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Abstract

A mechanism of spontaneous symmetry breaking was used to explain the mass of
elementary particles and predicted the existence of the Higgs boson. The Higgs boson was
discovered in 2012 by the ATLAS and CMS experiments at the LHC with a mass of about
125 GeV. It now becomes necessary to study this new boson in order to validate the Standard
Model of elementary particles.

The Standard Model Higgs boson with a mass of 125 GeV decays most of the times to a
pair of b-quarks. However, this decay is very difficult to study in a proton-proton collider like
the LHC, due to the production of a huge background of b-jets (and also non-b-jets). In the
LHC, the only production process with some chance to be used in this study is the associated
production with a vector boson, which can decay leptonically allowing the identification
of the event. One can use three possibilities: a Z boson decaying to neutrinos (0-lepton
channel), a W boson decaying to an electron or muon and a neutrino (1-lepton channel) or
a Z boson decaying to a pair of electrons or muons (2-lepton channel). The latter channel is
the subject of this thesis. It is an interesting channel because the two charged leptons reduce
the multi-jet background more than the other channels and because this channel reconstructs
all the particles in the event.

The analysis of the 2-lepton channel, known as ZH analysis, considers only events with
high quality reconstructed particles. The two charged leptons are required to reconstruct the
Z boson and the b-quarks which are reconstructed as jets, are required to be identified as
b-jets (b-tagging) for the reconstruction of the Higgs boson. A statistical procedure uses
the events selected as input to a likelihood fit to obtain normalisations of the simulated
backgrounds from data and simulation comparisons and to extract the signal strength
parameter, U, that multiplies the cross section times the branching ratio from the prediction
for the Higgs boson from the Standard Model to adjust the ZH signal simulation process to
the data.

Both muons and electrons, used in the ZH analysis, are much better reconstructed
than jets. So, most of the effort in this thesis was dedicated to the improvement of the
jet reconstruction, in particular to the energy scale and uncertainty of the jets. I studied
two methods to help reduce the systematic uncertainty of the jet energy scale, the leading
experimental uncertainty of several physics analysis, with a important contribution to the ZH
search, since the Higgs decays to b-quarks that hadronize into jets.

First, I created a new trigger with the objective of selecting high-momenta isolated



charged hadrons to be used in the determination of the calorimeter response to single hadrons,
known as the single hadron response. In addition to extending the momentum range from
10 to 30 GeV, it did so in a high-pileup environment (pileup - number of interactions per
proton bunch crossing). This contributed to the validation of the test beam determination of
the jet energy scale uncertainty. For jets with pr above 1.8 TeV, for which the current in situ
techniques are not able to set the jet energy scale uncertainty, the single hadron response is
used to obtain this uncertainty.

I have tested a new jet calibration in the ZH analysis: the global sequential calibration
(GSC). This method was first developed to reduce the jet energy response dependence on the
jet flavour, for gluon and light quark jets. My contribution was the validation and detailed
performance studies for b-jets in general, and in particular for b-jets coming from the Higgs
boson decay. This new calibration improved the jet energy response by about 2 —3 % and
the jet energy resolution by about 20 %. Systematic uncertainties were evaluated for this
calibration. I derived specific b-jet systematic uncertainties for this calibration as well as the
uncertainties associated to differences between the ATLAS fast and full simulations.

The Standard Model Higgs boson decaying in bb is expected to produce a very small
excess of events in the invariant mass distribution of the two b-quarks. We need to have
the best possible resolution on this variable and since GSC was found to reduce the b-jet
jet energy response resolution, it was applied to the m,;, distribution. GSC improves the
invariant mass resolution up to 18 %.

I performed the ZH analysis using a cut-based method and a statistical procedure to
obtain the value of the signal strength parameter. A value of u = —0.69 4-1.29 was obtained.
This value is negative, but there is an enormous uncertainty, dominated by the statistical
uncertainty, and the result is still compatible with the Standard Model prediction for the
Higgs boson.

Key words: ATLAS, Higgs decays to b-quarks, ZH associated production, b-jet

calibration, Global Sequential Calibration.

Resumo

O mecanismo de quebra espontanea de simetria, que foi utilizado para explicar a massa
das particulas elementares do Modelo Padrdo, prevé a existéncia do bosdao de Higgs. O

bosao de Higgs foi apenas descoberto em 2012 pelas experiéncias ATLAS e CMS no LHC
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com uma massa de cerca de 125 GeV. Torna-se agora necessario estudar este novo bosao de

modo a validar o Modelo Padrao das particulas elementares.

O bosao de Higgs do Modelo Padrdo, com uma massa de 125 GeV, vai decair para
um par de quarks b na maioria das vezes. No entanto, este decaimento é bastante dificil
de estudar num colisionador de protdes como o LHC, devido ao enorme fundo de jatos
b (e jatos em geral) que sdo produzidos. No LHC, o unico processo de producdo com
alguma viabilidade para ser usado para estudar este decaimento € a produgdo associada a
um bosdo vetorial, que pode decair leptonicamente, proporcionando uma assinatura limpa
para identificar o evento. Aqui existem trés possibilidades: um bosdo Z que decai para
neutrinos (canal de O leptdes), um bosdao que W decai para um eletrdo ou um mudo carregado
e um neutrino (canal de 1 leptdao), ou um bosdo Z que decai para dois eletroes ou dois mudes
carregados (canal de 2 leptdes). Este tltimo canal foi o escolhido para esta tese. Neste canal
a presenca de dois leptdes carregados reduz o fundo de multi-jatos mais de que nos outros

canais e todas as particulas do acontecimento sdo reconstruidas.

A andlise do canal de dois leptdes, referida como andlise ZH, considera apenas
acontecimentos com particulas reconstruidas de elevada qualidade. Aos dois leptdes €
exigido que reconstruam o bosdo Z, e os quarks b, que sdo reconstruidos como jatos, tém
de ser identificados como jatos b (b-tagging). Um processo estatistico utiliza os eventos
candidatos num ajuste de verosimilhanca (likelihood) para obter as normalizacdes dos fundos
simulados e extrair o parametro de for¢a do sinal, u, definido como o quociente entre o
produto da secdo eficaz e a razdo de decaimento observados com respeito ao esperado no
Modelo Padrao.

Tanto os mudes como os eletrdes, utilizados na analise ZH, sio muito melhor
reconstruidos do que os jatos. Assim, o maior esfor¢o desta tese concentrou-se para melhorar
a reconstrucao de jatos, em particular a escala de energia dos jatos e a sua incerteza. Estudei
dois métodos que ajudaram a reduzir as incertezas sistemdticas da escala de incerteza dos
jatos, que € a maior incerteza sistemadtica experimental de vdrias andlises de pesquisa, com
uma boa contribui¢do para andlise ZH, uma vez que o bosdo de Higgs decai para quarks b

que hadronizam para jatos.

Comecei por criar um novo mecanismo de sele¢do de acontecimentos (trigger) com o
objetivo de escolher hadrdes carregados isolados de elevado momento, que seriam utilizados
na determinacdo da resposta em energia do calorimetro a hadrdes isolados. Gracas a este

trigger, passou a ser possivel utilizar hadrdes isolados produzidos em colisdes até um
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momento de 30 GeV/c, onde este limite era anteriormente de 10 GeV. Com esta amostra
de hadrdes isolados, pode calibrar-se a resposta do calorimetro em energia, obtendo-se
simultaneamente um zona de validag¢do da incerteza determinada para a escala de energia
dos jatos hadrénicos a partir de um teste de feixe de particulas com energias bem definidas
a partir de 20 GeV. O Trigger mostrou ainda a estabilidade da resposta num ambiente de
elevado empilhamento de sinais (pileup - ndmero de interagdes por colisdo de pacotes de
protoes).

Testei uma nova calibracdo da energia de jatos na andlise ZH: a calibracdo sequencial
global (GSC). Este método, foi em primeiro lugar, desenvolvido para reduzir a dependéncia
da resposta em energia dos jatos no sabor dos mesmos (jatos de gludes ou de quarks leves). A
minha contribuicao foi a validagao e o estudo detalhado do desempenho desta calibrag¢do para
jatos b em geral, e em particular para jatos b provenientes do decaimento do bosao de Higgs.
Esta nova calibragdo melhorou a resposta da energia dos jatos em 2 — 3 % e a resolugdo
em energia destes em 20 %. Avaliei os erros sistemadticos, derivei incertezas sistematicas
especificas para jatos b para esta calibragdo e ainda uma incerteza associada a diferencas
entre simulagdo rapida e completa do detetor ATLAS.

Espera-se que o bosdo de Higgs do Modelo Padrio a decair em bb produza um pequeno
excesso de eventos na distribuicdo de massa invariante do par de jatos b. Necessitamos
obter a melhor resolug@o possivel nesta varidvel e, como a calibracdo GSC mostrou reduzir
a resolucdo em energia dos jatos b, a massa invariante foi também testada com GSC. A
utilizacdo desta nova calibracdo melhorou a resolu¢do em massa até 18 %. Os estudos de
validagcdao e desempenho do GSC realizados permitiram a utilizacdo desta calibracdo na
andlise do ZH.

Desenvolvi uma andlise ZH independente utilizando um método de cortes e procedi-
mento estatistico. Obtive para o parametro forca de sinal o valor 4 = —0.69 4+ 1.29. Embora
negativo, este valor possui uma enorme incerteza, dominada pela incerteza estatistica, sendo
o resultado ainda compativel com a previsao para o bosao de Higgs feita pelo Modelo Padrio.

Palavra-chave: ATLAS, decaimento do Higgs para quarks-b, produ¢ado associada ZH,

calibragdo de jatos-b, Calibracao Sequencial Global.
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Sumario

O Modelo Padriao das particulas elementares é uma teoria quantica de campo que
explica trés das interagdes fundamentais da matéria: nuclear fraca, nuclear forte e eletro-
magnética. A interagdo nuclear forte é descrita pela simetria de gauge SU(3). As interagdes
eletromagnética e fraca foram unificadas através da simetria de gauge SU(2) x U(1), pelo
trabalho de Sheldon Glashow, Abdus Salam, e Steven Weinberg que lhes valeu o prémio
Nobel em 1979. O mecanismo de Englert-Brout-Higgs-Guralnik-Hagen-Kibble, proposto
separadamente por trés grupos distintos na década de 60 do século XX, explicava a massa
das particulas elementares através da quebra espontinea da simetria SU(2) x U(1). Este
modelo prevé a existéncia de uma nova particula escalar, o bosdo de Higgs. No entanto,
o modelo ndo conseguiu prever o valor da massa desta nova particula, e apenas existiam
alguns constrangimentos tedricos e experimentais. Os aceleradores LEP e Tevatrdo apenas
conseguiram fixar limites de exclusdo com uma um nivel de confianca de 95%, para massas
menores que 115 GeV e entre 158 e 175 GeV. O acelerador LHC colidiu protdes com uma
energia de centro de massa de /s=7TeV e 8 TeV em 2011 e 2012, respetivamente,
conseguindo excluir praticamente toda a regido de massa e, em 4 de Julho de 2012, as
experiéncias ATLAS e CMS anunciaram finalmente a descoberta do bosdo de Higgs com
uma massa de cerca de 125 GeV. No ano seguinte Peter Higgs e Frangois Englert partilharam

o prémio Nobel da Fisica.

ApOs a descoberta do bosao de Higgs e conhecida a sua massa, o Modelo Padrao
prevé com grande precisdo as suas propriedades. Para esta massa de 125 GeV, o bosdo
de Higgs possui um vasto leque de possibilidade de decaimento, sendo que o que tem
maior probabilidade é o decaimento para um par de quarks-b com 56.7%. No entanto,
este decaimento nao foi ainda observado devido ao elevado fundo de pares de quarks-b
que existe no LHC. Por cada bosio de Higgs produzido no LHC, este produz cerca de 10’
pares destes quarks, indistinguiveis do decaimento H — bb. Apenas utilizando a producio

associada do bosao de Higgs com um bosao vetorial ou um quark top, sera possivel estudar
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este decaimento no LHC.

A producgdo do bosdao de Higgs associada a producdo simultinea de um bosdo Z foi
utilizada para pesquisar o decaimento H — bb, quando o bosdo Z decai para dois leptdes
carregados. Isto permite escolher assinaturas limpas destes acontecimentos utilizando o
sistema de disparo (Trigger) do detetor ATLAS para selecionar eletrdes e mudes isolados
de alto momento transverso. Sele¢des adicionais na topologia dos acontecimentos permitem
ainda aumentar a fracdo destes provenientes do processo ZH — ¢¢/bb. A anilise destes
acontecimentos, denominada andlise ZH, constituiu o objetivo principal desta tese, onde
desenvolvi software para esta andlise que serviu como uma valida¢ao independente das outras
andlises que existem na colaboracdo ATLAS para o mesmo canal, com diferencgas inferiores

a um por mil.

O canal de pesquisa ZH — (¢bb inclui ainda a selecdio de dois leptdes carregados,
eletrdes ou mudes, com momento transverso superior a 25 GeV e um isolamento ao nivel
dos tracos de 10%. A massa invariante reconstruida com os dois leptdes devera estar
entre 83 e 99 GeV, compativel com a massa do bosdo Z, e a energia transversa em falta
no acontecimento deverd ser inferior a 60 GeV. Deverdo existir pelo menos dois jatos
no acontecimento, em que exatamente dois deles serdo identificados pelo algoritmo de
identificacdo de jatos-b (b-tagging) com uma eficiéncia de 80%. Apds esta selecdo, a andlise
¢ dividida em 30 regides ortogonais consoante a multiplicidade de jatos no acontecimento, a
eficiéncia com que estes sao identificados e 0 momento transverso do bosdo Z. Existem ainda
outras regides onde se preve que os fundos sejam dominantes. Em particular, consideram-se
as regides em que apenas um jato € identificado como proveniente de um quark-b ou em que

se requer que os dois leptdes tenham sabor diferente, i.e., um eletrdo e um muio.

As distribui¢des da massa invariante reconstruida pelos dois jatos-b sdo fornecidas a um
ajuste global (fit), juntamente com as incertezas sistemdticas tedricas e experimentais para
obter as normalizacOes das amostras dos fundos simulados e encontrar o parametro de “forca
de sinal” (¢t), que é um factor multiplicativo da normalizacdo da sec¢do eficaz do processo
ZH — (¢bb, de modo a que este parAmetro serd 1 se o bosio de Higgs se comportar como
o previsto pelo Modelo Padrdo. O ajuste dos dados reais de 2012 tiveram uma flutuagdo
estatistica negativa com respeito aos fundos e obtive o valor g = —0.69 £ 1.29 para o valor
do parametro da forca de sinal. Embora negativo, este valor encontra-se ainda compativel
com a previsdo do Modelo Padrao dado que existe uma grande incerteza, dominada pela

incerteza estatistica.



Das incertezas experimentais que afectam a andlise ZH, a incerteza na escala de energia
dos jatos € das mais relevantes. O mesmo se verifica para todas as pesquisas e medicoes
em ATLAS que utilizam jatos para aceder a informagdo dos quarks e gludes existentes no
estado final. Dediquei por isso parte do trabalho desta tese ao estudo destas incertezas. Em
particular, contribui para a valida¢do da resposta em energia do calorimetro de ATLAS a
hadrdes isolados, a principal responsdvel pela incerteza na escala de energia dos jatos para
momento transverso superior a 1.8 TeV. Fiz ainda a validacdo da utilizacdo de uma nova
calibracdo de jatos com o propdsito de melhorar a sua resolu¢do em energia quando aplicada

a jatos-b.

Antes do LHC entrar em funcionamento, uma sec¢ido do calorimetro foi usada em
testes com um feixe de pides com vdrias energias entre 20 GeV e 350 GeV, estabelecendo
a resposta em energia do calorimetro a hadrdes isolados. Ao comecgarem as colisdes no
LHC, foi possivel obter também esta resposta com colisdes protdo-protdo, para hadrdes
com energia no intervalo 0.4 < p < 10 GeV, mas ndo foi possivel estender esta regido a
zona entre 10 e 20 GeV, devido a falta de estatistica acima de 10 GeV. Nao existia nenhum
trigger capaz de obter os tragos alto momento isolados no calorimetro. Criei um novo trigger
que reconstruia todos os tracos com momento superior a 500 MeV e aplicava as mesmas
condicdes de isolamento que a andlise da resposta a hadrdes isolados. Este novo trigger
permitiu a validacdo da incerteza na escala de energia dos jatos, utilizando a resposta do

calorimetro a hadrdes isolados.

A andlise ZH utilizou uma nova calibracdo de jatos, a calibracdo sequencial global
(GSC), desenvolvida para reduzir a dependéncia na resposta em energia de jatos iniciados
por quarks e por gludes. Complementarmente ao trabalho ja referido, testei a aplicagdo
desta calibracdo a jatos-b, quando resultantes de uma ressonancia sem cor, como € o caso do
decaimento do bosio de Higgs para bb. Ficou demonstrado que esta calibracio melhorou
a resposta em energia destes jatos em 2 — 3% e que a sua resolu¢do em energia obteve
melhorias de 20%, em concordancia com o esperado para uma amostra de jatos inclusiva

em sabor.

