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1

Objetivo y motivación

El campo de f́ısica de part́ıculas se encuentra actualmente en un punto crucial. La

exploración del mecanismo de rotura espontánea de simetŕıa electrodébil (RESE)

en el gran colisionador de hadrones (LHC) ha desvelado la presencia de un bosón

que se asemeja al escalar de Higgs (1, 2) dada la precisión de los datos exper-

imentales disponibles (3, 4). La descripción del Modelo Estándar (ME) de la

generación de masas (5, 6, 7) ha demostrado ser acertada y la auto-interacción

del bosón de Higgs que desencadena la RESE es ahora la quinta fuerza de la natu-

raleza, junto con la gravedad, el eletromagnetismo la interacción débil y la fuerte.

Esta nueva fuerza, como el resto de las fuerzas cuantizadas, vaŕıa en intensidad

dependiendo de la escala a la que se la examine, pero al contrario que la fuerza

débil o fuerte, esto plantea un problema (8) ya que una escala de alta enerǵıa o

corta distancia del orden de 10−12fm el mecanismo de RESE se desestabilizaŕıa,

pues el acoplo cuártico se cancelaŕıa (9, 10). Dicho problema podŕıa ser resuelto

por la introducción de nueva f́ısica, lo cual conduce a otra cuestión teórica, el

Problema de la Jerarqúıa (PJ). Cualquiera sea la nueva f́ısica que se acopla a

la part́ıcula de Higgs produce una contribución radiativa al término de masa de

dicho bosón del orden de la escala de nueva f́ısica, lo que significaŕıa que la escala

electrodébil es naturalmente cercana a la escala de f́ısica más alta que interacciona

con los campos del ME. Las propuestas para solucionar este problema pueden ser

clasificadas en soluciones de f́ısica perturbativa, siendo el paradigma la super-

simetŕıa, y ansazts de dinámica fuerte. Supersimetŕıa es una nueva y elegante

simetŕıa entre bosones y fermiones que implica cancelaciones sistemáticas entre
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1. OBJETIVO Y MOTIVACIÓN

las contribuciones radiativas que producen cada tipo de part́ıculas al término de

masa del Higgs. Por otro lado la hipótesis de que el bosón de Higgs sea un estado

ligado producido por nueva dinámica fuerte implica que el mecanismo de RESE

es simplemente una descripción efectiva que debe ser completada por una teoŕıa

más fundamental. Todas estas hipótesis suponen nueva f́ısica a la escala del TeV

y están siendo testeadas de manera decisiva en el LHC.

En el frente cosmológico la interacción gravitatoria ha sido la fuente de evi-

dencia de nuevos desaf́ıos en f́ısica de part́ıculas. El universo está expandiéndose

aceleradamente, algo que en cosmoloǵıa estándar requiere la presencia de energia

oscura, una enerǵıa de vaćıo cuya presión negativa provoca que el universo se en-

sanche con velocidad creciente. Cosmoloǵıa y astrof́ısica proporcionaron la sólida

evidencia de materia extra no bariónica en el universo, llamada materia oscura,

como otra muestra experimental no explicable en el ME. Hay un activo programa

experimental para la búsqueda de materia oscura en este agitado sector de f́ısica

de part́ıculas. La tercera evidencia de nueva f́ısica en cosmoloǵıa proviene de un

hecho muy familar del mundo visible, está constituido de mucha mas materia que

antimateria, y aunque el ME proporciona una fuente de exceso de part́ıculas sobre

antipart́ıculas el resultado no es suficiente para explicar la proporción observada.

La parte de nueva f́ısica que concierne más de cerca al ME es el hecho de que

los neutrinos han demostrado ser masivos. La evidencia de masa de neutrinos

proveniente de los datos de oscilación es una de las selectas evidencias de nueva

f́ısica mas allá del ME. En este sector la búsqueda de violación leptónica de

conjugación de carga y paridad (CP), transiciones de sabor de leptones cargados

y la relación fundamental entre neutrinos y antineutrinos; su carácter Majorana

o Dirac, tienen ambiciosos programas experimentales que producirán resultados

en los próximos años.

Para completar la lista de desaf́ıos en f́ısica de part́ıculas, debe ser mencionado

que existe la tarea pendiente de la cuantización de gravedad y el presente pobre

entendimiento del vaćıo de QCD representado en el problema-θ. Estos temas no

obstante pueden ser considerados como problemas teóricos frente a las evidencias

experimentales consideradas previamente.

El tema de esta tesis es un problema horizontal: el puzle de sabor. La es-

tructura de sabor del espectro de part́ıculas está conectada en la teoŕıa estándar

2



a la RESE, y las masas de los neutrinos son parte esencial de este puzle. Estos

son temas que han sido tratados en el trabajo del estudiante de doctorado en

otro contexto: la fenomenoloǵıa de sabor en el caso de dinámica fuerte de RESE

(11, 12), la determinación del Lagrangiano bosónico general en el mismo contexto

(13) y la fenomenoloǵıa de un modelo para masas de neutrinos (14) han formado

parte del programa de doctorado del candidato. El tema central de esta tesis está

sin embargo es la exploración de una posible explicación a la estructura de sabor

(15, 16, 17).

El principio gauge puede ser señalado como la fuente creadora de progreso

en f́ısica de part́ıculas, bien entendido y elegantemente implementado en el ME.

Por el contrario el sector de sabor permanece durante décadas como una de las

partes peor entendidas del ME. El ME muestra la estructura de sabor de una

manera paramétrica, dejando sin respuesta preguntas como el origen de la fuerte

jerarqúıa en masas de fermiones o la presencia de grandes angulos de mezcla de

sabor para leptones en constraste con la pequeña mezcla del sector de quarks.

El puzle de sabor permanece por lo tanto como una cuestión fundamental sin

respuesta en f́ısica de part́ıculas.

La principal gúıa en este trabajo es el uso de simetŕıa para explicar el puzle de

sabor. La simetŕıa, que juega un papel central en nuestro entendimiento en f́ısica

de part́ıculas, es empleada en esta tesis para entender la estructura de sabor. Un

número variado de simetŕıas han sido postuladas con respecto a este problema

(18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29). En este estudio la simetŕıa será

seleccionada como la mayor simetŕıa continua global posible en la teoŕıa libre 1.

La elección está motivada por las exitosas consequencias fenomenológicas de se-

lectionar la susodicha simetŕıa en el caso de la hipótesis de Violación Mı́nima de

Sabor (22, 25, 26, 27, 28), un campo en el que el autor también a trabajado (28).

Debe ser destacado que los diferentes oŕıgenes posibles para la masa de los neu-

trinos resultan en distintas simetŕıas de sabor en el sector leptónico; de especial

relevancia es la eleción del carácter Dirac o Majorana. En cualquiera de los casos

la simetŕıa de sabor no es evidente en el espectro, luego debe estar escondida. En

este trabajo el estudio de rotura espontánea de la simetŕıa de sabor para leptones

1Alternativamente se puede definir en términos mas técnicos como la mayor simetŕıa posible
en el ĺımite de acoplos de Yukawa ausentes (22, 25, 26).
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1. OBJETIVO Y MOTIVACIÓN

y quarks será desarrollado con énfasis en el resultado natural contrastado con

la estructura observada en la naturaleza. Se mostrará como la diferencia entre

quark y leptones en la estructura de sabor resultante, en particular los ángulos

de mezcla, se origina en la naturaleza Majorana o Dirac de los fermiones.

En el presente análisis, el criterio de naturalidad será la regla para decidir si la

solución propuesta es aceptable o introduce puzles mas complicados que los que

resuelve. Es relevante por lo tanto la acepción de naturalidad, siguiendo el criterio

de t’Hooft, todos los parámetros adimensionales no restringidos por una simetŕıa

deben ser de orden uno, mientras que todos los parámetros con dimesiones se

espera que sean del orden de la escala de la teoŕıa. Exploraremos por lo tanto en

qué casos este criterio permite la explicación de la estructura de masas y angulos

de mezcla.

Respecto a las diferentes partes de nueva f́ısica involucradas conviene distin-

guir tres escalas distintas i) la escala de RESE establecida por la masa del bosón

W, ii) un escala posiblemente distinta de sabor, denotada Λf y caracteŕıstica de

la nueva f́ısica responsable de la estructura de sabor, iii) la escala efectiva de

violación de numero leptónico M responsable de las masas de los neutrinos, en el

caso de que éstas sean de Majorana.
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2

Aim and Motivation

The field of particle physics is presently at a turning point. The exploration of the

mechanism of electroweak symmetry breaking (EWSB) at the LHC has unveiled

the presence of a boson that resembles the Higgs scalar (1, 2) with the precision

of presently available data (3, 4). The Standard Model (SM) description of mass

generation (5, 6, 7) has proven successful, and the Higgs self-interaction triggering

EWSB stands now as the fifth force in nature, after gravity, electromagnetism,

weak and strong interactions. This new force, as every other quantized force

in nature, varies in strength depending on the scale at which it is probed but,

unlike for strong or weak forces, this poses a problem (8) as at a high energy or

short distance scale of order 10−12fm the mechanism of electroweak symmetry

breaking would be destabilized since the coupling of this force vanishes (9, 10).

This problem could be solved by the introduction of new physics which brings the

discussion to another theoretical issue, the Hierarchy Problem. Any new physics

that couples to the Higgs particle produces generically a radiative contribution

to the Higgs mass term of order of the new mass scale, which would mean that

the electroweak scale is naturally close to the highest new physics scale that

couples to the SM fields. Proposals to address this problem can be classified in

perturbative physics solutions, the paradigm being supersymmetry, and strong

dynamics ansatzs. Supersymmetry is an elegant new symmetry between bosons

and fermions that implies systematic cancellations among the contributions to

the Higgs mass term of these two types of particles. On the other hand the

hypothesis of the Higgs boson being a bounded state produced by new strong

5



2. AIM AND MOTIVATION

dynamics implies that the mechanism of electroweak symmetry breaking is just

an effective description to be completed by a more fundamental theory. All these

hypothesis involve new physics at the TeV scale and are being crucially tested at

the LHC.

In the cosmology front the gravitational interaction has been the source of

the evidence of new challenges in particle physics. The universe is accelerating,

something that in standard cosmology requires of the presence of Dark Energy,

a vacuum energy whose negative pressure makes the universe expand with in-

creasing rate. Cosmology together with astrophysics brought the solid piece of

evidence of extra matter in the universe not in the form of baryons, the so called

Dark Matter as another experimental evidence not explainable within the Stan-

dard Model. There is an active experimental program for the search of Dark

Matter in this lively sector of particle physics. The third piece of evidence in

cosmology stems on one very familiar fact of the visible universe: it is made out

of much more matter than antimatter, and even if the SM provides a source for

particle over antiparticle abundance in cosmology, this is not enough to explain

the ratio observed today.

The piece of new physics that concerns more closely the Standard Model is

the fact that neutrinos have shown to be massive. The neutrino mass evidence

from oscillation data stands as one of the selected few sound pieces of evidence

of physics beyond the SM. In this sector, the search for leptonic CP violation,

charged lepton generation transitions and the fundamental relation among neu-

trino particles and antiparticles; their Majorana or Dirac nature, have ambitious

experimental programs bound to produce results in the coming years.

To complete the list of challenges in particle physics, it shall be mentioned

that there is the pending task of the quatization of gravity and the present poor

understanding of the vacuum of QCD embodied in the θ problem. These is-

sues can be regarded as theoretical problems in contrast with the experimental

evidences mentioned above.

The focus of this project is a somehow horizontal problem: the flavour puzzle.

The flavour structure of the particle spectrum is connected in the standard theory

to EWSB, and the masses of neutrinos are an essential part the flavour puzzle.

These last matters have been subject of study in a different context for the PhD

6



candidate: the flavour phenomenology in a strong EWSB realization (11, 12), the

determination of the general bosonic Lagrangian in the same scheme (13) and the

flavour phenomenology of a neutrino mass model (14) are part of the author’s

work. The focus of this discussion is nonetheless on the exploration of a possible

explanation of the flavour pattern (15, 16, 17).

The gauge principle can be singled out as the driving engine of progress in

particle physics, well understood and elegantly realized in the SM. In contrast

the flavour sector stands since decades as the less understood part of the SM.

The Standard Model displays the flavour pattern merely parametrically, leaving

unanswered questions like the origin of the strong hierarchy in fermion masses or

the presence of large flavour mixing in the lepton sector versus the little overlap in

the quark sector. The flavour puzzle stays therefore a fundamental open question

in particle physics.

The main guideline behind this work is the use of symmetry to address the

flavour puzzle. Symmetry, that plays a central role in our understanding of

particle physics, is called here to explain the structure of the flavour sector. A

number of different symmetries have been postulated with respect to this problem

(18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29). Here the symmetry will be selected

as the largest possible continuous global symmetry arising in the free theory
1. This choice is motivated by the successful phenomenological consequences of

selecting this symmetry, as in the case of the Minimal Flavour Violation (MFV)

ansatz (22, 25, 26, 27, 28) , a field in which the author has also worked (28). It

must be underlined that the different possible origins of neutrino masses result

in different flavour symmetries in the lepton sector; of special relevance is the

choice of Majorana or Dirac masses. The flavour symmetry in any case is not

evident in the spectrum, ergo must be somehow hidden. In this dissertation the

study of the mechanism of flavour symmetry breaking for both quark and leptons

will be carried out with emphasis on its natural outcome in comparison with the

observed flavour pattern in nature. It will be shown how the difference between

quark and leptons in the resulting flavour structure, in particular mixing, stems

on the Majorana or Dirac nature of fermions.

1Alternatively defined as the largest possible simmetry in the limit of vanishing Yukawa
couplings (22, 25, 26), to be introduce later.

7



2. AIM AND MOTIVATION

In the analysis here presented, naturalness criteria shall be the guide to tell

whether the implementation is acceptable or introduces worse puzzles than those

it solves. A relevant issue is what will be meant by natural; following ’t Hooft’s

naturalness criteria, all dimensionless free parameters not constrained by a sym-

metry should be of order one, and all dimensionful ones are expected to be of the

order of the scale of the theory. We will thus explore in which cases those criteria

allow for an explanation of the pattern of mixings and large mass hierarchies.

As for the different physics involved in this dissertation, there will be three

relevant scales; i) the EWSB scale set by the W mass and which in the SM

corresponds to the vacuum expectation value (vev) v of the Higgs field; ii) a

possible distinct flavour scale Λf characteristic of the new physics underlying

the flavour puzzle; iii) the effective lepton number scale M responsible for light

neutrinos masses, if neutrinos happen to be Majorana particles.

8



3

Introduction

As all pieces of the Standard Model fall into place when confronted with exper-

iment, the last one being the discovery of a Higgs-like boson at the LHC (1, 2),

one cannot help but stop and wonder at the theory the scientific community has

carved to describe the majority of phenomena we have tested in the laboratory.

This theory comprises both the forces we have been able to understand at the

quantum level and the matter sector. The former shall be briefly reviewed first.

3.1 Forces of the Standard Model

Symmetries have shed light in numerous occasions in particle physics, in par-

ticular the understanding of local space-time or gauge symmetries stands as the

deepest insight in particle physics. The gauge principle, at the heart of the SM, is

as beautifully formulated as powerful and predictive for describing how particles

interact through forces. The SM gauge group,

G = SU(3)c × SU(2)L × U(1)Y , (3.1)

encodes the strong, weak and electromagnetic interactions and describes the spin

1 (referred to as vector-boson) elementary particle content that mediate these

forces. The strong interactions concern those particles that transform under

SU(3)c with c standing for color, and are the subject of study of quantum chro-

modynamics (QCD). The electroweak sector SU(2)L×U(1)Y comprises the weak

isospin group and the abelian hypercharge group which reduce to the familiar

9



3. INTRODUCTION

electromagnetic gauge group and Fermi interaction below the symmetry breaking

scale. This part of the theory is specified, in the unbroken phase, given the group

and the coupling constants of each subgroup, here gs for SU(3)c, g for SU(2)L

and g′ for U(1)Y at an energy scale µ. This information is enough to know that

8 vector-boson mediate the strong interaction, the so-called gluons, and that 4

vector bosons enter the electroweak sector: the Z,W± and the photon.

The implementation of the gauge principle in a theory that allows the pre-

diction of observable magnitudes as cross sections, decay rates etc. makes use

of Quantum Field Theory (QFT). In the canonical fashion we write down the

Lagrangian density denoted L , that for the pure gauge sector of the Standard

Model reads;

Lgauge = −1

4
Tr {F µν

i Fi,µν} , (3.2)

which describes forces mediators and these mediators self-interaction. The field

strengths are defined through the covariant derivatives:

Dµ = ∂µ + igsG
i
µλi + ig

σi
2
W i
µ + ig′QYBµ , (3.3)

with Gell-Mann matrices λi acting in color space , Pauli matrices σi within weak

isospin space, and QY is the hypercharge of the field that the covariant derivative

acts on. Gi
µ denote the 8 gluons, W i

µ the three weak isospin bosons and Bµ

the hypercharge mediator. The photon (Aµ) and Z are the usual combination

of neutral electroweak bosons: Zµ = cos θWW
3
µ − sin θWBµ, Aµ = sin θWW

3
µ +

cos θWBµ and the weak angle tan θW = g′/g. In terms of the covariant derivatives

the field strengths are defined as:

Fi,µν = − i

gi
[Dµ, Dν ] . (3.4)

However the fact that the W and Z spin-1 bosons are massive requires of the

introduction of further bosonic fields in the theory. This brings our discussion

to the electroweak breaking sector. Masses are not directly implementable in the

theory as bare or “hard” mass terms are not allowed by the gauge symmetry.

The way the SM describes acquisition of masses is the celebrated Brout-Englert-

Higgs mechanism, a particularly economic description requiring the addition of

a SU(2)L doublet spin-0 boson (scalar), denoted H. This bosonic field takes a

10



3.1 Forces of the Standard Model

SU(3)c SU(2)L U(1)Y

H 1 2 1/2

Table 3.1: The Higgs field charges under G

vev and its interactions with the rest of fields when expanding around the true

vacuum produce mass terms for the gauge bosons. The interaction of this field

with the gauge fields is given by its transformation properties or charges, reported

in table 3.1, the masses produced for the W and Z boson being in turn specified

by the vev of the field 〈H〉 ≡ (0, v/
√

2)T together with the coupling constants

g and g′. This vev is acquired via the presence of the quartic coupling of the

Higgs, the fifth force, and the negative mass term. These two pieces conform the

potential that triggers EWSB and imply the addition of two new parameters to

the theory, explicitly;

LH = (DµH)†DµH − λ
(
H†H − v2

2

)2

. (3.5)

where the v is the electroweak scale v/
√

2 ' 174GeV and λ the quartic cou-

pling of the Higgs, which can be extracted from the measured Higgs mass λ =

m2
h/(2v

2) ' 0.13. Note that the potential, the second term above, has the mini-

mum at
〈
H†H

〉
= v2/2.

As outlined in the previous section, the Higgs could be elementary or compos-

ite; the paradigm of composite bosons are pions, understood through the Gold-

stone theorem. In the pions chiral Lagrangian the relevant scale is the pion decay

constant fπ associated to the strong dynamics, in the analogy with a composite

Higgs the scale is denoted f which, unlike in technicolor (30, 31, 32), in Compos-

ite Higgs Models (33, 34, 35, 36, 37) is taken different from the electroweak vev v.

In the limit in which these two scales are close, a more suitable parametrization

of the Higgs is, alike to the exponential parametrization of the σ-model,(
H̃ , H

)
= U

〈h〉+ h√
2

, U †U = UU † = 1 , (3.6)

where H̃ = iσ2H
∗ with σ2 the second Pauli matrix in weak isospin space. U is a

2× 2 unitary matrix which can be thought of as a space-time dependent element

11



3. INTRODUCTION

of the electroweak group and consequently absorbable in a gauge transformation

while 〈h〉+h is the constant “radial” component plus the physical bosonic degree

of freedom unchanged by a gauge transformation. The value of 〈h〉 is fixed by v

and f .

In this way gauge invariance of the corrections to Eq. 3.5 concerns the dimen-

sionless U matrix and its covariant derivatives whereas the series in H/f can be

encapsulated in general dimensionless functions F [(〈h〉+ h)/f ] different for each

particular model.

Since both U and F are dimensionless, the expansion is in powers of mo-

mentum (derivatives) over the analogous of the chiral symmetry breaking scale

(38, 39). The Lagrangian up to chiral dimension 4 in this scheme for the bosonic

sector was given in (13) and the flavour phenomenology in this scenario was stud-

ied in (11, 12) as part of the authors work that however does not concern the

discussion that follows.

3.2 Matter Content

The course of the discussion leads now to the matter content of the Standard

Model. Completing the sequence of intrinsic angular momentum, between the

spin 1 vector bosons and the spin 0 scalars the spin 1/2 ultimate constituents of

matter, the elementary fermions are placed. These fermions constitute what we

are made of and surrounded by. Their interactions follow from their transforma-

tion properties under the gauge group. Quarks are those fermions that sense the

strong interactions and are classified in three types according of their electroweak

interactions; a weak-isospin doublet QL and two singlets UR, DR . Leptons do

not feel the strong but only the electroweak interaction and come in two shapes;

a doublet `L, and a singlet ER of SU(2)L. The explicit transformation properties

of the fermions are reported in table 3.2.

The subscripts L andR refer to the two irreducible components of any fermion;

left and right-handed. Right handed fermions, in the limit of vanishing mass, have

a spin projection on the direction of motion of 1/2~ whereas left-handed fermions

have the opposite projection −1/2~. These two components are irreducible in

the sense that they are the smallest pieces that transform in a closed form under

12



3.2 Matter Content

SU(3)c SU(2)L U(1)Y

QL 3 2 1/6

UR 3 1 2/3

DR 3 1 -1/3

`L 1 2 -1/2

ER 1 1 -1

Table 3.2: Fermion content of the SM - Transformation properties under the
gauge group G.

the Lorentz group with a spin 1/2. The explicit description of the interaction of

fermions with gauge fields is read from the Lagrangian;

Lmatter = i

ER∑
ψ=QL

ψ /Dψ , (3.7)

where /D = γµD
µ and γµ are the Dirac matrices.

There is a discreet set of representations for the non-abelian groups (SU(3)c

and SU(2)L): the fundamental representation, the adjoint representation etc.

