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1
Objetivo y motivacion

El campo de fisica de particulas se encuentra actualmente en un punto crucial. La
exploracion del mecanismo de rotura espontanea de simetria electrodébil (RESE)
en el gran colisionador de hadrones (LHC) ha desvelado la presencia de un bosén
que se asemeja al escalar de Higgs (Il 2)) dada la precisiéon de los datos exper-
imentales disponibles (3], 4). La descripcién del Modelo Estdndar (ME) de la
generacién de masas (5], [0l [7) ha demostrado ser acertada y la auto-interaccién
del bosén de Higgs que desencadena la RESE es ahora la quinta fuerza de la natu-
raleza, junto con la gravedad, el eletromagnetismo la interaccién débil y la fuerte.
Esta nueva fuerza, como el resto de las fuerzas cuantizadas, varia en intensidad
dependiendo de la escala a la que se la examine, pero al contrario que la fuerza
débil o fuerte, esto plantea un problema (8) ya que una escala de alta energia o
corta distancia del orden de 1072 fm el mecanismo de RESE se desestabilizaria,
pues el acoplo cudrtico se cancelarfa (9, [10). Dicho problema podria ser resuelto
por la introduccién de nueva fisica, lo cual conduce a otra cuestién teorica, el
Problema de la Jerarquia (PJ). Cualquiera sea la nueva fisica que se acopla a
la particula de Higgs produce una contribucion radiativa al término de masa de
dicho bosén del orden de la escala de nueva fisica, lo que significaria que la escala
electrodébil es naturalmente cercana a la escala de fisica més alta que interacciona
con los campos del ME. Las propuestas para solucionar este problema pueden ser
clasificadas en soluciones de fisica perturbativa, siendo el paradigma la super-
simetria, y ansazts de dindmica fuerte. Supersimetria es una nueva y elegante

simetria entre bosones y fermiones que implica cancelaciones sistematicas entre
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las contribuciones radiativas que producen cada tipo de particulas al término de
masa del Higgs. Por otro lado la hipotesis de que el bosén de Higgs sea un estado
ligado producido por nueva dinamica fuerte implica que el mecanismo de RESE
es simplemente una descripcion efectiva que debe ser completada por una teoria
mas fundamental. Todas estas hipotesis suponen nueva fisica a la escala del TeV
y estan siendo testeadas de manera decisiva en el LHC.

En el frente cosmologico la interaccién gravitatoria ha sido la fuente de evi-
dencia de nuevos desafios en fisica de particulas. El universo esta expandiéndose
aceleradamente, algo que en cosmologia estandar requiere la presencia de energia
oscura, una energia de vacio cuya presion negativa provoca que el universo se en-
sanche con velocidad creciente. Cosmologia y astrofisica proporcionaron la sélida
evidencia de materia extra no bariénica en el universo, llamada materia oscura,
como otra muestra experimental no explicable en el ME. Hay un activo programa
experimental para la bisqueda de materia oscura en este agitado sector de fisica
de particulas. La tercera evidencia de nueva fisica en cosmologia proviene de un
hecho muy familar del mundo visible, esté constituido de mucha mas materia que
antimateria, y aunque el ME proporciona una fuente de exceso de particulas sobre
antiparticulas el resultado no es suficiente para explicar la proporcién observada.

La parte de nueva fisica que concierne mas de cerca al ME es el hecho de que
los neutrinos han demostrado ser masivos. La evidencia de masa de neutrinos
proveniente de los datos de oscilacion es una de las selectas evidencias de nueva
fisica mas alld del ME. En este sector la busqueda de violacién lepténica de
conjugacién de carga y paridad (CP), transiciones de sabor de leptones cargados
y la relacion fundamental entre neutrinos y antineutrinos; su caracter Majorana
o Dirac, tienen ambiciosos programas experimentales que produciran resultados
en los préximos anos.

Para completar la lista de desafios en fisica de particulas, debe ser mencionado
que existe la tarea pendiente de la cuantizacion de gravedad y el presente pobre
entendimiento del vacio de QCD representado en el problema-f. Estos temas no
obstante pueden ser considerados como problemas tedricos frente a las evidencias
experimentales consideradas previamente.

El tema de esta tesis es un problema horizontal: el puzle de sabor. La es-

tructura de sabor del espectro de particulas estda conectada en la teoria estandar



a la RESE, y las masas de los neutrinos son parte esencial de este puzle. Estos
son temas que han sido tratados en el trabajo del estudiante de doctorado en
otro contexto: la fenomenologia de sabor en el caso de dindamica fuerte de RESE
(111 12), la determinacién del Lagrangiano bosénico general en el mismo contexto
(13) y la fenomenologia de un modelo para masas de neutrinos (14) han formado
parte del programa de doctorado del candidato. El tema central de esta tesis estd
sin embargo es la exploracién de una posible explicacién a la estructura de sabor
(15, 16, 17).

El principio gauge puede ser senalado como la fuente creadora de progreso
en fisica de particulas, bien entendido y elegantemente implementado en el ME.
Por el contrario el sector de sabor permanece durante décadas como una de las
partes peor entendidas del ME. El ME muestra la estructura de sabor de una
manera paramétrica, dejando sin respuesta preguntas como el origen de la fuerte
jerarquia en masas de fermiones o la presencia de grandes angulos de mezcla de
sabor para leptones en constraste con la pequena mezcla del sector de quarks.
El puzle de sabor permanece por lo tanto como una cuestiéon fundamental sin
respuesta en fisica de particulas.

La principal guia en este trabajo es el uso de simetria para explicar el puzle de
sabor. La simetria, que juega un papel central en nuestro entendimiento en fisica
de particulas, es empleada en esta tesis para entender la estructura de sabor. Un
nimero variado de simetrias han sido postuladas con respecto a este problema
(I8, 19, 20, 211, 22, 23] 241, 25, 26, 27, 28] 29)). En este estudio la simetria serd
seleccionada como la mayor simetria continua global posible en la teoria libre D
La eleccion esta motivada por las exitosas consequencias fenomenolédgicas de se-
lectionar la susodicha simetria en el caso de la hipotesis de Violacién Minima de
Sabor (22, 25, 26, 27, 28), un campo en el que el autor también a trabajado (28).
Debe ser destacado que los diferentes origenes posibles para la masa de los neu-
trinos resultan en distintas simetrias de sabor en el sector leptonico; de especial
relevancia es la elecion del caracter Dirac o Majorana. En cualquiera de los casos
la simetria de sabor no es evidente en el espectro, luego debe estar escondida. En

este trabajo el estudio de rotura espontanea de la simetria de sabor para leptones

! Alternativamente se puede definir en términos mas técnicos como la mayor simetria posible

en el limite de acoplos de Yukawa ausentes (22, [25], 20]).
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y quarks sera desarrollado con énfasis en el resultado natural contrastado con
la estructura observada en la naturaleza. Se mostrarda como la diferencia entre
quark y leptones en la estructura de sabor resultante, en particular los angulos
de mezcla, se origina en la naturaleza Majorana o Dirac de los fermiones.

En el presente analisis, el criterio de naturalidad sera la regla para decidir si la
solucion propuesta es aceptable o introduce puzles mas complicados que los que
resuelve. Es relevante por lo tanto la acepcién de naturalidad, siguiendo el criterio
de t’Hooft, todos los parametros adimensionales no restringidos por una simetria
deben ser de orden uno, mientras que todos los parametros con dimesiones se
espera que sean del orden de la escala de la teoria. Exploraremos por lo tanto en
qué casos este criterio permite la explicacién de la estructura de masas y angulos
de mezcla.

Respecto a las diferentes partes de nueva fisica involucradas conviene distin-
guir tres escalas distintas i) la escala de RESE establecida por la masa del bosén
W, ii) un escala posiblemente distinta de sabor, denotada Ay y caracteristica de
la nueva fisica responsable de la estructura de sabor, iii) la escala efectiva de
violacién de numero lepténico M responsable de las masas de los neutrinos, en el

caso de que éstas sean de Majorana.
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Aim and Motivation

The field of particle physics is presently at a turning point. The exploration of the
mechanism of electroweak symmetry breaking (EWSB) at the LHC has unveiled
the presence of a boson that resembles the Higgs scalar (I, 2) with the precision
of presently available data (3, 4)). The Standard Model (SM) description of mass
generation (5l 6] [7) has proven successful, and the Higgs self-interaction triggering
EWSB stands now as the fifth force in nature, after gravity, electromagnetism,
weak and strong interactions. This new force, as every other quantized force
in nature, varies in strength depending on the scale at which it is probed but,
unlike for strong or weak forces, this poses a problem (8)) as at a high energy or
short distance scale of order 10712 fm the mechanism of electroweak symmetry
breaking would be destabilized since the coupling of this force vanishes (9 [10]).
This problem could be solved by the introduction of new physics which brings the
discussion to another theoretical issue, the Hierarchy Problem. Any new physics
that couples to the Higgs particle produces generically a radiative contribution
to the Higgs mass term of order of the new mass scale, which would mean that
the electroweak scale is naturally close to the highest new physics scale that
couples to the SM fields. Proposals to address this problem can be classified in
perturbative physics solutions, the paradigm being supersymmetry, and strong
dynamics ansatzs. Supersymmetry is an elegant new symmetry between bosons
and fermions that implies systematic cancellations among the contributions to
the Higgs mass term of these two types of particles. On the other hand the
hypothesis of the Higgs boson being a bounded state produced by new strong
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dynamics implies that the mechanism of electroweak symmetry breaking is just
an effective description to be completed by a more fundamental theory. All these
hypothesis involve new physics at the TeV scale and are being crucially tested at
the LHC.

In the cosmology front the gravitational interaction has been the source of
the evidence of new challenges in particle physics. The universe is accelerating,
something that in standard cosmology requires of the presence of Dark Energy,
a vacuum energy whose negative pressure makes the universe expand with in-
creasing rate. Cosmology together with astrophysics brought the solid piece of
evidence of extra matter in the universe not in the form of baryons, the so called
Dark Matter as another experimental evidence not explainable within the Stan-
dard Model. There is an active experimental program for the search of Dark
Matter in this lively sector of particle physics. The third piece of evidence in
cosmology stems on one very familiar fact of the visible universe: it is made out
of much more matter than antimatter, and even if the SM provides a source for
particle over antiparticle abundance in cosmology, this is not enough to explain
the ratio observed today.

The piece of new physics that concerns more closely the Standard Model is
the fact that neutrinos have shown to be massive. The neutrino mass evidence
from oscillation data stands as one of the selected few sound pieces of evidence
of physics beyond the SM. In this sector, the search for leptonic CP violation,
charged lepton generation transitions and the fundamental relation among neu-
trino particles and antiparticles; their Majorana or Dirac nature, have ambitious
experimental programs bound to produce results in the coming years.

To complete the list of challenges in particle physics, it shall be mentioned
that there is the pending task of the quatization of gravity and the present poor
understanding of the vacuum of QCD embodied in the 6 problem. These is-
sues can be regarded as theoretical problems in contrast with the experimental
evidences mentioned above.

The focus of this project is a somehow horizontal problem: the flavour puzzle.
The flavour structure of the particle spectrum is connected in the standard theory
to EWSB, and the masses of neutrinos are an essential part the flavour puzzle.

These last matters have been subject of study in a different context for the PhD



candidate: the flavour phenomenology in a strong EWSB realization (11}, [12]), the
determination of the general bosonic Lagrangian in the same scheme (I3]) and the
flavour phenomenology of a neutrino mass model (14) are part of the author’s
work. The focus of this discussion is nonetheless on the exploration of a possible
explanation of the flavour pattern (15l 16} [17).

The gauge principle can be singled out as the driving engine of progress in
particle physics, well understood and elegantly realized in the SM. In contrast
the flavour sector stands since decades as the less understood part of the SM.
The Standard Model displays the flavour pattern merely parametrically, leaving
unanswered questions like the origin of the strong hierarchy in fermion masses or
the presence of large flavour mixing in the lepton sector versus the little overlap in
the quark sector. The flavour puzzle stays therefore a fundamental open question
in particle physics.

The main guideline behind this work is the use of symmetry to address the
flavour puzzle. Symmetry, that plays a central role in our understanding of
particle physics, is called here to explain the structure of the flavour sector. A
number of different symmetries have been postulated with respect to this problem
(IR, 19, 20, 211, 22, 23], 24], 25], 26], 27, 28, 29]). Here the symmetry will be selected
as the largest possible continuous global symmetry arising in the free theory
|I|. This choice is motivated by the successful phenomenological consequences of
selecting this symmetry, as in the case of the Minimal Flavour Violation (MFV)
ansatz (22) 25, 26], 27, 28)) , a field in which the author has also worked (28)). It
must be underlined that the different possible origins of neutrino masses result
in different flavour symmetries in the lepton sector; of special relevance is the
choice of Majorana or Dirac masses. The flavour symmetry in any case is not
evident in the spectrum, ergo must be somehow hidden. In this dissertation the
study of the mechanism of flavour symmetry breaking for both quark and leptons
will be carried out with emphasis on its natural outcome in comparison with the
observed flavour pattern in nature. It will be shown how the difference between
quark and leptons in the resulting flavour structure, in particular mixing, stems

on the Majorana or Dirac nature of fermions.

! Alternatively defined as the largest possible simmetry in the limit of vanishing Yukawa
couplings (22} 25| 26]), to be introduce later.
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In the analysis here presented, naturalness criteria shall be the guide to tell
whether the implementation is acceptable or introduces worse puzzles than those
it solves. A relevant issue is what will be meant by natural; following 't Hooft’s
naturalness criteria, all dimensionless free parameters not constrained by a sym-
metry should be of order one, and all dimensionful ones are expected to be of the
order of the scale of the theory. We will thus explore in which cases those criteria
allow for an explanation of the pattern of mixings and large mass hierarchies.

As for the different physics involved in this dissertation, there will be three
relevant scales; i) the EWSB scale set by the W mass and which in the SM
corresponds to the vacuum expectation value (vev) v of the Higgs field; ii) a
possible distinct flavour scale A; characteristic of the new physics underlying
the flavour puzzle; iii) the effective lepton number scale M responsible for light

neutrinos masses, if neutrinos happen to be Majorana particles.
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Introduction

As all pieces of the Standard Model fall into place when confronted with exper-
iment, the last one being the discovery of a Higgs-like boson at the LHC (T, 2),
one cannot help but stop and wonder at the theory the scientific community has
carved to describe the majority of phenomena we have tested in the laboratory.
This theory comprises both the forces we have been able to understand at the

quantum level and the matter sector. The former shall be briefly reviewed first.

3.1 Forces of the Standard Model

Symmetries have shed light in numerous occasions in particle physics, in par-
ticular the understanding of local space-time or gauge symmetries stands as the
deepest insight in particle physics. The gauge principle, at the heart of the SM, is
as beautifully formulated as powerful and predictive for describing how particles

interact through forces. The SM gauge group,
G=SU(@3).xSU2), xU(1)y, (3.1)

encodes the strong, weak and electromagnetic interactions and describes the spin
1 (referred to as vector-boson) elementary particle content that mediate these
forces. The strong interactions concern those particles that transform under
SU(3). with ¢ standing for color, and are the subject of study of quantum chro-
modynamics (QCD). The electroweak sector SU(2), x U(1)y comprises the weak

isospin group and the abelian hypercharge group which reduce to the familiar
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electromagnetic gauge group and Fermi interaction below the symmetry breaking
scale. This part of the theory is specified, in the unbroken phase, given the group
and the coupling constants of each subgroup, here g, for SU(3)., g for SU(2).
and ¢’ for U(1)y at an energy scale . This information is enough to know that
8 vector-boson mediate the strong interaction, the so-called gluons, and that 4
vector bosons enter the electroweak sector: the Z, W* and the photon.

The implementation of the gauge principle in a theory that allows the pre-
diction of observable magnitudes as cross sections, decay rates etc. makes use
of Quantum Field Theory (QFT). In the canonical fashion we write down the
Lagrangian density denoted .Z, that for the pure gauge sector of the Standard
Model reads;

1 v
ggauge = _ZTr {FZM F1i,,u1/} ) (32)

which describes forces mediators and these mediators self-interaction. The field
strengths are defined through the covariant derivatives:
o)

Dy = 0y +ig.G)\; +ig 5

W, +ig'Qy By, (3.3)

with Gell-Mann matrices \; acting in color space , Pauli matrices o; within weak
isospin space, and Q)y is the hypercharge of the field that the covariant derivative
acts on. GL denote the 8 gluons, W:L the three weak isospin bosons and B,
the hypercharge mediator. The photon (A,) and Z are the usual combination
of neutral electroweak bosons: Z, = cos QWWi —sinfwB,, A, = sin QWWi’ +
cos Oy B, and the weak angle tan 6y = ¢'/g. In terms of the covariant derivatives
the field strengths are defined as:
i

N7 7 gi [DmDu] . (3'4)

F;

However the fact that the W and Z spin-1 bosons are massive requires of the
introduction of further bosonic fields in the theory. This brings our discussion
to the electroweak breaking sector. Masses are not directly implementable in the
theory as bare or “hard” mass terms are not allowed by the gauge symmetry.
The way the SM describes acquisition of masses is the celebrated Brout-Englert-
Higgs mechanism, a particularly economic description requiring the addition of
a SU(2), doublet spin-0 boson (scalar), denoted H. This bosonic field takes a

10



3.1 Forces of the Standard Model

SU(3). SU@2)r U(l)y
H 1 2 1/2

Table 3.1: The Higgs field charges under G

vev and its interactions with the rest of fields when expanding around the true
vacuum produce mass terms for the gauge bosons. The interaction of this field
with the gauge fields is given by its transformation properties or charges, reported
in table [3.1] the masses produced for the W and Z boson being in turn specified
by the vev of the field (H) = (0,v/v/2)T together with the coupling constants
g and ¢’. This vev is acquired via the presence of the quartic coupling of the
Higgs, the fifth force, and the negative mass term. These two pieces conform the
potential that triggers EWSB and imply the addition of two new parameters to
the theory, explicitly;

2

Zy = (D,H) D'H — )\ (HTH - %2) : (3.5)
where the v is the electroweak scale v/ V2 ~ 174GeV and ) the quartic cou-
pling of the Higgs, which can be extracted from the measured Higgs mass A\ =
m3 /(2v%) ~ 0.13. Note that the potential, the second term above, has the mini-
mum at (HTH) = v?/2.

As outlined in the previous section, the Higgs could be elementary or compos-
ite; the paradigm of composite bosons are pions, understood through the Gold-
stone theorem. In the pions chiral Lagrangian the relevant scale is the pion decay
constant f, associated to the strong dynamics, in the analogy with a composite
Higgs the scale is denoted f which, unlike in technicolor (30, 31}, 32), in Compos-
ite Higgs Models (33], 34, B35] 36], [37) is taken different from the electroweak vev v.
In the limit in which these two scales are close, a more suitable parametrization

of the Higgs is, alike to the exponential parametrization of the o-model,

<ﬁ,H):U<h>T;h, Uty =vUt =1, (3.6)

where H = ioo H* with o5 the second Pauli matrix in weak isospin space. U is a

2 X 2 unitary matrix which can be thought of as a space-time dependent element

11
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of the electroweak group and consequently absorbable in a gauge transformation
while (h) + h is the constant “radial” component plus the physical bosonic degree
of freedom unchanged by a gauge transformation. The value of (h) is fixed by v
and f.

In this way gauge invariance of the corrections to Eq. concerns the dimen-
sionless U matrix and its covariant derivatives whereas the series in H/f can be
encapsulated in general dimensionless functions F[((h) + h)/ f] different for each
particular model.

Since both U and F are dimensionless, the expansion is in powers of mo-
mentum (derivatives) over the analogous of the chiral symmetry breaking scale
(38 39). The Lagrangian up to chiral dimension 4 in this scheme for the bosonic
sector was given in (13) and the flavour phenomenology in this scenario was stud-
ied in (11} 12)) as part of the authors work that however does not concern the

discussion that follows.