Foram avaliadas duas incertezas sistematicas relacionadas com a utilizacdo da calib-
racdo GSC em amostras simuladas especificas. Primeiro, a incerteza medida utilizando
a calibracdo anterior foi comparada com as diferencas entre as respostas em energia dos
jatos para varios processos de produgdo de jatos-b, sensivel a alteracdes de modelos de

chuveiro parténico e de hadronizacdo, confirmando que a incerteza calculada anteriormente

X1



se mantinha quando GSC era aplicada. Adicionalmente, avaliei a utilizacdo desta nova
calibracdo na simulagdo répida do detetor, que incluiu uma parametrizacao da resposta em
energia do calorimetro. Esta simulac¢do foi utilizada de forma geral nas amostras dos diversos
processos de sinal e fundo da andlise ZH. Descobri que no caso de se utilizar a simulagdo
rapida do detetor, a incerteza estava subestimada por 0.5% e portanto tinha de ser corrigida.
No entanto, a melhoria obtida na utilizagdo de GSC foi suficiente para que esta incerteza
extra ndo penalizasse a andlise ZH.

Foi estudado ainda o impacto direto da nova calibra¢do na resolucdo da distribui¢do da
massa invariante reconstruida pelos dois jatos-b. A amostra de sinal que simulou o processo
ZH — (/bb foi testada com e sem a calibracio GSC, tendo-se obtido melhorias na resolucio
da massa my,j; até 18% apds a nova calibracdo. Os estudos detalhados do desempenho da
calibracao GSC e das incertezas associadas permitiu a sua utilizacdo nao sé na anélise do ZH
como também nos outros canais de pesquisa do H — bb WH (1 leptdo) e o ZH (0-leptdes),

contribuindo para melhorar os resultados existentes.
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1. The Higgs boson in the Standard
Model

“For He gave me sound
knowledge of what exists, that |
might know the structure of the
universe and the force of its

elements.”

(Book of Wisdom, 7,17 (NABRE))
1.1. Introduction

Far from giving a detailed description of the Standard Model (SM), this chapter will
give but a small set of considerations needed to understand the main topic of this dissertation.
A detailed description of electroweak theory can be in the historical references [1, 2, 3] and
particle physics reviews [4} 5, 6]. Those provided in the bibliography are but a few of the

available references.

1.2. Particles in the Standard Model

Figure [I.1] summarises the list of elementary particles in the Standard Model. The
fermions are represented by a square box, where {d,u,s,c,b,t} are the quarks down, up,
strange, charm, bottom and top, respectively. The quarks and the gluons are the only particles
that interact with the strong force, whose carriers are the eight gluons, g, that form the base
of the quantum chromodynamics. In the last two columns, the leptons are presented. The
charged leptons are the electron, the muon and the tau, represented by {e, i, T}, respectively.
Together with the quarks, they interact through the electromagnetic force, whose carrier is
the photon, y. The neutral leptons are the neutrinos and are represented by the Greek letter v

with an index indicating the flavour of the neutrino. The neutrinos can only interact through
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EM force

Figure 1.1.: The Standard Model elementary particles. Squares represent fermions
and circles represent bosons. The rectangles enclose the particles
subjected to the three forces contemplated in the Standard Model: the
strong force in green, the weak force in blue and the electromagnetic
force in yellow. The direct interaction of the Higgs boson with the
particles depends on the mass of the particles. The neutrinos are
considered massless in the Standard Model.

the weak force, whose carriers are the W and the Z bosons. Furthermore, all other particles
interact with the weak bosons except the gluon. All elementary particles interact with the
Higgs field, proportionally to their masses. Since the gluon and the photon are massless, they
do not interact directly with the Higgs boson at leading-order, although they can interact at
higher order. The neutrinos are also considered to be massless in the Standard Model and
therefore do not interact with the Higgs field. El

Table [I.1] summarises the charge, mass and spin for each elementary particles. The
particles of each type are presented in order of increasing mass. The uncertainties on the
electron and muon masses are in the 8™ and 9™ significant figure, respectively, and for this
reason, are not presented. Reference [4] also provides mass limits to neutrinos, photons and
gluons but, in this thesis, their masses are considered to be zero for all practical matters.
Relative to the electron charge, all quarks have a fractional charge. For each of the fermions,

there is also a corresponding anti-fermion, with the same properties but opposite charge. In

'Neutrinos were found to have very small masses, resulting in a negligible interaction with the Higgs field.
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Name Symbol | Type | Spin Mass | Charge

up u Quark | 1/2 22708 MeV | +2/3

down d Quark | 1/2 47702 MeV | —1/3

strange s Quark | 1/2 9678 MeV | —1/3

charm c Quark | 1/2 1.27+0.03 GeV | +2/3

. | bottom | b Quark | 1/2 418709 Gev | —1/3

é top t Quark | 1/2 173.21+0.87 GeV | +2/3

E e-neutrino | Vv, Lepton | 1/2 0 0

U-neutrino | Vy Lepton | 1/2 0 0

T-neutrino | Vg Lepton | 1/2 0 0

electron | e Lepton | 1/2 0.511 MeV —1

muon u Lepton | 1/2 105.7 MeV —1

tau T Lepton | 1/2 1776.86 +0.12 MeV —1

photon Y Boson 1 0 0

2 gluon g Boson 1 0 0

% W= Boson 1 80.385+0.015 GeV -1
[aa) W boson

wt Boson | 1 80.385+0.015 GeV +1

Z boson VA Boson 1 |91.1876 £0.0021 GeV 0

Higgs boson | H Boson 0 125.09 £0.24 GeV 0

Table 1.1.: List of properties of the particles in the Standard Model. All non-null
mass values were taken from reference [4].

the charged leptons, the particles have a negative charge and are thus identified by the sign
they have. The remaining anti-particles are identified with a bar on top of the symbol (i.e. b
or V,). All fermions have semi-integer spin, 1/2, and all bosons have an integer spin: 0 for

the Higgs boson and 1 for the remaining.

Only quarks and gluons interact through the strong force as they are the only particles
that have a colour quantum number different from zero. In nature, no coloured particle exists
freely. If a collision creates either quarks or gluons, they will have to recombine so that any
final particles will be colourless. This recombination process is referred as hadronization
and can create mesons, formed by one quark and one anti-quark, or baryons, formed by
three quarks or three anti-quarks. The only exception is the top quark, with decay width of

1.41 GeV, that decays to a W boson and a b-quark before hadronizing. Other top decays
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are suppressed but allowed. The name hadron is given to any particle composed of quarks.
All hadrons are unstable and decay into other particles except the proton. The neutron is
also considered to be stable since its decay to the proton, n — pe™ V,, has a half-live of
880.2 4+ 1.0 s [4]. Any neutron produced in the proton-proton collision, that does not interact
with the detector, will decay outside of it. Very important for the subject of this thesis are the

B-hadrons, which are hadrons that contain at least one bottom quark.

1.3. Description of electroweak theory

There are four fundamental interactions in nature: electromagnetic, weak, strong and
gravitation. Except for the latter, they are mathematically well described using quantum
field theories, which combine both quantum mechanics and special relativity. Glashow,
Salam and Weinberg introduced the unification of the electromagnetic and weak interaction,
into the electroweak theory, which could be described by the SU(2);, x U(1)y symmetry
group [7, [8]. The electroweak theory established the foundation for the strong quantum
field theory using the SU(3). symmetry group, which is known separately as quantum
chromodynamics (QCD). The Standard Model of Elementary Particles then combines the
three symmetry groups and the Lagrangian of equation [I.1] that is used to describe the

interactions between all elementary particles.

In this section, the indices ¢ and v vary from O to 3, indicating the time-like and the
three space-like coordinates of the Lorentz quadri-vectors. The combination of two indices

result in a Lorentz tensor that corresponds to a 4 x4 matrix.

1 1. - 1
L = _ZBIJVBHV T2 uyWHY — ZGﬁngv

3
+ Z {QamQa + mmuaﬁ + doc,Rlﬁda,R +E¢La "’mmeaﬁ + /’l.C.} (1 -1)

a=1

In this Lagrangian, the triplet WHV and the singlet B,y are the electroweak field strength
tensors obtained from the massless gauge fields of the SU(2), and U(1)y groups, W, and By,
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respectively, defined as:

Buv :8,U.BV — 8\/B'u_

where gw is the electroweak coupling. The third term in equation |1.1| represents the strong
field tensors and describes the interactions between the eight gauge bosons of the SU(3)

group, the gluons, represented by G in equation 1.3
Gy =0uGy — 0yGl + g5 f GGy, witha=1,....8 (1.3)
where gg is the strong interaction coupling and the f?*¢ are the 3 x 3 matrices equivalent to

the Pauli matrices, known as the Gell-Mann “A-matrices”.

The second line of the Lagrangian describes the interactions between the gauge fields
and the three fermions families (@ = 1,2,3), where the covariant derivative to obtain an

invariant Lagrangian is given by:

= 1 . l
The three components of weak isospin, T, is given by the Pauli matrices as T = % and Y
is the hypercharge obtained from a linear combination of the particle charge and the third

component of the weak isospin. ¥ and T are the generators of the electroweak field. The A,

represent the eight generators of the QCD field, associated to the eight gluons.

In equation the u, d and e symbols represent the right-handed weak isosinglets up

quark, down quark and electron, respectively and the Q and L symbols represent the left-

V, u
L=|"* ,Q=<) , (1.5)
<€ )L d L

Finally, the Standard Model does not predict right handed terms to neutrinos, and these are

handed weak isodoublets as:

considered to be massless in this thesis.
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1.4. The Higgs mechanism

The Standard Model Lagrangian in equation [1.1|predicts a zero mass for all elementary
particles, ensuring an invariant Lagrangian under local gauge transformations. Including
explicit mass terms for these particles breaks the symmetry and the Lagrangian is no longer
invariant. However, experimentally it is known that many elementary particles have mass
and, in particular, the W and Z bosons and the top quark are extremely massive.

The Higgs mechanismﬂ [9, 10} [11]] uses spontaneous breaking of the SU(2), x U(1)y
symmetry to provide mass to the W and Z bosons, maintaining the photon massless. It
predicts the existence of a new scalar field, ¢. This scalar field has a potential form as shown
in equation

V() =u*(979)+1(979)? (1.6)

with a negative value for the u? parameter.
The Lagrangian for the interaction between the gauge fields and this new field is shown
in equation
£ = (Dug)" (D*9) =V (9) (1.7)

where the covariant derivative, from equation @, does not include the term related to the
quantum chromodynamics, since the Higgs boson does not have strong interaction.

If there would be only one massive gauge boson, the simplest scalar field that can be
considered is a complex scalar, ¢ = (¢ +i¢,)/ /2. Tt is possible to represent the potential
from equation [I.6] in a two-dimensional graphic as the one in figure [[.2] The ball placed
at the origin of the referential represents the universe where the interactions obtained by the
Lagrangian preserve the symmetries and all particles are massless. As the system cools down,
the universe will choose a ground state from the circle of minima that satisfies the equation
(])12 + ¢22 = u?/A2. By changing the coordinate system to be centred in the considered vacuum
minimum, the system breaks the symmetry spontaneously. From the interaction of the scalar
field with the single massive gauge boson in this hypothetical universe, the gauge boson gains
mass, and an additional degree of freedom appears which is associated with the mass term

of the scalar field.

Since there are three massive gauge bosons, the minimum degrees of freedom required

>The Higgs mechanism should, in fact, be denominated as the Englert-Brout-Higgs-Guralnik-Hagen-Kibble
mechanism to account all the developers that, working in three independent groups, arrived to the same
conclusion.
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V(H)

Im(H)
Re(H)

Figure 1.2.: [llustration of the spontaneous symmetry breaking in two dimensions.
The particle at the local maximum of energy has symmetry and no mass.
A perturbation on the system sends the particle to a state of minimum
energy, and it acquires mass from the symmetry breaking [12].

for the scalar field is four, and it is usually represented by a complex doublet, shown in

equation [[.§]
_foT 1 [oi+ig) [ O
= <¢0> V2 <¢3+i¢4> B <v+h> (1.8)

The right term in this equation, shows already the coordinate change to a specific (simplest)
vacuum, where v is the vacuum expected value and 4 is the real scalar field. With the complex
doublet, one obtains the mass terms for the three massive gauge bosons and again a single
mass term for the scalar field associated with a new particle, the Higgs boson. The mass of

this new boson is given by:
my = \/ —2u? (1.9)

The interaction term between the gauge bosons and this scalar field appears in
equation in the covariant derivative. Applying the spontaneous symmetry breaking to
the Higgs Lagrangian part in equation the mass terms for the W= boson result from the
linear combination of the gauge fields Wl} and Wﬁ and the mass terms for the Z boson and

the photon from the linear combination between the Wﬁ and By,.
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1
+ _ 1 s 72

Wi =5 (Wi Fiwg) (1.10)
Zy =W, cos Oy — By sin By (1.11)

Ay =W, sin 6y + By cos By (1.12)

Equations to summarise the relations between gauge bosons and physical
particles, with the weak mixing angle, Oy, relating the electroweak couplings in equa-

tion [[L.131

ge = gw Sin By = gz sin By cos Oy (1.13)

The Lagrangian in equation predicts also triple and quartic couplings between the
weak bosons and also triple and quartic self-interacting couplings of the Higgs boson.
A final interaction is introduced between the new scalar field and the fermions, which

is known as the Yukawa interaction and it is represented by the Lagrangian in equation[I.14]

3
2L = Z {_)Ld,aQ‘Pda - Au,aQaua - le,al:(l)ea —l—h.C.} (1.14)
a=1

The scalar field links the left-hand-side with the right-hand-side fermions providing the
mass term and the interactions between each fermion and the Higgs boson, which obeys

to equation |l.1

A= \/5? (1.15)

Therefore, the Higgs boson probability of interaction with the fermion is proportional to the
mass of the fermion (my), with the vacuum expectation value: v = 246 GeV. This Lagrangian

is again considered for the three families of fermions: o = 1,2, 3.

1.5. Higgs boson phenomenology

1.5.1. Higgs boson production at LHC

The Large Hadron Collider (LHC) at CERN collided protons with a centre of mass
energy /s =8 TeV during 2012 data taking. Protons have internal structure, as they are
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composed of three valence quarks, up-up-down, and a sea of gluons, that mediate their
interactions. Additionally, a gluon can give origin to two or three other gluons and can
also split into a quark-anti-quark pair with the same flavour. Parton distribution functions,
PDF(x,Q?), represent the probability of finding a certain quark or gluon (parton) inside the
proton with a specific momentum fraction of the proton, x, when probed with an energy
squared of Q2. Cross section is the probability that two particles will collide and react in
a certain way, so in a proton-proton collision it is the probability of interaction between a
parton from each proton in a process to produce some possible final state. So, the cross
section is in turn proportional to the probability that the process between two partons occurs,
which can be calculated by perturbation theory, and to the PDF of each parton. When two
protons collide, there can be one or more interactions between the two gluons, between a
gluon and a quark or between two quarks. These interactions can produce any number of

particles of any type.

(c) W boson association (d) Z boson association

Figure 1.3.: Feynman diagrams for the main Higgs boson production processes at
the LHC.

Figure [[.3] shows the leading Feynman diagrams of the four Higgs boson production
processes with the largest cross sections for collisions at a centre of mass energy of
Vs =8 TeV and, in Figure the production cross section corresponding to these processes

is shown as a function of the Higgs boson mass. The most important production mode is
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Figure 1.4.: Higgs production cross section and respective uncertainties as a function
of the Higgs boson mass [[13]].

the gluon fusion process shown by the blue curve. The Higgs can only interact indirectly
with gluons, through a quark loop, as shown in Figure Although the loop reduces
significantly the process gg — H, the gluons are the most abundant particles in the proton
at high energies. Since the probability of the Higgs boson interaction with the quark in
the loop scales with the square of the mass of that quark, other quark contributions than
the top quark are negligible (< 0.1 %). The graph identified as pp — H in figure [.4] also
shows an increase in cross section if the Higgs boson had twice the top quark mass, in
which the top quarks in the loop would become real. The second leading production process,
corresponding in first order to the Feynman diagram shown in Figure is vector boson
fusion. Two quarks radiate vector bosons W or Z, which interact, giving origin to a Higgs
boson. This production mechanism, identified as pp — ggH in figure [1.4] has about one
order of magnitude lower cross section, except at very large Higgs boson mass. The next
leading process is the associated production of the Higgs boson with a W or a Z boson. Their
dominant Feynman diagrams are shown in figures[I.3 (c)land [I.3 (d)] respectively. Figure[I.4]

shows a faster decrease in cross section for these two production processes as the mass of
the Higgs boson increases than for vector boson fusion. The cross section production for
the WH process is roughly twice that for ZH. These two production processes are commonly
referred to as VH production. Figure[I.4also shows the Higgs boson cross section production

associated with a pair of top quarks, with about a factor of five below the value of the cross

10
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section production of ZH.

1.5.2. Higgs boson decay modes

Wz
() H—>VV by H— ff (c) H — gg (d) H— yy
Figure 1.5.: Feynman diagrams for the Higgs boson decays.
Figure |_1§] shows the four possible Higgs boson decays to vector bosons or fermions.