All fermions transform in the simplest non-trivial of them 1: the fundamental

representation, hereby denoted N for SU(N). For the abelian part, the rep-

resentation (charge) assignation can be a priori any real number normalized to

one of the fermion’s charges, e.g. ER. There is however yet another predictive

feature in the SM connected to the gauge principle: the extra requirement for

the consistency of the theory of the cancellation of anomalies or the conservation

of the symmetry at the quantum level imposes a number of constraints. These

constraints, for one generation, are just enough to fix all relative U(1)Y charges,

leaving no arbitrariness in this sector of the SM.

Let us summarize the simpleness of the Standard Model up to this point,

we have specified a consistent theory based on local symmetry described by 4

coupling constants for the 4 quantized forces of nature, a doublet scalar field

acquiring a vev v and a matter content of 5 types of particles whose transformation

properties or “charges” are chosen from a discreet set.

1The trivial representation is just not to transform, a case denoted by “1” in the first to
columns of table 3.2

13



3. INTRODUCTION

There is nonetheless an extra direction perpendicular to the previous which

displays the full spectrum of fermions explicitly, that is, the flavour structure.

Each of the fermion fields in table 3.2 appears replicated three times in the spec-

trum with wildly varying masses and a connection with the rest of the replicas

given by a unitary mixing matrix. Explicitly:

Qα
L =

{(
uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)}
, Uα

R = {uR, cR, tR} , (3.8)

`αL =

{(
νeL
eL

)
,

(
νµL
µL

)
,

(
ντL
τL

)}
, Dα

R = {dR, sR, bR} , (3.9)

Eα
R = {eR, µR, τR} , (3.10)

where e stands for the electron, µ for the muon, τ for the τ -lepton, u for the up

quark, d for the down quark, c for charm, s for strange, b for bottom and t for

the top quark. The flavour structure is encoded in the Lagrangian,

Lfermion−mass = −QLYUH̃UR −QLYDHDR − `LYEERH + Lν−mass , (3.11)

where the 3× 3 matrices YU , YD, YE have indices in flavour space.

3.2.1 Neutrino Masses

The character of neutrino masses is not yet known, however if we restrict to

the matter content we have observed so far, the effective field theory approach

displays a suggestive first correction to the SM. Effective field theory, implicit

when discussing the Higgs sector, is a model independent description of new

physics implementing the symmetries and particle content present in the known

low energy theory. Corrections appear in an expansion of inverse powers of the

new physics scale M . This generic scheme yields a remarkably strong result,

at the first order in the expansion, the only possible term, produces neutrino

Majorana masses after EWSB:

L d=5 =
1

M
OW + h.c. ≡ 1

M
`
α

LH̃ cαβ H̃
T `c,βL + h.c. , (3.12)

where c is a matrix of constants in flavour space. This operator, known as Wein-

berg’s Operator (40), violates lepton number but this is however an accidental

14



3.2 Matter Content

symmetry of the SM, the fundamental symmetries are the gauge symmetries

which are compatible with lepton number violation. As to what is the the-

ory that produces this operator, there are three possibilities corresponding to

three different fields as mediators of this interaction: the type I (41, 42, 43),

II (44, 45, 46, 47, 48) and III (49, 50) seesaw models. The mediator could trans-

form as a fermionic singlet of the Standard Model (type I), a scalar triplet of

SU(2)L (type II) and a fermionic triplet of SU(2)L (type III) diagrammatically

depicted in Fig. 3.1. Here we will select the type I seesaw model which introduces

Figure 3.1: The three types of seesaw models -

right-handed neutrinos in analogy with the rest of fermions. These particles are

perfect singlets under the Standard Model, see table 3.3, something that allows

for their Majorana character, which is transmitted to the left-handed neutrinos

detected in experiment through the Yukawa couplings. The complete Lagrangian

SU(3)c SU(2)L U(1)Y

NR 1 1 0

Table 3.3: Right-handed neutrino charges under the SM group

for the fermion masses is therefore:

Lfermion−mass = LY ukawa + LMajorana , (3.13)

LY ukawa =−QLYUH̃UR −QLYDHDR − `LYEERH − `LYνH̃NR , (3.14)

LMajorana =−N c

RMNR , (3.15)

whereM is a symmetric 3×3 matrix andNR stands for the right-handed neutrinos

which now also enter the sum of kinetic terms of Eq. 3.7. The limit in which

the right-handed neutrino scale M is much larger than the Dirac scale Yνv yields
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3. INTRODUCTION

as first correction after integration of the heavy degrees of freedom the Weinberg

Operator with the constants cαβ in Eq. 3.12 being cαβ = (YνY
T
ν )αβ such that for

O(1) Yukawas the upper bound on neutrino masses points to M around the GUT

scale ∼ 1015GeV. The opposite limit is the Dirac mass limit Yνv � M in which

Lepton number would be conserved and the Yukawa coupling should be tuned to

10−12.

In the following we assume validity for the seesaw formula such that Yνv �M .

3.2.2 The Flavour Symmetry

If the gauge part was described around the gauge group one can do the same,

if only formally a priori, for the flavour side. A way to characterize it is then

choosing the largest symmetry that the free theory could present given the particle

content and orthogonal to the gauge group, this symmetry is that of the group

(22, 25, 26):

GF = GqF × G
l
F ,

GqF =SU(3)QL × SU(3)UR × SU(3)DR × U(1)B × U(1)AU × U(1)AD , (3.16)

GlF =SU(3)`L × SU(3)ER ×O(3)N × U(1)L × U(1)Al , (3.17)

It is clear that each SU(3) factor corresponds to the different gauge representation

fields which do not acquire mass in the absence of interactions. Right-handed

neutrinos have however a mass not arising from interactions, but present already

in the free Hamiltonian. Given this fact the largest symmetry possible in this

section is O(3) for the degenerate case:

M = |M |I3×3 , (3.18)

which is imposed here. The symmetry selected here can alternatively be defined

as that arising, for the right-handed neutrino mass matrix of the above form, in

the limit LY ukawa → 0.

There is an ambiguity in the definition of the lepton sector symmetry and

indeed other definitions are present in the literature (27, 28), in particular for

the NR fields a U(3)NR symmetry is selected if the symmetry is identified with

the kinetic term of the matter fields. This option leads to a complete parallelism
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3.2 Matter Content

from the symmetry point of view for leptons and quarks and would consequently

lead to similar outcomes in an unsuccessful scenario.

Under the non-abelian part of GF the matter fields transform as detailed in

table 3.4 and the abelian charges are given in table 3.5. In the non-abelian

side one can identify U(1)B as the symmetry that preserves baryon number and

U(1)L as lepton number which is broken in the full theory here considered. The

remaining U(1)A symmetries are axial rotations in the quark and lepton sectors.

SU(3)QL SU(3)UR SU(3)DR SU(3)`L SU(3)ER O(3)N

QL 3 1 1 1 1 1

UR 1 3 1 1 1 1

DR 1 1 3 1 1 1

`L 1 1 1 3 1 1

ER 1 1 1 1 3 1

NR 1 1 1 1 1 3

Table 3.4: Representations of the fermion fields under the non-abelian part of GF

U(1)B U(1)AU U(1)AD U(1)L U(1)Al

QL 1/3 1 1 0 0

UR 1/3 -1 0 0 0

DR 1/3 0 -1 0 0

`L 0 0 0 1 1

ER 0 0 0 1 -1

NR 0 0 0 0 0

Table 3.5: Representations of the fermion fields under the abelian part of GF

LY ukawa is however non vanishing and encodes the flavour structure, our

present knowledge about it being displayed in Eqs. 3.19-3.27. The masses for

fermions range at least 12 orders of magnitude and the neutrinos are a factor 106

lightest than the lightest charged fermion, something perhaps connected to their

possible Majorana nature. Neutrino masses are not fully determined, only the

two mass squared differences and and upper bound on the overall scale are known.
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The fact that one of the mass differences is only known in absolute value implies

that not even the hierarchy is known, the possibilities being Normal Hierarchy

(NH) mν1 < mν2 < mν3 and Inverted Hierarchy (IH) mν3 < mν1 < mν2 . The

mixing shape for quarks is close to an identity matrix, with deviations given by

the Cabibbo angle λc whereas mixing angles are large in the lepton sector with

all entries of the same order of magnitude. In the lepton sector the CP phase δ

and the Majorana phases, if present, are yet undetermined.

md = 4.8+0.7
−0.3MeV , ms = 95± 5MeV , mb = 4.18± 0.03GeV , (3.19)

mu = 2.3+0.7
−0.5MeV , mc = 1.275± 0.025GeV , mt = 173.5± 0.8GeV , (3.20)

me = 0.510998928± 0.000000011MeV , (3.21)

mµ = 105.6583715± 0.0000035MeV , (3.22)

mτ = 1.776.82± 0.16GeV , (3.23)

∑
i

mνi ≤ 0.28eV , ∆m2
ν12

= 7.5+0.2
−0.210−5eV 2 , |∆m2

ν23
| = 2.42+0.04

−0.0710−3eV 2 ,

(3.24)

VCKM =

 1− λ2
c/2 λc Aλ3

c (ρ− iη)
−λc 1− λ2

c/2 Aλ2
c

Aλ3
c (1− ρ− iη) −Aλ2

c 1

+O(λ4
c)

Aλ3
c (ρ+ iη) ≡

Aλ3
c (ρ̄+ iη̄)

√
1− A2λ4

c√
1− λ2

c (1− A2λ4
c(ρ̄+ iη̄))

, λc = 0.22535± 0.00065 ,

(3.25)

A = 0.811+0.022
−0.012 , ρ̄ = 0.131+0.026

−0.013 , η̄ = 0.345+0.013
−0.014 , (3.26)

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 eiα1λ3+iα2λ8

θ12 = 33+0.88
−0.78

◦ θ23 = 40− 50 ◦ θ13 = 8, 66+0.44
−0.46

◦ (3.27)

The Majorana phases are encoded in the exponentials of the Gell-Mann matrices

of Eq. 3.27. The quark data is taken from (51) and the neutrino parameters

18



3.2 Matter Content

from (52, 53). The question arises of what becomes of the anomaly cancellation

conditions now that the flavour structure has been made explicit. The conditions

are still fixing the relative hypercharges of all generations provided all masses are

different, all mixing angles nontrivial and Majorana masses for the right-handed

neutrinos.

Comparison of the flavour and gauge sector will actually be useful for the

introduction of the research subject of this thesis. First the ratio of certain

parameters of the gauge sector, namely hypercharges, cannot take arbitrary values

but are fixed due to constraints for the consistency of the theory, while the values

for the flavour parameters seem all to be equally valid, at least from the point of

view of consistency and stability. This brings to a second point, the inputs that

are arbitrary in the gauge sector, gs, g, g
′, λ are smaller but of O(1) at the typical

scale of the theory ∼ MZ , whereas masses span over 6 orders of magnitude for

charged leptons and including neutrinos too the orders of magnitude escalate to

12.

Because of gauge invariance particles are fitted into representations of the

group, such that the dimension of the representation dictates the number of

particles. There are left-handed charged leptons and left-handed neutrinos to fit

a fundamental representation of SU(2)L, could it be that something alike happens

in the flavour sector? That is, is there a symmetry behind the flavour structure?

If this is the case, the symmetry that dictates the representation is not evident

at the scale we are familiar with, so it should somehow be hidden; we can tell

an electron from a muon because they have different masses. But the very same

thing happens for SU(2)L, we can tell the neutrino from the electron as we know

that the electroweak symmetry is broken.

This comparison led neatly to the study carried out. The list of the basic

ingredients here concerned has been completed; we shall assume that there is an

exact symmetry behind the flavour structure, and if so necessarily broken at low

energies; a breaking that we will effectively describe via a flavour Higgs mecha-

nism. It is the purpose of this dissertation to study the mechanism responsible

for the breaking of such flavour symmetry in the search for a deeper explanation

of the flavour structure of elementary particles.
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4

Flavour Physics

4.1 Flavour in the Standard Model + type 1

Seesaw Model

The model that serves as starting point in our discussion is the Standard Model

with the addition of the type 1 Seesaw Model to account for neutrino masses,

the widely accepted as simplest and most natural extension with lepton number

violation. This chapter will be concerned with flavour phenomenology and the

way it shapes the flavour structure of new physics at the TeV scale, aiming at

the understanding from a bottom up approach of the sources of flavour violation.

The way in which the flavour symmetry is violated in the theory here considered

is quite specific and yields sharp experimental predictions that we shall examine

next.

The energies considered in this chapter are below the electroweak scale, such

that the Lagrangian of Eq. 4.1, assuming M � v, after integrating out the heavy

right-handed neutrinos reads

Lf−mass = −QLYUH̃UR−QLYDHDR− `LYEERH− `LH̃
YνY

T
ν

M
H̃T `cL+O

(
1

M2

)
(4.1)

where we recall that the flavour symmetry here considered sets Mij = Mδij, a

case that shall not obscure the general low energy characteristics of a type 1

Seesaw Model whereas it simplifies the discussion. The flavour symmetry in this
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4. FLAVOUR PHYSICS

model is only broken by the above Lagrangian, including 1/Mn corrections. In full

generality the Yukawa matrices can be written as the product of a unitary matrix,

a diagonal matrix of eigenvalues and a different unitary matrix on the right end.

In the case of the light neutrino mass term, it is more useful to consider the whole

product YνY
T
ν which is a transpose general matrix and therefore decomposable

in a unitary matrix and a diagonal matrix in the following way:

YU = UU
L yUU

U
R , YD = UD

L yDU
D
R , (4.2)

YE = UE
L yEU

E
R , YνY

T
ν = Uν

Ly2
νU

νT
L , (4.3)

where UU,D,E,ν
L,R are the unitary matrices and yU,D,E,ν the diagonal matrices con-

taining the eigenvalues. Even if the symmetry is broken, the rest of the SM and

type 1 seesaw Lagrangian stays invariant under a transformation under the group

GF of the fermion fields. In particular the rotation;

QL → UD
L QL , DR → UD†

R DR , UR = UR†
R UR , (4.4)

`L → UE
L , `L ER → UE†

R ER , (4.5)

simplifies the Yukawa matrices in Eqs. 4.2,4.3 after substitution in Eq. 4.1 to,

YU = UD†
L UU

L yU , YD = yD , (4.6)

YE = yE , YνY
T
ν = UE†

L Uν
Ly2

νU
νT
L UE∗

L , (4.7)

which allows to define:

V †CKM ≡ UD†
L UU

L , UPMNS ≡ UE†
L Uν

L , (4.8)

yU = Diag (yu, yc, yt) , yD = Diag (yd, ys, yb) , (4.9)

yν = Diag (yν1 , yν2 , yν3) , yE = Diag (ye, yµ, yτ ) , (4.10)

with VCKM being the usual quark mixing matrix and UPMNS the analogous in the

lepton side; the first encodes three angles and one CP-odd phase and the second

two extra complex Majorana phases on top the the equivalent of the previous 4

parameters. The connection of the eigenvalues with masses will be made clear

below.

There are a few things to note here. The right handed unitary matrices UU,D,E
R

are irrelevant, the appearance of the irreducible mixing matrix in both sectors
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is due to the simultaneous presence of a Yukawa term for both up and down-

type quarks involving the same quark doublet QL, and the neutrino mass term

and charged lepton Yukawa where the lepton doublet `L appears. Were the mass

terms to commute there would be no mixing matrix. Were the weak isospin group

not present to bind together uL with dL and νL with eL there would not either be

mixing matrix. Weak interactions in conjunction with mass terms violate flavour.

Although mixing matrices are there and nontrivial it is useful to have in mind

this considerations to remember how they arise.

After EWSB the independent rotation of the two upper components of the

weak isospin doublets

UL → V †CKMUL , νL → UPMNSνL , (4.11)

takes to the mass basis yielding the Yukawa couplings diagonal, which now ex-

plicitly appear when expanding the Higgs field around the vev,

LY ukawa =− yα (v + h)√
2

U
α

LU
α
R −

yβ (v + h)√
2

D
β

LD
β
R (4.12)

− yα (v + h)√
2

E
α

LE
α
R −

y2
α (v + h)2

2M
ναLν

α
L + h.c. , (4.13)

were h is the physical Higgs boson and the unitary gauge has been chosen.

We read from the above that the masses for the charged fermions are mα =

yαv/
√

2 = yα × 174GeV whereas for neutrinos mνα = y2
ναv

2/2M . The values of

masses then fix the Yukawa eigenvalues for the charged fermions to be:

{yt , yc , yu} =
{

1.0 , 7.3× 10−3 , 1.3× 10−5
}
, (4.14)

{yb , ys , yd} =
{

2.4× 10−2 , 5.5× 10−4 , 2.7× 10−5
}
, (4.15)

{yτ , yµ , ye} =
{

1.0× 10−2 , 6.0× 10−4 , 2.9× 10−6
}
, (4.16)

whereas for neutrinos only the mass squared differences are know and an up-

per bound y2
νv

2/M . eV. The values for the Yukawa eigenvalues of the charged

fermions display quantitatively the hierarchies in the flavour sector, note that

as dimensionless couplings of the theory they are naturally expected of O(1),

something only satisfied by the top Yukawa. The smallness of the eigenvalues

is nonetheless stable under corrections since in the limit of vanishing Yukawa
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eigenvalue a chiral symmetry arises, which differentiates this fine-tuning from the

Hierarchy Problem.

The rest of the Lagrangian does not notice the rotation in Eq. 4.11 except for

the couplings of weak isospin +1/2 and −1/2 particles;

LCC = i
g√
2
ULVCKM /W

+
DL + i

g√
2
νLU

†
PMNS

/W
+
EL + h.c. . (4.17)

The rest of couplings, which involve neutral gauge bosons, are diagonal in flavour,

to order 1/M2. The flavour changing source has shifted therefore in the mass

basis to the couplings of fermions to the gauge W± bosons. This is in accordance

with the statement of the need of both weak isospin and mass terms for flavour

violation.

This process allows to give a physical definition of the unitary matrices en-

tering the Yukawa couplings: mixing matrices are the change of basis from the

interaction to the mass basis. This is a more general statement than the explicit

writing of Yukawa terms or the specification of the character of neutrino masses.

The absence of flavour violation in neutral currents implies the well known

and elegant explanation of the smallness of flavour changing neutral currents

(FCNC) of the Glashow Iliopoulos Maiani (GIM) mechanism. All neutral current

flavour processes are loop level induced and suppressed by unitarity relations to

be proportional to mass differences and mixing parameters, an achievement of the

standard theory that helped greatly to its consolidation. At the same time this

smallness of flavour changing neutral currents stands as a fire proof for theories

that intend to extend the Standard Model, as we shall see next.

4.2 Flavour Beyond the Standard Model

The flavour pattern of elementary particles has been approached in a number of

theoretical frameworks aiming at its explanation. Shedding light in a problem

as involved as the flavour puzzle has proven not an easy task and proposed ex-

planations are in general partial, in particular reconciling neutrino flavour data

with quark and charged lepton hierarchies in a convincing common framework is

a pending task in the authors view.

In the following a number of the proposed answers to explain flavour are listed,
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• Froggat Nielsen theories. The introduction of an abelian symmetry R under

which the different generation fermions with different chirality have differ-

ent charges and that is broken by the vev of a field 〈φ0〉 can explain the

hierarchies in the flavour pattern (19). In this set-up there are extra chiral

fermions at a high scale which acquire a mass via the vev of a different Higgs-

like R-neutral field, 〈φ1〉 such that the magnitude ε = 〈φ0〉 / 〈φ1〉 controls

the breaking of the abelian symmetry R. Interactions among the different

fermions are mediated by the field φ0 at the high scale and its acquisition

of a vev at the low scale implies factors of εai+bj for the coupling of differ-

ent flavour and chirality fermions ΨLi , ΨRj with charges RLi = c + bi and

RRj = c − aj. The mass matrix produced in this way contains hierarchies

among masses dictated by mi/mj ∼ εai−aj+bi−bj whereas angles are given

by Uij ∼ (mi/mj)
Cij & (mi/mj). This symmetry based argument stands as

one of the simplest and most illuminating approaches to the flavour puzzle.

• Discreet symmetries Discreet symmetries were studied as possible explana-

tions for the flavour pattern in the quark sector (54) but the main focus

today is on the lepton mixing pattern. The values of the atmospheric

and solar angles motivated proposals of values for the angles given by

simple integer ratios like the tri-bimaximal mixing pattern (55) (θ23 =

π/4 , θ12 =arcsin(1/
√

3) , θ13 = 0) . These patterns were later shown to be

obtainable with breaking patterns of relatively natural discreet symmetries

like A4(56, 57, 58), S4 (59, 60). A discreet flavour treatment of both quark

and leptons requires generally of extra assumptions like distinct breaking

patterns in distinct fermion sectors which have to be kept separate, see

e.g. (61, 62) These models though are now in tension with the relatively

large reactor angle and new approaches are being pursued (63, 64). This

approach has the advantage of avoiding goldstone bosons when breaking

the discreet symmetry but the drawback of the ambiguity in choosing the

group.

• Extra Dimensions The case of extra dimension offers a different explana-

tion for the hierarchy in masses. In Randall-Sundrum models (65, 66) the

presence of two 4 branes in a 5 dimensional space induces a metric with an
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overall normalization or warp factor that is exponentially decreasing with

the fifth dimension and that offers an explanation of the huge hierarchy

among the Planck and EW scale in terms of O(1) fundamental parameters.

When the fermions are allowed to propagate in the fifth dimension, rather

than being confined in a brane, their profile in the fifth dimension deter-

mined by the warp factor and a bulk mass term provides exponential factors

for the Yukawa couplings as well, offering an explanation of the flavour pat-

tern in terms of O(1) fundamental or 5th dimensional parameters (67, 68).

In large extra dimensions theories, submilimiter new spacial directions can

provide geometrical factors to explain the hierarchy problem (69). In this

scenario, if we live on a fat brane in which the fermion profiles are localized,

the mixing among generations is suppressed by the overlap of this profiles

rather than symmetric arguments (70, 71, 72). In the extradimensional

paradigm in general therefore the explanation of the hierarchies in flavour

is found in geometry rather than symmetry.

• Anarchy The possibility of the flavour parameters being just random num-

bers without any utter reason has been also explored (73, 74), and even if

the recent measurement of a “large” θ13 lepton mixing angle favors this hy-

pothesis for the neutrino mass matrix (75), the strongly hierarchical pattern

of masses and mixing of charged fermions is not natural in this framework.