3.2 Matter Content

The course of the discussion leads now to the matter content of the Standard
Model. Completing the sequence of intrinsic angular momentum, between the
spin 1 vector bosons and the spin 0 scalars the spin 1/2 ultimate constituents of
matter, the elementary fermions are placed. These fermions constitute what we
are made of and surrounded by. Their interactions follow from their transforma-
tion properties under the gauge group. Quarks are those fermions that sense the
strong interactions and are classified in three types according of their electroweak
interactions; a weak-isospin doublet )y and two singlets Ugr, Dr . Leptons do
not feel the strong but only the electroweak interaction and come in two shapes;
a doublet ¢, and a singlet Er of SU(2)r. The explicit transformation properties
of the fermions are reported in table

The subscripts L and R refer to the two irreducible components of any fermion;
left and right-handed. Right handed fermions, in the limit of vanishing mass, have
a spin projection on the direction of motion of 1/2h whereas left-handed fermions
have the opposite projection —1/2h. These two components are irreducible in

the sense that they are the smallest pieces that transform in a closed form under

12



3.2 Matter Content

SU@B). SU@2)r Uy
Q, 3 2 1/6
Up 3 1 2/3
Dr 3 1 -1/3
lr 1 2 -1/2
Er 1 1 -1

Table 3.2: Fermion content of the SM - Transformation properties under the

gauge group G.

the Lorentz group with a spin 1/2. The explicit description of the interaction of
fermions with gauge fields is read from the Lagrangian;

Er

Latter =1 Y VD, (3.7)
Y=QL
where ) = v,D* and 7, are the Dirac matrices.

There is a discreet set of representations for the non-abelian groups (SU(3).
and SU(2)r): the fundamental representation, the adjoint representation etc.
All fermions transform in the simplest non-trivial of them [} the fundamental
representation, hereby denoted N for SU(N). For the abelian part, the rep-
resentation (charge) assignation can be a priori any real number normalized to
one of the fermion’s charges, e.g. Eg. There is however yet another predictive
feature in the SM connected to the gauge principle: the extra requirement for
the consistency of the theory of the cancellation of anomalies or the conservation
of the symmetry at the quantum level imposes a number of constraints. These
constraints, for one generation, are just enough to fix all relative U(1)y charges,
leaving no arbitrariness in this sector of the SM.

Let us summarize the simpleness of the Standard Model up to this point,
we have specified a consistent theory based on local symmetry described by 4
coupling constants for the 4 quantized forces of nature, a doublet scalar field
acquiring a vev v and a matter content of 5 types of particles whose transformation

properties or “charges” are chosen from a discreet set.

!The trivial representation is just not to transform, a case denoted by “1” in the first to
columns of table @

13
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There is nonetheless an extra direction perpendicular to the previous which
displays the full spectrum of fermions explicitly, that is, the flavour structure.
Each of the fermion fields in table appears replicated three times in the spec-
trum with wildly varying masses and a connection with the rest of the replicas

given by a unitary mixing matrix. Explicitly:

a={(u) (&) ()} vietment 69

a VE VZ ]/z o
KL_{(6L>’<,UL>’<TL)}’ Dy ={dr, sr,br}, (3.9)
Ex ={er, ir, TR} (3.10)

where e stands for the electron, p for the muon, 7 for the 7-lepton, u for the up
quark, d for the down quark, ¢ for charm, s for strange, b for bottom and ¢ for

the top quark. The flavour structure is encoded in the Lagrangian,
gfermionfmass = _@LYUﬁUR - @LYDHDR - ZLYvEl?RI{ + £meass ) (311)

where the 3 x 3 matrices Yy, Yp, Y have indices in flavour space.

3.2.1 Neutrino Masses

The character of neutrino masses is not yet known, however if we restrict to
the matter content we have observed so far, the effective field theory approach
displays a suggestive first correction to the SM. Effective field theory, implicit
when discussing the Higgs sector, is a model independent description of new
physics implementing the symmetries and particle content present in the known
low energy theory. Corrections appear in an expansion of inverse powers of the
new physics scale M. This generic scheme yields a remarkably strong result,
at the first order in the expansion, the only possible term, produces neutrino

Majorana masses after EWSB:
1 1 o~ -
PI=5 = M(’)W +h.e. = O H cag HTSP + hec. (3.12)

where ¢ is a matrix of constants in flavour space. This operator, known as Wein-

berg’s Operator (40)), violates lepton number but this is however an accidental
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3.2 Matter Content

symmetry of the SM, the fundamental symmetries are the gauge symmetries
which are compatible with lepton number violation. As to what is the the-
ory that produces this operator, there are three possibilities corresponding to
three different fields as mediators of this interaction: the type I (4], 42, [43]),
1T (44}, 45], 46, 147, [48)) and III (49, 50) seesaw models. The mediator could trans-
form as a fermionic singlet of the Standard Model (type I), a scalar triplet of
SU(2) (type IT) and a fermionic triplet of SU(2) (type III) diagrammatically
depicted in Fig.|3.1} Here we will select the type I seesaw model which introduces

H~ ‘'H H - «H H- - H
b * ~ % x

N 1AL ¥
L; Ly L /\\L: L; L;

Figure 3.1: The three types of seesaw models -

right-handed neutrinos in analogy with the rest of fermions. These particles are
perfect singlets under the Standard Model, see table [3.3] something that allows
for their Majorana character, which is transmitted to the left-handed neutrinos

detected in experiment through the Yukawa couplings. The complete Lagrangian

SU@). SUER), Uy
Npg 1 1 0

Table 3.3: Right-handed neutrino charges under the SM group

for the fermion masses is therefore:

gfermion—mass = gYukawa + gMajorana ; (313)
Lyukawa == QuYuHUp — Q YpHDp — (1 YpERH — (1Y, HNg,  (3.14)
gMajorana = - N?{MNR ) (315>

where M is a symmetric 3x 3 matrix and /Ng stands for the right-handed neutrinos
which now also enter the sum of kinetic terms of Eq. [3.7 The limit in which

the right-handed neutrino scale M is much larger than the Dirac scale Y, v yields

15



3. INTRODUCTION

as first correction after integration of the heavy degrees of freedom the Weinberg
Operator with the constants ¢, in Eq. being c,p = (Y, Y,]) s such that for
O(1) Yukawas the upper bound on neutrino masses points to M around the GUT
scale ~ 10'5GeV. The opposite limit is the Dirac mass limit Y, v > M in which
Lepton number would be conserved and the Yukawa coupling should be tuned to
10712,

In the following we assume validity for the seesaw formula such that Y, v < M.

3.2.2 The Flavour Symmetry

If the gauge part was described around the gauge group one can do the same,
if only formally a priori, for the flavour side. A way to characterize it is then
choosing the largest symmetry that the free theory could present given the particle
content and orthogonal to the gauge group, this symmetry is that of the group
(22, 25, 26)):

gf = g;: X gé—'7
GL =5U(3)q, X SUB)u, x SUB)p, x U(L)p x U(1)qv X U(1)4p, (3.16)
Gl =SU(3)¢, x SU(3) g, x OB)x x U(1)p x U(1) 41, (3.17)

It is clear that each SU(3) factor corresponds to the different gauge representation
fields which do not acquire mass in the absence of interactions. Right-handed
neutrinos have however a mass not arising from interactions, but present already
in the free Hamiltonian. Given this fact the largest symmetry possible in this

section is O(3) for the degenerate case:
M = (Ml (3.13)

which is imposed here. The symmetry selected here can alternatively be defined
as that arising, for the right-handed neutrino mass matrix of the above form, in
the limit % ukawa — 0.

There is an ambiguity in the definition of the lepton sector symmetry and
indeed other definitions are present in the literature (27, 28), in particular for
the Np fields a U(3)n, symmetry is selected if the symmetry is identified with

the kinetic term of the matter fields. This option leads to a complete parallelism
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3.2 Matter Content

from the symmetry point of view for leptons and quarks and would consequently
lead to similar outcomes in an unsuccessful scenario.

Under the non-abelian part of G the matter fields transform as detailed in
table [3.4] and the abelian charges are given in table [3.5] In the non-abelian
side one can identify U(1)p as the symmetry that preserves baryon number and
U(1)r as lepton number which is broken in the full theory here considered. The

remaining U(1) 4 symmetries are axial rotations in the quark and lepton sectors.

SUB)e, SUB)ux SUB)p, SUB)y, SUB)s, OB

QL 3 1 1 1 1 1
Ur 1 3 1 1 1 1
Dr 1 1 3 1 1 1
‘r 1 1 1 3 1 1
Eg 1 1 1 1 3 1
Ng 1 1 1 1 1 3

Table 3.4: Representations of the fermion fields under the non-abelian part of Gz

Uy U U U1 U

Qr 1/3 1 1 0 0
Up 1/3 -1 0 0 0
Dr  1/3 0 1 0 0
0, 0 0 0 1 1
Ern 0 0 0 1 1
N 0 0 0 0 0

Table 3.5: Representations of the fermion fields under the abelian part of Gr

Ly ukawa 18 however non vanishing and encodes the flavour structure, our
present knowledge about it being displayed in Eqs. [3.1943.27, The masses for
fermions range at least 12 orders of magnitude and the neutrinos are a factor 10°
lightest than the lightest charged fermion, something perhaps connected to their
possible Majorana nature. Neutrino masses are not fully determined, only the

two mass squared differences and and upper bound on the overall scale are known.
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3. INTRODUCTION

The fact that one of the mass differences is only known in absolute value implies
that not even the hierarchy is known, the possibilities being Normal Hierarchy
(NH) m,, < m,, < m,, and Inverted Hierarchy (IH) m,, < m,, < m,,. The
mixing shape for quarks is close to an identity matrix, with deviations given by
the Cabibbo angle A\, whereas mixing angles are large in the lepton sector with
all entries of the same order of magnitude. In the lepton sector the CP phase ¢

and the Majorana phases, if present, are yet undetermined.

mg = 4.8"3IMeV | m,=95+5MeV my = 4.18 £0.03GeV , (3.19)
my = 2.3t MeV | m.=1.275+0.025GeV , m; = 173.5+0.8GeV , (3.20)

me = 0.510998928 & 0.000000011MeV (3.21)
m,, = 105.6583715 = 0.0000035MeV (3.22)
m, = 1.776.82 + 0.16GeV (3.23)

vi2 Va3

D my, <028V, Aml, =T7503107eV?, [Aml, | = 242700110 %eV?

(3.24)
1—A2/2 Ae AN (p—in)
Verxm = —Ae 1—)2/2 AN? + 0O\
AN (1—p—in) —AN 1
AN (p+ i) /1 — A2\4
AN (p 4 i) = e P+ i) e\, = 0.22535 & 0.00065 ,
V1= A2 (1= A2N(p + 1))
(3.25)
A=08111002 " 5=0.1317002% 5 =10.34570013 (3.26)
C12C13 . 512C13 . size” " , .
Upmns = —512C23 — 0125‘2351:3?“S C12C23 — 8128235136“? 523C13 elortstiads
512523 — 0120235136“S —C12523 — 812023513616 C23C13
01 = 337088° 3 =40 —50° 613 =8,667075° (3.27)

The Majorana phases are encoded in the exponentials of the Gell-Mann matrices
of Eq. [3.27 The quark data is taken from (51) and the neutrino parameters
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3.2 Matter Content

from (52, 53). The question arises of what becomes of the anomaly cancellation
conditions now that the flavour structure has been made explicit. The conditions
are still fixing the relative hypercharges of all generations provided all masses are
different, all mixing angles nontrivial and Majorana masses for the right-handed
neutrinos.

Comparison of the flavour and gauge sector will actually be useful for the
introduction of the research subject of this thesis. First the ratio of certain
parameters of the gauge sector, namely hypercharges, cannot take arbitrary values
but are fixed due to constraints for the consistency of the theory, while the values
for the flavour parameters seem all to be equally valid, at least from the point of
view of consistency and stability. This brings to a second point, the inputs that
are arbitrary in the gauge sector, gs, g, ¢’, A are smaller but of O(1) at the typical
scale of the theory ~ My, whereas masses span over 6 orders of magnitude for
charged leptons and including neutrinos too the orders of magnitude escalate to
12.

Because of gauge invariance particles are fitted into representations of the
group, such that the dimension of the representation dictates the number of
particles. There are left-handed charged leptons and left-handed neutrinos to fit
a fundamental representation of SU(2), could it be that something alike happens
in the flavour sector? That is, is there a symmetry behind the flavour structure?

If this is the case, the symmetry that dictates the representation is not evident
at the scale we are familiar with, so it should somehow be hidden; we can tell
an electron from a muon because they have different masses. But the very same
thing happens for SU(2)r, we can tell the neutrino from the electron as we know
that the electroweak symmetry is broken.

This comparison led neatly to the study carried out. The list of the basic
ingredients here concerned has been completed; we shall assume that there is an
exact symmetry behind the flavour structure, and if so necessarily broken at low
energies; a breaking that we will effectively describe via a flavour Higgs mecha-
nism. It is the purpose of this dissertation to study the mechanism responsible
for the breaking of such flavour symmetry in the search for a deeper explanation

of the flavour structure of elementary particles.
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4

Flavour Physics

4.1 Flavour in the Standard Model + type 1
Seesaw Model

The model that serves as starting point in our discussion is the Standard Model
with the addition of the type 1 Seesaw Model to account for neutrino masses,
the widely accepted as simplest and most natural extension with lepton number
violation. This chapter will be concerned with flavour phenomenology and the
way it shapes the flavour structure of new physics at the TeV scale, aiming at
the understanding from a bottom up approach of the sources of flavour violation.
The way in which the flavour symmetry is violated in the theory here considered
is quite specific and yields sharp experimental predictions that we shall examine
next.

The energies considered in this chapter are below the electroweak scale, such
that the Lagrangian of Eq. [4.1] assuming M > v, after integrating out the heavy

right-handed neutrinos reads

Lf—mass = —QYvHUr —Q YpHDp — {,Yp ErH — [, H e

(4.1)

where we recall that the flavour symmetry here considered sets M;; = M;;, a

Y, YT - 1
2 i 0 (1)

case that shall not obscure the general low energy characteristics of a type 1

Seesaw Model whereas it simplifies the discussion. The flavour symmetry in this
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4. FLAVOUR PHYSICS

model is only broken by the above Lagrangian, including 1/M™ corrections. In full
generality the Yukawa matrices can be written as the product of a unitary matrix,
a diagonal matrix of eigenvalues and a different unitary matrix on the right end.
In the case of the light neutrino mass term, it is more useful to consider the whole
product Y, Y, which is a transpose general matrix and therefore decomposable

in a unitary matrix and a diagonal matrix in the following way:

Yo =UlyuUp , Yp =ULypUy . (4.2)
Ye = UEyEUJ’ga YVYI/T = UzygUlL/Tv (43)
where Ug’g ¥ are the unitary matrices and yy p g, the diagonal matrices con-

taining the eigenvalues. Even if the symmetry is broken, the rest of the SM and
type 1 seesaw Lagrangian stays invariant under a transformation under the group

Gr of the fermion fields. In particular the rotation;

QL — UPQy, Dgr — UL Dp, Ugr = URUR, (4.4)
(, — UE 1, Er — UL'ER, (4.5)

simplifies the Yukawa matrices in Eqs. [£.24.3] after substitution in Eq. to,

Yy =UlT"U yy Yb=yp, (4.6)
Ye=ys, v,v,! = uftupyiuiturs, (4.7)

which allows to define:

Vi =U2TUY Upmns = UL 'UY, (4.8)
Yu = Dlag (yu, Ye, yt) s Yp = Dlag (yd7 Ys, yb) g (49)
yo = Diag (Yo, , Yugs Yus) ye = Diag (Ye, Y, y-) » (4.10)

with Vo being the usual quark mixing matrix and Upjps s the analogous in the
lepton side; the first encodes three angles and one CP-odd phase and the second
two extra complex Majorana phases on top the the equivalent of the previous 4
parameters. The connection of the eigenvalues with masses will be made clear
below.

There are a few things to note here. The right handed unitary matrices Ug’D’E

are irrelevant, the appearance of the irreducible mixing matrix in both sectors
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4.1 Flavour in the Standard Model + type 1 Seesaw Model

is due to the simultaneous presence of a Yukawa term for both up and down-
type quarks involving the same quark doublet (), and the neutrino mass term
and charged lepton Yukawa where the lepton doublet ¢, appears. Were the mass
terms to commute there would be no mixing matrix. Were the weak isospin group
not present to bind together u; with d;, and v, with e there would not either be
mixing matrix. Weak interactions in conjunction with mass terms violate flavour.
Although mixing matrices are there and nontrivial it is useful to have in mind
this considerations to remember how they arise.

After EWSB the independent rotation of the two upper components of the

weak isospin doublets
U — VégaUt v — Upmnsvr (4.11)

takes to the mass basis yielding the Yukawa couplings diagonal, which now ex-

plicitly appear when expanding the Higgs field around the vev,

o (% + h/ T7 o v + h/ =
D%Yukawa - L\/§) ULUR - L\/ﬁ) DiDg (412)
2 2
Ve e YaORS ey (4.13)

NG oM

were h is the physical Higgs boson and the unitary gauge has been chosen.
We read from the above that the masses for the charged fermions are m, =
Yo/ V2 = yo x 174GeV whereas for neutrinos m,,, = y2 v?/2M. The values of

masses then fix the Yukawa eigenvalues for the charged fermions to be:

{ve, Ve, yu} = {1.0,73x107%, 1.3 x 107°} , (4.14)
{yp, ¥s, ya} = {24 x 1072, 5.5 x 107*, 2.7 x 107°} | (4.15)
{yr, Yu, ye} = {1.0x 107%,6.0 x 107*, 2.9 x 107°} , (4.16)

whereas for neutrinos only the mass squared differences are know and an up-
per bound y2v?/M <eV. The values for the Yukawa eigenvalues of the charged
fermions display quantitatively the hierarchies in the flavour sector, note that
as dimensionless couplings of the theory they are naturally expected of O(1),
something only satisfied by the top Yukawa. The smallness of the eigenvalues

is nonetheless stable under corrections since in the limit of vanishing Yukawa
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4. FLAVOUR PHYSICS

eigenvalue a chiral symmetry arises, which differentiates this fine-tuning from the
Hierarchy Problem.

The rest of the Lagrangian does not notice the rotation in Eq. except for
the couplings of weak isospin +1/2 and —1/2 particles;

Lo = z’%ULVCKMWmL + Lo Ul s W T EL + hec.. (4.17)

V2 V2

The rest of couplings, which involve neutral gauge bosons, are diagonal in flavour,
to order 1/M?. The flavour changing source has shifted therefore in the mass
basis to the couplings of fermions to the gauge W= bosons. This is in accordance
with the statement of the need of both weak isospin and mass terms for flavour
violation.

This process allows to give a physical definition of the unitary matrices en-
tering the Yukawa couplings: mixing matrices are the change of basis from the
interaction to the mass basis. This is a more general statement than the explicit
writing of Yukawa terms or the specification of the character of neutrino masses.

The absence of flavour violation in neutral currents implies the well known
and elegant explanation of the smallness of flavour changing neutral currents
(FCNC) of the Glashow Iliopoulos Maiani (GIM) mechanism. All neutral current
flavour processes are loop level induced and suppressed by unitarity relations to
be proportional to mass differences and mixing parameters, an achievement of the
standard theory that helped greatly to its consolidation. At the same time this
smallness of flavour changing neutral currents stands as a fire proof for theories
that intend to extend the Standard Model, as we shall see next.

4.2 Flavour Beyond the Standard Model

The flavour pattern of elementary particles has been approached in a number of
theoretical frameworks aiming at its explanation. Shedding light in a problem
as involved as the flavour puzzle has proven not an easy task and proposed ex-
planations are in general partial, in particular reconciling neutrino flavour data
with quark and charged lepton hierarchies in a convincing common framework is
a pending task in the authors view.