The decay to gluons mirrors the gluon fusion production and, in the decay to photons, the

loop may include W bosons or quarks.
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Figure 1.6.: Branching ratios with total uncertainty (a) and total decay width, I', of
the Higgs boson as a function of its mass (b) [13]].
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Figure shows the branching ratios, as a function of the Higgs boson mass. The
branching ratio is the ratio between the individual decay width, I'x, and the total decay width
of the Higgs boson. The total uncertainty is also shown by the coloured bands for each decay.
Figure shows the total decay width of the Higgs boson as a function of the Higgs
mass. As the mass of the Higgs boson increases, decays to particles with larger masses
become possible. At very low masses, below 100 GeV, the Higgs decays in the majority
of the cases to a b-quark pair, with contributions from 77, gg and c¢ in the 5-10 % range.
Remaining contributions account for less than 1 %. In the mass range from 100 to 180 GeV,
there are several alternatives, as the Higgs boson mass starts to allow the production of W
and Z boson pairs. In the high-mass region, between 180 and 350 GeV, the decay to WW
and ZZ dominates the possibilities, with other decay alternatives having a branching ratio
below 1 %. At 350 GeV, the Higgs boson can also decay to ¢7 and the decay to gluon-gluon
also rises. The branching ratio for the 7 decay decreases afterwards because the partial width
from the vector boson decays increase faster for higher masses.

Since partial decay widths of the vector bosons rise faster than those for fermions as the

Higgs boson mass increases, the branching ratio to the latter decreases again.

1.6. Higgs discovery and measurements

Although the Higgs boson mass was not known a priori in the Standard Model, there
were some theoretical and experimental constraints on the Higgs boson mass before the
LHC. From the experimental constraints such as vector bosons and top quark masses,
and using the GFITTER tool, a Higgs mass of my = (933? ) GeV [[14] was obtained, as
shown in figure [I.7] The exclusion limit from searches for the Higgs boson at LEP was
114.4 GeV [135]]. Additionally, Tevatron excluded the Higgs boson mass region between 158
and 175 GeV with a confidence level of 95 % [16]]. The theoretical constraints include the
requirement that the VV — VV scattering amplitude should conserve unitary, the quartic
coupling of the Higgs boson and the stability of the vacuum [3].

The LHC expected to either find the Higgs boson or to set exclusion limits on its mass
up to 1 TeV, using different channels. A channel is the combination of one production
process and one specific decay mode characterized by certain experimental signatures. The
most relevant search channels combined the gluon-fusion production with the Higgs decays

WW, ZZ, with leptonic decays of the vector bosons, which offer clear signatures. Also with

12
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Figure 1.7.: Standard Model best fit for the Higgs boson mass with and without
considering the measurements of ATLAS (pink marker) and CMS
(yellow marker) experiments [14].

clear signature is the H — Yy decay, important for low Higgs boson masses. The LHC was
able to set exclusion limits to nearly all the Higgs mass range and, in 2012, the ATLAS
and CMS [[17, [18]] experiments finally announced the discovery of the Higgs boson with
a mass near 125 GeV. Figure shows also the two mass values obtained for these two
experiments and the best fit including the most recent measurements. The final combination
for the Higgs mass from the two experiments, at the end of LHC Run-1 data taking, was
125.09 +0.21(stat) £0.11(syst) GeV [19].

The observation of Higgs couplings to fermions, in the H — 77 channel, was recently
done combining the results from ATLAS and CMS experiments. However, there is no direct
observation of the coupling of the Higgs boson to quarks, although the H — bb decay has the
leading branching ratio for a 125 GeV Higgs boson, (57.541.9) %. This is due to the very
large background of b-quark pairs produced in the proton-proton collision at the LHC. Other
missing measurements are the Higgs coupling to the first and second family of fermions and
the Higgs self-coupling. The Higgs decay to muons and its self-coupling are some of the
objectives of the High Luminosity LHC (HL-LHC) [20]. Since the first family of fermions
have very small masses, their interaction with the Higgs boson should be very faint, and such

measurements are impossible in a hadron collider, due to the significant background.

The compatibility of the experimental results with the theoretical results is measured

13
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by the signal strength parameter, which is defined by the ratio between what is observed and
what is predicted by the Standard Model, combining the cross section production and the

branching ratios of the Higgs boson of all possibilities as described by equation

_ Ogxp X BReyp

— (1.16)
Otheo X Btheo

The product of the cross section times the branching ratio of a certain search channel,
with a production i and decay f of the Higgs boson (i -=H— f), can also be parametrized by
a set of coupling modifiers, the k-factors, that measure possible deviations on the fermionic
and bosonic couplings with the Higgs boson expected by the Standard Model [21, 22], as

shown in equation[I.17}

oi(k) x IV (k)

o; x BR/ =
i FH

(1.17)

where I'y is the total width of the Higgs boson and I'/ is the partial width of each decay
channel. The coupling modifiers are obtained from equation [I.1§] for a given production

process i or decay mode f.

2 G 2 _ 1y
1

The best available higher-order QCD and EW corrections are used to take into account
possible correlations between different production (decay) mechanism that contribute to the
cross-section (partial decay width). For example, in the decay of the Higgs boson to a pair of
photons, one needs to consider in interference between the top quark and the W boson in the
loop [22]. The data collected by the LHC is then fitted to the Standard Model prediction and
the coupling modifiers are extracted. This is often simplified by considering all fermionic

(kp) from bosonic (ky) coupling modifiers to be the same:
ky =kz =ky =k, =k, and kr=k =k,=...=kc =k, =k, (1.19)

Figure[I.§shows the kg-ky fit, combining ATLAS and CMS data, obtained for the individual
Higgs boson decay modes (coloured crosses) and the best combined fit (gray cross). The
68 % confidence level is shown for each marker by the filled lines and the 95 % confidence

level is shown for the combined fit. The Standard Model, shown by the star marker, is inside
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Figure 1.8.: Measured k-factors relation between fermions (k{:) and bosons (k{,),
for the different decay modes of the Higgs boson, shown by different
colours.  The region delimited by the black line indicates the
combination of all channels. The prediction for the Standard Model
Higgs boson, shown by the sfar marker is inside the 68 % confidence
level from the best fit of the ATLAS and CMS combined measurement,
shown by the black cross marker [22]].

the 1 standard deviation region from all fits.

According to the Standard Model prediction, the Higgs boson should have a spin-parity
JP =0%. Both ATLAS and CMS [23]24]] have tested other possible spin-parity combinations
against this prediction and have rejected all the considered alternatives with a confidence
level larger than 95 %, using the Higgs bosonic decays and LHC collisions at /s =7 TeV
and /s = 8 TeV. Most of these measurements are based on angular correlations of the decay

products that are then combined in multivariate analysis.

1.7. The H — bb decay search

The largest expected branching ratio of the Higgs boson corresponds to the decay to a

b-quark pair, with 57.5 %. The H — bb channel is the best one to measure the Higgs boson
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1. The Higgs boson in the Standard Model
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Figure 1.9.: Production cross section for a given channel and correspondent event
rate estimate production for the nominal LHC Luminosity [25]].

direct coupling to quarks and it also constrains experimentally the decay width of the Higgs
boson that can be used to infer if this is indeed the Higgs boson predicted by the Standard
Model.

There is, however, a significant caveat in the H — bb searches: the high background
of this decay channel. For every H — bb decay, LHC produces additionally about 107 bb
pairs, as shown 1in figure [1.9) and also an order of magnitude more of lighter quark pairs.
It is, therefore, impossible to detect the Higgs boson in the bb decay channel in the gluon-
fusion dominant process. The Higgs boson production process with the second largest cross
section, vector boson fusion, only has quarks in the final state with no clear signature. In

the associated production with a vector boson, leptons from the W/Z decays can provide a
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1.7. The H — bb decay search

clean trigger signature. The associated production with a b-quark pair has the same problem
again as the gluon-fusion, although with a smaller background. The associated production
with a top pair can use the top decay t — Wb with large branching ratio and choose events in
which one or both W bosons decays to a charged lepton and a neutrino to trigger the event.
This production process, however, has a cross section of about an order of magnitude lower
than the associated production with a vector boson at the centre of mass energy /s = 8 TeV.
Therefore, the most promising channel to study this decay is the Higgs boson associated
production with a W or a Z boson. This thesis focus the latter, in which the Z boson decays

to an electron or a muon pair.
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2. The ATLAS Experiment

“(A light-year) it's something they
invented, since it would take all
the paper in the world to write
such large distances between

stars.”

(Mario Sargedas, grandfather)

2.1. CERN and the LHC

Founded in 1954, CERN has been since then responsible for a remarkable progress in
physics and technology [26]. CERN’s first accelerator, the Synchro-Cyclotron (SC), reached
an energy of 600 MeV and the first experiments in nuclear and particle physics at CERN
used its beam.

In 1964, the SC accelerator was assigned to the nuclear physics area and since 1967 up
to its end, supplied beam to the ISOLDE facility for the production of short-lived isotopes.

Particle physics abandoned the SC as a new generation of accelerators was born. The
Proton Synchrotron (PS) accelerates protons since 1959, reaching a beam energy of 28 GeV.
After the seventies, CERN started to construct larger accelerators, so the PS was no longer
the primary place to do experiments. The PS became the supplier of particles for the new
machines, something that it still does in our days.

Scientists realised that the available collision energy could almost be doubled if, instead
of colliding a beam into a target, two beams were made to collide with each other. Thus, the
Intersecting Storage Rings (ISR) collider began its operation in 1971 with the objective of
using two beams from PS, achieving the first collisions between two proton beams. The ISR
had a diameter of 300 meters. From then on, new collidors with increasing diameter rings
were built, increasing the collision energy.

In 1976, the Super Proton Synchrotron (SPS) was finished, with a perimeter of 7

kilometres and with two main experimental sites: Meyrin and Prevessin. Using the protons
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2. The ATLAS Experiment

provided by the PS, this accelerator increased the beam energy up to 300 GeV (working
nowadays with energies of 450 GeV). With the SPS, it was possible to measure direct CP
violation in the kaon-sector, to probe for the first time the internal structure of the proton
and to look to conditions similar to the seconds following the Big-Bang. In 1979, SPS
was converted into a proton-anti-proton collider (SPPS), to enable the same electric field to
accelerate both beams. The primary goal was to find the Z and W bosons responsible for
the weak interaction. Their masses were predicted, and collisions started. Finally, they were
discovered in 1983, and for this accomplishment, the Nobel Prize in Physics was awarded

the following year to Carlo Rubbia and Simon van der Meer.

A still more daring project was planned: to build an electron-positron collider with a
perimeter of 27 kilometres. The construction started in 1985 and took four years to complete.
The Large Electron-Positron collider (LEP) was in operation during seven years at 100 GeV,
having produced about 17 million Z bosons. To bend the beam trajectories, LEP had 5176
magnets and 218 accelerating cavities. Increasing the number of cavities to 288 and using
superconductor technology it doubled the energy, allowing the production of W boson pairs.
This accelerator was closed at the end of 2000 so that the LHC installation could start.

Meanwhile, the Tevatron collider at Fermilab was the direct competition of CERN,
and it produced and detected the top quark, in 1995, completing the third generation of
quarks [27, 28].

Finally, the current accelerator in use is the Large Hadron Collider (LHC). Reusing
the tunnel located 100 meters deep constructed for LEP, the LHC accelerates protons very

close to the speed of light, producing collisions with a design centre of mass energy of
s =14 TeV.

The LHC operation started in September 2008, only to stop one week later due to a
liquid helium leak which caused one of the magnets to increase its temperature over 100 °C.
The experiments used the following year downtime to commission the detectors using data
from cosmic rays. After this stop, in November 24" 2009, the LHC operation was finally
restarted, having registered the first collisions at /s = 2.36 TeV. A milestone was achieved
in March 19" 2010 when the beam reached a record energy of 3.5 TeV. At the end of March,
the two beams were colliding with a centre of mass energy of /s =7 TeV which was used
until the end of 2011 to search for new physics and to perform many measurements. A total
of 5.46 — 6.10 fb~! of proton-proton collisions were delivered to the experiments during this

period. In 2012, the accelerator increased the centre of mass energy to /s = 8 TeV, which
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led to the discovery of the Higgs boson. During this year, LHC delivered to ATLAS proton-
proton collisions with an integrated luminosity of 22.8 fb~!. In 2015, the LHC increased
its centre of mass energy to /s = 13 TeV, after about a 2-year shut-down period. The total

integrated luminosity delivered to the experiments in that year was about 4 fb—!,

2.1.1. Main experiments

CERN Accelerators

ALICE

— PFOLONS

—  antiprotons

—  ions
neutrinos to Gran Sasso (1)

LLHC: Large Hadron Collider
SPS: Super Proton Synchrotron
AD: Antiproton Decelerator
ISOLDE: Isotope Separator OnLine DEvice Gm_'{'gi“:i‘: @
PSB: Proton Synchrotron Booster

PS: Proton Synchrotron

LINAC: LINear ACcelerator

LEIR: Low Energy lon Ring

CNGS: Cern Neutrinos to Gran Sasso

Figure 2.1.: The CERN accelerator complex and locations of the main experi-

ments [29]].

The previous CERN accelerators are used now as pre-accelerators as shown in
figure 2.1} There are several experiments installed at the points where the LHC beams
intersect, and the collision symbols represent their positions. The most important are
ATLAS, CMS, ALICE, and LHCb. ATLAS and CMS are both general purpose experiments,
and ALICE and LHCb are dedicated ones. The purpose of ALICE is to study the collisions
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2. The ATLAS Experiment

between heavy ions, with the primary objective of studying the quark-gluon plasma. ALICE,
ATLAS and CMS try to have a full coverage around the interaction point. LHCb has only
forward coverage, as it studies CP violation in the B-meson sector and the physics of the

bottom quark, which events are produced close to the beam direction.

2.2. The ATLAS detector

Muon Detectors Tile Calorimeter Liguid Argon Calorimeter

Toroid Magnets Solenoid Magnet 5SCT Tracker Pixel Detector TRT Tracker

Figure 2.2.: The ATLAS detector [29]].

The ATLAS (A Toroidal LHC ApparatuS) detector, shown in figure 2.2] is a general
purpose detector that studies the fundamental interactions of the elementary particles.
An extensive description of the ATLAS detector and its performance can be found in
references [30} 31]].

ATLAS is one of the experiments that have discovered the Higgs boson, validating the
mechanism responsible for the origin of the mass of the elementary particles according to
the Standard Model, discussed in chapter [I, ATLAS has an extensive physics program. In
addition to revalidating the measurements of the Standard Model and continuing the study of
this new particle, it also tries to find evidence of the dark matter, of supersymmetric particles,

and other physics beyond the Standard Model.
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2.2. The ATLAS detector

ATLAS is 44 metres long and 25 m in diameter, weighing about 7,000 tonnes.
Figure [2.2] also displays the ATLAS sub-detectors, placed in several layers around the
interaction point. It is composed of an inner detector tracking system, electromagnetic and
hadronic calorimeters, a muon spectrometer, and a solenoidal and toroidal magnetic systems.

ATLAS uses the following system of coordinates: the origin is at the centre of the
detector, the Y axis is orientated towards the surface, X towards the centre of the LHC
accelerator and Z along the beam direction keeping the right-hand rule to complete the
axis system. The spherical coordinate system (r,0,¢) is frequently used, where ¢ is the
azimuthal angle with the X-axis and 0 is the polar angle, with the Z-axis. In experimental

particle physics, the rapidity (y) is used to describe the behaviour of particles that come from

1 E+pL
=—=1 2.1
y > Og(E_pL> (2.1)

collisions. It is defined by:

where E is the particle energy and py is the particle momentum in the direction of the beam.
For relativistic particles, as those produced in the LHC, the mass is negligible relatively to
the energy and the rapidity is approximated by the pseudorapidity, 1), which depends only on
the polar angle 6 as shown in equation[2.2]

n = —log [tan (g)} (2.2)

2.2.1. Magnetic system

The ATLAS magnetic system is needed to bend the trajectory of charged particles,
allowing the trackers to measure their momenta. A 5.8-metre long superconducting
solenoid magnet (see figure is located between the inner detector and the barrel
electromagnetic calorimeter. It was designed to apply a strong magnetic field of 2 T near
the interaction point, decreasing to a value of 0.5 T at the inner detector edge.

The magnetic field system of ATLAS also includes the superconducting air-core toroid
magnet system, with a barrel toroid, presented in figure 2.3 (b)] and two endcap toroids at
each side of the detector. This system provides a magnetic field coverage of || < 2.7. Each
of the eight coils of the barrel extends radially from 4.7 to 10.05 m and has an axial length
of 25.3 m. Each endcap coil has an axial length of 5 m and extends radially from 82.5 cm to
5.35 m. The main objective of this magnetic system is to improve the resolution of the muon

momentum measurement, particularly for high-pt muons. The magnetic field increases its
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2. The ATLAS Experiment

Figure 2.3.: Solenoid (a) and toroid barrel (b) of the ATLAS magnetic system [32]].

power with the pseudorapidity, up to 4.1 T. The main advantage of this type of magnetic
system is that, since it has an air core, the muon momentum measurement is less affected by
multiple scattering, when compared with a similar system based on iron core like the CMS
one.

The two magnetic field systems bend the trajectory of particles in different directions:

the solenoid (toroid) system bends them in a transversal (longitudinal) plane.

2.2.2. ATLAS Trackers

ATLAS has two tracking detectors: the inner detector and the muon spectrometer. The
inner detector is the detector closest to the beam, to track charged particles and measure their
momenta with high precision. The muon spectrometer is positioned in the region farthest
from the beam. The particles that reach the muon spectrometer are mostly muons and
neutrinos, but neutrinos have no charge and interact very weakly, so they are not detected.

