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Local simultaneous state discrimination (LSSD) is a recently introduced problem in quan-
tum information processing. Its classical version is a non-local game played by non-commu-
nicating players against a referee. Based on a known probability distribution, the referee
generates one input for each of the players and keeps one secret value. The players have to
guess the referee’s value and win if they all do so. For this game, we investigate the advantage
of no-signalling strategies over classical ones. We show numerically that for three players and
binary values, no-signalling strategies cannot provide any improvement over classical ones.
For a certain LSSD game based on a binary symmetric channel, we show that no-signalling
strategies are strictly better when multiple simultaneous instances of the game are played.
Good classical strategies for this game can be defined by codes, and good no-signalling strate-
gies by list-decoding schemes. We expand this example game to a class of games defined by an
arbitrary channel, and extend the idea of using codes and list decoding to define strategies for
multiple simultaneous instances of these games. Finally, we give an expression for the limit
of the exponent of the classical winning probability, and show that no-signalling strategies
based on list-decoding schemes achieve this limit.

Contents

1

4

Introduction
1.1 Our contributions . . . . . . . . . . . e e e e e
1.2 Open problems . . . . . . .. e

Preliminaries
2.1 Quantum information . . . . . . . . ..
2.2 Linear programming . . . . . . . . . ..ot i e e e e e e e e e e e e e e

Local simultaneous state discrimination (LSSD)

3.1 Classical TESOUICES . . . . v v v v v v vttt e e e
3.2 QUANTUIMN TESOUTCES . .« « . v v e v v v e et e e et e e e e e e
3.3 No-signalling resources . . . . . . . . . .. L L e

The binary-symmetric-channel game

4.1 Two-fold parallel repetition of the binary-symmetric-channel game . . . . ... ... ...

4.2 Three-fold parallel repetition of the BSC game . . . . . ... ... ... ... .......

4.3 Arbitrary parallel repetition . . . . . . ...
4.3.1 Classical strategies . . . . . . . . . .. L
4.3.2 No-signalling strategies . . . . . . . . . . L e

Accepted in {Xuantum 2025-03-26, click title to verify. Published under CC-BY 4.0. 1


https://quantum-journal.org/?s=Parallel%20repetition%20of%20local%20simultaneous%20state\newline%20discrimination&reason=title-click
https://quantum-journal.org/?s=Parallel%20repetition%20of%20local%20simultaneous%20state\newline%20discrimination&reason=title-click
https://qusoft.org

5 Channel LSSD games 16

5.1 Tools from information theory . . . . . . . . . ... L Lo 17
5.2 Achievability: Classical strategies from error-correction codes . . . . . . . ... ... ... 18
5.3 Converse: No-signalling LSSD strategies and list-decoding codes . . . . . . . .. ... .. 19
5.4 Calculating the exponent for BSCs . . . . . . . . .. .. .o 22
A Proofs 25
A1 Proof of Theorem 3.1. . . . . . . . . . e 25
A2 Proof of Lemma 5.6 . . . . . . .. 25
A3 Proof of Lemma 5.8 . . . . . . . . e 26
B NPA hierarchy for LSSD 27
C Three-party binary LSSD 30
C.1 Some results on optimal strategies . . . . . . . ... .. L oL o o 30
C.2 No gap between classical and no-signalling . . . . . . ... ... ... ... .. ..., 33

1 Introduction

The task of discriminating between states is of fundamental importance in information processing and
cryptography [1, 2, 3]. A rich and extensive literature exists on this fundamental problem under the
name of state discrimination or hypothesis testing [4, 5, 6]. In quantum cryptography and quantum
information theory, a natural extension of state-discrimination problem is to distinguish quantum states.
In the context of non-local games, the state-discrimination problem arises in a multi-player setting. In
these scenarios, it is interesting to study how non-local resources such as shared randomness, quantum
entanglement or no-signaling correlations can help the players to succeed in the state-discrimination task.
Authors of [7, 8] have studied the scenario where local operation and classical communication are allowed
between two parties, and they have shown that entanglement can help the players.

The authors of [9] studied another variant of distributed state discrimination in which multiple
parties cannot communicate and have to estimate the state locally and simultaneously, hence calling the
problem local simultaneous state discrimination (LSSD). LSSD problems naturally arise in the context
of uncloneable cryptography [10, 11, 12, 13], where we encode classical data into a quantum state such
that an adversary cannot copy it. In such scenarios, successfully copying translates into successfully
distinguishing quantum states. LSSD problems also appear in the study of monogamy of entanglement
games [14], where two parties prepare a tripartite state and perform a measurement to guess the outcome
of a measurement performed by a third party. Optimal performance of such games has been crucial
to prove the security of uncloneable cryptographic schemes [10]. Depending on the resources shared
between the parties, one can consider various strategies. The authors of [9] showed that even when the
state has a classical description, quantum entanglement could enhance the probability of simultaneous
state discrimination, and a more powerful resource of no-signaling correlations could enhance it even
further.

As [9] have shown that finding the optimal strategy for three-party LSSD is NP-hard, it is likely to
be challenging to study LSSDs in general. One could, however, characterize the optimal probability of
winning and optimal strategies for LSSDs with some specific structure. One natural structure of interest
is when an LSSD problem consists of several independent and identical LSSDs, and the parties have
to win all these games at once in parallel. We call this type of LSSDs parallel repetition of LSSDs, for
which we establish several results in this article. Studying parallel LSSD games might have cryptographic
implications. Many protocols have product structures, and if we restrict the adversaries only to applying
a “product” attack, then the performance of such protocols is governed by parallel repetition of LSSDs.
Furthermore, the monogamy of entanglement games with product structure have been important to
understand. If we restrict the strategies to those with product states, then the problem can be formulated
in terms of parallel repetition of LSSD games.



1.1  Our contributions

As a first simple observation, we show in Theorem 3.1 that for symmetric LSSD problems with classical
inputs (as depicted in Fig. 2), there exists an optimal symmetric strategy. In other words, for an LSSD
problem defined by a joint distribution Pxag such that Px is uniform over 27, Pagjx = PajxPg|x, and
Pajx = Pg|x, there exist optimal classical deterministic strategies for Alice and Bob that are identical.

In Section 4 we analyze an example of an LSSD game introduced in [9], where the referee sends
a bit x over a binary symmetric channel (BSC), see Fig. 3, to Alice and Bob. We use the symmetry
observation above to find optimal classical strategies for two and three parallel repetitions of this game
in Theorems 4.3 and 4.5, respectively. We also give optimal no-signalling strategies for two and three
copies (our results for two copies are depicted in Fig. 1). Finally, in Section 4.3, we consider the n-fold
parallel repetition of this game, and argue how the classical strategies relate to (regular) error-correcting
codes and the no-signaling strategies relate to list-decoding schemes.
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Figure 1: (a) Optimal classical (blue) and no-signalling (red) winning probabilities for the two-fold parallel repetition of
the BSC game. The light blue area represents the values below the optimal classical winning probability. (b) Closeup of
(a) with an additional numerical upper bound on the optimal quantum winning probability (blue dots) from the level
"1+ NM" of the NPA hierarchy for the values of o where the classical and no-signalling values differ. The numerical
quantum upper bound is in excellent agreement with the classical value, suggesting its optimality (see Conjecture 4.4).

In Section 5 we introduce the notion of channel games, which are an extension of the LSSD problem
in Section 4. We then define classical strategies based on codes and no-signalling strategies based on
list-decoding schemes. In Theorem 5.2 we provide an expression for the limit of the exponent of the
classical winning probability, where we make use of strategies based on codes. Furthermore, we show
that no-signalling strategies based on list-decoding schemes achieve the same limit as classical strategies.
As a result, the optimal probability of winning for that class of LSSD games is asymptotically the same
for all three types of resources available to the players. This allows one to solve the optimization problem
for no-signalling strategies, for which there is an efficient algorithm, to find the asymptotic classical or
quantum value which are otherwise computationally expensive to evaluate.

As an extension, in Appendix C we analyze three-party LSSD problems with binary inputs and
outputs. Lemma C.2 extends the two-party characterization from [9] for the classical winning probability
of binary LSSD games to three parties. The main result of this appendix, Theorem C.6, shows that no-
signalling resources cannot improve the winning probability of the players in this setting.

1.2 Open problems

It would be interesting to examine the settings when there is a gap between the no-signalling and classical
winning probabilities in the BSC game. Wherever there is a gap, it is interesting to look for a quantum
strategy that also performs better than classical.

In the context of channel games, as introduced in Section 5, can we show, like for the BSC, that
no-signalling strategies based on list-decoding schemes are asymptotically optimal? Are there more
examples of channels for which there is a gap in winning probability between classical and no-signalling



strategies in a finite number of parallel repetitions? Can the results be extended to classical-quantum
channels where Alice and Bob receive a quantum state? For this last question, we would need to extend
the idea of no-signalling to the case where the inputs and outputs can be quantum states.

Section 5 also gives rise to a new area within information theory: simultaneous decoding. Within this
setting, a sender tries to send a message to two receivers using identical channels, and the communication
is successful if both receivers decode correctly. We can allow the receivers to share some quantum or
no-signalling resources and examine whether this leads to better coding schemes. There are similar
settings that have already been researched. In one such setting, the messages sent to the receivers are
not necessarily the same, or two different channels are used (like in the book of El Gamal and Kim [15,
Part 2]). In another similar setting, we allow the sender and the receiver to share some entanglement
(like in the book by Holevo [16, Section 9|). There is even very recent research in a setting with two
senders and one receiver that all share a no-signalling box (see the paper by Fawzi and Fermé [17]).

For the case of multi-player LSSD games with binary inputs and outputs as (see Appendix C), it is
an open problem whether this result holds for any number of players. However, extending our numerical
analysis to a larger number of players requires enumerating over all extrema of the corresponding no-
signalling polytope. This polytope quickly grows in the number of vertices, making the analysis infeasible
at the moment.

2 Preliminaries

For n € N, we denote the set {0,...,n — 1} by [n] and the set of all permutations of [n] by S,. We
denote by § the indicator function, which is 1 if its argument is true and 0 otherwise. Throughout, we
use binary logarithms and denote them by log rather than log,. We denote the bitwise XOR operator
on bitstrings by @& and the all-zero and all-one bitstrings of length n by 0™ and 17, respectively. Let X
be a random variable over a finite set 2. We denote its probability distribution by Px where X is used
to label the register that stores the random variable X. For any n > 1, we denote by P™ = (Px)*"™ the
product distribution of n copies of X on Z™" := 2 x --- x Z defined by

P (am) = ] Px(a),
=1

where ™ = x1...x, is an element of 2. We sometimes omit writing the subscript in Px, when it is
obvious over which set P is a distribution. For &/ C .27, we denote by Px (&) the probability of random
variable X taking on a value in «/:

Px(e) =Y Px(x).

red
Lastly, for an arbitrary function f: 2~ — %, we define f~(y) :={x € 2" : f(z) = y}.

2.1 Quantum information

A quantum state on C% is a d x d positive semi-definite matrix of unit trace, i.e., p € C4*¢ such that
p = 0 and trp = 1. We denote the set of all quantum states on C? by D(C?). Operations on quantum
states are described by unitary matrices, i.e., U € C?*? such that UTU = I where I is the identity matrix.
We denote the set of all unitaries on C? by U(C?).

An n-outcome measurement or POVM on C¢ is a collection of n positive semi-definite d x d matrices
that sum to identity. We will denote a measurement by M = {Mj, ..., M, } where M; = Oand ) ;| M; =
I. We denote the set of all n-outcome measurements on C? by M(C?) (since the outcome set is always
clear from the context, we do not specify it). If M? = M; for all i = 1,...,n, we call the measurement
projective. We denote the set of all n-outcome projective measurements on C? by PM(C?).