These models introduce in general new physics coupled to the flavour sector

of the Standard Model, which means modifying the phenomenological pattern

too. More in general any new physics that couples to the SM flavour sector will

change the predictions for experiments and shall be contrasted with data. This

is examined next.

4.3 Flavour Phenomenology

Once again the effective field theory is put to use,

L = LSM +
1

M
OW +

∑ ci
Λ2
f

Oi +O(1/Λ3
f ) (4.18)
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This Lagrangian can be viewed as the Standard Model theory represented by

the first term above plus new physics corrections in a very general manner for

the two next terms. The first correction in Eq. 4.18 has already been examined

and taken into account. The next corrections have a different scale motivated by

naturalness criteria. In this category we include the operators that do not break

lepton number nor baryon number, listed in (76) and only recently reduced to the

minimum set via equations of motion (77), and therefore need not be suppressed

by the same scale. There are notheless contributions of 1/M2 in Eq. 4.18, but

these either are too small for phenomenological purposes after applying the upper

bound from neutrino masses or, in seesaw models with separate lepton number

and flavour scales (78, 79, 80, 81, 82), fall in the description above (83, 84, 85).

As a concrete example a possible operator at order 1/Λ2
f is:

c6O6 = cαβσρQ̄
α
LγµQ

β
LQ̄

σ
Lγ

µQρ
L , (4.19)

where greek indices run over different flavours and the constants cαβσρ are the

coefficients different in general for each flavour combination. The modification

Figure 4.1: Constrains on the CKM parameters -

induced by this term in observable quantities can be computed and compared with

data. A wide an ambitious set of experiments have provided the rich present
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4. FLAVOUR PHYSICS

amount of flavour data; from the precise branching ratios of B mesons in B

factories to the search for flavour violation in the charged lepton sector, all the D

and K meson observables, and if we include CP violation, the stringent electric

dipole moments.

Contrast of the experimental data with expectations has led, in most occa-

sions, to a corroboration of the Standard Model in spite of new physics, and at

times certain hints of deviations from the standard theory raised hopes (86, 87, 88)

that either were washed away afterwards, or stand as of today inconclusive. It

is the case then that no clear proof of physics other than the SM and neutrino

masses driving flavour data has been found.

Indeed the data has been not only enough to determine the flavour parameters

of the SM but also to impose stress test on the theory, all faintlessly passed. Fig.

4.1 shows how all experimentally allowed regions in the mixing parameter plane of

ρ̄− η̄, variables defined in Eq. 3.26, meet around the allowed value. The absence

Operator Bounds on Λf (TeV) Bounds on c (Λf = 1TeV) Observables

c = 1 c = i Re(c) Im(c)

(sLγµdL)2 9.8× 102 1.6× 104 9.0× 10−7 3.4× 10−9 ∆mK , εK

(sRdL)(sLdR) 1.8× 104 3.2× 105 6.9× 10−9 2.6× 10−11 ∆mK , εK

(cLγµuL)2 1.2× 103 2.9× 103 5.6× 10−7 1.0× 10−7 ∆mD; |q/p|;φD
(cRuL)(cLuR) 6.2× 103 1.5× 104 5.7× 10−8 1.1× 10−8 ∆mD; |q/p|;φD

(bLγµdL)2 6.6× 102 9.3× 102 2.3× 10−6 1.1× 10−6 ∆mBd ;SΨKS

(bRdL)(bLdR) 2.5× 103 3.6× 103 3.9× 10−7 1.9× 10−7 ∆mBd ;SΨKS

(bLγµsL)2 1.4× 102 2.5× 102 5.0× 10−5 1.7× 10−5 ∆mBs ;SΨΦ

(bRsL)(bLsR) 4.8× 102 8.3× 102 8.8× 10−6 2.9× 10−6 ∆mBs ;SΨΦ

F µνµ̄RσµνeL 6.1× 104 6.1× 104 2.7× 10−10 2.7× 10−10 µ→ eγ

(µLγµeL)(uLγµuL) 4.9× 102 4.9× 102 4.1× 10−6 4.1× 10−6 µ→ e(Ti)

(µLγµeL)(dLγµdL) 5.4× 102 5.4× 102 3.5× 10−6 3.5× 10−6 µ→ e(Ti)

Table 4.1: Bounds on the different operators, see text for details.

of new physics evidence translates in bounds on the new physics scale, reported

in table 4.1. When placing the bounds, the magnitude that is constrained is

the combination c/Λ2
f as is the one appearing in the Lagrangian of Eq. 4.18.
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4.4 Minimal Flavour Violation

Naturalness criteria points at constants c of O(1), a case reported in table 4.1

both for CP conservation c = 1 (second column) and CP violation c = i (third

column). On the other hand if the scale is fixed at the TeV then the constants

have severe upper bounds as the fourth and fifth columns in table 4.1 show. The

quark bounds are taken from (89) whereas the lepton data is taken from (90, 91)

and computed with the formulae of (14)

4.4 Minimal Flavour Violation

The bounds on new physics place a dilemma: either giving up new physics till

the thousands of TeVs scale and with it the possibility of any direct test in

laboratories, or assume that the flavour structure of new physics is highly non-

generic or fined-tuned.

A solution to this dichotomy is the celebrated Minimal Flavour Violation

scheme (25, 27, 28, 85) which is predictive, realistic, model independent and

symmetry driven. The previous section showed that flavour phenomenology at

present is explained by the SM plus neutrino masses solely, this is to say that

the mass terms contain all the known flavour structure and ergo determine the

flavour violation. The conclusion is that the mass terms are the only source for

all flavour and CP violation data at our disposal. The minimality assumption of

MFV is to upgrade this source to be the only one in physics Beyond the Standard

Model too at low energies.

In the absence of the mass terms the theory presents a symmetry which is

formally conserved if the sources of flavour violation are assigned transformation

properties, in the present realization given in table 4.2. The formal restoration of

SU(3)QL SU(3)UR SU(3)DR SU(3)`L SU(3)ER O(3)NR
YU 3 3̄ 1 1 1 1

YD 3 1 3̄ 1 1 1

YE 1 1 1 3 3̄ 1

Yν 1 1 1 3 1 3

Table 4.2: Spurious transformations of the Yukawa couplings
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4. FLAVOUR PHYSICS

the flavour symmetry applied in the effective field theory set-up determines the

flavour constants which shall be such as to form flavour invariant combinations

with the matter fields and build up out of the sole sources of flavour violation at

low energies, the Yukawas. The previous operator will serve as example now:

c6O6 = Q̄α
L

(
YUY

†
U

)
αβ
γµQ

β
LQ̄

σ
L

(
YUY

†
U

)
σρ
γµQρ

L . (4.20)

The Yukawa couplings, can be written as in Eqs. 4.6 , 4.8 , 4.9 and therefore all

parameters entering the above equation are known, they are just masses and

mixings.

It should be underlined that MFV is not a model of flavour and the value of the

new dynamical flavour scale Λf is not fixed, however the suppression introduced

via the flavour parameters makes this scale compatible with the TeV, see (92)

for a recent analysis. What it does predict is precise and constrained relations

between different flavour transitions.
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5

Spontaneous Flavour Symmetry

Breaking

The previous chapter illustrated how the entire body of flavour data can be

explained through a single entity, the mass terms. This has been shown to be the

only culprit of flavour violation. If we pause and look at the previous sentence, it is

interesting to see how the jargon itself already assumes that there is something to

be violated, and implicitly a breaking idea. It has been shown that the symmetry

of the matter content of the free theory here considered is the product of the

gauge and flavour symmetries; G × GF , and that Yukawa terms do not respect

GF . Subgroups of this group could also be considered, here the full GF is adopted

in the general case, although in certain cases the axial abelian factors U(1)A will

be dropped1. The case of conservation of the full GF group is also denoted axial

conserving case, whereas assuming that the U(1)A symmetries are not exact will

constitute the explicitly axial breaking case G /AF ∼ SU(3)5 × SO(3). In all cases

the full non-abelian group is considered.

The MFV ansatz showed the usefulness of assigning spurious transformation

properties to the Yukawa couplings and having a formal flavour conservation at

the phenomenological level. It is only natural to take the next step and assume

the flavour symmetry is exact at some high energy scale Λf and the Yukawa

couplings are the remains of fields that had real transformations properties under

1Or alternatively broken by a different mechanism, like a Froggat-Nielsen model.
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5. SPONTANEOUS FLAVOUR SYMMETRY BREAKING

this symmetry. The underlying idea of dynamical Yukawa couplings is depicted

in Fig. 5.1 which resembles similar diagrams in Froggat Nielsen theories. The

basic assumption is indeed already present in the literature; for example in the

first formulation of MFV by Chivukula and Georgi (22), the Yukawa couplings

corresponded to a fermion condensate. It should also be mentioned that a flavour

breaking mechanism with different continuos non-abelian groups than the here

considered has been explored (18, 24, 93, 94, 95, 96) and after the appearance of

this work the quantum corrections where studied in (97, 98).

The analysis of a two generation case will serve as illustration and guide in

the next chapter, for this reason it is useful and compact to introduce ng for the

number of generations. The straight-forward generalization of the flavour group

is then:

GF = GqF × G
l
F ,

GqF =SU(ng)QL × SU(ng)UR × SU(ng)DR × U(1)B × U(1)AU × U(1)AD , (5.1)

GlF =SU(ng)`L × SU(ng)ER ×O(ng)N × U(1)L × U(1)Al . (5.2)

(QL)α
(DR)β

H
(YD)αβ

Figure 5.1: Yukawa Couplings as vevs of flavour fields -

5.1 Flavour Fields Representation

The starting point is rendering the Yukawa interaction explicitly invariant under

the flavour symmetry. At the scale Λf of the new fields responsible for flavour
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5.1 Flavour Fields Representation

breaking, the Yukawa couplings will be dynamical themselves, implying the mass

dimension of the Yukawa Operator is now > 4.

Scalar Flavour Fields in the Bi-Fundamental

In the effective field theory expansion, the leading term is dimension 51:

LY ukawa = QL

YD
Λf

DRH +QL

YU
Λf

URH̃ + `L
YE
Λf

ERH + `L
Yν
Λf

NRH̃ + h.c. , (5.3)

where there is the need to introduce the cut-off scale Λf
2, the scalar fields YD, YU ,

YE and Yν are dynamical fields in the bi-fundamental representation as detailed

in tables 5.1,5.2, and the relation to ordinary Yukawas is:

SU(ng)QL SU(ng)UR SU(ng)DR U(1)B U(1)AU U(1)AD

YU ng n̄g 1 0 2 1

YD ng 1 ng 0 1 2

Table 5.1: GFq representation of the quark sector bi-fundamental scalar fields for
ng fermion generations

SU(ng)`L SU(ng)ER O(ng)NR U(1)L U(1)Al

YE ng n̄g 1 0 2

Yν ng 1 ng 1 1

Table 5.2: GF l representation of the lepton sector bi-fundamental scalar fields for
ng fermion generations

YD ≡
〈YD〉
Λf

, YU ≡
〈YU〉
Λf

, YE ≡
〈YE〉
Λf

. Yν ≡
〈Yν〉
Λf

. (5.4)

1The expansion now differs from the EFT in the SM context since we have introduced new
scalar fields

2The equation above could have in more generality coupling constants different for the up
and down sector or equivalently a different scale for up and down, here the scale is chosen the
same for simplicity
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5. SPONTANEOUS FLAVOUR SYMMETRY BREAKING

This case is hereby labeled bi-fundamental scenario, an the fields can be thought

of as matrices whose explicit transformation is:

YU(x)
GF−→ ΩQLYU(x) Ω†UR , YD(x)

GF−→ ΩQLYD(x) Ω†DR , (5.5)

YE(x)
GF−→ Ω`LYE(x) Ω†ER , Yν(x)

GF−→ Ω`LYν(x)OT
NR

, (5.6)

Ωψ (ONR) being a unitary (real orthogonal) matrix of the corresponding GF sub-

group: ΩψΩ†ψ = Ω†ψΩψ = 1, ψ = QL ... ER (ONRO
T
NR

= OT
NR
ONR = 1) .

Scalar Flavour Fields in the Fundamental

The next order in the effective field theory is a d = 6 Yukawa operator, involving

generically two scalar fields in the place of the Yukawa couplings,

LY ukawa = QL

χLDχ
R†
D

Λ2
f

DRH +QL

χLUχ
R†
U

Λ2
f

URH̃ + `L
χLEχ

R†
E

Λ2
f

ERH + `L
χLνχ

R†
ν

Λ2
f

ERH ,(5.7)

which provide the following relations between Yukawa couplings and vevs:

YD ≡

〈
χLDχ

R†
D

〉
Λ2
f

, YU ≡

〈
χLUχ

R†
U

〉
Λ2
f

, YE ≡

〈
χLEχ

R†
E

〉
Λ2
f

, Yν ≡
〈
χLνχ

R†
ν

〉
Λ2
f

, (5.8)

The simplest assignation of charges or transformation properties of these fields

is to consider each of them in the fundamental representation of a given SU(3)ψ

subgroup as specified in tables 5.3,5.4.

SU(ng)QL SU(ng)UR SU(ng)DR U(1)B U(1)AU U(1)AD

χLU ng 1 1 0 1 1

χLD ng 1 1 0 1 1

χRU 1 ng 1 0 -1 0

χRD 1 1 ng 0 0 -1

Table 5.3: Representation of the lepton sector fundamental scalar fields for ng
fermion generations

These fields are then complex ng-vectors whose transformation under the

flavour group is just a unitary or real rotation; χψ
GF−→ Ωψχψ , χ

R
N

GF−→ ONRχ
R
N .
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5.1 Flavour Fields Representation

SU(ng)`L SU(ng)ER O(ng)NR U(1)L U(1)Al

χLE ng 1 1 0 1

χLν ng 1 1 0 1

χRE 1 ng 1 0 -1

χRN 1 1 ng 0 0

Table 5.4: Representation of the lepton sector fundamental scalar fields for ng
fermion generations

From the group theory point of view this is the decomposition in the irreducible

pieces needed to build up invariant Yukawa operators, and as we shall see their

properties translate in an easy and clear extraction of the flavour structure.

The third case of a Yukawa operator of mass dimension 7 could arise from

a condensate of fermionic fields Y ∼
〈
ΨΨ
〉
/Λ3

f (22), or as the product of three

scalar fields. In both cases the simplest decomposition falls trivially into one of

the previous or the assignation of representations is an otherwise unnecessarily

complicated higher dimensional one.

Notice that realizations in which the Yukawa couplings correspond to the vev

of an aggregate of fields, rather than to a single field, are not the simplest real-

ization of MFV as defined in Ref. (25), while still corresponding to the essential

idea that the Yukawa spurions may have a dynamical origin.

Finally, other option of dependence of the Yukawa couplings on the dynamical

fields is an inverse one:

YD ≡
Λf

〈YD〉
, YU ≡

Λf

〈YU〉
, YE ≡

Λf

〈YE〉
, Yν ≡

Λf

〈Yν〉
. (5.9)

a case in which de vev of the field rather than the scale Λf entering the relation is

the larger one. This interesting case arises in models of gauged flavour symmetry

(99, 100), in which the anomaly cancellation requirements call for the introduction

of fermion fields, whose interaction in a renormalizable Lagrangian with the scalar

fields and ordinary fermions suffice to constitute a self consistent theory that after

the integration of the heavy states yields the relation above. The transformation

properties of the fields are the same as in the bi-fundamental case.

For simplicity in the group decomposition and since they appear as the two

leading terms in the effective field theory approach, we will focus the analysis here
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5. SPONTANEOUS FLAVOUR SYMMETRY BREAKING

in the fundamental and bi-fundamental cases or the dimension 5 and 6 Yukawa

operators, the former nonetheless also applies to relation 5.9.

5.2 The Scalar Potential

The way in which the scalar fields Y , χ acquire a vev is through a scalar potential.

This potential, must be invariant under the gauge group of the SM G and the

flavour group GF . The study is focused on the potential constituted by the flavour

fields only, even if there might be some mixing with the singlet combination H†H

of the Higgs field, an exploration of this last case can be found in (101) in which

the flavour scalar fields are postulated as Dark Matter. This case would add to

the hierarchy problem but make no difference in the determination of the flavour

fields minimum since the mass scale of the latter is taken larger than the Higgs

vev: Λ2
f � v2.

The goal of this work is therefore to address the problem of the determination

and analysis of the general GF -invariant scalar potential and its minima for the

flavour scalar fields denoted above by Y and χ. The central question is whether

it is possible to obtain the SM Yukawa pattern - i.e. the observed values of quark

masses and mixings- with a “natural” potential.

It is worth noticing that the structure of the scalar potentials constructed here

is more general than the particular effective realization in Eqs. (5.4) and (5.8)

and it would apply also for Eq. 5.9 as it relies exclusively on invariance under the

symmetry GF and on the flavon representation, bi-fundamental or fundamental.

This observation is relevant, because the case of gauged flavour symmetry

leading to Eq. 5.9 addresses two problems that this approach has. Namely the

presence of Goldstone bosons as a result of the spontaneous breaking of a con-

tinuous symmetry and the constraints placed on the presence of new particles

carrying flavour and inducing potentially dangerous FCNC effects.

The Goldstone bosons in a spontaneously broken flavour gauge symmetry are

eaten by the flavour group vector bosons which become massive. These particles

even if massive would induce dangerous flavour changing processes which we

expect to be suppressed by their scale. The case of gauged flavour symmetries

is however such that the inverse relation of Yukawas of Eq. 5.9 translates also
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5.2 The Scalar Potential

to the particle masses, so that the new particles inducing flavour changing in the

lightest generations are the heaviest in the new physics spectrum (102). This

two facts conform a possible acceptable and realistic scenario where to embed

the present study, even if the analysis applies in a general set-up since it is based

only on symmetries.

5.2.1 Generalities on Minimization

The variables in which we are minimizing are the parameters of the scalar fields

modulo a GF transformation. That is, we minimize in the variables of the scalar

fields that are not absorbable with a group transformation. The discussion of

which are those variables in the bi-fundamental case is familiar to the particle

physicist; they are the equivalent of masses and mixing angles. Indeed we can

substitute in Eq. 5.4 the explicit formula for the Yukawas, Eqs. 4.6 -4.10, and

express the variables of the scalar field at the minimum in terms of flavour pa-

rameters.

The equation obtained in this way is the condition of the vev of the scalar

fields fixing the masses and mixings that are measured. It is not clear at all

though that a spontaneous breaking mechanism can yield the very values that

Yukawas actually have. To find this out the minimization of the potential has

to be completed, such that for the next two chapters masses and mixing will be

treated as variables roaming all their possible range. The question is whether at

the minimum of the potential these variables can take the values corresponding

to the known spectrum and if so to what cost.

The GF invariants out of which the potential is built will be denoted generically

by Ij, while yi stand for the physical variables of the scalar fields connected

explicitly to masses and mixing. Let us call n the number of physical parameters

that suffice to describe the general vev of the flavour fields, that is to say there

are n variables yi , i = 1, 2, ..., n. The following considerations can be found in

(18, 93, 94)

A simple result is that there are n independent invariants Ij, since the inversion

of the relation of the latter in terms of the variables1 allows to express any new

1Inverse relation which is unique up to discreet choices (103)
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invariant I ′ in terms of the independent set {Ij}; I ′ = I ′(yi) = I ′(yi(Ij)).

In terms of the set of invariants {Ij} the stationary points of the potential,

among them the true vacuum, are the solutions to the equation,

∑
j

∂Ij
∂yi

∂V

∂Ij
= 0 . (5.10)

These n equations will fix the n parameters. One can regard this array of

equations as a matrix Jij = ∂Ij/∂yi, which is just the Jacobian of the change of

“coordinates” Ij = Ij(yi), times a vector ∂V/∂Ij.

This system, if the Jacobian has rank n, has only the solution of a null vector

∂V/∂Ij = 0, which is the case for example for the Higgs potential of the SM.

When the Jacobian has rank smaller than n, the system of Eqs simplifies

to a number of equations equal to the rank of the Jacobian. The extreme case

would be a rank 0 Jacobian, which is the trivial, but always present, symmetry

preserving case. This link of the smallest rank with the largest symmetry can

be extended; indeed in general terms the reduction of the rank implies the ap-

pearance of symmetries left unbroken. In this sense the case of largest unbroken

symmetries not being the trivial one are called maximal isotropy groups (93, 94),

that is the greatest groups within the group but smaller than him. Please note

that imposing a reduced rank of J is a potential-independent condition; it is a

constrain depending solely on the change of basis from variables to invariants.

For a geometric comprehension of the reduction of the Jacobian’s rank the

manifold of possible values for the invariants can be considered (18, 93, 94),

denoted I-manifold. The I-manifold can be embedded in a n-th dimensional

real space Rn. Whenever the Jacobian has reduced rank there exist one or more

directions in which a variation in the parameters y has 0 variation in Rn, let us

denote this displacement δyi , then this statement reads,

δIj =
∑
i

∂Ij
∂yi

δyi = 0 . (5.11)

This direction is the normal to a boundary of the I-manifold, as displacements in

this direction are not allowed. The further the rank is reduced the more reduced

is the dimension of this boundary. Those points for which the rank was reduced
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the most while still triggering symmetry breaking, will be denoted singular were

whereas in the original analysis of SU(3) × SU(3) singular stood the complete

symmetry group conserving points (18).

In the general case one can expect to have a combination of both, reduced

rank of the Jacobian and potential-dependent solutions. It is in any case worth

examining first the Jacobian, as it is done in the next chapters.

Another relevant issue is the number of invariants that enter the potential. If

one is to stop the analysis at a given operator’s dimensionality as it is customary

in EFT some of the invariants are left out. Does this mean there are parameters

left undetermined by the potential, i. e. flat directions? We shall see that these

flat directions are related to the presence of unbroken symmetries and therefore

are unphysical, so rather than the potential in such cases being unpredictive is

quite the opposite, it imposes symmetries in the low energy spectrum.
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6

Quark Sector

This chapter will concern the analysis of flavour symmetry breaking in the quark

sector through the study of the general potential in both the bi-fundamental and

fundamental representation cases.

