ.9Here, the symbols d and δ are the raising and

lowering operators of the Hodge–de Rham theory in which the Hodge Laplacian �H acting
on differential forms (in atomic physics these are the Slater determinants or their linear combi-
nations) is given by

�H = dδ + δd = (d + δ)2 . (E3)

Appendix E.2 An assortment of Weitzenbock–Lichnerowicz formulas: Hartree–Fock
versus Hodge–de Rham
The transformations êi = ai − a+

i , ê+
i = ai + a+

i of the previous subsection are the simplest case
of Bogoliubov’s transformations [54, pp. 326–336, 527–537]. They are heavily used in condensed
matter and nuclear physics theories. In such theories one typically writes

êi = uiai − via+
i , ê+

i = uiai + via+
i (E4)

subject to the constraint u2
i + v2

i = 1. In such a case, one again ends up with the anticommu-
tator {êi, ê+

j } = δi j ; see, e.g., Eq. (E2). In physics this is motivated by the desire to make the
transformations in Eq. (E4) canonical in the sense of mechanics and quantum mechanics. In
mathematics, in the theory of spinors, the same effect is achieved by selecting either the Clifford
or spinor bundle.

Selecting between these bundles leads to an assortment of Weitzenbock–Lichnerowicz (W–L)
formulas. We begin by selecting the Clifford bundle. Such a choice and the difference between
the Clifford and spinor bundles is nicely explained in Ref. [37, pp. 209–210, 213–218], as well as
in Appendix D. This allows us, following Ref. [77], to present in this subsection the condensed-
matter-like derivation of the same results. To this end, we select the second quantized Hamil-
tonian Ĥ in the form given in Ref. [54, Eq. (58.63)]:

Ĥ =
∑

i

Hia+
i ai − 1

2

∑
i, j,k,l

Hi jkl a+
i a+

j akal . (E5)

The results obtained allow us to demonstrate that Ĥ coincides with the Hodge Laplacian �H.
Such a demonstration brings the condensed matter and atomic physics results in line with those
in the Abelian and non-Abelian gauge field theories.

We begin our demonstration by using Eq. (D3). We write θ (I ) = ei1 ∧ · · · ∧ eik , I = {1 ≤ i1
< ··· < ik ≤ n}. Using Eqs. (D10a) and (D10b) it is clear that a+

i θ (I ) � ε(ei)θ (I ) and aiθ (I ) �
i(ei)θ (I ). From here, it follows [77] that (a)

∑
i

a+
i aiθ (I ) = nθ (I ), and (b) if A∗ is an operator

9In the notation of Ref. [37], and in view of Eqs. (D10a) and (D10b), the same results are written as
d = ε(ηi )∇ei and d+ = −i(ηi )∇ei . See also the next subsection.
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inducing an endomorphism of θ (I),

A∗θ (I ) =
k∑

j=1

(−1) jei1 ∧ · · · ∧ (
A∗ei j

) ∧ · · · ∧ eik, (E6)

then, provided that A = Aij is skew symmetric, A∗ = − ∑
i j

Ai ja+
j a j .

With these results, and using the definitions of d and d+, the Hodge Laplacian �H acting on
θ (I) can now be presented as

�Hθ (I ) = −
∑
k,l

(a+
k al∇k∇l + al a+

k ∇l∇k)θ (I )

= −
∑
k,l

({a+
k , al}∇k∇l − al a+

k (∇k∇l − ∇l∇k))θ (I )

= (−gi j∇i∇ j + R̄
)
θ (I ), (E7)

where we used Eq. (24). That is, we took into account (see Eq. (E6)) that (∇k∇l − ∇l∇k)(X ) =
R(Xk, Xl )(X ), R(Xk, Xl ) = − ∑

i, j
Ri jkl a+

i a j . And, in view of the second line of Eq. (E7), it is

convenient to define R̄ = − ∑
i, j,k,l

Ri jkl a+
i a ja+

k al . Since gij is typically a diagonal matrix, and since∑
i

a+
i aiθ (I ) = nθ (I ), by comparing Eqs. (E5) and (E7) and taking into account properties