2.2 Linear programming

Linear programming is a technique for optimizing a linear function over a convex polytope. A polytope
is a generalization of a polygon to any number of dimensions. There are two ways of describing a



convex polytope: by giving its extreme points (and rays), called the vertex representation, or by linear
constraints, called the half-space representation.

The half-space representation of a convex polytope is a collection of (closed) half-spaces, such that
their intersection is the convex polytope. A half-space can be described by a linear inequality

a1x1 + - +apz, <c. (1)

Using this description, the convex polytope can be represented as a system of linear inequalities, which
can be written as a matrix inequality
Az <d.

Here, A is the matrix containing all coefficients a; and d the vector containing all constants ¢, for all
inequalities (1) representing the polytope. Note that we can also include linear equalities, as they can
be described by two opposite inequalities.

Given a vertex representation, the corresponding convex polytope is the convex hull of the extreme
points. The convex hull of a set of points is the smallest convex set that contains all the points, or
simply the set of all convex combinations of the points (i.e., all weighted averages). This representation
is especially interesting, since a linear function always has a global maximum in (at least) one of the
extreme points of a convex polytope. We make use of this fact in Appendix C.2.

3 Local simultaneous state discrimination (LSSD)

In this section, we define the local simultaneous state discrimination (LSSD) task, originally introduced
in [9]. In particular, we discuss strategies with classical, quantum and no-signalling resources for LSSD,
and show that the optimal classical success probability can be attained by a symmetric strategy if certain
conditions are fulfilled. Here we only consider the case of two players, Alice and Bob, but all definitions
can easily be generalized to any number of players.

An LSSD game played by two players and a referee is defined by a classical-quantum-quantum (cqq)
state pxas, where the referee’s register X is classical while the Alice and Bob’s registers A and B can
generally be quantum. We denote the underlying spaces of X, A and B by X = C%, A = C¥ and
B = C#, respectively, where 2, o/ and % are some finite sets. We can always write the state pxag as

PXAB = Z Px(z) |z)(z]x @ pRe;
ze€X

where Px is a probability distribution over 2~ and each p%g is a bipartite quantum state on A ® B. The
state pxag is known to Alice and Bob, and they try to guess the referee’s value = based on their reduced
states pa and pg. We denote their guesses by z4 and zg. In general, Alice and Bob may share some
additional resources before the game, but they are not allowed to communicate with each other during
the game. They win the game if both guesses are correct: x4 = zp = .

In most of this paper, we are going to consider the case where pxap is entirely classical. Meaning
that there exists an orthonormal basis {|a) : a € &/} of A and {|b) : b € A} of B that are independent
of z € 2, and probability distributions Pyz over /' x % such that

Phe = Y PRs(a,b) |a){ala @ |b) (Ble.
acsd
be %

In this case, it is useful to rephrase the problem. Instead of describing the game by a cqq state, we can
describe it by a probability distribution Pxag on 2 x &/ x %. The referee picks elements ¢ € 2 ,a € &/
and b € & according to this distribution and gives a and b to Alice and Bob, respectively. Alice and Bob
know the distribution Pxag and both try to guess the value x. Again, they may share some resources,
but are not allowed to communicate during the game, and they win if they both guess x correctly. A
schematic representation of LSSD is shown in Fig. 2.

We now describe different types of strategies based on three different possible shared resources: classi-
cal, quantum and no-signalling. While these additional resources can be of different types, the strategies
themselves are in general quantum since the LSSD game is based on a quantum state.
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Figure 2: A schematic of the LSSD game. On inputs a and b, Alice and Bob make guesses x4 and zp respectively,
and win if t = x4 = zp.

3.1 Classical resources

While strategies for LSSD may in general take advantage of shared randomness, this does not help
in increasing the winning probability. Indeed, after a random value is generated, we are left with a
deterministic strategy that depends on this value. Thus instead of the original randomized strategy, the
players can just use one of the deterministic strategies that achieves the highest winning probability.
Hence in the following, we assume that the players do not use shared randomness.

In the quantum case of the LSSD game (meaning that the game is described by a cqq state pxag), a
strategy is completely defined by two measurements M = {M, : z € 2} and N = {N, : z € 2"} on
A and B, respectively. Alice and Bob perform these measurements on their subsystems to produce their
guesses for z. Given the measurements M and N, their winning probability is

ZPX ) tr[pas(Me @ N ),
reX

and the optimal winning probability is denoted by

we(X[A;B), := sup Z Px () tr[pRg(Mz ® Ng)],
MeM(A) o c
NeM(B)
where M(.A) and M(B) denote the sets of all measurements on A and B, respectively.
In case pxag is purely classical and described by a probability distribution Pxag, the strategy of Alice
and Bob is given by two conditional probability distributions @x,ja and Qx,|g describing their local
behaviour. The winning probability is then given by

Z Pxag(z,a,b)Qx ,ja(x]a)Qx s (2]b).

T€EX
acA ,beRB

The optimal winning probability can now be obtained by maximizing over all conditional probabilities.
However, we can restrict this optimization to maximizing over all deterministic strategies, i.e., strategies
that can be described by two functions f: & — 2 and g: & — 2 . Similarly to shared randomness,
Alice and Bob can condition any local randomness on the realization that maximizes their probability
of winning. Now, the optimal winning probability is given by

we(X|A; B)p = max > Basl(w,a,0)[f(a) = g(b) = x].
aezgi)&;@

We say that a strategy is symmetric if Alice and Bob perform the same local strategy, i.e., if f = g.
In the following theorem, we show that symmetric strategies attain optimal classical values for classical
LSSD games (see Appendix A.1 for proof).

Theorem 3.1. Let Pxag be a distribution over X x of x B, with of = B, satisfying the following:
(i) The marginal distribution Px over 2 is uniform.
(i) Pagjx = PajxPg|x-

(iii) Payx = Pax.-

Then the classical LSSD game defined by Pxag has an optimal deterministic strategy that is symmetric.



3.2  Quantum resources

In this case, Alice and Bob can share an entangled state prior to receiving their inputs. Let A’ = B = C¢
be two complex Euclidean spaces of dimension d. Alice and Bob first jointly prepare a quantum state
oap on A @ B, after which Alice and Bob keep systems A’ and B’, respectively. After receiving
their inputs, Alice and Bob determine their output by measuring the registers AA’ and BB’ with local
measurements M and N, respectively (this is the most general strategy because no communication is
allowed).

When the local dimensions of the shared entangled state oa/g/ are limited to d for both parties, the
optimal probability of winning is

wd(X|A;B), = sup sup Z Px(z) tr[(phs @ oae ) (My @ Ny)]. (2)
oarpr ED(CHRCH) MEM(ARCY) 1c 9
NeM(BxC?)

When the dimensions of A’ and B’ are not limited, the optimal winning probability is

wy (X|A;B),, := Zggl)wg(xm; B),. (3)

When pxap is classical and described by a probability distribution Pxag, we can simplify Eq. (2) as
follows:

wi(X|A;B)p = sup sup Y Pxas(@a,b)trfoas (M,(a) © Na(b))] )
oarer ED(CIRCY) M:io/ »M(CY)  pear
N:B—M(C?) ac beR

sup Z Pyag(x,a,b)M,(a) @ N (D),
M -M(CHIl g
N:ZB—M(C?) acd beB

(5)

where M and N are collections of measurements, i.e., for every input a € &/ and b € A, we have that
M(a) = {M,(a):z € 2} and N(b) = {N,(b) : * € Z} are measurements on C? with outcomes in 2.

3.3 No-signalling resources

We define strategies with no-signaling resources only when pxag is classical and described by a probability
distribution Pxag. Given classical inputs a € o7 and b € £ for Alice and Bob, respectively, they output
their estimates x4 and xp of x € 2™ according to a conditional probability distribution Qx ,x,as on
X x X x o x P satistying

Vap,a,a' b Y Qwuxpae(a,vslab) = Y Qx.xumae(za,zpld,b), (6)
TAEX TAEX

Voa,abb Y Qxaxgas(@a,zalab) = > Qx.xaas(®a. zsla,b). (7)
rpeEX rpeX

An optimal no-signaling strategy succeeds with probability

wys(X|A;B)p :=  sup Z Pxa(,a,b)Qx ,x 5 a8(7, z]a, b). (8)
QxaxplAB  Le o
acd beRB

The set of classical correlations is a subset of the set of quantum correlations, and the latter is a
subset of the set of no-signalling correlations, see [18] for more details. Therefore, we have that

we(X|A;B)p < wy(X|A;B)p < wys(X[A;B) p. (9)

Notice that the winning probability for a given no-signalling strategy is a linear function in the values
Qxaxz|aB(ZA,vpla,b). This, together with the fact that the set of no-signalling correlations forms
a convex polytope, see e.g. [18], implies that we can use linear programming to find the optimal no-
signalling winning probability of an LSSD game. It also implies that there is always an optimal strategy
at one of the extreme points of the no-signalling polytope.



This last fact is what Majenz et al. used to prove that there exists no probability distribution Pxag
with binary x, a and b, such that the corresponding LSSD game can be won with higher probability using
no-signalling strategies [9, Proposition 3.3]. They showed that none of the no-signalling correlations at
the extreme points of the no-signalling polytope could ever perform better than the simple classical
strategy of outputting the most likely value for x. We do something similar in Appendix C for the
tripartite case. However, it turns out that this argument is not enough in the tripartite case, and we
take a numerical approach to finish the argument.

4 The binary-symmetric-channel game

A binary symmetric channel (BSC) with error o € [0,1/2] is a channel with a single bit of input that
transmits the bit without error with probability 1 — a and flips it with probability «, see Fig. 3. In this
section, we study a particular LSSD problem: the binary-symmetric-channel game, originally introduced
in [9, Example 1|, where a referee sends a bit to Alice and Bob over two identical and independent
binary symmetric channels, both with error probability «, see Definition 4.1 for a formal definition. In
[9], an explicit optimal classical strategy for this game is shown and its corresponding optimal winning
probability for every « is obtained. Moreover, the authors show that the winning probability cannot
be improved by any quantum nor no-signalling strategy. In addition, they show that if two copies of
the game are played in parallel for « = 1 — %, there is an explicit optimal classical strategy that
performs better than repeating the optimal classical strategy for a single copy of the game twice and,
as a consequence, quantum and no-signalling optimal strategies must perform better than repeating the
respective optimal strategies for a single copy of the game.

(1-0a)

(1-a)
Figure 3: Schematic representation of a binary symmetric channel with error probability «.

In Section 4.1, we study the parallel repetition of the BSC game and, for the case of two copies, we
provide the optimal classical, quantum and no-signalling values, showing that for most « the three values
coincide (and in most of the cases the optimal values are obtained just by repeating the optimal strategy
for a single copy of the BSC game). Nevertheless, for certain values of a, the classical and quantum
values coincide but there is a no-signalling advantage.

In Section 4.2, we provide the optimal no-signalling winning probabilities for the three-fold parallel
repetition of the BSC game. We study the ‘good’ classical and no-signalling strategies for arbitrary
number n of parallel rounds of the BSC game in Section 4.3.

Definition 4.1 (Example 1 in [9]). Let X,Y and Z be independent binary random variables such that
X is uniformly random, i.e., Pr[X = 1] =1/2, and Pr[Y = 1] = Pr[Z = 1] = « for a € [0,1/2]. Let
A:=X@Y and B:= X & Z, and denote the joint probability mass function of (X, A, B) by Pgag- The
binary-symmetric-channel (BSC) game is defined as the task of simultaneously guessing X from A and B.