In the following a number of the proposed answers to explain flavour are listed,
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4.2 Flavour Beyond the Standard Model

e Froggat Nielsen theories. The introduction of an abelian symmetry R under
which the different generation fermions with different chirality have differ-
ent charges and that is broken by the vev of a field (¢y) can explain the
hierarchies in the flavour pattern (I9). In this set-up there are extra chiral
fermions at a high scale which acquire a mass via the vev of a different Higgs-
like R-neutral field, (¢;) such that the magnitude € = (¢g) / (¢1) controls
the breaking of the abelian symmetry R. Interactions among the different
fermions are mediated by the field ¢q at the high scale and its acquisition
of a vev at the low scale implies factors of €% for the coupling of differ-
ent flavour and chirality fermions Wy, W, with charges Ry, = ¢ + b; and
Rpg, = ¢ — aj. The mass matrix produced in this way contains hierarchies

ai—a;+bi=b; whereas angles are given

among masses dictated by m;/m; ~ €
by Uj ~ (m;/m;)%4 2 (m;/m;). This symmetry based argument stands as

one of the simplest and most illuminating approaches to the flavour puzzle.

e Discreet symmetries Discreet symmetries were studied as possible explana-
tions for the flavour pattern in the quark sector (54) but the main focus
today is on the lepton mixing pattern. The values of the atmospheric
and solar angles motivated proposals of values for the angles given by
simple integer ratios like the tri-bimaximal mixing pattern (53) (A3 =
7/4, 615 =arcsin(1/v/3), 615 = 0) . These patterns were later shown to be
obtainable with breaking patterns of relatively natural discreet symmetries
like A4(56, 57, B8), Sy (59, 60). A discreet flavour treatment of both quark
and leptons requires generally of extra assumptions like distinct breaking
patterns in distinct fermion sectors which have to be kept separate, see
e.g. (61, 62) These models though are now in tension with the relatively
large reactor angle and new approaches are being pursued (63, [64). This
approach has the advantage of avoiding goldstone bosons when breaking

the discreet symmetry but the drawback of the ambiguity in choosing the
group.

e Faxtra Dimensions The case of extra dimension offers a different explana-
tion for the hierarchy in masses. In Randall-Sundrum models (65, 66) the

presence of two 4 branes in a 5 dimensional space induces a metric with an
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overall normalization or warp factor that is exponentially decreasing with
the fifth dimension and that offers an explanation of the huge hierarchy
among the Planck and EW scale in terms of O(1) fundamental parameters.
When the fermions are allowed to propagate in the fifth dimension, rather
than being confined in a brane, their profile in the fifth dimension deter-
mined by the warp factor and a bulk mass term provides exponential factors
for the Yukawa couplings as well, offering an explanation of the flavour pat-
tern in terms of O(1) fundamental or 5th dimensional parameters (67, 68)).
In large extra dimensions theories, submilimiter new spacial directions can
provide geometrical factors to explain the hierarchy problem (69). In this
scenario, if we live on a fat brane in which the fermion profiles are localized,
the mixing among generations is suppressed by the overlap of this profiles
rather than symmetric arguments (70, [71, [72). In the extradimensional
paradigm in general therefore the explanation of the hierarchies in flavour

is found in geometry rather than symmetry.

e Anarchy The possibility of the flavour parameters being just random num-
bers without any utter reason has been also explored (73] [74), and even if
the recent measurement of a “large” 6,3 lepton mixing angle favors this hy-
pothesis for the neutrino mass matrix (75)), the strongly hierarchical pattern

of masses and mixing of charged fermions is not natural in this framework.

These models introduce in general new physics coupled to the flavour sector
of the Standard Model, which means modifying the phenomenological pattern
too. More in general any new physics that couples to the SM flavour sector will
change the predictions for experiments and shall be contrasted with data. This

is examined next.

4.3 Flavour Phenomenology

Once again the effective field theory is put to use,

1 0
L= Lo+ 0V 43 X—?Oz +O(1/A3) (4.18)
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This Lagrangian can be viewed as the Standard Model theory represented by
the first term above plus new physics corrections in a very general manner for
the two next terms. The first correction in Eq. has already been examined
and taken into account. The next corrections have a different scale motivated by
naturalness criteria. In this category we include the operators that do not break
lepton number nor baryon number, listed in (76) and only recently reduced to the
minimum set via equations of motion (77), and therefore need not be suppressed
by the same scale. There are notheless contributions of 1/M? in Eq. , but
these either are too small for phenomenological purposes after applying the upper
bound from neutrino masses or, in seesaw models with separate lepton number

and flavour scales (78, [79] 80, R1], [R2)), fall in the description above (83, [84] 85)).

As a concrete example a possible operator at order 1/ Afe is:

6 0% = CapopQ31,Qr Q7" QY (4.19)

where greek indices run over different flavours and the constants c,g,, are the

coefficients different in general for each flavour combination. The modification

LIS o B R L
L % i
excluded area has CL > 0.95 | &

101 | &

i : Y solw/cos28<0
ICHEP 10 ' (excl at CL > 0.95)
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Figure 4.1: Constrains on the CKM parameters -

induced by this term in observable quantities can be computed and compared with

data. A wide an ambitious set of experiments have provided the rich present
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amount of flavour data; from the precise branching ratios of B mesons in B
factories to the search for flavour violation in the charged lepton sector, all the D
and K meson observables, and if we include CP violation, the stringent electric
dipole moments.

Contrast of the experimental data with expectations has led, in most occa-
sions, to a corroboration of the Standard Model in spite of new physics, and at
times certain hints of deviations from the standard theory raised hopes (86}, 87, [88)
that either were washed away afterwards, or stand as of today inconclusive. It
is the case then that no clear proof of physics other than the SM and neutrino
masses driving flavour data has been found.

Indeed the data has been not only enough to determine the flavour parameters
of the SM but also to impose stress test on the theory, all faintlessly passed. Fig.
shows how all experimentally allowed regions in the mixing parameter plane of
p — 0, variables defined in Eq. meet around the allowed value. The absence

Operator Bounds on Ay (TeV) Bounds on ¢ (Af =1TeV)  Observables
c=1 c=1 Re(c) Jm(c)
(s.7ud1)? 9.8 x 10> 1.6x10* 9.0x1077 3.4x107° Amy, ek
(spdp)(srdr) 1.8 x 10 32x10° 6.9x107° 2.6x 10~ Amp, ex
(cryuur)? 1.2x10° 29x10°  56x1077 1.0x 1077  Amp;|e/pl; ép
(crup)(crug) 6.2x10% 1.5x10* 57x107% 1.1x10"®  Amp;l|q/pl; oD
(bryudr)? 6.6 x 102 9.3x 102 23x10% 1.1x10°°  Amp, Sy,
(brdy)(brdR) 25x10% 3.6x10° 39x1077 1.9x 107" Amg,; Syks
(bryuss)? 14%x10° 25x 102  50x107° 1.7x 1077 Amp.: Sve
(brsz)(brsr) 48 x 102 83x102 88x10°° 29x10°°  Amp.;Sve
F* igoer, 6.1 x 10* 6.1 x10* 27x 10710 27 x 1071 W — ey
(pryuer)(upyun) 4.9 x 102 4.9 x 102 4.1x107% 4.1x10°° pu— e(Ti)
(pryper)(dry,dr) 5.4 %102 54x102  35x107% 3.5x107° pu— e(T)

Table 4.1: Bounds on the different operators, see text for details.
of new physics evidence translates in bounds on the new physics scale, reported

in table [£.1] When placing the bounds, the magnitude that is constrained is
the combination c/Afc as is the one appearing in the Lagrangian of Eq. [4.18
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Naturalness criteria points at constants ¢ of O(1), a case reported in table
both for CP conservation ¢ = 1 (second column) and CP violation ¢ = ¢ (third
column). On the other hand if the scale is fixed at the TeV then the constants
have severe upper bounds as the fourth and fifth columns in table show. The
quark bounds are taken from (89) whereas the lepton data is taken from (90, [91))
and computed with the formulae of (14])

4.4 Minimal Flavour Violation

The bounds on new physics place a dilemma: either giving up new physics till
the thousands of TeVs scale and with it the possibility of any direct test in
laboratories, or assume that the flavour structure of new physics is highly non-
generic or fined-tuned.

A solution to this dichotomy is the celebrated Minimal Flavour Violation
scheme (25, 27, 28 R5) which is predictive, realistic, model independent and
symmetry driven. The previous section showed that flavour phenomenology at
present is explained by the SM plus neutrino masses solely, this is to say that
the mass terms contain all the known flavour structure and ergo determine the
flavour violation. The conclusion is that the mass terms are the only source for
all flavour and CP violation data at our disposal. The minimality assumption of
MFV is to upgrade this source to be the only one in physics Beyond the Standard
Model too at low energies.

In the absence of the mass terms the theory presents a symmetry which is
formally conserved if the sources of flavour violation are assigned transformation

properties, in the present realization given in table[4.2] The formal restoration of

SU(S)QL SU<3)UR SU(?))DR SU<3)ZL SU(3)ER O(S)NR

Yir 3 3 1 1 1 1
Yp 3 1 3 1 1 1
Y 1 1 1 3 3 1
Y, 1 1 1 3 1 3

Table 4.2: Spurious transformations of the Yukawa couplings
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the flavour symmetry applied in the effective field theory set-up determines the
flavour constants which shall be such as to form flavour invariant combinations
with the matter fields and build up out of the sole sources of flavour violation at

low energies, the Yukawas. The previous operator will serve as example now:
c6 0% = Q5 (YUY(j) el <YUYJ> i (4.20)

The Yukawa couplings, can be written as in Eqs. [£.6],[4.8],[4.9) and therefore all
parameters entering the above equation are known, they are just masses and
mixings.

It should be underlined that MFV is not a model of flavour and the value of the
new dynamical flavour scale Ay is not fixed, however the suppression introduced
via the flavour parameters makes this scale compatible with the TeV, see (92)
for a recent analysis. What it does predict is precise and constrained relations

between different flavour transitions.
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5

Spontaneous Flavour Symmetry

Breaking

The previous chapter illustrated how the entire body of flavour data can be
explained through a single entity, the mass terms. This has been shown to be the
only culprit of flavour violation. If we pause and look at the previous sentence, it is
interesting to see how the jargon itself already assumes that there is something to
be violated, and implicitly a breaking idea. It has been shown that the symmetry
of the matter content of the free theory here considered is the product of the
gauge and flavour symmetries; G x G, and that Yukawa terms do not respect
Gr. Subgroups of this group could also be considered, here the full G is adopted
in the general case, although in certain cases the axial abelian factors U(1)4 will
be droppedE]. The case of conservation of the full Gz group is also denoted azial
conserving case, whereas assuming that the U(1)4 symmetries are not exact will
constitute the explicitly axial breaking case Q]A_L ~ SU(3)° x SO(3). In all cases
the full non-abelian group is considered.

The MFV ansatz showed the usefulness of assigning spurious transformation
properties to the Yukawa couplings and having a formal flavour conservation at
the phenomenological level. It is only natural to take the next step and assume
the flavour symmetry is exact at some high energy scale A; and the Yukawa

couplings are the remains of fields that had real transformations properties under

1Or alternatively broken by a different mechanism, like a Froggat-Nielsen model.
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5. SPONTANEOUS FLAVOUR SYMMETRY BREAKING

this symmetry. The underlying idea of dynamical Yukawa couplings is depicted
in Fig. which resembles similar diagrams in Froggat Nielsen theories. The
basic assumption is indeed already present in the literature; for example in the
first formulation of MFV by Chivukula and Georgi (22)), the Yukawa couplings
corresponded to a fermion condensate. It should also be mentioned that a flavour
breaking mechanism with different continuos non-abelian groups than the here
considered has been explored (I8, 24, 93] [94], 95, [96]) and after the appearance of
this work the quantum corrections where studied in (97, [98)).

The analysis of a two generation case will serve as illustration and guide in
the next chapter, for this reason it is useful and compact to introduce n, for the

number of generations. The straight-forward generalization of the flavour group

is then:
g]: = gg: X gé—'?
GL —SU(n,)a, x SU(ny)u, x SU(ny)nn X U(1)s x U)o x U)ao, (5.1)
Gl =SU(ny)e, x SU(ng)g, x O(ng)y x U(1)y, x U(1) 41 . (5.2)

(Qr), (Dr)s

Figure 5.1: Yukawa Couplings as vevs of flavour fields -

5.1 Flavour Fields Representation

The starting point is rendering the Yukawa interaction explicitly invariant under

the flavour symmetry. At the scale Ay of the new fields responsible for flavour
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5.1 Flavour Fields Representation

breaking, the Yukawa couplings will be dynamical themselves, implying the mass

dimension of the Yukawa Operator is now > 4.

Scalar Flavour Fields in the Bi-Fundamental
In the effective field theory expansion, the leading term is dimension Eﬂ:

Py ukawa = @L&DRH + @L&UREI + ZL&ERH + ZL%NRH + h.c., (5.3)
Ay Ay Ay Ay
where there is the need to introduce the cut-off scale A fﬂ, the scalar fields Vp, Yy,

Vg and ), are dynamical fields in the bi-fundamental representation as detailed
in tables [5.1]5.2] and the relation to ordinary Yukawas is:

SU(”Q)QL SU(TLQ)UR SU(”Q)DR Ul)p U1)gv U(1)ap
Yu ng Ng 1 0 2 1
yD ng ]- ng 0 ]. 2

Table 5.1: Grq representation of the quark sector bi-fundamental scalar fields for

ny fermion generations

SU(ng)e, SU(ng)m, Ong)ng UM U(M)a
yE‘ ng 771/9 1 0 2

yy ng 1 ng

Table 5.2: G7' representation of the lepton sector bi-fundamental scalar fields for

ng fermion generations

(5.4)

!The expansion now differs from the EFT in the SM context since we have introduced new
scalar fields
2The equation above could have in more generality coupling constants different for the up

and down sector or equivalently a different scale for up and down, here the scale is chosen the
same for simplicity
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5. SPONTANEOUS FLAVOUR SYMMETRY BREAKING

This case is hereby labeled bi-fundamental scenario, an the fields can be thought

of as matrices whose explicit transformation is:

V() 5 Qg Vo) Q) V() 2 Qg Vp(z) O, (5.5)
Ve(w) > Qu, Ve(r) QL Vo(z) Z5 Q0 Y, (2) OF (5.6)

0 (Ony) being a unitary (real orthogonal) matrix of the corresponding G sub-
group: Q,Qf = QlQ, =1, ¢ =Qr ... Bg (Oy, 0%, = 0% On, =1) .
Scalar Flavour Fields in the Fundamental

The next order in the effective field theory is a d = 6 Yukawa operator, involving

generically two scalar fields in the place of the Yukawa couplings,

X B 2 XX — xEE
Lyukawa = Q1 ?XQD DrH +Q, fj\QU UrH + 7, if EpH + 1~ EpH (5.7)
f f f f

which provide the following relations between Yukawa couplings and vevs:

o <><LD><§T> . <X5X5T> ;o <Xéx?> S ) s
D:TJ U:A—?v E:T7 V:A—;»’ ()

The simplest assignation of charges or transformation properties of these fields

is to consider each of them in the fundamental representation of a given SU(3),
subgroup as specified in tables [5.3][5.4]

SU(”Q)QL SU(”Q)UR SU(ng)DR U(l)B U(l)AU U(l)AD

Xk ng 1 1 0 1 1
X5 ng 1 1 0 1 1
& 1 Ng 1 0 -1 0
B 1 1 Ng 0 0 -1

Table 5.3: Representation of the lepton sector fundamental scalar fields for n,

fermion generations

These fields are then complex ng,-vectors whose transformation under the

flavour group is just a unitary or real rotation; xy gz, Quxy, X% 9z, Onp XX
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5.1 Flavour Fields Representation

X ng 1 1 0 1
X% ng 1 1 0 1
YR 1 Ng 1 0 -1
& 1 1 Ng 0 0

Table 5.4: Representation of the lepton sector fundamental scalar fields for n,

fermion generations

From the group theory point of view this is the decomposition in the irreducible
pieces needed to build up invariant Yukawa operators, and as we shall see their
properties translate in an easy and clear extraction of the flavour structure.

The third case of a Yukawa operator of mass dimension 7 could arise from
a condensate of fermionic fields Y ~ (W) /A% (22), or as the product of three
scalar fields. In both cases the simplest decomposition falls trivially into one of
the previous or the assignation of representations is an otherwise unnecessarily
complicated higher dimensional one.

Notice that realizations in which the Yukawa couplings correspond to the vev
of an aggregate of fields, rather than to a single field, are not the simplest real-
ization of MFV as defined in Ref. (25), while still corresponding to the essential
idea that the Yukawa spurions may have a dynamical origin.

Finally, other option of dependence of the Yukawa couplings on the dynamical

fields is an inverse one:

_ A _ Ay _ A _ Ay
= oy o YToy o B0

a case in which de vev of the field rather than the scale A; entering the relation is
the larger one. This interesting case arises in models of gauged flavour symmetry
(99, [100)), in which the anomaly cancellation requirements call for the introduction
of fermion fields, whose interaction in a renormalizable Lagrangian with the scalar
fields and ordinary fermions suffice to constitute a self consistent theory that after
the integration of the heavy states yields the relation above. The transformation
properties of the fields are the same as in the bi-fundamental case.

For simplicity in the group decomposition and since they appear as the two

leading terms in the effective field theory approach, we will focus the analysis here
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5. SPONTANEOUS FLAVOUR SYMMETRY BREAKING

in the fundamental and bi-fundamental cases or the dimension 5 and 6 Yukawa

operators, the former nonetheless also applies to relation [5.9.

5.2 The Scalar Potential

The way in which the scalar fields ), x acquire a vev is through a scalar potential.
This potential, must be invariant under the gauge group of the SM G and the
flavour group Gz. The study is focused on the potential constituted by the flavour
fields only, even if there might be some mixing with the singlet combination H'H
of the Higgs field, an exploration of this last case can be found in (101)) in which
the flavour scalar fields are postulated as Dark Matter. This case would add to
the hierarchy problem but make no difference in the determination of the flavour
fields minimum since the mass scale of the latter is taken larger than the Higgs
vev: A?c > 2.

The goal of this work is therefore to address the problem of the determination
and analysis of the general Gr-invariant scalar potential and its minima for the
flavour scalar fields denoted above by ) and x. The central question is whether
it is possible to obtain the SM Yukawa pattern - i.e. the observed values of quark
masses and mixings- with a “natural” potential.

It is worth noticing that the structure of the scalar potentials constructed here
is more general than the particular effective realization in Eqgs. and
and it would apply also for Eq. as it relies exclusively on invariance under the
symmetry Gz and on the flavon representation, bi-fundamental or fundamental.

This observation is relevant, because the case of gauged flavour symmetry
leading to Eq. addresses two problems that this approach has. Namely the
presence of Goldstone bosons as a result of the spontaneous breaking of a con-
tinuous symmetry and the constraints placed on the presence of new particles
carrying flavour and inducing potentially dangerous FCNC effects.

The Goldstone bosons in a spontaneously broken flavour gauge symmetry are
eaten by the flavour group vector bosons which become massive. These particles
even if massive would induce dangerous flavour changing processes which we
expect to be suppressed by their scale. The case of gauged flavour symmetries

is however such that the inverse relation of Yukawas of Eq. translates also

36



5.2 The Scalar Potential

to the particle masses, so that the new particles inducing flavour changing in the
lightest generations are the heaviest in the new physics spectrum (102). This
two facts conform a possible acceptable and realistic scenario where to embed
the present study, even if the analysis applies in a general set-up since it is based

only on symmetries.

5.2.1 Generalities on Minimization

The variables in which we are minimizing are the parameters of the scalar fields
modulo a Gr transformation. That is, we minimize in the variables of the scalar
fields that are not absorbable with a group transformation. The discussion of
which are those variables in the bi-fundamental case is familiar to the particle
physicist; they are the equivalent of masses and mixing angles. Indeed we can
substitute in Eq. the explicit formula for the Yukawas, Eqs. [£.644.10, and
express the variables of the scalar field at the minimum in terms of flavour pa-
rameters.

The equation obtained in this way is the condition of the vev of the scalar
fields fixing the masses and mixings that are measured. It is not clear at all
though that a spontaneous breaking mechanism can yield the very values that
Yukawas actually have. To find this out the minimization of the potential has
to be completed, such that for the next two chapters masses and mixing will be
treated as variables roaming all their possible range. The question is whether at
the minimum of the potential these variables can take the values corresponding
to the known spectrum and if so to what cost.