6.1 Bi-fundamental Flavour Scalar Fields

At a scale above the electroweak scale and around Λf we assume that the Yukawa

interactions are originated by a Yukawa operator with dimension = 5 as made

explicit in Eq. 5.3, the connection to masses and mixing of the new scalar fields

given in Eq. 5.4. The analysis of the potential for the bi-fundamental scalar fields

is split in the two and three generation case.

6.1.1 Two Family Case

The discussion of the general scalar potential starts by illustrating the two-family

case, postponing the discussion of three families to the next section. Even if

restricted to a simplified case, with a smaller number of Yukawa couplings and

mixing angles, it is a very reasonable starting-up scenario, that corresponds to

the limit in which the third family is decoupled, as suggested by the hierarchy

between quark masses and the smallness of the CKM mixing angles1 θ23 and θ13.

1We follow here the PDG (51) conventions for the CKM matrix parametrization.
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In this section, moreover, most of the conventions and ideas to be used later on

for the three-family analysis will be introduced.

The number of variables that suffice for the description of the physical degrees

of freedom of the scalar fields Y is the starting point of the analysis. Extending

the bi-unitary parametrization for the Yukawas given in the first terms of Eqs. 4.2-

4.3 to the scalar fields and performing a GF rotation as in Eq. 5.5 the objects

left are a unitary matrix, and two diagonal matrices of eigenvalues. Out of the

4 parameters of a general unitary 2× 2 matrix, three are complex phases which

can be rotated away via diagonal phase rotations of GF . The remaining variables

are therefore an angle in the mixing matrix and 4 eigenvalues arranged in two

diagonal matrices: a total of n = 5 following the notation introduced. This is no

other than the usual discussion of physical parameters in the Yukawa couplings,

applicable to the flavour fields since the underlying symmetry is the same.

The explicit connection of scalar fields variables and flavour parameters is,

〈YD〉 = ΛfyD = Λf

(
yd 0
0 ys

)
, 〈YU〉 = ΛfV

†
CyU = ΛfV

†
C

(
yu 0
0 yc

)
,(6.1)

where

VC =

(
cos θ sin θ
− sin θ cos θ

)
, (6.2)

is the usual Cabibbo rotation among the first two families.

From the transformation properties in Eq. 5.5, it is straightforward to write

the list of independent invariants that enter in the scalar potential. For the

case of two generations that occupies us now, five independent invariants can be

constructed respecting the whole GqF group (103, 104):

IU =Tr
(
YUY†U

)
, ID =Tr

(
YDYD†

)
, (6.3)

IU2 =Tr
(
YUY†UYUY

†
U

)
, ID2 =Tr

(
YDY†DYDY

†
D

)
, (6.4)

IUD =Tr
(
YUY†UYDYD

†
)
. (6.5)
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6.1 Bi-fundamental Flavour Scalar Fields

The value of these invariants at the minimum correspond to1:

IU = Λ2
f (y2

u + y2
c ) , ID = Λ2

f (y2
d + y2

s) , (6.6)

IU2 = Λ4
f (y4

u + y4
c ) , ID2 = Λ4

f (y4
d + y4

s) , (6.7)

IUD = Λ4
f

[(
y2
c − y2

u

) (
y2
s − y2

d

)
cos 2θ +

(
y2
c + y2

u

) (
y2
s + y2

d

)]
/2 . (6.8)

The counting of parameters required of the full GF group; the absence of

U(1)A factors does not allow for overall phase redefinitions and therefore in the

explicitly axial breaking case (G /A,qF ∼ SU(ng)
3) two more parameters appear: the

overall phases of the scalar fields. In the axial breaking case therefore the number

of variables is n = 7.

This case allows for two new invariants of dimension 2,

IŨ = det (YU) , ID̃ = det (YD) , (6.9)

the two extra parameters appearing in this case are the complex phase of the

determinant for each Y field.

The two complex determinants together with the previous 5 operators of Eq.

6.3-6.5 add up to 9 real quantities which points to two invariants being dependent

on the rest. Indeed the Cayley-Hamilton relation in 2 dimensions reads:

Tr
(
YUY†UYUY

†
U

)
=Tr

(
YUY†U

)2

− 2 det (YU) det
(
Y†U
)
. (6.10)

Tr
(
YDY†DYDY

†
D

)
=Tr

(
YDY†D

)2

− 2 det (YD) det
(
Y†D
)
. (6.11)

The two determinants in terms of the variables read:

IŨ = Λ2
f yu yc e

iφU , ID̃ = Λ2
f yd yse

iφD − (6.12)

The symmetry matters for the outcome of the analysis, so we shall make clear

the differences in the choices of preserving the axial U(1)’s or not.

Notice that the mixing angle appears in all cases exclusively in IUD, which is

the only operator that mixes the up and down flavour field sectors. This is as

intuitively expected: the mixing angle describes the relative misalignment between

the up and down sectors basis. Eq. 6.8 shows that the degeneracy in any of the two

1Let us drop the vev symbols in 〈I〉 for simplicity in notation.
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sectors makes the angle unphysical, or, in terms of the scalar fields and flavour

symmetry, reabsorvable via a GF rotation.

Since there is one mixing parameter only in this case this invariant is related

to all possible invariants describing mixing, in particular the Jarlskog invariant

for two families,

4J = 4 det
([
YUY

†
U , YDY

†
D

])
= (sin 2θ)2 (y2

c − y2
u

)2 (
y2
s − y2

d

)2
,

is related to IUD via

1

Λ4
f

∂

∂θ
Tr
(
YUY†UYDYD

†
)

= −2
√
J . (6.13)

The lowest dimension invariants that characterize symmetry breaking unmis-

takably are IU and ID. Indeed for 〈IU〉 6= 0 or 〈ID〉 6= 0, GF is broken, whereas

if 〈IU〉 = 〈ID〉 = 0, GF remains unbroken. These invariants though only contain

information on the overall scale of the breaking and make no distinction on hi-

erarchies among eigenvalues. IU,D can be thought of as radii whose value gives

no information on the ”angular” variables. These variables can be chosen as the

differences in eigenvalues, and their value at the minimum will fix the hierar-

chies among the different generations . The invariants that will determine these

hierarchies will therefore be the those of Eqs. 6.4 , 6.5.

6.1.1.1 The Jacobian

All the work presented in this section is about to be published (17). The Jacobian

of the change of coordinates from the variables to the invariants of Eqs. 6.3 6.5

is a n × n matrix. We are interested in the determinant for the location of the

regions of reduced rank, or boundaries of the I-manifold. For these purpose we

observe that the Jacobian has the shape:

J =

 ∂yU IUn 0 ∂yU IUD
0 ∂yDIDn ∂yDIUD
0 0 ∂θIUD

 ≡
 JU 0 ∂yU IUD

0 JD ∂yDIUD
0 0 JUD

 . (6.14)

This structure of the Jacobian implies that the determinant simplifies to:

det J = det JU det JD det JUD , (6.15)
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6.1 Bi-fundamental Flavour Scalar Fields

which is a result extensible to the 3 generation case. The third factor of this

product reads:

det JUD = sin 2θ
(
y2
c − y2

u

) (
y2
s − y2

d

)
, (6.16)

which signals θ = 0, π/2 as boundaries, both of them corresponding to no mixing,

we will examine this further in the next section. For the following analysis we

select the θ = 0 solution for illustration.

• Axial Conserving Case: GF q ∼ U(ng)
3 - The set of invariants in Eq. 6.6

, 6.6 yields:

JU = ∂yU

(
Tr
(
YUY†U

)
, Tr

(
YUY†UYUY

†
U

))
=

(
2yu 4y3

u

2yc 4y3
c

)
, (6.17)

and

JD = ∂y

(
Tr
(
YDY†D

)
, Tr

(
YDY†DYDY

†
D

))
=

(
2yd 4y3

d

2ys 4y3
s

)
, (6.18)

so that:

det JU = ycyu(y
2
u − y2

c ) , det JD = ysyd(y
2
d − y2

s) . (6.19)

The solutions encoded in this can be classified according to the symmetry

left unbroken,

1. GF q → U(1)2
V × U(1)2

A Hierarchical spectrum for both up and down

sectors

YU = Λf

(
0 0
0 y

)
, YD = Λf

(
0 0
0 y′

)
. (6.20)

2. GF q → U(1)2
V × U(1)A

a) Down quarks degenerate Up quarks hierarchical

YU = Λf

(
0 0
0 y

)
, YD = Λf

(
y′ 0
0 y′

)
. (6.21)

b) Up quarks degenerate Down quarks hierarchical

YU = Λf

(
y 0
0 y

)
, YD = Λf

(
0 0
0 y′

)
. (6.22)
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3. GF q → SU(2)V × U(1)B Down and Up quarks degenerate

YU = Λf

(
y 0
0 y

)
, YD = Λf

(
y′ 0
0 y′

)
. (6.23)

The notation is such that U(1)V denote generation number and U(1)A chiral

rotations, explicitly:

U(1)V :

{ U(1)c+s :

(
cL
sL

)
→ eia

(
cL
sL

)
, cR → eiacR , sR → eiasR ,

U(1)u+d :

(
uL
dL

)
→ eia

(
uL
dL

)
, uR → eiauR , dR → eiadR ,

(6.24)

U(1)A :

{ U(1)uA :

(
uL
dL

)
→ eia

(
uL
dL

)
, cR → e−iacR ,

U(1)dA :

(
uL
dL

)
→ eia

(
uL
dL

)
, dR → e−iadR .

(6.25)

Figure 6.1: Boundaries for the I-manifold for fixed IU , ID. -

Summarizing, the total Jacobian determinant is:

det J = yuydysyc sin 2θ
(
y2
c − y2

u

)2 (
y2
s − y2

d

)2
(6.26)
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and the two largest subgroups of GF are U(2) and U(1)4 associated to

the vertex point of the Fig. 6.1 and the upper corner of the same figure

respectively.

• Explicitly axial breaking case: G /A,qF ∼ SU(ng)
3 - The invariants differ

in this case and so do the Jacobians:

JU = ∂y

(
Tr
(
YUY†U

)
, |detYU |

)
=

(
2yu yc
2yc yu

)
, (6.27)

and

JD = ∂y

(
Tr
(
YDY†D

)
, |detYD|

)
=

(
2yd ys
2ys yd

)
, (6.28)

so that

det JU = (y2
u − y2

c ) , det JD = (y2
d − y2

s) , (6.29)

and the single solution associated to the pattern GF q → SU(2)V × U(1)B

survives since now no axial symmetry is present from the beginning. The

third invariant related to the phase φU,D can be taken to be Arg (detYU,D),

which is no other than the variable itself. Then this part of the Jacobian

is block diagonal and constant, such that Jacobian determinant stays the

same.

Altogether the Jacobian determinant is:

det J = sin 2θ
(
y2
c − y2

u

)2 (
y2
s − y2

d

)2
, (6.30)

and the only maximal subgroup is U(2).

6.1.1.2 The Scalar Potential at the Renormalizable Level

The study of the Jacobian helped identify simple solutions in which some sub-

group of GF was left unbroken corresponding to boundaries of the I-manifold.

This analysis will serve as guide in the evaluation of the general scalar potential

at the renormalizable level and the set of minima it allows for. The following

study will reveal features obscured in the Jacobian method and will give further

insight in the possible configurations and the role of unbroken symmetries. In

particular the following study will reveal which of the above extrema (boundaries)

correspond to minima and whether the potential allows for solutions outside of

the boundaries and of what kind.
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Axial preserving case: : GF q ∼ U(ng)
3

The most general renormalizable potential invariant under the whole flavour sym-

metry group GqF can be writen in two lines by means of the introduction of the

array:

X ≡ (IU , ID)T =
(

Tr
(
YUY†U

)
,Tr

(
YUY†U

))T
, (6.31)

in terms of which:

V (4) =− µ2 ·X +XT · λ ·X + gTr
(
YUY†UYDY

†
D

)
+ hUTr

(
YUY†UYUY

†
U

)
+ hDTr

(
YDY†DYDY

†
D

)
, (6.32)

where λ is a 2 × 2 real symmetric matrix, µ2 a real 2-vector and hU,D, g three

real parameters; a total of 8 parameters enter this potential. Strict naturalness

criteria would require all dimensionless couplings λ, f , g, h to be of order 1,

and the dimensionful µ-terms to be smaller or equal than Λf although of the

same order of magnitude. The evaluation of the possible minima will reveal next

nonetheless that even relaxing this condition the set of possible vacua is severly

restricted.

Although is not the full solution to the minimization procedure let us consider

in a first step and for illustration the first two terms in 6.32 taking the limit

g, hU,D → 0. We can rewrite this part, if the matrix λ is invertible as:

−µ2 ·X+XT ·λ·X =

(
X − 1

2
λ−1 · µ2

)T
λ

(
X − 1

2
λ−1 · µ2

)
−µ2 ·λ

−1

4
·µ2 (6.33)

which is the generalization of a mexican-hat potential for two invariants. It is

clear that if the vector 1
2
λ−1 · µ2 takes positive values the minimum would set:(
IU
ID

)
= Λ2

f

(
y2
c + y2

u

y2
s + y2

d

)
=

1

2
λ−1 · µ2 (6.34)

This equation sets the order of magnitude of the Yukawa couplings as y ∼
µ/(Λf

√
λ), which signals the ratio of the mass scale of the scalar fields and the

high scale Λf . For generic values of µ2 and λ nonetheless the Yukawa magnitude

of up and down quarks would be the same, so the two entries of 1
2
λ−1 · µ2

Λ2
f

should
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accommodate certain tuning, in the case that occupy us presently it would im-

ply a O(10%) ratio ys/yc ' 10−1 =
√

(λ−1µ2)U/
√

(λ−1µ2)D
1. However let us

recall here that for simplicity the coupling of the up and down scalar fields in

the Yukawa operators were assumed the same, but if we were to extend this case

to a two Higgs double scenario, the value of tan β could make this tuning disap-

pear; as shown next it is the hierarchies within each up and down sector that the

potential is unavoidably responsible for in this scheme.

For the complete minimization the extension of the above is simple, the effect

of the invariants left out IU,D,UD adds up effectively to a modified λ and µ2.

The stepwise strategy for minimization starts off with the minimization in

those variables that appear less often in the potential, so that after solving in

their minima equations the left-over potential no longer depends on them. Then

we pick up the next variable which appears left often and iterate in this matrioska

like fashion.

The starting point is then the angle variable, appearing in one invariant only,

then follows the minimization of a variable independent from Tr(YY), which most

often in the potential. The variables used in particular can be taken to be the

difference of eigenvalues Tr(YU,D(−σ3)Y†U,D) = Λ2
f

(
y2
c,s − y2

u,d

)
. The value of these

variables will determine the hierarchy among the different generations, whereas

Tr(YY†) will have a saying on the overall magnitude of the Yukawas as shown

above.

This method dictaminates therefore that we start with the mixing angle that

appears in the single invariant IUD. The equation for the angle is,

∂V (4)

∂θ
= g

∂IUD
∂θ

= −gΛ4
f sin 2θ

(
y2
c − y2

u

) (
y2
s − y2

d

)
= 0 . (6.35)

The minimum of the scalar potential thus occurs for sin θ = 0 or cos θ = 0, for non-

degenerate quark masses, which is the only case in which the angle makes sense.

For determining which of these options is selected and to provide a very useful

and general understanding of the minimization in unitary matrices parameters,

the Von Neumann trace inequality for positive definite hermitian matrices is

here reproduced:

1The values U,D label the to entries of µ2: (µ2
U , µ

2
D)
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Let two hermitian positive definite j× j matrices A and B have eigenvalues of

moduli α1 ≤ α2 ≤ ... ≤ αj and β1 ≤ β2 ≤ ... ≤ βj respectively, then the following

inequality holds:
j∑
i=1

αj+1−i βi ≤ Tr (AB) ≤
j∑
i=1

αiβi . (6.36)

The usefulness of this inequality is that it tells us that, considering the eigen-

values at a fixed value and varying the rest of parameters in the matrix, that

is, the unitary matrices, the extrema are found for trivial unitary matrices. The

inequality tells us that in the case of the Invariant IUD:

y2
uy

2
s + y2

dy
2
c ≤ Tr

(
V †CKMy2

U VCKM y2
D

)
≤ y2

uy
2
d + y2

sy
2
c . (6.37)

The two extrema are indeed given by the two solutions for the angle in Eq. 6.35

Which of these two is selected depends nonetheless on the sign of the coefficient

in front of the invariant in the potential:

• g > 0 The potential is minimized when IUD is minimized, so Eq. 6.37

dictaminates:

VC =

(
0 1
1 0

)
, (6.38)

and the situation is such that the charm quark would couple only to the

down type quark and the up to the strange, in a rather upside-down sce-

nario.

• g < 0 The potential is minimized when IUD is maximized, so Eq. 6.37

determines:

VC =

(
1 0
0 1

)
, (6.39)

This case is closer to reality, now the Cabibbo angle is set to 0 and the

charm only couples to the strange quark, and the up to the down.

One can check that both these configurations leave an invariant U(1)2
V as defined

in Eq. 6.24.

All in all, the straightforward lesson that follows from Eq. 6.35 is that, given

the mass splittings observed in nature, the scalar potential for bi-fundamental

flavour fields does not allow mixing at the renormalizable level.
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The next step is the minimization in eigenvalues differences. The first rele-

vant point is that only the invariants IU2 , ID2 , IU,D of Eqs. 6.7-6.8 depend on the

eigenvalue squared differences (y4
u,d + y4

c,s = (y2
u,d + y2

c,s)
2/2 + (y2

u,d − y2
c,s)

2/2) and

appear linearly in the potential, Eq. 6.32.

When the operators in Eq. 6.7 have negative coefficients hU,D < 0 the poten-

tial pushes towards the hierarchical configuration, which maximizes IU2,D2 and

minimizes −|hU,D| IU2,D2 . In the case of IUD substitution in Eq. 6.8 and subse-

quently in Eq. 6.32 of the two possible solutions for the mixing at the minimum

for each sign of g reveals that this term in the potential always pushes towards

the hierarchical configuration. For the resemblance of nature this configuration

(associated to case 1 of Eq. 6.20 in the Jacobian analysis) is a good first approx-

imation: only the heaviest family is massive so that yu = yd = 0 and the mixing,

selecting g < 0, is vanishing.

For completeness and illustration all the possible minima and their connection

to the potential parameters are listed below:

I In this configuration a strong hierarchy arises;

YU = Λf

(
0 0
0 yc

)
, YD = Λf

(
0 0
0 ys

)
, (6.40)

which presents an unbroken symmetry GF q → U(1)2
V × U(1)2

A and is just

case 1 in the Jacobian analysis, see 6.20

II This case forbids mass for the up quark

YU = Λf

(
0 0
0 yc

)
, YD = Λf

(
yd 0
0 ys

)
, (6.41)

whereas the mass difference in the down sector is set by the relation

y2
s − y2

d

y2
c

=
|g|

2hD
, (6.42)

and the breaking pattern is GF q → U(1)2
V × U(1)A.

III The analogous of case II for massless down quark reads:

YU = Λf

(
yu 0
0 yc

)
, YD = Λf

(
0 0
0 ys

)
, (6.43)
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y2
c − y2

u

y2
s

=
|g|

2hD
, (6.44)

and again GF q → U(1)2
V × U(1)A.

IV Finally a completely degenerate scenario is possible in region IV

YU = Λf

(
y 0
0 y

)
, YD = Λf

(
y′ 0
0 y′

)
, (6.45)

having now that the potential triggers GF q → SU(2)V × U(1)B, and an

scenario very far from reality, but listed for completeness, and the analogous

of case 3 and Eq. 6.23 in the Jacobian analysis.

These regions are shown in the hU − hD plane in fig. 6.2.

hU

hD

I

II

III

IV

Figure 6.2: Different Regions for the Mass configuration - I is the region
that yields a hierarchical spectrum for both up and down sectors II (III) presents a
hierarchical down (up) spectrum and region IV results in degenerate up and down
sectors

Note that the cases found here are not quite the same as the ones found in the

Jacobian analysis. Case 2.a and 2.b are only present in the limiting case g → 0
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of II and III, so those are fine tuned cases. The reason for this is found in the

symmetries, indeed cases 2.a and II and 2.b and III have the same symmetry,

so from this point of view there is nothing special on having two eigenvalues

degenerate when in the other sector one entry is 0, as the symmetry is the same

if the two in the former sector do not coincide. The reason for the interplay of

the up and down sector is the common group transformation properties under

SU(3)L of YU,D and indeed this correlation disappears if the mixing invariant is

neglected g → 0, as can be checked on Eqs. 6.42-6.44.

Explicitly axial breaking case: G /A,qF ∼ SU(ng)
3

The set-up will change now with the introduction of the determinants in Eq.

6.9 when choosing to violate U(1)AU × U(1)AD explicitly. By making use of the

analogous of X in this case,

X̃ = (IU , ID, IŨ , ID̃)T (6.46)

=
(

Tr
(
YUY†U

)
,Tr

(
YDY†D

)
, | det (YU) | , | det (YD) |

)T
, (6.47)

the potential reads:

V (4) = −µ2 · X̃ + X̃T · λ · X̃ + h.c.+ g IUD (6.48)

where λ is matrix and µ2 4-vector, the entries of these two structures are complex

when they involve the determinants. The number of parameters has increased

now to 14, since the symmetry is chosen less restrictive. Nonetheless the phases of

the determinants are variables not observable at low energies and its minimization

is of no interest here, suffice then to assume that they are set to their minimum

values. Then we can effectively set it to 0 and consider all parameters in Eq. 6.48

real.

Parallel to the axial conserving case we have that, in the limit g → 0, the

minimum sets 〈
X̃
〉

=
1

2
λ−1 · µ2 , (6.49)

if the entries of such vector are in the inside of the I-manifold. This now requires

two conditions in the entries of λ−1µ2/2. First all entries have to be positive,

since the entries of X are always positive, and second the condition IU ≥ 2|IŨ |
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(ID ≥ 2|ID̃|) must be satisfied by the associated entries of λ−1 ·µ2. If this second

condition is not realized the minimum is at the boundary, that is, IU = 2IŨ

(ID = 2ID̃) or equivalently yu = yc (yd = ys).

Note also that in this case the solutions I, II and III are not present just like

cases 2.a and 2.b were not either in the Jacobian analysis.

These considerations together with the distinct symmetries from which they

arise lead to propose an ansazt to explain the hierarchy among the two generations

of quarks.