Proposition 4.2 (Example 1 in [9]). For every a € [0,1/2], the optimal classical, quantum and no-
signalling winning probabilities for the BSC game P are equal and given by

E

(10)

1-a)? ifacf0,1--3
wC(X|A7 B)Pa = wq<X|A; B)PQ = Wns(x|A; B)P“ = {1 2
2

ifae(lf%,%}.

The optimal winning probability for o € [0,1 — 1/+/2] is achieved by the strategy where Alice and
Bob output the input they received. The intuition behind this strategy is that for ‘small’ o, the bits they



receive most likely have not been flipped. Notice that if Alice and Bob were playing this game without
having to coordinate their answers, such a strategy would be optimal for all . In fact, the optimal
strategy for ‘high’-noise BSC channels, a € (1 —1/+/2,1/2], is achieved by both parties outputting some
previously agreed bit.

4.1 Two-fold parallel repetition of the binary-symmetric-channel game

Let (X', A’, B') be an independent copy of (X, A, B), as described in Definition 4.1. The two-fold parallel
repetition of the BSC game consists of simultaneously guessing (X, X') from (A, A’) and (B, B’). This

game is described by the probability distribution Pgyg ® Pgag/- According to [9], the optimal classical

winning probability for the two-fold parallel repetition of the BSC game for a« =1 — % is

1 2v2 , 1 4
4(1 a’) +4(1 a)”. (11)
Hence, for a =1 — %, we(XX!|AA; BB') pagpa > we(X|A; B)%. and, from (9) and (10), we also have
wq(XX'|AA; BB') pagpo > wq(X|A; B)pe, (12)

Was (XX'|AA"; BB') pagpa > wns(X|A; B)%Da- (13)

Here we study the full range of a (namely, o € [0,1/2]). In the following Theorem, we provide the
optimal classical and no-signalling winning probabilities for the two-fold parallel repetition of the BSC
game, graphically represented in Fig. 1. The Theorem shows that for most values of «, the classical and
no-signalling optimal success probabilities coincide (and therefore so does the quantum value).

Theorem 4.3. Let (X', A, B') be an independent copy of (X, A, B). Let ag < 1 be the real solution of
1-a?)?+(1—-a)*=1, ie ap~0.32814, and let [, = [0,2 — /3], I, = (2 — V3, ], Iz = (o, \/§2—1]
and Iy = (\/“;’2*1 , %] Then, for the two-fold parallel repetition of the BSC game, we have

1—a)t if a € I,

—~

we(XX'|AA'; BB ) pagpe =S (1 —a?)2 4+ 1(1—a)* ifa €D, (14)
i if o € Is U Iy,
and
(17&)4 ifaGIl,
was(XX'|AA BB ) pagpe = { U= jra e LU, (15)
3 if o€ 1.

Proof. Since the BSC game fulfills the conditions of Theorem 3.1, a symmetric strategy will provide
the optimal classical value. We determine w, by considering all deterministic classical strategies. For
each strategy, we compute the winning probability as a function of . Then we obtain the analytical
value (14) by taking the maximum and applying the PiecewiseExpand command. For more details on
this derivation, see the Mathematica file “BSC classical strategy n=2.nb” in [19].

The optimal no-signalling value can be found via a linear program, i.e., a maximization of a linear
function subject to linear constraints. In Mathematica, the standard form to represent a linear program
that optimizes over x € R" is

n
Primal problem: minimize: (c,z) = g CiT;
i=1

(16)
subject to: Az +b >0,

Agq + beg =0,


https://reference.wolfram.com/language/ref/PiecewiseExpand.html

where z,c € R", A € R™*" b€ R™, Ayq € RF*" by € R* (see LinearOptimization for more details).
Its dual, which optimizes over A € R™ and v € R, is given by

m k

Dual problem: maximize: — ((b, A) + (Deqs y)) = — Z b — Z beq,iVi
i=1 i=1
(17)
subject to: AT\ + AeTqV —c=0,

A>0.

A common technique in linear programming is to use one of the two problems to obtain a bound on the
other. In the above formulation, any feasible solution to the dual problem (17) provides a lower bound on
the optimal solution of the primal problem (16). The optimal value of both problems can be determined
by finding feasible primal and dual solutions that have the same value. Then, as a consequence of strong
duality, both solutions must be optimal.

Since the original linear program for computing wys for the BSC game is quite large, see Egs. (6)
to (8), we first simplify it by reducing the number of parameters. We do this by imposing the following
symmetries on Alice’s and Bob’s no-signalling strategy Q:'

1. By Lemma 5.11 below, there is an optimal no-signalling strategy that is invariant under any
permutation of the instances of the game, i.e., Q(c(z),0(y)|o(a),o(b)) = Q(x,yla,b), for any
permutation o of positions within a string.

2. Since the BSC game is symmetric under exchanging Alice and Bob, we can also exchange Alice’s
and Bob’s strategies, i.e., Q(y,z|b,a) = Q(z,y|a,b).

3. Since the BSC game is symmetric under negating any subset of input and output bits, we can do
the same to Alice’s and Bob’s strategy, i.e., Q(z @ s,y ® sla ® 5,0 ® s) = Q(x,y|a,b) for any bit
string s.

After performing the above symmetry reductions, we need to find feasible primal and dual solutions
of equal value. These solutions should be a-dependent, i.e., work not just for a single value of a but
for whole intervals of «. We managed to find such solutions with the help of Mathematica, and we
have provided them in the format of Eqgs. (16) and (17) in the notebook “BSC no-signalling strategy
n=2.nb" [19]. The primal and dual objective values of these solutions match and agree with Eq. (15)
in each of the intervals I, ..., I4 (occasionally we could not obtain a single a-dependent solution for a
whole interval, in which case we broke it into smaller subintervals).

Finding these exact a-dependent solutions required some numerical tricks. Indeed, while it is easy
to solve the linear program for any particular value of «, obtaining continuous a-dependent solutions is
nontrivial — it requires interpolating from a small number of solutions, or often even a single solution. We
used a combination of the following numerical tricks to cover all cases in Eq. (15) (often obtaining the
same solution with different methods):

e Rational multiples of m: We chose a rational number r so that o = rx lies in a given interval I;.
Using LinearOptimization we then find a symbolic solution that is polynomial in 7.2 Substituting
back m = a/r gives us an exact polynomial a-dependent solution. This is quite remarkable since we
have effectively interpolated a polynomial function from a single irrational point. This strategy
unfortunately did not work for 3 repetitions of the game since the linear program was too large.

e Rational solutions: We choose a sequence of equally spaced rational values of « and find exact
rational solutions for these values by using LinearOptimization. We then interpolate between
them by using FindSequenceFunction. This method generally requires some fiddling with the
chosen sequence since nearby values of « can lead to completely different and unrelated solutions.

1Here we consider only two parallel repetitions of the BSC game. But the same symmetry reductions can be performed
for any number of repetitions (see Theorem 4.5).

2This works since on one hand Mathematica treats m symbolically, while on the other it can compare 7 to any other
number by calculating its numerical value to arbitrary accuracy. It is also important that Mathematica can manipulate
rational numbers symbolically and that 7 is irrational.
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o Algebraic solutions: We choose an algebraic « from the given interval I; and find a numerical
solution for this « to extremely high accuracy (300 digits). Then we use RootApproximant to turn
this numerical solution into exact algebraic numbers. Reconstructing the minimal polynomial for
each of these numbers gives us an interpolated a-dependent solution that is polynomial. This trick
effectively interpolates from a single algebraic point.

Checking the primal and dual constraints of the resulting interpolated solution gives us constraints on «
that capture the interval in which this solution holds.

It is important to note that, irrespective of how dirty the above numerical methods are, once an exact
a-dependent solution is found, it can be easily verified that it satisfies all constraints and gives equal
primal and dual values, hence implying optimality. For more details, see “BSC no-signalling strategy
n=2.nb” in [19]. O

Notice that, unlike a single copy of the BSC game, the optimal winning probabilities have different
behaviors split into three different intervals. We see that

we(XX'[AN; BB') pagpe = wns(XX|AA' BB ) pagpe = we(X|AiB)pa Vo€ LUTy,  (18)

and therefore, due to (9), the quantum value is the same value as the classical. Analogously to the single
copy of the BSC game, for ‘small’ a, o € I, an optimal classical and no-signalling strategy is given by
Alice and Bob outputting their input. The intuition behind it is that, due to ‘low’ noise, every bit has
low probability of being flipped, (1 — ), and thus the winning probability using this strategy is (1 — a)*.
On the other hand, an optimal classical and no-signalling strategy for a ‘high’ noisy channel, a € IsU I
and a € I4, respectively, is that both Alice and Bob output some previously agreed bit string. This
leads to the conclusion that the corresponding optimal winning probabilities for these values of a can be
achieved by just repeating the optimal classical and no-signalling strategies mentioned above for a single
copy of the BSC game. Nevertheless, this is not always the case, since

we(XX/|AA'; BB') pagpo < was(XX/|AA'; BB ) pagpa Vo € I U Ts. (19)

An optimal classical strategy for o € I is given by Alice and Bob both outputting 00 if their input
contains a 0 and outputting 11, otherwise, which gives an optimal winning probability of i(l —a?)? +
1(1—a)*, which was already given in [9] for a = 1— % An optimal no-signalling strategy for a € Io U I3
is given by

. (20)
0 otherwise.

1 .
s f(z=yorxzdb=11=yDa) and (zDa # 11 ®b),
%mwmm{B (x=1y y@a)and (r@a# 114 yob)
This strategy, see Section 4.3.2, has winning probability (1 — a?)?/3. More specifically, for a € I and
for a € Iy U I3 there exist classical and no-signalling strategies, respectively, that perform better than
repeating the optimal strategy, i.e.

we(XX'|AA"; BB') pagpa > we(X|A; B)%a Va € I,

wis(XX!|AA'; BB') pagpa > wis(X|A; B)%a Vo € I U I5. @)
We are left with characterizing the value wq(XX'|AA’; BB') pagpa for oo € Io U I3. From (19), the
optimal quantum value for a € I U I3 has to be in between the two values. Based on strong numerical
evidence (see Fig. 1), in Conjecture 4.4 below we conjecture that there is no quantum advantage with
over the optimal classical strategy for any o.
Unlike the set of classical and the set of no-signaling correlations, the set of quantum correlations,
Q, has uncountably many extremal points, see e.g. [18], making the optimization problem a tough task.
In [20], Navascués, Pironio and Acin (NPA) introduced an infinite hierarchy of conditions necessarily
satisfied by any set of quantum correlations with the property that each of them can be tested using
semidefinite programming (SDP) and thus they can be used to exclude non-quantum correlations, see
Appendix B. The authors introduced a recursive way to construct subsets Qy D Qpy1 D Q for all £ € N,
each of them can be tested using semidefinite programming and are such that NgenyQp = O, i.e. they
converge to the set of quantum correlations.
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By using an intermediate level between the first and the second levels of the NPA hierarchy, the
so-called level “14+ M N” (see Appendix B for a detailed explanation and “NPA_hierarchy_BSC_Game.py”
[19] for the numerical code), we find that for a € I, wq(XX'|AA’;BB’)pagpe is upper bounded by
we(XX'|AA’; BB') pagpa, see Fig. 1 (b). Therefore, this shows that the values coincide in the interval I.
The reason to restrict ourselves to the level “1 + M N” is that it requires less computational resources
than computing the level 2 and it already provides tight bounds. Based on the fact that the numerical
upper bounds on the quantum value obtained by solving the semidefinite programs match the (analytical)
lower bounds given by the classical values, we state the following conjecture.

