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Local simultaneous state discrimination (LSSD) is a recently introduced problem in quan-
tum information processing. Its classical version is a non-local game played by non-commu-
nicating players against a referee. Based on a known probability distribution, the referee
generates one input for each of the players and keeps one secret value. The players have to
guess the referee’s value and win if they all do so. For this game, we investigate the advantage
of no-signalling strategies over classical ones. We show numerically that for three players and
binary values, no-signalling strategies cannot provide any improvement over classical ones.
For a certain LSSD game based on a binary symmetric channel, we show that no-signalling
strategies are strictly better when multiple simultaneous instances of the game are played.
Good classical strategies for this game can be defined by codes, and good no-signalling strate-
gies by list-decoding schemes. We expand this example game to a class of games defined by an
arbitrary channel, and extend the idea of using codes and list decoding to define strategies for
multiple simultaneous instances of these games. Finally, we give an expression for the limit
of the exponent of the classical winning probability, and show that no-signalling strategies
based on list-decoding schemes achieve this limit.
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1 Introduction
The task of discriminating between states is of fundamental importance in information processing and
cryptography [1, 2, 3]. A rich and extensive literature exists on this fundamental problem under the
name of state discrimination or hypothesis testing [4, 5, 6]. In quantum cryptography and quantum
information theory, a natural extension of state-discrimination problem is to distinguish quantum states.
In the context of non-local games, the state-discrimination problem arises in a multi-player setting. In
these scenarios, it is interesting to study how non-local resources such as shared randomness, quantum
entanglement or no-signaling correlations can help the players to succeed in the state-discrimination task.
Authors of [7, 8] have studied the scenario where local operation and classical communication are allowed
between two parties, and they have shown that entanglement can help the players.

The authors of [9] studied another variant of distributed state discrimination in which multiple
parties cannot communicate and have to estimate the state locally and simultaneously, hence calling the
problem local simultaneous state discrimination (LSSD). LSSD problems naturally arise in the context
of uncloneable cryptography [10, 11, 12, 13], where we encode classical data into a quantum state such
that an adversary cannot copy it. In such scenarios, successfully copying translates into successfully
distinguishing quantum states. LSSD problems also appear in the study of monogamy of entanglement
games [14], where two parties prepare a tripartite state and perform a measurement to guess the outcome
of a measurement performed by a third party. Optimal performance of such games has been crucial
to prove the security of uncloneable cryptographic schemes [10]. Depending on the resources shared
between the parties, one can consider various strategies. The authors of [9] showed that even when the
state has a classical description, quantum entanglement could enhance the probability of simultaneous
state discrimination, and a more powerful resource of no-signaling correlations could enhance it even
further.

As [9] have shown that finding the optimal strategy for three-party LSSD is NP-hard, it is likely to
be challenging to study LSSDs in general. One could, however, characterize the optimal probability of
winning and optimal strategies for LSSDs with some specific structure. One natural structure of interest
is when an LSSD problem consists of several independent and identical LSSDs, and the parties have
to win all these games at once in parallel. We call this type of LSSDs parallel repetition of LSSDs, for
which we establish several results in this article. Studying parallel LSSD games might have cryptographic
implications. Many protocols have product structures, and if we restrict the adversaries only to applying
a “product” attack, then the performance of such protocols is governed by parallel repetition of LSSDs.
Furthermore, the monogamy of entanglement games with product structure have been important to
understand. If we restrict the strategies to those with product states, then the problem can be formulated
in terms of parallel repetition of LSSD games.
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1.1 Our contributions
As a first simple observation, we show in Theorem 3.1 that for symmetric LSSD problems with classical
inputs (as depicted in Fig. 2), there exists an optimal symmetric strategy. In other words, for an LSSD
problem defined by a joint distribution PXAB such that PX is uniform over X , PAB|X = PA|XPB|X, and
PA|X = PB|X, there exist optimal classical deterministic strategies for Alice and Bob that are identical.

In Section 4 we analyze an example of an LSSD game introduced in [9], where the referee sends
a bit x over a binary symmetric channel (BSC), see Fig. 3, to Alice and Bob. We use the symmetry
observation above to find optimal classical strategies for two and three parallel repetitions of this game
in Theorems 4.3 and 4.5, respectively. We also give optimal no-signalling strategies for two and three
copies (our results for two copies are depicted in Fig. 1). Finally, in Section 4.3, we consider the n-fold
parallel repetition of this game, and argue how the classical strategies relate to (regular) error-correcting
codes and the no-signaling strategies relate to list-decoding schemes.

(a) (b)

Figure 1: (a) Optimal classical (blue) and no-signalling (red) winning probabilities for the two-fold parallel repetition of
the BSC game. The light blue area represents the values below the optimal classical winning probability. (b) Closeup of
(a) with an additional numerical upper bound on the optimal quantum winning probability (blue dots) from the level
“1 + NM” of the NPA hierarchy for the values of α where the classical and no-signalling values differ. The numerical
quantum upper bound is in excellent agreement with the classical value, suggesting its optimality (see Conjecture 4.4).

In Section 5 we introduce the notion of channel games, which are an extension of the LSSD problem
in Section 4. We then define classical strategies based on codes and no-signalling strategies based on
list-decoding schemes. In Theorem 5.2 we provide an expression for the limit of the exponent of the
classical winning probability, where we make use of strategies based on codes. Furthermore, we show
that no-signalling strategies based on list-decoding schemes achieve the same limit as classical strategies.
As a result, the optimal probability of winning for that class of LSSD games is asymptotically the same
for all three types of resources available to the players. This allows one to solve the optimization problem
for no-signalling strategies, for which there is an efficient algorithm, to find the asymptotic classical or
quantum value which are otherwise computationally expensive to evaluate.

As an extension, in Appendix C we analyze three-party LSSD problems with binary inputs and
outputs. Lemma C.2 extends the two-party characterization from [9] for the classical winning probability
of binary LSSD games to three parties. The main result of this appendix, Theorem C.6, shows that no-
signalling resources cannot improve the winning probability of the players in this setting.

1.2 Open problems
It would be interesting to examine the settings when there is a gap between the no-signalling and classical
winning probabilities in the BSC game. Wherever there is a gap, it is interesting to look for a quantum
strategy that also performs better than classical.

In the context of channel games, as introduced in Section 5, can we show, like for the BSC, that
no-signalling strategies based on list-decoding schemes are asymptotically optimal? Are there more
examples of channels for which there is a gap in winning probability between classical and no-signalling
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strategies in a finite number of parallel repetitions? Can the results be extended to classical-quantum
channels where Alice and Bob receive a quantum state? For this last question, we would need to extend
the idea of no-signalling to the case where the inputs and outputs can be quantum states.

Section 5 also gives rise to a new area within information theory: simultaneous decoding. Within this
setting, a sender tries to send a message to two receivers using identical channels, and the communication
is successful if both receivers decode correctly. We can allow the receivers to share some quantum or
no-signalling resources and examine whether this leads to better coding schemes. There are similar
settings that have already been researched. In one such setting, the messages sent to the receivers are
not necessarily the same, or two different channels are used (like in the book of El Gamal and Kim [15,
Part 2]). In another similar setting, we allow the sender and the receiver to share some entanglement
(like in the book by Holevo [16, Section 9]). There is even very recent research in a setting with two
senders and one receiver that all share a no-signalling box (see the paper by Fawzi and Fermé [17]).

For the case of multi-player LSSD games with binary inputs and outputs as (see Appendix C), it is
an open problem whether this result holds for any number of players. However, extending our numerical
analysis to a larger number of players requires enumerating over all extrema of the corresponding no-
signalling polytope. This polytope quickly grows in the number of vertices, making the analysis infeasible
at the moment.

2 Preliminaries
For n ∈ N, we denote the set {0, . . . , n − 1} by [n] and the set of all permutations of [n] by Sn. We
denote by δ the indicator function, which is 1 if its argument is true and 0 otherwise. Throughout, we
use binary logarithms and denote them by log rather than log2. We denote the bitwise XOR operator
on bitstrings by ⊕ and the all-zero and all-one bitstrings of length n by 0n and 1n, respectively. Let X
be a random variable over a finite set X . We denote its probability distribution by PX where X is used
to label the register that stores the random variable X. For any n ≥ 1, we denote by P×n

X = (PX)×n the
product distribution of n copies of X on X n := X × · · · × X defined by

P×n
X (xn) :=

n∏
i=1

PX(xi),

where xn = x1 . . . xn is an element of X n. We sometimes omit writing the subscript in PX, when it is
obvious over which set P is a distribution. For A ⊂ X , we denote by PX(A ) the probability of random
variable X taking on a value in A :

PX(A ) =
∑
x∈A

PX(x).

Lastly, for an arbitrary function f : X → Y , we define f−1(y) := {x ∈ X : f(x) = y}.

2.1 Quantum information
A quantum state on Cd is a d × d positive semi-definite matrix of unit trace, i.e., ρ ∈ Cd×d such that
ρ ⪰ 0 and tr ρ = 1. We denote the set of all quantum states on Cd by D(Cd). Operations on quantum
states are described by unitary matrices, i.e., U ∈ Cd×d such that U†U = I where I is the identity matrix.
We denote the set of all unitaries on Cd by U(Cd).

An n-outcome measurement or POVM on Cd is a collection of n positive semi-definite d× d matrices
that sum to identity. We will denote a measurement byM = {M1, . . . ,Mn} whereMi ⪰ 0 and

∑n
i=1 Mi =

I. We denote the set of all n-outcome measurements on Cd by M(Cd) (since the outcome set is always
clear from the context, we do not specify it). If M2

i = Mi for all i = 1, . . . , n, we call the measurement
projective. We denote the set of all n-outcome projective measurements on Cd by PM(Cd).

2.2 Linear programming
Linear programming is a technique for optimizing a linear function over a convex polytope. A polytope
is a generalization of a polygon to any number of dimensions. There are two ways of describing a
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convex polytope: by giving its extreme points (and rays), called the vertex representation, or by linear
constraints, called the half-space representation.

The half-space representation of a convex polytope is a collection of (closed) half-spaces, such that
their intersection is the convex polytope. A half-space can be described by a linear inequality

a1x1 + · · · + anxn ≤ c. (1)

Using this description, the convex polytope can be represented as a system of linear inequalities, which
can be written as a matrix inequality

Ax ≤ d.

Here, A is the matrix containing all coefficients ai and d the vector containing all constants c, for all
inequalities (1) representing the polytope. Note that we can also include linear equalities, as they can
be described by two opposite inequalities.

Given a vertex representation, the corresponding convex polytope is the convex hull of the extreme
points. The convex hull of a set of points is the smallest convex set that contains all the points, or
simply the set of all convex combinations of the points (i.e., all weighted averages). This representation
is especially interesting, since a linear function always has a global maximum in (at least) one of the
extreme points of a convex polytope. We make use of this fact in Appendix C.2.

3 Local simultaneous state discrimination (LSSD)
In this section, we define the local simultaneous state discrimination (LSSD) task, originally introduced
in [9]. In particular, we discuss strategies with classical, quantum and no-signalling resources for LSSD,
and show that the optimal classical success probability can be attained by a symmetric strategy if certain
conditions are fulfilled. Here we only consider the case of two players, Alice and Bob, but all definitions
can easily be generalized to any number of players.

An LSSD game played by two players and a referee is defined by a classical-quantum-quantum (cqq)
state ρXAB, where the referee’s register X is classical while the Alice and Bob’s registers A and B can
generally be quantum. We denote the underlying spaces of X, A and B by X = CX , A = CA and
B = CB, respectively, where X , A and B are some finite sets. We can always write the state ρXAB as

ρXAB =
∑

x∈X

PX(x) |x⟩⟨x|X ⊗ ρx
AB,

where PX is a probability distribution over X and each ρx
AB is a bipartite quantum state on A ⊗ B. The

state ρXAB is known to Alice and Bob, and they try to guess the referee’s value x based on their reduced
states ρA and ρB. We denote their guesses by xA and xB . In general, Alice and Bob may share some
additional resources before the game, but they are not allowed to communicate with each other during
the game. They win the game if both guesses are correct: xA = xB = x.

In most of this paper, we are going to consider the case where ρXAB is entirely classical. Meaning
that there exists an orthonormal basis {|a⟩ : a ∈ A } of A and {|b⟩ : b ∈ B} of B that are independent
of x ∈ X , and probability distributions P x

AB over A × B such that

ρx
AB =

∑
a∈A
b∈B

P x
AB(a, b) |a⟩⟨a|A ⊗ |b⟩⟨b|B.