The inner detector [33]] reconstructs tracks from particles and by doing so, allows for
the identification of decay vertices with high efficiency. Its outer radius is 115 cm. The inner
detector, shown in figure 2.4} uses three technologies: silicon pixels, semiconductor strip
tracker, and transition radiation tracker. The inner detector provides a combined coverage of

In| < 2.5 and has a resolution of the momentum measurement of:

o(pr)
pT

=0.04% x pr[GeV]®1.5% [33] (2.3)
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Figure 2.4.: Inner detector and its sub-detectors [30].

The two inner layers of the inner detector, shown in figure [2.4] use silicon technology.
The innermost layer is a pixel detector with 250 pum thickness sensors with an R — ¢ inherent
accuracy of 10 um and 115 yum in the beam direction. The leading-edge technology was
used, despite its cost, to withstand the radiation from the collisions and ensuring an excellent
tracking and vertexing resolution despite the heavy detector occupancy. The second sub-
detector, the semiconductor tracker (SCT), uses a standard silicon wafer with microstrips
with almost twice the thickness of the pixels sensors, but less expensive and less complex.
The intrinsic angular accuracy is 17 um in the longitudinal (barrel) and radial (endcap)
directions.

The technology used in the outer part of the inner detector is a straw detector filled with
a gaseous mixture of xenon, carbon dioxide, and oxygen. The straws are the cathode of this
detector and a tungsten wire in the centre of the straw is the anode. Charged particles ionise
the gas mixture, producing electrons that are collected. Between each straw there is another
material and transition radiation is produced proportionally to the energy-mass ratio (E/m)
of the charged particle, which ionise further the gas. Electrons produce more radiation, so
their passage generates high-threshold hits, which can then be used for their identification.
Only a section of the endcap of the transition radiation tracker is shown in figure 2.4] The
barrel extends until |z| = 712 mm, with similar radius. In both barrel and endcap, the straws’
diameter is about 4 mm. Therefore, the transition radiation tracker (TRT) helps the pattern
recognition of tracks thanks to many close-by hits.

The muon spectrometer outer diameter of the barrel is about 22 m, reaching 25 m
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in the endcap wheels. Since all other charged particles are expected to be stopped by the
calorimeters, the objective of the muon spectrometer is to reconstruct the muon tracks and
improve their measurement in combination with the inner detector. The combined nominal

momentum resolution is about 2 — 4 % for muons with ptr < 300 GeV rising to 10 % for
pr > 1 TeV [34].

Resistive plate chambers
MDT chambers [

_ Barrel toroid
s coils

End-cap
toroid_
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Thin gap 6
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End-cap
toroid
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(a) (b)

Figure 2.5.: Transverse (a) and one quadrant side (b) views of the muon spectro-

meter [32]].

The cathode strip chambers are multi-wire proportional chambers for precision meas-
urements of the muon tracks which are placed in the innermost ring of the muon spectrometer
endcap toroid. They are specially designed to support the high particle fluxes of that region.
Moreover, for precision measurements, the monitored drift tubes (MDT) chambers are placed
in all the regions where the flux of particles is not so intense (barrel and outer endcap). In
addition to these chambers, two types of precision muon trigger chambers were installed near
the monitored drift tubes chambers providing a fast trigger signal. They are the resistive plate
chambers (RPC) in the barrel and the thin gap chambers (TGC) in the endcap. Figure [2.5]

presents the location of the each muon spectrometer system in ATLAS.
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2.2.3. Calorimeters

The ATLAS calorimeter system [35] comprises an electromagnetic calorimeter to
measure the energy and direction of electrons, positrons and photons, and a hadronic
calorimeter to identify and measure the energy and direction of jets and hadronically
interacting particles. Figure [2.6] shows the location of the electromagnetic and hadronic
calorimeters in the ATLAS detector. Given the excellent coverage of the calorimeter system
(up to |n| = 4.9), the calorimeters provide a measurement of the total missing transverse
energy, necessary for any process involving neutrinos or other non-interacting particles

predicted by new physics models such as supersymmetry.

Tile barrel Tile extended barrel

LAr hadronic
end-cap (HEC)

LAr electromagnetic

LAr electromagnetic
barrel

LAr forward (FCal)

Figure 2.6.: ATLAS calorimeter system [32].

The electromagnetic barrel and endcap calorimeters [36] are sampling liquid argon
(LAr) calorimeters with lead absorbers implemented in an accordion geometry. Figure[2.7 (a)|
presents an image of an electromagnetic shower traversing the electromagnetic calorimeter.
An energetic electron entering on the electromagnetic calorimeter produces photons by
bremsstrahlung radiation. An energetic photon can convert into an electron-positron pair.
In both these processes, the energy of the first particle is split in two in average. Charged
particles in the LAr calorimeter will ionise the liquid argon. An electric field then amplifies

the shower from this ionisation that is collected in the electrodes. The liquid argon, which is
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intrinsically radiation hard, is cooled down to a temperature of 80 K using liquid nitrogen.

The coverage in 1 is up to 1.475 in the barrel and from 1.375 to 3.2 in the endcaps.
The electromagnetic calorimeter is segmented longitudinally in 4 layers, with different

granularities.

The third layer, sampling 2, of the electromagnetic calorimeter, collects most of the
energy of electrons and photons. The An x A¢ segmentation in this layer is 0.025 x 0.0245.
Sampling 1 has a finer segmentation 0.1 x 0.0031 to allow the separation of the signals
of photons from 7° — yy decays. The fourth layer, sampling 3, has a segmentation of
0.0245 % 0.05. Figure presents a segment of the barrel electromagnetic calorimeter.
The first layer, sampling O or presampler, absent from the figure, has just active material
and improves the overall resolution of the electromagnetic calorimeter by correcting energy
losses in the material in front of it [37]. Also, the presampler may help to distinguish
electrons from unconverted photons, since the latter are insensitive to the inner detector and
electrons can start the shower development already in the inner detector. The presampler

granularity is 0.025 x 0.1 and covers the pseudorapidity of |n| < 1.82 [38].

Towers in Sampling 3
ApxAn =0.02450.05

n=0
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Figure 2.7.: Electromagnetic shower in the accordion shaped electromagnetic
calorimeter (a).  Segmentation of the LAr electromagnetic barrel
calorimeter [32] (b).
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The energy resolution for electrons in the barrel electromagnetic calorimeter is:

10.1%
OF _ % £0.17% [30] (2.4)
E E(MeV)

The central hadronic Tile calorimeter is a large sampling calorimeter that uses steel
as absorber and scintillators made of polystyrene doped with PTP and POPOP m as active
material [39]. It is composed of a long barrel and two extended barrel cylinders, covering a
pseudorapidity of |n| < 1.7. Figure shows the scheme of one module for half the long
barrel and one extended barrel. The gap between the barrel and the extended barrel allows
the passage of cabling and services for the inner detector and electromagnetic calorimeter.
Radially, each module is further segmented into three layers, referred as A, BC, and D, or 0,
1 and 2, with increasing radial distance. Their thickness is respectively, 1.5, 4.1 and 1.8 A;
(nuclear interaction length) in the long barrel and 1.5, 2.6 and 3.3 A; in the two extended
barrels. It is composed of 5,184 cells, each one readout by two photomultipliers. The Tile
calorimeter is also divided into four electronic partitions, each composed of 64 modules.
The segmentation in ¢, 1 and radius defines three-dimensional Tile calorimeter cells, with a
segmentation in A1 X A¢ of 0.1 x 0.1 for the layers A and BC and of 0.2 x 0.1 for layer D

in the long barrel. In the two extended barrels, the segmentation is slightly different.

Half-Barrel Extended Barrel

0 500 1000 1500 mm . .
. : J Tile Calorimeter

Cells and Tile Rows

Figure 2.8.: Representation of Tile calorimeter cells in one half barrel and one
extended barrel [32].

IPTP and POPOP are the para-terphenyl-benzene and the 1,4-bis-(2-(5-phenyloxazol-2-yl))-benzene
molecules, respectively.
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The nominal energy resolution obtained for the Tile calorimeter is:

OF 56.4% )
— = —————=®5.5% for pions |30]. (2.5)
E E(GeV) pions [30)
The hadronic endcap calorimeter has a pseudorapidity coverage of 1.5 < |n| < 3.2 and
is another sampling calorimeter with a copper absorber and liquid argon as active medium.
It is composed of two wheels on each side of the ATLAS detector with a ¢ segmentation of

0.2. The hadronic endcap calorimeter has an energy resolution of:

OE 21.4%

— = for electrons and 2.6
E  \JE(GeV) (20
O __T08% 45449 for jets [30]. 2.7)

E ~ JE(GeV)

To have the best possible hermetic detector, a forward calorimeter covers the pseu-
dorapidity region of 3.1 < |n| < 4.9. Again, due to the high energy and particle flux, the
active medium is liquid argon. The forward calorimeter has three layers. The passive material
for the innermost layer is copper and for the remaining layers is tungsten. This calorimeter

has an energy resolution of:

or  28.5%

— =———P3.5% for electrons. 2.8

E  JE(GeV) ’ 9
94.2%

OF ©7.5% for pions [30]. (2.9)

E ~ \JE(GeV)
2.3. Trigger and data acquisition

2.3.1. Introduction

The trigger and data acquisition system of ATLAS [40] plays a crucial role in the
physics program. The proton bunches from LHC collide head-on every 50 ns in 2012, which
represents a rate of 20 million collisions per second (half the LHC designed rate) while it is
possible to save only around 600 events per second. The trigger system is responsible for
selecting in real time events interesting for the various physics searches and measurements,

while rejecting the non-interesting ones. Figure [I.9]shows that this kind of attractive events
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do not often occur. The total cross section is around 10® nb at the centre of mass energy
used for this thesis studies, /s =8 TeV, and is dominated by soft QCD interactions. The
cross section production of b-jets is less than 1 % of the total cross section. It is necessary
to go down an additional three orders of magnitude in cross section to start seeing rarer
physics processes like jet production with transverse energy above 100 GeV, which have a
rate around 100 Hz. The production of vector bosons, top, Higgs, are decreasingly frequent,
and the trigger must be tuned to recognise their specific signatures. For example, in the decay
Z— uu, the trigger should be able to identify at least one isolated high-pt muon. A high-pt

isolated lepton is an indication of a heavy-particle decay.

In addition to the already known Standard Model physics presented in figure [I.9] there
can be a large variety of expected or unexpected new physics processes. For this reason,
the trigger also needs to record events where unknown physics may take place, by selecting

generic high-pr signatures.

Another challenge imposed by the small bunch spacing is the size of the detector. A
muon travelling close to the speed of light will exit the detector after two to three bunch-

crossings have taken place.

In Run-1, three levels composed the trigger system: Level 1, Level 2 and Event Filter.
An event is rejected if it does not pass one of the trigger levels. If the event passes the criteria
of a trigger level, it seeds the following level or is saved on tape if it passes the last level.
Also, the trigger system makes use of early rejection, i.e. as soon as the event does not satisfy

any of the selection signatures, it is rejected, without further processing.

Figure 2.9 shows the schematics of the trigger and data acquisition (TDAQ) system of
ATLAS in the year 2012, with the trigger scheme on the left side and the data acquisition
(DAQ) scheme on the right. The design values for latency, rate and data volume are also
shown in this figure. The grey boxes represent the actual values from 2012, which will be

summarised next.

With a maximum latency of 2.5 us, the Level 1 (L1) trigger uses only the muon
detectors and the calorimeter to identify electrons/photons, jets, Et, hadronic tau decays
and muons, using simplified algorithms running on dedicated hardware. If the event passes
the first level, the position (17, ¢) of these objects is sent to the next level. The output rate
was 70 kHz in 2012.

In Level 2 (L2), software based algorithms are processed by a farm of commodity

computers in about 75 ms. It reduces the rate by one order of magnitude. L2 starts by
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Figure 2.9.: Overview of the trigger and data acquisition system [41]. The design
values for latency, rate and data volume are shown in red for the trigger
parameters and in blue for the DAQ parameters. The grey boxes show
the average values of these parameters in 2012.

using the positions of the high pr signatures identified by L1 and requesting to the DAQ
system the detector information, including tracking, in a Region of Interest (ROI) around

those seed positions, corresponding to around 10 % of the full detector data. It then executes

a sequence of algorithms designed to verify or reject the signal identified by the L1. It uses

the full detector granularity and improved calibrations.

If L2 accepts the event, the Event Builder (EB) is executed, collecting all the
information fragments from the sub-detectors. The Event Filter (EF) is the last step of
the trigger, which runs offline-like algorithms within around one second to make the final

decision to discard or to save the event on tape. The final output rate was 1 kHz in 2012,

which represents about 1.6 GB of information saved per second.
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2.3. Trigger and data acquisition

2.3.2. Level 1

The first level of the trigger is fully implemented in the front-end electronics of the
detector read-out system, which executes simple algorithms. It uses information from the
muon detector and the calorimeter, each with different algorithms.

Muons with energy above a few GeV can reach the muon chambers. The key sub-
detectors for triggering are the RPC, in the barrel, and the TGC, in the endcap. The
trigger algorithms use the coincidence hits in two layers to reconstruct the trajectory of the
muon, coming from the origin of the detector. The curvature of the trajectory of the muon

determines which trigger threshold is fired.
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Figure 2.10.: Trigger towers distribution for one octant of the calorimeter in the
n — ¢ plane.

The calorimeter finds the rest of the particle signatures. The granularity used for
the calorimeter in the L1 is very coarse and is sketched in figure 2.10] The squares in
N — ¢ space shown in this figure are referred to as trigger towers (TT) and have sizes of
AN x A¢: 0.1 x0.1 in the |n| < 2.5 region, 0.2 X 0.2 in 2.5 < || < 3.2 and 0.4 x 0.4 in
3.2 < |n| < 4.9. Furthermore, these TT are evaluated for the electromagnetic and hadronic
calorimeters separately.

A sliding-window algorithm [42] is then run to find local maxima of transverse energy,
with a window of size Ny X Ny, where Ny and Ny, are the numbers of towers in the window
in ¢ and 1, respectively.

For electrons, photons, taus and hadrons, the window has size 4 x 4, shown in
figure Horizontal or vertical sums of two TT are performed with size 1 x 2 or

2 x 1, respectively, in the centre of the electromagnetic towers forming four electromagnetic
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Figure 2.11.: Sliding window representation with 4 x 4 trigger towers. Adapted from
reference [43]].

clusters. The twelve TT, around that centre, form the isolation ring. The hadronic core
and isolation ring are formed from the four hadronic central TT and the twelve hadronic
TT around them, respectively. Finally, the centre cluster ROI is composed of four hadronic
clusters, each composed by one electromagnetic TT and one hadronic TT adjoined. Level
1 algorithms use these calorimeter cell sums to identify different particles. Some of these

particles are now briefly addressed.

Since no tracking is available in L1, electrons and photons are identified in the same
way. Their signatures require one electromagnetic cluster with transverse energy higher than
a given threshold, E%M , the sum ET in the electromagnetic isolation ring to be smaller than
a given threshold, E‘TEM iso the same for the hadronic core, E?ADCO’ ¢ and for the hadronic
isolation ring, E{“D"w. The taus and hadrons are also considered together and differ from
the electron/photon by replacing the threshold in the electromagnetic cluster and the hadronic
core with the threshold in the hadronic cluster, E{MD .

Regarding the jet and neutrino signatures, the algorithms use jet elements, which have
a size of 0.2 x0.2 in A¢ x An, summing over hadronic and electromagnetic TT. Three
windows sizes are available: 2 x 2, 3 x 3 and 4 x 4, given in terms of jet elements. The
jet algorithm runs in the |n| < 3.2 region, whereas the algorithm that sums the energy in the

calorimeters, and evaluates the value of £, uses the whole calorimeter region: |n| < 4.9.
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2.3. Trigger and data acquisition

The position of these objects is then saved and passed to Level 2 for further processing.

2.3.3. High level trigger

During Run-1, the high-level trigger (HLT) was subdivided in L2 and EF. The HLT is
software based with algorithms that can be either “feature extraction” or “hypothesis”. The
former is used to reconstruct detector information, and the latter will test if a specific criterion
is passed.

The L2 has access to the full granularity of the calorimeter for better determination of
the positions and energies. The inner detector information is now also available to the trigger
system. The L2 reconstructs ROIs of variable size A¢ x An around the positions received by
L1.

A quick overview of the trigger chains used for the ZH analysis, presented in chapter 4]
is now discussed.

Electron and photon signatures [44] at the L2 use a window with size A¢ x An =0.4 x 0.4
and the reconstruction algorithm uses the knowledge that they deposit most of their energy
in the second layer of the electromagnetic calorimeter. If there is a track associated with
the electromagnetic cluster, it is considered an electron. Otherwise, it is a photon. The EF
reconstructs the electron with offline-like tools.

For muon trigger signatures [45] at L2, a region of interest is formed around the L1
seed. An algorithm then chooses the closest inner detector track to match the segment found
in the muon spectrometer. A weighted average between the information of the two detectors
recalculates the pt of the L2 combined muon. EF muons are also obtained using the ROI
based method, but now implemented with the offline-like reconstruction algorithms.

Electron (muon) triggers are isolated if the scalar sum of the pt of the tracks within
a cone of size AR = 0.2 divided by the pr of the electron (muon) is smaller than a certain

value, typically 0.1.

2.3.4. Further details

A trigger chain is a sequence of algorithms, feature extraction and hypothesis al-
gorithms, starting from L1 until the EF to identify physics objects candidates which can
be combined to form physics signatures.

A trigger menu is a collection of configurable triggers containing information on:
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* which sequences and chains of algorithms to run;
¢ the selection condition and threshold;

¢ isolation;

e prescale (PS);

* pass-through (PT).