Conjecture 4.4. There is no quantum advantage over the best classical strategy for the two-fold parallel
repetition of the BSC game for any value of a.

4.2 Three-fold parallel repetition of the BSC game

Consider the three-fold parallel repetition of the BSC game. In the following Theorem, we provide the
optimal classical and no-signalling winning probabilities, and we will see that for a vast range of values
of a they coincide and therefore so does the quantum.

Theorem 4.5. Let (X', A', B") and (X", A", B") be two independent copies of (X, A, B) and let oy be the

root of the polynomial 2(1—a)*(1+2a)—1 taking the value vy ~ 0.358121, ap = £(3—V/7+1/2(32 — 11V/7))
and a3 =273 (4—+ 14)%. Then, for three copies of the BSC game,

1—a)f if a €10, 1],

—~

we(XX'X"|AA'A"; BB'B" ) pagpagpe = § +(1 — ) (1+2a) ifae (3, o], (22)
3 if o € (o1, 3],
(1—&)6 ifa € [0, i]: Ji,
la—)t1+420)? i 1 =:J.
s UK AN A BBB e = 4 117 ) (1200 el 2
z(1—-a?) if a € [ag, 3] =: J3,
z if o € [as, 5] =t Ju.

Proof. The proof is analogous to the proof of Theorem 4.3 for two parallel repetitions. In “BSC classical
strategy n=3.nb” [19] we perform an optimized search over all symmetric classical strategies leading to
(22). In “BSC no-signalling strategy n=3.nb” [19] we provide explicit analytic a-dependent solutions
for the primal and dual linear programs for the no-signalling value. Both solutions have identical objective

value that agrees with (23). O

105 0.140

081 0.135

061 0.130 -

3 3

041 0.125

02 0.120 -

00 [ L L L L L L L L L L L L L L L L L L L L L L L L 0.115 L L L L

0.0 0.1 02 03 04 0.34 0.36 0.38 0.40
a a

Figure 4: (a) Optimal classical (blue) and no-signalling (red) winning probabilities for the three-fold parallel repetition
of the BSC game. The blue area represents the values below the optimal classical winning probabilities. (b) Zoom in of
(a) for the values of o around 0.37 where the classical and no-signalling values differ.
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See Fig. 4 for a graphical representation of the optimal values from Theorem 4.5. For ‘low’ noise,
« € Jp, the optimal value is attained by the classical strategy consisting on Alice and Bob outputting
the received bit, i.e. repeating three times the optimal classical strategy for a single copy of the game.
On the other side, for ‘high’ noise, o € Jy, the optimal value is attained by the classical strategy where
Alice and Bob output a pre-agreed bit, which is also obtained by repeating the optimal strategy for a
single copy. Therefore,

We(XX'X"|AA'A”; BB'B") pagpagpa = wns(XX'X”|AA'A”; BB'B") pagpagpa = we(X|A;B)ba, Ya € J1UJy.

(24)
For a € J5, the no-signalling optimal value can be attained by the deterministic strategy consisting on
Alice and Bob outputting 111 if they receive an input with more zeros than ones and outputting 000
otherwise. See Section 4.3 for no-signalling and classical strategies attaining this optimal value. For this
interval, the optimal strategy for three copies is better than any combination of optimal two and one
copies of the BSC game, i.e.

wWe(XX'X"|AA'A"; BB'B") pagpagpa = wns(XX'X"|AA'A”; BB'B") pag pag pe
> W (XX'[AA'; BB') pag pawns (X" |A”; B”) pa > we(XX'|AA'; BB') pagpawe(X"|A”;B ) pa  (25)
> wns(X|A; B3, Va € .

For o € J3 the following no-signalling strategy achieves the optimal value, as we explain in Section 4.3,

1 if(z=yorzdb=111=y®da)and (B a# 111 #y®b),

. (26)
0 otherwise.

Q3(xv y|a’ b) = {

4.3 Arbitrary parallel repetition

In this section, we will look to find classes of good strategies, both classical and no-signalling, for the
n-fold parallel repetition of the BSC game.

4.3.1 Classical strategies

We have already seen some similarities in classical strategies between one, two and three copies of the
game. For small «, the best strategy is always to output the input (identity strategy). For a close to
1/2 the best strategy is to output some fixed bitstring regardless of the input (constant strategy). The
winning probabilities of these strategies for n copies are (1 — a)?" and 27", respectively. For two and
three copies, we also found similar strategies “in between” the identity and constant strategies. These
strategies can also be extended to n copies: outputting 0™ if the input contains at least as many zeros as
ones and outputting 1™ otherwise (majority strategy). For odd n, the winning probability of the majority

strategy is given by
2

2n1_1 <n§/2 (T;)ai(l—a)"i . (27)

=0

An error-correcting code for the BSC consists of a message set M and two functions Enc: M — {0,1}"
and Dec: {0,1}™ — M. The objective of an error-correcting code is to send a message m over the BSC
by first encoding it using Enc, sending the result over the BSC and recovering m using Dec, such that the
probability of a correct recovery of m is maximized. We will look at error-correcting codes more formally
in Section 5. The readers already familiar with error-correcting codes will notice that the majority
strategy is exactly applying Enc o Dec from the repetition code to the input: the repetition code encodes
messages 0 and 1 to 0™ and 1™ respectively and decodes by picking the bit that appears the most in the
input. This motivates us to look at error-correcting codes to define strategies for n repetitions of the
BSC game.

Example 4.6. We counsider the (7,4)-Hamming code, perhaps the most famous code for the BSC,
introduced by Richard Hamming [21]. This code encodes bitstrings d;dadsdy of length 4 as bitstrings of
length 7 by appending three parity bits: dydadsdapipaps. These bits represent the parity (XOR) of three
of the original 4 bits (see Fig. 5).
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Decoding works by checking if the parity bits are still correct (still equal to the parity of the
corresponding 3 bits). If this is the case, we just remove the last three bits of the received bitstring. Now
suppose an error occurred in exactly one bit.

e If the error occurred in dy, all the parity bits are incorrect.

o If the error occurred in dy, ds or ds, two of the parity bits are incorrect (p; and py for dy, p1 and p3
for do and po and p3 for ds).

e If the error occurred in one of the parity bits, only that parity bit will be incorrect.

Using the above, we can perfectly deduce in which bit the error occurred and correct it accordingly. If
more than one error occurs, this method never decodes correctly.

b1

Figure 5: The Hamming code visualized: The bitstring did2dsds is encoded by appending the parity bits p1, p2 and ps,
where each parity bit represents the parity of the three bits inside their circle. A single error in one of the seven bits can
be perfectly detected by checking which parity bits are incorrect.

Since the Hamming code corrects exactly 0 or 1 error, we can write the average success probability of

this code as
(1—a)"+7a(1 —a)s.

Now consider the following strategy for 7 copies of the BSC game based on the Hamming code: both
players perform the correction part of the Hamming code on their input and output the result (this is the
same as decoding and then encoding again). It is obvious that the players win if and only if the initial
bitstring x is in the range of the encode function and the decoding of both players was successful. This
observation results in the following winning probability:

24 7 6\2
¥ (=) +7a(1—a)®)".

It turns out that this Hamming code strategy is strictly better for a large range of v than the identity,
constant and majority strategy for 7 copies of the game. This confirms the idea that error-correcting
codes define good classical strategies.

4.3.2 No-signalling strategies

For two and three copies of the BSC game, we found the optimal no-signalling strategies Q2 and Q3
(described in Egs. (20) and (26)). We can extend these no-signalling strategies to n copies as follows:

Q(x,y|a,b)={ﬁ f(z=yorz®db=1"=yd®a)and (xDa#1"#ydb), (28)

0 otherwise.
There is, however, a more intuitive way to describe this no-signalling correlation. Alice outputs

uniformly at random any bit string, except the negation of her input. Bob outputs the same string as
Alice, except when that string happens to be the negation of his input, in which case he outputs the
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Alice’s input: 101 Bob’s input: 001

000 000
001 001
010 010
011 011
100 100
101 101
110 110
111 111

Figure 6: An example of a pairing of elements between the output sets of Alice and Bob, for three simultaneous copies.
Each line represents a pair, and at the end of the process, one pair is chosen uniformly at random.

negation of Alice’s input (see Fig. 6). Note that the roles of Alice and Bob in this description can be
exchanged.

This formulation makes it obvious that we can define a more general class of no-signalling strategies:
instead of the output sets consisting of everything apart from the opposite of the input, we can let the
output sets consist of all bitstrings within Hamming distance d from the input. We can then pair up the
elements from the output sets and say that each of those pairs is output with equal probability. Again,
if an element occurs in both lists, we pair it with itself. This description defines a no-signalling strategy,
since Alice and Bob always output each of the elements of their output sets with the same probability,
regardless of the input of the other. We denote by Q¢ a no-signalling strategy for n copies of the BSC
game defined by Hamming distance d. Note that for d € {1,...,n — 2} the strategy Q? is not unique,
but they all achieve the same winning probability.

Let us find the winning probability of a strategy Q¢. Suppose that x is the bitstring generated by
the referee. The only way the players could output the combination (z,z) is if both d(z,a) < d and

-1
d(z,b) < d, in which case it is output with probability (Z?:o (Z)) , since the sum is the size of their

output sets. The probability that a lies within distance d from z is Z:'l:o (?) a'(1— )" % We conclude
that the winning probability of Q¢ is given by

st (S (oo

%

It turns out that all the optimal winning probabilities for one, two and three simultaneous copies of
the BSC game can be achieved by a strategy of the form Q2. If we pick d = 0 we get exactly the identity
strategy. If we pick d = n, we get the average of all possible constant strategies (and by linearity, this
achieves the same winning probability as a constant strategy). If we pick d = n — 1, we get exactly the
strategy defined in Eq. (28). This strategy achieves winning probability

2n1_ 1 (zn: (?) (1 —a)" 7 — a”>2 — 2n1_ - (1—am)?.

=0

We are left with segment two for three copies. The strategy Q3 achieves winning probability

i (1—a)®+3a(l - 04)2)2 .
This probability is exactly the same winning probability as the majority strategy, which we found to
be optimal in this segment. We conclude that all optimal winning probabilities for one, two and three
copies of the game can be achieved by a strategy of the form Q.

It turns out that the class of strategies defined in this section can be described using a list-decoding
scheme for the BSC channel. In the next section, we discuss strategies for a general channel Ppx based
on error-correcting codes and list-decoding schemes.
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5 Channel LSSD games

In the previous section, we constructed an LSSD game based on a BSC. In this section, we extend this
construction and define an LSSD game based on an arbitrary channel. For n parallel instances of these
games, we discuss classical strategies based on error-correcting codes and no-signalling strategies based on
list-decoding schemes. We also investigate the asymptotic behaviour of the optimal winning probability
as n approaches infinity. Note that for any non-local game with optimal no-signalling winning probability
smaller than 1 (and no promise on the input distribution), the optimal winning probability for n parallel
instances of the game exponentially goes to 0 [22, Theorem 16]. Thus, we will be considering the limit
of the exponent of the winning probability normalized by n.

We briefly recap basic concepts from information theory that we need in this section including entropic
quantities and method of types. For a more in-depth introduction, see [23, Chapter 2| and [24, Chapter 2].