In this case, it is useful to rephrase the problem. Instead of describing the game by a cqq state, we can
describe it by a probability distribution PXAB on X × A × B. The referee picks elements x ∈ X , a ∈ A
and b ∈ B according to this distribution and gives a and b to Alice and Bob, respectively. Alice and Bob
know the distribution PXAB and both try to guess the value x. Again, they may share some resources,
but are not allowed to communicate during the game, and they win if they both guess x correctly. A
schematic representation of LSSD is shown in Fig. 2.

We now describe different types of strategies based on three different possible shared resources: classi-
cal, quantum and no-signalling. While these additional resources can be of different types, the strategies
themselves are in general quantum since the LSSD game is based on a quantum state.
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Figure 2: A schematic of the LSSD game. On inputs a and b, Alice and Bob make guesses xA and xB respectively,
and win if x = xA = xB .

3.1 Classical resources
While strategies for LSSD may in general take advantage of shared randomness, this does not help
in increasing the winning probability. Indeed, after a random value is generated, we are left with a
deterministic strategy that depends on this value. Thus instead of the original randomized strategy, the
players can just use one of the deterministic strategies that achieves the highest winning probability.
Hence in the following, we assume that the players do not use shared randomness.

In the quantum case of the LSSD game (meaning that the game is described by a cqq state ρXAB), a
strategy is completely defined by two measurements M = {Mx : x ∈ X } and N = {Nx : x ∈ X } on
A and B, respectively. Alice and Bob perform these measurements on their subsystems to produce their
guesses for x. Given the measurements M and N , their winning probability is∑

x∈X

PX(x) tr[ρx
AB(Mx ⊗Nx)],

and the optimal winning probability is denoted by

ωc(X|A; B)ρ := sup
M∈M(A)
N∈M(B)

∑
x∈X

PX(x) tr[ρx
AB(Mx ⊗Nx)],

where M(A) and M(B) denote the sets of all measurements on A and B, respectively.
In case ρXAB is purely classical and described by a probability distribution PXAB, the strategy of Alice

and Bob is given by two conditional probability distributions QXA|A and QXB |B describing their local
behaviour. The winning probability is then given by∑

x∈X
a∈A ,b∈B

PXAB(x, a, b)QXA|A(x|a)QXB |B(x|b).

The optimal winning probability can now be obtained by maximizing over all conditional probabilities.
However, we can restrict this optimization to maximizing over all deterministic strategies, i.e., strategies
that can be described by two functions f : A → X and g : B → X . Similarly to shared randomness,
Alice and Bob can condition any local randomness on the realization that maximizes their probability
of winning. Now, the optimal winning probability is given by

ωc(X|A; B)P = max
f,g

∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)δ[f(a) = g(b) = x].

We say that a strategy is symmetric if Alice and Bob perform the same local strategy, i.e., if f = g.
In the following theorem, we show that symmetric strategies attain optimal classical values for classical
LSSD games (see Appendix A.1 for proof).

Theorem 3.1. Let PXAB be a distribution over X × A × B, with A = B, satisfying the following:
(i) The marginal distribution PX over X is uniform.

(ii) PAB|X = PA|XPB|X.

(iii) PA|X = PB|X.
Then the classical LSSD game defined by PXAB has an optimal deterministic strategy that is symmetric.
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3.2 Quantum resources
In this case, Alice and Bob can share an entangled state prior to receiving their inputs. Let A′ = B′ = Cd

be two complex Euclidean spaces of dimension d. Alice and Bob first jointly prepare a quantum state
σA′B′ on A′ ⊗ B′, after which Alice and Bob keep systems A′ and B′, respectively. After receiving
their inputs, Alice and Bob determine their output by measuring the registers AA′ and BB′ with local
measurements M and N , respectively (this is the most general strategy because no communication is
allowed).

When the local dimensions of the shared entangled state σA′B′ are limited to d for both parties, the
optimal probability of winning is

ωd
q(X|A; B)ρ := sup

σA′B′ ∈D(Cd⊗Cd)
sup

M∈M(A⊗Cd)
N∈M(B⊗Cd)

∑
x∈X

PX(x) tr
[
(ρx

AB ⊗ σA′B′)(Mx ⊗Nx)
]
. (2)

When the dimensions of A′ and B′ are not limited, the optimal winning probability is

ωq(X|A; B)ρ := sup
d≥1

ωd
q(X|A; B)ρ. (3)

When ρXAB is classical and described by a probability distribution PXAB, we can simplify Eq. (2) as
follows:

ωd
q(X|A; B)P = sup

σA′B′ ∈D(Cd⊗Cd)
sup

M :A →M(Cd)
N :B→M(Cd)

∑
x∈X

a∈A ,b∈B

PXAB(x, a, b) tr
[
σA′B′

(
Mx(a) ⊗Nx(b)

)]
(4)

= sup
M :A →M(Cd)
N :B→M(Cd)

∥∥∥∥ ∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)Mx(a) ⊗Nx(b)
∥∥∥∥, (5)

where M and N are collections of measurements, i.e., for every input a ∈ A and b ∈ B, we have that
M(a) = {Mx(a) : x ∈ X } and N(b) = {Nx(b) : x ∈ X } are measurements on Cd with outcomes in X .

3.3 No-signalling resources
We define strategies with no-signaling resources only when ρXAB is classical and described by a probability
distribution PXAB. Given classical inputs a ∈ A and b ∈ B for Alice and Bob, respectively, they output
their estimates xA and xB of x ∈ X according to a conditional probability distribution QXAXB |AB on
X × X × A × B satisfying

∀xB , a, a
′, b :

∑
xA∈X

QXAXB |AB(xA, xB |a, b) =
∑

xA∈X

QXAXB |AB(xA, xB |a′, b), (6)

∀xA, a, b, b
′ :

∑
xB∈X

QXAXB |AB(xA, xB |a, b) =
∑

xB∈X

QXAXB |AB(xA, xB |a, b′). (7)

An optimal no-signaling strategy succeeds with probability

ωns(X|A; B)P := sup
QXAXB |AB

∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)QXAXB |AB(x, x|a, b). (8)

The set of classical correlations is a subset of the set of quantum correlations, and the latter is a
subset of the set of no-signalling correlations, see [18] for more details. Therefore, we have that

ωc(X|A; B)P ≤ ωq(X|A; B)P ≤ ωns(X|A; B)P . (9)

Notice that the winning probability for a given no-signalling strategy is a linear function in the values
QXAXB |AB(xA, xB |a, b). This, together with the fact that the set of no-signalling correlations forms
a convex polytope, see e.g. [18], implies that we can use linear programming to find the optimal no-
signalling winning probability of an LSSD game. It also implies that there is always an optimal strategy
at one of the extreme points of the no-signalling polytope.
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This last fact is what Majenz et al. used to prove that there exists no probability distribution PXAB
with binary x, a and b, such that the corresponding LSSD game can be won with higher probability using
no-signalling strategies [9, Proposition 3.3]. They showed that none of the no-signalling correlations at
the extreme points of the no-signalling polytope could ever perform better than the simple classical
strategy of outputting the most likely value for x. We do something similar in Appendix C for the
tripartite case. However, it turns out that this argument is not enough in the tripartite case, and we
take a numerical approach to finish the argument.

4 The binary-symmetric-channel game
A binary symmetric channel (BSC) with error α ∈ [0, 1/2] is a channel with a single bit of input that
transmits the bit without error with probability 1 − α and flips it with probability α, see Fig. 3. In this
section, we study a particular LSSD problem: the binary-symmetric-channel game, originally introduced
in [9, Example 1], where a referee sends a bit to Alice and Bob over two identical and independent
binary symmetric channels, both with error probability α, see Definition 4.1 for a formal definition. In
[9], an explicit optimal classical strategy for this game is shown and its corresponding optimal winning
probability for every α is obtained. Moreover, the authors show that the winning probability cannot
be improved by any quantum nor no-signalling strategy. In addition, they show that if two copies of
the game are played in parallel for α = 1 − 1√

2 , there is an explicit optimal classical strategy that
performs better than repeating the optimal classical strategy for a single copy of the game twice and,
as a consequence, quantum and no-signalling optimal strategies must perform better than repeating the
respective optimal strategies for a single copy of the game.

1

0

1

0

(1 − α)

(1 − α)

α

α

Figure 3: Schematic representation of a binary symmetric channel with error probability α.

In Section 4.1, we study the parallel repetition of the BSC game and, for the case of two copies, we
provide the optimal classical, quantum and no-signalling values, showing that for most α the three values
coincide (and in most of the cases the optimal values are obtained just by repeating the optimal strategy
for a single copy of the BSC game). Nevertheless, for certain values of α, the classical and quantum
values coincide but there is a no-signalling advantage.

In Section 4.2, we provide the optimal no-signalling winning probabilities for the three-fold parallel
repetition of the BSC game. We study the ‘good’ classical and no-signalling strategies for arbitrary
number n of parallel rounds of the BSC game in Section 4.3.

Definition 4.1 (Example 1 in [9]). Let X,Y and Z be independent binary random variables such that
X is uniformly random, i.e., Pr[X = 1] = 1/2, and Pr[Y = 1] = Pr[Z = 1] = α for α ∈ [0, 1/2]. Let
A := X ⊕ Y and B := X ⊕ Z, and denote the joint probability mass function of (X,A,B) by Pα

XAB. The
binary-symmetric-channel (BSC) game is defined as the task of simultaneously guessing X from A and B.

Proposition 4.2 (Example 1 in [9]). For every α ∈ [0, 1/2], the optimal classical, quantum and no-
signalling winning probabilities for the BSC game Pα are equal and given by

ωc(X|A; B)P α = ωq(X|A; B)P α = ωns(X|A; B)P α =
{

(1 − α)2 if α ∈ [0, 1 − 1√
2 ],

1
2 if α ∈ (1 − 1√

2 ,
1
2 ].

(10)

The optimal winning probability for α ∈ [0, 1 − 1/
√

2] is achieved by the strategy where Alice and
Bob output the input they received. The intuition behind this strategy is that for ‘small’ α, the bits they
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receive most likely have not been flipped. Notice that if Alice and Bob were playing this game without
having to coordinate their answers, such a strategy would be optimal for all α. In fact, the optimal
strategy for ‘high’-noise BSC channels, α ∈ (1 − 1/

√
2, 1/2], is achieved by both parties outputting some

previously agreed bit.

4.1 Two-fold parallel repetition of the binary-symmetric-channel game
Let (X ′, A′, B′) be an independent copy of (X,A,B), as described in Definition 4.1. The two-fold parallel
repetition of the BSC game consists of simultaneously guessing (X,X ′) from (A,A′) and (B,B′). This
game is described by the probability distribution Pα

XAB ⊗ Pα
X′A′B′ . According to [9], the optimal classical

winning probability for the two-fold parallel repetition of the BSC game for α = 1 − 1√
2 is

1
4(1 − α2)2 + 1

4(1 − α)4. (11)

Hence, for α = 1 − 1√
2 , ωc(XX′|AA′; BB′)P α⊗P α > ωc(X|A; B)2

P α and, from (9) and (10), we also have

ωq(XX′|AA′; BB′)P α⊗P α > ωq(X|A; B)2
P α , (12)

ωns(XX′|AA′; BB′)P α⊗P α > ωns(X|A; B)2
P α . (13)

Here we study the full range of α (namely, α ∈ [0, 1/2]). In the following Theorem, we provide the
optimal classical and no-signalling winning probabilities for the two-fold parallel repetition of the BSC
game, graphically represented in Fig. 1. The Theorem shows that for most values of α, the classical and
no-signalling optimal success probabilities coincide (and therefore so does the quantum value).

Theorem 4.3. Let (X ′, A′, B′) be an independent copy of (X,A,B). Let α0 < 1 be the real solution of
(1 − α2)2 + (1 − α)4 = 1, i.e. α0 ≃ 0.32814, and let I1 = [0, 2 −

√
3], I2 = (2 −

√
3, α0], I3 = (α0,

√
3−1
2 ]

and I4 = (
√

3−1
2 , 1

2 ]. Then, for the two-fold parallel repetition of the BSC game, we have

ωc(XX′|AA′; BB′)P α⊗P α =


(1 − α)4 if α ∈ I1,
1
4 (1 − α2)2 + 1

4 (1 − α)4 if α ∈ I2,
1
4 if α ∈ I3 ∪ I4,

(14)

and

ωns(XX′|AA′; BB′)P α⊗P α =


(1 − α)4 if α ∈ I1,
(1−α2)2

3 if α ∈ I2 ∪ I3,
1
4 if α ∈ I4.