To reduce the rate, a prescale might be used so that only one in a certain number of
events (npg) passing the trigger is saved to tape. It is also frequent to use triggers in pass-
through, for determination of trigger efficiencies for example, meaning that one in a certain
number of events, npt, might be saved even if it does not pass the selection conditions.

At the output of the EF, the events are classified into streams according to which trigger

type selected the event. The main streams are:

* Muon stream that collects events passing the muon triggers.

* Egamma stream that collects events passing the electron or the gamma triggers.

 JetTauEtMiss stream that collects events passing the jet, the tau or missing transverse
energy triggers.

* MinBias stream that collects events passing the minimum bias triggers, composed of

just random events in 2012.

It happens with some frequency that an event survives different trigger types, e.g. passes a
muon and an electron trigger. In this case, in 2012, the event was saved both in the Muon

and Egamma streams.

2.4. The pileup challenge

Each time that two bunches of protons intersect, there can be more than one collision.
These additional collisions in the event are known as in-time pileup. Figure displays
one event with three images. The top left image shows the projection of the ATLAS detector
in the transverse plane; the centre right image shows the detector projected in the longitudinal
plane and the bottom image shows a zoom of the longitudinal plane to see the detail of
the inner detector track and vertex reconstruction. The electromagnetic calorimeter appears
in green, the hadronic calorimeter in red and the muon spectrometer in blue. This figure
shows an event with 25 primary reconstructed vertices, each representing one proton-proton

collision. In one of them, two muons were reconstructed and identified as originating from a
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2.4. The pileup challenge

Z boson decay. The large number of particle tracks shown, illustrates the complexity of the
event reconstruction.

In addition to the in-time pileup, characterized by the number of primary vertices,
another challenge exists in ATLAS. The detector time response is longer than the inter-bunch
separation, so the signal from a previous collision event can overlap the signal of the current
event. Figure [2.12 (b)| shows an example, where the calorimeter signal pulse of the current
event, in blue, overlaps with the previous signal pulse. The sum of the two distributions
appears in black, which will be the pulse with pileup that the calorimeter cell will record.
This overlap is known as out-of-time pileup. A parameter that is often used to study the

out-of-time pileup is the mean number of interactions per bunch crossings, (1), is defined by

equation [2.10}

> o Lpunch X Oinel

2.10
frLHC (.10

(u

where Ly, 1S the instantaneous luminosity per bunch crossing, oj,.; is the cross section
for inelastic processes (73 mb) and the fypyc is the LHC revolution frequency. The (u)
distribution for 2012 is shown in figure It reached values up to 40 in 2012, with an
average of 20.7.
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individual pulses. Mean number of interactions per bunch crossings

during 2012 data taking period (c) [47]].
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2.5. Data reconstruction for real events

2.5. Data reconstruction for real events

Figure [2.13[shows the data reconstruction scheme for real collision events, as it was in
the 2012 data taking. When the trigger saved the events, the detector information in byte-
stream format was stored in files for offline processing. The offline reconstruction chain
started with the byte-stream conversion step, which transformed the byte-stream into C++
objects such as cells or hits that would be used by the next algorithms in the reconstruction
chain. These objects, called raw data objects (RDO), were stored in files. Next, detector
objects like clusters, tracks and vertices were reconstructed and stored in the event summary
data (ESD) files. Then, these detector objects were combined to obtain the physics objects,
leptons, jets and E, and stored in the analysis object data (AOD) format. These data
formats could only be accessed within the Athena framework [48]. In the last step, the
event summary information was stored in ROOT [49] trees for analysis. ROOT is a lighter

analysis framework.

‘" " Detector — RECONSTRUCTION -»
wezzzy OO Raw Data Event Summar; Analysis Object Derived Physics
‘&WW ! Object (RDO) Data (ESD) Data (AOD) —P Data (DPD) nalysis
|
(byte stream) |

-

Figure 2.13.: Data flow from real events from the detector until the analysis.

2.6. Detector object reconstruction

Physics analysis objects, like electrons, photons, muons, taus or jets are reconstructed

starting from calorimeter clusters and tracks.

2.6.1. Sliding window and topological clusters

Clusters are groups of calorimeter cells that represent energy depositions of single
particles. Analyses in ATLAS can reconstruct them by either a sliding-window or a
topological clustering algorithm.

The sliding-window algorithm [42] begins by dividing the calorimeter towers of a
certain size in a rectangular region of the 1 — ¢ plane. The towers are either electromagnetic

with a 0.025 x 0.025 granularity of the electromagnetic calorimeter, with a pseudorapidity
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limit of 2.5, or combined with the hadronic calorimeter with the |n| < 5.0 limit but with
0.1 x 0.1 granularity. In the second step, this algorithm will “slide” through all the towers
with a particular window of programmable size Ny x Ny. If the sum of the tower energy
in the window is above a determined threshold, a pre-cluster is formed, and its position is
calculated using the centre position of each tower in a smaller window, weighted by their
energy. This smaller window has the same centre as the initial window. If the distance
between two pre-clusters is smaller than 2 x 2 towers, the one with smaller energy is
discarded. This algorithm is faster than the topological clustering algorithm and is used
for electron/photon reconstruction offline and at the trigger level. Particularly, EF trigger
definitions of electrons/photons use the window Ny X Ny = 3 x 5 with the electromagnetic
calorimeter granularity, and of taus definitions use the Ny x Ny = 8 x 8 window with the

combined granularity [50].
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Figure 2.14.: Example of application of the sliding-window algorithm to find
clusters.

Figure [2.14] shows an example of the application of the sliding-window clustering
algorithm, which uses the electromagnetic calorimeter granularity. In this example, six
clusters were found, labelled from A to F in decreasing energy order. The G and H tower
groups did not have enough energy to pass the threshold requirement. In the case of the A and
B tower groups, several windows with distances smaller than 2 x 2 could be formed but the
one selected ought to have the highest energy. In the case of the C and F towers groups, they

make two separate windows since the distance is 4 x 2, although they have three overlapping
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2.6. Detector object reconstruction

towers.

The other algorithm is topological clustering [42]. The objective is to reconstruct
3-dimensional clusters representing single particle energy depositions. First, the algorithm
classifies the cells according to their signal to noise ratio, where the noise value takes into
account the electronic and pileup noise. The former is given by the root mean squared
(RMYS) of the cell energy in calibration runs (no collisions) and evaluated for each cell. The
electronic noise for the three layers of the Tile calorimeter is presented in figure 2.15 (a)] with
an average value around 21 MeV. In figure 2.15 (b)] the electronic noise is shown for the LAr
calorimeters, where the hadronic endcap and the forward calorimeter have larger noise due

mainly to the size of the cells in this region.
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Figure 2.15.: Electronic noise for the Tile calorimeter for each of the cells from the
long barrel (a) [S1] and for the LAr calorimeters (b) [52].

The pileup noise results from the effect of the out-of-time pileup in the calorimeter. A

comparison between real and simulated pileup noise is shown in figures [2.16 (a)l [2.16 (b)|
and for the Tile calorimeter layers A, BC and D, respectively. The pileup noise is
always higher than the electronic noise. The total noise, evaluated for each cell, is given by
the quadratic sum of the electronic and the pileup noise. Figure shows this quantity
for the LAr-based calorimeters.

The ratio between the cell measured energy and its total noise energy values is referred
as cell energy significance, O,.;;.
The topological cluster (topocluster) algorithm starts by finding seed cells with an

energy significance above four: o,.; > 4. Neighbouring seed cells are added to the same
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Figure 2.16.: Pileup noise for the three Tile calorimeter (TileCal) layers for
(u) = 15.7 (a-c) averaged over the 64 modules [53]. Total noise for
the LAr calorimeters for (i) = 14 (d) [52].

cluster. In a second step, the algorithm looks for neighbouring cells that have an energy
significance above two: o0,.;; > 2. These are referred as neighbour cells and included in the
cluster. This step will iterate until there are no more neighbours to be added to the cluster.
In the final step, all cells touching the cluster, independently of their energy significance, are
added to the cluster.

The example used previously in figure [2.14] is shown for the topocluster algorithm in
figure The colour scheme selected is:
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Figure 2.17.: Example of application of the topological algorithm to some clusters.
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The seed, neighbour and remaining cells are marked with “S”, “N” and “C” for visual
clarity, forming three clusters. The unused yellow cells were also labelled with “N”, even
though they are not part of any cluster since they have a cell energy significance larger or
equal to two.

The cluster centre is calculated as the average position of the cells, weighted by the
respective cell energy. The energy of the cluster is the sum of the individual cells that belong
to the cluster.

Events with separate clusters become rarer with the increasing number of interactions
per bunch crossing, in particular in the forward detector region, and the cluster might reach
a vast size. When two clusters share the same cell, its energy is divided by them depending

on their energies and on the distance from the cell to each centre.

2.6.2. Track and vertex finding

Tracks are obtained by grouping the hits deposited by charged particles in the inner
detector and the muon spectrometer. There are two sensors in each silicon module. A
module hit occurs when both sensors have recorded the hit. The name sensor hit or hole
is given when only one of the sensors records the passage of the particle. In ATLAS, there

are two approaches for track reconstruction [54]. The inside-out approach is the main track

43



2. The ATLAS Experiment

reconstruction and searches for three hits in the silicon detectors (pixel and SCT) to seed the
reconstruction. This seed is then propagated to the remaining layers of the silicon trackers.
Other hits are assigned to the track or rejected as part of the track, using a Kalman filter [S5]].
The ambiguity of having a hit belonging to more than one track is solved through a score
attributed to each track. A reward (penalty) is given to the score of the track for each module
hit (hole) that is a part of the track. An exception to the penalty occurs when the sensor is not
available. Such hits are referred as dead sensors. In the end, the ambiguous hit will belong
to the track with the highest score. Finally, tracks that have at least three silicon hits are then
extended to the TRT. This approach has the drawback that it only uses tracks that survive
the scoring from the silicon detectors. Particle decays may produce secondary particle tracks
with a few hits in the silicon detectors. Also, a photon might convert into an electron-positron
pair even after traversing the silicon-based tracker. Such tracks would be lost since there was
no silicon seed. The track reconstruction may also use an outside-in approach, based on the
Hough transform mechanism [56, [57]], using only those hits that were not considered in the
first approach.

Each track has information on the number of module hits, usually referred to as silicon
hits, the number of holes and the number of dead sensors in the trajectory of the track.
Together with the number of hits from the TRT, the number of high-threshold hits is available

and used in the identification of electrons.

track

Figure 2.18.: Sketch of a track trajectory with its main information. Adapted from
reference [58]].
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Due to the magnetic field provided by the solenoid, a charged particle bends, forming a
circle in the x-y plane. Since particles have also momentum along the Z axis, the final track
has a helix shape. Figure|2.18|shows a sketch of a track decomposed in its parameters, which

are shortly described below:

A The closest point of the track’s propagation to the Z axis, which is called perigee;
do Distance between the track at the perigee to the Z axis, referred as the transverse impact
parameter;
Zo0 Z coordinate of the track at the perigee, referred as the longitudinal impact parameter;
¢ Azimuth angle between the track direction at the perigee (tangent) with the X axis;
0 Polar angle of the track direction measured with the Z axis;

n The pseudorapidity of the track is defined from equation [2.2] using the 6 angle.

The track fitting algorithm does the calculation of these track parameters.

Finally, the tracks are combined to form vertices. Most of them will be along the beam
direction where the p — p interactions took place and are referred as primary vertices. The
event can also have secondary vertices, resulting from decays of particles or pair production
as mentioned before. The primary vertex with the largest scalar sum of the transverse
momentum of its associated tracks is designated as the hard scattering process vertex, while

the remaining are considered vertices from in-time pileup.

2.7. Reconstruction and performance

The identification of particles is essential for any analysis. This section describes in

detail the reconstruction of each particle used for the analysis presented in the thesis.

2.7.1. Muons

Muons are very penetrating charged particles, the only ones that can cross the
calorimeters, depositing a small fraction of the energy there, and crossing the muon chambers
before leaving the detector. They are, therefore, identified due to the presence of a track in
the muon spectrometer.

Three reconstruction algorithms, called chains, were used in Run-1 [31,159]. Chain 1
used a statistical recombination between the tracks reconstructed in the muon spectrometer

and in the inner detector. Chain 2 used a refit of the track using the hits in both muon
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spectrometer and inner detector. Chain 3 tried to combine both approaches. The ZH analysis

used only muon reconstructed with the Chain 2.

Muons reconstructed by both the inner detector and the muon spectrometer have the
designation of combined muons and typically have the best energy measurement. Given the
acceptance of the inner detector, combined muons are only reconstructed up to || < 2.5.
When muons have a pseudorapidity near 2.5, they only leave a track segment in the inner

detector and are referred as silicon associated forward muons.

If a muon is identified and reconstructed only by the muon spectrometer, it has the
designation of standalone muon. These muons extend the acceptance of muons to 2.7 in |1,

where only the muon spectrometer is available.

Muons might leave only one track segment in the muon spectrometer if they are low-
pr muons and lose most of their energy in the calorimeter or if the muon is too close to
the edge of the muon spectrometer acceptance. Such muons are reconstructed if the inner
detector track extrapolated to the muon spectrometer is associated with a track segment in

this detector and is labelled as segment-tagged muon.

Finally, the calorimeter-tagged muon is identified and reconstructed when a track in
the inner detector is extrapolated to the calorimeter and associated with an energy deposit
compatible with a minimum ionising particle. This reconstruction allows the identification
of muons in the central region (|17| < 0.1) that is not covered by the muon spectrometer, due

to cabling access for the calorimeter readout.

2.7.1.1. Muon quality conditions

The combined and calorimeter-tagged muons are required to fulfill some inner detector
quality requirements based on the number of hits and maximum number of holes in the
different tracking sub-detectors [39]:

* Atleast 1 pixel hit;

At least 5 SCT hits;

* Maximum of 2 combined pixel and SCT holes;

At least 9 TRT hits if the muon track is in TRT acceptance;

* Maximum of 1 dead sensor in both pixel and SCT.
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2.7.1.2. Muon performance

Reconstruction efficiency The methodology to measure the muon reconstruction effi-
ciency differs between the central region, 1| < 2.5, where the information from the inner
detector and the muon spectrometer is available, and the forward region, 2.5 < || < 2.7,
with only the muon spectrometer [59]. Both regions use the tag-and-probe method [60, 61]]
that consists on using one better-measured object called “tag” to correct the other object

called “probe”.

In the central region, the efficiency is calculated by the fraction between the probe
muons reconstructed as one type of muons (combined, segmented-tagged or calorimeter-

tagged) from all muons reconstructed in the inner detector, using Z — u events.

The tag muon is a combined muon with pt > 25 GeV, passing the good quality criteria.
This muon is also required to be isolated: an R = 0.4 cone-region is open around the track
and the pr scalar sum of tracks with pt > 1 GeV within the region must be smaller than 15 %
of the reconstructed muon pr. The probe muon must have an opposite charge, an azimuth
distance to the tag muon A¢ > 2.0, and pt > 10 GeV. The invariant mass of the two muons,

defined as m = \/(E,“ +Eun)? — (Pu1 + Pu2)?, must be compatible with the Z boson mass
within 10 GeV.

Figure shows the efficiencies obtained for data and simulation, for different
muon selections: for combined muons (CB), for the combination between combined muons
and segmented-tag muons (CB+ST), and for calorimeter-tagged. The information from
calorimeter-tagged muons is only shown at |n| < 0.1, the relevant region for physics analysis
such as the ZH search discussed in chapter Including the calorimeter-tag muons, the
reconstruction efficiency is larger than 95 % in the range 1| < 2.5. The bottom panel of
figure shows the ratio between data and MC for the three muon choices. For the
combination of combined and segmented-tag muons, data and MC agree within 1 %.

Besides the Z— pu channel, the efficiency is also determined with J/w— pu decay to
explore muons with transverse momentum below 20 GeV [39]. The efficiency as a function
of the muon pr is shown for the two channels in figure excluding the |n| < 0.1
region. A muon reconstruction efficiency larger than 99 % is observed. The bottom panel

shows again the data/MC ratio. All the differences between data and simulation are below
1 %.

The difference between the measured efficiency in data and MC is used as an efficiency
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Figure 2.19.: Muon reconstruction efficiencies for different muon types as a function
of the pseudorapidity (a) and transverse momentum (b) for data and
simulation [59].

scale factor or SF to correct the simulation:

gData

SF = 2.11)

eMC
This scale factor is obtained (and applied) as a function of the direction of the muons (1, ¢)
and their transverse momentum. The efficiency in the forward region, 2.5 < |n| < 2.7, can
not use combined muons since the inner detector does not cover this region. An alternative
method for the efficiency SF calculation is applied, that uses the information from the last

|n|-bin with inner detector coverage [59].

The SF is shown in figure in the form of a n — ¢ map for muon Chain 1. Analyses
then implement these maps as a weight applied to the muon. Scale factors for the muons

reconstructed with Chain 2, used in the ZH analysis, have similar result [S9]].