(a) and ∗b), the identification follows. This provides us with the first step toward explaining
why Eq. (4) correctly describes the multielectron atomic system. The task would be completed
should R̄ in Eq. (E7) be replaced by the scalar curvature R. This requires more work, leading to
the assortment of W–L formulas. In particular, we are now in a position to write down the first
W–L formula. Following Ref. [77], the first W–L formula is obtained for the Clifford bundle
if we are interested in using Eq. (E7) acting on one-forms. In such a case, using Eq. (E1a) we
obtain a ja+

k = δ jk − a+
k a j , which we then use in the definition of R̄. That is, we obtain

−
∑

i, j,k,l

Ri jkl a+
i a ja+

k al =
∑

il

Ril a+
i al −

∑
i, j,k,l

Ri jkl a+
i a+

k a jal . (E8)

Here, Ril are the components of the Ricci tensor (see below). The last term in Eq. (E8) naturally
produces zero when it is acting on θ (I) since now it is a one-form. Thus, the first W–L formula
reads:

�H = ∇∗∇ + Ric, (E9)

where ∇∗∇ = −gij∇ i∇ j and, according to Ref. [78], Ric = ∑
il Ril a+

i al represents the Ricci ten-
sor. This formula was obtained on the Clifford bundle in Ref. [37, p. 208] by a slightly different
method. The detailed derivation of this result using the formalism of Clifford algebras is given
in Ref. [79, p. 48]. In view of the developments presented in Sect. 4, it is appropriate to describe
some fine details of those derivations in this subsection.

Definition 9. Following Ref. [80, p. 44], we call the combination ∇k∇ l − ∇ l∇k = R(ek, el) the
curvature operator.

Using this definition, the following theorem can be proven [80, pp. 46–47].

Theorem 1. Let x → c(x) be a map as defined in Appendix D.1. Let M be a Riemannian manifold
and TM its tangent bundle. Then, for any X, Y, Z ∈ TM,

[R(X,Y ), c(Z)] = c(R(X,Y )Z). (E10)

30/40

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/3/033A01/6517331 by D

ESY-Zentralbibliothek user on 25 April 2022



PTEP 2022, 033A01 A. L. Kholodenko

Definition 10. Let S be the Clifford bundle and let K(ek, el) be the curvature two-form (the
same as R(ek, el)) with values in End(S). Let ei be a local orthogonal frame on TM. The endo-
morphism

K =
∑
i< j

c(ei)c(e j )K (ei, e j ) (E11)

of S is called the Clifford contraction of K. It is frame independent.

Corollary 1. Let D =d + d+ be the Dirac operator (also, the de Rham operator [80, p. 51]) on
the Clifford bundle S. Then, the Weitzenbock formula is given by

D2 = ∇∗∇ + K. (E12)

Evidently, Eq. (E9) is a special case of Eq. (E12).

Definition 11. On TM the curvature operator R can also be presented via the equation [80,
p. 47]

R(ei, e j )ea =
∑

l

Rlai jel , (E13)

where Rlaij is the four-component Riemann curvature tensor with respect to the orthogonal
frame made from the ei.

Definition 12. The Riemann endomorphism RS of the Clifford bundle S is defined as

RS(X,Y ) = 1
4

∑
k,l

c(ek)c(el )〈R(X,Y )ek, el〉. (E14)

RS plays a central role in the W–L-type calculations. Specifically, by analogy with Eq. (E10)
it is also possible to arrive at [80, pp. 47–48]

[RS(X,Y ), c(Z)] = c(R(X,Y )Z). (E15)

The importance of this result can be seen from [80, Theorem 3.16]:

Theorem 2. The curvature two-form K is given by

K = RS + FS, (E16)

where FS is the twisting curvature of S.