(15)

Proof. Since the BSC game fulfills the conditions of Theorem 3.1, a symmetric strategy will provide
the optimal classical value. We determine ωc by considering all deterministic classical strategies. For
each strategy, we compute the winning probability as a function of α. Then we obtain the analytical
value (14) by taking the maximum and applying the PiecewiseExpand command. For more details on
this derivation, see the Mathematica file “BSC classical strategy n=2.nb” in [19].

The optimal no-signalling value can be found via a linear program, i.e., a maximization of a linear
function subject to linear constraints. In Mathematica, the standard form to represent a linear program
that optimizes over x ∈ Rn is

Primal problem: minimize: ⟨c, x⟩ =
n∑

i=1
cixi

subject to: Ax+ b ≥ 0,
Aeqx+ beq = 0,

(16)
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where x, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, Aeq ∈ Rk×n, beq ∈ Rk (see LinearOptimization for more details).
Its dual, which optimizes over λ ∈ Rm and ν ∈ Rk, is given by

Dual problem: maximize: −
(
⟨b, λ⟩ + ⟨beq, ν⟩

)
= −

m∑
i=1

biλi −
k∑

i=1
beq,iνi

subject to: ATλ+AT
eqν − c = 0,

λ ≥ 0.

(17)

A common technique in linear programming is to use one of the two problems to obtain a bound on the
other. In the above formulation, any feasible solution to the dual problem (17) provides a lower bound on
the optimal solution of the primal problem (16). The optimal value of both problems can be determined
by finding feasible primal and dual solutions that have the same value. Then, as a consequence of strong
duality, both solutions must be optimal.

Since the original linear program for computing ωns for the BSC game is quite large, see Eqs. (6)
to (8), we first simplify it by reducing the number of parameters. We do this by imposing the following
symmetries on Alice’s and Bob’s no-signalling strategy Q:1

1. By Lemma 5.11 below, there is an optimal no-signalling strategy that is invariant under any
permutation of the instances of the game, i.e., Q

(
σ(x), σ(y)|σ(a), σ(b)

)
= Q(x, y|a, b), for any

permutation σ of positions within a string.

2. Since the BSC game is symmetric under exchanging Alice and Bob, we can also exchange Alice’s
and Bob’s strategies, i.e., Q(y, x|b, a) = Q(x, y|a, b).

3. Since the BSC game is symmetric under negating any subset of input and output bits, we can do
the same to Alice’s and Bob’s strategy, i.e., Q(x ⊕ s, y ⊕ s|a ⊕ s, b ⊕ s) = Q(x, y|a, b) for any bit
string s.

After performing the above symmetry reductions, we need to find feasible primal and dual solutions
of equal value. These solutions should be α-dependent, i.e., work not just for a single value of α but
for whole intervals of α. We managed to find such solutions with the help of Mathematica, and we
have provided them in the format of Eqs. (16) and (17) in the notebook “BSC no-signalling strategy
n=2.nb” [19]. The primal and dual objective values of these solutions match and agree with Eq. (15)
in each of the intervals I1, . . . , I4 (occasionally we could not obtain a single α-dependent solution for a
whole interval, in which case we broke it into smaller subintervals).

Finding these exact α-dependent solutions required some numerical tricks. Indeed, while it is easy
to solve the linear program for any particular value of α, obtaining continuous α-dependent solutions is
nontrivial – it requires interpolating from a small number of solutions, or often even a single solution. We
used a combination of the following numerical tricks to cover all cases in Eq. (15) (often obtaining the
same solution with different methods):

• Rational multiples of π: We chose a rational number r so that α = rπ lies in a given interval Ii.
Using LinearOptimization we then find a symbolic solution that is polynomial in π.2 Substituting
back π = α/r gives us an exact polynomial α-dependent solution. This is quite remarkable since we
have effectively interpolated a polynomial function from a single irrational point. This strategy
unfortunately did not work for 3 repetitions of the game since the linear program was too large.

• Rational solutions: We choose a sequence of equally spaced rational values of α and find exact
rational solutions for these values by using LinearOptimization. We then interpolate between
them by using FindSequenceFunction. This method generally requires some fiddling with the
chosen sequence since nearby values of α can lead to completely different and unrelated solutions.

1Here we consider only two parallel repetitions of the BSC game. But the same symmetry reductions can be performed
for any number of repetitions (see Theorem 4.5).

2This works since on one hand Mathematica treats π symbolically, while on the other it can compare π to any other
number by calculating its numerical value to arbitrary accuracy. It is also important that Mathematica can manipulate
rational numbers symbolically and that π is irrational.
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• Algebraic solutions: We choose an algebraic α from the given interval Ii and find a numerical
solution for this α to extremely high accuracy (300 digits). Then we use RootApproximant to turn
this numerical solution into exact algebraic numbers. Reconstructing the minimal polynomial for
each of these numbers gives us an interpolated α-dependent solution that is polynomial. This trick
effectively interpolates from a single algebraic point.

Checking the primal and dual constraints of the resulting interpolated solution gives us constraints on α
that capture the interval in which this solution holds.

It is important to note that, irrespective of how dirty the above numerical methods are, once an exact
α-dependent solution is found, it can be easily verified that it satisfies all constraints and gives equal
primal and dual values, hence implying optimality. For more details, see “BSC no-signalling strategy
n=2.nb” in [19].

Notice that, unlike a single copy of the BSC game, the optimal winning probabilities have different
behaviors split into three different intervals. We see that

ωc(XX′|AA′; BB′)P α⊗P α = ωns(XX′|AA′; BB′)P α⊗P α = ωc(X|A; B)2
P α ∀α ∈ I1 ∪ I4, (18)

and therefore, due to (9), the quantum value is the same value as the classical. Analogously to the single
copy of the BSC game, for ‘small’ α, α ∈ I1, an optimal classical and no-signalling strategy is given by
Alice and Bob outputting their input. The intuition behind it is that, due to ‘low’ noise, every bit has
low probability of being flipped, (1 −α), and thus the winning probability using this strategy is (1 −α)4.
On the other hand, an optimal classical and no-signalling strategy for a ‘high’ noisy channel, α ∈ I3 ∪ I4
and α ∈ I4, respectively, is that both Alice and Bob output some previously agreed bit string. This
leads to the conclusion that the corresponding optimal winning probabilities for these values of α can be
achieved by just repeating the optimal classical and no-signalling strategies mentioned above for a single
copy of the BSC game. Nevertheless, this is not always the case, since

ωc(XX′|AA′; BB′)P α⊗P α < ωns(XX′|AA′; BB′)P α⊗P α ∀α ∈ I2 ∪ I3. (19)

An optimal classical strategy for α ∈ I2 is given by Alice and Bob both outputting 00 if their input
contains a 0 and outputting 11, otherwise, which gives an optimal winning probability of 1

4 (1 − α2)2 +
1
4 (1−α)4, which was already given in [9] for α = 1− 1√

2 . An optimal no-signalling strategy for α ∈ I2 ∪I3
is given by

Q2(x, y|a, b) =
{

1
3 if (x = y or x⊕ b = 11 = y ⊕ a) and (x⊕ a ̸= 11 ̸= y ⊕ b),
0 otherwise.

(20)

This strategy, see Section 4.3.2, has winning probability (1 − α2)2/3. More specifically, for α ∈ I2 and
for α ∈ I2 ∪ I3 there exist classical and no-signalling strategies, respectively, that perform better than
repeating the optimal strategy, i.e.

ωc(XX′|AA′; BB′)P α⊗P α > ωc(X|A; B)2
P α ∀α ∈ I2,

ωns(XX′|AA′; BB′)P α⊗P α > ωns(X|A; B)2
P α ∀α ∈ I2 ∪ I3.

(21)

We are left with characterizing the value ωq(XX′|AA′; BB′)P α⊗P α for α ∈ I2 ∪ I3. From (19), the
optimal quantum value for α ∈ I2 ∪ I3 has to be in between the two values. Based on strong numerical
evidence (see Fig. 1), in Conjecture 4.4 below we conjecture that there is no quantum advantage with
over the optimal classical strategy for any α.

Unlike the set of classical and the set of no-signaling correlations, the set of quantum correlations,
Q, has uncountably many extremal points, see e.g. [18], making the optimization problem a tough task.
In [20], Navascués, Pironio and Acín (NPA) introduced an infinite hierarchy of conditions necessarily
satisfied by any set of quantum correlations with the property that each of them can be tested using
semidefinite programming (SDP) and thus they can be used to exclude non-quantum correlations, see
Appendix B. The authors introduced a recursive way to construct subsets Qℓ ⊃ Qℓ+1 ⊃ Q for all ℓ ∈ N,
each of them can be tested using semidefinite programming and are such that ∩ℓ∈NQℓ = Q, i.e. they
converge to the set of quantum correlations.
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By using an intermediate level between the first and the second levels of the NPA hierarchy, the
so-called level “1+MN ” (see Appendix B for a detailed explanation and “NPA_hierarchy_BSC_Game.py”
[19] for the numerical code), we find that for α ∈ I2, ωq(XX′|AA′; BB′)P α⊗P α is upper bounded by
ωc(XX′|AA′; BB′)P α⊗P α , see Fig. 1 (b). Therefore, this shows that the values coincide in the interval I2.
The reason to restrict ourselves to the level “1 + MN ” is that it requires less computational resources
than computing the level 2 and it already provides tight bounds. Based on the fact that the numerical
upper bounds on the quantum value obtained by solving the semidefinite programs match the (analytical)
lower bounds given by the classical values, we state the following conjecture.

Conjecture 4.4. There is no quantum advantage over the best classical strategy for the two-fold parallel
repetition of the BSC game for any value of α.

4.2 Three-fold parallel repetition of the BSC game
Consider the three-fold parallel repetition of the BSC game. In the following Theorem, we provide the
optimal classical and no-signalling winning probabilities, and we will see that for a vast range of values
of α they coincide and therefore so does the quantum.

Theorem 4.5. Let (X ′, A′, B′) and (X ′′, A′′, B′′) be two independent copies of (X,A,B) and let α1 be the
root of the polynomial 2(1−α)4(1+2α)−1 taking the value α1 ≃ 0.358121, α2 = 1

8 (3−
√

7+
√

2(32 − 11
√

7))
and α3 = 2− 2

3 (4 −
√

14) 1
3 . Then, for three copies of the BSC game,

ωc(XX′X′′|AA′A′′; BB′B′′)P α⊗P α⊗P α =


(1 − α)6 if α ∈ [0, 1

4 ],
1
4 (1 − α)4(1 + 2α) if α ∈ ( 1

4 , α1],
1
8 if α ∈ (α1,

1
2 ],

(22)

ωns(XX′X′′|AA′A′′; BB′B′′)P α⊗P α⊗P α =


(1 − α)6 if α ∈ [0, 1

4 ] =: J1,
1
4 (1 − α)4(1 + 2α)2 if α ∈ ( 1

4 , α2] =: J2,
1
7 (1 − α3)2 if α ∈ [α2, α3] =: J3,
1
8 if α ∈ [α3,

1
2 ] =: J4.

(23)

Proof. The proof is analogous to the proof of Theorem 4.3 for two parallel repetitions. In “BSC classical
strategy n=3.nb” [19] we perform an optimized search over all symmetric classical strategies leading to
(22). In “BSC no-signalling strategy n=3.nb” [19] we provide explicit analytic α-dependent solutions
for the primal and dual linear programs for the no-signalling value. Both solutions have identical objective
value that agrees with (23).

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

α

ω

(a)

0.34 0.36 0.38 0.40
0.115

0.120

0.125

0.130

0.135

0.140

α

ω

(b)

Figure 4: (a) Optimal classical (blue) and no-signalling (red) winning probabilities for the three-fold parallel repetition
of the BSC game. The blue area represents the values below the optimal classical winning probabilities. (b) Zoom in of
(a) for the values of α around 0.37 where the classical and no-signalling values differ.
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See Fig. 4 for a graphical representation of the optimal values from Theorem 4.5. For ‘low’ noise,
α ∈ J1, the optimal value is attained by the classical strategy consisting on Alice and Bob outputting
the received bit, i.e. repeating three times the optimal classical strategy for a single copy of the game.
On the other side, for ‘high’ noise, α ∈ J4, the optimal value is attained by the classical strategy where
Alice and Bob output a pre-agreed bit, which is also obtained by repeating the optimal strategy for a
single copy. Therefore,

ωc(XX′X′′|AA′A′′; BB′B′′)P α⊗P α⊗P α = ωns(XX′X′′|AA′A′′; BB′B′′)P α⊗P α⊗P α = ωc(X|A; B)3
P α , ∀α ∈ J1∪J4.