The dominant systematic uncertainties for the reconstruction efficiencies depend on the
transverse momentum of the muon. For muon pt up to 30 GeV, the dominant systematic
source with about 0.6 % is the maximum matching distance between reconstructed and the
probe muon. In the intermediate pt region, between 30 and 60 GeV, it results from biases in
the tag-and-probe method with an uncertainty of 0.1 %. Above 60 GeV, the uncertainty rises
to 0.3 % and are mainly due to the Z— ppu background. The uncertainty variation of the

efficiency with pseudorapidity varies from 0.1 % to 0.5 % except for the calorimeter-tagged

48



2.7. Reconstruction and performance

ATLAS 2012 Data

— -1
Chain 1 CB + ST Muons Vs = 8 TeV L=20.31b

S 3 T T il T T o
C o
E |_:u 115
— ©
2 L
E : <Q
C ! 1—1.05%
1= — (?)
0E Z =1
_1; L —
E 1l || 1-10.95
2F
E 0.9
-3 T | | T
2 1 0 1 2

Figure 2.20.: Reconstruction efficiency scale factor obtained as a function of 1 and
¢ for combined muons with pr > 10 GeV [39].

muons (|n| < 0.1), where it reaches 0.8 % [59].

Trigger efficiency For the trigger efficiency determination [45], the tag-and-probe method
is used. The tag muon is an offline reconstructed muon and the probe muon is the trigger
reconstructed muon. The tag muons are required to have tracking isolation (see section[2.3.3)
and pr > 25 GeV. Figure 2.21] shows, for muons with pseudorapidity below (left) and above
(right) 1.05, the trigger efficiency (top) as a function of the probe muon’s pr, calculated with
respect to offline selected muons of a combination of two muon triggers: either an isolated
muon with pt > 24 GeV or a muon with pt > 36 GeV. The bottom panels on both figures
show the ratio data/MC, which never deviates more than 5 % relative to the unity. From
the resulting ratio between data and MC, an 1 — ¢ scale factor map is obtained, which is
calculated as a function of the detector position and shown in the bottom figures.

The systematic uncertainty sources that affect the trigger efficiency calculation are the

same as for the reconstruction efficiency and result in 0.6 % for the region 25 < pt < 100 GeV.

Momentum scale and resolution There is limitation to the precision on the description of
the solenoid and toroid magnetic field, the amount of material traversed by muons and the
interaction that they have with those materials, namely the energy loss. Figure [2.22] shows
the invariant mass distribution of Z — puu candidate events in data and simulation. There is

an apparent discrepancy between data and the uncorrected simulation, which is more visible

49



2. The ATLAS Experiment

5‘ o L e e B B a e L B B B
S 09E ATLAS s=8Tev, [Ldt=203f" 3 $ 09F
= E = = E sm—o—
_:g 0.8 Z ~ pp, mu24i OR mu36, n<1.05 = E 0.8
W orf = g . W oo7E ATLAS \5=8Tev, I Ldt=20.3 "
0.6 ; . é 0.6 ; Z - py, mu24i OR mu36, \ql>1.05
E 09 E E 6 0.9 RIS
0.5 ? g;; 2 0.5 ? 8§, -9-0—6—6—0—07
oaf  © o5 3 04F- Y .
03E & Data 04 o 3 03E B Data 04
0.2F Wvc 02 3 0.2F Ewmc 02
0.1E- 025562830 — 0.1E- 05652 2426 28
E 3 E o
o [} £ ) | | | | E o 0 E | | | | |
= 1.05 ? — = 1.05 ?
= e | o 0— 015 = 1o @O Om O —O—
g 0.95F —— E g 0.95F
0% 20 40 60 80 100 120 140 160 0% 20 40 60 80 100 120 140 160
Muon P, [GeV] Muon P, [GeV]
(a) (b)
S 34 L e e B e e IS S s e s 2 S F 2
c . c [
= B ATLAS s & E ATLAS 8
2 F vs=8Tev, [Ldt=20310" 2 2 vs=8Tev, [Ldt=203 1"
2 Z .y, mu24i OR mu36, ||<1.05 16 C Z -, mu24i OR mu36, n|>1.05 1.6
E 1.4 l} 1.4
= 1.2 B 1.2
s 1 F 1
(Vs C
B 0.8 e 0.8
-1 0.6 £ 0.6
B 0.4 2 0.4
2E 0.2 i 0.2
F : = .
TS T TSN T ST T N SO Y S S| PRI | 0 0
-0.5 0 0.5 1 25 -2 -15 -1 -05 0 05 1 15 2 25
Muon n Muon n
() d

Figure 2.21.: Trigger efficiency as a function of transverse momentum of the probe
muon data and simulation for events with either mu24i or mu36 muon
triggers for offline reconstruction muons with pr > 25 GeV (top
figures) in the |n| < 1.05 (left) and |n| > 1.05 (right) regions. The
ratio between data and MC is shown on the bottom panels. Trigger
efficiency scale factor as a function of the muon 1 — ¢ position (bottom
figures) for the same muon triggers and pseudorapidity regions [45].

in the ratio data/MC shown in the bottom panel. The blue curve has a wavy structure with
data-MC differences up to 7 %.

The invariant mass distributions of the muon pairs in Z — pu and events are obtained
as a function of the pr of the leading muon. These distributions are then used as input for

a binned likelihood fit to extract a parametrization of the scale and resolution correction for
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Figure 2.22.: Di-muon invariant mass distribution of Z — uu candidate events
reconstructed in data (black points) and MC simulation with (filled
green histogram) and without (blue dash line) the scale and resolution
correction. The data/MC comparison is shown below. The yellow band
represents the systematic uncertainty for the scale and resolution [59].

the simulated muons pr, for each of the detectors [S9].

The green region in figure [2.22] shows the effect of correcting the momentum and
resolution of the muon. In the data/MC ratio plot shown in the bottom panel, it is possible to
see that the discrepancy falls to less than 1 % with the correction.

The systematic uncertainties considered on the muon scale and resolution are shown
with the yellow band in the bottom panel of figure [2.22] with a typical value of 1 % and it

never larger than 5 %.

2.7.2. Electrons and photons

The electromagnetic calorimeter measures the energies of electrons and photons. The
main difference between them is the presence of a track in the inner detector in the case of
the electrons. Although the ZH analysis did not use photons directly, their reconstruction is
presented here together with that of electrons due to their similarity.

The reconstruction [38,162] of both electrons and photons makes use of the high gran-

ularity of the electromagnetic calorimeter in the region || < 2.47. Calorimeter towers with
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a transverse energy, summed over the layers, of 2.5 GeV and size An x A¢ = 0.025 x 0.025
are the seeds to make clusters. A sliding-window of size 3 x 5 calorimeter towers in (1, ¢)
phase space searches for the seeds.

For the tracking, all the tracks with pt > 500 MeV are extrapolated to the second
layer of the calorimeter. If the impact point of the extrapolated track is within a distance
of 0.05 (0.1) in An (A¢) from the cluster barycentre, that track is associated with the cluster.
This looser criterium in A¢ minimises the effect of bremsstrahlung losses. If there is no
association between the cluster and any track, that cluster is labelled as an unconverted
photon. Both converted photons and electrons have the cluster associated with a track.
These are separated by identifying a close-by track that might indicate the production of
an electron-positron pair.

Photons are identified based on their properties using a selection of variables that
describe the longitudinal and lateral electromagnetic shower development [63]. Two
categories, loose and tight, are defined in the identification of photons. The core difference
is that the tight category has a selection on the layer 1 of the electromagnetic calorimeter to
distinguish photons from the 7° decay. This decay is identified by two local maxima in this
layer.

Electrons can be identified in a similar way using a cut-based scheme but applying
also conditions on the track quality and the matching between the track and the cluster.
For cut-based identified electrons, three categories, loose, medium and tight are defined
with increasingly tight selection criteria. A fourth category, multilepton, is considered
with similar identification efficiency as the loose but better background rejection. An
alternative method for the electron identification uses a likelihood multivariate analysis. The
same discriminating variables, used in the cut-based analysis, are chosen. There are also
three likelihood categories defined: looseLH, mediumLH and verytightLH. These likelihood
categories have better light-jet and photon conversion rejections.

Electrons and photons are indistinguishable outside the inner detector coverage and are

not used in the ZH analysis.

2.7.2.1. Electron performance

Reconstruction and identification efficiencies Analogously to the muon case, the
reconstruction and the identification efficiencies are estimated from data using the tag-and-

probe method. The electrons that contribute to the ZH analysis have transverse energy higher
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than 25 GeV and their efficiencies use only the Z— ee decay [64].

The tag electron is identified as a tight electron with Et > 25 GeV. The rag electron is
required to match an electron firing a trigger within a distance of 0.15 and to be outside the
barrel-endcap transition region of the electromagnetic calorimeter (1.37 < |n| < 1.52). The
probe electron requirements are to have a charge opposite to the tag electron, Er > 15 GeV

and that the invariant mass of the two electrons to be within 15 GeV of the Z boson mass.
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Figure 2.23.: Electron identification efficiency in 2012 Z— ee events as a function
of Er with |n|<2.47 for data (full markers) and MC (open
markers), using the cut-based (a) and the likelihood (b) identification
methods [65]].

The identification efficiency is calculated as the fraction of the probe electrons that
pass each category (cut-based or likelihood) from all the probe electrons that have at least
one pixel hit and at least seven silicon detector hits. Figure [2.23] shows the electron
identification efficiencies obtained as a function of the electron E, for the cut-based (a)
and the likelihood (b) alternatives. The three likelihood identification possibilities, looseLH,
mediumLH and verytightLH, have roughly the same identification efficiencies as multilepton,
medium and tight cut-based options. There was also a fourth likelihood option to match the
loose cut-based efficiency which was called verylooseLH and was used in the ZH analysis.

There is a clear dependence on Et for data and MC, in particular for tighter categories. The
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data/MC ratio in the bottom panel shows differences to unity below 5 % within the statistical
uncertainty for all categories. A scale factor is extracted from these ratios to correct the
identification efficiency in simulation and is applied to each electron in the simulation.

The reconstruction efficiency for electrons use the same tag conditions as for the
identification efficiency. However, the probe objects are now all electromagnetic clusters
with Er > 15 GeV. The same invariant mass conditions are required, but no charge
requirement is applied. The electron reconstruction efficiency is obtained from the fraction
of the probe objects that match a track within a distance in 17 and ¢ smaller than 0.05 and

0.2, respectively.
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Figure 2.24.: Data and MC comparisons of the electron reconstruction efficiency
from 2011 and 2012(a) and of the reconstruction-identification
efficiency combination as a function of Et (b) [65].

Figure shows the reconstruction efficiency as a function of Et, comparing
data and MC for 2011 and 2012. The improvement in the efficiency between 2011 and
2012 is evident as well as the decrease of the dependence on Et as the understanding
of the detector improved. An excellent agreement between data and simulation is also
observed. Figure shows the combination between the reconstruction efficiency and

the identification efficiency with the likelihood method. The data-MC agreement, shown in
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the bottom panel, is better than 5 %.

The systematic uncertainties considered for the electron identification and reconstruc-
tion efficiencies are estimated as the RMS of the data/MC measurement [66]. Additional
contributions account for the variation of the size of the mass window around the Z boson
mass peak in Z— ee events, the requirement of a calorimeter isolation in a cone with
AR = 0.4 to have an energy deposition of less than 5 GeV, and the loosening of the
electron identification criteria. If the RMS of the data/MC does not cover the differences
observed, an additional systematic uncertainty is added to enclose them. The uncertainty
on the reconstruction (identification) efficiencies are 0.5 % (1 — 2 %) for electrons with
Et > 25 GeV.

Trigger efficiency The trigger efficiency for electrons has been calculated, using the
tag-and-probe method, for the logical OR between two triggers: e24vhi_mediuml and
e60_mediuml. Both triggers use the mediuml identification properties described in
reference [44]. The former trigger is the unprescale trigger with the lowest transverse
momentum threshold, 24 GeV, and requires tracking isolation (see section [2.3.3)) and
no more than 1 GeV in the hadronic core region (see figure 2.11). The latter trigger
requires an electron with Er > 60 GeV to increase the efficiency about this ET, as shown
in figure [2.25|(a), by comparing the magenta up triangle to the green down triangles.
Additionally, this figure shows the efficiencies for trigger L1 (blue squares) and L2 (red
circles) as a function of the transverse momentum (a) and the pseudorapidity (b) of the
electrons. The rag electron is the reconstructed one and the trigger electron used as probe has
the additional requirement of having the opposite charge and the invariant mass of the two
electrons in a window with size 30 GeV around the Z boson mass. The efficiency is obtained
from the fraction of probe electrons that have a distance in the (17, ¢) phase space to a trigger
electron inferior to 0.15.

The systematic uncertainty sources considered in the trigger efficiency determination
are similar to the ones used for the offline reconstruction and identification: the mass window

of the Z boson and identification tag, both with tighter criteria [44]].

Momentum scale and resolution The electron response scale and resolution are ob-
tained from the ratio between reconstructed and truth energy in simulation using the
processes J/y— ee, Z— ee and W — ev. The scale and resolution are obtained in the
1 < Et <3000 GeV range using multivariate analysis (MVA) [38]]. The inputs for the MVA
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Figure 2.25.: Trigger efficiency obtained at the three levels in the early data for
electrons as a function of Er with |n| < 2.47 (excluding crack
region) (a) and 1 position with ET > 25 GeV (b) [67].

are the energy measured in the calorimeter, the fraction between the presampler layer of

the electromagnetic calorimeter (f,,0), the cluster barycentre position (17, ¢) and the shower

depth defined by equation[2.12]
Y X E;
i

:F

where X; is the calorimeter thickness in radiation lengths for the i calorimeter layer.

X (2.12)

The electron energy response distribution is obtained for several bins of 17 and ET and
a Gaussian function is fitted to these distributions. The most probable value (MPV), given
by the centre of the fit, is shown in figure as a function of the pseudorapidity. The
electron energy resolution is calculated from the interquartile of the distribution and is shown
in figure

The electron energy scale and resolution differ from data mainly due to some
mismodelling on the material upstream before the calorimeter and on the calorimeter cell
energy measurements. Corrections are derived from data-MC comparisons to account for
this imperfect knowledge of the detector [38]. The energy scale comparison between data
and MC is described by:

Edat — pMC( 4 @) (2.13)
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Figure 2.26.: Electron energy scale most probable value (MPV) and energy
resolution as a function of the pseudorapidity [38]].

E%@ js the energy measured in data, EMC is the

where i is a given bin of pseudorapidity,
calibrated energy of the electron and the & constant is the in situ calibration factor. Z— ee
events are used to determine o, where the two electrons from the decay have 1-bins i and ;.
The invariant mass distribution is obtained for every 7;,1; combination in data and MC. The
invariant mass data-MC comparison is given by:

o; + O
mi = m}© <1+—’; f) (2.14)

The combination of the two ¢ is obtained from a x> minimization between the invariant
mass distributions and the individual constants follow directly from solving the equation
system. Figure [2.27(a) shows the value obtained for the energy correction, «, as a function
of 1. The bottom panels show the statistical and the total uncertainty, which is lower than
0.3x1073 for |n| < 1.47, 2x 1073 for 1.47 < |n| < 1.82 region (that includes the barrel-
endcap discontinuity), and 5x 1073 for |n| > 1.82.

For the energy resolution of electrons, a similar procedure is applied and a “C;;” term

is added in quadrature to the resolution of the simulation:

(@)dm - (ﬂ)MC@—C"@C" (2.15)
m/ij m/ij 2

The electron energy resolution correction factor, ¢ is shown in figure 2.27|(b) as a
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function of n. In average, the correction was 0.8 % for |n| < 1.2 with an uncertainty of

0.3 % and was 1 % in the endcap with an uncertainty of 0.5 %.
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Figure 2.27.: Correction parameters of the electron momenta for scale o (a) and
resolution ¢ (b). The top plots show the values of the parameters and
the bottom panels give the total and the statistical uncertainty [38]].

Figure [2.28| shows the effect of the scale and resolution corrections in the di-electron
invariant mass distribution for Z— ee events. The uncorrected MC, plotted with a dashed
line, has differences of 5 % in the Z mass bin (90 — 92 GeV) and up to 8 % in the tails. After
the scale and resolution correction, the data/MC agreement is within 1 % except in the low-
mass tail (80 — 85 GeV) where the difference is 3 % pointing to some mismodelling in the
MC.

The systematic uncertainties on the scale and resolution result mostly from the
knowledge of the dead material that the electron needs to traverse, for low transverse energy
electrons. For high Et, the leading contributions are the layer calibration and the pedestal
noise estimated from pileup events. For intermediate Et values, these contributions are
negligible, and the Z— ee calibration dominates the uncertainty. For the region || < 0.6,
electrons with transverse energies of 40 GeV and 200 GeV have energy uncertainties of
0.03 % and 0.27 %, respectively [38]. The green band in figure [2.28| shows the systematic

uncertainty applied to the invariant mass of the two electrons.
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Figure 2.28.: Di-electron invariant mass distribution of Z— ee candidate events
reconstructed for data (blue points) and MC simulation with (black
line) and without (black dash line) the scale and resolution correction
applied. The data/MC comparison is shown below with the respective
calibration uncertainty (green band) for corrected MC [38]].

2.7.3. Taus

Taus were not used in the analysis presented in this thesis. Therefore, they are only
briefly described here. A tau has a decay time of 290.3 fs (¢7 ~ 87.11 um) [4], which means
it can travel a couple of millimetres in the detector. Either it decays into a lepton (electron or
muon) and neutrinos, with a 35.24 % fraction, or it decays hadronically. In the first case, the
lepton is reconstructed from the electron or muon tracks, while in the latter is reconstructed

as a jetﬂ The reconstruction and calibration of taus are described in reference [68]].