First we start with the whole GF group, so that determinants are forbidden

and we chose to sit in the region I where the up and down are massless at this

order. Then introduction of a small source of breaking of the U(1)A’s would allow

for the introduction of determinant terms in the potential with a naturally small

coefficient since it is constrained by a symmetry.

This set-up is qualitatively explainable from symmetry considerations. In the

axial preserving case the solution of hierarchical masses was present but the ex-

plicit breaking of the axial symmetry does not allow for such solutions. This

means that a small perturbation on the axial symmetry breaking direction pro-

duces a small shift in the light quark masses.

6.1.1.3 The Scalar Potential at the Non-Renormalizable Level

The scalar potential at the renormalizable level in the axial preserving case allows

for solutions with a strong hierarchy for both sectors of quark masses, that can be

perturbed via a small breaking of the axial U(1)′s to displace the minimum and

lift the zero masses of the lightest quarks. The Cabibbo angle was unavoidably set

to 0, in this section we explore whether non-renormalizable terms in the potential

may complete the picture.

Consider the addition of non-renormalizable operators to the scalar potential,

V (i>4). It is very interesting to notice that this does not require the introduction

of new invariants beyond those in Eqs. 6.3-6.5: all higher order traces and deter-

minants can in fact be expressed in terms of that basis of five “renormalizable”

invariants.
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The lowest higher dimensional contributions to the scalar potential have di-

mension six. At this order, the only terms involving the mixing angle are

V (6) ⊃ 1

Λ2
f

∑
i=u,d

(αUIUDIU + αDIUDID + · · · ) . (6.50)

These terms, however, show the same dependence on the Cabibbo angle previ-

ously found in Eq. (6.35) and, consequently, they can simply be absorbed in the

redefinition of the lowest order parameter, g. To find a non-trivial angular struc-

ture it turns out that terms in the potential of dimension eight (or higher) have

to be considered, that is

V (8) ⊃ α

Λ4
f

I2
UD , (6.51)

with whom the possibility of a mexican hat-like potential for IUD becomes possible

V (8) ⊃ α

Λ4
f

(
IUD −

g

2α
Λ4
f

)2

, (6.52)

which would set

sin2 θ ' g

2 y2
cy

2
sα

. (6.53)

Using the experimental values of the Yukawa couplings ys and yc, a realistic value

for sin θ can be obtained although at the price of assuming a highly fine-tuned

hierarchy between the dimensionless coefficients of d = 4 and d = 8 terms, g/α ∼
10−10, that cannot be naturally justified in an effective Lagrangian approach.

The conclusion is therefore that mixing is absent in a natural 2 generation

quark case.

6.1.2 Three Family Case

In this section we extend the approach discussed in the previous section to the

three-family case. The two bi-triplets scalars transform explicitly under the

flavour symmetry GqF , as in Eq. 5.5 and the Yukawa Lagrangian is the same

as that in Eq. (5.3). Once the flavons develop a vev the flavour symmetry is

broken and one should recover the observed fermion masses and CKM matrix

given in through Eq. (5.4).
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While most of the procedure follows the steps of the 2 generation case, a few

differences shall be underlined. First, the number of variables and therefore inde-

pendent invariants differs. As in the two family case we can absorb three unitary

matrices with GF rotations to leave two diagonal matrices with 3 eigenvalues each

and a unitary matrix. The latter contains three angles and 6 phases; diagonal

complex phase transformations allow to eliminate 5 of these so that the unitary

matrix contains 4 physical parameters. In total 10 parameters describe the ax-

ial preserving case. Again this resembles closely the usual discussion of physical

flavour parameters.

The higher number of variables implies that the list of invariants extends

beyond mass dimension 4 and therefore not all of them will be present at the

renormalizable level.

The list of invariants now grows reads (103, 104):

IU = Tr
[
YUY†U

]
, ID = Tr

[
YDY†D

]
, (6.54)

IU2 = Tr

[(
YUY†U

)2
]
, ID2 = Tr

[(
YDY†D

)2
]
, (6.55)

IU3 = Tr

[(
YUY†U

)3
]
, ID3 = Tr

[(
YDY†D

)3
]
, (6.56)

these first 6 invariants depend only on eigenvalues while the following 4 contain

mixing too,

IU,D = Tr
[
YUY†UYDY

†
D

]
, IU,D2 = Tr

[
YUY†U

(
YDY†D

)2
]
, (6.57)

IU2,D = Tr

[
YUY†U

(
YDY†D

)2
]
, I(U,D)2 = Tr

[(
YUY†UYDY

†
D

)2
]
. (6.58)

Explicitly these invariants read1:

IU = Λ2
f

∑
y2
α , ID = Λ2

f

∑
y2
i , (6.59)

IU2 = Λ4
f

∑
y4
α , ID2 = Λ4

f

∑
y4
i , (6.60)

IU3 = Λ6
f

∑
y6
α , ID6 = Λ6

f

∑
y6
i , (6.61)

1In our convention greek letters are up-type indices and latin letters down-type indices.
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IU,D = Λ4
f

∑
y2
αVαiy

2
i V
∗
αi , IU,D2 = Λ6

f

∑
y2
αVαiy

4
i V
∗
αi , (6.62)

IU2,D = Λ6
f

∑
y4
αVαiy

2
i V
∗
αi , I(U,D)2 = Λ8

f

∑
y2
α Vαi y

2
i V
∗
βi y

2
β Vβj y

2
j V
∗
αj , (6.63)

In the explicitly axial breaking case two complex phases add to the previous

number of parameters so that 12 altogether conform the total. In this case the

determinants

IŨ = Det [YU ] , ID̃ = Det [YD] , (6.64)

substitute the invariants in Eq. 6.56 since they are connected through the rela-

tions:

Tr

((
Y†UYU

)3
)

=
3

2
Tr

((
Y†UYU

)2
)

Tr
(
Y†UYU

)
− 1

2

(
Tr
(
Y†UYU

))3

+ 3 detYU detY†U (6.65)

Tr

((
Y†DYD

)3
)

=
3

2
Tr

((
Y†DYD

)2
)

Tr
(
Y†DYD

)
− 1

2

(
Tr
(
Y†DYD

))3

+ 3 detYD detY†D (6.66)

and they read in terms of the variables;

IŨ = Λ3
fe
iφU
∏

yα , ID̃ = Λ3
fe
iφU
∏

yi , (6.67)

which makes clear that the determinants of the fields detY change from mass

dimension 2 to 3 in the present 3 family case.

6.1.2.1 The Jacobian

The study of the Jacobian is developed next. The Jacobian has an structure as

in Eq. 6.14. For the mass terms the analysis was first carried out in (18, 105).

The mixing term however is not in the literature yet (17). Let’s turn first to the

mixing Jacobian JUD. We know that 4 parameters suffice to describe the mixing.

Rather than choosing a parametrization for VCKM , let us use the properties of a
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unitary matrix, substituting Eq. 6.1 in IU,D:

IU,D =
3∑
α,i

y2
α Vαi y

2
i V
∗
αi , (6.68)

=

3,2∑
α,i

y2
αVαi

(
y2
i − y2

b

)
V ∗αi + y2

b

∑
α

y2
α , (6.69)

=
2∑
α,i

(
y2
α − y2

t

)
Vαi
(
y2
i − y2

b

)
V ∗αi ,+y

2
b

∑
α

y2
α + y2

t

∑
i

y2
i , (6.70)

where the terms independent of mixing elements are irrelevant for the analysis

and will not be kept in the following. Note that what is achieved in using the uni-

tarity relations is to rewrite the invariant in terms of 4 mixing elements, namely1

|Vud|, |Vus|, |Vcd| and |Vcs|. The choice of these 4 is of course to one’s discretion;

we can choose other 4 by removing the α′th row and the i′th column of VCKM .

The same procedure for IU,D2 and IU2,D yields:

IU,D2 =
2∑
α,i

(
y2
α − y2

t

)
Vαi
(
y2
i + y2

b

) (
y2
i − y2

b

)
V ∗αi + · · · , (6.71)

IU2,D =
2∑
α,i

(
y2
α + y2

t

) (
y2
α − y2

t

)
Vαi
(
y2
i − y2

b

)
V ∗αi + · · · , (6.72)

whereas I(U,D)2 is more involved:

I(U,D)2 =
3∑

α,β,i,j

(
y2
α − y2

t

)
Vαi

(
y2
i − y2

b

)
V ∗βi

(
y2
β − y2

t

)
Vβj

(
y2
j − y2

b

)
V ∗αj + · · · ,

(6.73)

this equation differs from the square of IU,D, in terms in which β 6= α and i 6= j,

which implies they are all proportional to the 4 different mass differences:

I(U,D)2 =

(
3∑
α,i

y2
α Vαi y

2
i V
∗
αi

)2

− 2
(
y2
u − y2

t

) (
y2
c − y2

t

) (
y2
d − y2

b

) (
y2
s − y2

b

)
× (VudVcs − VusVcd) (V ∗udV

∗
cs − V ∗usV ∗cd) . (6.74)

1These can be traded in λ,A, ρ, η in the Wolfenstein parametrization if preferred.
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The first part we are not interested in as it is a function of a previously categorized

invariant. The second has though a peculiar dependence on the mixing param-

eters. To rewrite it in terms of the four independent parameters the following

relation is used:

Det (V ) Det (V ∗) =
2∑
α,i

VαiV
∗
αi − (VudVcs − VusVcd) (V ∗udV

∗
cs − V ∗usV ∗cd) = 1 . (6.75)

Resuming, the 4 independent pieces of the invariants:

I ′U,D =
∑
α,i

(
y2
α − y2

t

) (
y2
i − y2

b

)
VαiV

∗
αi , (6.76)

I ′U,D2 =
∑
α,i

(
y2
α − y2

t

) (
y2
i + y2

b

) (
y2
i − y2

b

)
VαiV

∗
αi , (6.77)

I ′U2,D =
∑
α,i

(
y2
α + y2

t

) (
y2
α − y2

t

) (
y2
i − y2

b

)
VαiV

∗
αi , (6.78)

I ′(U,D)2 =
∏
β

(
y2
β − y2

t

)∏
j

(
y2
j − y2

b

) 2∑
α,i

VαiV
∗
αi , (6.79)

build up the Jacobian

JUD =
∂Ĩ

∂|Vα,i|
∝


|Vud| (y2

d + y2
b ) |Vud| (y2

u + y2
t ) |Vud| (y2

c − y2
t ) (y2

s − y2
b ) |Vud|

|Vus| (y2
s + y2

b ) |Vus| (y2
u + y2

t ) |Vus| (y2
c − y2

t ) (y2
d − y2

b ) |Vus|
|Vcd| (y2

d + y2
b ) |Vcd| (y2

c + y2
t ) |Vcd| (y2

u − y2
t ) (y2

s − y2
b ) |Vcd|

|Vcs| (y2
s + y2

b ) |Vcs| (y2
c + y2

t ) |Vcs| (y2
u − y2

t ) (y2
d − y2

b ) |Vcs|


(6.80)

where the proportionality constant is different for each row; namely the product

(y2
α − y2

t ) (y2
i − y2

b ). The determinant of J is

Det (JUD) =
(
y2
u − y2

t

) (
y2
c − y2

t

) (
y2
u − y2

c

) (
y2
d − y2

b

) (
y2
s − y2

b

) (
y2
d − y2

s

)
(6.81)

× |Vud||Vus||Vcd||Vcs| (6.82)

The analysis has turned out to be as simple as it could be. The determinant

vanishes if any of the mass differences does, or if any of the entries of V van-

ishes. The rank is reduced the most for three mixing elements vanishing, which

corresponds to (a permutation of) the identity.

Next the analysis of the invariants containing eigenvalues solely is presented,

the axial breaking case was analyzed in (18) but is reproduced here for complete-

ness.
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• Axial conserving case: GqF ∼ U(ng)
3 The Jacobians are in this case,

JU = ∂y

(
TrYUY†U , Tr (YUY†U)2 , Tr (YUY†U)3

)
=


2yu 4y3

u 6y5
u

2yc 4y3
c 6y5

c

2yt 4y3
t 6y5

t

 ,

(6.83)

and

JD = ∂y

(
TrYDY†D , Tr (YDY†D)2 , Tr (YDY†D)3

)
=


2yd 4y3

d 6y5
d

2ys 4y3
s 6y5

s

2yb 4y3
b 6y5

b

 ,

(6.84)

so that:

det JU = ycyuyt(y
2
u − y2

c )(y
2
c − y2

t )(y
2
u − y2

t ) , (6.85)

det JD = ydysyb(y
2
d − y2

s)(y
2
s − y2

b )(y
2
d − y2

b ) . (6.86)

There are now 4 possibilities to cancel each determinant above with or-

dered eigenvalues, these can be shorted in those who reduce the rank of the

Jacobian to 2,

Y ∼

 0 0 0
0 y 0
0 0 y′

 ,

 y 0 0
0 y 0
0 0 y′

 ,

 y 0 0
0 y′ 0
0 0 y′

 , (6.87)

and those that yield a rank 1 Jacobian

Y ∼

 0 0 0
0 0 0
0 0 y

 ,

 y 0 0
0 y 0
0 0 y

 . (6.88)

We will not list all the possible combinations of the up and down sector but

display the two that result in maximal unbroken subgroups:

1. GF q → SU(3)V × U(1)B Down and Up quark sectors degenerate

YU = Λf

 y 0 0
0 y 0
0 0 y

 , YD = Λf

 y′ 0 0
0 y′ 0
0 0 y′

 . (6.89)
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2. GF q → U(2)3 × U(1)t+b Down and Up quark sectors hierarchical

YU = Λf

 0 0 0
0 0 0
0 0 y

 , YD = Λf

 0 0 0
0 0 0
0 0 y′

 (6.90)

• Explicitly axial breaking case: G /A,qF ∼ SU(ng)
3 The Jacobians read

JU = ∂y

(
| detYU | , TrYUY†U , Tr (YUY†U)2

)
=


ycyt 2yu 4y3

u

ytyu 2yc 4y3
c

yuyc 2yt 4y3
t

 ,

(6.91)

JD = ∂y

(
detYD , TrYDY†D , Tr (YDY†D)2

)
=


ybys 2yd 4y3

d

ydyb 2ys 4y3
s

ysyd 2yb 4y3
b

 ,

(6.92)

and the determinant of each Jacobian is

det JU = (y2
u − y2

c )(y
2
c − y2

t )(y
2
u − y2

t ) , (6.93)

det JD = (y2
d − y2

s)(y
2
s − y2

b )(y
2
d − y2

b ) , (6.94)

from where we see that the first case in 6.87 is no longer a solution.

6.1.2.2 The Potential at the Renormalizable Level

The following study will determine which of the different above unbroken symme-

tries (boundaries) are respected (possible) at the different minima of the potential.

The renormalizable scalar potential will contain formally the same independent

invariants as in the two generation case, only these invariants now depend on a

higher number of variables.

Axial preserving case: GqF ∼ U(ng)
3

The most general scalar potential at the renormalizable level in this case is just

the same formally as for the 2 family case: Eq. 6.32, using the vector X as defined

in 6.31. Next is detailed the possible vacua permitted in this potential.
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First the Von Neumann trace inequality permits the automatic minimization

of the mixing term, so that we have two options;

g < 0 VCKM =

 1 0 0
0 1 0
0 0 1

 ; g > 0 VCKM =

 0 0 1
0 1 0
1 0 0

 (6.95)

the first is a good approximation to reality, whereas the second one would result

in the top quark coupled only to the down type quark. These solutions leave an

invariant generation number U(1)3
V defined as in Eq. 6.24 regardless for generic

values of masses.

The two possibilities above are a reduced number of the various permutation

matrices that the Jacobian analysis singled out. This means that the potential

selects some of these boundaries, concretely those that order in an inverse or

direct manner the mass eigenstates of up and down sectors.

With the same procedure as for the two family case we next minimize in

the variables that will determine the hierarchy. These are now the two possible

eigenvalue differences in the up sector and another two in the down sector.

The potential is formally the same as in the 2 family case and let us draw

the readers attention to the fact that the “map” of Fig. 6.2 is drawn in terms

of invariant magnitudes which know nothing of the dimension of the matrices

involved. In this sense we expect the same map, as it will turn out. It is only left

to determine what are the hierarchies in these regions.

We can anticipate, focusing on the contrast with the observed flavour pattern,

that a hierarchical solution corresponding to region I of Fig. 6.2 where only the

heaviest family is massive and the mixing matrix is the identity is a natural

possible solution. Like in the two family case the resemblance with nature is

good in a first sketch; top and bottom are much heavier than the rest of quarks

and the mix little (∼ λ2
c) with them.

For completeness the set of vacua is listed next:

I In this region the equivalent of the hierarchical configuration is now the

case of vanishing of the lightest 4 eigenvalues,

YD = Λf

 0 0 0
0 0 0
0 0 yb

 , YU = Λf

 0 0 0
0 0 0
0 0 yt

 , (6.96)
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and an unbroken U(2)3 × U(1)t+b.

II Now we have a hierarchical Yukawa for the up sector and the two lightest

down-type eigenvalues are equal

YD = Λf

 y 0 0
0 y 0
0 0 yb

 , YU = Λf

 0 0 0
0 0 0
0 0 yt

 , (6.97)

ys = yd = y ,
y2
b − y2

y2
t

=
|g|

2hD
, (6.98)

leaving an unbroken an U(2)V × U(2)UR × U(1)t+b.

• III The analogous of the previous for the up sector is

YD = Λf

 0 0 0
0 0 0
0 0 yb

 , YU = Λf

 y 0 0
0 y 0
0 0 yt

 , (6.99)

yc = yu = y ,
y2
t − y2

y2
b

=
|g|

2hU
, (6.100)

with an unbroken U(2)V × U(2)DR × U(1)t+b

• IV Finally the degenerate case is simply

YD = Λf

 y 0 0
0 y 0
0 0 y

 , YU = Λf

 y′ 0 0
0 y′ 0
0 0 y′

 , (6.101)

respecting a U(3)V symmetry.

Note that none of the solutions have a single vanishing eigenvalue, so that

only the case I could be a good approximation to reality. It is the case that the

potential being the same as for two families, the picture of possible vacua in Fig.

6.2 is the same, only now the unbroken symmetry is different, but the maximal

that we could choose (93, 94).
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Explicitly axial breaking case: G /A,qF ∼ SU(ng)
3

The potential is now:

V (4) =− µ2 ·X +XT · λ ·X + gTr
(
YUY†UYDY

†
D

)
+ hUTr

(
YUY†UYUY

†
U

)
+ hDTr

(
YDY†DYDY

†
D

)
+ µ̃U detYU + µ̃D detYD . (6.102)

The inclusion of determinants will not change the possibilities listed as I , II , III

, IV, since all of these configurations are also boundaries in this case. Another

way of putting it is that part of the symmetries in the solutions above are still left

after removing the U(1)A factors, namely SU(2)DR,ER . This did not happen in

the two family case as the unbroken symmetry was “U(1)” rather than “U(2)”.

6.1.2.3 The Potential at the Non-Renomalizable Level

The first issue to deal with in this case is the fact that the order of magnitude of

the Yukawa eigenvalues is set by the ratio y ∼ µ/(Λf

√
λ) which implies for the

top Yukawa that the vev of the field µ/
√
λ is around the scale Λf signaling a bad

convergence of the EFT. To cope with this first it is noted that the top Yukawa

runs down with energy whereas the relation y ∼ µ/(Λf

√
λ) does not determine

the overall scale. For energies of the order of 108 GeV (9) the top Yukawa is

already smaller than the weak coupling constant allowing the usual expansion in

EFT.

The case in which the two scales are or the same order can nonetheless formally

be treated in the same sense as the non-linear σ-model. First the isolation in a

single invariant of the problematic terms is accomplished by the set of invariants;

{ IU , IU2 − (IU)2 , IU3 − (IU)3 } instead of Eqs. 6.54-6.56, such that the latter two

are suppressed by one power of the second highest eigenvalue: y2
c . Terms in IU

can be summed in a generic function in the potential F
(
IU/Λ

2
f

)
≡ F (y′2t ) and for

this analysis it suffices that it has a minimum nonvanishing and around 1. The

connection with Yukawas has also to be revisited

YU =
YU
Λf

+
∑
i

ci
YU
(
Y†UYU

)i
Λ2i+1
f

' V †CKM

 yu 0 0
0 yc 0
0 0 f(y′t)

 (6.103)
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Such that the connection with the top Yukawa coupling of the eigenvalue in YU ,

denoted y′t, is yt = f(y′t). Then substitution in the function F yields the potential

as a function of the top Yukawa coupling F (f−1(yt)). This means certainly a loss

in predictivity since the introduced functions F , f are general, however for the

present discussion it suffices that F (f−1(x)) has a minimum at x ' 1.

In either case and to conclude this discussion, the symmetry arguments used

to identify the possible vacua hold the same in this “strong interacting” scenario.

One interesting point is the possibility of non-renormalizable operators cor-

recting the pattern of the renormalizable potential. It is a priori either a fine-

tuned option like in the two family case or unsuccessful since the configurations

are protected by a large unbroken symmetry. The intuitive reason for this is that

for perturbations to displace the minimum they must create a small tilt in the

potential via lineal dependence on the deviations from the 0-order solution; how-

ever non-renormalizable terms contain high powers of eigenvalues and therefore

the corrections they introduce are not linear in the perturbations.

6.2 Flavour Scalar Fields in the Fundamental

In the simplest case from the group theory point of view, each Yukawa corre-

sponds to two scalar fields χ transforming in the fundamental representation

and the Yukawa Operator has dimension 6. This approach would a priori allow

to introduce one new field for each component of the flavour symmetry: three

fields. However, such a minimal setup leads to an unsatisfactory realization of

the flavour sector as no physical mixing angle is allowed. The situation improves

qualitatively, though, if two SU(ng)QL representations are introduced, one for the

up and one for the down quark sectors, the field content is detailed in table 5.3.

Before discussing the potential inspection of Eq. 5.8 will illuminate the road

ahead. The hypothesis now is that Yukawas are build out of two fundamental

representation. In linear algebra terms, the Yukawa matrix is made out of two

vectors. This is of course a very strong assumption on the structure of the matrix.

First and foremost such a matrix has rank 1, so that by construction, there is one

single eigenvalue per up and down sector different from 0. Please note that this
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statement is independent of the number of generations. The situation is then a

good starting approximation of a hierarchical spectrum.