Let P be a probability distribution over 2", and let X be a random variable distributed according
to P. We define the entropy H(X)p = H(P) of X as

H(X)p:=— ) P(x)log(P(x)),

e

with the convention that P(z)log(P(xz)) = 0 wherever P(z) = 0. We drop subscript P whenever the
distribution of X is clear from the context. Let X and Y be two random variables with joint probability
distribution Pxy. The joint entropy of X and Y is H(X,Y)p = H(Pxy) and the conditional entropy is

H(X|Y)p:=H(X,Y)p — HY)p.
The mutual information of two random variables X and Y is
I(X;Y)p=HX)p+HY)p - H(X,Y)p.

For two probability distributions P and @ over 2, the relative entropy is

P(x)
D(P|Q) = Y P(x)] .
Z% % (Q(w))

If P)}lY and P)%‘Y are two conditional distributions over 2" x # and Qv is a distribution over %/, the
corresponding conditional relative entropy is

D(P)%|Y||P)%|Y | Qv) == Z QY(y)D(P)hY:y”P)%Y:y)'
yewW

We next introduce preliminaries on the method of types (see [24, Chapter 2| for further reading).
Let 2 be a finite set and n be a positive integer. For a sequence z" € 2", its type is a probability
distribution P over £ defined as

itz =}

P(z) = 1 (29)

n
Let P,,(Z") denote the set of all types of sequences in Z™. For a given distribution P over 2", we denote
by Tp all sequences in 2™ whose type is P. If Pax is a joint probability distribution on & x 2" and
x" is a sequence in Tp,, we let Tp,, (") := {a”" : (a",2") € Tpy}. We need the following inequalities
whose proofs are in [24]:

Pa(2)| < (n+ 1)1, (30)
‘TPX| < 2nH(X)P7 (31>

" 2’!LH(A‘X)p
| Ta (™) > [CEDIEE (32)

We are now ready to define the main object of this section, channel LSSD games.
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Definition 5.1. The channel LSSD game defined by Pajx is given by the probability distribution
Pxag = PxPax Pgix;
with Px the uniform distribution over 2, &/ = %, and Pgjx = Ppx-

Playing n parallel copies of this channel game is the same as playing the channel game defined by
the channel PAX&, which can be thought of as the referee generating a string 2™ € 2™ and sending it to
Alice and Bob by n independent uses of their channels. Our main result of this section is the following

characterization of the exponent of the optimal probability of winning for all three classes of strategies.

Theorem 5.2. Let Pyjx be a channel and let Piag be the probability distribution defining the channel
game corresponding to the channel PAX&. We have

lim log(we(X™|A™; B™) pxn) ~ lim log(wq (X™|A™; B™) pxn) ~ lim log(wns(X™|A™; B™) pxn)

n— 00 n n— o0 n n—o00 n
= %gfI(X;A)Q —2D(Qax|| Pajx | @x) — log(|27]).

Note that to prove the theorem it is enough to prove the following two lemmas because of Eq. (9).
Lemma 5.3 (Achievability). We have

log(wC(X"\A”, Bn)pxn)

lim inf > max I(X; A)q — 2D(Qax || Pax | @x) —log(|27]). (33)
n—o0 n Qxa
Lemma 5.4 (Converse). We have
. log(wns (X™|A™; B™) pxn
tim sup (X EASEIR) a1, A)q — 2D(QuclIPae | @)~ los(127). (34)
n— 00

Our proof for these two lemmas is based on tools from information theory that we introduce in
Section 5.1. We prove the first lemma in Section 5.2 by constructing a classical LSSD strategy from
a code for the corresponding channel, and then by choosing an appropriate sequence of codes that
optimize the winning probability. We prove the second lemma in Section 5.3 by first relating the winning
probability of an arbitrary no-signalling strategy to a list-decoding code, and then using a converse for
list-decoding codes.

5.1 Tools from information theory

We recall here basic definitions concerning error-correction codes. A code for n uses of channel Pajx
operates as follows. The sender has a message set M of possible messages. He picks one message
m € M to send and encodes m as a codeword x™ of 2", using a function Enc: M — 2™™. Next, he
transmits each of the symbols x; of this codeword to the receiver by consecutive uses of the channel; the
receiver receives an a” in &/™ and decodes it to a message m’ using a function Dec: &/ — M. The
communication was successful if m = m/.

The minimum success probability of a code is given by

énel]l‘rb PAxlg(l(Decfl(mﬂ Enc(m)),

and the rate of a code is < log [ M.

Definition 5.5. We call a code (Enc, Dec) for a channel Pyx an (n, 278 )-code if

Enc: [2"F] — 2™, (35)
Dec: &/™ — [2"], (36)
PAX|Q(Dec_1(m)| Enc(m)) > o, Vm € [2"F]. (37)
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We know since Shannon’s groundbreaking work [25] that there exists a sequence of codes with rate
less than the capacity of the channel and probability of success tending to one. We also know from the
strong-converse results [26] that if the rate is above the capacity, the success probability exponentially
tends to zero. In [27], the optimal exponent of the success probability has been characterized. The
following lemma is what we require in our achievability proof. Its proof resembles the proof in [27], but
we need to modify it because we consider the minimum success probability, not the average. We leave
the proof to Appendix A.2.

Lemma 5.6. Let Pax be a channel, Qxa a probability distribution over 2 x & and § > 0. For
n > no(|Z°],||,9), there exists an

9—nD(Qa x| Pajx|@x)
(m on(1(Xi4)0=5) )

p(n)
code for the channel Pax where p(n) is a polynomial depending only on |.</|.

We next recall the definition of list decoding. The decoder here outputs a list of L messages, instead
of a single message. The decoding is successful if the list contains the correct message. We denote the
list output by the decoder on input a™ by C,». The minimum success probability is then

min ) PR Enc(m)).
aneadm: Cogndm

Definition 5.7. We call a list-decoding code an (n,2"%, L «)-code if Dec maps elements a™ of &/™ to
subsets Cyn of [2"F] of size L and

Enc: 2" — 2™,

ST P Buc(m)) > a, Vm e [27).
anea/m: Cyndm

We have the following converse for list-decoding schemes, see Appendix A.3 for the proof.

Lemma 5.8. For any list-decoding (n, 2", 2nFr 2-n6n) code for Pajx, we have

. logn
Cn > min [D(Qax|IPajx | @x) +max{R — R, — I(X; A)q,0}] + O< TgL >’
where the constant hidden in O(-) depends only on | 2| and |</|.
5.2 Achievability: Classical strategies from error-correction codes

We prove Lemma 5.3 in this section, which we re-state for readers’ convenience.

Lemma 5.9. We have

L log(we (X™|A™ B™) pxn
tim inf (2BECTAS B 0) s 1(X; A)g — 2D(@uxIPa | @) —log(127)). (39)

n—o0 n Qxa

Proof. We first explain how to use error-correction codes to find classical strategies for the parallel
repetition of a channel LSSD game. Let (Enc,Dec) be an (n,2" «a)-code for the channel Pajx- We
consider a classical LSSD strategy for n parallel repetitions of the channel LSSD game in which both
players use the estimation function f := EncoDec. This strategy can be interpreted as the players
decoding directly to the codeword of a message instead of to the message itself. We lower bound the
winning probability of the strategy given by f as

FF L BRUTEE = gn Y B )

xneggn e \ared™: f(am)=z"
(@ 1 gnR
> a? = a?, 40

z™€Im(Enc)
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where (a) follows since (Enc, Dec) is an (n, 2" «a)-code. Notice that there is a trade-off between the
success probability and the number of messages. We simultaneously want the success probability and the
number of messages to be large. However, increasing one necessarily means decreasing the other.

Let Qxa be a distribution on 2" x & and ¢ > 0. Let ng(|.2°],|<7|,9) and p(n) be as in Lemma 5.6
where p(n) is a polynomial only depending on |<7|. By Lemma 5.6, for n > no(| 2|, |</|, d), there exists

—nD(Qax IIPAx | Q%)
an (n,2"I(X;4)e—0) % -code for Ppx. Let f = EncoDec be the strategy defined by this

code. The winning probability of this strategy is at most the optimal classical winning probability, so by
using Eq. (40) we find
on(I(X;4)@—0—D(Qax|| Paix|@x))

We(X™|A™: B") pun > Z () ,

and therefore

log(we(X™|A™; B™) pxn log(p(n
LA B 0) 5 (x: M) — 6 - 2D( Qx| Pae | @) —log(|27]) — 2B2E - (an)
Since Eq. (41) holds for any Qxa and § > 0, and lim,, % = 0, we conclude that
. log(we (X™|A™: B™) pxn
lim 208(eX"] JP) 5 nax I(X; A)g — 2D(Quxl| Pax | Qx) — log(127]).
n—o00 n Qxa
This completes the proof of the achievability of the error exponent. O
5.3 Converse: No-signalling LSSD strategies and list-decoding codes
We prove Lemma 5.4 in this section which we restate for readers’ convenience.
Lemma 5.10. We have
. log(wns (X™|A™; B™) pxn
tim sup P CIAGB) ) o 1 4)g — 2D(Quell Pae | @)~ lor(12)). (42

n—00 n Qxa

We first prove the existence of an optimal strategy invariant under permutations of inputs and outputs.
To this end, we need the following notation: For a permutation ¢ € 5, and a sequence z™ € 2™ we
denote by o(z™) € 2™ the sequence obtained from z™ by permuting its entries according to o.

Lemma 5.11. For n parallel repetitions of a channel LSSD game, there is an optimal no-signalling
strategy Q such that

Vo €Syt Qo(z"),0(y")|o(a"),a(b")) = Q" y"[a",b"). (43)

Proof. Let @ be an optimal strategy and o € S,. The strategy @, defined by Q,(z",y"|a™,b") =
Q(o(z™),0(y™)|o(a™),o(b™)) has the same winning probability as @, since the n-fold probability distribu-
tion is invariant under permutations: Pyg(z™,a™,b") = Piag(o(z™),o(a™), o (b™)). We define

The strategy Q satisfies (43): for any 7 € S,,,

Qr(a™), r(y")Ir(a"), 7(6") = = Y Qulr(a™),T(y")Ir(a™), (b))

oES,

= = 3 Qo) oyl (r(a), o (r ("))

' oES,

n!

:% 3 Qr(™), w(y™ I (a™), 7 ("))

TES,

1 n o, ni.n pn
= ﬁ Z Q‘rr(x Y |(Z 7b )
’ TESy

Q(x7l7yn|a'n7 bn)
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Finally, by linearity of the winning probability, Q also achieves the same winning probability as @), which
means that it is optimal. O

Proof of Lemma 5.10. Let @ be an optimal strategy satisfying (43). Its marginal distributions Q(z"|a™)
and Q(y"|b™) only depend on the joint type of (z™,a™) and (y", b™), respectively. In particular, we can
write the winning probability of @ as follows:

s (XTI B e = S0 B (a7, 0, Q" 2", B7)
zm,an,bn

Z Z P)?AnB(an,an,bn)Q(Z‘n,l‘nMR,bn), (44)
QXAEP (X x) x™,a™,b™:

QU €Pn (2 % B) (a",a™)ETox,
(z",b™)ETgr
XA

where P,,(-) denotes the set of types of length-n strings over a given set, and 7. denotes all sequences of a
given type.