In Sect. E.4 we demonstrate that the twisting curvature FS possesses the property

[FS(X,Y ), c(Z)] = 0. (E17)

We also argue that FS �= 0 only for the spinc manifolds, and therefore RS is related to the
scalar curvature R while FS is related to the Abelian curvature F(A), Eq. (25).

The other two W–L formulas require [37] uses of spinor bundles instead of Clifford bundles.
This can be understood if we equivalently rewrite R̄ = − ∑

i, j,k,l
Ri jkl a+

i a ja+
k al as [77]

R̄ = − 1
16

∑
i, j,k,l

Ri jkl

(
êiê j − ê+

i ê+
j

) (
êkêl − ê+

k ê+
l

) = R
4

+ 1
8

∑
i, j,k,l

Ri jkl êiê j ê+
k ê+

l . (E18)

The final result is obtained with help of the relation êiê j − ê+
i ê+

j = −2(a+
i a j + aia+

j ) and by
taking into account the symmetry of the Ricci tensor: Rik = Rki, Rik = Rijkj. For details, see
Ref. [77, pp. 70–71]. In Eq. (E18), R is the scalar curvature. The combination eie j ēkēl does not
act on θ (I). Instead, it acts on Sn (defined in Eq. (D12)); the second term in Eq. (E18), when
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acting on these forms, produces zero. Thus, the second Weitzenbock–Lichnerovicz formula,
associated with Eq. (21d), with m2 = 0, reads

�H = ∇∗∇ + R
4

. (E19)

It is given in Ref. [37, p. 218], where it was derived differently (see also [80, Proposition 3.18]).
Equation (4) of the main text is obtained with the help of the second W–L formula, while
Eq. (25) is obtained with the help of the third W–L formula. Actually, it should be called the
Weitzenbock–Lichnerovicz–Schrödinger formula, e.g. Eq. (25), with m2 = 0. It is presented
without proof in Ref. [37, p. 220]. This formula plays a central role in the S–W theory discussed
in Sect. 5. To derive this formula requires the concepts of spinor and twisted spinor bundles (for
spinc manifolds). Even though Eq. (25) enters into the S–W theory [39], we need to demonstrate
that the formalism of atomic physics developed in this work is not only compatible with the S–
W theory but, in fact, must be looked upon as a special case of this theory. This demonstration
is presented below.

Appendix E.3 BCS superconductivity and the Hodge–de Rham theory
In Sect. 5, following Ref. [17], we noticed that the S–W equations emerge as generalizations
of the G–L equations of superconductivity. The microscopic theory of superconductivity was
initially developed in Ref. [78], and independently by Bogoliubov in Ref. [81]. Based on the lat-
ter results, Nambu and Jona-Lasinio developed a model of elementary particles whose masses
were generated dynamically. This was achieved by superimposing the BCS and Dirac equation
formalisms [79]. The detailed derivation of the connection between the BCS and Dirac for-
malisms is presented in Ref. [55, Problem P.3.2]. Here, we rederive the same results differently
for a reason to be explained in the next subsection.

We begin with Bogoliubov’s results, following Ref. [82, pp. 755–772] (see also Ref. [83]). We
start with the Hamiltonian, Eq. (E5), written in the reciprocal k-space as Ĥ = Ĥ0 + ĤV . Here,
Ĥ0 stands for the one-particle Hamiltonian, and V for the potential energy, i.e.

Ĥ0 =
∑
kσ

εkc†kσ
ckσ , ĤV =

∑
kk′

V (0)
kk′ c

†
k↑c†−k↓c−k↓ck↑. (E20)

The spin index σ is assumed to have two values, ↑ and ↓. In writing ĤV only the potential
leading to the spin singlet interactions is present since only this potential participates in the
superconducting processes. Such an Ĥ is the Hartree–Fock-type Hamiltonian [83]. The BCS
results now follow from the BCS assumption that

〈c−k↓ck↑〉 �= 0. (E21)

Here, 〈···〉 denotes either the quantum-mechanical (zero-temperature) or thermal average. Fur-
thermore, let