(24)
For α ∈ J2, the no-signalling optimal value can be attained by the deterministic strategy consisting on
Alice and Bob outputting 111 if they receive an input with more zeros than ones and outputting 000
otherwise. See Section 4.3 for no-signalling and classical strategies attaining this optimal value. For this
interval, the optimal strategy for three copies is better than any combination of optimal two and one
copies of the BSC game, i.e.

ωc(XX′X′′|AA′A′′; BB′B′′)P α⊗P α⊗P α = ωns(XX′X′′|AA′A′′; BB′B′′)P α⊗P α⊗P α

> ωns(XX′|AA′; BB′)P α⊗P αωns(X′′|A′′; B′′)P α ≥ ωc(XX′|AA′; BB′)P α⊗P αωc(X′′|A′′; B′′)P α

> ωns(X|A; B)3
P α , ∀α ∈ J2.

(25)

For α ∈ J3 the following no-signalling strategy achieves the optimal value, as we explain in Section 4.3,

Q3(x, y|a, b) =
{

1
7 if (x = y or x⊕ b = 111 = y ⊕ a) and (x⊕ a ̸= 111 ̸= y ⊕ b),
0 otherwise.

(26)

4.3 Arbitrary parallel repetition
In this section, we will look to find classes of good strategies, both classical and no-signalling, for the
n-fold parallel repetition of the BSC game.

4.3.1 Classical strategies

We have already seen some similarities in classical strategies between one, two and three copies of the
game. For small α, the best strategy is always to output the input (identity strategy). For α close to
1/2 the best strategy is to output some fixed bitstring regardless of the input (constant strategy). The
winning probabilities of these strategies for n copies are (1 − α)2n and 2−n, respectively. For two and
three copies, we also found similar strategies “in between” the identity and constant strategies. These
strategies can also be extended to n copies: outputting 0n if the input contains at least as many zeros as
ones and outputting 1n otherwise (majority strategy). For odd n, the winning probability of the majority
strategy is given by

1
2n−1

(n−1)/2∑
i=0

(
n

i

)
αi(1 − α)n−i

2

. (27)

An error-correcting code for the BSC consists of a message setM and two functions Enc: M → {0, 1}n

and Dec: {0, 1}n → M . The objective of an error-correcting code is to send a message m over the BSC
by first encoding it using Enc, sending the result over the BSC and recovering m using Dec, such that the
probability of a correct recovery of m is maximized. We will look at error-correcting codes more formally
in Section 5. The readers already familiar with error-correcting codes will notice that the majority
strategy is exactly applying Enc ◦ Dec from the repetition code to the input: the repetition code encodes
messages 0 and 1 to 0n and 1n respectively and decodes by picking the bit that appears the most in the
input. This motivates us to look at error-correcting codes to define strategies for n repetitions of the
BSC game.

Example 4.6. We consider the (7,4)-Hamming code, perhaps the most famous code for the BSC,
introduced by Richard Hamming [21]. This code encodes bitstrings d1d2d3d4 of length 4 as bitstrings of
length 7 by appending three parity bits: d1d2d3d4p1p2p3. These bits represent the parity (XOR) of three
of the original 4 bits (see Fig. 5).
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Decoding works by checking if the parity bits are still correct (still equal to the parity of the
corresponding 3 bits). If this is the case, we just remove the last three bits of the received bitstring. Now
suppose an error occurred in exactly one bit.

• If the error occurred in d4, all the parity bits are incorrect.

• If the error occurred in d1, d2 or d3, two of the parity bits are incorrect (p1 and p2 for d1, p1 and p3
for d2 and p2 and p3 for d3).

• If the error occurred in one of the parity bits, only that parity bit will be incorrect.

Using the above, we can perfectly deduce in which bit the error occurred and correct it accordingly. If
more than one error occurs, this method never decodes correctly.

p1

p2 p3

d1 d2

d3

d4

Figure 5: The Hamming code visualized: The bitstring d1d2d3d4 is encoded by appending the parity bits p1, p2 and p3,
where each parity bit represents the parity of the three bits inside their circle. A single error in one of the seven bits can
be perfectly detected by checking which parity bits are incorrect.

Since the Hamming code corrects exactly 0 or 1 error, we can write the average success probability of
this code as

(1 − α)7 + 7α(1 − α)6.

Now consider the following strategy for 7 copies of the BSC game based on the Hamming code: both
players perform the correction part of the Hamming code on their input and output the result (this is the
same as decoding and then encoding again). It is obvious that the players win if and only if the initial
bitstring x is in the range of the encode function and the decoding of both players was successful. This
observation results in the following winning probability:

24

27

(
(1 − α)7 + 7α(1 − α)6)2

.

It turns out that this Hamming code strategy is strictly better for a large range of α than the identity,
constant and majority strategy for 7 copies of the game. This confirms the idea that error-correcting
codes define good classical strategies.

4.3.2 No-signalling strategies

For two and three copies of the BSC game, we found the optimal no-signalling strategies Q2 and Q3
(described in Eqs. (20) and (26)). We can extend these no-signalling strategies to n copies as follows:

Q(x, y|a, b) =
{

1
2n−1 if (x = y or x⊕ b = 1n = y ⊕ a) and (x⊕ a ̸= 1n ̸= y ⊕ b),
0 otherwise.

(28)

There is, however, a more intuitive way to describe this no-signalling correlation. Alice outputs
uniformly at random any bit string, except the negation of her input. Bob outputs the same string as
Alice, except when that string happens to be the negation of his input, in which case he outputs the
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Alice’s input: 101 Bob’s input: 001
000 000
001 001

011 011
100 100
101 101

111 111

010 010

110 110

Figure 6: An example of a pairing of elements between the output sets of Alice and Bob, for three simultaneous copies.
Each line represents a pair, and at the end of the process, one pair is chosen uniformly at random.

negation of Alice’s input (see Fig. 6). Note that the roles of Alice and Bob in this description can be
exchanged.

This formulation makes it obvious that we can define a more general class of no-signalling strategies:
instead of the output sets consisting of everything apart from the opposite of the input, we can let the
output sets consist of all bitstrings within Hamming distance d from the input. We can then pair up the
elements from the output sets and say that each of those pairs is output with equal probability. Again,
if an element occurs in both lists, we pair it with itself. This description defines a no-signalling strategy,
since Alice and Bob always output each of the elements of their output sets with the same probability,
regardless of the input of the other. We denote by Qd

n a no-signalling strategy for n copies of the BSC
game defined by Hamming distance d. Note that for d ∈ {1, . . . , n − 2} the strategy Qd

n is not unique,
but they all achieve the same winning probability.

Let us find the winning probability of a strategy Qd
n. Suppose that x is the bitstring generated by

the referee. The only way the players could output the combination (x, x) is if both d(x, a) ≤ d and

d(x, b) ≤ d, in which case it is output with probability
(∑d

i=0
(

n
d

))−1
, since the sum is the size of their

output sets. The probability that a lies within distance d from x is
∑d

i=0
(

n
i

)
αi(1 − α)n−i. We conclude

that the winning probability of Qd
n is given by

1∑d
i=0
(

n
i

) ( d∑
i=0

(
n

i

)
αi(1 − α)n−i

)2

.

It turns out that all the optimal winning probabilities for one, two and three simultaneous copies of
the BSC game can be achieved by a strategy of the form Qd

n. If we pick d = 0 we get exactly the identity
strategy. If we pick d = n, we get the average of all possible constant strategies (and by linearity, this
achieves the same winning probability as a constant strategy). If we pick d = n− 1, we get exactly the
strategy defined in Eq. (28). This strategy achieves winning probability

1
2n − 1

(
n∑

i=0

(
n

i

)
αi(1 − α)n−i − αn

)2

= 1
2n − 1 (1 − αn)2

.

We are left with segment two for three copies. The strategy Q1
3 achieves winning probability

1
4
(
(1 − α)3 + 3α(1 − α)2)2

.

This probability is exactly the same winning probability as the majority strategy, which we found to
be optimal in this segment. We conclude that all optimal winning probabilities for one, two and three
copies of the game can be achieved by a strategy of the form Qd

n.
It turns out that the class of strategies defined in this section can be described using a list-decoding

scheme for the BSC channel. In the next section, we discuss strategies for a general channel PA|X based
on error-correcting codes and list-decoding schemes.
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5 Channel LSSD games
In the previous section, we constructed an LSSD game based on a BSC. In this section, we extend this
construction and define an LSSD game based on an arbitrary channel. For n parallel instances of these
games, we discuss classical strategies based on error-correcting codes and no-signalling strategies based on
list-decoding schemes. We also investigate the asymptotic behaviour of the optimal winning probability
as n approaches infinity. Note that for any non-local game with optimal no-signalling winning probability
smaller than 1 (and no promise on the input distribution), the optimal winning probability for n parallel
instances of the game exponentially goes to 0 [22, Theorem 16]. Thus, we will be considering the limit
of the exponent of the winning probability normalized by n.

We briefly recap basic concepts from information theory that we need in this section including entropic
quantities and method of types. For a more in-depth introduction, see [23, Chapter 2] and [24, Chapter 2].

Let P be a probability distribution over X , and let X be a random variable distributed according
to P . We define the entropy H(X)P = H(P ) of X as

H(X)P := −
∑

x∈X

P (x) log(P (x)),

with the convention that P (x) log(P (x)) = 0 wherever P (x) = 0. We drop subscript P whenever the
distribution of X is clear from the context. Let X and Y be two random variables with joint probability
distribution PXY. The joint entropy of X and Y is H(X,Y )P = H(PXY) and the conditional entropy is

H(X|Y )P := H(X,Y )P −H(Y )P .

The mutual information of two random variables X and Y is

I(X;Y )P := H(X)P +H(Y )P −H(X,Y )P .

For two probability distributions P and Q over X , the relative entropy is

D(P∥Q) :=
∑

x∈X

P (x) log
(
P (x)
Q(x)

)
.

If P 1
X|Y and P 2

X|Y are two conditional distributions over X × Y and QY is a distribution over Y , the
corresponding conditional relative entropy is

D(P 1
X|Y∥P 2

X|Y | QY) :=
∑
y∈Y

QY(y)D(P 1
X|Y=y∥P 2

X|Y=y).

We next introduce preliminaries on the method of types (see [24, Chapter 2] for further reading).
Let X be a finite set and n be a positive integer. For a sequence xn ∈ X n, its type is a probability
distribution P over X defined as

P (x) := |{i : xi = x}|
n

. (29)

Let Pn(X ) denote the set of all types of sequences in X n. For a given distribution P over X , we denote
by TP all sequences in X n whose type is P . If PAX is a joint probability distribution on A × X and
xn is a sequence in TPX , we let TPA|X(xn) := {an : (an, xn) ∈ TPAX }. We need the following inequalities
whose proofs are in [24]:

|Pn(X )| ≤ (n+ 1)|X |, (30)
|TPX | ≤ 2nH(X)P , (31)

|TPA|X (xn)| ≥ 2nH(A|X)P

(n+ 1)|A | . (32)

We are now ready to define the main object of this section, channel LSSD games.
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Definition 5.1. The channel LSSD game defined by PA|X is given by the probability distribution

PXAB = PXPA|XPB|X,

with PX the uniform distribution over X , A = B, and PB|X = PA|X.

Playing n parallel copies of this channel game is the same as playing the channel game defined by
the channel P×n

A|X, which can be thought of as the referee generating a string xn ∈ X n and sending it to
Alice and Bob by n independent uses of their channels. Our main result of this section is the following
characterization of the exponent of the optimal probability of winning for all three classes of strategies.

Theorem 5.2. Let PA|X be a channel and let P×n
XAB be the probability distribution defining the channel

game corresponding to the channel P×n
A|X. We have

lim
n→∞

log(ωc(Xn|An; Bn)P ×n)
n

= lim
n→∞

log(ωq(Xn|An; Bn)P ×n)
n

= lim
n→∞

log(ωns(Xn|An; Bn)P ×n)
n

= max
QXA

I(X;A)Q − 2D(QA|X∥PA|X | QX) − log(|X |).

Note that to prove the theorem it is enough to prove the following two lemmas because of Eq. (9).