The G invariants out of which the potential is built will be denoted generically
by I;, while y; stand for the physical variables of the scalar fields connected
explicitly to masses and mixing. Let us call n the number of physical parameters
that suffice to describe the general vev of the flavour fields, that is to say there
are n variables y; ,7 = 1,2,...,n. The following considerations can be found in
(L8, 93, [94])

A simple result is that there are n independent invariants /;, since the inversion

of the relation of the latter in terms of the Variableﬂ allows to express any new

nverse relation which is unique up to discreet choices (103))
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5. SPONTANEOUS FLAVOUR SYMMETRY BREAKING

invariant I’ in terms of the independent set {I;}; I' = I'(y;) = I'(y:(1;)).
In terms of the set of invariants {/,} the stationary points of the potential,

among them the true vacuum, are the solutions to the equation,

oL; 0V
Z oy or = (5.10)

These n equations will fix the n parameters. One can regard this array of
equations as a matrix J;; = 0I;/0y;, which is just the Jacobian of the change of
“coordinates” I; = I;(y;), times a vector 0V/0I;.

This system, if the Jacobian has rank n, has only the solution of a null vector
0V /01; = 0, which is the case for example for the Higgs potential of the SM.

When the Jacobian has rank smaller than n, the system of Eqs simplifies
to a number of equations equal to the rank of the Jacobian. The extreme case
would be a rank 0 Jacobian, which is the trivial, but always present, symmetry
preserving case. This link of the smallest rank with the largest symmetry can
be extended; indeed in general terms the reduction of the rank implies the ap-
pearance of symmetries left unbroken. In this sense the case of largest unbroken
symmetries not being the trivial one are called maximal isotropy groups (93] [04)),
that is the greatest groups within the group but smaller than him. Please note
that imposing a reduced rank of J is a potential-independent condition; it is a
constrain depending solely on the change of basis from variables to invariants.

For a geometric comprehension of the reduction of the Jacobian’s rank the
manifold of possible values for the invariants can be considered (18, 93, [04]),
denoted I-manifold. The I-manifold can be embedded in a n-th dimensional
real space R™. Whenever the Jacobian has reduced rank there exist one or more
directions in which a variation in the parameters y has 0 variation in R", let us

denote this displacement dy; , then this statement reads,

0I;
ol = Z o oy; = 0. (5.11)
This direction is the normal to a boundary of the I-manifold, as displacements in

this direction are not allowed. The further the rank is reduced the more reduced

is the dimension of this boundary. Those points for which the rank was reduced
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5.2 The Scalar Potential

the most while still triggering symmetry breaking, will be denoted singular were
whereas in the original analysis of SU(3) x SU(3) singular stood the complete
symmetry group conserving points (I§]).

In the general case one can expect to have a combination of both, reduced
rank of the Jacobian and potential-dependent solutions. It is in any case worth
examining first the Jacobian, as it is done in the next chapters.

Another relevant issue is the number of invariants that enter the potential. If
one is to stop the analysis at a given operator’s dimensionality as it is customary
in EFT some of the invariants are left out. Does this mean there are parameters
left undetermined by the potential, i. e. flat directions? We shall see that these
flat directions are related to the presence of unbroken symmetries and therefore
are unphysical, so rather than the potential in such cases being unpredictive is

quite the opposite, it imposes symmetries in the low energy spectrum.
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6

Quark Sector

This chapter will concern the analysis of flavour symmetry breaking in the quark
sector through the study of the general potential in both the bi-fundamental and

fundamental representation cases.

6.1 Bi-fundamental Flavour Scalar Fields

At a scale above the electroweak scale and around Ay we assume that the Yukawa
interactions are originated by a Yukawa operator with dimension = 5 as made
explicit in Eq. 5.3 the connection to masses and mixing of the new scalar fields
given in Eq.[5.4] The analysis of the potential for the bi-fundamental scalar fields

is split in the two and three generation case.

6.1.1 Two Family Case

The discussion of the general scalar potential starts by illustrating the two-family
case, postponing the discussion of three families to the next section. Even if
restricted to a simplified case, with a smaller number of Yukawa couplings and
mixing angles, it is a very reasonable starting-up scenario, that corresponds to
the limit in which the third family is decoupled, as suggested by the hierarchy

between quark masses and the smallness of the CKM mixing angleq'| 63 and 6;3.

We follow here the PDG (51)) conventions for the CKM matrix parametrization.
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6. QUARK SECTOR

In this section, moreover, most of the conventions and ideas to be used later on
for the three-family analysis will be introduced.

The number of variables that suffice for the description of the physical degrees
of freedom of the scalar fields ) is the starting point of the analysis. Extending
the bi-unitary parametrization for the Yukawas given in the first terms of Eqs. [4.2
to the scalar fields and performing a Gz rotation as in Eq. the objects
left are a unitary matrix, and two diagonal matrices of eigenvalues. Out of the
4 parameters of a general unitary 2 x 2 matrix, three are complex phases which
can be rotated away via diagonal phase rotations of Gz. The remaining variables
are therefore an angle in the mixing matrix and 4 eigenvalues arranged in two
diagonal matrices: a total of n = 5 following the notation introduced. This is no
other than the usual discussion of physical parameters in the Yukawa couplings,

applicable to the flavour fields since the underlying symmetry is the same.

The explicit connection of scalar fields variables and flavour parameters is,

0 w 0
(Vp) =Aryp = Ay ( %d y ) . (Vo) = A Viyr = AV ( % y ) (6.1)
where
cos siné
Vo = ( —sinf cosf ) ’ (6.2)

is the usual Cabibbo rotation among the first two families.

From the transformation properties in Eq. [5.5] it is straightforward to write
the list of independent invariants that enter in the scalar potential. For the
case of two generations that occupies us now, five independent invariants can be

constructed respecting the whole G% group (103] [104):

Iy =Tx (Y))) . Ip =Tr (Vo) . (6.3)
Ii» =Tr (yUyg,yUyg) , Ipe =Tr (ypy,ByDy})) ,  (6.4)
Iup =Tx (VoV} YoIn') - (6.5)
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6.1 Bi-fundamental Flavour Scalar Fields

The value of these invariants at the minimum correspond tdﬂ:

Iy = A2 (2 +42), Ip = A (v +v2), (6.6)
Iz = A3 (g + 4, Ip> = A (yq +vs) (6.7)
Iyp = A% [(v2 — ) (U7 — wa) cos 20 + (2 +wa) (v +wa)] /2. (6.8)

The counting of parameters required of the full Gz group; the absence of
U(1)4 factors does not allow for overall phase redefinitions and therefore in the
explicitly axial breaking case (g;_‘ﬁ ~ SU(n,)?) two more parameters appear: the
overall phases of the scalar fields. In the axial breaking case therefore the number
of variables is n = 7.

This case allows for two new invariants of dimension 2,
Iy =det (Vy) , I =det (Vp) , (6.9)

the two extra parameters appearing in this case are the complex phase of the
determinant for each Y field.

The two complex determinants together with the previous 5 operators of Eq.
6.5 add up to 9 real quantities which points to two invariants being dependent

on the rest. Indeed the Cayley-Hamilton relation in 2 dimensions reads:
Tr (yUygyUyg,> —Ty (yUy,})2 — 2det (V) det (yg) . (6.10)
T (VphYovh) =Tr (¥o¥h) —2det (Vp)det (¥}).  (6.11)
The two determinants in terms of the variables read:
Ig = AF yuye €'V, Iy = Aj yaysen — (6.12)

The symmetry matters for the outcome of the analysis, so we shall make clear
the differences in the choices of preserving the axial U(1)’s or not.

Notice that the mixing angle appears in all cases exclusively in I;p, which is
the only operator that mixes the up and down flavour field sectors. This is as
intuitively expected: the mixing angle describes the relative misalignment between

the up and down sectors basis. Eq. shows that the degeneracy in any of the two

Let us drop the vev symbols in (I) for simplicity in notation.
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sectors makes the angle unphysical, or, in terms of the scalar fields and flavour
symmetry, reabsorvable via a Gz rotation.

Since there is one mixing parameter only in this case this invariant is related
to all possible invariants describing mixing, in particular the Jarlskog invariant

for two families,

4] = 4 det, ([YUYJ, YDYISD = (sin 20)2 (yz — y3)2 (yg — y§)2 ,

is related to Ip via

1

0
o (Y yoInt) = -2V, (6.13)

The lowest dimension invariants that characterize symmetry breaking unmis-
takably are Iy and Ip. Indeed for (Iy;) # 0 or (Ip) # 0, G is broken, whereas
if (Iy) = (Ip) = 0, G remains unbroken. These invariants though only contain
information on the overall scale of the breaking and make no distinction on hi-
erarchies among eigenvalues. Iy;p can be thought of as radii whose value gives
no information on the "angular” variables. These variables can be chosen as the
differences in eigenvalues, and their value at the minimum will fix the hierar-
chies among the different generations . The invariants that will determine these
hierarchies will therefore be the those of Egs. ,[6.5

6.1.1.1 The Jacobian

All the work presented in this section is about to be published (I7)). The Jacobian
of the change of coordinates from the variables to the invariants of Eqs.
is a n X n matrix. We are interested in the determinant for the location of the
regions of reduced rank, or boundaries of the [-manifold. For these purpose we

observe that the Jacobian has the shape:

ayUIUn 0 8yUIUD JU 0 8yU]UD
J = 0 ayD[Dn ayD[UD = 0 JD 8yDIUD . (614)
O O 8GIUD O 0 JUD

This structure of the Jacobian implies that the determinant simplifies to:

det J = det JU det JD det JUD, (615)
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which is a result extensible to the 3 generation case. The third factor of this

product reads:
det Jup = sin 20 (y2 — yz) (v — va) - (6.16)

which signals # = 0, 7/2 as boundaries, both of them corresponding to no mixing,
we will examine this further in the next section. For the following analysis we

select the § = 0 solution for illustration.

e Axial Conserving Case: Gz? ~ U(n,)? - The set of invariants in Eq.
, yields:

Jy =8y, (Tr (yUyg) Ty (yUygyUyg» - ( 3?/“ igg ) . (6.17)

and

Jp =0, (Tr (yw},) Ty <yDy};,yDyg>) - ( Zy; izg ) . (6.18)

so that:
det Ji = yeyu(y2 — v2), det Jp = ysya(ys — v2) - (6.19)

The solutions encoded in this can be classified according to the symmetry

left unbroken,

1. G£7 — U(1)3 x U(1)%4 Hierarchical spectrum for both up and down

sectors

yU:Af<8 2) yD:Af(g 5) (6.20)

2. g]:q — U(l)%/ X U(l)A

a) Down quarks degenerate Up quarks hierarchical

00 y 0
wen(00) e (1 0)
b) Up quarks degenerate Down quarks hierarchical
y 0 0 0
wen(10) een(00). e
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3. Gr1 — SU2)y x U(1)p Down and Up quarks degenerate

yUzAf(g 2) yDzAf(% ;) (6.23)

The notation is such that U(1)y denote generation number and U(1) 4 chiral

rotations, explicitly:

Cy, . Cy, : .
U1)ess ( 5 > — e < 5, ) , Cr—€"“cr, Sp—€""Sg,

Uy : { L
U usa: < ZL > — €' < ZL > , up — €up, dr — e“dp,
L L
(6.24)
U(l),, : (
U1)a: (6.25)
U(l)dA . (
1
|
ﬂ"’ﬂ
o
. ﬂiﬁ'
Figure 6.1: Boundaries for the [-manifold for fixed Iy , Ip. -
Summarizing, the total Jacobian determinant is:
det J = yuyaysye sin 20 (2 — y2)* (42 — 42)” (6.26)
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and the two largest subgroups of Gz are U(2) and U(1)* associated to
the vertex point of the Fig. and the upper corner of the same figure

respectively.

e Explicitly axial breaking case: gjé’q ~ SU(ny)? - The invariants differ

in this case and so do the Jacobians:

2 u Cc
Jy =0, (Tr (yUyg) , |det yUy) - ( 2Z z ) , (6.27)
and
t 2Yq4 s
Jp =9, (Tr (yDyD) , |det yD|) =( ). (6.28)
so that
det Jy = (i —y2), det Jp = (y5 —y2) (6.29)

and the single solution associated to the pattern Gz? — SU(2)y x U(1)p
survives since now no axial symmetry is present from the beginning. The
third invariant related to the phase ¢y p can be taken to be Arg (det Yy p),
which is no other than the variable itself. Then this part of the Jacobian
is block diagonal and constant, such that Jacobian determinant stays the

salmme.

Altogether the Jacobian determinant is:
det J =sin26 (y? — yZ)2 (y2 — yg)Q , (6.30)

and the only maximal subgroup is U(2).

6.1.1.2 The Scalar Potential at the Renormalizable Level

The study of the Jacobian helped identify simple solutions in which some sub-
group of G was left unbroken corresponding to boundaries of the I-manifold.
This analysis will serve as guide in the evaluation of the general scalar potential
at the renormalizable level and the set of minima it allows for. The following
study will reveal features obscured in the Jacobian method and will give further
insight in the possible configurations and the role of unbroken symmetries. In
particular the following study will reveal which of the above extrema (boundaries)
correspond to minima and whether the potential allows for solutions outside of

the boundaries and of what kind.
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Axial preserving case: : Gz ~ U(n,)?

The most general renormalizable potential invariant under the whole flavour sym-
metry group G# can be writen in two lines by means of the introduction of the

array:

X =(Iy, Ip)" = (Tr (yUyg) Tr (yUyg»T , (6.31)
in terms of which:

VO = 2. X+ XT N X +¢Tr (yUyéyDJ’]B)

+ T (VoY Vo)) + ho'Tr (YoVhYpY)) (6.32)

where ) is a 2 x 2 real symmetric matrix, u* a real 2-vector and hy p, g three
real parameters; a total of 8 parameters enter this potential. Strict naturalness
criteria would require all dimensionless couplings A, f, g, h to be of order 1,
and the dimensionful p-terms to be smaller or equal than A; although of the
same order of magnitude. The evaluation of the possible minima will reveal next
nonetheless that even relaxing this condition the set of possible vacua is severly
restricted.

Although is not the full solution to the minimization procedure let us consider
in a first step and for illustration the first two terms in taking the limit

g, hu.p — 0. We can rewrite this part, if the matrix A is invertible as:
1 g 1 A

which is the generalization of a mexican-hat potential for two invariants. It is

clear that if the vector %)\_1 - 12 takes positive values the minimum would set:

Iy o [ Y+l Loy o
— c u =\ . 34
<ID) Af(y§+y§ 2 a (6.34)

This equation sets the order of magnitude of the Yukawa couplings as y ~
1/ (AfV/N), which signals the ratio of the mass scale of the scalar fields and the
high scale A;. For generic values of u? and A nonetheless the Yukawa magnitude

of up and down quarks would be the same, so the two entries of %)\_1 . Aki should
¥
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accommodate certain tuning, in the case that occupy us presently it would im-
ply a O(10%) ratio y,s/y. ~ 107! = \/()\*1/12)U/\/()\*1u2)pﬂ However let us

recall here that for simplicity the coupling of the up and down scalar fields in

the Yukawa operators were assumed the same, but if we were to extend this case
to a two Higgs double scenario, the value of tan 3 could make this tuning disap-
pear; as shown next it is the hierarchies within each up and down sector that the
potential is unavoidably responsible for in this scheme.

For the complete minimization the extension of the above is simple, the effect
of the invariants left out [y p yp adds up effectively to a modified A and p?.

The stepwise strategy for minimization starts off with the minimization in
those variables that appear less often in the potential, so that after solving in
their minima equations the left-over potential no longer depends on them. Then
we pick up the next variable which appears left often and iterate in this matrioska
like fashion.

The starting point is then the angle variable, appearing in one invariant only,
then follows the minimization of a variable independent from Tr()})), which most
often in the potential. The variables used in particular can be taken to be the
difference of eigenvalues Tr(Vy,p(—03) V) p) = A2 (y2, — y24). The value of these
variables will determine the hierarchy among the different generations, whereas
Tr(YY') will have a saying on the overall magnitude of the Yukawas as shown
above.

This method dictaminates therefore that we start with the mixing angle that
appears in the single invariant I;;p. The equation for the angle is,

ov ¥ Alyp

50 =g 20 :—gA;lcsin29(yg—y5) (yg—yg):(). (6.35)

The minimum of the scalar potential thus occurs for sin = 0 or cos § = 0, for non-
degenerate quark masses, which is the only case in which the angle makes sense.
For determining which of these options is selected and to provide a very useful
and general understanding of the minimization in unitary matrices parameters,
the Von Neumann trace inequality for positive definite hermitian matrices is

here reproduced:

IThe values U, D label the to entries of p?: (u#;, u%)
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Let two hermitian positive definite j X 7 matrices A and B have eigenvalues of
moduli oy < g < ... <oy and By < By < ... < B respectively, then the following
inequality holds:

J J
Z Oéj+1_i 61 S Tr (A B) S Z Oéiﬁi . (636)
i=1 =1

The usefulness of this inequality is that it tells us that, considering the eigen-
values at a fixed value and varying the rest of parameters in the matrix, that
is, the unitary matrices, the extrema are found for trivial unitary matrices. The

inequality tells us that in the case of the Invariant Iy p:

yoy? +yaye < Tr (VCJ['KMyzU Veru y%) < wyoyi+ylyl. (6.37)

The two extrema are indeed given by the two solutions for the angle in Eq.
Which of these two is selected depends nonetheless on the sign of the coefficient

in front of the invariant in the potential:

e g > 0 The potential is minimized when I;p is minimized, so Eq.

VC:<(1] (1)) (6.38)

and the situation is such that the charm quark would couple only to the

dictaminates:

down type quark and the up to the strange, in a rather upside-down sce-

nario.

e g < 0 The potential is minimized when [y p is maximized, so Eq.

ch(é (1)) : (6.39)

This case is closer to reality, now the Cabibbo angle is set to 0 and the

determines:

charm only couples to the strange quark, and the up to the down.

One can check that both these configurations leave an invariant U(1)?, as defined
in Eq. [6.24]

All in all; the straightforward lesson that follows from Eq. is that, given
the mass splittings observed in nature, the scalar potential for bi-fundamental

flavour fields does not allow mizing at the renormalizable level.
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6.1 Bi-fundamental Flavour Scalar Fields

The next step is the minimization in eigenvalues differences. The first rele-
vant point is that only the invariants Ij2, Ipe, Iy p of Egs. depend on the
eigenvalue squared differences (y; ; + e, = (o g +¥2.)%/2+ (o g — ¥2.)?/2) and
appear linearly in the potential, Eq.

When the operators in Eq. have negative coefficients hyyp < 0 the poten-
tial pushes towards the hierarchical configuration, which maximizes I p» and
minimizes —|hy,p| ly2,p2. In the case of Iyp substitution in Eq. and subse-
quently in Eq. of the two possible solutions for the mixing at the minimum
for each sign of g reveals that this term in the potential always pushes towards
the hierarchical configuration. For the resemblance of nature this configuration
(associated to case 1 of Eq. in the Jacobian analysis) is a good first approz-
imation: only the heaviest family is massive so that y, = yq = 0 and the mizing,
selecting g < 0, s vanishing.

For completeness and illustration all the possible minima and their connection

to the potential parameters are listed below:

I In this configuration a strong hierarchy arises;

yU:Af<8;>, yD:Af<8yO), (6.40)

c S

which presents an unbroken symmetry Gz? — U(1)% x U(1)% and is just

case 1 in the Jacobian analysis, see [6.20

IT This case forbids mass for the up quark

0 0 Ya 0
yU:Af(O yc), yD:Af(O ys>, (641)
whereas the mass difference in the down sector is set by the relation
2 _ 2
Ys —Ya _ 9l
= 6.42

and the breaking pattern is Gz¢ — U(1)2, x U(1)a.

IIT The analogous of case II for massless down quark reads:

yU:Af<%u£>7 yD:Af<8;), (6.43)

Cc S
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6. QUARK SECTOR

Ve —Yu _ gl
ys 2hp’
and again Gz? — U(1)} x U(1)4.