�k = −
∑

k′
V (0)

kk′ 〈c−k′↓ck′↑〉. (E22)

Then, by applying standard decoupling, the effective interaction Hamiltonian Ĥe
V is obtained:

Ĥe
V = −

∑
k

(
�∗

kc−k↓ck↑ + �kc†k↑c†−k↓
)
. (E23)

Bogoliubov’s contribution lies in the observations that (a) the anomalous averages, Eq. (E21),
lead to nonconservation of the total number of particles (method of quasiaverages [13,14]),
and (b) the Hamiltonian Ĥ = Ĥ0 + Ĥe

V is a quadratic form made of c-operators obeying the
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anticommutation rules in Eq. (E1a). Bogoliubov noticed that such anomalous (quasi)averages
are not only typical for superconductivity. They occur in many branches of solid-state physics.
They play a pivotal role in this work as well. Use of the method of (quasi)averages results in
rigorous asymptotically exact solutions of a variety of quantum many-body problems. To deal
with problem (b), Bogoliubov proposed diagonalizing the quadratic-form Ĥ by introducing
new γ kσ fermionic operators,

γk↑ = ukck↑ − vkc†−k↓, γk↓ = ukck↓ + vkc−k↑, (E24)

subject to the standard conditions

{γ †
k↑, γk↑} = 1, {γk↑, γ−k↑} = 0, etc. (E25)

The diagonalization of Ĥ under such conditions results in the Hamiltonian

Ĥ =
∑
kσ

Ekγ
†
kσ

γkσ , Ek =
√

εk + |�k|2. (E26)

With these results, we are now in a position to rewrite the Hodge–de Rham Laplacian,
Eq. (E8), in the form of the Hamiltonian familiar in solid-state physics. From the previous
subsection we know that

∑
i

a+
i aiθ (I ) = nθ (I ). Therefore, we are dealing with a Hamiltonian H

of the type

∼ H =
∑

i j

[
g̃i j∇i∇ ja+

i a j − Ri ja+
i a j

]
, (E27)

where g̃i j = 1
n gi j . This is a quadratic form for a operators. It can be diagonalized. Upon diag-

onalization the result will look like that in Eq. (E26), except that Ẽk �= Ek. The question arises
of under what conditions Ẽk will look the same as Ek? This can be achieved based on some
auxiliary information from the theory of Dirac operators.

In physics textbooks the operators a+
i , a j represent the creation and annihilation operators

for electrons, while b+
i , b j are the creation and annihilation operators for positrons (holes). At

first look, using these operators in the present context looks permissible but artificial. In the
next subsection we demonstrate how this artificiality disappears for the spinc manifolds. For
the time being, we take care of the positron operators in the usual way,

{bi, b+
j } = δi j, {bi, b j} = 0, {b+

i , b+
j } = 0, (E1b)

and impose the additional anticommutator relations

{ai, b j} = {ai, b+
j } = {a+

i , b j} = {a+
i , b+

j } = 0. (E1c)

Next, we assume that the metric g̃i j in Eq. (E27) is diagonal, and write, instead of Eq. (E27),

∼ H =
∑

i

[
εia+

i ai − εib+
i bi

] −
∑

i j

[
Ri ja+

i b j + Ri jb+
i a j

]
. (E28)

In writing Eq. (E28) we assumed that only interactions between particles and holes are nonzero.
In the language of solid-state physics, particles are fermions above the Fermi surface while holes
are fermions below the Fermi surface.

Taking into account the anticommutation relations, Eqs. (E1a)– (E1c), it is clear that the
quantum system as a whole totally decouples so that it is sufficient to consider the diagonaliza-
tion of the matrix

M =
(

ε −R
−R −ε

)
, (E29)
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resulting in the eigenvalues E = ±√
ε2 + R2 which coincide with those in Eq. (E26). The result

obtained is in agreement with Ref. [79], and demonstrates that Bogoliubov’s method of quasiav-
erages [13,14], which results in obtaining asymptotically exact diagonalizable model Hamiltoni-
ans, can be translated into the formalism of Hodge–de Rham theory. It remains to demonstrate
that the introduction of the positron operators is fully compatible with the third W–L formula,
e.g. Eq. (25), playing the central role in S–W theory [39].