Since there are (n+ 1)%# 11| terms in the first sum of (44), there must exist Qxa € Pn (2" x &) and
Q%g € Pn(Z x ) such that

wns(X”|A”, Bn)pxn

Z Piag(a™,a™, 0")Q (", x"[a", b") > (n +1)2Z1I (45)
z",a™,b"™:
(z™,a™)ETQya
(w",b")ETQ;A
Let us define for each a™ and b"
Con :={2" : (2",a") € Tow ), (46)
Dyn = {z" : (z™,b0") € T _}. (47)

Now consider the following strategy Q:
e on input (a™,b"™), Alice and Bob generate (™, y™) according to @Q;

o Alice checks if 2™ € Cyn and if not, uniformly generates a new output " from Cyn (if Cyn is the
empty set, Alice generates an arbitrary output);

o Bob checks if y™ € Dy» and if not, uniformly generates a new output ¢ from Dyn (if Dpn is the
empty set, Bob generates an arbitrary output).

wns (X™|A™:B™) L xn
W: by (45). We also

have that Q(z"|a™) is uniform over Cyn when Cyn # @, since Q(2"|a™) only depends on the joint type of
(x™,a™). Similarly, Q(y™|b™) is uniform over Dyn when Dyn # &.
Note that for any a" and a’", if Cyn and Cyn are non-empty, then |Cyn| = |Cyn|. We define

Ly :=|Cyn| for a non-empty C,n and similarly define Lp := |Dpr| for a non-empty Dpn. We find

This strategy is no-signalling and has winning probability of at least

wnS(X”|A", Bn)pxn
(n+ 12711

Z PgAnB(xnjanjbn)Q(xn’xnmn?bn)

wn,an7bn

Y Pis(an,am, 0" min{Q(a"a"), Q(z"b")}
z™,a™,bm™
<
~ max{L4,Lp} .

IA

S PG am b")d(a" € Con )b (2" € Dyn)

n_gn pn
,a™b

- 1 Xn n n xn n n
B maX{LA7LB}|5K|nZ Y Pixat|em) o PRz

x™ a™: Cyn>dxm b™: Dyndzx™

20



Upon defining

w) = Y P,
am: Cyndzm

ESE SR
b Dyndx™

we can write

> Pk (a"a™) Y B ZqA Y (™). (48)

zn am: Cyndzm b": Dyn Dz

By Cauchy-Schwartz inequality, we have

S aataan(e”) < (Zm(xn)?) (Zp3<xn>2>. (49)
Therefore, without loss of generality, we can assume that

Z ga(z™)gp(z") < Z pa(z™)”. (50)

xn "

We can upper-bound the winning probability of the strategy as

s (XA B) 1 , 1 ,
< S ga@™)? <€ ——— 3 qa(a™). 1
(n+ 22T = max(La, Lp)| 2" 2 ga(z")? < LAl 2T 2 qga(z") (51)

Let 6 > 0. For each i > 0, we define
Ri:={a"eZ™| 2 nd(+1) < ga(z™) < 2_”6i}.
We define a list-decoding scheme (Enc;, Dec;) as follows: Enc;: R; — 2™ is the identity function and
Dec;(a™) = Con NR;.

Note that intersecting C,» with R; only decreases the size of the list, making the code weaker. This
observation means that we will still be able to use Lemma 5.8 for a list decoding with list size L. For
each ™ € R;, we have

SRR 2 gaen) 2 2700,

a™: Dec;(a™)dz™

o (Enc;, Dec;) defines an (n, |R;|, L, 2720+ 1)-code. By Lemma 5.8, we have

log|R;| log(L !
o(i+1) > %inD(QAIXHPAIX | @x) +max{ Og1|1 | 2eal I<X;A)Q7O} +O< Oi”).
XA

n

We find that if ga(z™) > 0, then g4 (2™) > 27" with p = MAXy o: Py (ala)>0 — log(Pajx(alz)). Thus, if
i >t:=|k], then R; is empty. Now, we find

AT =Y ¥ L 2

e xn i=0 z"E€R;
Z| 2= 2nd1i (53)
< Z o 1ogLR il _1o8A) g ming,, (D(QA‘X||PA|X|QX)+maX{%,%71(X;A)Q’O})+O(lo%)+6)
(54)
t
< Z 2"(maXQxA(I(X;A)Q—QD(QA\XHPA\xIQx))-i-O(%)-&-(S) (55)
=0
— (L%J + 1) Qn(maXQxA(I(X?A)Q72D(QA\X“PA\X|QX))+O(1O7#)+5). (56)
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Combining (51) and (56), taking logarithm from both sides, and choosing 6 = 1/n yields the desired
converse results. O

5.4 Calculating the exponent for BSCs

We calculate, for BSCs, the value of the limit of the exponent in Theorem 5.2: maxqy, [(X;A)g —
2D(Qax||Pajx | @x) —log(]27]). To this extent, let Qxa be a distribution over {0,1} x {0,1}. Let us
calculate the exponent one step at a time. First of all, we have

I(X;A)g =H(X)q+ H(A)q — H(X,A)q

and

ZQX ) log(Qx () Z(ZQXAI(I)log(ZQXAIa).

=0

We can find H(A)q in a similar way. We also have

H(X,A)q Z Qxa(z,a) log(@xa(,a)).

z,a=0

Now let us find the value of D(Qax||Pajx | @x):

D(Qax||Paix | @x) = ZQX D(Qajx=z|Pajx=2)

= ; (Z Qxa(r,a ) <Z Qax(alz)log (W)) :

Using numerical analysis we found that the maximum maxq,, I(X; A)q —2D(Qax||Pax | @x)—log(|-27])
is always achieved by a distribution Qxa for which Qxa(0,0) = Qxa(1,1) =: ¢ and Qxa(0,1) =
Qxa(1,0) =: d. Using this property, we have

H(X)g=H(A)g = —2(c+d)log(c+d),

and
H(X,Y)q = —2clog(c) — 2dlog(d).

We also find

D(Qax|[Pxa | @x) =2 <010g <(c+d)c(1—a)> +dlog <(c+dd)a>> .

Combining the expressions above, we find the value I(X; A)q —2D(Qax||Pajx | @x) —log(|27]). Note

that for Qxa to be a distribution, we need d = % — ¢. This observation means that we only need to
maximize with respect to the variable ¢ (we see o as a constant). We can solve this maximization by

calculating the derivative, setting it to 0 and solving for ¢. Using a computer algebra system, we find

tmax I(X; A)g — 2D(Qax I Pax | @x) — 1og(12°]) = log(1 - 2(1 ~ a)a). (57)

In Fig. 7 we plotted this expression together with the exponent of the optimal winning probability
achieved by the strategies Q% for some n (see Section 4.3.2). We can clearly see how this exponent
approaches the limit calculated in (57).
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Figure 7: Plot of log(w)/n for different values of n and the limit of this expression, given by Eq. (57), against a. We
calculated w as the optimal winning probability achieved by the strategies Q% (see Section 4.3.2).
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A Proofs
A.1 Proof of Theorem 3.1

Let two functions f: &/ — 2 and g: & — 42 define a deterministic strategy. We prove that either Alice
and Bob both performing f or both performing g can only increase the winning probability. Note that
Alice and Bob can perform the same strategy, since & = 9. The winning probability of the strategy
defined by f and g is given by

Z Pxag(,a,b)6[f(a) = g(b) = ]

reX
acol beERB
:ﬁ > Pasx(a,bl2)dlf(a) = g(b) = 4]
o€t e
:@ 2 (Z Pax(alz)dlf(a) = ﬂ) <Z Pajx (bl2)d[g(b) = x])
rer e be B
1

“12] Z Pax(f~H(@)|2) Pax (97" (@) 2),

‘ |;L'E£€”

where in the first, second and third equalities we have used hypotheses (i), (i) and (iii) of Theorem 3.1,
respectively and notice that f~!(x) and g~!(x) might be sets. Write gf(z) := Pax(f'(z)|x) and
qg(x) := Pax(g~'(x)|x). Notice that ¢y and g4 are vectors indexed by x € 27, so we can write the
winning probability as an inner product of these vectors:

1
7] (g7, 4q) - (58)
Using the Cauchy—Schwarz inequality,

| {ar: a9) I* < {ar- ar) (a9, a9) »

and thus we cannot have (qr,qq) > (g7, qs) and (gs, qq) > (qg,qq)- Therefore, we can conclude that Alice
and Bob either both performing f or both performing g does not decrease the winning probability given
in Eq. (58). Now suppose we picked f and g to form an optimal strategy, then by the previous statement,
we immediately find a symmetric deterministic strategy that is also optimal.

A.2 Proof of Lemma 5.6

The proof of Lemma 5.6 relies on concepts and theorems from the book by Csiszar and Korner [24]. We
will not be discussing these concepts here. We repeat the statement of Lemma 5.6 here for the reader’s
convenience.

Lemma 5.6. Let Pax be a channel, Qxa a probability distribution over 2" x o/ and 6 > 0. For
n > no(| 2], ||,9), there exists an

( on(I(X;A)qQ—6) 9—nD(Qajx || Pajx|@x) )
n, ’ ,

p(n)
code for the channel Pajx where p(n) is a polynomial depending only on |<|.

Proof. Let R = I(X;A)g — d. By the packing lemma (Lemma 10.1 in [24]), there exists a function
Enc: [2"F] — 2™ such that

o Enc(m) is of type Qx for all m € [2"F];

o [Tqux (Enc(m)) MU, 2 T (Enc(m)| < [To,  (Enc(m))|27"3
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(Note that the conditions of the packing lemma are satisfied, because H(X)g > I(X;A4)q).
Now define Dec: &/™ — [2"F] by Dec(a™) = m if m is the unique message such that a" €
TqQ 4 x (Enc(m)), otherwise we set Dec(a™) = 0. For all m € [2"F], we have

Z PAX|>n(( a"| Enc(m)) = |Dec_l(m)|27n(D(QA\XHPA|X‘QX)+H(A‘X)Q) (59)

a™: Dec(a™)=m

by Lemma 2.6 in [24] (using that Enc(m) are all of type @x). By definition of the decoder, we also have

| Dec™ (m)| > [Tg, x (Enc(m))\ | Ta, . (Enc(m))] (60)
’;ﬁm

> [Ty (Enc(m))|(1 —27"%) (61)

> (n+1)71¥1(1 — 27n5)gnH(AIX)e (62)

where (61) follows from the second property of Enc and (62) follows from (32). By combining (62) with
(59) we conclude that (Enc, Dec) is a

(n,2n<1<x;A>Q—6>,(n+ 1)~11(1 — 273 )Q—nD@MXHPA‘uQx))

code. We finally choose p(n) = 2(n 4 1)!| which is a polynomial in n depending only on |.<7| and for
n > 2 we have p(n)~' < (n+1)~1I(1 - 2-7%). This concludes the existence of an

( on(I(XiA)g—?) 2_"D(QAx||PA|xIQx)>
n, ’ ,

p(n)
code. O

A.3 Proof of Lemma 5.8

We first repeat the statement of Lemma 5.8 for the reader’s convenience.

Lemma 5.8. For any list-decoding (n, i Z"RL,2_”C“) code for Ppx, we have

Cn 2 1000 [D(Qax||Pax | @x) +max{R — Ry, — I(X; A)q,0}] + O<loin>’

where the constant hidden in O(-) depends only on | 2| and |<|.