Lemma 5.3 (Achievability). We have

lim inf
n→∞

log(ωc(Xn|An; Bn)P ×n)
n

≥ max
QXA

I(X;A)Q − 2D(QA|X∥PA|X | QX) − log(|X |). (33)

Lemma 5.4 (Converse). We have

lim sup
n→∞

log(ωns(Xn|An; Bn)P ×n)
n

≤ max
QXA

I(X;A)Q − 2D(QA|X∥PA|X | QX) − log(|X |). (34)

Our proof for these two lemmas is based on tools from information theory that we introduce in
Section 5.1. We prove the first lemma in Section 5.2 by constructing a classical LSSD strategy from
a code for the corresponding channel, and then by choosing an appropriate sequence of codes that
optimize the winning probability. We prove the second lemma in Section 5.3 by first relating the winning
probability of an arbitrary no-signalling strategy to a list-decoding code, and then using a converse for
list-decoding codes.

5.1 Tools from information theory
We recall here basic definitions concerning error-correction codes. A code for n uses of channel PA|X
operates as follows. The sender has a message set M of possible messages. He picks one message
m ∈ M to send and encodes m as a codeword xn of X n, using a function Enc: M → X n. Next, he
transmits each of the symbols xi of this codeword to the receiver by consecutive uses of the channel; the
receiver receives an an in A n and decodes it to a message m′ using a function Dec: A n → M . The
communication was successful if m = m′.

The minimum success probability of a code is given by

min
m∈M

P×n
A|X(Dec−1(m)| Enc(m)),

and the rate of a code is 1
n log |M |.

Definition 5.5. We call a code (Enc,Dec) for a channel PA|X an (n, 2nR, α)-code if

Enc: [2nR] → X n, (35)
Dec: A n → [2nR], (36)
P×n

A|X(Dec−1(m)| Enc(m)) ≥ α, ∀m ∈ [2nR]. (37)
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We know since Shannon’s groundbreaking work [25] that there exists a sequence of codes with rate
less than the capacity of the channel and probability of success tending to one. We also know from the
strong-converse results [26] that if the rate is above the capacity, the success probability exponentially
tends to zero. In [27], the optimal exponent of the success probability has been characterized. The
following lemma is what we require in our achievability proof. Its proof resembles the proof in [27], but
we need to modify it because we consider the minimum success probability, not the average. We leave
the proof to Appendix A.2.

Lemma 5.6. Let PA|X be a channel, QXA a probability distribution over X × A and δ > 0. For
n ≥ n0(|X |, |A |, δ), there exists an(

n, 2n(I(X;A)Q−δ),
2−nD(QA|X∥PA|X|QX)

p(n)

)
code for the channel PA|X where p(n) is a polynomial depending only on |A |.

We next recall the definition of list decoding. The decoder here outputs a list of L messages, instead
of a single message. The decoding is successful if the list contains the correct message. We denote the
list output by the decoder on input an by Can . The minimum success probability is then

min
m∈M

∑
an∈A n: Can ∋m

P×n
A|X(an| Enc(m)).

Definition 5.7. We call a list-decoding code an (n, 2nR, L, α)-code if Dec maps elements an of A n to
subsets Can of [2nR] of size L and

Enc: [2nR] → X n,∑
an∈A n: Can ∋m

P×n
A|X(an| Enc(m)) ≥ α, ∀m ∈ [2nR].

We have the following converse for list-decoding schemes, see Appendix A.3 for the proof.

Lemma 5.8. For any list-decoding (n, 2nR, 2nRL , 2−nζn) code for PA|X, we have

ζn ≥ min
QXA

[
D(QA|X∥PA|X | QX) + max{R−RL − I(X;A)Q, 0}

]
+O

(
logn
n

)
,

where the constant hidden in O(·) depends only on |X | and |A |.

5.2 Achievability: Classical strategies from error-correction codes
We prove Lemma 5.3 in this section, which we re-state for readers’ convenience.

Lemma 5.9. We have

lim inf
n→∞

log(ωc(Xn|An; Bn)P ×n)
n

≥ max
QXA

I(X;A)Q − 2D(QA|X∥PA|X | QX) − log(|X |). (38)

Proof. We first explain how to use error-correction codes to find classical strategies for the parallel
repetition of a channel LSSD game. Let (Enc,Dec) be an (n, 2nR, α)-code for the channel PA|X. We
consider a classical LSSD strategy for n parallel repetitions of the channel LSSD game in which both
players use the estimation function f := Enc ◦ Dec. This strategy can be interpreted as the players
decoding directly to the codeword of a message instead of to the message itself. We lower bound the
winning probability of the strategy given by f as

1
|X |n

∑
xn∈X n

P×n
A|X(f−1(xn)|xn)2 = 1

|X |n
∑

xn∈X n

 ∑
an∈A n:f(an)=xn

P×n
A|X(an|xn)

2

(39)

(a)
≥ 1

|X |n
∑

xn∈Im(Enc)

α2 = 2nR

|X |n
α2, (40)
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where (a) follows since (Enc,Dec) is an (n, 2nR, α)-code. Notice that there is a trade-off between the
success probability and the number of messages. We simultaneously want the success probability and the
number of messages to be large. However, increasing one necessarily means decreasing the other.

Let QXA be a distribution on X × A and δ > 0. Let n0(|X |, |A |, δ) and p(n) be as in Lemma 5.6
where p(n) is a polynomial only depending on |A |. By Lemma 5.6, for n ≥ n0(|X |, |A |, δ), there exists
an
(
n, 2n(I(X;A)Q−δ), 2−nD(QA|X∥PA|X|QX)

p(n)

)
-code for PA|X. Let f = Enc ◦ Dec be the strategy defined by this

code. The winning probability of this strategy is at most the optimal classical winning probability, so by
using Eq. (40) we find

ωc(Xn|An; Bn)P ×n ≥ 2n(I(X;A)Q−δ−D(QA|X∥PA|X|QX))

|X |np(n) ,

and therefore
log(ωc(Xn|An; Bn)P ×n)

n
≥ I(X;A)Q − δ − 2D(QA|X∥PA|X | QX) − log(|X |) − log(p(n))

n
. (41)

Since Eq. (41) holds for any QXA and δ > 0, and limn→∞
log(p(n))

n = 0, we conclude that

lim
n→∞

log(ωc(Xn|An; Bn)P ×n)
n

≥ max
QXA

I(X;A)Q − 2D(QA|X∥PA|X | QX) − log(|X |).

This completes the proof of the achievability of the error exponent.

5.3 Converse: No-signalling LSSD strategies and list-decoding codes
We prove Lemma 5.4 in this section which we restate for readers’ convenience.

Lemma 5.10. We have

lim sup
n→∞

log(ωns(Xn|An; Bn)P ×n)
n

≤ max
QXA

I(X;A)Q − 2D(QA|X∥PA|X | QX) − log(|X |). (42)

We first prove the existence of an optimal strategy invariant under permutations of inputs and outputs.
To this end, we need the following notation: For a permutation σ ∈ Sn and a sequence xn ∈ X n we
denote by σ(xn) ∈ X n the sequence obtained from xn by permuting its entries according to σ.

Lemma 5.11. For n parallel repetitions of a channel LSSD game, there is an optimal no-signalling
strategy Q such that

∀σ ∈ Sn : Q(σ(xn), σ(yn)|σ(an), σ(bn)) = Q(xn, yn|an, bn). (43)

Proof. Let Q be an optimal strategy and σ ∈ Sn. The strategy Qσ defined by Qσ(xn, yn|an, bn) =
Q(σ(xn), σ(yn)|σ(an), σ(bn)) has the same winning probability as Q, since the n-fold probability distribu-
tion is invariant under permutations: P×n

XAB(xn, an, bn) = P×n
XAB(σ(xn), σ(an), σ(bn)). We define

Q̂ := 1
n!
∑

σ∈Sn

Qσ.

The strategy Q̂ satisfies (43): for any τ ∈ Sn,

Q̂(τ(xn), τ(yn)|τ(an), τ(bn)) = 1
n!
∑

σ∈Sn

Qσ(τ(xn), τ(yn)|τ(an), τ(bn))

= 1
n!
∑

σ∈Sn

Q(σ(τ(xn)), σ(τ(yn))|σ(τ(an)), σ(τ(bn)))

= 1
n!
∑

π∈Sn

Q(π(xn), π(yn)|π(an), π(bn))

= 1
n!
∑

π∈Sn

Qπ(xn, yn|an, bn)

= Q̂(xn, yn|an, bn).
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Finally, by linearity of the winning probability, Q̂ also achieves the same winning probability as Q, which
means that it is optimal.

Proof of Lemma 5.10. Let Q be an optimal strategy satisfying (43). Its marginal distributions Q(xn|an)
and Q(yn|bn) only depend on the joint type of (xn, an) and (yn, bn), respectively. In particular, we can
write the winning probability of Q as follows:

ωns(Xn|An; Bn)P ×n =
∑

xn,an,bn

P×n
XAB(xn, an, bn)Q(xn, xn|an, bn)

=
∑

QXA∈Pn(X ×A )
Q′

XB∈Pn(X ×B)

∑
xn,an,bn:

(xn,an)∈TQXA
(xn,bn)∈TQ′

XA

P×n
XAB(xn, an, bn)Q(xn, xn|an, bn), (44)

where Pn(·) denotes the set of types of length-n strings over a given set, and T· denotes all sequences of a
given type.

Since there are (n+ 1)2|X ||A | terms in the first sum of (44), there must exist QXA ∈ Pn(X × A ) and
Q′

XB ∈ Pn(X × B) such that∑
xn,an,bn:

(xn,an)∈TQXA
(xn,bn)∈TQ′

XA

P×n
XAB(xn, an, bn)Q(xn, xn|an, bn) ≥ ωns(Xn|An; Bn)P ×n

(n+ 1)2|X ||A | . (45)

Let us define for each an and bn

Can := {xn : (xn, an) ∈ TQXA}, (46)
Dbn := {xn : (xn, bn) ∈ TQ′

XB
}. (47)

Now consider the following strategy Q̃:

• on input (an, bn), Alice and Bob generate (xn, yn) according to Q;

• Alice checks if xn ∈ Can and if not, uniformly generates a new output x̃n from Can (if Can is the
empty set, Alice generates an arbitrary output);

• Bob checks if yn ∈ Dbn and if not, uniformly generates a new output ỹn from Dbn (if Dbn is the
empty set, Bob generates an arbitrary output).

This strategy is no-signalling and has winning probability of at least ωns(Xn|An;Bn)P ×n

(n+1)2|X ||A | , by (45). We also
have that Q̃(xn|an) is uniform over Can when Can ≠ ∅, since Q(xn|an) only depends on the joint type of
(xn, an). Similarly, Q̃(yn|bn) is uniform over Dbn when Dbn ̸= ∅.

Note that for any an and a′n, if Can and Ca′n are non-empty, then |Can | = |Ca′n |. We define
LA := |Can | for a non-empty Can and similarly define LB := |Dbn | for a non-empty Dbn . We find

ωns(Xn|An; Bn)P ×n

(n+ 1)2|X ||A | ≤
∑

xn,an,bn

P×n
XAB(xn, an, bn)Q̃(xn, xn|an, bn)

≤
∑

xn,an,bn

P×n
XAB(xn, an, bn) min{Q̃(xn|an), Q̃(xn|bn)}

≤ 1
max{LA, LB}

∑
xn,an,bn

P×n
XAB(xn, an, bn)δ(xn ∈ Can)δ(xn ∈ Dbn)

= 1
max{LA, LB}|X |n

∑
xn

 ∑
an: Can ∋xn

P×n
A|X(an|xn)

 ∑
bn: Dbn ∋xn

P×n
A|X(bn|xn)

 .
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Upon defining

qA(xn) :=
∑

an: Can ∋xn

P×n
A|X(an|xn),

qB(xn) :=
∑

bn: Dbn ∋xn

P×n
A|X(bn|xn),

we can write∑
xn

 ∑
an: Can ∋xn

P×n
A|X(an|xn)

 ∑
bn: Dbn ∋xn

P×n
A|X(bn|xn)

 =
∑
xn

qA(xn)qB(xn). (48)

By Cauchy-Schwartz inequality, we have

∑
xn

qA(xn)qB(xn) ≤

√√√√(∑
xn

pA(xn)2

)(∑
xn

pB(xn)2

)
. (49)

Therefore, without loss of generality, we can assume that∑
xn

qA(xn)qB(xn) ≤
∑
xn

pA(xn)2. (50)

We can upper-bound the winning probability of the strategy as
ωns(Xn|An; Bn)P ×n

(n+ 1)2|X ||A | ≤ 1
max(LA, LB)|X |n

∑
xn

qA(xn)2 ≤ 1
LA|X |n

∑
xn

qA(xn)2. (51)

Let δ > 0. For each i ≥ 0, we define

Ri := {xn ∈ X n | 2−nδ(i+1) ≤ qA(xn) < 2−nδi}.