Appendix E.4 BCS superconductivity and S–W theory: The physics of spinc structures
From the definitions of Clifford and spinor bundles, Eqs. (D13), (D14a), and (D14b), it follows
that the differences between these bundles are the same as the differences between the Lie alge-
bras so(n) and Spin(n) discussed in Appendix D. Spin(n) is a double cover of so(n). Using this
fact, it is helpful to restate the content of Eq. (E6) as follows.

Theorem 3 (Lemma 4.8 of [80]). The Lie algebra Spin(n) can be identified with the vector sub-
space of Cl(n) spanned by the products eiej, i �= j. The identification associates the antisymmetric
matrix Aij with the element 1

4

∑
i, j Ai jeie j ∈ Cl (n). It can be demonstrated that Aij = 2(δi1δj2 −

δi2δj1).

Using Definition E.3., we notice the following. Let {ek} be a local orthonormal frame for
TM. In such a case, the connection and the curvature forms for TM have their values in so(n).
In particular, the curvature is the so(n)-valued two-form whose matrix entries are (Rek, el),
where R is the Riemann curvature operator, e.g. see Eq. (E13).

With help of Theorem E.8, we now obtain

K = 1
4

∑
i, j

(Rek, el )eie j (E30)

on the Clifford bundle, and

K = 1
4

∑
i, j

(Rek, el )c(ei )c(e j ) (E31)

on the spinor bundle. At the same time, using Eqs. (E14), (E16), and (E31) brings us to the
conclusion that K = RS, implying that FS = 0.

Corollary 2. The twisting curvature of the Spin(n) bundle is zero.

If this is so, we need to demonstrate now that only on Spinc(n) manifolds does FS �= 0. We
shall demonstrate this using the physics results obtained in the previous subsection. We begin
with the observation that Eq. (E26) an be obtained if and only if the system has positrons
(holes) as well as electrons. That is, the system is charged, electrically neutral, and hence Abelian
gauge invariant initially.

This observation instantly brings the twisting curvature FS into play since, according to
Eq. (25), only the twisting curvature is associated with charges. Thus, Spinc(n) manifolds should
be linked with charged systems. Equation (E28) is written for a system of charged fermions.
These can be introduced via the set of anticommutators, Eqs. (E1a)–(E1c). Alternatively, in-
stead of using

Clifford algebras with the bilinear form g(x, y) having signature {1, …, 1}, we can use the
bilinear form with signature {1, …, 1, −1, …, −1} in which the number of +1s is equal to the
number of −1s. By analogy with Eqs. (E1a), (E1b), (E1c), and (E2) we introduce the additional
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operators Ê (ei) subject to the Clifford algebra commutation constraint

Ê (ei)Ê (e j ) + Ê (e j )Ê (ei ) = 2δi j . (E32)

Furthermore, we require that

ĉ(ei)Ê (e j ) = Ê (e j )ĉ(ei), Ê (e j ) ≡ E (e j ),

ĉ(ei)ĉ(e j ) + ĉ(e j )ĉ(ei) = −2δi j, ĉ(ei) ≡ c(ei). (E33)

Evidently, the operators Ê (e j ) and ĉ(ei) play exactly the same role as the operators ai and bi

introduced in Eqs. (E1b) and (E1c). In complete analogy with Eq. (E31), we define the curvature
two-form FS as

FS(ei, e j ) = −1
4

∑
k,l

Ri jkl E (ek)E (el ). (E34)

At the same time, following Ref. [84, pp. 54–55], we rewrite RS as

RS(ei, e j ) = 1
4

∑
k,l

Ri jkl c(ek)c(el ). (E35)

Taking into account Eq. (E16), we now obtain:

K = RS(ei, e j ) + FS(ei, e j )

= 1
4

∑
k,l

Ri jkl [c(ek)c(el ) − E (ek)E (el )]

= −1
4

∑
k,l

Ri jkl [c(ek) + E (ek)][E (el ) − c(el )]. (E36)

A quick look at Appendix E.2 allows us to write c(ek) � ek = ak − a+
k , E (ek) � ek = ak + a+

k .
These results are compatible with the anticommutators in Eqs. (E32) anf (E.33) since Eq. (E1a)
was used for the ak. Thus, we obtain [c(ek) + E (ek)][E (el ) − c(el )] = 4aka+

l = −4a+
k al . Substi-

tution of this result into Eq. (E36) brings us back to Eqs. (E8) and (E9), as required. Moreover,
the result obtained is also compatible with Eqs. (E28) and (E29).

We are now in a position to finish the description of Spinc(n) manifolds. In view of the equiv-
alence c(ek) � ek = ak − a+

k , and taking into account Eqs. (D10)– (D12), the equivalence just
described can also be written as c(ek) � ε(w) − i(w̄), while E (ek) � ε(w) + i(w̄). The first oper-
ator, c(ek), acts on the W space defined by Eq. (D6), while E(ek) operates on the W̄ space defined
by Eq. (D8). Thus, Spinc(V ) � W ⊗ W̄ , in accord with [18, p. 512]. In view of Eq. (D13) this
is the spinor bundle (such that, actually, Spin(V ) × S1 −→ Spinc(V )) in which the associated
bundle is made out of elements complex conjugate to that in the principal bundle.

Appendix E.5 Madelung-anomalous superconducting atoms, superconducting density
functional theory, and Bogoliubov–de Gennes equations
Superconducting density functional theory (SCDFT) has been very successful in predicting su-
perconductivity for a wide variety of materials, in particular for studying superconductivity
in high-pressure environments [5,85]. According to Ref. [86, p. 9], the Bogoliubov–de Gennes
(BdG) equations are completely analogous to SCDFT since they are straightforwardly recover-
able from SCDFT. According to Ref. [87, Chapter 5], the BdG equations are directly connected
with (recoverable from) the equations of the BCS theory of superconductivity. Therefore, it
makes sense to provide some details here by connecting general results [5,87] with the results
of Appendix E.

We begin with the observation that SCDFT is built around Kohn–Sham (K–S) density func-
tional theory (DFT). Following Ref. [p. 19][5], we notice that the key K–S equation formally
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coincides with Eq. (3) of this work. We say “formally” since Eq. (3) is a Hartree–Fock-type
equation in which the potential contains the direct and exchange effects [83], while in the K–S
equation the potential contains material-independent exchange-correlation effects as well [5].
Nevertheless, using the conformal transformations described in Ref. [3, Sect. 3.3] it is possible
to convert Eq. (3), and hence the K–S equation, into an equation looking like our Eq. (4).

But then, according to Appendix E.2, such an equation acquires a geometrical meaning since
it can be obtained with help of the second W–L formula. This geometrical meaning is valid for
spin manifolds only! To obtain Eq. (25) valid for spinc manifolds requires much more ingenu-
ity, as explained in Appendix E.4. Surprisingly, only the ingenuity of the purely mathematical
results presented in Refs. [80,84] allow us to make a connection with the BdG equations. Using
Eq. (29), an eigenvalue equation,(

ε −R
−R −ε

) (
u
v

)
= E

(
u
v

)
, (E37)

is obtained whose eigenvalues are E = ±√
ε2 + R2. Such an eigenvalue equation coincides ex-

actly with a BdG equation [87, Eq. (5.18)]. Various spacetime-dependent generalizations of
Eq. (37) can now be straightforwardly obtained.