2.7.4. Neutrinos and missing transverse energy

Neutrinos are the only particles that leave no information in any of the sub-detectors
of ATLAS. The only information, which can be extracted from the neutrino, comes from
the conservation of the momentum/energy before and after the collision. Since the beams
collide head-on, there is no transverse momentum from the beam before the collision. In the
collision that creates a neutrino, it leaves the detector without interacting, and there will be a

momentum imbalance in the transverse plane.

2Jets result from the reconstruction of the hadronization of quarks and gluons and is explained in the

section
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The energy-momentum Lorentz vector is obtained for the identified particles that leave
energy in the calorimeter based on the calorimeter energy, direction (position on the detector)
and mass. These particles are electrons, photons, hadronic taus and jets. Additionally,
there are energy depositions in the calorimeter that do not belong to any reconstructed
particle. These soft energy deposits come from low energy particles that do not pass the
reconstruction threshold. Finally, muons deposit a small amount of their energy in the
calorimeter and only very low energy muons are stopped in the calorimeter volume. Their
contribution is obtained directly from the momentum measured in the inner detector for
isolated muons, discarding the energy deposited in the calorimeter. Non-isolated muons use
only the momentum measurement from the muon spectrometer and the calorimeter term of
the muon is included in the physics object reconstructed (usually jets). The information of
the neutrino is referred to as missing transverse energy [69, [70] and is obtained from the
sum of the energy-momentum of the contributions just referred, taking its projection onto

the transverse plane and inverting the direction of the vector, as expressed in equation [2.16]

Nobj '
Br=-Y Eri=-Y Ef- Y E{- Y Ef - Y Er° - Y E¥" - Y ¥
l (2.16)
Figure [2.29] shows the missing transverse energy for events with two muons, with
reconstructed invariant mass between 66 and 116 GeV for data and simulation. The bottom
panel shows the data/MC ratio. Differences from the unity of about 5 % are found for missing
transverse energy up to 60 GeV and up to 20 % after. Missing transverse energy is used in

the ZH analysis, selecting events with small Et as it is expected in the ZH — (¢bb process

(see section[4.5.3).

2.7.5. Jets

Quarks and gluons produced in the hard scattering process can not exist freely in nature
because they have a non-zero colour quantum number. The hadronization is a model that
physicists use to explain and to mimic how the quarks and gluons transform into hadrons
and will be discussed further in section [2.8] After the hadronization, there will be a set of
particles emitted in the same direction, to which the denomination “jet” is given. Jets are the

best tool to probe the quark or gluon resulting from the hard scattering, assuming that the
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Figure 2.29.: Missing transverse energy distribution for Z — pu event [70].

energy and direction of the jet are related to the energy and direction of the initial particle.
Jets [71] can be defined at different levels: at parton level, at particle level and
calorimeter level. A sketch of a proton-proton collision is depicted in figure [2.30] Parton
level jets are composed of the quarks or gluons resulting from the hard scattering process
hadronization. Jets at particle level consist of stable particles (half-life larger than 33.4 ps)
after the hadronization process takes place. The information from these two levels can only
be accessed at truth level, i.e. in simulated samples. Calorimeter level jets are composed of
the energy depositions in the calorimeter. Since non-simulated events have only calorimeter
level jets, it is necessary to compare these with those at truth level to probe the initial quarks
or gluons. Jets can also be obtained from the combination of tracks but since there is no
track from neutral particles in this way, the energy carried by neutral particles will not be

measured correctly.

2.7.5.1. Jet finding algorithms

Jets are reconstructed using jet algorithms which combine either the quarks and gluons,
or the stable particles at the generator level, or the calorimeter energy clusters. A good jet
algorithm should provide almost identical results at each of the three levels and be relatively
fast. The former requirement is assessed by evaluating if the algorithm is collinear and
infrared safe. The latter was optimised since the FastJet program [73] was introduced to

speed up jet reconstruction. There are two types of jet algorithms: cone and sequential
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Figure 2.30.: Sketch of a collision showing the different types of jets. Adapted from
reference [72]].

clustering. Most cone algorithms require a seed, i.e. an energy deposit above a certain
threshold, to start the iteration. These seeded algorithms reconstruct different jets if a particle
deposited its energy in a single (with seed) or two collinear (no seed) calorimeter cells.
Therefore, the algorithm is said to be collinear unsafe. Additionally, jet algorithms should be
infrared safe, which is tested by adding additional soft radiation to the event and checking if
there is impact on the algorithm performance. In algorithms which are not infrared safe, such
as the seeded cone algorithms, it becomes impossible to make perturbative QCD calculations,
and jets become useless because the three levels produce different results. From the cone
algorithms, only the seedless SISCone algorithm [74] is both infrared and collinear safe. All
sequential clustering algorithms are infrared and collinear safe and, for this reason, they are
the most used.

The sequential clustering algorithms try to recombine two jet constituents (calorimeter
clusters or particles) into one until reaching the final jets that correspond to the initial quark
or gluon. Figure [2.31] shows a fluxogram of the sequential clustering method to find jets.

Starting with a list of N jet constituents, the algorithm looks first if the list is currently empty.
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Figure 2.31.: Fluxogram of the sequential clustering method to reconstruct jets.

If it is not, the “distances” d; ; and d; are evaluated from equation [2.17]

R?.
dij = min(ky';, k') X —* d; = k3 2.17)

The a parameter is algorithm-specific and R; ; is the distance in the (1,¢) phase space
between the two jet constituents. The R parameter is what defines the size of the jet. A
large R value ensures that the jet will contain all the particles which were created by the
initial parton but may also contain contributions from pileup and the underlying event. A
small value of R is less sensitive to these effects but might not contain all the jet energy.
The parameter kt can be either Et or pr of the jet constituent. The distances d; ; and d; are
evaluated for every pair of jet constituents {7, j} and for every jet constituent 7, respectively. If
the distance between two jet constituents d; ; is the smallest distance, those two constituents,
i and j, are combined. This combination consists of determining the centre of the new jet

constituent, as the weighted sum of the two primary jets constituents. In this case, the new
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combined jet constituent is added to the list, and the two input jet constituents are removed
from the list. If the minimum is one d; instead, this jet constituent is considered to be one
jet and is removed from the list. The process will continue until the list of jet constituents is
empty, and the clustering algorithm finishes with all jets found.

The three main sequential clustering jet algorithms are k1 (a = 1), Cambridge/Aachen
(a =0) and anti-kt (a = —1) [75]. The kr algorithm combines first the softer elements.
Figure shows one simulated event with this algorithm indicating that the found
jets fluctuate considerably in size and shape. The Cambridge/Aachen algorithm has no
dependence on the energy of the elements, and simply merges close-by constituents until no
distance is larger than R. The same event is shown in figure 2.32 (b)] with this algorithm. It
is favourable when probing the sub-structure of a jet as it only uses the distance in the (17, ¢)
phase space. Finally, the anti-kT algorithm will combine first the harder particles. It will
result in cone-shaped jets, circles in the (1],¢) phase space as observed in figure
Although this combination scheme is not adequate to study the substructure of jets, the

distinct areas are the best for calibration purposes.

(a) kr algorithm (b) Cambridge/Aachen algorithm (c) anti-kT algorithm

Figure 2.32.: Reconstruction of the jets of an event using three sequential clustering
algorithms [75].

2.7.5.2. Jet reconstruction and calibration in ATLAS

The ATLAS experiment uses the anti-kt algorithm with an R parameter of either 0.4 or
0.6, depending on the physics searches involved. Also used by the experiment are large-R
jets (R = 1.0) when studying boosted regime. The ZH analysis uses only R = 0.4 and so does
the work developed for this thesis.
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The ATLAS calorimeter is not compensated, which means that the energy response
to hadrons is not the same as to electrons. Therefore, it is required to calibrate the energy
of the calorimeter jets. There are three possible calibration levels of the calorimeter. The
baseline calibration uses events from Z— ee decay to obtain the electromagnetic energy
scale. These calorimeter jets are then calibrated at the hadronic scale, known as EM+JES,
to correct for the calorimeter non-compensation. The derivation of the jet energy scale will
be extensively covered in chapter 3] The third calibration level is applied to the topoclusters
before running the jet finding algorithm. The topoclusters are divided into electromagnetic or
hadronic clusters, depending on some shower shape variables and the energy density in the
two calorimeters. This calibration also tries to correct for the lost energy around the cluster
due to the noise thresholds and in the non-sensitive regions of the detector. It is known as the
local hadronic cluster weighting calibration (LCW). Similarly, this calibration is improved
further by applying a specific jet energy calibration, obtaining LCW+JES. ATLAS also uses
the LCW based calibration, but since neither the ZH analysis nor the calibration studies
documented in this thesis used it, it is not discussed further.

Most analysis are not interested in jets other than those resulting from the leading
interaction. The ZH analysis used a pileup suppression method known as jet vertex fraction
(JVF). This method associates tracks to jets and calculates the fraction of the scalar sum
of transverse momentum of these tracks inside the jet that belong to the leading primary
vertex [/6]. If this fraction is below 0.5, the jet is considered as a pileup jet and will not be
included in the analysis. The systematic uncertainty associated to this method is evaluated
by changing the threshold by about 5 % and the effect will be studied in the analysis.

2.7.5.3. Jet categorisation
Jets in simulation can be divide into four categories:

b-jet If any B-hadron is found within a distance of 0.4 from a jet axis, that jet is considered
to be a b-jet.

c-jet If the jet is not a b-jet and there is at least one C-hadron within a distance of 0.4 from
the jet axis, that jet is considered to be a c-jet.

T jet If the jet is neither a b-jet nor a c-jet and a 7 lepton is found within a distance of 0.4
from the jet axis, the jet is considered to be a hadronic 7 jet. These are not considered
in the ZH analysis.

light jet If none of the previous conditions is verified, the jet is considered to be a light jet.

65



2. The ATLAS Experiment

The latter category is further divided into light-quark or gluon initiated jet by checking

what is the particle (quark or gluon) that has the largest transverse momentum in the jet.

2.7.6. Identification of b-jets

The identification of b-jets in ATLAS is based on the large lifetime of B-hadrons, of the
order of 1.5 ps (cT ~ 450um). A B-hadron with pt = 45 GeV may travel about 4 mm in the
transverse plane before decaying. There are two classes of b-tagging algorithms that explore
this characteristic of b-jets: impact parameter based, or secondary vertex based. A better
description of each can be found in references [77, [78]]. The combination of both classes of
algorithms results on a better discriminator to identify b-jets.

Impact parameter based algorithms use the significance of the track impact parameters,
defined as the ratio between the impact parameter value and its reconstruction uncertainty, as
inputs for a log-likelihood ratio formalism to define the probability that the track originates
from the primary vertex. A sign is given to the impact parameter depending on whether it is
located along the jet direction or in the opposite direction. Since the B-hadron that produced
the b-jet travels before decaying, the average sign of the impact parameter will be positive
for tracks in the b-jet, whereas light flavour jets have a more evenly distribution.

Vertex based algorithms in ATLAS use either a log-likelihood ratio as previously or a

neural network. The variables used for these algorithms are:

* the invariant mass calculated from the charged particles, represented by the reconstruc-
ted tracks, in the secondary vertex;

* the ratio between the momentum of the charged particles in the secondary vertex and
the total momentum of those that are matched with the jet;

* the number of vertices that have exactly two charged particles associated;

* the number of vertices that have two or more charged particles associated;

* the total number of charged particles in the vertices referred in the previous bullet;

* the number of vertices, with one reconstructed track, in the flight direction of the B-
hadron;

* the flight-length significance, defined as the distance between the primary and the
secondary vertices divided by its uncertainty;

* Angular distance, AR, between the flight direction and the jet axis.
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Figure 2.33.: Performance of the MV 1 b-tagging algorithm [78]]. Distribution of the
fraction of b-jets and c-jets and light flavour jets as a function of the
MV1 weight (a). Rejection of light flavour jet as a function of the b-jet
efficiency for some b-tagging algorithms (b).

The MV 1 tagger algorithm [80] uses a neural network with inputs from both classes of
algorithms and gives a final result, referred as the MV1 weight. Figure shows the
fractions of b-jets, c-jets and light flavour jets as a function of the MV'1 weight for a simulated
tt sample. A jetis b-tagged if it has the MV 1 weight above a particular value. The threshold is
selected to accept a fraction of b-tagged jets, referred to as the operating point, and rejecting a
corresponding amount of c-jets and light flavour jets. Figure [2.33 (b)| shows the light-flavour
jet rejection as a function of the b-tagging efficiency for impact parameter based algorithms
(JetProb and IP3D), vertex based algorithms (SV1 and JetFitter), some impact parameter-
vertex algorithm combinations, and finally for the MV1 tagger. The operating point of the
MV1 algorithm must be chosen as a compromise between the b-tag efficiency and the light
flavour jet rejection.

It is necessary to understand how adequately the simulated efficiencies correspond to
reality, through comparisons between simulation and data. The methods for obtaining the
efficiencies are detailed in references [78, (79, I80]. The efficiencies obtained for data and

simulation as a function of the jet pr are shown in figure [2.34] for b-jets (a), c-jets (c) and
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Figure 2.34.: Measured b-tagging efficiencies (left) and scale factors (right) obtained
for b-jets (top), c-jets (middle) and light flavoured jets (bottom) for data
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light flavoured jets (e), for the 70 % operating point. The light flavoured jet efficiency is
referred to as the mistag rate. The efficiencies were obtained in simulation: for b-jets using a
tt simulated sample with a leptonic filter, for c-jets using a di-jet sample, filtering events with
the decay of the D** meson, and for light-flavoured jets using also the same di-jet sample
but without this filter. The efficiencies are then validated comparing the efficiency measured
in data with the one for MC. Data events are selected by a leptonic trigger for b-jets and a jet
trigger for the remaining. Scale factors are derived from data/MC ratios and are applied at
analysis level to correct the simulations, which are shown on the right side of the figure [2.34]

for the corresponding jets.

The systematic uncertainties shown by green bands around the calculated scale factors
(black markers) include contributions from the systematic uncertainties from the detector
resolution, from the methods adopted, and from the statistical uncertainties in each bin.
The systematic uncertainty in the simulation contains the modelling and normalisation of
signal and background samples when assessing the b-jet efficiency calculation and other
contributions. For the detector uncertainties, the most notable are the resolution of the
impact parameters required to obtain their significances. The uncertainty on the method
i1s most important in the c-jet case since it has a very complicated method for extrapolating

the efficiency for c-jets with the D** — D%z decay to an inclusive set of c-jets.

Name Operating | MVlc | Efficiency (%) | Rejection efficiency (%)
point weight b-jet c-jet light-jet
Loose 80 0.4050 79.85 67.11 96.57
Medium 70 0.7028 70.00 81.27 99.26
Tight 50 0.9237 49.99 96.19 99.93

Table 2.1.: Summary of the MVlc properties for the three operating points. The
rejection efficiencies give the fraction, in percentage, of the c-jets and
light flavour jets not accepted as a b-jet [81]].

The MV1 b-tagging algorithm was optimised for a better rejection of c-jets (MVlc),
with a smaller rejection of light flavour jets. The MVlc algorithm was implemented in
the ZH analysis [82], using three operating points, loose, medium and tight, with b-jet
efficiencies near 80 %, 70 % and 50 %, respectively. Table[2.T|summarises the efficiencies for

each operating point, with the respective light and c-quark rejections and the weight value.
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2.8. Monte Carlo simulation

Deep inelastic scattering experiments discovered that the proton is not an elementary
particle and has an internal structure with three valence quarks [83]. The strong interaction of
quarks inside the proton is mediated by gluons. The momentum distributions of quarks and
gluons inside the proton, referred to as partons, are described by various published parton
distribution functions (PDFs). The main PDF sets used for this thesis were CT10 [84] and
CTEQ6LI1 [85].

A Monte Carlo (MC) event generator [86,87]] uses the PDF sets to select the momentum
of the particles participating in the hard scattering process and to generate the events based
on some properties distributions. Additionally, it can use the quantum mechanics matrix
element, .72, integrated in the process phase space to determine the cross section, &, for
the simulated process at leading order (LO). The three most complete event generators are
PyTHIA [88,89], HERWIG [90} 91] and SHERPA [92]]. In this thesis, the main parton shower
event generator versions used for the ZH analysis were: PYTHIA-6, PYTHIA-8, SHERPA-
1.4.1, HERWIG++.

(b)

Figure 2.35.: Next-to-leading order in electroweak Feynman diagrams of the ZH
production mechanism.

Higher order calculation results from adding particle loops to the tree-level Feynman
diagrams. Next-to-leading-order (NLO) electroweak (EW) corrections results from adding a
virtual photon interaction between two electric charged particles or in the same particle. Two
possible NLO EW corrections for the ZH production are shown in the Feynman diagrams on
figure[2.35] Figure[2.35|(c) shows additionally a fermionic loop in the offshell Z boson. NLO
QCD corrections results from adding to the Feynman diagrams a gluon interaction, instead
of the photon, to colour charged particles and adding a quark or a gluon loop to a gluon.
Because of the gluon self quartic coupling, the gluon loop can also begin and end in the

same vertex. Analogous considerations are made for next-to-next-to-leading-order (NNLO),
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and so on. The higher order generator referred in this thesis is POWHEG [93]. Also used
in the thesis are the ALPGEN [94]] and ACERMC [93] generators, obtained at leading-order
but with multileg (more parton shower). There are also specific programs that provide higher
order calculations for particular processes like FEWZ [96] used for the calculation of the cross
section production of Z and W bosons, TOP++ [97] for the ¢ process, or HAWK [98] for the
ZH — (¢bb process. Alternatively, higher order corrections can also be considered to leading
order generators by multiplying their cross section by some tabulated correction factor. Such
is the case of the SHERPA simulations used in this thesis with a correction multiplicative
factor of 1.12 (1.10) for Z+jet (W+jet) process.