Proof. Let (Enc, Dec) be an (n,2"E 2nfie 2-nC) Jist-decoding code, i.e., Enc : [2"F] — 2™, Dec(a) is a
subset of size 2"~ for all a € &/, and for all m € [2"F],

PAX‘;(L(DeC L(m)| Enc(m)) > 27"¢. (63)

By pigeon hole principle, there exist a type Q € P,(2") and a subset S of size % of [2"%] such
that Enc(m) € Tg for all m € S. Furthermore, for any m € S, we have

27 < PAXI;(’(Dec Y(m)| Enc(m)) (64)
= > Pi%(To(Enc(m)) N Dec ™ (m)| Enc(m)) (65)
Qalx
= —nD(Qax||Paix|Q) |Tq(Enc(m)) N Decil(m”
S ToEnc(m)] (66)

Averaging the above inequality over all m € S, we obtain that

wD(@nxll Pax|@) [ T@(Enc(m)) N Dec ™" (m)|
EP PR T (Enc(m))| 7

mES Qalx
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Since there are at most (n + 1)‘” 121 conditional types Qa|x, by applying the pigeon hole principle once
again, we derive that there exists Qax such that

—n -1
9—n¢ < 9D @uxlPaxl@) L 1 |7q(Enc(m)) N Dec™ " (m) (68)
(n+ 1)IT7 S 2 [Tg(Enc(m))]
We now provide two upper bounds on the right hand side of the above inequality. Note that
To. (Enc(m)) N Dec™!
Z | QA|>< nc(m)) (m)] <1 (69)
ISI | T x (Enc(m))|

meS
We also have

| Tax (Enc(m)) N Dec™ (m)] @ (n 4 1)1 .
|S|Z o Enclm)] = a0 2 [Tou Bucm) nDec(m)] - (70)

(b) + D2 -
T S [T (Buc(m) N Dec (m)] - (71)

meS
©) (n+ Dl nR
S SRR | Tal2" (72)
D (0 4 1)l I gn(— R R~ HAIX) g+ H(4)) (73)
— (n + 1>|=Q{|+|<%‘27’L(—R+RL+I(A;X)Q) (74)

where (a) follows from (32), (b) follows since |S| > W’ (c) follows since TQA‘X(Enc(m))ﬁDecfl(m) C

Tq, and every element of g, appears in Tg, , (Enc(m)) N Dec™!(m) for at most 2%+ m, and (d) follows
from (31). Combining above inequalities, we obtain that

2—n¢ D .
2 < 9=nD@QaxlPaxl@x) ( |t |+ 2| n(—R+RL+I(A,X>Q>>
CFSNELEL <2 AXIFEAXIEX) min (1, (n + 1) 2 (75)
Taking log from both sides of the above inequality results in the desired bound. O

B NPA hierarchy for LSSD

In this appendix, we describe the NPA hierarchy adapted to the LSSD setting. For more details on the
original NPA hierarchy, see [28, 20].

Recall from Section 3 that LSSD game is played by two collaborating players, Alice and Bob, who
receive inputs a € &7, b € # and must produce outputs x4, xp € 2, respectively (see Fig. 2). Here we
will consider the case when the game is defined by a joint probability distribution® Pxag that describes
how their inputs a,b are correlated with an external variable € 2~ which they need to guess. The
LSSD task is to produce outputs x4 and xp such that x4 = g = x. We can equivalently describe this
by the predicate V(z,z4,25) := §[xa = 25 = z].

Depending on the physical scenario considered, Alice and Bob might share some resource that allows
them to correlate their outputs. For the sake of generality, let C € R#% *# X¥*% denote an arbitrary set
of correlations they can utilize. We will treat each element @ € C as a vector R? X% X% x% and write
its entries as Q(za,zpla,b) where v4,05 € Z',a € &/,b € 9. This notation emphasizes that ¢ can
also be interpreted as a stochastic matrix. Indeed, it will always be the case that Q(z4,zpla,b) > 0
and EIA,zBe% Q(za,xzpla,b) =1 for all a € o and b € A. For example, when dealing with quantum
strategies, @ has the following form, see Eq. (4):

Q(za,zpla,b) = (Y|(My,(a) ® Nyy (b)) 1), Va € o, be B,xa,xp € X (76)

3More generally, Pxag can be replaced by a quantum state pxag, see Section 3.2.
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for some finite-dimensional bipartite Hilbert space H = Ha ® Hg, pure state |¢p) € H, and collections of
projective measurements {M,(a) : x € 2} € PM(Ha) and {N,(b) : x € 2"} € PM(Hg) on Ha and Hp,
respectively.* We will denote the set of all quantum correlations by Q C R# X% X x%,

The winning probability of the LSSD game defined by a distribution Pxag and played with assistance
of correlations C is given by

we(X|A;B)ps = sup Y Pras(w,a,0)V (2,24, 25)Q (w4, 25]a,b). (77)
S z,x4,2BEX
acl beRB
If we let
K(za,xB,a,b) := Z Piag(x,a,b)V(z,z4,28), (78)
xeX

we can rewrite Eq. (77) as
wC(X|A; B)PXAB = sup <K7 Q> (79)
Qec

where we treat both K and Q as vectors in R% X% X¥*x% an(d

(K.Q):= > K(va,zp,0,b)Q(xa z5la,b). (80)

TA,2BEXL

acol beRB
To define a commuting measurement strategy, we relax the requirement that the finite-dimensional
Hilbert space H has a tensor product structure. We consider a pure® state |1)) € H and two collections
of measurements on the whole of H: one measurement {M,(a) : x € 2} for each of Alice’s inputs a € &
and one measurement {N,(b) : x € 2} for each of Bob’s inputs b € 4. We require that these are

orthogonal projective measurements, and that Alice’s and Bob’s operators pair-wise commute. Namely,
forallae @, be B, xa # 2y € Z and xp # 2z € Z the measurement operators should satisfy

1. M,,(a)t = M, ,(a) and N, (b)" = N, (b),
2. M,,
 Lasea Meale) =Tand 5, Now () = I,
(M, (a), Ny (b)] = 0.

()M, (a) = 0 and N, ,(b)N, (b) =0,

W

The resulting correlation @ is then defined as
Q(za,xpla,b) == (Y|M,, (a)N, (b)), Vo € o be B,xp,xp € L. (81)

Compared to Eq. (76), here the two commuting sets of measurements are global since the underlying
space ‘H has no tensor product structure.

We will now construct a positive semidefinite matrix G whose entries contain the values Q(x 4, zp|a, b)
from Eq. (81), and then impose linear constraints on G that capture the above conditions on the mea-
surement operators M, , (a) and N, (b). The rows and columns of G will be indexed by®

Y ={e}UuXaUXp where Ya=Z x4, Yg=Z xAB (82)
For each s € 31, define a vector in H as follows:

[1) ifs=e,
[Wh(s)) = § My(a)l)) if s = (2,a) € Xy, (83)
N.(b)l) ifs=(z,b) € Xp,

40ne can assume without loss of generality that the shared quantum state is pure and both measurements are orthogonal.
5The assumption that the state is pure and that the measurements are projective is without loss of generality.

6We assume the sets o7 and % are disjoint so that the disjoint union makes sense here.
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and let G € R¥1**1 be the Gram matrix of these vectors:
G = (Y(s)[¥(1)), Vs, t € Y. (84)
Since G is a Gram matrix, it is clearly positive semidefinite:
G 0. (85)

Notice that G contains all of the values Q(x 4, xg|a,b) from Eq. (81), as well as some additional values
such as (Y|, (Y| Mz (a)|y), and others.

Because of the various relations among the measurement operators M, , (a) and N, (b) listed earlier,
the Gram matrix G is subject to the following linear constraints:

1. Since |¢) is a normalized state, (1|1)) =1 and thus
Gee=1. (86)

2. Due to the completeness relations ), My(a) =1= 3 4 N.(b), we have that for any vector

[0) € H, Xy (1M (@)]0) = (f0) and 3, o (0| Ma(@)]$) = (v]5), and similaly for N (b).
Letting |v) = [¢(s)) for some s € ¥y, this translates to

Z G(a:7a)7s = GE,Sa Z Gs,(m7a) = Gs,s, Va € 42{7 s € Xy, (87)
xeX re€X
> Gapys = Geys > Goon) =G Vbe B, s €D (88)
e reX

3. Since within each measurement the projectors are orthogonal, we also have (Y| M, (a) M, (a)|)) =
0 = ()| N4 (b) N, (b)|1) and thus

G(z,a),(20) = 0, Ve#a2' € X,a€ 4, (89)

Gap), (' b) =0, Ve € X, be B (90)

4. Since My(a) are projectors, (¢|My(a)My(a)|y) = (| My (a)|y) and likewise for N, (b), so

G(m,a),(x,a) = G(ac,a),e = Gs,(.’r:,(z)a Vr € ‘%a ac 52/3 (91)
Gap) (b)) = Gap)e = Gezp), VTE L, DEB. (92)

5. Since the two sets of projectors commute, ()| M, , (a) Ny, (b)) = (V| Nyy ()M, (a)|th), we have

G(xA,a),(acB,b) :G(acB,b),(mA,a)a V$A7.'L‘B S %,aed,be%’. (93)

Let Q1 € RZXZ x# %% Jenote the set of all correlations @ such that there exists a matrix G € R¥1**1
which satisfies
G(rA’a)}(zB’b)ZQ(mA,.’L‘BM,b), VI‘A,l‘BG%,GEﬂ,bEQ, (94)

as well as G > 0 and the linear constraints in Eqs. (86) to (93). Note that deciding the membership of
Q@ in Q; is a semidefinite feasibility problem — it requires finding a positive semidefinite matrix G > 0
subject to linear constraints.

Since the local measurement operators M, ,(a) ® I and I ® N,,(b) commute, the original set of
quantum correlations Q defined by Eq. (76) satisfies @ C Q. Therefore, based on Eq. (79),

wq(X‘A; B)PXAB ‘= Sup <K7 Q> < sup <K, Q> = Wq, (X|A; B)PXABa (95>
QeQ Qe

where the vector K € R% X% *¥*% {efined in Eq. (78) specifies the LSSD game in question. The value
wWq, (X|A; B) g, corresponds to the first level of the NPA hierarchy. We can compute it by a semidefinite
program as follows. Define a symmetric matrix H € R¥ **! with entries

1
Hepy o) @sd) = Hapb)(wa,e) = iK(xA,xB,a,b), Vea, 2 € Z,a€ o, beRB (96)
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and 0 otherwise. Then (K,Q) = tr(HG) is a linear function of G, so we can compute the value of
wq, (X|A; B) ps via a semidefinite program that maximizes tr(HG) over all positive semidefinite matrices
G satisfying the conditions listed above.

The second level of the NPA hierarchy is obtained by a similar SDP that involves a larger extended
Gram matrix G whose rows and columns are indexed by”

Yo =21 U(BaxTa)U(ZaxTe)U(EE x Bp). (97)

We extend the original set of vectors |1(s)) from Eq. (83) by defining new vectors for the remaining
elements s € ¥y \ X1 as follows:

My (a)My(a )|y if s = ((z,a),(2',a")) € Ta X X4,
[1h(s)) = ¢ Myu(a)Ny (V)|9) if s = ((z,a), (2',0)) € T x T, (98)
N (B)N (W)|w) if s = ((x,b),(2',V)) € Lp x Xp.

As before in Eq. (84), the entries of the extended G are also given by inner products (¢(s)[1(t)) for all
s,t € 3o, and we impose additional linear constraints on them similar to those in Eqs. (86) to (93) to
capture the fact that Alice and Bob’s operators describe mutually commuting projective measurements.

We denote by Qy € R% X% X% X% the set of all correlations @ for which there exists an extended Gram
matrix G € R¥2**2 that agrees with Q on X1, see Eq. (94), and which satisfies the linear constraints
for the second level of the NPA hierarchy. Note that Q> C Q since the second level imposes additional
constraints compared to the first level. Intuitively, the ¢-th level of the NPA hierarchy is obtained by
considering the Gram matrix of the vectors of the level £ — 1 plus new vectors obtained from products
of £ projectors, see [28, 20] for a more formal description.