(6.44)

IV Finally a completely degenerate scenario is possible in region IV

yU:Af(gS>, yD:Af(% 5,), (6.45)

having now that the potential triggers Gz — SU(2)y x U(1)p, and an
scenario very far from reality, but listed for completeness, and the analogous
of case 3 and Eq. in the Jacobian analysis.

These regions are shown in the hy — hp plane in fig. 6.2

hp

hy

Figure 6.2: Different Regions for the Mass configuration - I is the region
that yields a hierarchical spectrum for both up and down sectors II (IIT) presents a
hierarchical down (up) spectrum and region I'V results in degenerate up and down

sectors

Note that the cases found here are not quite the same as the ones found in the

Jacobian analysis. Case 2.a and 2.b are only present in the limiting case ¢ — 0
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6.1 Bi-fundamental Flavour Scalar Fields

of IT and ITII, so those are fine tuned cases. The reason for this is found in the
symmetries, indeed cases 2.a and II and 2.b and III have the same symmetry,
so from this point of view there is nothing special on having two eigenvalues
degenerate when in the other sector one entry is 0, as the symmetry is the same
if the two in the former sector do not coincide. The reason for the interplay of
the up and down sector is the common group transformation properties under
SU(3)r of Yup and indeed this correlation disappears if the mixing invariant is

neglected g — 0, as can be checked on Egs. [6.42H6.44

Explicitly axial breaking case: G2 ~ SU(n,)?

The set-up will change now with the introduction of the determinants in Eq.
when choosing to violate U(1) v X U(1) 40 ezplicitly. By making use of the

analogous of X in this case,
X =(Iy,Ip, I, 15)" (6.46)
T
- <Tr (yUy;]) T (yDy,g) [ det (Vo) |, | det (V) | ) , (6.47)

the potential reads:
VO = 2. X+ X" N X+ he+glyp (6.48)

where ) is matrix and p? 4-vector, the entries of these two structures are complex
when they involve the determinants. The number of parameters has increased
now to 14, since the symmetry is chosen less restrictive. Nonetheless the phases of
the determinants are variables not observable at low energies and its minimization
is of no interest here, suffice then to assume that they are set to their minimum
values. Then we can effectively set it to 0 and consider all parameters in Eq.
real.
Parallel to the axial conserving case we have that, in the limit ¢ — 0, the
minimum sets
<X> - %)\‘1 2, (6.49)
if the entries of such vector are in the inside of the I-manifold. This now requires
two conditions in the entries of A™'?/2. First all entries have to be positive,

since the entries of X are always positive, and second the condition Iy > 2|I5|
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6. QUARK SECTOR

(Ip > 2|Ip|) must be satisfied by the associated entries of A™! - p2. If this second
condition is not realized the minimum is at the boundary, that is, Iy = 2[
(Ip = 21p) or equivalently y, = ye (Ya = ys)-

Note also that in this case the solutions I, IT and III are not present just like
cases 2.a and 2.b were not either in the Jacobian analysis.

These considerations together with the distinct symmetries from which they
arise lead to propose an ansazt to explain the hierarchy among the two generations
of quarks.

First we start with the whole Gz group, so that determinants are forbidden
and we chose to sit in the region I where the up and down are massless at this
order. Then introduction of a small source of breaking of the U(1) 4’s would allow
for the introduction of determinant terms in the potential with a naturally small
coefficient since it is constrained by a symmetry.

This set-up is qualitatively explainable from symmetry considerations. In the
axial preserving case the solution of hierarchical masses was present but the ex-
plicit breaking of the axial symmetry does not allow for such solutions. This
means that a small perturbation on the axial symmetry breaking direction pro-

duces a small shift in the light quark masses.

6.1.1.3 The Scalar Potential at the Non-Renormalizable Level

The scalar potential at the renormalizable level in the axial preserving case allows
for solutions with a strong hierarchy for both sectors of quark masses, that can be
perturbed via a small breaking of the axial U(1)’s to displace the minimum and
lift the zero masses of the lightest quarks. The Cabibbo angle was unavoidably set
to 0, in this section we explore whether non-renormalizable terms in the potential
may complete the picture.

Consider the addition of non-renormalizable operators to the scalar potential,
V>4 Tt is very interesting to notice that this does not require the introduction
of new invariants beyond those in Egs. 6.5f all higher order traces and deter-
minants can in fact be expressed in terms of that basis of five “renormalizable”

invariants.
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6.1 Bi-fundamental Flavour Scalar Fields

The lowest higher dimensional contributions to the scalar potential have di-

mension six. At this order, the only terms involving the mixing angle are

VOS> SN (avlyply + apluplp +--+) . (6.50)

These terms, however, show the same dependence on the Cabibbo angle previ-
ously found in Eq. and, consequently, they can simply be absorbed in the
redefinition of the lowest order parameter, g. To find a non-trivial angular struc-
ture it turns out that terms in the potential of dimension eight (or higher) have
to be considered, that is
Ve 5 %@D, (6.51)
f

with whom the possibility of a mexican hat-like potential for I;;p becomes possible

2
Ve 5 L (I _ iA‘*) 6.52
- A;% UD 90 ) ( )
which would set
o, g
sin” 6 ~ 2 (6.53)

Using the experimental values of the Yukawa couplings y, and y.., a realistic value
for sinf can be obtained although at the price of assuming a highly fine-tuned
hierarchy between the dimensionless coefficients of d = 4 and d = 8 terms, g/a ~
10719, that cannot be naturally justified in an effective Lagrangian approach.
The conclusion is therefore that mixing is absent in a natural 2 generation

quark case.

6.1.2 Three Family Case

In this section we extend the approach discussed in the previous section to the
three-family case. The two bi-triplets scalars transform explicitly under the
flavour symmetry Gf., as in Eq. and the Yukawa Lagrangian is the same
as that in Eq. (5.3). Once the flavons develop a vev the flavour symmetry is

broken and one should recover the observed fermion masses and CKM matrix

given in through Eq. (5.4)).
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6. QUARK SECTOR

While most of the procedure follows the steps of the 2 generation case, a few
differences shall be underlined. First, the number of variables and therefore inde-
pendent invariants differs. As in the two family case we can absorb three unitary
matrices with G rotations to leave two diagonal matrices with 3 eigenvalues each
and a unitary matrix. The latter contains three angles and 6 phases; diagonal
complex phase transformations allow to eliminate 5 of these so that the unitary
matrix contains 4 physical parameters. In total 10 parameters describe the ax-
ial preserving case. Again this resembles closely the usual discussion of physical
flavour parameters.

The higher number of variables implies that the list of invariants extends
beyond mass dimension 4 and therefore not all of them will be present at the
renormalizable level.

The list of invariants now grows reads (103}, [104):

I, =Tr yUyg] , Ip=Tr yDy})] , (6.54)
i 2 i 2
Iy» = Tr (yUy(T]) } , Ips = Tr (yw},) } , (6.55)
- . 3 - ) 3
Iys = Tr (yUyU) ] , Ips = Tr (yDyD> } , (6.56)
these first 6 invariants depend only on eigenvalues while the following 4 contain
mixing too,
2
Iup =T YoV YoI}] . Iupe = Tr {yin, (p3h) ] . (657)

2 2
Tyop=Tr {yUyJJ (¥p3)) } o Tppp=Tr {(yUygyDyg) } . (6.58)

Explicitly these invariants readﬂ:

Iy =A%} 42, Ip=A}Y o7, (6.59)
Iy :A?‘Zygm Ip2 :Az;zy;i7 (660)
Ips = A} ol Ips = AS> 4l (6.61)

'In our convention greek letters are up-type indices and latin letters down-type indices.
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6.1 Bi-fundamental Flavour Scalar Fields

Iyp = AZ} Z YoVaitiiVai Iy p2 = A Z YaVeiti Vai (6.62)
Lep =AY yaVai?Vi, Twpye = A3 vl Vayl Viwa Vi v Vg, (6.63)

In the explicitly axial breaking case two complex phases add to the previous
number of parameters so that 12 altogether conform the total. In this case the

determinants
I = Det Vvl , Iy = Det [Vp] , (6.64)

substitute the invariants in Eq. since they are connected through the rela-

tions:

(m (yUyU) ) Y L 3det Yy det V), (6.65)

; <Tr (yDyD )3 + 3det Yp det V], (6.66)

and they read in terms of the variables;

Iy = A3 ] va s I = A3 [T wi (6.67)

which makes clear that the determinants of the fields det) change from mass

dimension 2 to 3 in the present 3 family case.

6.1.2.1 The Jacobian

The study of the Jacobian is developed next. The Jacobian has an structure as
in Eq. [6.14] For the mass terms the analysis was first carried out in (18| [105]).
The mixing term however is not in the literature yet (I7). Let’s turn first to the
mixing Jacobian Jyp. We know that 4 parameters suffice to describe the mixing.

Rather than choosing a parametrization for Vo, let us use the properties of a
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6. QUARK SECTOR

unitary matrix, substituting Eq. in Iy p:

3

Iyp = Zyi Vai Y2 V5, (6.68)
3,2

= > Vi (Vi —w) Vi + v Y va (6.69)

2

= > W2 =) Vi (7 =) Vi 4w D_va+ v > v, (6.70)
where the terms independent of mixing elements are irrelevant for the analysis
and will not be kept in the following. Note that what is achieved in using the uni-
tarity relations is to rewrite the invariant in terms of 4 mixing elements, namelyﬂ
|Viudls [Vass |Vea| and |Ves|. The choice of these 4 is of course to one’s discretion;
we can choose other 4 by removing the o/th row and the 7'th column of Vg .

The same procedure for Iy p2 and Iz p yields:

2

[U,D2 = Z (Z/i - yf) Vi (yzz + yz?) (%2 - Z/g) Voji Ty (6-71)
QQ,’L
Lep =Y (w2 +u) (e —v) Vai (W7 —w2) Vi + -, (6.72)

whereas I py2 is more involved:

3
Iupe = W2 —ut) Vai 07 =) Vi W5 —v0) Vis (7 —wi) Vi ++++

a7167i7j

(6.73)
this equation differs from the square of Iy p, in terms in which 3 # « and i # 7,

which implies they are all proportional to the 4 different mass differences:

3 2
Lypp = (Z Yo Voi U Vé}) —2(y2 —vd) (w2 — ) (w3 —vi) (v2 —w2)

X (Vud‘/cs - Vus‘/cd) (Vu*d‘/;; -V *) . (674)

us ¥ cd

!These can be traded in ), A, p,7 in the Wolfenstein parametrization if preferred.
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6.1 Bi-fundamental Flavour Scalar Fields

The first part we are not interested in as it is a function of a previously categorized
invariant. The second has though a peculiar dependence on the mixing param-
eters. To rewrite it in terms of the four independent parameters the following

relation is used:

Det (V) Det (V) ZVMV*— ViiaVes — VisVea) (VI VE = VEVE) = 1. (6.75)

us ¥ ed

Resuming, the 4 independent pieces of the invariants:

Iip =Y (W2 — i) (W7 — vs) ViV, (6.76)
v = e —vl) () (P — ) VaiVii, (6.77)
! _ : 2 2 2 2 2 *

vep =2 (Watur) (Wa—vi) (P — ) VaiVii, (6.78)

a,l

Lype =] W5 —v) [ % - ZV Vi, (6.79)

B J
build up the Jacobian
Vadl - (W3 +95) Vaal - (i +92) [Vaal - (92 = v7) (Y7 — ) [Vadl
oy = 2L | Wasl @2+ w) Vsl (v 0) Vasl - (82 = ) (8 = ) [Va
O|Vail Veal (3 +95) Vel (02 +92) IVaal - (w2 = v7) (97 — v3) [Vedl
Vesl (03 +u) Ves| (W2 +ud) Vel (it = v7) (3 — vi) [Ves|

where the proportionality constant is different for each row; namely the product

(v2 — y?) (y? — y?). The determinant of J is

Det (Jup) = (v — vi) (W2 — i) (v — v2) (Wi — ) (v — i) (v —v7) (6.81)
X ’Vud”Vus,|%d“‘/cs| (6.82)

The analysis has turned out to be as simple as it could be. The determinant
vanishes if any of the mass differences does, or if any of the entries of V van-
ishes. The rank is reduced the most for three mixing elements vanishing, which
corresponds to (a permutation of) the identity.

Next the analysis of the invariants containing eigenvalues solely is presented,
the axial breaking case was analyzed in (I8]) but is reproduced here for complete-

ness.

99



6. QUARK SECTOR

e Axial conserving case: G- ~ U(n,)® The Jacobians are in this case,

2y, 4y 6yp

Jy =9, (TryUy;,Tr(yUy,T])Q,Tr(yUy,T])3>: 2. 4yl Gyl |
2yp dyp 6yp

(6.83)
and
2ya 4y5 6y}
Ip =0, (Tr YpVh, Tr (VpYh)?, Tr (yDyg)?») | v 4P 6y |,
2y, 4yp 6yp
(6.84)
so that:
det Jo = yevute (o — v2) (W2 — i) (ve — v7) (6.85)
det Jp = yaysys(yz — v2) (Y2 — vi) (Y3 — Vi) - (6.86)

There are now 4 possibilities to cancel each determinant above with or-
dered eigenvalues, these can be shorted in those who reduce the rank of the

Jacobian to 2,

00 0 y 0 0 y 0 0
Y~ 04y 0 |, 0y 0 ], 0y 0|, (6.87)
0 0 ¢ 0 0 ¢ 0 0 ¢
and those that yield a rank 1 Jacobian
000 y 0 0
Y~1 00 0], 0y 0 (6.88)
0 0 y 0 0 y

We will not list all the possible combinations of the up and down sector but

display the two that result in maximal unbroken subgroups:

1. G — SU@3)y x U(1)p Down and Up quark sectors degenerate

/

<

0 0
y 0
0 vy

Y = Ay (6.89)

~

o o

0 0
Yy 0 ; yD:Af
0 y

o O
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2. GF7 = U(2)> x U(1)s1p Down and Up quark sectors hierarchical

0 00 00 0
Yo=As[ 00 0|, Yo=A; 00 0 (6.90)
00 vy 00 ¢

e Explicitly axial breaking case: gj}q ~ SU(ny)* The Jacobians read

Yeyr 2. Ayl

Jy =0, (|detyU|,TryUyg,Tr(yUyg)Z): T

YuYe 2yt 4y?

(6.91)
Wys 2vya 4ys
Jp =8, (det Vo, Tt VYl , Tr (yDygf) — | vawe 29 42 |
ysya 2y 4dyp
(6.92)
and the determinant of each Jacobian is
det Ju = (ya — v2) (W2 — vi) s — vi) (6.93)
det Jp = (yi — y2) (W3 — vi) (Wi — vi) » (6.94)

from where we see that the first case in is no longer a solution.

6.1.2.2 The Potential at the Renormalizable Level

The following study will determine which of the different above unbroken symme-
tries (boundaries) are respected (possible) at the different minima of the potential.
The renormalizable scalar potential will contain formally the same independent
invariants as in the two generation case, only these invariants now depend on a

higher number of variables.

Axial preserving case: G% ~ U(n,)?

The most general scalar potential at the renormalizable level in this case is just
the same formally as for the 2 family case: Eq.[6.32, using the vector X as defined
in [6.31] Next is detailed the possible vacua permitted in this potential.
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First the Von Neumann trace inequality permits the automatic minimization
of the mixing term, so that we have two options;
(6.95)

9<0 Vexkm = g>0 Vexu =

—_ o O

0
1
0

o O =
O = O
—_ o O
o O =

the first is a good approximation to reality, whereas the second one would result
in the top quark coupled only to the down type quark. These solutions leave an
invariant generation number U(1), defined as in Eq. regardless for generic
values of masses.

The two possibilities above are a reduced number of the various permutation
matrices that the Jacobian analysis singled out. This means that the potential
selects some of these boundaries, concretely those that order in an inverse or
direct manner the mass eigenstates of up and down sectors.

With the same procedure as for the two family case we next minimize in
the variables that will determine the hierarchy. These are now the two possible
eigenvalue differences in the up sector and another two in the down sector.

The potential is formally the same as in the 2 family case and let us draw
the readers attention to the fact that the “map” of Fig. is drawn in terms
of invariant magnitudes which know nothing of the dimension of the matrices
involved. In this sense we expect the same map, as it will turn out. It is only left
to determine what are the hierarchies in these regions.

We can anticipate, focusing on the contrast with the observed flavour pattern,
that a hierarchical solution corresponding to region I of Fig. where only the
heaviest family is massive and the mixing matrix is the identity is a natural
possible solution. Like in the two family case the resemblance with nature is
good in a first sketch; top and bottom are much heavier than the rest of quarks
and the miz little (~ \?) with them.

For completeness the set of vacua is listed next:

I In this region the equivalent of the hierarchical configuration is now the

case of vanishing of the lightest 4 eigenvalues,

0 0 O 00 0
Yop=As{ 0 0 O ) Yo=As1 00 O ) (6.96)
0 0 w 00 w
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and an unbroken U(2)? x U(1);1p.

IT Now we have a hierarchical Yukawa for the up sector and the two lightest

down-type eigenvalues are equal

y 0 0 0 0 O
Yop=A;| 0 y O , Yo=As 0 0 O , (6.97)
0 0 w 0 0 w
2 _ .2
i
s = _= s == , 698
Ys =Ya =Y 72 oh (6.98)
leaving an unbroken an U(2)y X U(2)y, X U(1)¢tsp.
e III The analogous of the previous for the up sector is
00 0 y 0 0
Yo=As| 0 0 O , Yo=As1 0y O , (6.99)
0 0 w 00 wu
2 _ .2
v —y* _ gl
c—Yu =Y, = s 6.100
Yo =Yu =Y : 2 (6.100)
with an unbroken U(2)y x U(2)p, X U(1)ts
e IV Finally the degenerate case is simply
y 0 0 y 0 0
yD = Af 0 Yy 0 s yU = Af 0 y’ 0 s (6.101)
00y 0 0 ¥

respecting a U(3)y symmetry.

Note that none of the solutions have a single vanishing eigenvalue, so that
only the case I could be a good approximation to reality. It is the case that the
potential being the same as for two families, the picture of possible vacua in Fig.
6.2 is the same, only now the unbroken symmetry is different, but the maximal
that we could choose (93], [94)).
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Explicitly axial breaking case: GA7 ~ SU(n,)3

The potential is now:

VO = 2. X+ XT A X +gTr (yUyZJyDyL) + hy'Tr (yUygyUyg)

+ hpTr (YoIYpI)) + fiw det Vo + fip det V. (6.102)

The inclusion of determinants will not change the possibilities listed as I , IT , III
, IV, since all of these configurations are also boundaries in this case. Another
way of putting it is that part of the symmetries in the solutions above are still left
after removing the U(1)4 factors, namely SU(2)p, g,. This did not happen in

the two family case as the unbroken symmetry was “U(1)” rather than “U(2)”.

6.1.2.3 The Potential at the Non-Renomalizable Level

The first issue to deal with in this case is the fact that the order of magnitude of
the Yukawa eigenvalues is set by the ratio y ~ u/(Av/A) which implies for the
top Yukawa that the vev of the field y/v/ is around the scale A 7 signaling a bad
convergence of the EFT. To cope with this first it is noted that the top Yukawa
runs down with energy whereas the relation y ~ j1/(A;v/A) does not determine
the overall scale. For energies of the order of 10® GeV (9) the top Yukawa is
already smaller than the weak coupling constant allowing the usual expansion in
EFT.

The case in which the two scales are or the same order can nonetheless formally
be treated in the same sense as the non-linear o-model. First the isolation in a
single invariant of the problematic terms is accomplished by the set of invariants;
{1y, I» — (Iy)* , Iys — (Iy)* } instead of Egs. M, such that the latter two
are suppressed by one power of the second highest eigenvalue: y2. Terms in Iy
can be summed in a generic function in the potential F' (I;;/A%) = F(y;?) and for
this analysis it suffices that it has a minimum nonvanishing and around 1. The

connection with Yukawas has also to be revisited

yU yUyU Yu 0 0
+ Z §\2z+1 ) ~ Vi | 0 v 0 (6.103)
0 0 f(w)
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Such that the connection with the top Yukawa coupling of the eigenvalue in Yy,
denoted ¥}, is y; = f(y;). Then substitution in the function F yields the potential
as a function of the top Yukawa coupling F'(f~!(y;)). This means certainly a loss
in predictivity since the introduced functions F', f are general, however for the
present discussion it suffices that F'(f~!(z)) has a minimum at x ~ 1.