Appendix F. Spin and Spinc structures for Madelung-exceptional atoms: Simplified
treatment
In Appendix D, spin and spinc structures were defined in accord with their definitions in the
mathematical literature. In Appendix E.4, the physical interpretation (in terms of supercon-
ductivity concepts) of spinc structures is given for the first time in the mathematical physics
literature. However, it is still of interest to check whether the simple symmetry rules for spinc

defined in Sect. 4.2 make sense as well. Thus, the purpose of this appendix lies in checking
whether the semi-intuitive definitions of Sect. 4.2 work.

For this purpose, the following web link is helpful: https://webelements.com/uranium/atoms.
html. Information for other elements can be obtained either by modifying the name in the link
or by using the left-hand colunm of the web page, where all the other elements are listed.

Consider, for instance, the spin configuration for the Madelung-regular 7N ([He] 2s22p3),

(F1)

From the web link just given, the 1s and 2s levels are visibly below 2p. Evidently, in the ab-
sence of a magnetic field there is spin degeneracy: all “up” spins can be made “down.” Not
surprisingly, this atom is diamagnetic, just like hydrogen. This is nematic-type degeneracy. But,
in addition, there is a permutational symmetry. For 7N the electrons at the 2s level are entangled
by the Pauli principle. If one of them is “up,” the other must be “down.” Both can be permuted
with electrons at the 2p level where they are all indistinguishable. Such permutations represent
the additional symmetry.

Whenever there is an additional permutational symmetry the atom is Madelung-regular. In-
cidentally, Li, Na, Ka, Rb, and Cs are all hydrogen-like and are all paramagnetic, as mentioned
in Sect. 1.1. Naively, this observation implies that the “up–down” symmetry is lost, since in
the case of H it is manifestly present. This fact is reflected in the periodic table compiled by
Madelung [21], who made no comment on this topic. The situation, however, is not as simple
as it appears in student textbooks, even those at the advanced level. The standard theory of the

36/40

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2022/3/033A01/6517331 by D

ESY-Zentralbibliothek user on 25 April 2022

https://webelements.com/uranium/atoms.html


PTEP 2022, 033A01 A. L. Kholodenko

Zeeman effect10 tells us that with respect to the static magnetic field all atoms are both param-
agnetic (this is caused by the interaction term linear in the magnetic field, the Pauli paramag-
netic term) and diamagnetic (this is caused by the interaction term quadratic in the magnetic
field, the Landau diamagnetic term). Experimentally, though, the H atom is strictly diamag-
netic while the other hydrogen-like atoms are strictly paramagnetic. Apparently, this fact, and
perhaps other factors such as the rigorous development of perturbational theory for superinte-
grable systems at both classical and quantum levels, resulted in a recent complete recalculation
of the results known in the physics literature [1,2,88,89]. The concept of superintegrability is
explained in Ref. [3]. References [88,89] do not include perturbations caused by relativistic ef-
fects. The sources of these corrections are described in this paper. At the chemical level of
rigor part of such a calculation was performed in Ref. [90]. Based on these results, we maintain
that for spins the “up–down” symmetry is always present but the magnetic properties of atoms
are the result of all kinds of perturbative effects. Therefore, the overall paramagnetism is the
cumulative result of these perturbations.

Next, we consider the Madelung-exceptional case, e.g. 42Mo.11 If the Madelung-regular rule
worked, the filling pattern for Mo would be [Kr] 4d45s2. However, experiment yields [Kr]
4d55s1:

(F2)

The 4d and 5s levels are not too distant from each other, and furthermore the 4d level is higher
than 5s! There is an obvious “up–down” symmetry for the 4d level, but since 42Mo is paramag-
netic, the electron on the 5s level should not be mixed with those on 4d. The electron at the lower
5s level makes 42Mo paramagnetic. This (paramagnetic) property can be easily seen by remov-
ing all five of the 4d electrons from 42Mo, resulting in exactly the same electron configuration as
rubidium, which is paramagnetic. Nevertheless, as for the other hydrogen-like elements Li, Na,
Ka, and Cs, the “up–down” spin symmetry is not lost and the paramagnetism is a result of all
the corrections mentioned above. The case displayed in Eq. (F1) should be linked with the spin
manifold because it has permutational symmetry in addition to the “up–down” symmetry. The
case displayed in Eq. (F2) is linked with the spinc manifold because the “up–down” symmetry
on the 4d level is manifest.