Second the number of variables in the flavour fields will now not be the same

as low energy flavour observables. The scalar fields are fundamental and can

be thought of as complex vectors that are “rotated” under a flavour symmetry

transformation. The only physical invariants that can be associated to vectors are

the moduli and, if they live in the same space, their relative angles. Altogether

the list of independent invariants and therefore physical variables describing the

fields is,

Z =
{
χL†U χ

L
U , χR†U χ

R
U , χL†D χ

L
D , χR†D χ

R
D , χL†U χ

L
D

}
(6.104)

where the array Z will be useful for notation purposes1.

A word on the phenomenology of this scenario is due first. Let us compare

the phenomenology expected from bi-fundamental flavons (i.e. d = 5 Yukawa

operator) with that from fundamental flavons (i.e. d = 6 Yukawa operators). For

bi-fundamentals, the list of effective FCNC operators is exactly the same that

in the original MFV proposal (25). The case of fundamentals presents some dif-

ferences: higher-dimension invariants can be constructed in this case, exhibiting

lower dimension than in the bi-fundamental case. For instance, one can compare

these two operators:

DR YD† YU Y†U QL ∼ [mass]6 ←→ DR χ
R
d χ

L†
u QL ∼ [mass]5 , (6.105)

where the mass dimension of the invariant is shown in brackets; with these two

types of basic bilinear FCNC structures it is possible to build effective operators

describing FCNC processes, but differing on the degree of suppression that they

exhibit. This underlines the fact that the identification of Yukawa couplings with

aggregates of two or more flavons is a setup which goes technically beyond the

realization of MFV, resulting possibly in a distinct phenomenology which could

provide a way to distinguish between fundamental and bi-fundamental origin.

There is now also a clear geometrical interpretation of the Cabibbo angle: the

mixing angle between two generations of quarks is the misalignment of the χL

flavons in the flavour space.

1The index of Z will run over the five values (U,L) , (U,R) , (D,L) , (D,R, ) , (U,D)
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Let us turn now to the construction of the potential.

6.2.1 The Potential at the Renormalizable Level

Previous considerations regarding the scale separation between EW and flavour

breaking scale hold also in this case, and in consequence the Higgs sector con-

tributions will not be explicitly described. The Potential for the χ fields can be

written in the compact manner;

V (4) = −µ2
f · Z + ZT · λf · Z + h.c. , (6.106)

The total number of operators that can be introduced at the renormalizable level

is 20. However, only 5 different combinations of these will enter the minimization

equations. The solution

〈Z〉 =
1

2
λ−1
f µ2

f , (6.107)

exists if the vector λ−1
f µ2

f/2 takes values inside the possible range of Z. The case

in which this does not happen leads to a boundary of the invariant space. This

occurs both when the entries turn negative in λ−1
f µ2

f and when χL†U χ
L
Uχ

L†
D χ

L
D =

χL†D χ
L
Uχ

L†
U χ

L
D. This last case corresponds to the two vectors χLU,D aligned, that

precludes any mixing. This means that the no mixing case is a boundary to which

nonetheless the minima of the potential is not restricted in general.

All these considerations make straight forward the extraction of the Yukawa

configuration.

• Two family case From the expressions for the Yukawa matrices in Eqs. 5.8,

and the previous discussion we write that the configuration for the Yukawas

is

YD =

∣∣χLd ∣∣ ∣∣χRd ∣∣
Λ2
f

(
0 0
0 1

)
, YU =

∣∣χLu ∣∣ ∣∣χRu ∣∣
Λ2
f

VC

(
0 0
0 1

)
. (6.108)

VC =

(
cos θc sin θc
− sin θc cos θc

)
, (6.109)
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so that quark masses are fixed via Eq. 6.107 to:

yc =

√√√√(λ−1
f µ2

f

)
U,R

2Λ2
f

(
λ−1
f µ2

f

)
U,L

2Λ2
f

, ys =

√√√√(λ−1
f µ2

f

)
D,R

2Λ2
f

(
λ−1
f µ2

f

)
D,L

2Λ2
f

,

(6.110)

cos θc =

(
λ−1
f µ2

f

)
U,L√(

λ−1
f µ2

f

)
U,L

(
λ−1
f µ2

f

)
D,L

. (6.111)

The vev of the moduli of the χ fields is of the same order µ for natural

parameters, so that the cosine of the Cabibbo angle above is typically of

O(1). This means that in the fundamental a natural scenario can give rise

to both the strong hierarchies in quark masses and a non-vanishing mixing

angle, whereas in the bi-fundamental case the mixing was unavoidably set

to 0.

• Three family case The extension is simple, the Yukawa matrices are still

of rank one and a single mixing angle arises

YD =

∣∣χLd ∣∣ ∣∣χRd ∣∣
Λ2
f

 0 0 0
0 0 0
0 0 1

 , YU =

∣∣χLu ∣∣ ∣∣χRu ∣∣
Λ2
f

VCKM

 0 0 0
0 0 0
0 0 1

 .

(6.112)

VCKM =

 1 0 0
0 cos θ23 sin θ23

0 − sin θ23 cos θ23

 . (6.113)

with:

yt =

√√√√(λ−1
f µ2

f

)
U,R

2Λ2
f

(
λ−1
f µ2

f

)
U,L

2Λ2
f

, yb =

√√√√(λ−1
f µ2

f

)
D,R

2Λ2
f

(
λ−1
f µ2

f

)
D,L

2Λ2
f

,

(6.114)

cos θ23 =

(
λ−1
f µ2

f

)
U,L√(

λ−1
f µ2

f

)
U,L

(
λ−1
f µ2

f

)
D,L

. (6.115)

For obvious reasons, in eq. (6.112) the massive state is chosen to be that of

the third generation and we have again a naturally O(1) angle. The flavon

vevs have not broken completely the flavour symmetry, leaving a residual

U(1)QL×SU(2)DR×SU(2)UR symmetry group. This can be seen as follows,
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6.2 Flavour Scalar Fields in the Fundamental

in the three dimensional space where SU(3)QL acts, the two vectors χLU,D

define a plane, perpendicular to this plane there is the direction of the

family that is completely decoupled form the rest, and in the plane we have

the massive eigenstate and the eigenstate that, even if massless, can be told

from the other massless states as it mixes with the massive.

If the hierarchies in mass in each up and down sectors are explained here

through the very construction of the Yukawas via fundamental fields, there is

still the hierarchy of masses between the top and bottom for the potential to

accomodate, that is;

y2
b/y

2
t =

(
λ−1
f µ2

f

)
D,R

(
λ−1
f µ2

f

)
D,L(

λ−1
f µ2

f

)
U,R

(
λ−1
f µ2

f

)
U,L

' 5.7× 10−4 (6.116)

Note that the top-bottom hierarchy is explained in this context by the 4th power

ratio of mass scales so that a typical ratio of µD/µU ' 0.15 suffices to explain the

hierarchy.

One of the consequences of the strong hierarchy imposed in this scenario is

that it cannot be corrected with nonrenormalizable terms to obtain small masses

for the other lightest families for remember that the vanishing of all but one

eigenvalues is obtained just by regarding the scalar field fundamental content.

Nevertheless, the partial breaking of flavour symmetry provided by eq. (6.112) can

open quite interesting possibilities from a model-building point of view. Consider

as an example the following multi-step approach. In a first step, only the minimal

number of fundamental fields are introduced: i.e. χL, χRU and χRD. Their vevs

break SU(3)3 down to SU(2)3, originating non-vanishing Yukawa couplings only

for the top and the bottom quarks, without any mixing angle (as we have only

one left-handed flavon). As a second step, four new triplet fields χ′L,Ru,d are added,

whose contributions to the Yukawa terms are suppressed relatively to the previous

flavons. If their vevs point in the direction of the unbroken flavour subgroup

SU(2)3, then the residual symmetry is further reduced. As a result, non-vanishing

charm and strange Yukawa couplings are generated together with a mixing among
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the first two generations:

Yu ≡
χL χR†U

Λ2
f

+
χ′LU χ

′R†
U

Λ2
f

=

 0 sin θ yc 0
0 cos θ yc 0
0 0 yt

 ,

Yd ≡
χL χR†D

Λ2
f

+
χ′LD χ

′R†
D

Λ2
f

=

 0 0 0
0 ys 0
0 0 yb

 .

(6.117)

The relative suppression of the two sets of flavon vevs correspond to the hierarchy

between yc and yt (ys and yb)
1. Hopefully, a refinement of this argument would

allow to explain the rest of the Yukawas and the remaining angles. The con-

struction of the scalar potential for such a setup would be quite model dependent

though, and beyond the scope of this discussion.

6.3 Combining fundamentals and bi-fundamentals

Until now we have considered separately Yukawa operators of dimension d = 5

and d = 6. It is, however, interesting to explore if some added value from the

simultaneous presence of both kinds of operators can be obtained. This is a

sensible choice from the point of view of effective Lagrangians in which, working

at O(1/Λ2
f ), contributions of three types may be included: i) the leading d = 5

O(1/Λf ) operators; ii) renormalizable terms stemming from fundamentals (i.e.

from d = 6 O(1/Λ2
f ) operators; iii) other corrections numerically competitive at

the orders considered here. We focus here as illustration on the impact of i) and

ii):

LY = QL

[
YD
Λf

+
χLDχ

R†
D

Λ2
f

]
DRH +QL

[
YU
Λf

+
χLUχ

R†
U

Λ2
f

]
URH̃ + h.c. , (6.118)

As the bi-fundamental flavons arise at first order in the 1/Λf expansion, it is sug-

gestive to think of the fundamental contributions as a “higher order” correction.

Let us then consider the case in which the flavons develop vevs as follows:

YU,D
Λf

∼

 0 0 0
0 0 0
0 0 yt,b

 ,
χLU,D
Λ2
f

∼

 0
yc,s
0

 , (6.119)

1Alternatively, all flavon vevs of similar magnitude with different flavour scale would lead
to the same pattern.
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6.3 Combining fundamentals and bi-fundamentals

and χRu,d acquire arbitrary vev values of order Λf , for all components. Finally,

YU =

 0 sin θc yc 0
0 cos θc yc 0
0 0 yt

 , YD =

 0 0 0
0 ys 0
0 0 yb

 . (6.120)

This seems an appealing pattern, with masses for the two heavier generations and

one sizable mixing angle, that we chose to identify here with the Cabibbo angle1.

As for the lighter family, non-vanishing masses for the up and down quarks could

now result from non-renormalizable operators.

The drawback of these combined analysis is that the direct connection between

the minima of the potential and the spectrum is lost and the analysis of the

potential would be very involved.

1Similar constructions have been suggested also in other contexts as in (95).
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7

Lepton Sector

The lepton sector is at the moment in a dynamical and exciting state. The

determination of the fundamental nature of neutrino masses through neutrinoless

double beta decay (106) will explore one very fundamental question: are there

fermions in nature which are their own antiparticle? With the recent measure of

a sizable θ13 mixing angle in the lepton sector (107, 108), all angles of the mixing

matrix are determined and the race for discovery of CP violation in the lepton

sector has started (109). At the same time there is an ambitious experimental

search for flavour violation in the charged lepton sector (110, 111, 112, 113) which

could pour light in possible new physics beyond the SM, and provide a new probe

of the magnitude of the seesaw scale (14), whereas on the cosmology side recent

data seems to favor 3 only light species of neutrinos (114).

For the present theoretical analysis the nature of neutrino masses is crucial.

If neutrinos happen to be Dirac particles, the analysis of the flavour symmetry

breaking mechanism is completely analogous to that for the quark case: all con-

clusions drawn are directly translated to the lepton case and negligible mixing

would be favored for the simplest set-up in which each Yukawa coupling is asso-

ciated to a field in the bifundamental of the flavour group. As for quarks, sizable

mixing would be allowed, though, for setups in which the Yukawas are identified

with (combinations of) fields in the fundamental representation of the flavour

group, implying a strong hierarchy for neutrinos.

We turn here instead to the case in which neutrinos are Majorana particles

and more concretely generated by a type I seesaw model. It has been previously
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found (78, 79, 80, 81, 82) that for type I seesaw scenarios which exhibit approxi-

mate Lepton Number conservation, interesting seesaw models arise in which the

effective scale of Lepton Number is distinct from the flavour scale yielding an

interesting phenomenology (82, 115, 116, 117, 118), and it was first in this setup

that we identified the patterns (16) to be established with more generality in the

next sections. Let us consider in this chapter the general seesaw I scenario with

degenerate heavy right-handed neutrinos as outlined in the introduction.

With our hypothesis of dynamical Yukawa couplings we introduce to scalar

fields in parallel to the two Yukawa matrices that are bifundamentals of GF as

detailed in table 5.2.

7.1 Two Family Case

The counting of physical parameters is simple. It is known (83) that for two

families with heavy degenerate neutrinos, the number of physical parameters

describing the lepton sector is eight: six moduli and two phases.

Indeed, after using the freedom to choose the lepton charged matrix diagonal,

as in Eq. 4.7, Yν is still a priori a general complex matrix with 8 parameters.

Two phases can be reabsorbed through left-handed field U(1) rotations, though,

and an O(2) rotation on the right of the neutrino Yukawa coupling (see Eq.

4.1), reduces to five the number of physical parameters in Yν , so that altogether

n = 7 parameters suffice to describe the physical degrees of freedom in the lepton

Yukawas, with the eight physical parameter being the heavy neutrino mass M .

Below, for the explicit computation we will use either the so-called Casas-Ibarra

parametrization (119) of the neutrino Yukawa couplings to maintain explicit the

connection with masses and mixing,

YE =

(
ye 0
0 yµ

)
, Yν =

√
M

v
U

( √
mν1 0
0

√
mν2

)
R , (7.1)

U =

(
cos θ sin θ
− sin θ cos θ

)(
eiα 0
0 e−iα

)
, R =

(
coshω i sinhω
−i sinhω coshω

)
.

(7.2)
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7.1 Two Family Case

In order to extend the parametrization above to the fields YE, Yν , it is convenient

to use the definitions

yνi ≡
M

v2
mνi , (7.3)

leading to

Yν = Λf

(
cos θ sin θ
− sin θ cos θ

)(
eiα
√
yν1 0

0 e−iα
√
yν2

)(
coshω −i sinhω
i sinhω coshω

)
,

(7.4)

YE = ΛfyE = Λf

(
ye 0
0 yµ

)
. (7.5)

It is the case nonetheless that the minimization procedure is optimized when se-

lecting a different parametrization, the bi-unitary in analogy with quarks Eq. 4.2:

Yν = ΛfULyνUR , YE = Λfye ; ULU
†
L = 1 , URU

†
R = 1 , (7.6)

with yE as defined above, UL,R being unitary matrices and y containing the eigen-

values of the neutrino Yukawa matrix y ≡ Diag(y1, y2), distinct from neutrino

masses. The connection with the latter is:

mν = Yν
v2

M
Y T
ν =

v2

M
ULyνURU

T
RyνU

T
L . (7.7)

None of the unitary matrices above corresponds to UPMNS, but UPMNS is the the

matrix such that diagonalizes the matrix above, that is

mν = UPMNSmνU
T
PMNS . (7.8)

The expression of mixing and masses in terms of the bi-unitary parameters is

involved but the usefulness of this method is that we will not need it. The

potential will select particularly simple points of this parametrization with an

easy connection to low energy parameters.

In the following we will use the Casas-Ibarra parametrization for the Jacobian

and mixing analysis and move to the bi-unitary to simplify matters in the mass

hierarchy analysis of the potential.

The scalar potential for the YE and Yν fields must be invariant under the

SM gauge symmetry and the flavour symmetry GF . The possible independent
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invariant terms reduce to precisely seven terms, e.g.:

IE = Tr
[
YEY†E

]
, Iν = Tr

[
YνY†ν

]
, (7.9)

IE2 = Tr
[
(YEY†E)2

]
, Iν2 = Tr

[
(YνY†ν)2

]
, (7.10)

Iν′ = Tr
[
Y†νYνYTν Y∗ν

]
, Iν,E = Tr

[
YνY†νYEY

†
E

]
, (7.11)

Iν′,E = Tr
[
YνYTν Y∗νY†νYEY

†
E

]
. (7.12)

In terms of the variables defined above, the invariants read:

IE =Λ2
f

(
y2
e + y2

µ

)
, Iν = Λ2

f (yν1 + yν2) cosh 2ω , (7.13)

IE2 =Λf (y
4
e + y4

µ) , Iν2 = Λ4
f ((yν1 − yν2)2 + (yν1 + yν2)

2 cosh 4ω)/2 , (7.14)

Iν′ =Λ4
f

(
y2
ν1

+ y2
ν2

)
, (7.15)

Iν,E =Λ4
f [
(
y2
µ − y2

e

)
(yν1 − yν2) cos 2θ cosh 2ω +

(
y2
e + y2

µ

)
(yν1 + yν2)

+ 2
(
y2
µ − y2

e

)√
yν1yν2 sin 2α sin 2θ sinh 2ω]/2 , (7.16)

Iν′,E =Λ6
f

[(
y2
µ − y2

e

) (
y2
ν1
− y2

ν2

)
cos 2θ +

(
y2
e + y2

µ

) (
y2
ν1

+ y2
ν2

)]
/2 . (7.17)

These results apply to any general seesaw I construction with heavy degenerate

neutrinos. Note the different dependence in the mixing angle in the last two

equations. Crucial to this difference are non trivial values of ω 6= 0 and sin 2α 6= 0,

which will be shown below to be natural minima of the system.

Again, for the explicitly axial breaking case (GF ∼ SU(ng)
2 × SO(ng)) two

new invariants would appear

IẼ = Det [YE] , Iν̃ = Det [Yν ] , (7.18)

which would substitute the invariants in Eq. 7.10 as for the quark case, see Eqs.

6.10-6.11.

Finally, the determinants in Eqs. 7.18 can be expressed as

IẼ = Λ2
fyeyµe

iφE , Iν̃ = Λ2
f

√
yν1yν2e

iφν . (7.19)
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7.1.1 The Jacobian

The Jacobian can be factorized as follows:

J =

 JE 0 ∂yEI(ν,E),(ν′,E)

0 Jν ∂yν ,ωI(ν,E),(ν′,E)

0 0 ∂θ,αI(ν,E),(ν′,E)

 . (7.20)

With respect to the mixing variables, the sub-Jacobian is given by

∂θ,α (Iν,E , Iν′,E) =∂θ,α

(
Tr
[
YνY†νYEY

†
E

]
, Tr

[
YνYTν Y∗νY†νYEY

†
E

])
, (7.21)

∝
(

2
√
yν1yν2 sinh 2ω sin 2α cos 2θ − (yν1 − yν2) cosh 2ω sin 2θ

(
y2
ν1
− y2

ν2

)
sin 2θ

2
√
yν1yν2 sinh 2ω sin 2θ cos 2α 0

)
(7.22)

with subdeterminant given by

det Jθ,α =
(
y2
µ − y2

e

) (
y2
ν1
− y2

ν2

)
sinh 2ω sin2 2θ cos 2α (7.23)

This last equation shows the fundamental difference with respect to the quark (or

more in general Dirac) case: reducing the rank can be accomplished by choosing

α = π/4. It will be shown later on, through an explicit example, how this solution

comes along with mass degeneracy for light neutrinos.

Let us next consider the analysis the Jacobian for the mass sector

• Axial preserving case: GlF ∼ U(ng)
2 ×O(ng)

Jν =∂
(
Tr
[
YνY†ν

]
, Tr

[
(YνY†ν)2

]
, Tr

[
YνYTν Y∗νY†ν

])
(7.24)

=

 cosh 2ω yν1 cosh2 2ω + yν2 sinh2 2ω 2yν1
cosh 2ω yν1 sinh2 2ω + yν2 cosh2 2ω 2yν2

2(yν1 + yν2) sinh 2ω (yν1 + yν2)
2 sinh 4ω 0

 , (7.25)

The determinant of this matrix is:

det Jν = 8(yν1 + yν2)
2(yν1 − yν2) sinh 2ω , (7.26)

whereas for charged leptons it results, in analogy with the quark case:

det JE = yeyµ
(
y2
e − y2

µ

)
. (7.27)
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• Explicitly Axial breaking case: G /A,lF ∼ SU(ng)
2×SO(ng)- The Jacobian

reads now,

Jν =∂
(
detYν , Tr

[
YνY†ν

]
, Tr

[
YνYTν Y∗νY†ν

])
, (7.28)

=

 √
yν2/yν1 cosh 2ω 2yν1√
yν1/yν2 cosh 2ω 2yν2

0 2(yν1 + yν2) sinh 2ω 0

 , (7.29)

with determinant

det Jν =
(yν1 + yν2)

2(yν1 − yν2)√
yν1yν2

sinh 2ω , (7.30)

and for charged leptons

det JE =
(
y2
e − y2

µ

)
. (7.31)

7.1.2 The Potential at the Renormalizable Level

In this section the study of the renormalizable potential will reveal that all pos-

sible vacua retain some unbroken symmetry and in turn correspond to some of

the boundary regions identified in the previous section. Nonetheless the allowed

boundaries are not arbitrary, the potential selects only certain of these and in

particular the potential does not restrict neccesarily to the smallest dimension

non-trivial boundaries, such that one can have certain parameters adjustable by

the potential. This section will treat by default of the axial preserving case, unless

stated otherwise.

At the renormalizable level the most general potential respecting GF is

V =− µ2 ·X2 +
(
X2
)†
λX2 + hE Tr

(
YEY†E

)2

+ gTr
(
YEY†EYνY

†
ν

)
(7.32)

+ hν Tr
(
YνY†ν

)2
+ h′ν Tr

(
YνYTν Y∗νY†ν

)
.

In this equation X2 is a two-component vector defined by

X2 ≡
(

Tr
(
YEY†E

)
,Tr

(
Y†νYν

))T
,

µ2 is a real two-component vector, λ is a 2 × 2 Hermitian matrix and all other

coefficients are real parameters, a total of 9 parameters, one more than in the
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quark case since the new invariant I ′ν is allowed by the symmetry. The full scalar

potential includes in addition Higgs-YE and Higgs-Yν cross-terms, but they do

not affect the mixing pattern and will thus be obviated in what follows.