In either case and to conclude this discussion, the symmetry arguments used
to identify the possible vacua hold the same in this “strong interacting” scenario.

One interesting point is the possibility of non-renormalizable operators cor-
recting the pattern of the renormalizable potential. It is a priori either a fine-
tuned option like in the two family case or unsuccessful since the configurations
are protected by a large unbroken symmetry. The intuitive reason for this is that
for perturbations to displace the minimum they must create a small tilt in the
potential via lineal dependence on the deviations from the 0-order solution; how-
ever non-renormalizable terms contain high powers of eigenvalues and therefore

the corrections they introduce are not linear in the perturbations.

6.2 Flavour Scalar Fields in the Fundamental

In the simplest case from the group theory point of view, each Yukawa corre-
sponds to two scalar fields y transforming in the fundamental representation
and the Yukawa Operator has dimension 6. This approach would a prior:i allow
to introduce one new field for each component of the flavour symmetry: three
fields. However, such a minimal setup leads to an unsatisfactory realization of
the flavour sector as no physical mixing angle is allowed. The situation improves
qualitatively, though, if two SU(n,)q, representations are introduced, one for the
up and one for the down quark sectors, the field content is detailed in table [5.3]

Before discussing the potential inspection of Eq. will illuminate the road
ahead. The hypothesis now is that Yukawas are build out of two fundamental
representation. In linear algebra terms, the Yukawa matrix is made out of two
vectors. This is of course a very strong assumption on the structure of the matrix.
First and foremost such a matrix has rank 1, so that by construction, there is one

single eigenvalue per up and down sector different from (. Please note that this
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statement is independent of the number of generations. The situation is then a
good starting approximation of a hierarchical spectrum.

Second the number of variables in the flavour fields will now not be the same
as low energy flavour observables. The scalar fields are fundamental and can
be thought of as complex vectors that are “rotated” under a flavour symmetry
transformation. The only physical invariants that can be associated to vectors are
the moduli and, if they live in the same space, their relative angles. Altogether
the list of independent invariants and therefore physical variables describing the
fields is,

z={xixt,  E. b g b} 610
where the array Z will be useful for notation purposesﬂ
A word on the phenomenology of this scenario is due first. Let us compare
the phenomenology expected from bi-fundamental flavons (i.e. d = 5 Yukawa
operator) with that from fundamental flavons (i.e. d = 6 Yukawa operators). For
bi-fundamentals, the list of effective FCNC operators is exactly the same that
in the original MFV proposal (25). The case of fundamentals presents some dif-
ferences: higher-dimension invariants can be constructed in this case, exhibiting
lower dimension than in the bi-fundamental case. For instance, one can compare

these two operators:
DrYp' Yy y;r] Qr, ~ [mass]® — Drx5xEQp ~ [mass]®,  (6.105)

where the mass dimension of the invariant is shown in brackets; with these two
types of basic bilinear FCNC structures it is possible to build effective operators
describing FCNC processes, but differing on the degree of suppression that they
exhibit. This underlines the fact that the identification of Yukawa couplings with
aggregates of two or more flavons is a setup which goes technically beyond the
realization of MFV, resulting possibly in a distinct phenomenology which could
provide a way to distinguish between fundamental and bi-fundamental origin.
There is now also a clear geometrical interpretation of the Cabibbo angle: the
mizing angle between two generations of quarks is the misalignment of the x*

flavons in the flavour space.

!The index of Z will run over the five values (U, L), (U, R), (D,L), (D,R,), (U, D)
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6.2 Flavour Scalar Fields in the Fundamental

Let us turn now to the construction of the potential.

6.2.1 The Potential at the Renormalizable Level

Previous considerations regarding the scale separation between EW and flavour
breaking scale hold also in this case, and in consequence the Higgs sector con-
tributions will not be explicitly described. The Potential for the x fields can be

written in the compact manner;
VW = —p5 - Z+ 2" Np- Z + hec., (6.106)

The total number of operators that can be introduced at the renormalizable level
is 20. However, only 5 different combinations of these will enter the minimization

equations. The solution

I _
(Z) = 575} (6.107)

exists if the vector A;* lr 2 /2 takes values inside the possible range of Z. The case
in which this does not happen leads to a boundary of the invariant space. This
occurs both when the entries turn negative in /\;l,u? and when XzLJTXﬁxf)TXf) =
XéTX(L]XIT}TXB This last case corresponds to the two vectors X& p aligned, that
precludes any mixing. This means that the no mixing case is a boundary to which
nonetheless the minima of the potential is not restricted in general.

All these considerations make straight forward the extraction of the Yukawa

configuration.

e Two family case From the expressions for the Yukawa matrices in Eqs.[5.8|
and the previous discussion we write that the configuration for the Yukawas

is

Xa| |x Xar| [ X
Yp = ‘dJ\Ld‘<01), Yy = ‘J\L <y, (01).(6.108)
o= (S50 e ) (6109
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so that quark masses are fixed via Eq. [6.107] to:

O ) e AR O ) e )
Ye = 242 202 Ys = 212 202
A1

(A1) o

cosf. = ’ (6.111)

VOF ), O ),

The vev of the moduli of the y fields is of the same order u for natural
parameters, so that the cosine of the Cabibbo angle above is typically of
O(1). This means that in the fundamental a natural scenario can give rise
to both the strong hierarchies in quark masses and a non-vanishing mixing
angle, whereas in the bi-fundamental case the mixing was unavoidably set
to 0.

e Three family case The extension is simple, the Yukawa matrices are still

of rank one and a single mixing angle arises

00 0 00 0
v |Xd/U2Xd’ 000, Vo — !Xu/!\LXu! 00 0
00 1 00 1
(6.112)
10 0
Vokm = [ 0 cosbly  sinflys | . (6.113)
0 —sinfyz cosbas
with:
O ) e O ), ), A
e = 212 202 W= 242 202
(6.114)
PRI
CO8 a5 = SORL (6.115)

1,2 1,2 '
\/(Af 'uf)U,L </\f 'uf)D,L
For obvious reasons, in eq. ({6.112) the massive state is chosen to be that of
the third generation and we have again a naturally O(1) angle. The flavon

vevs have not broken completely the flavour symmetry, leaving a residual

U(l)g, xSU(2)p, x SU(2)y, symmetry group. This can be seen as follows,
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6.2 Flavour Scalar Fields in the Fundamental

in the three dimensional space where SU(3)g, acts, the two vectors Xé D
define a plane, perpendicular to this plane there is the direction of the
family that is completely decoupled form the rest, and in the plane we have
the massive eigenstate and the eigenstate that, even if massless, can be told

from the other massless states as it mixes with the massive.

If the hierarchies in mass in each up and down sectors are explained here
through the very construction of the Yukawas via fundamental fields, there is
still the hierarchy of masses between the top and bottom for the potential to

accomodate, that is;

()‘EIM?”)D,R ()\JTI’M?C)D,L

- - ~5.7x107* (6.116)
<)‘f1'“?”)U,R ()\fl’u?c)U,L

yi/yi =

Note that the top-bottom hierarchy is explained in this context by the 4th power
ratio of mass scales so that a typical ratio of pp/uy ~ 0.15 suffices to explain the
hierarchy.

One of the consequences of the strong hierarchy imposed in this scenario is
that it cannot be corrected with nonrenormalizable terms to obtain small masses
for the other lightest families for remember that the vanishing of all but one
eigenvalues is obtained just by regarding the scalar field fundamental content.
Nevertheless, the partial breaking of flavour symmetry provided by eq. can
open quite interesting possibilities from a model-building point of view. Consider
as an example the following multi-step approach. In a first step, only the minimal
number of fundamental fields are introduced: i.e. x%, x#f and xE. Their vevs
break SU(3)? down to SU(2)?, originating non-vanishing Yukawa couplings only
for the top and the bottom quarks, without any mixing angle (as we have only
one left-handed flavon). As a second step, four new triplet fields X;L,f’ are added,
whose contributions to the Yukawa terms are suppressed relatively to the previous
flavons. If their vevs point in the direction of the unbroken flavour subgroup
SU(2)3, then the residual symmetry is further reduced. As a result, non-vanishing

charm and strange Yukawa couplings are generated together with a mixing among
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the first two generations:

L Rt L IRt 0 sinfy. 0
(6.117)
XExp xR ou
YVdE A2D + DAQD 0 ys O
¥ f 0 0 w

The relative suppression of the two sets of flavon vevs correspond to the hierarchy
between y. and y; (ys and yb)E]. Hopefully, a refinement of this argument would
allow to explain the rest of the Yukawas and the remaining angles. The con-
struction of the scalar potential for such a setup would be quite model dependent

though, and beyond the scope of this discussion.

6.3 Combining fundamentals and bi-fundamentals

Until now we have considered separately Yukawa operators of dimension d = 5
and d = 6. It is, however, interesting to explore if some added value from the
simultaneous presence of both kinds of operators can be obtained. This is a
sensible choice from the point of view of effective Lagrangians in which, working
at O(1/A%), contributions of three types may be included: i) the leading d = 5
O(1/Ay) operators; ii) renormalizable terms stemming from fundamentals (i.e.
from d = 6 O(1/A%) operators; iii) other corrections numerically competitive at
the orders considered here. We focus here as illustration on the impact of i) and
ii):

Yo xbxg

VRV

Yo xbxp
Ay N

Ly =Q, DrH +Q, UpH + h.c., (6.118)

As the bi-fundamental flavons arise at first order in the 1/A; expansion, it is sug-
gestive to think of the fundamental contributions as a “higher order” correction.

Let us then consider the case in which the flavons develop vevs as follows:

00 0 L 0
%N 00 0 |, XK’;D ves | (6.119)
f 0 0 wp f 0

! Alternatively, all flavon vevs of similar magnitude with different flavour scale would lead

to the same pattern.

70



6.3 Combining fundamentals and bi-fundamentals

and Xf, 4 acquire arbitrary vev values of order Ay, for all components. Finally,

0 sinf.y. 0 0 0 0
Yo=1| 0 cosb.y. O , Yo=1| 0 gy, O (6.120)
0 0 Yt 0 0 w

This seems an appealing pattern, with masses for the two heavier generations and
one sizable mixing angle, that we chose to identify here with the Cabibbo angleﬂ
As for the lighter family, non-vanishing masses for the up and down quarks could
now result from non-renormalizable operators.

The drawback of these combined analysis is that the direct connection between
the minima of the potential and the spectrum is lost and the analysis of the

potential would be very involved.

!Similar constructions have been suggested also in other contexts as in (95)).
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7

Lepton Sector

The lepton sector is at the moment in a dynamical and exciting state. The
determination of the fundamental nature of neutrino masses through neutrinoless
double beta decay (106) will explore one very fundamental question: are there
fermions in nature which are their own antiparticle? With the recent measure of
a sizable 013 mixing angle in the lepton sector (107, [10§]), all angles of the mixing
matrix are determined and the race for discovery of CP violation in the lepton
sector has started (109). At the same time there is an ambitious experimental
search for flavour violation in the charged lepton sector (110, TT1], 112} T13) which
could pour light in possible new physics beyond the SM, and provide a new probe
of the magnitude of the seesaw scale (14)), whereas on the cosmology side recent
data seems to favor 3 only light species of neutrinos (114)).

For the present theoretical analysis the nature of neutrino masses is crucial.
If neutrinos happen to be Dirac particles, the analysis of the flavour symmetry
breaking mechanism is completely analogous to that for the quark case: all con-
clusions drawn are directly translated to the lepton case and negligible mixing
would be favored for the simplest set-up in which each Yukawa coupling is asso-
ciated to a field in the bifundamental of the flavour group. As for quarks, sizable
mixing would be allowed, though, for setups in which the Yukawas are identified
with (combinations of) fields in the fundamental representation of the flavour
group, implying a strong hierarchy for neutrinos.

We turn here instead to the case in which neutrinos are Majorana particles

and more concretely generated by a type I seesaw model. It has been previously
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7. LEPTON SECTOR

found (78, [79] 80l 8T], B2) that for type I seesaw scenarios which exhibit approxi-
mate Lepton Number conservation, interesting seesaw models arise in which the
effective scale of Lepton Number is distinct from the flavour scale yielding an
interesting phenomenology (82, [1T5] 116, 117, 118]), and it was first in this setup
that we identified the patterns (16]) to be established with more generality in the
next sections. Let us consider in this chapter the general seesaw I scenario with
degenerate heavy right-handed neutrinos as outlined in the introduction.

With our hypothesis of dynamical Yukawa couplings we introduce to scalar

fields in parallel to the two Yukawa matrices that are bifundamentals of G as

detailed in table 5.2l

7.1 Two Family Case

The counting of physical parameters is simple. It is known (83)) that for two
families with heavy degenerate neutrinos, the number of physical parameters
describing the lepton sector is eight: six moduli and two phases.

Indeed, after using the freedom to choose the lepton charged matrix diagonal,
as in Eq. [4.7] Y, is still a priori a general complex matrix with 8 parameters.
Two phases can be reabsorbed through left-handed field U(1) rotations, though,
and an O(2) rotation on the right of the neutrino Yukawa coupling (see Eq.
, reduces to five the number of physical parameters in Y, so that altogether
n = T parameters suffice to describe the physical degrees of freedom in the lepton
Yukawas, with the eight physical parameter being the heavy neutrino mass M.
Below, for the explicit computation we will use either the so-called Casas-Ibarra
parametrization (I19) of the neutrino Yukawa couplings to maintain explicit the

connection with masses and mixing,

YE:<ye 0), YV:@U<\/m_”l 0 )R, (7.1)

0 v 0 \aLLZ
U cosf sinf e 0 o coshw isinhw
— \ —sinf cosé 0 ei@ | ~ \ —isinhw coshw /-
(7.2)
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7.1 Two Family Case

In order to extend the parametrization above to the fields Vg, ), it is convenient

to use the definitions

M
Yoi = 5 (7.3)
leading to
P — A cosf sinf e /Y 0 coshw —isinhw
v\ —sinf cosé 0 e /U tsinhw  coshw ’

(7.4

e O
Ve =Arye =0y ( ‘% ) : (7.5)

Yu

It is the case nonetheless that the minimization procedure is optimized when se-

lecting a different parametrization, the bi-unitary in analogy with quarks Eq.[4.2}
V, = MUy Ur, Ve =Asye; UUl =1, UgUL=1, (7.6)

with y as defined above, Uy, r being unitary matrices and y containing the eigen-
values of the neutrino Yukawa matrix y = Diag(y1,y2), distinct from neutrino
masses. The connection with the latter is:

02

M

2
v
VI = —Uy, UgUky, Ul . (7.7)

l/:YI/
" M

None of the unitary matrices above corresponds to Upysng, but Upysns is the the

matrix such that diagonalizes the matrix above, that is

m, = UPMNSm,/UgMNS . (78)

The expression of mixing and masses in terms of the bi-unitary parameters is
involved but the usefulness of this method is that we will not need it. The
potential will select particularly simple points of this parametrization with an
easy connection to low energy parameters.

In the following we will use the Casas-Ibarra parametrization for the Jacobian
and mixing analysis and move to the bi-unitary to simplify matters in the mass
hierarchy analysis of the potential.

The scalar potential for the Vg and ), fields must be invariant under the

SM gauge symmetry and the flavour symmetry Gz. The possible independent
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invariant terms reduce to precisely seven terms, e.g.:

Iy =Tr |V} I =T [%Y] | (7.9)
Iy =Tr [(VpYh)?] L» =Te (W) (7.10)
Iy =Tr [VIVTV:] L =T DYV (711)
Ly =Te [ VYLV VIeVE] - (7.12)

In terms of the variables defined above, the invariants read:

Ig =A% (v2 +v2) I, = A3 (Yo, + Yu,) cosh 2w, (7.13)

I =As (e + )y L2 = A = Y2) + (Yo + ) coshdw) /2, (7.14)

Lo =X (42 +12) (7.15)
Lg =Ny — 42) (Yo, — Yuy) €08 20 cosh 2w + (42 + 477) (Yo + Us)

+2 (Y2 — Y2) /Y Yvs Sin 20rsin 20 sinh 2w] /2 , (7.16)

Lyp =A% (v = v2) (90, — i) o820 + (v +y3) (v, +2,)] /2. (7.17)

These results apply to any general seesaw I construction with heavy degenerate
neutrinos. Note the different dependence in the mixing angle in the last two
equations. Crucial to this difference are non trivial values of w # 0 and sin 2« # 0,
which will be shown below to be natural minima of the system.

Again, for the explicitly axial breaking case (Gr ~ SU(ng)? x SO(ny,)) two

new invariants would appear
I; = Det [Vg] , I; =Det[Y,] , (7.18)

which would substitute the invariants in Eq. as for the quark case, see Eqs.
0. 10H6. 111

Finally, the determinants in Eqs. [7.18| can be expressed as

I; = AfcyeyuewE, I; = Afc, TN el (7.19)
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7.1.1 The Jacobian

The Jacobian can be factorized as follows:

JE‘ 0 ayEI(V,E),(V’,E)
J = 0 Jy ayy,wI(V,E),(u’,E) . (720)
0 0 Oalwr). .k

With respect to the mixing variables, the sub-Jacobian is given by

O (L ) =00 (Te [ VVIVEVE] L T VIV VIVRVE]) . (721)

. ( 2/Yur U, sinh 2w sin 20 cos 20 — (y,, — Yu,) cosh2wsin 20 (y2 — y2 ) sin 26 )

2\/Yu, Yu, Sinh 2w sin 26 cos 2« 0
(7.22)
with subdeterminant given by
det Jyo = (yi — yg) (yz1 — yi) sinh 2w sin® 26 cos 2« (7.23)

This last equation shows the fundamental difference with respect to the quark (or
more in general Dirac) case: reducing the rank can be accomplished by choosing
a = /4. It will be shown later on, through an explicit example, how this solution
comes along with mass degeneracy for light neutrinos.

Let us next consider the analysis the Jacobian for the mass sector

e Axial preserving case: G ~ U(n,)? x O(n,)

J, =0 (Tr VY] Te (DY) T (M2, V;00]) (7.24)
cosh 2w y,, cosh? 2w + y,, sinh? 2w 2y,
= cosh 2w Yy, sinh? 2w + v, cosh® 2w 2y, | , (7.25)
2(Yu, + Yu,) sinh 2w (Y, + o, )? sinh 4w 0

The determinant of this matrix is:
det J, = 8(4u, + V)2 (Yo, — Y,) sinh 2w, (7.26)

whereas for charged leptons it results, in analogy with the quark case:

det Jg = yey, (yg - yi) ) (7.27)
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e Explicitly Axial breaking case: Qé’l ~ SU(n,)?*xS0(n,)- The Jacobian

reads now,

Jl/ =0 (detyuu Tr [yyyi] ) Tr [yuyg‘y:y,”) s (728)
VYo /Y cosh 2w 2y,

=\ VY Yo cosh 2w 2, | > (7.29)
0 2(Yy, + Yup)sinh2w 0

with determinant

(ym + yl/2)2(yl/1 - yl/2>

det J, = sinh 2w, (7.30)
VY1 Yy
and for charged leptons
det Jg = (y2 —y2.) - (7.31)

7.1.2 The Potential at the Renormalizable Level

In this section the study of the renormalizable potential will reveal that all pos-
sible vacua retain some unbroken symmetry and in turn correspond to some of
the boundary regions identified in the previous section. Nonetheless the allowed
boundaries are not arbitrary, the potential selects only certain of these and in
particular the potential does not restrict neccesarily to the smallest dimension
non-trivial boundaries, such that one can have certain parameters adjustable by
the potential. This section will treat by default of the axial preserving case, unless
stated otherwise.