We define a list-decoding scheme (Enci,Deci) as follows: Enci : Ri → X n is the identity function and

Deci(an) = Can ∩ Ri.

Note that intersecting Can with Ri only decreases the size of the list, making the code weaker. This
observation means that we will still be able to use Lemma 5.8 for a list decoding with list size L. For
each xn ∈ Ri, we have ∑

an: Deci(an)∋xn

P×n
A|X(an|xn) ≥ qA(xn) ≥ 2−nδ(i+1),

so (Enci,Deci) defines an (n, |Ri|, L, 2−δ(i+1))-code. By Lemma 5.8, we have

δ(i+ 1) ≥ min
QXA

D(QA|X∥PA|X | QX) + max
{

log |Ri|
n

− log(LA)
n

− I(X;A)Q, 0
}

+O

(
logn
n

)
.

We find that if qA(xn) > 0, then qA(xn) ≥ 2−nµ, with µ := maxx,a:PA|X(a|x)>0 − log(PA|X(a|x)). Thus, if
i ≥ t := ⌊ µ

δ ⌋, then Ri is empty. Now, we find

1
LA

∑
xn∈X n

qA(xn)2 =
t∑

i=0

∑
xn∈Ri

1
LA

qA(xn)2 (52)

≤
t∑

i=0

|Ri|
LA

2−2nδi (53)

≤
t∑

i=0
2n
( log |Ri|

n − log(LA)
n −2 minQXA

(
D(QA|X∥PA|X|QX)+max

{ log |Ri|
n − log(L)

n −I(X;A)Q,0
})

+O( log n
n )+δ

)
(54)

≤
t∑

i=0
2n(maxQXA(I(X;A)Q−2D(QA|X∥PA|X|QX))+O( log n

n )+δ) (55)

=
(

⌊µ
δ

⌋ + 1
)

2n(maxQXA(I(X;A)Q−2D(QA|X∥PA|X|QX))+O( log n
n )+δ). (56)
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Combining (51) and (56), taking logarithm from both sides, and choosing δ = 1/n yields the desired
converse results.

5.4 Calculating the exponent for BSCs
We calculate, for BSCs, the value of the limit of the exponent in Theorem 5.2: maxQXA I(X;A)Q −
2D(QA|X∥PA|X | QX) − log(|X |). To this extent, let QXA be a distribution over {0, 1} × {0, 1}. Let us
calculate the exponent one step at a time. First of all, we have

I(X;A)Q = H(X)Q +H(A)Q −H(X,A)Q

and

H(X)Q = −
1∑

x=0
QX(x) log(QX(x)) = −

1∑
x=0

( 1∑
a=0

QXA(x, a)
)

log
( 1∑

a=0
QXA(x, a)

)
.

We can find H(A)Q in a similar way. We also have

H(X,A)Q = −
1∑

x,a=0
QXA(x, a) log(QXA(x, a)).

Now let us find the value of D(QA|X∥PA|X | QX):

D(QA|X∥PA|X | QX) =
1∑

x=0
QX(x)D(QA|X=x∥PA|X=x)

=
1∑

x=0

( 1∑
a=0

QXA(x, a)
)( 1∑

a=0
QA|X(a|x) log

(
QA|X(a|x)
PA|X(a|x)

))
.

Using numerical analysis we found that the maximum maxQXA I(X;A)Q −2D(QA|X∥PA|X | QX)−log(|X |)
is always achieved by a distribution QXA for which QXA(0, 0) = QXA(1, 1) =: c and QXA(0, 1) =
QXA(1, 0) =: d. Using this property, we have

H(X)Q = H(A)Q = −2(c+ d) log(c+ d),

and
H(X,Y )Q = −2c log(c) − 2d log(d).

We also find

D(QA|X∥PX|A | QX) = 2
(
c log

(
c

(c+ d)(1 − α)

)
+ d log

(
d

(c+ d)α

))
.

Combining the expressions above, we find the value I(X;A)Q −2D(QA|X∥PA|X | QX)− log(|X |). Note
that for QXA to be a distribution, we need d = 1

2 − c. This observation means that we only need to
maximize with respect to the variable c (we see α as a constant). We can solve this maximization by
calculating the derivative, setting it to 0 and solving for c. Using a computer algebra system, we find

max
QXA

I(X;A)Q − 2D(QA|X∥PA|X | QX) − log(|X |) = log(1 − 2(1 − α)α). (57)

In Fig. 7 we plotted this expression together with the exponent of the optimal winning probability
achieved by the strategies Qd

n for some n (see Section 4.3.2). We can clearly see how this exponent
approaches the limit calculated in (57).
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A Proofs
A.1 Proof of Theorem 3.1
Let two functions f : A → X and g : B → X define a deterministic strategy. We prove that either Alice
and Bob both performing f or both performing g can only increase the winning probability. Note that
Alice and Bob can perform the same strategy, since A = B. The winning probability of the strategy
defined by f and g is given by∑

x∈X
a∈A ,b∈B

PXAB(x, a, b)δ[f(a) = g(b) = x]

= 1
|X |

∑
x∈X

a∈A ,b∈B

PAB|X(a, b|x)δ[f(a) = g(b) = x]

= 1
|X |

∑
x∈X

(∑
a∈A

PA|X(a|x)δ[f(a) = x]
)(∑

b∈B

PB|X(b|x)δ[g(b) = x]
)

= 1
|X |

∑
x∈X

PA|X(f−1(x)|x)PA|X(g−1(x)|x),

where in the first, second and third equalities we have used hypotheses (i), (ii) and (iii) of Theorem 3.1,
respectively and notice that f−1(x) and g−1(x) might be sets. Write qf (x) := PA|X(f−1(x)|x) and
qg(x) := PA|X(g−1(x)|x). Notice that qf and qg are vectors indexed by x ∈ X , so we can write the
winning probability as an inner product of these vectors:

1
|X |

⟨qf , qg⟩ . (58)

Using the Cauchy–Schwarz inequality,

| ⟨qf , qg⟩ |2 ≤ ⟨qf , qf ⟩ ⟨qg, qg⟩ ,

and thus we cannot have ⟨qf , qg⟩ > ⟨qf , qf ⟩ and ⟨qf , qg⟩ > ⟨qg, qg⟩. Therefore, we can conclude that Alice
and Bob either both performing f or both performing g does not decrease the winning probability given
in Eq. (58). Now suppose we picked f and g to form an optimal strategy, then by the previous statement,
we immediately find a symmetric deterministic strategy that is also optimal.

A.2 Proof of Lemma 5.6
The proof of Lemma 5.6 relies on concepts and theorems from the book by Csiszár and Körner [24]. We
will not be discussing these concepts here. We repeat the statement of Lemma 5.6 here for the reader’s
convenience.

Lemma 5.6. Let PA|X be a channel, QXA a probability distribution over X × A and δ > 0. For
n ≥ n0(|X |, |A |, δ), there exists an(

n, 2n(I(X;A)Q−δ),
2−nD(QA|X∥PA|X|QX)

p(n)

)
code for the channel PA|X where p(n) is a polynomial depending only on |A |.

Proof. Let R = I(X;A)Q − δ. By the packing lemma (Lemma 10.1 in [24]), there exists a function
Enc: [2nR] → X n such that

• Enc(m) is of type QX for all m ∈ [2nR];

• |TQA|X
(Enc(m)) ∩

⋃
m′ ̸=m TQA|X

(Enc(m′))| ≤ |TQA|X
(Enc(m))|2−n δ

2
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(Note that the conditions of the packing lemma are satisfied, because H(X)Q ≥ I(X;A)Q).
Now define Dec: A n → [2nR] by Dec(an) = m if m is the unique message such that an ∈

TQA|X
(Enc(m)), otherwise we set Dec(an) = 0. For all m ∈ [2nR], we have∑

an: Dec(an)=m

P×n
A|X(an| Enc(m)) = | Dec−1(m)|2−n(D(QA|X∥PA|X|QX)+H(A|X)Q) (59)

by Lemma 2.6 in [24] (using that Enc(m) are all of type QX). By definition of the decoder, we also have

| Dec−1(m)| ≥ |TQA|X
(Enc(m)) \

⋃
m′ ̸=m

TQA|X
(Enc(m′))| (60)

≥ |TQA|X (Enc(m))|(1 − 2−n δ
2 ) (61)

≥ (n+ 1)−|A |(1 − 2−n δ
2 )2nH(A|X)Q (62)

where (61) follows from the second property of Enc and (62) follows from (32). By combining (62) with
(59) we conclude that (Enc,Dec) is a(

n, 2n(I(X;A)Q−δ), (n+ 1)−|A |(1 − 2−n δ
2 )2−nD(QA|X∥PA|X|QX)

)
code. We finally choose p(n) = 2(n+ 1)|A | which is a polynomial in n depending only on |A | and for
n ≥ 2

δ we have p(n)−1 ≤ (n+ 1)−|A |(1 − 2−n δ
2 ). This concludes the existence of an(

n, 2n(I(X;A)Q−δ),
2−nD(QA|X∥PA|X|QX)

p(n)

)
code.

A.3 Proof of Lemma 5.8
We first repeat the statement of Lemma 5.8 for the reader’s convenience.

Lemma 5.8. For any list-decoding (n, 2nR, 2nRL , 2−nζn) code for PA|X, we have

ζn ≥ min
QXA

[
D(QA|X∥PA|X | QX) + max{R−RL − I(X;A)Q, 0}

]
+O

(
logn
n

)
,

where the constant hidden in O(·) depends only on |X | and |A |.

Proof. Let (Enc,Dec) be an (n, 2nR, 2nRL , 2−nζ) list-decoding code, i.e., Enc : [2nR] → X n, Dec(a) is a
subset of size 2nRL for all a ∈ A n, and for all m ∈ [2nR],

P×n
A|X(Dec−1(m)| Enc(m)) ≥ 2−nζ . (63)

By pigeon hole principle, there exist a type Q ∈ Pn(X ) and a subset S of size 2nR

(n+1)|X | of [2nR] such
that Enc(m) ∈ TQ for all m ∈ S. Furthermore, for any m ∈ S, we have

2−nζ ≤ P×n
A|X(Dec−1(m)| Enc(m)) (64)

=
∑
QA|X

P×n
A|X(TQ(Enc(m)) ∩ Dec−1(m)| Enc(m)) (65)

=
∑
QA|X

2−nD(QA|X∥PA|X|Q) |TQ(Enc(m)) ∩ Dec−1(m)|
|TQ(Enc(m))| . (66)

Averaging the above inequality over all m ∈ S, we obtain that

2−nζ ≤ 1
|S|

∑
m∈S

∑
QA|X

2−nD(QA|X∥PA|X|Q) |TQ(Enc(m)) ∩ Dec−1(m)|
|TQ(Enc(m))| (67)
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Since there are at most (n+ 1)|A ||X | conditional types QA|X, by applying the pigeon hole principle once
again, we derive that there exists QA|X such that

2−nζ

(n+ 1)|A ||X | ≤ 2−nD(QA|X∥PA|X|Q) 1
|S|

∑
m∈S

|TQ(Enc(m)) ∩ Dec−1(m)|
|TQ(Enc(m))| (68)

We now provide two upper bounds on the right hand side of the above inequality. Note that

1
|S|

∑
m∈S

|TQA|X (Enc(m)) ∩ Dec−1(m)|
|TQA|X (Enc(m))| ≤ 1 (69)

We also have

1
|S|

∑
m∈S

|TQA|X (Enc(m)) ∩ Dec−1(m)|
|TQA|X (Enc(m))|

(a)
≤ (n+ 1)|A |

|S|2nH(Y |X)Q

∑
m∈S

|TQA|X (Enc(m)) ∩ Dec−1(m)| (70)

(b)
≤ (n+ 1)|A |+|X |

2nR2nH(Y |X)Q

∑
m∈S

|TQA|X (Enc(m)) ∩ Dec−1(m)| (71)

(c)
≤ (n+ 1)|A |+|X |

2nR2nH(Y |X)Q
|TQA |2nRL (72)

(d)
≤ (n+ 1)|A |+|X |2n(−R+RL−H(A|X)Q+H(A)Q) (73)
= (n+ 1)|A |+|X |2n(−R+RL+I(A;X)Q) (74)

where (a) follows from (32), (b) follows since |S| ≥ 2nR

(n+1)|X | , (c) follows since TQA|X (Enc(m))∩Dec−1(m) ⊂
TQA and every element of TQA appears in TQA|X (Enc(m)) ∩ Dec−1(m) for at most 2nRL m, and (d) follows
from (31). Combining above inequalities, we obtain that

2−nζ

(n+ 1)|A ||X | ≤ 2−nD(QA|X∥PA|X|QX) min
(

1, (n+ 1)|A |+|X |2n(−R+RL+I(A;X)Q)
)

(75)

Taking log from both sides of the above inequality results in the desired bound.