For our analysis in Section 4.1, we consider the SDP for an intermediate level of the NPA hierarchy
between Q1 and Q, where G is the Gram matrix for the set of vectors labelled by

21+MN = 21 (] (ZA X ZB) (99)

We define Q14 analogously to Q; and Qs. Since X1 C X4y C 3o, we have Q1 D Q11 yny 2 Q2 D
Q and therefore

sSup <K7 Q> = Wit mn (X‘A7 B)PXAB > Wqs (X|A7 B)PXAB > wq(X|A; B)PXAB’ (100)

QEQi1+MN

C Three-party binary LSSD

In this appendix, we show (partially numerically) that there exist no probability distribution Pxagc,
where x,a,b and ¢ are all binary, such that the corresponding LSSD game can be won with higher
probability using no-signalling strategies than with classical strategies. We get to this conclusion by
showing that none of the no-signalling correlations at the extreme points of the no-signalling polytope
can ever perform better than classical strategies.

In the next subsection we discuss some results on optimal classical and no-signalling strategies. These
results allow us to discard some no-signalling strategies of which we know that they cannot perform better
than classical strategies. For the strategies that are left, we turn to linear programming to numerically
show that they also cannot perform better than classical.

C.1 Some results on optimal strategies

Multi-partite no-signalling correlations Up until now, we have only looked at correlations between
two parties. However, the concepts of locality and no-signalling can be extended to any finite number of
parties. We show how to do this extension for no-signalling correlations.

In the case of more than two parties, a correlation is no-signalling if no subset of parties J can
collectively signal to the rest of the parties I. So the output of the parties indexed by I cannot depend
on the input to the parties indexed by J.

"We omit X x ¥ 4 since Alice and Bob’s operators commute.
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Definition C.1 (Definition 11 in [22]). An m-partite correlation Qx,...x,,|A,--A,, 01 21X -+ X Xy X G X
“+ o X Gy, 08 called no-signalling if for any index set I C {1,...,m} and its complement J = {1,...,m}\ I
it holds that

Z Q($17$J|alan): Z Q(SL‘LI‘J’(L[,G{]% (101)

rgEX T EX
for allzy € Z7,a; € < and ay,d; € <.

The next lemma states that we can loosen the constraints a little and still be left with an equivalent
definition of no-signalling. Specifically, it states that it is sufficient to require that any single party cannot
signal to the rest.

Lemma C.2. Suppose Q is a m-partite correlation satisfying Eq. (101) for all index sets I such that
their complements J have cardinality 1 and for all x; € Z7,a; € 1 and ay,a; € 5. Then Q is a
no-signalling correlation.

Proof. We prove this lemma by induction on the cardinality of the complement J of an index set I. If
|J| = 1, condition (101) holds by assumption. Now suppose |J| = n, and let z; € Z7,a; € @ and
ay,a’; € oy. Take j € J and let J' = J\ {j}. We now find

> Qrnaslana)= > > Qrzy,zjlarar,a))

Ty EX S wJ/G%J/ ZjE%j

2SN Qs aglarar,d)

€L  x; €L

(D)
= Z Z Q(:C[,m,]/,xj‘a[,afp,a;-)

T EX v; €L

= Z Q(xfamJ‘aI7a{])a

z €EXy
where (i) follows by assumption on @ and (ii) by induction (we are free to exchange the sums). O

This first lemma is an extension of the classical part of Lemma 3.2 in the paper by Majenz et al. [9].
It gives a list of all deterministic strategies (or more accurately: winning probability thereof) we need
to consider in finding the optimal classical winning probability. The proof of this lemma relies on the
relatively simple observation that the players should have equal output sets (sets consisting of all values
they could possibly output according to their strategy).

Lemma C.3. Let Pxagc be a probability distribution over 2 X o/ x B x € with o = B = ={0,1}
and Z =[d], d > 2. The classical winning probability for Pxasc s given by

PX(S)a
Pxagc(s,0,0,0) + Pxagc(t,1,1,1),
wC(X‘A; B;C)p = max max Pxagc(s,1,0,0) + Pxagc(t,0,1,1), 5. (102)
okt Pxagc(s,0,1,0) + Pxagc(t, 1,0,1),
Pxagc(s,0,0,1) + Pxapc(t,1,1,0)

Proof. First, remember that we only have to consider deterministic strategies (see Section 3.1). Any
deterministic strategy can be represented by three functions f,g,h: {0,1} — 2. Given such a strategy,
the probability of winning is given by

> Puasc(@,a,b,0)8[f(a) = g(b) = h(c) = 2] = Y Pxasc(f(a),a,b,¢)d[f(a) = g(b) = h(c)]. (103)
z,a,b,c a,b,c

Notice that there is always an optimal strategy such that {f(0), f(1)} = {g(0),9(1)} = {h(0), h(1)}.
Suppose, for example, that for some a*, we have that f(a*) ¢ {g(0),g(1)}. It follows that é[f(a*) =
g(b) = h(c)] = 0 for all b, c. Changing Alice’s output on input a*, such that f(a*) € {¢g(0),g(1)}, causes
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5[f(a*) = g(b) = h(c)] to possibly be equal to 1 for some b, c. This change introduces non-negative terms
in the sum of Eq. (103), while not losing any others, thereby increasing the winning probability.

There are 5 possible ways in which we have {f(0), f(1)} = {g(0),¢(1)} = {h(0),h(1)}. The first is
that all players ignore their input and always output some fixed s. In this case, the probability of winning
is given by

Z PXABC(Saaab7 C) = PX(S) )

a,b,c

yielding the first term in Eq. (102). The other 4 possibilities are when they all take their input into
account:

« f(0) = g(0) = 1(0) and f(1) = g(1) = (1) or,

« f(1) = g(0) = 1(0) and f(0) = g(1) = (1) or,

« f(0) = g(1) = 1(0) and f(1) = g(0) = (1) or,

* f(0) =g(0) = h(1) and f(1) = g(1) = h(0).
defining £(0) =: s and f(1) =: ¢, the winning probability in each of these cases is equal to a term in
Eq. (102). O

Whereas the previous lemma reduced the number of interesting deterministic strategies, the next
lemma and its corollary will do so for no-signalling strategies.

Lemma C.4. Let P be a probability distribution over & X @/ X +++ X @y, with | 2| =d and d > 2. Let
Q be a no-signalling strategy for which

1
Q(z,...,z|a1,...,am) < g7

holds for all x € " and a1 € A, ..., am € p,. Then its winning probability in the LSSD game defined
by P is at most the best classical winning probability:

Z P(Jc,al,...,am)Q(a:,...,x‘al,...,am) < WC(X’Al;...;Am)p.

e
1€, Um €EFm

Proof. The proof relies on the simple fact that the m players can always use deterministic strategies
to win with at least probability 1/d by ignoring their inputs and guessing the value of x to be the
one most likely in P. The probability that the referee picks a certain value z is given by P(x) =
Y actyx-xa, P(x,a) and since ) P(x) = 1, there exists an z* € 2 such that P(z*) > 1/d. We

conclude that wC(X{Al; AR P > 1/d.
We use the previous argument to finish the proof:

Z P(x,al,...7am)Q(x7...,x|a17...,am)

reX
a1 €A ,y..oyQm €Ay

1
Sg Z P(x7af17"'aam):

reZ
a1 €ty ;u-#lvnedm

S WC(X|A1; cee Am)P-

Ul =

O

Corollary C.5. Consider an LSSD problem with m players defined by a distribution P for which
we(X|Ar; .. AR P < wns(X|A1; ... ; A )p. There is an optimal no-signalling strategy @ at one of the
vertices of the no-signalling polytope, such that there exist x € 2, with | Z'| =d, and a; € @, ...,am €
oy, for which Q(z, . .. ,x‘al, cey ) > 1/d.
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Proof. Since the set of all no-signalling strategies is a convex polytope, and the winning probability of a
no-signalling strategy is a linear function, we know that the optimal winning probability is achieved by a
strategy @ at one of the vertices of the polytope (see Section 2.2). We also know that there exist x € 2
and a1 € A, ..., a4y, € Dy, such that Q(x, ..., xla,...,ay) > 1/d, because otherwise this strategy would
not achieve winning probability higher than w.(X|A1;...; A )p by Lemma C.4. O

In the case of two players, we would now be done in showing that there is no binary LSSD game with
a gap between no-signalling and classical winning probabilities, since all no-signalling correlations at the
extreme points of the no-signalling polytope satisfy the conditions of Lemma C.3 [29, Theorem 1]. We
will see in the next section that for three players, this is not the case. However, Corollary C.5 is still
very useful as it eliminates many of the no-signalling strategies.

C.2  No gap between classical and no-signalling

Theorem C.6. w,(X|A;B;C)p = w.(X|A;B; C)p for all probability distributions Pxagc over binary
inputs and outputs.

Proof. Thanks to Eq. (9), we can equivalently show that

sup (wns (X|A; B; C) p — we(X|A; B; C) p) = 0.
P

Now we have turned the problem into an optimization problem. It is, however, not possible to solve this
problem using a single linear program, since the target function is not linear: the target function is the
maximum of the difference between two sets. Luckily, using Corollary C.5 and some additional tricks, we
can solve this problem using multiple linear programs.

First of all, we note that the set of all probability distributions Pxagc forms a convex polytope in R"™.
The polytope is defined by the following linear constraints:

Vm,a,b,c PXABC(I7aab7 C) >0,

and
Z PXABC(‘T, a, b, C) =1.

z,a,b,c

Apart from the variables that describe a probability distribution, we also add two variables c¢q and
s to the linear program, which represent w.(X|A; B; C)p and wys(X|A; B; C)p respectively. These two
variables should satisfy the following constraints:

Cd 2 Z PXABC(Z‘,CL,b,C)Qd(Jf,x,.ﬁla,b,C),

z,a,b,c

for all deterministic strategies (Qq and

Cns 2 Z PXABC(:Eva7ba C)Qns(l',.’ll,flf|a,b, 0)7 (104)

z,a,b,c

for all no-signalling strategies Qs at the vertices of the no-signalling polytope.

Now, the problem is to maximize c,s — ¢q, which is a linear function in two variables, so we can use
a linear program. However, since we have not put an upper bound on c,g, this problem is obviously
unbounded. We can work around this issue by changing one of the constraints in Eq. (104) to an
equality. Solving the linear program with one of these constraints set to an equality constraint gives
us the maximum gap under the assumption that the corresponding no-signalling strategy is the best
strategy. By considering all no-signalling strategies in this way we can find the maximum gap between
classical and no-signalling winning probabilities.

All that is left is to find the no-signalling strategies at the extreme points of the no-signalling polytope.
We can find them using a Python package called cddlib, which is based on a C package under the same
name [30]. Similar to linear programs, this package can provide all vertices of the polytope corresponding
to a given set of linear constraints. In our case the constraints say that the strategy Qs is a conditional
probability distribution on 273 x & x % x € and it is no-signalling (where we can use Lemma C.2
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to omit redundant constraints). We find with “three_player_polytope_extrema.py” [19] that this
no-signalling polytope has 53856 extreme points, which is in line with the findings of the paper by Pironio
et al. [31, Section 2.2].

Since the above number of extremal no-signalling strategies is quite large, we would like to reduce it
so that we need to solve fewer linear programs. Using Corollary C.5, there must be an optimal strategy
of a specific form, which reduces the number of relevant no-signalling strategies from 53856 to 174. In
addition, we can also use Lemma C.3 to reduce the number of relevant deterministic strategies from
20 = 64 to 10. This calculation is performed by “filter_three_player_strategies.py” [19].

Now that we have everything needed to find the maximum gap between binary three-party classical
and no-signalling strategies, we use the Mathematica notebook “Three-party binary LSSD.nb” [19] to
exactly solve the above 174 linear programs. In each case the optimal value is 0, meaning that there is no
binary LSSD game for three players such that no-signalling resources improve its winning probability. [
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