At the renormalizable level the most general potential respecting G is

_ 2 2 2\ T 2 )2 i 1
V=2 X2+ (X3 AX2 4 by Tr (yEyE) 4T (yEyEyyyy) (7.32)
+ by T (V) + 1, T (VYTVIVE)

In this equation X? is a two-component vector defined by
T
X2 = (Tr (Vedh) T (Vi)

p? is a real two-component vector, \ is a 2 x 2 Hermitian matrix and all other

coefficients are real parameters, a total of 9 parameters, one more than in the
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quark case since the new invariant I, is allowed by the symmetry. The full scalar
potential includes in addition Higgs-)Vg and Higgs-)), cross-terms, but they do
not affect the mixing pattern and will thus be obviated in what follows.
Consider now the fermion masses fixed at their physical values and focus on
the mixing pattern allowed at the minimum of the potential. Since mixing arises
from the misalignment in flavour space of the charged lepton and the neutrino
flavons, the only relevant invariant at the renormalisable level is I, p whose ex-

plicit dependence is shown in [7.16] and we reproduce here

Tr (yEyi;%yD =A5[(v = ¥2) (Yor — ) cOs20 cosh 2w + (47 + y) (Yo + o)
+2 (yi — Y2) /Y Yr, Sin 2ar sin 26 sinh 2w] /2 , (7.33)

for comparison with the quark case analogous

Tr (yDygyUyg> = A (W2 =) (W2 —wi) cos20 + (v2 +wi) (2 + )] /2.
(7.34)

The first term in Eq. for leptons corresponds to that for quarks in Eq. :
the only difference is the linear -instead of quadratic- dependence on neutrino
masses, as befits the seesaw realisation. The second line in Eq. has a
strong impact on the localisation of the minimum of the potential and is respon-
sible for the different results in the quark and lepton sectors: it contains the
Majorana phase o and therefore connects the Majorana nature of neutrinos to
their mixing.

This formula also shows explicitly the relations expected on physical grounds,
between the mass spectrum and non-trivial mixing: i) the dependence on the
mixing angle disappears in the limit of degenerate charged lepton masses; ii) it
also vanishes for degenerate neutrino masses if and only if sin2a = 0; iii) on
the contrary, for sin2a # 0 the dependence on the mixing angle remains, as it
is physical even for degenerate neutrino masses; iv) the o dependence vanishes
when one of the two neutrino masses vanishes or in the absence of mixing, as «

becomes then unphysical.
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The minimisation with respect to the Majorana phase and the mixing angle

leads to the constraints:

sinh 2w, /m,,m,, sin 20 cos2a = 0, (7.35)
, 2/My,my,

tg260 = sin 2a tanh 2w : (7.36)
My — My,

Where we have restored neutrino masses explicitly since the formula stays the
same. The first condition predicts then that the Majorana phase is mazimal,
a = {r/4,3n/4}, for non-trivial mizing angle. The relative Majorana phase
between the two neutrinos is therefore 2a = £7/2 which implies no CP violation
due to Majorana phases. On the other hand, Eq. establishes a link between
the mixing strength and the type of spectrum, which indicates a maximal angle
for degenerate neutrino masses, and a small angle for strong mass hierarchy.
Using the Von Neumann trace inequality we have that the previous result
corresponds to the configurations in which the eigenvalues of yEyTE and yyy;,

are coupled in direct or inverse order:

Ip,| o<m§m++mim_, g>0,
man (7.37)
[El,‘ Comimo +mlmy, g<o0,
where the eigenvalues of yyy,j are,
ms = a, £ /a2 —c2, (7.38)

a, = (my, + my,)cosh2w, ¢, = 4,/m,,m,, (cosh 2w + sinh 2w) .

This two family scenario resulted in a remarkable connection of mass degeneracy
and large angles, for an attempt at a realistic case we must wait to the three
family case.

The minimization for the rest of the potential will fix masses and w but it
will not allow for arbitrary values of these. The procedure leads to 4 types of
vacua . The details for the procedure of finding this minimum are not detailed
here, suffice to say that there are two types of solutions one of them not leading
to mixing, and equivalent to the quark case. This corresponds to w = 0 which

is listed as one of the solutions for a vanishing Jacobian. One can see how this
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7.1 Two Family Case

solution leads to no mixing just substituting in Eq. [7.33] The other solution
which does lead to mixing corresponds to degenerate neutrinos m,, = m,,, which
corresponds to a boundary, and through Eq. [7.36] correspond to maximal mixing
0 = /4, and o = 7/4. In this case the Yukawa, turning now to the bi-unitary

parametrization, have a structure:

%:Af(%l ;)%(—112) (7.39)

where the values y; y2 are not proportional to masses and define in Eq. [7.6} if we

write the Majorana mass matrix:

v? 0 vy
, = — , 7.40
M ( yan 0 ) (7.40)

we realize that the neutrinos are degenerate by construction. Even the values
of y; and y, are not arbitrary but the possible configurations come along with
certain hierarchies of charged lepton Yukawas, like in the quark case. Before
we discuss the possible vacua let us pause for examining more closely Is
there something special about such a configuration? There is, it leaves certain

symmetry unbroken. For determining it we perform a transformation of O(2)y,:

v . —if YL i

¥ 0(2) 3, ¢ioad _ V2 V2 cosf sinf _ (e 0 V2 V2
v v _w iw —sinf cosf 0 ¥ _y i
V2 V2 V2 V2

—~
EN

A1)

It is clear now that a simultaneous rotation of the left handed group SU(2),,
generated by o3 compensates these phases such that we have an unbroken U(1)
that we call SO(2)y since it would be the equivalent of SU(2)y in the quark case.
The allowed ratios of eigenvalues are constrained like in the quark case. The

minimization in these variables shows that one possible solution resembling nature

sets: .
0 0 v

Yu _ Y2 w2

V2 V2

with a breaking pattern G- — U(1)., x SO(2)y. In this scenario the electron is

massless and the two neutrinos have the same absolute value for the mass while
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the mizing angle is maximal = /4 in a tantalizing first approzimation to the

lepton flavour pattern.

The rest of possible vacua are listed in what follows:

I This hierarchical solution sets the electron massless and forbids Majorana

I1

111

masses for the neutrinos,

0 0 0 0
yE:Af(O y ), yu:Af<_y_2 iy_z)? (7'43)
" V2 V2

since the breaking pattern is Gt — U(1)y x U(1)e X U(1)4. Even if there
is no Majorana mass for the neutrinos, the muon neutrino mixes with the
heavy right handed and produces flavour effects. The spectrum has then a

massless neutrino, which is mostly active and a heavy Dirac neutrino.

This case yields a massless electron and two degenerate majorana neutrinos;

0 0 %
2 2
V2 V2

with the relation;

2 2
Y — 91 |91
- : 7.45

and the symmetry pattern; G — U(1)., x SO(2)y.

The two leptons have a mass and the neutrinos sector has a single massive

Dirac fermion.

. 0 0 0
yE:Af(% yu), yV:Af(_yz @)7 (746)

satisfying
Yo = Ye _ gl
?/ﬁ 2hg’

(7.47)

the unbroken symmetry is U(1). x U(1)n-
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IV The degenerate case now corresponds to a configuration of the Yukawas of

the type
0 I
yE:Af(g >’ yv:AfZ/< - \?)’ (7.48)
Y Vi v

which preserves SO(2)y.

From these set of possible minima we learn that all the vacua found at the renor-
malizable level have an unbroken symmetry. Like in the quark case the introduc-
tion of determinants will disrupt those configurations that have a chiral U(1) 4.
This fact can be used to lift the zero eigenvalues through a small determinant
coefficient like in the quark case.

Finally we remark that all cases with nontrivial mixing, result in sharp pre-
dictions: a maximal mizing angle and degenerate neutrinos with a /2 relative

majorana phase.

7.2 Three Family case

The scalar fields are taken to be bi-triplets as detailed in table [5.2] and are con-
nected proportionally to Yukawas as seen in Eq. [5.4]

For the number of parameters that suffice to parametrize such scalar fields
modulo the symmetry above, starting as in the 2 family case from diagonal Vg,
Y, is a complex matrix with a priori 18 parameters. An O(3)y, rotation can
eliminate 3 of these, and there are still the residual symmetry of complex phase
redefinitions to absorb 3 complex phases , leaving 12 parameters (83). These
parameters can be encoded in 3 masses for the light neutrinos, two majorana
phases, 4 mixing parameters like for the quark mixing matrix and 3 complex
angles in the orthogonal R-matrix in the Casas-Ibarra parametrization.

This parametrization nonetheless proved not very useful in the 2 genera-
tion scenario, instead a parametrization that unfolds minima easily is the bi-
fundamental parametrization of Eq. , where now y = Diag(y1,y2,y3). The
parameters in are distributed as follows; 4 in the C' K M-like matrix Up, 3 in
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Ug, the three moduli of the eigenvalues in y and two relative complex phases of
these eigenvalues.

Without further delay we list the 15 invariants that constitute a complete
basis. The first 6,

I, = Det V] , I, = Det (V] . (7.49)
I>=Tr [yEyg} : Iy =Tr [WYI] (7.50)
Li="Tr [(yEyTE)Q} , Ly =T ()] (7.51)

depend on eigenvalues only. The following 7
R AUATAA In="Tr [VIVVIV:] (7.52)
I =Tt |9, (yEyTE)Q} C e =T Q)WY ()
=TV V)], I =T [OMIV)]. ()
Is=Tr —(yyyzyEy;)z] , (7.55)

depend on Uy, and UpU}L only respectively. Note that the quark analysis goes
through the same for these terms (with the subtlety of considering three elements
of URUE, as (UrUL)ij = (UrUE) ;). Finally the two remaining invariants that

will fix the relative complex phases are

Ing =Tr (VYT y:yiyEyTE] o Tpy =T | VYIVEYEVIVIVEVL] . (7.56)

7.2.1 The Jacobian

The number of variables and invariants has scaled up to 15, in this sense the Casas
Ibarra parametrization becomes hard to handle specially due to the orthogonal
matrix. In the context of the bi-unitary parametrization though we can make
use of the previously derived Jacobians, in particular, the unitary relations we
employed for finding the mixing subjacobian hold for both Uy and Ug. In this

parametrization the structure of the Jacobian reads:
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Oyl 0 0 Oy, Iin Oy Iin
0 8% ],/n 8yy ]R" ayy ILn ayy ILR

J == O O aURIRn O 8URILR . (757)
0 0 0 Oyl Oy I
0 0 0 0 Ouunlir

Luckily from the above shape we reduce the calculation of the 15 x 15 determinant
to the product of 5 subdeterminants, those of the diagonal. We are already

familiar with the first two, in the axial preserving scenario
det Jp = yeyuy- (2 — ) (W — y2) (W2 — y7) (7.58)

det Jy = Yo, YooY (o — Yo ) (Y, — Yo ) (Y2, — Y2,) s (7.59)

whereas in the axial breaking case,
det Jp = (2 — y2)(y — v (W2 — v3), (7.60)
det J, = (v, — Y1) Wy, — ) (o — W) - (7.61)

For the Uy, in analogy with quarks:

det (Ju,) = (v2, —v2,) (W2, —v2) (w2, —v2) (V2 —2) (2 — v2) (2 — ¥2)
US| U2 U U (7.62)

For Ugr the dependence on in the invariants looks like

In =Tr (y2URUEY2URUL) . I =Tr (yiURUEYRURUL) . (7.63)
Ips =Tr <y§URU,§y§UgU;) , (7.64)
and the Jacobian:
1 g+ (w2, +42,)°
Jup o | 1+l (w2, —2)° : (7.65)

2 ygl + ?/12,1 + 2y, 2 (ygl + yzg) (yi + yzs)

where the proprotinality is different for each row and equal to (yg — yi) 2, (le,Z — y33)2

and (y2 —v2,) (v2, — y,i})2 respectively. Then the determinant is;

det JUR = (yli - y32)3 (yl%2 o y33)3 (yzs - ygl)s ’ (URU]ID:)H || (URU£)22 H (URUJI‘;) 12 ‘
(7.66)
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Last in line are the two invariants I g that in terms of the bi-unitary parametriza-

tion read:
Ion =Tr (v UrUgy2URULy, ULy2UL ) (7.67)
In, =T (v UrUky ULy 3 ULy UrULy, ULy20L ) (7.68)
Let’s parametrize the two remaining degrees of freedom as
Yo = YNl (7.69)

we have then that the Jacobian built with the four terms:

ol

LI Ty ([Ag, , yVURUgy,%U;;U;yV] U}ygUL) , (7.70)
3

olp | .
it ([N s v UrURYURUSy | Uly2UL) (7.71)
ag

ol

I 9Ty <[)\3 Ut y%EUzyVU;;U;yV] U,{ygULyyURUgyy) , (7.72)
3

o1 . -

L —2iTr ([N s UlyRUiy UpUky, | Uly Uy UslUky, ) . (7.73)
8

and the determinant of this part:

Tip = Ol r Olpr,  OILg Olgy (7.74)

Qg O3 a3 O3

which vanishes if y, UrU%y,, Uly2Uy, or their product is diagonal.

7.2.2 The Potential at the Renormalizable Level

The number of boundaries or subgroups of the flavour group has grown sensibly
complicating the Jacobian analysis, the study of the potential will help clarify
which of these configurations are realized and how at the renormaliable level.
The potential including all possible terms respecting the full flavour group
looks just like the two family case Eq and the counting of potential param-
eters goes like the same; they add up to 9. We shall examine next the way in
which this potential will fix the vev of the scalar fields. For the same reason

as in the previous chapter the minimization process will start on those variables
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that appear less often in the potential. In this case the paremeters of the unitary
matrices, which will in turn determine Upj;ns.

The left handed matrix Uy, appears in the term:
gTr (yEyl;yyyZ) = gAfTr (y%ULyﬁUD : (7.75)

the Von Neumann trace inequality solves in a line the minimization:

100 3

g<0, Uy=[010]; ghtTr (y%EULyZUz) = A4S ypays.  (7.76)
0 01 i=1
0 0 1 3

g>0, U,=101 0 |; gA;fTr (y%ULyZUz> = gA;lc ZyEJyVA,Z-, (7.77)
1 00 i=1

Under the same reasoning, Ui appears only in:
e WYYV = T (YIURURY Vi) (7.78)
then the Ui has two discreet possible solutions

A For a negative coefficient we have

O = O
_ o O

1 3
Wo<0 UUL=| 0 h, Tr (yZURUgyVU;;UL) =gA >
0 i=1
(7.79)

B Whereas for a positive coefficient,

h, >0 UrUp =

= O O
S = O

1 3
0 h, Tr (y?,URUgyyUEU;Q = gA} Z YriYoa—i
0 i=1

(7.80)

If we recall the expression for the neutrino mass matrix in contains pre-
cisely the combination UgUJL. A quick look at the four possible combinations of
products of minima for Uy, r reduce to two, since both configurations of Uy, leave

the neutrino mass matrix unchanged. Nonetheless if the configuration UgU} = 1
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has trivialy no mixing since everything is already diagonal, possibility B for UpUL

implies a maximal angle. Indeed the diagonalization reads:

02 0 0 v my, 0 0
— 0 w5 0 = Upmns 0 my, 0 Ubuns
ysyn O 0 0 0 my,

with a mixing matrix and masses

1 i
V2 0 V2 02 v? )
Upnvns = _OL (1J 2 , My = My, = To01Ys 5 My = 7705 -
V2 V2
(7.81)

At this point we do not know which mass is greater than the other. If these
cases are hierarchical, they correspond to either normal or inverted hierarchy

in a first rough approximation (Am?, = 0) and the maximal angle lies always

sol
among the two degenerate neutrinos, meaning 6, ~ 7/4; on the other hand if
the spectrum is quasidegenerate, the mixing angle correspondence is unclear and
the perturbations for splitting masses shall be studied.

Remember that all these conclusion were drawn from the minimization in two
terms of the potential only and they hold quite generally.

Another question is whether the configuration of off-diagonal UgU}% has any
special property from the symmetry point of view. Recalling the two family case

the generalization is straight forward

0 Yo O ei@/\5 — ei9/2()\3+\/§/\3) 0 Yo 0 ) (782)
V2 V2 V2 V2

So that a simultaneous rotation in the direction A5 of O(3)y and an opposite sign
transformation in the direction (A3 + v/3)\g)/2 of SU(3),, constitute a preserved
U(1) symmetry. It is interesting to note that on the other hand, the configuration
of diagonal ), has no symmetry for generic y; 23, we shall see how this fits
in the general picture of the possible minima. It is nonetheless evident that
for 2 degenerate y; 23 there is a SO(2)y symmetry unbroken and that for a
configuration proportional the identity ), o< 1 a vectorial SO(3)y arises. So one
can wonder if this happens for case B, Eq. [7.80] in the case of all eigenvalues

degenerate.
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The result is that there is an unbroken SO(3) in this case as well. The two

new relations,

1 7 1 7

V2 V2 ) , V2 V2

0 1 0 |t o o 0 |, (7.83)
-1 00 L -1 0 <

vz Y vz vz

50 50

0 10 | oamtona (G, (7.84)
—~1 o0 L - L 0 -

vz vz vz

provide two new directions of conserved symmetry. This is however not enough

to prove that we have SO(3) and not just U(1)3. For this the basis

1 1 1
{§(A3 +V/3)s), ——2()\2 + ), E(Al + X) } = (7.85)
i 1
10 0 0 % 0 0 % 0
000 |, -% 0 5| .| % (1) v (7.86)
00 —1 0 —%= 0 0 & 0

can be shown to have the commutation relations of SO(3), that is structure
constants €.

The emphasis will be on case B, Eq. [7.80] since it gives a maximal mixing
angle, but first a few words on the other case. If both Yukawas are diagonal, as
in case A, and for arbitrary eigenvalues, there is no symmetry left unbroken at all.
Nonetheless, when h!, < 0, after minimizing in Ug the structure of I is just like
that of I2, so that the effective coupling of I? can be taken to be h!, + h,. Then
the analysis of quarks holds just the same and we find the type of solution listed
in section 5.1.2.2, but all of these have at least one pair of eigenvalues degenerate,
this implies that there is indeed always at least one SO(2)y in the minimum.

This same reasoning applied to case B will reveal new freedom in the possible
eigenvalues of the Yukawas, since now the symmetry reported in Eq. [7.82] is
present for arbitrary entries.

Before entering the details on the complete set of vacua, for the reader inter-

ested in the closest solution to nature we report here a new kind of solution with
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7. LEPTON SECTOR

respect to the quark case:

00 0 Y /VZ 0 =iy, V2
Ye=As[ 0y, O |, Y, =As 0 Yoy 0 , (7.87)
00 y Yus/V2 0 iy V2
the two different entries for the charged leptons are in agreement with the larger
mass of the muon an tau leptons whereas in the neutrino sector there is one
maximal angle and the three massive neutrinos can be quasidegenerate leading
to an appealing set up in which small corrections produce another large mixing
angle (120).
Explicitly the types of vacua found are;

e I The hierarchical solution for the eigenvalues translates now into Yukawas

of the type
00 0 0O 0 O
Ye=As[ 0 0 0 |, Y, =Ny 0O 0 O . (7.88)
00 y V2 0 i/V2

and a pattern G — U(2)? x U(1)rn. There are no light neutrinos in this

scenario, but flavour effects are present.

e II The equivalent of case II in the 2 family case differs from the extension
of this case in the quark case from 2 to 3 generations. We have now a hier-

archical set-up for charged leptons and arbitrary entries for the eigenvalues,

00 0 Yn V2 0 =iy, /V2
yE:Af 00 O s yl,:Af 0 Yo, 0 5
00 y Yo /V2 0 iy, /V2

(7.89)
and the breaking pattern is Gf — U(2)g, x U(1);—. The reason for y,, #
Yy, Now is that the degeneracy of these two parameters leads to no extra

symmetry, so their equality is not protected.

e III The third kind of solution stands the same as in the quark case

y 0 0 0 0 0
Ye=As[ 0y 0 |, YV, = A 0 0 0 . (7.90)
00 y, 1/vV2 0 i/v2
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VI

VII

for now the identity y. = y,, yields the breaking structure Gi — U(2)y X
U(1)Ln, were the unbroken group would be different if the two first eigen-

values of Vg were to differ.