Exactly the same analysis is applicable to the Madelung-exceptional 24Cr([Ar] 3d54s1) and
to its “twin,” Nb. In the case of Cr, by stripping it of five electrons sitting on the 3d level, we
end up with the configuration of paramagnetic potassium, K. Analogously, for the Madelung-
anomalous Nb, if we strip it of four electrons sitting at the 4d level, then we bring the elec-
tron configuration to that of paramagnetic rubidium, Rb. The Madelung-exceptional copper,
Eq. (F3 a), is diamagnetic, as is gold, since its upper energetic 3d level is occupied by the
“Cooper (BCS-type) paired” electrons analogous to the noble gases.12

(F3)

10See, for example, https://www.damtp.cam.ac.uk/user/tong/aqm/aqmeight.pdf.
11For the reader’s convenience, a list of all Madelung-exceptional atoms is given at https://en.wikiped

ia.org/wiki/Aufbau_principle.
12And all noble gases are diamagnetic; see https://periodictable.com/Properties/A/MagneticType.html.
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Here, the 4s level is lower than 3d. The pattern for gold is similar:

(F4)

The 5d level has the highest energy and the 6s the lowest.
Analysis of Madelung-exceptional platinum, rodium, and ruthenium proceeds analogously.

It is somewhat trickier though. Consider, for instance, ruthenium:

(F5)

Its analysis proceeds in very much the same way as for Mo since, unlike N, whose configuration
is displayed in Eq. (F1), all the electron energies at the 4d level are the same. That is, the “Cooper
paired” and unpaired electrons are sitting at the same 4d energy level, which is visibly higher
than the 5s level.

The treatment of the remaining Madelung-exceptional element palladium remains puzzling.
Its electronic configuration apparently implies that it should be diamagnetic, like gold, but it is
paramagnetic! Nevertheless, from the point of view of the “up–down” symmetry it is surely

Madelung exceptional.
Next, we want to comment on Madelung-exceptional lanthanides (La and Ce) and actinides

(Ac and Th). For 57La the standard Madelung rule prescribes the configuration [Xe] 4f15d06s2,
while experiment provides [Xe] 4f15d16s2, i.e.

(F6)

As before, level 6s is lower than 4f, and this level is lower than 5d. 57La behaves the same way as
the other hydrogen-like atoms and, therefore, is paramagnetic. The electronic configuration of

58Ce is [Xe] 4f05d16s2. It is paramagnetic, as expected, so that its hydrides should have prop-
erties very much analogous to those of 57La. Next, for 89Ac we have a situation mirroring that
of 57La, except that the orbital energy levels are higher: [Rn] 5f06d17s2. Finally, for thorium,

90Th, we have [Rn] 4f06d27s2, i.e.

(F7)

with the 7s energy noticeably lower than the 6d so that, again, we have the spinc manifold. We
have 90Th being paramagnetic analogously to all the hydrogen-like atoms. It acts like Madelung-
exceptional rhodium, i.e.

(F8)

All lantanides and actinides are paramagnetic, including gadolinium.13

Finally, let us take a look at sulfur, S, whose nonmetallic hydride demonstrated the highest
Tc to date under high pressures. For 16S we have

(F9)

which clearly exhibits the “up–down” and permutational symmetries, thus making 16S
Madelung regular and diamagnetic. Two unpaired electrons make 16S act as if it is Madelung-

13See http://mriquestions.com/why-gadolinium.html, though https://periodictable.com/Properties/A
/MagneticType.html states that Gd is ferromagnetic.
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exceptional 90Th, thus ensuring its high-temperature superconducting capabilities. These have
indeed been observed. The difference in the atomic masses positively affected the observed Tcs.
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