Consider now the fermion masses fixed at their physical values and focus on

the mixing pattern allowed at the minimum of the potential. Since mixing arises

from the misalignment in flavour space of the charged lepton and the neutrino

flavons, the only relevant invariant at the renormalisable level is Iν,E whose ex-

plicit dependence is shown in 7.16 and we reproduce here

Tr
(
YEY†EYνY

†
ν

)
=Λ4

f [
(
y2
µ − y2

e

)
(yν1 − yν2) cos 2θ cosh 2ω +

(
y2
e + y2

µ

)
(yν1 + yν2)

+ 2
(
y2
µ − y2

e

)√
yν1yν2 sin 2α sin 2θ sinh 2ω]/2 , (7.33)

for comparison with the quark case analogous

Tr
(
YDY†DYUY

†
U

)
= Λ4

f

[(
y2
c − y2

u

) (
y2
s − y2

d

)
cos 2θ +

(
y2
c + y2

u

) (
y2
s + y2

d

)]
/2 .

(7.34)

The first term in Eq. (7.33) for leptons corresponds to that for quarks in Eq. (7.34):

the only difference is the linear -instead of quadratic- dependence on neutrino

masses, as befits the seesaw realisation. The second line in Eq. (7.33) has a

strong impact on the localisation of the minimum of the potential and is respon-

sible for the different results in the quark and lepton sectors: it contains the

Majorana phase α and therefore connects the Majorana nature of neutrinos to

their mixing.

This formula also shows explicitly the relations expected on physical grounds,

between the mass spectrum and non-trivial mixing: i) the dependence on the

mixing angle disappears in the limit of degenerate charged lepton masses; ii) it

also vanishes for degenerate neutrino masses if and only if sin 2α = 0; iii) on

the contrary, for sin 2α 6= 0 the dependence on the mixing angle remains, as it

is physical even for degenerate neutrino masses; iv) the α dependence vanishes

when one of the two neutrino masses vanishes or in the absence of mixing, as α

becomes then unphysical.
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The minimisation with respect to the Majorana phase and the mixing angle

leads to the constraints:

sinh 2ω
√
mν2mν1 sin 2θ cos 2α = 0 , (7.35)

tg2θ = sin 2α tanh 2ω
2
√
mν2mν1

mν2 −mν1

. (7.36)

Where we have restored neutrino masses explicitly since the formula stays the

same. The first condition predicts then that the Majorana phase is maximal,

α = {π/4, 3π/4}, for non-trivial mixing angle. The relative Majorana phase

between the two neutrinos is therefore 2α = ±π/2 which implies no CP violation

due to Majorana phases. On the other hand, Eq. 7.36 establishes a link between

the mixing strength and the type of spectrum, which indicates a maximal angle

for degenerate neutrino masses, and a small angle for strong mass hierarchy.

Using the Von Neumann trace inequality we have that the previous result

corresponds to the configurations in which the eigenvalues of YEY†E and YνY†ν ,
are coupled in direct or inverse order:IEν

∣∣∣
min
∝ m2

em+ +m2
µm− , g > 0 ,

IEν

∣∣∣
min
∝ m2

em− +m2
µm+ , g < 0 ,

(7.37)

where the eigenvalues of YνY†ν are,

m± ≡ aν ±
√
a2
ν − c2

ν , (7.38)

aν = (mν2 +mν1) cosh 2ω , cν = 4
√
mν2mν1(cosh 2ω + sinh 2ω) .

This two family scenario resulted in a remarkable connection of mass degeneracy

and large angles, for an attempt at a realistic case we must wait to the three

family case.

The minimization for the rest of the potential will fix masses and ω but it

will not allow for arbitrary values of these. The procedure leads to 4 types of

vacua . The details for the procedure of finding this minimum are not detailed

here, suffice to say that there are two types of solutions one of them not leading

to mixing, and equivalent to the quark case. This corresponds to ω = 0 which

is listed as one of the solutions for a vanishing Jacobian. One can see how this
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solution leads to no mixing just substituting in Eq. 7.33. The other solution

which does lead to mixing corresponds to degenerate neutrinos mν1 = mν2 , which

corresponds to a boundary, and through Eq. 7.36 correspond to maximal mixing

θ = π/4, and α = π/4. In this case the Yukawa, turning now to the bi-unitary

parametrization, have a structure:

Yν = Λf

(
y1 0
0 y2

)
1√
2

(
1 i
−1 i

)
(7.39)

where the values y1 y2 are not proportional to masses and define in Eq. 7.6; if we

write the Majorana mass matrix:

mν =
v2

M

(
0 y1y2

y2y1 0

)
, (7.40)

we realize that the neutrinos are degenerate by construction. Even the values

of y1 and y2 are not arbitrary but the possible configurations come along with

certain hierarchies of charged lepton Yukawas, like in the quark case. Before

we discuss the possible vacua let us pause for examining more closely 7.39. Is

there something special about such a configuration? There is, it leaves certain

symmetry unbroken. For determining it we perform a transformation of O(2)NR :

Yν
O(2)−−→ Yν eiσ2θ =

(
y1√

2

iy1√
2

− y2√
2

iy2√
2

)(
cos θ sin θ
− sin θ cos θ

)
=

(
e−iθ 0

0 eiθ

)( y1√
2

iy1√
2

− y2√
2

iy2√
2

)
.

(7.41)

It is clear now that a simultaneous rotation of the left handed group SU(2)`L

generated by σ3 compensates these phases such that we have an unbroken U(1)

that we call SO(2)V since it would be the equivalent of SU(2)V in the quark case.

The allowed ratios of eigenvalues are constrained like in the quark case. The

minimization in these variables shows that one possible solution resembling nature

sets:

YE = Λf

(
0 0
0 yµ

)
, Yν = Λf

(
y1√

2

iy1√
2

− y2√
2

iy2√
2

)
, (7.42)

with a breaking pattern GlF → U(1)eR × SO(2)V . In this scenario the electron is

massless and the two neutrinos have the same absolute value for the mass while
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the mixing angle is maximal θ = π/4 in a tantalizing first approximation to the

lepton flavour pattern.

The rest of possible vacua are listed in what follows:

I This hierarchical solution sets the electron massless and forbids Majorana

masses for the neutrinos,

YE = Λf

(
0 0
0 yµ

)
, Yν = Λf

(
0 0
− y2√

2

iy2√
2

)
, (7.43)

since the breaking pattern is Glf → U(1)LN × U(1)e × U(1)A. Even if there

is no Majorana mass for the neutrinos, the muon neutrino mixes with the

heavy right handed and produces flavour effects. The spectrum has then a

massless neutrino, which is mostly active and a heavy Dirac neutrino.

II This case yields a massless electron and two degenerate majorana neutrinos;

YE = Λf

(
0 0
0 yµ

)
, Yν = Λf

(
y1√

2

iy1√
2

− y2√
2

iy2√
2

)
, (7.44)

with the relation;

y2
2 − y2

1

y2
µ

=
|g|

2(hν − |h′ν |)
, (7.45)

and the symmetry pattern; GlF → U(1)eR × SO(2)V .

III The two leptons have a mass and the neutrinos sector has a single massive

Dirac fermion.

YE = Λf

(
ye 0
0 yµ

)
, Yν = Λf

(
0 0
− y2√

2

iy2√
2

)
, (7.46)

satisfying

y2
µ − y2

e

y2
µ

=
|g|

2hE
, (7.47)

the unbroken symmetry is U(1)e × U(1)LN .
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7.2 Three Family case

IV The degenerate case now corresponds to a configuration of the Yukawas of

the type

YE = Λf

(
y 0
0 y

)
, Yν = Λfy

′

(
1√
2

i√
2

− 1√
2

i√
2

)
, (7.48)

which preserves SO(2)V .

From these set of possible minima we learn that all the vacua found at the renor-

malizable level have an unbroken symmetry. Like in the quark case the introduc-

tion of determinants will disrupt those configurations that have a chiral U(1)A.

This fact can be used to lift the zero eigenvalues through a small determinant

coefficient like in the quark case.

Finally we remark that all cases with nontrivial mixing, result in sharp pre-

dictions: a maximal mixing angle and degenerate neutrinos with a π/2 relative

majorana phase.

7.2 Three Family case

The scalar fields are taken to be bi-triplets as detailed in table 5.2 and are con-

nected proportionally to Yukawas as seen in Eq. 5.4.

For the number of parameters that suffice to parametrize such scalar fields

modulo the symmetry above, starting as in the 2 family case from diagonal YE,

Yν is a complex matrix with a priori 18 parameters. An O(3)NR rotation can

eliminate 3 of these, and there are still the residual symmetry of complex phase

redefinitions to absorb 3 complex phases , leaving 12 parameters (83). These

parameters can be encoded in 3 masses for the light neutrinos, two majorana

phases, 4 mixing parameters like for the quark mixing matrix and 3 complex

angles in the orthogonal R-matrix in the Casas-Ibarra parametrization.

This parametrization nonetheless proved not very useful in the 2 genera-

tion scenario, instead a parametrization that unfolds minima easily is the bi-

fundamental parametrization of Eq. 7.6, where now y ≡ Diag(y1, y2, y3). The

parameters in 7.6 are distributed as follows; 4 in the CKM -like matrix UL, 3 in
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UR, the three moduli of the eigenvalues in y and two relative complex phases of

these eigenvalues.

Without further delay we list the 15 invariants that constitute a complete

basis. The first 6,

Ie = Det [YE] , Iyν = Det [Yν ] , (7.49)

Ie2 = Tr
[
YEY†E

]
, Iy2ν = Tr

[
YνY†ν

]
, (7.50)

Ie4 = Tr

[(
YEY†E

)2
]
, Iy4ν = Tr

[(
YνY†ν

)2
]
, (7.51)

depend on eigenvalues only. The following 7

IL = Tr
[
YνY†νYEY

†
E

]
, IR = Tr

[
Y†νYνYTν Y∗ν

]
, (7.52)

IL2 = Tr

[
YνY†ν

(
YEY†E

)2
]
, IR2 = Tr

[(
YνY†ν

)2 YTν Y∗ν
]
, (7.53)

IL3 = Tr
[
YEY†E

(
YνY†ν

)2
]
, IR3 = Tr

[(
Y†νYLYTν Y∗ν

)2
]
, (7.54)

IL4 = Tr

[(
YνY†νYEY

†
E

)2
]
, (7.55)

depend on UL and URU
T
R only respectively. Note that the quark analysis goes

through the same for these terms (with the subtlety of considering three elements

of URU
T
R , as (URU

T
R )ij = (URU

T
R )ji). Finally the two remaining invariants that

will fix the relative complex phases are

ILR = Tr
[
YνYTν Y∗νY†νYEY

†
E

]
, IRL = Tr

[
YνYTν Y∗EYTEY∗νY†νYEY

†
E

]
. (7.56)

7.2.1 The Jacobian

The number of variables and invariants has scaled up to 15, in this sense the Casas

Ibarra parametrization becomes hard to handle specially due to the orthogonal

matrix. In the context of the bi-unitary parametrization though we can make

use of the previously derived Jacobians, in particular, the unitary relations we

employed for finding the mixing subjacobian hold for both UL and UR. In this

parametrization the structure of the Jacobian reads:
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7.2 Three Family case

J =


∂yEIen 0 0 ∂yEILn ∂yEILR

0 ∂yνIνn ∂yνIRn ∂yνILn ∂yνILR
0 0 ∂URIRn 0 ∂URILR
0 0 0 ∂ULILn ∂ULILR
0 0 0 0 ∂ULURILR

 . (7.57)

Luckily from the above shape we reduce the calculation of the 15×15 determinant

to the product of 5 subdeterminants, those of the diagonal. We are already

familiar with the first two, in the axial preserving scenario

det JE = yeyµyτ (y
2
e − y2

µ)(y2
µ − y2

τ )(y
2
e − y2

τ ) , (7.58)

det Jν = yν1yν2yν3(y
2
ν1
− y2

ν2
)(y2

ν2
− y2

ν3
)(y2

ν3
− y2

ν1
) , (7.59)

whereas in the axial breaking case,

det JE = (y2
e − y2

µ)(y2
µ − y2

τ )(y
2
e − y2

τ ) , (7.60)

det Jν = (y2
ν1
− y2

ν2
)(y2

ν2
− y2

ν3
)(y2

ν3
− y2

ν1
) . (7.61)

For the UL in analogy with quarks:

det (JUL) =
(
y2
ν1
− y2

ν2

) (
y2
ν2
− y2

ν3

) (
y2
ν3
− y2

ν1

) (
y2
e − y2

µ

) (
y2
µ − y2

τ

) (
y2
τ − y2

e

)
|U e1

L ||U e2
L ||U

µ1
L ||U

µ2
L | . (7.62)

For UR the dependence on in the invariants looks like

IR =Tr
(
y2
νURU

T
Ry2

νU
∗
RU
†
R

)
, IR2 =Tr

(
y4
νURU

T
Ry2

νU
∗
RU
†
R

)
, (7.63)

IR3 =Tr
(
y4
νURU

T
Ry4

νU
∗
RU
†
R

)
, (7.64)

and the Jacobian:

JUR ∝

 1 y2
ν1

+ y2
ν3

(
y2
ν1

+ y2
ν3

)2

1 y2
ν2

+ y2
ν3

(
y2
ν1
− y2

ν3

)2

2 y2
ν1

+ y2
ν1

+ 2yν3 2
(
y2
ν1

+ y2
ν3

) (
y2
ν2

+ y2
ν3

)
 , (7.65)

where the proprotinality is different for each row and equal to
(
y2
ν1
− y2

ν3

)2
,
(
y2
ν2
− y2

ν3

)2

and
(
y2
ν1
− y2

ν3

) (
y2
ν2
− y2

ν3

)2
respectively. Then the determinant is;

det JUR =
(
y2
ν1
− y2

ν2

)3 (
y2
ν2
− y2

ν3

)3 (
y2
ν3
− y2

ν1

)3 |
(
URU

T
R

)
11
||
(
URU

T
R

)
22
||
(
URU

T
R

)
12
|

(7.66)
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Last in line are the two invariants ILR that in terms of the bi-unitary parametriza-

tion read:

ILR =Tr
(
yνURU

T
Ry2

νU
∗
RU
†
RyνU

†
Ly2

eUL

)
, (7.67)

IRL =Tr
(
yνURU

T
RyνU

T
Ly2

EU
∗
LyνU

∗
RU
†
RyνU

†
Ly2

eUL

)
, (7.68)

Let’s parametrize the two remaining degrees of freedom as

yν → yνe
iα3λ3eiα8λ8 , (7.69)

we have then that the Jacobian built with the four terms:

∂ILR
α3

=iTr
([
λ3 , yνURU

T
Ry2

νU
∗
RU
†
Ryν

]
U †Ly2

eUL

)
, (7.70)

∂ILR
α8

=iTr
([
λ8 , yνURU

T
Ry2

νU
∗
RU
†
Ryν

]
U †Ly2

eUL

)
, (7.71)

∂IRL
α3

=2iTr
([
λ3 , U

T
Ly2

EU
∗
LyνU

∗
RU
†
Ryν

]
U †Ly2

eULyνURU
T
Ryν

)
, (7.72)

∂IRL
α8

=2iTr
([
λ8 , U

T
Ly2

EU
∗
LyνU

∗
RU
†
Ryν

]
U †Ly2

eULyνURU
T
Ryν

)
, (7.73)

and the determinant of this part:

JLR =
∂ILR
α8

∂IRL
α3

− ∂ILR
α3

∂IRL
α8

(7.74)

which vanishes if yνURU
T
Ryν , U

†
Ly2

eUL or their product is diagonal.

7.2.2 The Potential at the Renormalizable Level

The number of boundaries or subgroups of the flavour group has grown sensibly

complicating the Jacobian analysis, the study of the potential will help clarify

which of these configurations are realized and how at the renormaliable level.

The potential including all possible terms respecting the full flavour group

looks just like the two family case Eq 7.32 and the counting of potential param-

eters goes like the same; they add up to 9. We shall examine next the way in

which this potential will fix the vev of the scalar fields. For the same reason

as in the previous chapter the minimization process will start on those variables
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7.2 Three Family case

that appear less often in the potential. In this case the paremeters of the unitary

matrices, which will in turn determine UPMNS.

The left handed matrix UL appears in the term:

gTr
(
YEY†EYνY

†
ν

)
= gΛ4

fTr
(
y2
EULy2

νU
†
L

)
, (7.75)

the Von Neumann trace inequality solves in a line the minimization:

g < 0, UL =

 1 0 0
0 1 0
0 0 1

 ; gΛ4
fTr

(
y2
EULy2

νU
†
L

)
= gΛ4

f

3∑
i=1

yE,iyν,i , (7.76)

g > 0, UL =

 0 0 1
0 1 0
1 0 0

 ; gΛ4
fTr

(
y2
EULy2

νU
†
L

)
= gΛ4

f

3∑
i=1

yE,iyν,4−i , (7.77)

Under the same reasoning, UR appears only in:

h′ν Tr
(
YνYTν Y∗νY†ν

)
= h′ν Tr

(
y2
νURU

T
RyνU

∗
RU
†
R

)
(7.78)

then the UR has two discreet possible solutions

A For a negative coefficient we have

h′ν < 0 URU
T
R =

 1 0 0
0 1 0
0 0 1

 hνTr
(
y2
νURU

T
RyνU

∗
RU
†
R

)
= gΛ4

f

3∑
i=1

y4
ν,i

(7.79)

B Whereas for a positive coefficient,

h′ν > 0 URU
T
R =

 0 0 1
0 1 0
1 0 0

 hνTr
(
y2
νURU

T
RyνU

∗
RU
†
R

)
= gΛ4

f

3∑
i=1

y2
ν,iy

2
ν,4−i

(7.80)

If we recall the expression for the neutrino mass matrix in 7.7 contains pre-

cisely the combination URU
T
R . A quick look at the four possible combinations of

products of minima for UL,R reduce to two, since both configurations of UL leave

the neutrino mass matrix unchanged. Nonetheless if the configuration URU
T
R = 1
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has trivialy no mixing since everything is already diagonal, possibility B for URU
T
R

implies a maximal angle. Indeed the diagonalization reads:

v2

M

 0 0 y3y1

0 y2
2 0

y3y1 0 0

 = UPMNS

 mν1 0 0
0 mν2 0
0 0 mν1

UT
PMNS ,

with a mixing matrix and masses

UPMNS =

 1√
2

0 i√
2

0 1 0
− 1√

2
0 i√

2

 , mν1 = mν3 =
v2

M
y1y3 , mν2 =

v2

M
y2

2 .

(7.81)

At this point we do not know which mass is greater than the other. If these

cases are hierarchical, they correspond to either normal or inverted hierarchy

in a first rough approximation (∆m2
sol = 0) and the maximal angle lies always

among the two degenerate neutrinos, meaning θsol ' π/4; on the other hand if

the spectrum is quasidegenerate, the mixing angle correspondence is unclear and

the perturbations for splitting masses shall be studied.

Remember that all these conclusion were drawn from the minimization in two

terms of the potential only and they hold quite generally.

Another question is whether the configuration of off-diagonal URU
T
R has any

special property from the symmetry point of view. Recalling the two family case

the generalization is straight forward y1√
2

0 iy1√
2

0 y2 0
− y3√

2
0 iy3√

2

 eiθλ5 = eiθ/2(λ3+
√

3λ8)

 y1√
2

0 iy1√
2

0 y2 0
− y3√

2
0 iy3√

2

 . (7.82)

So that a simultaneous rotation in the direction λ5 of O(3)N and an opposite sign

transformation in the direction (λ3 +
√

3λ8)/2 of SU(3)`L constitute a preserved

U(1) symmetry. It is interesting to note that on the other hand, the configuration

of diagonal Yν has no symmetry for generic y1,2,3, we shall see how this fits

in the general picture of the possible minima. It is nonetheless evident that

for 2 degenerate y1,2,3 there is a SO(2)V symmetry unbroken and that for a

configuration proportional the identity Yν ∝ 1 a vectorial SO(3)V arises. So one

can wonder if this happens for case B, Eq. 7.80, in the case of all eigenvalues

degenerate.
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The result is that there is an unbroken SO(3) in this case as well. The two

new relations, 1√
2

0 i√
2

0 1 0
− 1√

2
0 i√

2

 eiθ2λ2 = e
−iθ2 1√

2
(λ2+λ7)

 1√
2

0 i√
2

0 y2 0
− 1√

2
0 i√

2

 , (7.83)

 1√
2

0 i√
2

0 1 0
− 1√

2
0 i√

2

 eiθ3λ7 = eiθ3(λ1+λ6)/
√

2

 1√
2

0 i√
2

0 y2 0
− 1√

2
0 i√

2

 , (7.84)

provide two new directions of conserved symmetry. This is however not enough

to prove that we have SO(3) and not just U(1)3. For this the basis{
1

2
(λ3 +

√
3λ8) , − 1√

2
(λ2 + λ7) ,

1√
2

(λ1 + λ6)

}
= (7.85)


 1 0 0

0 0 0
0 0 −1

 ,

 0 i√
2

0

− i√
2

0 i√
2

0 − i√
2

0

 ,

 0 1√
2

0
1√
2

0 1√
2

0 1√
2

0


 (7.86)

can be shown to have the commutation relations of SO(3), that is structure

constants εijk.

The emphasis will be on case B, Eq. 7.80, since it gives a maximal mixing

angle, but first a few words on the other case. If both Yukawas are diagonal, as

in case A, and for arbitrary eigenvalues, there is no symmetry left unbroken at all.

Nonetheless, when h′ν < 0, after minimizing in UR the structure of IR is just like

that of I2
ν , so that the effective coupling of I2

ν can be taken to be h′ν + hν . Then

the analysis of quarks holds just the same and we find the type of solution listed

in section 5.1.2.2, but all of these have at least one pair of eigenvalues degenerate,

this implies that there is indeed always at least one SO(2)V in the minimum.

This same reasoning applied to case B will reveal new freedom in the possible

eigenvalues of the Yukawas, since now the symmetry reported in Eq. 7.82, is

present for arbitrary entries.

Before entering the details on the complete set of vacua, for the reader inter-

ested in the closest solution to nature we report here a new kind of solution with
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respect to the quark case:

YE = Λf

 0 0 0
0 yµ 0
0 0 yτ

 , Yν = Λf

 yν1/
√

2 0 −iyν1/
√

2
0 yν2 0

yν3/
√

2 0 iyν3/
√

2

 , (7.87)

the two different entries for the charged leptons are in agreement with the larger

mass of the muon an tau leptons whereas in the neutrino sector there is one

maximal angle and the three massive neutrinos can be quasidegenerate leading

to an appealing set up in which small corrections produce another large mixing

angle (120).