IV The completely degenerate configuration is

0 0 1/vV2 0 —i/V2
y 0], Y =Ay 0 1 0 , (7.91)
0y 1/vV2 0 i/V2

we have now that G§ — SO(3)y with the vectorial group as pointed out in
Eqgs. 7.86} In this case nonetheless the mixing loses meaning since the

charged leptons are degenerate.

Ve =Ay;

oo

New configurations are now possible as
0 0 0 Un/V2 0 =iy, /V2
Ye=A;l 0y, O , Vo =As 0 Yoo 0 ,
0 0 y’T ng/\/§ O Zyljg,/\/é

(7.92)
with G4 — U(1)y x U(1)e,,

The presence of arbitrary charged lepton masses is present when two neu-

trinos are massless,

e 0 0 0 0 0
yE :Af 0 Yu 0 s yl, :Af 0 Yoy 0 s
0 0 y Yn/V2 0 iy /V2

(7.93)
with G — U(1), x U(1). since the neutrinos that the electron and tau

couple to are massless.

Finally the case IT leaves and extended symmetry if two neutrinos are mass-
less
00 O 0 0 0
yE:Af 0 0 0 s y,,:Af 0 Yus 0 s
00 y Uns/V2 0 iy, V2

(7.94)
with G — U(2) g, x U(1), x U(1),
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The possibilities for the vacua have grown sensibly. This is related to the flavour
group. The presence of the new invariant at the renormalizable level Iy gave
rise to the maximal angle solution. In turn this choice resulted in a term in the
potential which was not present in the quark case, unlike the no mixing case. This
invariant then produces new configurations for the values of Yukawa eigenvalues.
Indeed in the limit A/, — 0 all this different cases recombine in the ones for the
quark case.

In this scenario the introduction of small breaking terms of the axial symmetry,
that is determinants, could produce a hierarchy by lifting the 0 eigenvalues in the
new configurations V. VI VII.

For a realistic scenario at this level, the quasidegenerate scenario for neutrino
masses would be a good starting point and simultaneously the charged lepton
spectrum can be chosen hierarchical (case II) or semi-hierarchical (case V). One
can imagine perturbations in this scenario correcting the pattern; these correc-

tions should give rise to one other large mixing angle and the “small” reactor

2
atm*

angle, such that the largest of the three is related to Am Lifting the electron
mass from 0 is possible in case V as outlined.

The general conclusion is therefore that in first approximation a mazimal
mixing angle is obtained in the lepton sector whereas for the quark case no mixing
1s allowed in this same level of approximation. This stands as a tantalizing
framework for explaining the differences in mixing matrices in the two sectors
in a common framework for quarks and leptons. The solution of the maximal
angle can be traced back to the presence of an orthogonal group in the flavour
symmetry of the lepton sector, which is in turn related to the Majorana nature of

neutrino masses.
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Resumen y Conclusiones

En esta tesis la estructura de sabor de las particulas elementales ha sido exam-
inada desde el punto de vista de una posible simetria de sabor implicita. La
simetria de sabor considerada es la simetria global que presenta el ME en ausen-
cia de masa para los fermiones. La extensién necesaria del ME para acomodar
masas de neutrinos introduce no obstante una dependencia en el modelo elegido.
Por simplicidad el escenario del Seesaw con neutrinos pesados (conocido como
tipo I o tipo III) es considerado cuando se trata de leptones, asumiendo la ex-
istencia de n, generaciones ligeras y pesadas. La simetria de sabor es entonces
seleccionada como la mayor simetria posible de la teoria libre, esqueméticamente
Gr ~ U(ng)® x O(ny), en dénde O(n,) estd asociado a neutrinos pesados degen-
erados, cuya masa es la tinica presente en la teoria libre, mientras que cada factor
U(ngy) corresponde a cada campo con distinta carga en el ME.

Sin espicificar un modelo de sabor es posible explorar la posibilidad de que,
a bajas energias, los Yukawas sean las fuentes de sabor en el ME y la teoria
que lo completa; esta suposicién esta en acuerdo con los datos experimentales y
se encuetra en el centro del éxito fenomenoldgico de la hipétesis de MFV, im-
plementada a través de técnicas de Lagrangianos efectivos. Prosiguiendo este
camino, hemos explorado las consecuencias de un caracter dindmico de los acop-
los de Yukawa mediante la determinacion, en una base general, de los posibles
extremos del conjunto de invariantes (gauge y de sabor) que pueden ser con-

struidos con éstos. Existen tantos invariantes independientes como pardmetros
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fisicos, y un conjunto de invariantes completo e independiente ha sido determi-
nado y examinado. Hemos demostrado que, mientras para quarks los extremos
de los invariantes apuntan hacia la ausencia de mezcla, para leptones grandes
angulos correlacionados con un cardcter de Majorana no trivial resultan ser los
extremos naturales. Este puede ser un motivador y sugerente primer paso en la
empresa del entendimiento del origen de sabor, dado que este esquema resulta
muy similar al obesrvado en la naturaleza.

Un verdadero origen dindmico de los acoplos de Yukawa sugiere un paso
mas: considerar que corresponden a campos dindmicos, o agregados de éstos,
que poseen sabor y han adquirido un vev. La simetria de sabor seria manifi-
esta en el Lagrangiano total de alta energfa, a una escala A;. Tras la rotura
espontanea de simetria, los acoplos de Yukawa de bajas energias resultarian de
operadores efectivos de dimension d > 4 invariantes bajo la simetria de sabor,
que involucran uno o mas campos de sabor junto con los campos usuales del ME.

Solo un escalar (o cunjunto de campos en una configuracion escalar) puede
tomar un vev, que debera corresponder al minimo de un potencial. ;Cual es el
potencial escalar para estos campos escalares de sabor? ;Puede alguno de sus
minimos corresponder naturalmente al espectro observado de masas y angulos?
Estas preguntas son respondidas en el presente trabajo. El andlisis del potencial
estd relacionado con los extremos de los invariantes mencionados antes, pero va
mas alla dado que la presencia simultanea de varios invariantes no tiene por qué
producir minimos que coincidan con los extremos hallados mediante la consid-
eracion independiente de invariantes.

La realizacion mas simple de este tipo se obtene via una correspondencia uno a
uno de cada acoplo de Yukawa (up, down, elecrén y neutrino) con un inico campo
escalar perteneciente a la representacién bi-fundamental del grupo de sabor Gr.
En el lenguaje de Lagrangianos efectivos este caso corresponde al orden mas bajo
en la expansion de sabor: operadores de Yukawa de dimension d = 5 construidos
por un campo escalar y los campos del ME usuales. El potencial escalar general
para campos escalares bi-fundamentales ha sido construido para quarks y leptones
en el caso de dos y tres familias. Formalmente, se construye con los invariantes

mencionados arriba y no obstante de su combinacion surgen nuevos minimos.
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Al determinar el potencial escalar, primero se demostré que imponer la simetria
de sabor representa una condicién muy restrictiva: al nivel renormalizable sélo
ciertos términos son permitidos en el potencial, e incluso al nivel renormalizable
estructuras constrenidas deben ser respetadas.

En el caso de quarks, al nivel renormalizable, en el minimo del potencial solo
angulos nulos son permitidos. Respecto a jerarquias de masa, uno de los posibles
minimos presenta masas nulas para todos los quarks excepto los pertenecientes a
la familia mas pesada, esto es, un quark tipo down y otro tipo up con masa sola-
mente tanto en dos como en tres familias. Exite por lo tanto una solucién incial
que se asemeja en primera aproximacion a la naturaleza: un espectro jerarquico
sin mezcla. Dicha solucién puede ser pertubada al nivel renormalizable para
obtener masas para las familias més ligeras mediante términos de rotura explicita
de la parte abeliana de Gz?, es decir U(1)%. Esta opcién no estd presente en el
caso de tres familias dado que la configuracion jerarquica esté protegida por una
mayor simetria no rota: SU(2)%. La introduccién de términos no renormalizables
en el potencial permite una rotura mayor de la simetria, al precio de enormes
ajustes finos, que son inaceptables en nuestra opinién en el espiritu de la teoria
efectiva de campos.

En el sector lepténico la misma realizacion de correspondencia Yukawa-campo,
escalares bi-fundamentales, condujo a resultados soprendentemente diferentes.
En el caso de dos y tres familias, fases de Majorana y angulos de mezcla no
triviales pueden ser seleccionados por el minimo del potencial, indicando una
nueva conexién en la estructura de masas de neutrinos: i) grandes dngulos de
mezcla son posibles; ii) hay una fuerte correlacién entre dngulos de mezcla grandes
y espectro degenerado de masas; iii) la fase de Majorana relativa es predicha
como méaxima, 2« = 7/2, aunque no implica violacién de conjugacién de carga y
paridad.

Las soluciones exactas del potencial renomalizable condujentes a mezcla no
trivial muestran un tnico angulo maximo entre dos neutrinos degenerados pero
distinguibles tanto para el caso de dos como el de tres familias. Esto conduce,
para el caso de jerarquia normal e invertida, a el dngulo méximo siendo el solar

en lugar del atmosférico, numéricamente compatible con un valor maximo. En
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el caso de los tres neutrino ligeros degenerados, permitido por el potencial renor-
malizable, la asignacion del angulo depende de las correcciones al espectro de
masas, pero parecen indicar la posibilidad de un segundo gran angulo de mezcla
en un escenario mas prometedor, actualmente bajo estudio (17).

Otra avenida explorada en este trabajo asocia dos campos a cada acoplo de
Yukawa, esto es Y ~ x*xT/A}. Esta situacién es atrayente dado que mien-
tras que los Yukawas son objetos compuestos, los nuevos campos estan en la
representacién fundamental. Dichos campos podrian ser escalares o fermidnicos:
aqui nos centramos exclusivamente en escalares. Desde el punto de vista de La-
grangianos efectivos, este caso podria corresponder al siguiente al primer orden
en la expansion: operadores de Yukawa efectivos de dimension 6, como fuentes
totales o parciales de los Yukawas de baja energia. Hemos construido el potencial
escalar general para campos escalares en la representacion fundamental para los
casos de dos y tres familias de quarks, aunque las conclusiones se transladan de
manera directa a leptones. Por construccion este escenario resulta inevitable-
mente en una fuerte jerarquia de masas: solamente un quark en cada sector up y
down obtiene masa: los quarks top y bottom. Una mezcla no trivial requiere dos
campos escalares de sector up y down (neutrino y electrén) transformando bajo
el grupo SU(3)q,. En consequencia el contenido minimo es de cuatro campos
X )’ X5 (F) X ) and & ® Y la mezcla surge de la interaccién entre los dos
primeros. En resumen, para escalares en la fundamental en un modo natural se
obtiene: i) una fuerte jerarquia entre quarks de la misma carga, sefialando un
quark distinguible por su mayor masa en cada sector; ii) un dngulo de mezcla no
trivial, que puede ser identificado tanto para quarks como para leptones con el
del sector 23 en el caso de tres familias.

Finalmente, como una posible correcciéon a los patrones discutidos previa-
mente, se ha discutido brevemente la posibilidad de introducir simultaneamente
escalares bi-fundamentales y fundamentales. Es una posibilidad muy sensata,
desde el punto de vista de Lagrangianos efectivos, considerar operadores de
Yukawa de orden d = 5 y d = 6 trabajando a orden O(l/A?c). Sugiere que
el término de d = 5, que acarrea bi-fundamentales, podria proporcionar la con-

tribucion dominante, mientras que el operador de d = 6, que trae consigo los
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campos en la fundamental, proporciona correcciones para inducir masas no nulas
para las dos familias ligeras junto con angulos no triviales.

En general, es destacable que el requisito de invarianza bajo la simetria de
sabor constrina fuertemente el potencial escalar y consequentemente los minimos
y patrones de ruptura de simetria. De entre los resultados obtenidos uno so-
bresale de entre los demas. En el minimo del potencial, al nivel renormalizable,
los angulos de mezcla para quarks son nulos a primer orden, mientras que la
mezcla en los leptones resulta ser maxima. La presencia de mezcla maxima es
debida al factor O(n,) del grupo de sabor, que estd a su vez relacionado con la
naturaleza Majorana de los neutrinos. La explicacion de la diferente estructura
de mixing entre quarks y leptones en este escenario es, en tultima instancia, la

distinta naturaleza de los dos tipos de fermiones: Dirac y Majorana.
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Summary and Conclusions

In this dissertation the flavour pattern of the elementary particles was examined
from the point of view of its possible underlying flavour symmetry. The flavour
symmetry considered is the global flavour symmetry which the SM possesses in
the limit of massless fermions. The necessary extension of the SM to accom-
modate Majorana neutrino masses introduces nevertheless a model dependence
in the neutrino sector; for simplicity the seesaw scenario with heavy neutrinos
(known as type I or type III) is considered here when dealing with leptons, as-
suming n, generations in both the light and heavy sectors. The largest possible
flavour symmetry of the free theory for both quark and lepton sectors is then,
schematically, Gz ~ U(n,)° x O(n,), with O(n,) associated to heavy degenerate
neutrinos, whose mass is the only one present in the free theory, and each U(ny)
factor for each SM fermion fieldll

Without particularizing to any concrete flavour model, it is possible to explore
the possibility that, at low energies, the Yukawas may be the sources of flavour
in the SM and beyond; this assumption is well in agreement with data and lies
at the heart of the phenomenological success of the MFV ansatz, implemented
through effective Lagrangian techniques. Walking further on this path, we have
explored the consequences of an hypothetical dynamical character for the Yukawa
couplings themselves by determining, on general grounds, the possible extrema

of the (gauge and flavour) invariants that can be constructed out of them. There

!The flavour group can alternatively be defined as the largest flavour group in the absence

of Yukawa interactions.
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are as many independent invariants as physical parameters, and a complete set
of independent invariants has been determined. We have shown that, while for
quarks the extrema of the invariants point to no mixing, for leptons large mixings
correlated with a non-trivial Majorana character turn out to be natural extrema.
This may be a very encouraging and suggestive first step in the quest for the un-
derstanding of the origin of flavour, as that pattern resembles closely the mixings
observed in nature.

A true dynamical origin for the Yukawa couplings suggests a further step: to
consider them as corresponding to dynamical fields, or aggregate of fields, that
carry flavour and have taken a vev. Flavour would be a manifest symmetry of
the total, high energy Lagrangian, at a flavour scale A;. After spontaneous sym-
metry breaking, the low-energy Yukawa interactions would result from effective
operators of dimension d > 4 invariant under the flavour symmetry, which involve
one or more flavour fields together with the usual SM fermionic and Higgs fields.

Only a scalar field (or an aggregate of fields in a scalar configuration) can
get a vev, which should correspond to the minimum of a potential. What is
the scalar potential for those scalar flavour fields? May some of its minima
naturally correspond to the observed spectra of masses and mixing angles? These
questions have been addressed in this work. The analysis of the potential is
related to the extrema of the invariants mentioned above, but it goes beyond
since the simultaneous presence of various invariant terms need not result in
minima associated to the extrema that their independent consideration yields.

The simplest realization of this kind is obtained by a one-to-one correspon-
dence of each Yukawa coupling with a single scalar field transforming in the
bi-fundamental of the flavour group G». In the language of effective Lagrangians,
this may correspond to the lowest order terms in the flavour expansion: d = 5
effective Yukawa operators made out of one flavour field plus the usual SM fields.
The general scalar potential for bi-fundamental flavor scalar fields was constructed
for quark and leptons in the two and three family case. Formally, it can be simply
built out of the same Yukawa invariants mentioned above: from their combination
new minima may a priori follow.

When determining the scalar potential, it was first shown that the underlying

flavour symmetry is a very restrictive constraint: at the renormalizable level only
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a few terms are allowed in the potential, and even at the non-renormalizable level
quite constrained patterns have to be respected.

For the quark case at the renormalizable level, at the minimum of the poten-
tial only vanishing mixing angles are allowed. Regarding mass hierarchies, one of
the possible minima allows vanishing Yukawa couplings for all quarks but those
in the heaviest family, both for the two and three generation cases. There is
therefore an staring solution in the quark case which resembles in first approxi-
mation nature: a hierarchical spectrum with no mixing. This solution in the two
family case can be perturbed at the renormalizable level to provide masses for
the light families, by means of small explicit breaking terms of the abelian part
of GZ, that is U(1)3. This option is not present in the three family case since the
hierarchical configuration is protected by a larger unbroken symmetry: SU(2)3.
The introduction of non-renormalizable terms in the potential allowed for further
breaking of the symmetry, at the price of large fine-tunings, which are in our
opinion unacceptable in the spirit of and effective field theory approach.

For the lepton sector, the same realization one Yukawa-one field, that is, of
scalar bi-fundamental fields led to strikingly different results. In the two and
three family cases non-trivial Majorana phases and mixing angles may be se-
lected by the potential minima and indicates a novel connection with the pattern
of neutrino masses: i) large mixing angles are possible; ii) there is a strong cor-
relation between mixing strength and mass spectrum; iii) the relative Majorana
phase among the two massive neutrinos is predicted to be maximal, 2a = /2,
for non-trivial mixing angle; moreover, although the Majorana phase is maximal,
it does not lead to CP violation, as it exists a basis in which all terms in the
Lagrangian are real.

The exact solutions of the renormalizable potential leading to non-trivial mix-
ing showed one maximal mixing angle only among two degenerate but distinct
neutrinos for both two and three generations. This scenario leads in the case of
normal or inverted hierarchies to the maximal angle being the solar instead of
the atmospheric angle. In the case of all three neutrinos degenerate, allowed by
the renormalizable potential, the assignation of the angle depends on the correc-
tions on the spectrum of masses, in a more promising scheme currently under

exploration (I7).

101



9. SUMMARY AND CONCLUSIONS

Another avenue explored in this work associates two vector flavour fields to
each Yukawa spurion, i.e. a Yukawa Y ~ xEx®1/ Afc. This is an attractive scenario
in that while Yukawas are composite objects, the new fields are in the fundamen-
tal representation of the flavour group, in analogy with the case of quarks. Those
flavour fields could be scalars or fermions: we focused exclusively on scalars.
From the point of view of effective Lagrangians, this case could correspond to the
next-to leading order term in the expansion: d = 6 effective Yukawa operators
as total or partial sources of the low-energy Yukawa couplings. We have con-
structed the general scalar potential for scalar flavour fields in the fundamental
representation, both for the case of two and three families of quarks, although
conclusions translate straightforwardly to leptons. By construction, this scenario
results unavoidably in a strong hierarchy of masses: at the renormalizable level
only one quark gets mass in each sector: they could be associated with the top
and bottom quark. Non-trivial mixing requires as expected a misalignment be-
tween the flavour fields associated to the up and down (neutrino and electron)
left-handed quarks (leptons). In consequence, the minimal field content corre-
sponds to four fields x§ )’ x5 (B) X8 (v) and Xy (g)» and the physics of mixing
lies in the interplay of the first two. In resume, for fundamental flavour fields it
follows in a completely natural way: i) a strong mass hierarchy between quarks
of the same charge, pointing to a distinctly heavier quark in each sector; ii) one
non-vanishing mixing angle, which can be identified with the with the rotation
in the 23 sector for both quark and leptons in the three generation case.

Finally, as a possible correction to the patterns above, we briefly explored
the possibility of introducing simultaneously bi-fundamentals and fundamentals
flavour fields. It is a very sensible possibility from the point of view of effective
Lagrangians to consider both d = 5 and d = 6 Yukawa operators when working to
O(1/A%). It suggests that d = 5 operators, which bring in the bi-fundamentals,
could give the dominant contributions, while the d = 6 operator - which brings
in the fundamentals - should provide a correction inducing the masses of the two
lighter families and non-zero angles.

Overall, it is remarkable that the requirement of invariance under the flavour
symmetry strongly constraints the scalar potential. Furthermore, one result of

the analysis stands out among the rest. In the minimum of the potential, at the
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renormalizable level the quark mixing angles vanish at leading order, whereas
lepton mixing is found to be maximal. The presence of the maximal angle in
the lepton case is due to the O(n,) factor of the flavour group, which is in turn
related of the Majorana nature of neutrinos. The explanation of the different
mixing patterns in quarks and leptons in this scheme is, utterly, the different

fundamental nature of the two types of fermions: Dirac and Majorana.
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