B NPA hierarchy for LSSD
In this appendix, we describe the NPA hierarchy adapted to the LSSD setting. For more details on the
original NPA hierarchy, see [28, 20].

Recall from Section 3 that LSSD game is played by two collaborating players, Alice and Bob, who
receive inputs a ∈ A , b ∈ B and must produce outputs xA, xB ∈ X , respectively (see Fig. 2). Here we
will consider the case when the game is defined by a joint probability distribution3 PXAB that describes
how their inputs a, b are correlated with an external variable x ∈ X which they need to guess. The
LSSD task is to produce outputs xA and xB such that xA = xB = x. We can equivalently describe this
by the predicate V (x, xA, xB) := δ[xA = xB = x].

Depending on the physical scenario considered, Alice and Bob might share some resource that allows
them to correlate their outputs. For the sake of generality, let C ⊂ RX ×X ×A ×B denote an arbitrary set
of correlations they can utilize. We will treat each element Q ∈ C as a vector RX ×X ×A ×B and write
its entries as Q(xA, xB |a, b) where xA, xB ∈ X , a ∈ A , b ∈ B. This notation emphasizes that Q can
also be interpreted as a stochastic matrix. Indeed, it will always be the case that Q(xA, xB |a, b) ≥ 0
and

∑
xA,xB∈X Q(xA, xB |a, b) = 1 for all a ∈ A and b ∈ B. For example, when dealing with quantum

strategies, Q has the following form, see Eq. (4):

Q(xA, xB |a, b) = ⟨ψ|
(
MxA

(a) ⊗NxB
(b)
)
|ψ⟩, ∀a ∈ A , b ∈ B, xA, xB ∈ X (76)

3More generally, PXAB can be replaced by a quantum state ρXAB, see Section 3.2.

27



for some finite-dimensional bipartite Hilbert space H = HA ⊗ HB, pure state |ψ⟩ ∈ H, and collections of
projective measurements {Mx(a) : x ∈ X } ∈ PM(HA) and {Nx(b) : x ∈ X } ∈ PM(HB) on HA and HB,
respectively.4 We will denote the set of all quantum correlations by Q ⊂ RX ×X ×A ×B.

The winning probability of the LSSD game defined by a distribution PXAB and played with assistance
of correlations C is given by

ωC(X|A; B)PXAB = sup
Q∈C

∑
x,xA,xB∈X

a∈A ,b∈B

PXAB(x, a, b)V (x, xA, xB)Q(xA, xB |a, b). (77)

If we let
K(xA, xB , a, b) :=

∑
x∈X

PXAB(x, a, b)V (x, xA, xB), (78)

we can rewrite Eq. (77) as
ωC(X|A; B)PXAB = sup

Q∈C
⟨K,Q⟩ (79)

where we treat both K and Q as vectors in RX ×X ×A ×B and

⟨K,Q⟩ :=
∑

xA,xB∈X
a∈A ,b∈B

K(xA, xB , a, b)Q(xA, xB |a, b). (80)

To define a commuting measurement strategy, we relax the requirement that the finite-dimensional
Hilbert space H has a tensor product structure. We consider a pure5 state |ψ⟩ ∈ H and two collections
of measurements on the whole of H: one measurement {Mx(a) : x ∈ X } for each of Alice’s inputs a ∈ A
and one measurement {Nx(b) : x ∈ X } for each of Bob’s inputs b ∈ B. We require that these are
orthogonal projective measurements, and that Alice’s and Bob’s operators pair-wise commute. Namely,
for all a ∈ A , b ∈ B, xA ̸= x′

A ∈ X and xB ̸= x′
B ∈ X the measurement operators should satisfy

1. MxA
(a)† = MxA

(a) and NxB
(b)† = NxB

(b),

2. MxA
(a)Mx′

A
(a) = 0 and NxB

(b)Nx′
B

(b) = 0,

3.
∑

xA∈X MxA
(a) = I and

∑
xB∈X NxB

(b) = I,

4. [MxA
(a), NxB

(b)] = 0.

The resulting correlation Q is then defined as

Q(xA, xB |a, b) := ⟨ψ|MxA
(a)NxB

(b)|ψ⟩, ∀a ∈ A , b ∈ B, xA, xB ∈ X . (81)

Compared to Eq. (76), here the two commuting sets of measurements are global since the underlying
space H has no tensor product structure.

We will now construct a positive semidefinite matrix G whose entries contain the values Q(xA, xB |a, b)
from Eq. (81), and then impose linear constraints on G that capture the above conditions on the mea-
surement operators MxA

(a) and NxB
(b). The rows and columns of G will be indexed by6

Σ1 := {ε} ⊔ ΣA ⊔ ΣB where ΣA := X × A , ΣB := X × B. (82)

For each s ∈ Σ1, define a vector in H as follows:

|ψ(s)⟩ :=


|ψ⟩ if s = ε,

Mx(a)|ψ⟩ if s = (x, a) ∈ ΣA,

Nx(b)|ψ⟩ if s = (x, b) ∈ ΣB ,

(83)

4One can assume without loss of generality that the shared quantum state is pure and both measurements are orthogonal.
5The assumption that the state is pure and that the measurements are projective is without loss of generality.
6We assume the sets A and B are disjoint so that the disjoint union makes sense here.
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and let G ∈ RΣ1×Σ1 be the Gram matrix of these vectors:

Gs,t := ⟨ψ(s)|ψ(t)⟩, ∀s, t ∈ Σ1. (84)

Since G is a Gram matrix, it is clearly positive semidefinite:

G ⪰ 0. (85)

Notice that G contains all of the values Q(xA, xB |a, b) from Eq. (81), as well as some additional values
such as ⟨ψ|ψ⟩, ⟨ψ|Mx(a)|ψ⟩, and others.

Because of the various relations among the measurement operators MxA
(a) and NxB

(b) listed earlier,
the Gram matrix G is subject to the following linear constraints:

1. Since |ψ⟩ is a normalized state, ⟨ψ|ψ⟩ = 1 and thus

Gε,ε = 1. (86)

2. Due to the completeness relations
∑

x∈X Mx(a) = I =
∑

x∈X Nx(b), we have that for any vector
|v⟩ ∈ H,

∑
x∈X ⟨ψ|Mx(a)|v⟩ = ⟨ψ|v⟩ and

∑
x∈X ⟨v|Mx(a)|ψ⟩ = ⟨v|ψ⟩, and similarly for Nx(b).

Letting |v⟩ = |ψ(s)⟩ for some s ∈ Σ1, this translates to∑
x∈X

G(x,a),s = Gε,s,
∑

x∈X

Gs,(x,a) = Gs,ε, ∀a ∈ A , s ∈ Σ1, (87)∑
x∈X

G(x,b),s = Gε,s,
∑

x∈X

Gs,(x,b) = Gs,ε, ∀b ∈ B, s ∈ Σ1. (88)

3. Since within each measurement the projectors are orthogonal, we also have ⟨ψ|Mx(a)Mx′(a)|ψ⟩ =
0 = ⟨ψ|Nx(b)Nx′(b)|ψ⟩ and thus

G(x,a),(x′,a) = 0, ∀x ̸= x′ ∈ X , a ∈ A , (89)
G(x,b),(x′,b) = 0, ∀x ̸= x′ ∈ X , b ∈ B. (90)

4. Since Mx(a) are projectors, ⟨ψ|Mx(a)Mx(a)|ψ⟩ = ⟨ψ|Mx(a)|ψ⟩ and likewise for Nx(b), so

G(x,a),(x,a) = G(x,a),ε = Gε,(x,a), ∀x ∈ X , a ∈ A , (91)
G(x,b),(x,b) = G(x,b),ε = Gε,(x,b), ∀x ∈ X , b ∈ B. (92)

5. Since the two sets of projectors commute, ⟨ψ|MxA
(a)NxB

(b)|ψ⟩ = ⟨ψ|NxB
(b)MxA

(a)|ψ⟩, we have

G(xA,a),(xB ,b) = G(xB ,b),(xA,a), ∀xA, xB ∈ X , a ∈ A , b ∈ B. (93)

Let Q1 ⊂ RX ×X ×A ×B denote the set of all correlationsQ such that there exists a matrixG ∈ RΣ1×Σ1

which satisfies
G(xA,a),(xB ,b) = Q(xA, xB |a, b), ∀xA, xB ∈ X , a ∈ A , b ∈ B, (94)

as well as G ⪰ 0 and the linear constraints in Eqs. (86) to (93). Note that deciding the membership of
Q in Q1 is a semidefinite feasibility problem – it requires finding a positive semidefinite matrix G ⪰ 0
subject to linear constraints.

Since the local measurement operators MxA
(a) ⊗ I and I ⊗ NxB

(b) commute, the original set of
quantum correlations Q defined by Eq. (76) satisfies Q ⊆ Q1. Therefore, based on Eq. (79),

ωq(X|A; B)PXAB := sup
Q∈Q

⟨K,Q⟩ ≤ sup
Q∈Q1

⟨K,Q⟩ =: ωq1(X|A; B)PXAB , (95)

where the vector K ∈ RX ×X ×A ×B defined in Eq. (78) specifies the LSSD game in question. The value
ωq1(X|A; B)PXAB corresponds to the first level of the NPA hierarchy. We can compute it by a semidefinite
program as follows. Define a symmetric matrix H ∈ RΣ1×Σ1 with entries

H(xA,a),(xB ,b) := H(xB ,b),(xA,a) := 1
2K(xA, xB , a, b), ∀xA, xB ∈ X , a ∈ A , b ∈ B (96)
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and 0 otherwise. Then ⟨K,Q⟩ = tr(HG) is a linear function of G, so we can compute the value of
ωq1(X|A; B)PXAB via a semidefinite program that maximizes tr(HG) over all positive semidefinite matrices
G satisfying the conditions listed above.

The second level of the NPA hierarchy is obtained by a similar SDP that involves a larger extended
Gram matrix G whose rows and columns are indexed by7

Σ2 := Σ1 ⊔ (ΣA × ΣA) ⊔ (ΣA × ΣB) ⊔ (ΣB × ΣB). (97)

We extend the original set of vectors |ψ(s)⟩ from Eq. (83) by defining new vectors for the remaining
elements s ∈ Σ2 \ Σ1 as follows:

|ψ(s)⟩ :=


Mx(a)Mx′(a′)|ψ⟩ if s = ((x, a), (x′, a′)) ∈ ΣA × ΣA,

Mx(a)Nx′(b′)|ψ⟩ if s = ((x, a), (x′, b′)) ∈ ΣA × ΣB ,

Nx(b)Nx′(b′)|ψ⟩ if s = ((x, b), (x′, b′)) ∈ ΣB × ΣB .

(98)

As before in Eq. (84), the entries of the extended G are also given by inner products ⟨ψ(s)|ψ(t)⟩ for all
s, t ∈ Σ2, and we impose additional linear constraints on them similar to those in Eqs. (86) to (93) to
capture the fact that Alice and Bob’s operators describe mutually commuting projective measurements.

We denote by Q2 ⊂ RX ×X ×A ×B the set of all correlationsQ for which there exists an extended Gram
matrix G ∈ RΣ2×Σ2 that agrees with Q on Σ1, see Eq. (94), and which satisfies the linear constraints
for the second level of the NPA hierarchy. Note that Q2 ⊆ Q1 since the second level imposes additional
constraints compared to the first level. Intuitively, the ℓ-th level of the NPA hierarchy is obtained by
considering the Gram matrix of the vectors of the level ℓ − 1 plus new vectors obtained from products
of ℓ projectors, see [28, 20] for a more formal description.