Explicitly the types of vacua found are;

• I The hierarchical solution for the eigenvalues translates now into Yukawas

of the type

YE = Λf

 0 0 0
0 0 0
0 0 yτ

 , Yν = Λf

 0 0 0
0 0 0

1/
√

2 0 i/
√

2

 , (7.88)

and a pattern Gqf → U(2)2 × U(1)LN . There are no light neutrinos in this

scenario, but flavour effects are present.

• II The equivalent of case II in the 2 family case differs from the extension

of this case in the quark case from 2 to 3 generations. We have now a hier-

archical set-up for charged leptons and arbitrary entries for the eigenvalues,

YE = Λf

 0 0 0
0 0 0
0 0 yτ

 , Yν = Λf

 yν1/
√

2 0 −iyν1/
√

2
0 yν2 0

yν3/
√

2 0 iyν3/
√

2

 ,

(7.89)

and the breaking pattern is Gqf → U(2)ER × U(1)τ−e. The reason for yν1 6=
yν2 now is that the degeneracy of these two parameters leads to no extra

symmetry, so their equality is not protected.

• III The third kind of solution stands the same as in the quark case

YE = Λf

 y 0 0
0 y 0
0 0 yτ

 , Yν = Λf

 0 0 0
0 0 0

1/
√

2 0 i/
√

2

 , (7.90)
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for now the identity ye = yµ yields the breaking structure Gqf → U(2)V ×
U(1)LN , were the unbroken group would be different if the two first eigen-

values of YE were to differ.

• IV The completely degenerate configuration is

YE = Λf

 y 0 0
0 y 0
0 0 y

 , Yν = Λf

 1/
√

2 0 −i/
√

2
0 1 0

1/
√

2 0 i/
√

2

 , (7.91)

we have now that Gqf → SO(3)V with the vectorial group as pointed out in

Eqs. 7.82-7.86. In this case nonetheless the mixing loses meaning since the

charged leptons are degenerate.

V New configurations are now possible as

YE = Λf

 0 0 0
0 yµ 0
0 0 yτ

 , Yν = Λf

 yν1/
√

2 0 −iyν1/
√

2
0 yν2 0

yν3/
√

2 0 iyν3/
√

2

 ,

(7.92)

with Gqf → U(1)V × U(1)eR

VI The presence of arbitrary charged lepton masses is present when two neu-

trinos are massless,

YE = Λf

 ye 0 0
0 yµ 0
0 0 yτ

 , Yν = Λf

 0 0 0
0 yν2 0

yν3/
√

2 0 iyν3/
√

2

 ,

(7.93)

with Gqf → U(1)τ × U(1)e since the neutrinos that the electron and tau

couple to are massless.

VII Finally the case II leaves and extended symmetry if two neutrinos are mass-

less

YE = Λf

 0 0 0
0 0 0
0 0 yτ

 , Yν = Λf

 0 0 0
0 yν2 0

yν3/
√

2 0 iyν3/
√

2

 ,

(7.94)

with Gqf → U(2)ER × U(1)e × U(1)τ
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The possibilities for the vacua have grown sensibly. This is related to the flavour

group. The presence of the new invariant at the renormalizable level IR gave

rise to the maximal angle solution. In turn this choice resulted in a term in the

potential which was not present in the quark case, unlike the no mixing case. This

invariant then produces new configurations for the values of Yukawa eigenvalues.

Indeed in the limit h′ν → 0 all this different cases recombine in the ones for the

quark case.

In this scenario the introduction of small breaking terms of the axial symmetry,

that is determinants, could produce a hierarchy by lifting the 0 eigenvalues in the

new configurations V VI VII.

For a realistic scenario at this level, the quasidegenerate scenario for neutrino

masses would be a good starting point and simultaneously the charged lepton

spectrum can be chosen hierarchical (case II) or semi-hierarchical (case V). One

can imagine perturbations in this scenario correcting the pattern; these correc-

tions should give rise to one other large mixing angle and the “small” reactor

angle, such that the largest of the three is related to ∆m2
atm. Lifting the electron

mass from 0 is possible in case V as outlined.

The general conclusion is therefore that in first approximation a maximal

mixing angle is obtained in the lepton sector whereas for the quark case no mixing

is allowed in this same level of approximation. This stands as a tantalizing

framework for explaining the differences in mixing matrices in the two sectors

in a common framework for quarks and leptons. The solution of the maximal

angle can be traced back to the presence of an orthogonal group in the flavour

symmetry of the lepton sector, which is in turn related to the Majorana nature of

neutrino masses.
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Resumen y Conclusiones

En esta tesis la estructura de sabor de las part́ıculas elementales ha sido exam-

inada desde el punto de vista de una posible simetŕıa de sabor impĺıcita. La

simetŕıa de sabor considerada es la simetŕıa global que presenta el ME en ausen-

cia de masa para los fermiones. La extensión necesaria del ME para acomodar

masas de neutrinos introduce no obstante una dependencia en el modelo elegido.

Por simplicidad el escenario del Seesaw con neutrinos pesados (conocido como

tipo I o tipo III) es considerado cuando se trata de leptones, asumiendo la ex-

istencia de ng generaciones ligeras y pesadas. La simetŕıa de sabor es entonces

seleccionada como la mayor simetŕıa posible de la teoŕıa libre, esquemáticamente

GF ∼ U(ng)
5 × O(ng), en dónde O(ng) está asociado a neutrinos pesados degen-

erados, cuya masa es la única presente en la teoŕıa libre, mientras que cada factor

U(ng) corresponde a cada campo con distinta carga en el ME.

Sin espicificar un modelo de sabor es posible explorar la posibilidad de que,

a bajas enerǵıas, los Yukawas sean las fuentes de sabor en el ME y la teoŕıa

que lo completa; esta suposición está en acuerdo con los datos experimentales y

se encuetra en el centro del éxito fenomenológico de la hipótesis de MFV, im-

plementada a través de técnicas de Lagrangianos efectivos. Prosiguiendo este

camino, hemos explorado las consecuencias de un carácter dinámico de los acop-

los de Yukawa mediante la determinación, en una base general, de los posibles

extremos del conjunto de invariantes (gauge y de sabor) que pueden ser con-

struidos con éstos. Existen tantos invariantes independientes como parámetros
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f́ısicos, y un conjunto de invariantes completo e independiente ha sido determi-

nado y examinado. Hemos demostrado que, mientras para quarks los extremos

de los invariantes apuntan hacia la ausencia de mezcla, para leptones grandes

ángulos correlacionados con un carácter de Majorana no trivial resultan ser los

extremos naturales. Éste puede ser un motivador y sugerente primer paso en la

empresa del entendimiento del origen de sabor, dado que este esquema resulta

muy similar al obesrvado en la naturaleza.

Un verdadero origen dinámico de los acoplos de Yukawa sugiere un paso

más: considerar que corresponden a campos dinámicos, o agregados de éstos,

que poseen sabor y han adquirido un vev. La simetŕıa de sabor seŕıa manifi-

esta en el Lagrangiano total de alta enerǵıa, a una escala Λf . Tras la rotura

espontánea de simetŕıa, los acoplos de Yukawa de bajas enerǵıas resultaŕıan de

operadores efectivos de dimension d > 4 invariantes bajo la simetŕıa de sabor,

que involucran uno o mas campos de sabor junto con los campos usuales del ME.

Solo un escalar (o cunjunto de campos en una configuracion escalar) puede

tomar un vev, que deberá corresponder al mı́nimo de un potencial. ¿Cuál es el

potencial escalar para estos campos escalares de sabor? ¿Puede alguno de sus

mı́nimos corresponder naturalmente al espectro observado de masas y ángulos?

Estas preguntas son respondidas en el presente trabajo. El análisis del potencial

está relacionado con los extremos de los invariantes mencionados antes, pero va

mas allá dado que la presencia simultánea de varios invariantes no tiene por qué

producir mı́nimos que coincidan con los extremos hallados mediante la consid-

eración independiente de invariantes.

La realización mas simple de este tipo se obtene via una correspondencia uno a

uno de cada acoplo de Yukawa (up, down, elecrón y neutrino) con un único campo

escalar perteneciente a la representación bi-fundamental del grupo de sabor GF .

En el lenguaje de Lagrangianos efectivos este caso corresponde al orden más bajo

en la expansión de sabor: operadores de Yukawa de dimension d = 5 construidos

por un campo escalar y los campos del ME usuales. El potencial escalar general

para campos escalares bi-fundamentales ha sido construido para quarks y leptones

en el caso de dos y tres familias. Formalmente, se construye con los invariantes

mencionados arriba y no obstante de su combinación surgen nuevos mı́nimos.

94



Al determinar el potencial escalar, primero se demostró que imponer la simetŕıa

de sabor representa una condición muy restrictiva: al nivel renormalizable sólo

ciertos términos son permitidos en el potencial, e incluso al nivel renormalizable

estructuras constreñidas deben ser respetadas.

En el caso de quarks, al nivel renormalizable, en el mı́nimo del potencial solo

ángulos nulos son permitidos. Respecto a jerarqúıas de masa, uno de los posibles

mı́nimos presenta masas nulas para todos los quarks excepto los pertenecientes a

la familia más pesada, esto es, un quark tipo down y otro tipo up con masa sola-

mente tanto en dos como en tres familias. Exite por lo tanto una solución incial

que se asemeja en primera aproximación a la naturaleza: un espectro jerárquico

sin mezcla. Dicha solución puede ser pertubada al nivel renormalizable para

obtener masas para las familias más ligeras mediante términos de rotura expĺıcita

de la parte abeliana de GF q, es decir U(1)3. Esta opción no está presente en el

caso de tres familias dado que la configuración jerárquica está protegida por una

mayor simetŕıa no rota: SU(2)3. La introducción de términos no renormalizables

en el potencial permite una rotura mayor de la simetŕıa, al precio de enormes

ajustes finos, que son inaceptables en nuestra opinión en el esṕıritu de la teoŕıa

efectiva de campos.

En el sector leptónico la misma realización de correspondencia Yukawa-campo,

escalares bi-fundamentales, condujo a resultados soprendentemente diferentes.

En el caso de dos y tres familias, fases de Majorana y ángulos de mezcla no

triviales pueden ser seleccionados por el mı́nimo del potencial, indicando una

nueva conexión en la estructura de masas de neutrinos: i) grandes ángulos de

mezcla son posibles; ii) hay una fuerte correlación entre ángulos de mezcla grandes

y espectro degenerado de masas; iii) la fase de Majorana relativa es predicha

como máxima, 2α = π/2, aunque no implica violación de conjugación de carga y

paridad.

Las soluciones exactas del potencial renomalizable condujentes a mezcla no

trivial muestran un único ángulo máximo entre dos neutrinos degenerados pero

distinguibles tanto para el caso de dos como el de tres familias. Esto conduce,

para el caso de jerarqúıa normal e invertida, a el ángulo máximo siendo el solar

en lugar del atmosférico, numéricamente compatible con un valor máximo. En
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el caso de los tres neutrino ligeros degenerados, permitido por el potencial renor-

malizable, la asignación del ángulo depende de las correcciones al espectro de

masas, pero parecen indicar la posibilidad de un segundo gran ángulo de mezcla

en un escenario más prometedor, actualmente bajo estudio (17).

Otra avenida explorada en este trabajo asocia dos campos a cada acoplo de

Yukawa, esto es Y ∼ χLχR†/Λ2
f . Esta situación es atrayente dado que mien-

tras que los Yukawas son objetos compuestos, los nuevos campos están en la

representación fundamental. Dichos campos podŕıan ser escalares o fermiónicos:

aqui nos centramos exclusivamente en escalares. Desde el punto de vista de La-

grangianos efectivos, este caso podŕıa corresponder al siguiente al primer orden

en la expansión: operadores de Yukawa efectivos de dimension 6, como fuentes

totales o parciales de los Yukawas de baja enerǵıa. Hemos constrúıdo el potencial

escalar general para campos escalares en la representación fundamental para los

casos de dos y tres familias de quarks, aunque las conclusiones se transladan de

manera directa a leptones. Por construcción este escenario resulta inevitable-

mente en una fuerte jerarqúıa de masas: solamente un quark en cada sector up y

down obtiene masa: los quarks top y bottom. Una mezcla no trivial requiere dos

campos escalares de sector up y down (neutrino y electrón) transformando bajo

el grupo SU(3)QL . En consequencia el contenido mı́nimo es de cuatro campos

χLU (ν), χ
L
D (E), χ

R
U (ν) and χRD (E) y la mezcla surge de la interacción entre los dos

primeros. En resumen, para escalares en la fundamental en un modo natural se

obtiene: i) una fuerte jerarqúıa entre quarks de la misma carga, señalando un

quark distinguible por su mayor masa en cada sector; ii) un ángulo de mezcla no

trivial, que puede ser identificado tanto para quarks como para leptones con el

del sector 23 en el caso de tres familias.

Finalmente, como una posible corrección a los patrones discutidos previa-

mente, se ha discutido brevemente la posibilidad de introducir simultáneamente

escalares bi-fundamentales y fundamentales. Es una posibilidad muy sensata,

desde el punto de vista de Lagrangianos efectivos, considerar operadores de

Yukawa de orden d = 5 y d = 6 trabajando a orden O(1/Λ2
f ). Sugiere que

el término de d = 5, que acarrea bi-fundamentales, podŕıa proporcionar la con-

tribución dominante, mientras que el operador de d = 6, que trae consigo los
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campos en la fundamental, proporciona correcciones para inducir masas no nulas

para las dos familias ligeras junto con ángulos no triviales.

En general, es destacable que el requisito de invarianza bajo la simetŕıa de

sabor constriña fuertemente el potencial escalar y consequentemente los mı́nimos

y patrones de ruptura de simetŕıa. De entre los resultados obtenidos uno so-

bresale de entre los demás. En el mı́nimo del potencial, al nivel renormalizable,

los ángulos de mezcla para quarks son nulos a primer orden, mientras que la

mezcla en los leptones resulta ser máxima. La presencia de mezcla máxima es

debida al factor O(ng) del grupo de sabor, que está a su vez relacionado con la

naturaleza Majorana de los neutrinos. La explicación de la diferente estructura

de mixing entre quarks y leptones en este escenario es, en última instancia, la

distinta naturaleza de los dos tipos de fermiones: Dirac y Majorana.
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Summary and Conclusions

In this dissertation the flavour pattern of the elementary particles was examined

from the point of view of its possible underlying flavour symmetry. The flavour

symmetry considered is the global flavour symmetry which the SM possesses in

the limit of massless fermions. The necessary extension of the SM to accom-

modate Majorana neutrino masses introduces nevertheless a model dependence

in the neutrino sector; for simplicity the seesaw scenario with heavy neutrinos

(known as type I or type III) is considered here when dealing with leptons, as-

suming ng generations in both the light and heavy sectors. The largest possible

flavour symmetry of the free theory for both quark and lepton sectors is then,

schematically, GF ∼ U(ng)
5×O(ng), with O(ng) associated to heavy degenerate

neutrinos, whose mass is the only one present in the free theory, and each U(ng)

factor for each SM fermion field1.

Without particularizing to any concrete flavour model, it is possible to explore

the possibility that, at low energies, the Yukawas may be the sources of flavour

in the SM and beyond; this assumption is well in agreement with data and lies

at the heart of the phenomenological success of the MFV ansatz, implemented

through effective Lagrangian techniques. Walking further on this path, we have

explored the consequences of an hypothetical dynamical character for the Yukawa

couplings themselves by determining, on general grounds, the possible extrema

of the (gauge and flavour) invariants that can be constructed out of them. There

1The flavour group can alternatively be defined as the largest flavour group in the absence
of Yukawa interactions.
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are as many independent invariants as physical parameters, and a complete set

of independent invariants has been determined. We have shown that, while for

quarks the extrema of the invariants point to no mixing, for leptons large mixings

correlated with a non-trivial Majorana character turn out to be natural extrema.

This may be a very encouraging and suggestive first step in the quest for the un-

derstanding of the origin of flavour, as that pattern resembles closely the mixings

observed in nature.

A true dynamical origin for the Yukawa couplings suggests a further step: to

consider them as corresponding to dynamical fields, or aggregate of fields, that

carry flavour and have taken a vev. Flavour would be a manifest symmetry of

the total, high energy Lagrangian, at a flavour scale Λf . After spontaneous sym-

metry breaking, the low-energy Yukawa interactions would result from effective

operators of dimension d > 4 invariant under the flavour symmetry, which involve

one or more flavour fields together with the usual SM fermionic and Higgs fields.

Only a scalar field (or an aggregate of fields in a scalar configuration) can

get a vev, which should correspond to the minimum of a potential. What is

the scalar potential for those scalar flavour fields? May some of its minima

naturally correspond to the observed spectra of masses and mixing angles? These

questions have been addressed in this work. The analysis of the potential is

related to the extrema of the invariants mentioned above, but it goes beyond

since the simultaneous presence of various invariant terms need not result in

minima associated to the extrema that their independent consideration yields.

The simplest realization of this kind is obtained by a one-to-one correspon-

dence of each Yukawa coupling with a single scalar field transforming in the

bi-fundamental of the flavour group GF . In the language of effective Lagrangians,

this may correspond to the lowest order terms in the flavour expansion: d = 5

effective Yukawa operators made out of one flavour field plus the usual SM fields.

The general scalar potential for bi-fundamental flavor scalar fields was constructed

for quark and leptons in the two and three family case. Formally, it can be simply

built out of the same Yukawa invariants mentioned above: from their combination

new minima may a priori follow.

When determining the scalar potential, it was first shown that the underlying

flavour symmetry is a very restrictive constraint: at the renormalizable level only
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a few terms are allowed in the potential, and even at the non-renormalizable level

quite constrained patterns have to be respected.

For the quark case at the renormalizable level, at the minimum of the poten-

tial only vanishing mixing angles are allowed. Regarding mass hierarchies, one of

the possible minima allows vanishing Yukawa couplings for all quarks but those

in the heaviest family, both for the two and three generation cases. There is

therefore an staring solution in the quark case which resembles in first approxi-

mation nature: a hierarchical spectrum with no mixing. This solution in the two

family case can be perturbed at the renormalizable level to provide masses for

the light families, by means of small explicit breaking terms of the abelian part

of GqF , that is U(1)3. This option is not present in the three family case since the

hierarchical configuration is protected by a larger unbroken symmetry: SU(2)3.

The introduction of non-renormalizable terms in the potential allowed for further

breaking of the symmetry, at the price of large fine-tunings, which are in our

opinion unacceptable in the spirit of and effective field theory approach.

For the lepton sector, the same realization one Yukawa-one field, that is, of

scalar bi-fundamental fields led to strikingly different results. In the two and

three family cases non-trivial Majorana phases and mixing angles may be se-

lected by the potential minima and indicates a novel connection with the pattern

of neutrino masses: i) large mixing angles are possible; ii) there is a strong cor-

relation between mixing strength and mass spectrum; iii) the relative Majorana

phase among the two massive neutrinos is predicted to be maximal, 2α = π/2,

for non-trivial mixing angle; moreover, although the Majorana phase is maximal,

it does not lead to CP violation, as it exists a basis in which all terms in the

Lagrangian are real.

The exact solutions of the renormalizable potential leading to non-trivial mix-

ing showed one maximal mixing angle only among two degenerate but distinct

neutrinos for both two and three generations. This scenario leads in the case of

normal or inverted hierarchies to the maximal angle being the solar instead of

the atmospheric angle. In the case of all three neutrinos degenerate, allowed by

the renormalizable potential, the assignation of the angle depends on the correc-

tions on the spectrum of masses, in a more promising scheme currently under

exploration (17).
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Another avenue explored in this work associates two vector flavour fields to

each Yukawa spurion, i.e. a Yukawa Y ∼ χLχR†/Λ2
f . This is an attractive scenario

in that while Yukawas are composite objects, the new fields are in the fundamen-

tal representation of the flavour group, in analogy with the case of quarks. Those

flavour fields could be scalars or fermions: we focused exclusively on scalars.

From the point of view of effective Lagrangians, this case could correspond to the

next-to leading order term in the expansion: d = 6 effective Yukawa operators

as total or partial sources of the low-energy Yukawa couplings. We have con-

structed the general scalar potential for scalar flavour fields in the fundamental

representation, both for the case of two and three families of quarks, although

conclusions translate straightforwardly to leptons. By construction, this scenario

results unavoidably in a strong hierarchy of masses: at the renormalizable level

only one quark gets mass in each sector: they could be associated with the top

and bottom quark. Non-trivial mixing requires as expected a misalignment be-

tween the flavour fields associated to the up and down (neutrino and electron)

left-handed quarks (leptons). In consequence, the minimal field content corre-

sponds to four fields χLU (ν), χ
L
D (E), χ

R
U (ν) and χRD (E), and the physics of mixing

lies in the interplay of the first two. In resume, for fundamental flavour fields it

follows in a completely natural way: i) a strong mass hierarchy between quarks

of the same charge, pointing to a distinctly heavier quark in each sector; ii) one

non-vanishing mixing angle, which can be identified with the with the rotation

in the 23 sector for both quark and leptons in the three generation case.

Finally, as a possible correction to the patterns above, we briefly explored

the possibility of introducing simultaneously bi-fundamentals and fundamentals

flavour fields. It is a very sensible possibility from the point of view of effective

Lagrangians to consider both d = 5 and d = 6 Yukawa operators when working to

O(1/Λ2
f ). It suggests that d = 5 operators, which bring in the bi-fundamentals,

could give the dominant contributions, while the d = 6 operator - which brings

in the fundamentals - should provide a correction inducing the masses of the two

lighter families and non-zero angles.

Overall, it is remarkable that the requirement of invariance under the flavour

symmetry strongly constraints the scalar potential. Furthermore, one result of

the analysis stands out among the rest. In the minimum of the potential, at the
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renormalizable level the quark mixing angles vanish at leading order, whereas

lepton mixing is found to be maximal. The presence of the maximal angle in

the lepton case is due to the O(ng) factor of the flavour group, which is in turn

related of the Majorana nature of neutrinos. The explanation of the different

mixing patterns in quarks and leptons in this scheme is, utterly, the different

fundamental nature of the two types of fermions: Dirac and Majorana.
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