For our analysis in Section 4.1, we consider the SDP for an intermediate level of the NPA hierarchy
between Q1 and Q2, where G is the Gram matrix for the set of vectors labelled by

Σ1+MN := Σ1 ⊔ (ΣA × ΣB). (99)

We define Q1+MN analogously to Q1 and Q2. Since Σ1 ⊂ Σ1+MN ⊂ Σ2, we have Q1 ⊇ Q1+MN ⊇ Q2 ⊇
Q and therefore

sup
Q∈Q1+MN

⟨K,Q⟩ =: ωq1+MN
(X|A; B)PXAB ≥ ωq2(X|A; B)PXAB ≥ ωq(X|A; B)PXAB . (100)

C Three-party binary LSSD
In this appendix, we show (partially numerically) that there exist no probability distribution PXABC,
where x, a, b and c are all binary, such that the corresponding LSSD game can be won with higher
probability using no-signalling strategies than with classical strategies. We get to this conclusion by
showing that none of the no-signalling correlations at the extreme points of the no-signalling polytope
can ever perform better than classical strategies.

In the next subsection we discuss some results on optimal classical and no-signalling strategies. These
results allow us to discard some no-signalling strategies of which we know that they cannot perform better
than classical strategies. For the strategies that are left, we turn to linear programming to numerically
show that they also cannot perform better than classical.

C.1 Some results on optimal strategies
Multi-partite no-signalling correlations Up until now, we have only looked at correlations between
two parties. However, the concepts of locality and no-signalling can be extended to any finite number of
parties. We show how to do this extension for no-signalling correlations.

In the case of more than two parties, a correlation is no-signalling if no subset of parties J can
collectively signal to the rest of the parties I. So the output of the parties indexed by I cannot depend
on the input to the parties indexed by J .

7We omit ΣB × ΣA since Alice and Bob’s operators commute.
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Definition C.1 (Definition 11 in [22]). An m-partite correlation QX1···Xm|A1···Am
on X1 ×· · ·×Xm ×A1 ×

· · · ×Am is called no-signalling if for any index set I ⊂ {1, . . . ,m} and its complement J = {1, . . . ,m} \ I
it holds that ∑

xJ ∈XJ

Q(xI , xJ

∣∣aI , aJ) =
∑

xJ ∈XJ

Q(xI , xJ

∣∣aI , a
′
J), (101)

for all xI ∈ XI , aI ∈ AI and aJ , a
′
J ∈ AJ .

The next lemma states that we can loosen the constraints a little and still be left with an equivalent
definition of no-signalling. Specifically, it states that it is sufficient to require that any single party cannot
signal to the rest.

Lemma C.2. Suppose Q is a m-partite correlation satisfying Eq. (101) for all index sets I such that
their complements J have cardinality 1 and for all xI ∈ XI , aI ∈ AI and aJ , a

′
J ∈ AJ . Then Q is a

no-signalling correlation.

Proof. We prove this lemma by induction on the cardinality of the complement J of an index set I. If
|J | = 1, condition (101) holds by assumption. Now suppose |J | = n, and let xI ∈ XI , aI ∈ AI and
aJ , a

′
J ∈ AJ . Take j ∈ J and let J ′ = J \ {j}. We now find∑

xJ ∈XJ

Q(xI , xJ

∣∣aI , aJ) =
∑

xJ′ ∈XJ′

∑
xj∈Xj

Q(xI , xJ′ , xj

∣∣aI , aJ′ , aj)

(i)=
∑

xJ′ ∈XJ′

∑
xj∈Xj

Q(xI , xJ′ , xj

∣∣aI , aJ′ , a′
j)

(ii)=
∑

xJ′ ∈XJ′

∑
xj∈Xj

Q(xI , xJ′ , xj

∣∣aI , a
′
J′ , a′

j)

=
∑

xJ ∈XJ

Q(xI , xJ

∣∣aI , a
′
J),

where (i) follows by assumption on Q and (ii) by induction (we are free to exchange the sums).

This first lemma is an extension of the classical part of Lemma 3.2 in the paper by Majenz et al. [9].
It gives a list of all deterministic strategies (or more accurately: winning probability thereof) we need
to consider in finding the optimal classical winning probability. The proof of this lemma relies on the
relatively simple observation that the players should have equal output sets (sets consisting of all values
they could possibly output according to their strategy).

Lemma C.3. Let PXABC be a probability distribution over X × A × B × C with A = B = C = {0, 1}
and X = [d], d ≥ 2. The classical winning probability for PXABC is given by

ωc(X
∣∣A; B; C)P = max

s,t
s ̸=t

max


PX(s),

PXABC(s, 0, 0, 0) + PXABC(t, 1, 1, 1),
PXABC(s, 1, 0, 0) + PXABC(t, 0, 1, 1),
PXABC(s, 0, 1, 0) + PXABC(t, 1, 0, 1),
PXABC(s, 0, 0, 1) + PXABC(t, 1, 1, 0)

 . (102)

Proof. First, remember that we only have to consider deterministic strategies (see Section 3.1). Any
deterministic strategy can be represented by three functions f, g, h : {0, 1} → X . Given such a strategy,
the probability of winning is given by∑

x,a,b,c

PXABC(x, a, b, c)δ[f(a) = g(b) = h(c) = x] =
∑
a,b,c

PXABC(f(a), a, b, c)δ[f(a) = g(b) = h(c)]. (103)

Notice that there is always an optimal strategy such that {f(0), f(1)} = {g(0), g(1)} = {h(0), h(1)}.
Suppose, for example, that for some a∗, we have that f(a∗) /∈ {g(0), g(1)}. It follows that δ[f(a∗) =
g(b) = h(c)] = 0 for all b, c. Changing Alice’s output on input a∗, such that f(a∗) ∈ {g(0), g(1)}, causes
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δ[f(a∗) = g(b) = h(c)] to possibly be equal to 1 for some b, c. This change introduces non-negative terms
in the sum of Eq. (103), while not losing any others, thereby increasing the winning probability.

There are 5 possible ways in which we have {f(0), f(1)} = {g(0), g(1)} = {h(0), h(1)}. The first is
that all players ignore their input and always output some fixed s. In this case, the probability of winning
is given by ∑

a,b,c

PXABC(s, a, b, c) = PX(s) ,

yielding the first term in Eq. (102). The other 4 possibilities are when they all take their input into
account:

• f(0) = g(0) = h(0) and f(1) = g(1) = h(1) or,

• f(1) = g(0) = h(0) and f(0) = g(1) = h(1) or,

• f(0) = g(1) = h(0) and f(1) = g(0) = h(1) or,

• f(0) = g(0) = h(1) and f(1) = g(1) = h(0).

defining f(0) =: s and f(1) =: t, the winning probability in each of these cases is equal to a term in
Eq. (102).

Whereas the previous lemma reduced the number of interesting deterministic strategies, the next
lemma and its corollary will do so for no-signalling strategies.

Lemma C.4. Let P be a probability distribution over X × A1 × · · · × Am with |X | = d and d ≥ 2. Let
Q be a no-signalling strategy for which

Q(x, . . . , x
∣∣a1, . . . , am) ≤ 1

d
,

holds for all x ∈ X and a1 ∈ A1, . . . , am ∈ Am. Then its winning probability in the LSSD game defined
by P is at most the best classical winning probability:∑

x∈X
a1∈A1,...,am∈Am

P (x, a1, . . . , am)Q(x, . . . , x
∣∣a1, . . . , am) ≤ ωc(X

∣∣A1; . . . ; Am)P .

Proof. The proof relies on the simple fact that the m players can always use deterministic strategies
to win with at least probability 1/d by ignoring their inputs and guessing the value of x to be the
one most likely in P . The probability that the referee picks a certain value x is given by P (x) =∑

a∈A1×···×Am
P (x, a) and since

∑
x P (x) = 1, there exists an x∗ ∈ X such that P (x∗) ≥ 1/d. We

conclude that ωc(X
∣∣A1; . . . ; Am)P ≥ 1/d.

We use the previous argument to finish the proof:∑
x∈X

a1∈A1,...,am∈Am

P (x, a1, . . . , am)Q(x, . . . , x
∣∣a1, . . . , am)

≤1
d

∑
x∈X

a1∈A1,...,am∈Am

P (x, a1, . . . , am) = 1
d

≤ ωc(X
∣∣A1; . . . ; Am)P .

Corollary C.5. Consider an LSSD problem with m players defined by a distribution P for which
ωc(X|A1; . . . ; Am)P < ωns(X|A1; . . . ; Am)P . There is an optimal no-signalling strategy Q at one of the
vertices of the no-signalling polytope, such that there exist x ∈ X , with |X | = d, and a1 ∈ A1, . . . , am ∈
Am for which Q(x, . . . , x

∣∣a1, . . . , am) > 1/d.
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Proof. Since the set of all no-signalling strategies is a convex polytope, and the winning probability of a
no-signalling strategy is a linear function, we know that the optimal winning probability is achieved by a
strategy Q at one of the vertices of the polytope (see Section 2.2). We also know that there exist x ∈ X
and a1 ∈ A1, . . . , am ∈ Am such that Q(x, . . . , x|a1, . . . , am) > 1/d, because otherwise this strategy would
not achieve winning probability higher than ωc(X|A1; . . . ; Am)P by Lemma C.4.

In the case of two players, we would now be done in showing that there is no binary LSSD game with
a gap between no-signalling and classical winning probabilities, since all no-signalling correlations at the
extreme points of the no-signalling polytope satisfy the conditions of Lemma C.3 [29, Theorem 1]. We
will see in the next section that for three players, this is not the case. However, Corollary C.5 is still
very useful as it eliminates many of the no-signalling strategies.

C.2 No gap between classical and no-signalling
Theorem C.6. ωns(X|A; B; C)P = ωc(X|A; B; C)P for all probability distributions PXABC over binary
inputs and outputs.

Proof. Thanks to Eq. (9), we can equivalently show that

sup
P

(
ωns(X|A; B; C)P − ωc(X|A; B; C)P

)
= 0.

Now we have turned the problem into an optimization problem. It is, however, not possible to solve this
problem using a single linear program, since the target function is not linear: the target function is the
maximum of the difference between two sets. Luckily, using Corollary C.5 and some additional tricks, we
can solve this problem using multiple linear programs.

First of all, we note that the set of all probability distributions PXABC forms a convex polytope in Rn.
The polytope is defined by the following linear constraints:

∀x, a, b, c PXABC(x, a, b, c) ≥ 0,

and ∑
x,a,b,c

PXABC(x, a, b, c) = 1.

Apart from the variables that describe a probability distribution, we also add two variables cd and
cns to the linear program, which represent ωc(X|A; B; C)P and ωns(X|A; B; C)P respectively. These two
variables should satisfy the following constraints:

cd ≥
∑

x,a,b,c

PXABC(x, a, b, c)Qd(x, x, x|a, b, c),

for all deterministic strategies Qd and

cns ≥
∑

x,a,b,c

PXABC(x, a, b, c)Qns(x, x, x|a, b, c), (104)

for all no-signalling strategies Qns at the vertices of the no-signalling polytope.
Now, the problem is to maximize cns − cd, which is a linear function in two variables, so we can use

a linear program. However, since we have not put an upper bound on cns, this problem is obviously
unbounded. We can work around this issue by changing one of the constraints in Eq. (104) to an
equality. Solving the linear program with one of these constraints set to an equality constraint gives
us the maximum gap under the assumption that the corresponding no-signalling strategy is the best
strategy. By considering all no-signalling strategies in this way we can find the maximum gap between
classical and no-signalling winning probabilities.

All that is left is to find the no-signalling strategies at the extreme points of the no-signalling polytope.
We can find them using a Python package called cddlib, which is based on a C package under the same
name [30]. Similar to linear programs, this package can provide all vertices of the polytope corresponding
to a given set of linear constraints. In our case the constraints say that the strategy Qns is a conditional
probability distribution on X 3 × A × B × C and it is no-signalling (where we can use Lemma C.2
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to omit redundant constraints). We find with “three_player_polytope_extrema.py” [19] that this
no-signalling polytope has 53856 extreme points, which is in line with the findings of the paper by Pironio
et al. [31, Section 2.2].

Since the above number of extremal no-signalling strategies is quite large, we would like to reduce it
so that we need to solve fewer linear programs. Using Corollary C.5, there must be an optimal strategy
of a specific form, which reduces the number of relevant no-signalling strategies from 53 856 to 174. In
addition, we can also use Lemma C.3 to reduce the number of relevant deterministic strategies from
26 = 64 to 10. This calculation is performed by “filter_three_player_strategies.py” [19].

Now that we have everything needed to find the maximum gap between binary three-party classical
and no-signalling strategies, we use the Mathematica notebook “Three-party binary LSSD.nb” [19] to
exactly solve the above 174 linear programs. In each case the optimal value is 0, meaning that there is no
binary LSSD game for three players such that no-signalling resources improve its winning probability.
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