Event generators simulate additional parton shower in the event by splitting out-going
quarks or gluons. A gluon can split into two quarks, referred as gluon-splitting. All electric
charged particles can radiate photons and all coloured charged particles, quarks and gluons,
can radiate gluons. The term initial (final) state radiation is usually called to additional
photons or gluons that are produced in the initial (final) state of the hard scattering process.
The PHOTOS [99] program is used to address the final state radiation from QED. No quark or
gluon can exist freely in nature because they have colour charge quantum number different
from zero and have to be recombined. This recombination is referred to as hadronization.
Event generators use two alternative hadronization models based on some properties of QCD.
The Lund string model [100], used by the PYTHIA generator, is based on the direct relation
between the potential energy of quarks or gluons and the distance between them. The cluster
string model, used by the HERWIG and SHERPA generators, is based on partons in a shower to
be clustered into colour singlet groups. In this process, called preconfinement [101]], gluons

are split into quarks before clusters are formed.

The so-called hard scattering interaction involves only two of the partons in the proton.
Other partons also participate in the collision and the interaction of these proton remnants
needs to be simulated as well. For that, several underlying event (UE) are used by the
event generator and tuned to collision data. The underlying event is simulated before the
hadronization since some times it is necessary to obtain an overall neutral colour quantum
number from outgoing particles. Two main independent UE tunes are used for the processes
addressed in this thesis: the ATLAS underlying event tune 2 (AUET2) [102, [103] and
the PERUGIA tune P2011C [104)], which was adapted to the PYTHIA6 generator and the
CTEQGLI1 PDF set. SHERPA handles the underlying event internally.

The final event generation step takes care of all unstable particles before entering the
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detector simulation. All hadrons with a half life smaller than 33.4 ps are forced to decay
using the default generators. Other programs can be used for handling the decay of particular
particles. Examples of this used in this thesis are the TAUOLA [105] that handles the decay of
T-leptons and HDECAY [106]] that handles the decay of the Higgs boson. The latter includes
the Standard Model decays to fermions, gluons, vy, Zy, WW, ZZ and also some beyond the
Standard Model decay possibilities like supersymmetric particles.

On top of the leading proton-proton collision, other softer collisions occur, as discussed
in section 2.4 The pileup is simulated through the superposition of minimum-bias
interactions simulated with PYTHIAS8 and using the MSTW2008L0 PDF set [[107] and the
AUET?2 tune.

After passing this last stage, particles are called truth particles in this thesis. Despite
this, they retain the information of which non-stable particle they came from. This allows to
apply filters to select if specific particles were created during the hadronization process. This
filtering can happen during event generation or be used at analysis level. This thesis uses
particular filtering for B-hadrons and C-hadrons. The particles considered for each filter are
presented in table [2.2) with the MC particle identification, the symbol and the leading quark
composition. This filtering helps to increase the statistics for rarer events. Another filter
used was the production of separated samples for different transverse momentum windows of
vector boson in a V+jets sample and of leading jet in di-jet sample. Another filter considered

selects leptonic decays from W or Z bosons.

Bottom hadrons Charmed hadrons
Mesons Baryons Mesons Baryons
MCID Symbol qq | MCID Symbol qqq | MCID Symbol qq | MCID Symbol qqq
511 BT ub | 5122 A} udb | 411 D7t cd | 4122 A/ udc
521 B db| 5132 Zj dsb | 421 DO cii | 4132 E dsc
531 B! sb | 5232 EY usb | 431 D 5| 4232 Ef usc
541 Bf cb | 5112 % ddb 4212 Eg) dsc
5212 %Y udb 4322 EF usc
5222 %f ddb 4332 QQ ssc
5332 Qp ssb
Table 2.2.: Bottom and charmed hadrons selected by the filter present in the SHERPA
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Once particles leave the event generator, it is necessary to simulate how they interact
with the detector. The ATLAS sub-detectors geometry are simulated with the GEANT4
tool-kit [[108, [109]. Additionally, GEANT4 is also responsible for the interactions between
particles and the detector. Particularly, for the calorimeter, there are several tools to
simulate this interaction called physics lists [[109, [110]. This thesis considers two physics
lists: QGSP_BERT and FTFP_BERT. In the QGSP_BERT physics list, the final state
of pions, kaons, protons and neutrons is modelled with the quark-gluon string model,
followed by precompound and evaporation models for energies above 12 GeV, with the low
energy parametrized model (LEP) for energies between 9.5 and 25 GeV and the Bertini
intra-nuclear model below 9.9 GeV. Smooth transitions are applied between models in
the overlap energy regions. The FTFP_BERT physics list uses the FRITIOF model with
precompound/evaporation models for energies above 4 GeV and the Bertini model below
5 GeV, for the final state of the same particles.

Simulations where GEANT4 is used to describe the whole detector are referred as
“full simulations” and contain the best description of the ATLAS detector. The simulation
time for the propagation of particles in the calorimeter with GEANT4 accounts for almost
80 % of the total time of the detector simulation time and is dominated by the simulation
of electromagnetic particles [111]. For this reason, the much faster FASTCALOSIM was
used to parametrize the longitudinal and lateral energy profile in (1,¢) bins corresponding
to the granularity of the calorimeter cells. Several simulation samples, considered in this
thesis, used this “fast simulation”, called ATLFAST-II. This detector simulation reduced the
simulation time by a factor of 20 — 40 [111] and allowed for simulated process samples with
larger statistics.

The event, after passing the detector simulation, contains the cell energy depositions
and the tracking hits. The L1 trigger system, discussed on section [2.3] is also simulated.
After this step, the event is again in the RDO format, and the reconstruction will take place

in the same way as for data (see section [2.5)).
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“...asingle drop in a limitless
ocean. | What is an ocean but a
multitude of drops?”

(David Mitchell, “Cloud ATLAS”)
3.1. Introduction

The properties of quarks and gluons are very complicated to measure because of the
hadronization process, discussed in section @ LHC is a hadronic collider and the outcome
of nearly every collision will have these elementary particles which hadronize into a set of
stable hadrons. The latter interact in the detector and it is their energy and properties that
are measured. The final state particles have to be combined to measure the properties of the
initial quark or gluon. The jet algorithm anti-k, described in section[2.7.5.1] combines these

particles to access the information of the initial quarks and gluons.

3.1.1. Motivation

There are many different effects that affect the measurement of the jet energy, that
will require dedicated calibrations to correct for them. The ATLAS calorimeter is a non-
compensating calorimeter, meaning that, in a hadronic shower, the energy response to the
electromagnetic component of the shower is different from the hadronic component. Despite
the fact that the majority of particles in the shower are hadrons, the hadronic cascade has
an electromagnetic component mainly from neutral pion decays, 7’ — yy. However, some
of the initial hadron energy is lost in nuclear binding energy. There are also energy losses
due to spallation of slow nucleons and production of muons and neutrinos that escape the
calorimeter. It may also happen that very energetic jets lose part of their energy because
the calorimeter volume cannot contain the jet, which is usually referred as leakage of the

calorimeter. Other energy losses result from the absorption in non-instrumented regions
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of the detector such as the cabling system or the cryostat between the two calorimeters.
Additionally, since the anti-kt algorithm reconstructs jets with a finite size, R, some of
the energy of the original quark or gluon might be deposited outside of the calorimeter
reconstructed jet, which is referred as out of cone energy. On the contrary, the energy
of a reconstructed jet might be increased with the energy deposition from other proton-
proton collisions, referred as pileup. Finally, besides the hard scattering process between
the two partons, the protons remnants will also have softer interactions, which is known as
the underlying event. Both the underlying event and pileup produce additional particles and
if their direction is the same as the jet, the jet will include their energy in addition to the
energy from the quark and gluons from the hard scattering parton-parton interaction.

Only a good accuracy in the energy measurement of the calorimeter jets will allow to

correct jets to particle level and to probe final state quarks and gluons.

3.1.2. Jet calibration scheme

In 2012, the ATLAS jet calibration was performed in several stages. An overview of
this procedure is shown in figure [3.1] The work described in this thesis uses the calorimeter
clusters calibrated at the electromagnetic scale as the jet elements. The calorimeter jets are
obtained with the anti-kT algorithm with an R-parameter of 0.4. In the first stage, calorimeter
jets are corrected for the energy offset caused by pileup. This correction is derived from MC
and corrects the dependence of the jet energy on the average number of interactions per bunch
crossing, i, and the number of primary vertices (Npy). The jet is by default reconstructed
as coming from the origin of the ATLAS detector, and the origin correction takes instead the
primary vertex position to define the direction of the jet. This correction does not affect the
energy of the jet but only its direction. Next, an energy and 7n) based calibration derived from
MC is applied for each jet to correct for the non-compensation of the calorimeter referred
in the previous section. In situ comparisons from data and MC are used to obtain a residual
calibration which is applied only to data. Following these steps results in calorimeter jets
calibrated at the jet energy scale: EM+JES.

An overview of the ATLAS jet calibration procedure is shown in figure The jet
calibration is performed in several phases. The starting point is the calorimeter jets obtained
with the anti-kT algorithm run over the calorimeter clusters calibrated at the electromagnetic
scale. Alternatively, the clusters can also be calibrated at the LCW scale, defined in

section
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- . Calorimeter jets
Calorimeter jets Pilezup offset > Energy & Residuallinisitu
gin correction ocr] EM+JES or
(EM or LCW scale) ccorrection Origin corr 1 calibration calibration LC$N+JES scale)

Corrects for the energy Changes the jet direction to Calibrates the jet energy Residual calibration derived

offset introduced by pile-up.  point to the primary vertex. and pseudorapidity to the using in situ measurements.
Depends on p and Npy. Does not affect the energy. particle jet scale. Derived in data and MC.
Derived from MC. Derived from MC. Applied only to data.

Figure 3.1.: Overview of the ATLAS jet calibration in 2011 [71].

A second pileup correction was added in 2012 to obtain event-by-event corrections
based on the average energy density in the event to improve the pileup calibration procedure.
Also, an additional calibration, the global sequential calibration (GSC), was designed to
reduce the quark-gluon response difference. The study of the GSC was one of the objectives
of this thesis.

3.2. Pileup offset correction

The pileup, discussed in section [2.4] imposed substantial challenges in the calibration
of jets. Pileup increased the jet energy due to contributions from further proton-proton
interactions. The transverse momentum of the jet was corrected by removing the energy

contribution from the pileup:

P =pf' -0 3.1

During 2012, the technique known as the jet area correction [76]] estimated this offset
energy ¢ from the area of the jet, A ,;, and the event-by-event pileup energy density, p, as
shown in equation [3.2]

O =p xXAjg (3.2)

The FASTJET software package [73]], used for the jet finding algorithms was used for
the area calculation. It applied a very dense and uniform net of particles with density, Vg,
on top of the event. These particles were ultra-soft with pr ~ 10719 GeV and referred to
as ghost particles. After the jet finding algorithm was run, the ghost particles would be a

part of the jet with a negligible contribution to its energy. The quadri-momenta of the ghost

u

particles, gf.i , belonging to a jet are summed. Then, a four-momentum area of the jet, A et is

defined by dividing this sum by the density of the net, v, and by the average pr of the ghost
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particles:
1
Ho_ H
A=y L & (33)
g\PT gi €jet

u
jet®

Finally, the scalar area of the jet is the transverse component of A

Figure 3.2.: Voronoi regions for one event seeded by the clusters in the calorimeter.
The edges of these regions are shown with the green line. The jets are
shown by the different coloured regions [112].

In the pileup energy density calculation for the event, p, jets are reconstructed with
the kt algorithm with the parameter R = 0.4. The choice of this algorithm instead of the
anti-kT is due to its sensitivity to pileup, as it joins first the soft particles with the closest hard
particle. These hard particles, defined by the topological clusters, are used to seed Voronoi
regions, that are mathematically defined by the cells which are closest to each seed in the
N — ¢ phase space. Figure[3.2]shows an example of these regions, limited by the green lines,
which represent the line segment bisector of two neighbour seeds. The density of each jet
was obtained from the ratio between the jet pr and the Voronoi area of the jet. The median
of the density of these jets defined the density of the event.

The average jet pt depends linearly on the number of primary vertices, Npy, and the
average number of interaction per bunch crossing, (1), and can be fitted to a straight line with
a slope, 9PT and aﬂ, respectively [[71]]. Figure shows the fitted slopes as a function of

INpy L)
the pseudorapidity of the jet. The red squares refer to the dependence before applying any

correction, and the blue up triangles after applying the p - A subtraction. The dependence on

Npy, sensitive to the in-time pileup, was drastically reduced to a residual dependence smaller
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Figure 3.3.: Dependence on the Npy (a) and on the (i) (b) of the reconstructed jet
pr as a function of the pseudorapidity of the jet [76]. The error bands
represent the uncertainty of the linear fits. The dependence is obtained
for before any correction, in red, after the p - A correction, in blue, and
after both corrections, in green.

than 0.1 for |n| < 2.5 and smaller than 0.2 in the forward region. Since the p - A correction

was designed to correct for the in-time pileup, the effect on the out-of-time pileup estimation
variable, (1), is negligible, as observed in figure (3.3 (b)

A second correction is implemented to correct for the out-of-time pileup similar to the
one used in 2011, which used a parametrization of the dependences of the slopes referred
above with Npy, (i) and 1, after the p - A correction [71] to further correct the jet transverse
momentum. The green down triangles in figure [3.3] show the combination of these two
methods, which reduce the dependence of the reconstructed jet pr on both pileup variables
to negligible values. The p - A correction was only obtained for the central pseudorapidity
region. However, it was also able to correct most of the pileup dependence of the jet pt on
Npy. For the dependence with (i), there was almost no change and this dependence was

only corrected by the residual correction, as shown in the figure.

The systematic uncertainty on the pileup correction from jets comes mainly from the

residual dependence of the pileup correction with the energy density, the number of primary
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vertices, the mean number of collisions per bunch crossing, and extrapolation to other bins of
the corrections from the pt region where it was calculated. The total systematic uncertainty
is about 2 % in the |n| < 2.1 region for jets with pr > 40 GeV, reaching up to 6 % in the

forward region for jets with lower prt [113]].

3.3. Origin correction

By default, the (n,¢) coordinates of jets are calculated assuming that the collision
point is at the origin of the coordinates’ system (0,0,0). Although this happens in average,
the nature of the train of bunches would produce collisions spread over the z-axis in a region
of about 5 cm in 2012. To correct this effect, the calorimeter jet constituents, the clusters, are
first corrected to point to the primary vertex and the jet 1 position is recalculated. The total
jet energy remains unchanged, and only the transverse energy is recalculated as it depends
on the pseudorapidity.

The effect of the origin correction is shown in figure [3.4] where the resolution of the
pseudorapidity (a) and the azimuth angle (b) difference to the truth value are shown as a
function of the jet pt, with (red triangles) and without (blue circles) the origin correction.
Almost no effect is observed in the azimuth resolution, which shows in both cases differences

of up to 6 % for low-pr jets, due to the magnetic field which has the direction of the beam.
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Figure 3.4.: Resolution on the 1) (a) and ¢ (b) position of the jet, as a function of the
jet pt, before and after the origin correction [114].

80



3.4. Jet energy scale calibration

Before the origin correction, the resolution on the difference between the reconstructed
and truth pseudorapidity of the jet, as a function of pr, is always greater than 3 %, up to
the TeV scale. With the origin correction, this resolution improves significantly, becoming
smaller than 0.01 for pr > 100 GeV.

3.4. Jet energy scale calibration

The jet energy scale calibration is the most important step of the jet energy calibration
and corrects the measured jet energy to account for a series of effects, such as the non-
compensation of the ATLAS calorimeters, the energy lost in the cryostat and material

upstream of the calorimeter and the energy lost outside the jet cone.

3.4.1. Calibration procedure

The correction is applied as an (1, pr) dependent weight using numerical inver-
sion. This calibration scheme was the default calibration applied by ATLAS analyses in
Run-1 [71]. The weights are derived comparing the reconstructed jet Et with the truth jet
Er in the ratio Ef*¢° /EU™ Bquation |3.4| gives the relationship between Er and pr of the jet.
For negligible jet masses with respect to the transverse energy, the ratio between transverse

energies is the same as the ratio between transverse momentum p/’/ p’T’“’h.

Ef =pi+m* = Er=pr (3.4)
m<1

Figure shows the distributions of the jet energy response for the pseudorapidity
region 0.0 < 1 < 0.3, for three py bins. The pfc®/pi™" distribution is narrower for the
high-pr jets because they are more collimated than low-pr jets. The fraction of the energy
lost outside the jet cone and in the non-sensitive materials is also smaller for high-pr jets. For
each pr and 7 regions, the jet energy response is estimated as the average of the p/“°/pi: uth
distributions. To better account for non-Gaussian shaped distributions, particularly in the
low-pt range, a Gaussian function is adjusted to the distributions in the window centred in
the mean value with a range extending up and down by 2.5 times the RMS value. If the
average, X', and standard deviation, ¢’, are very different from the mean and RMS obtained
before, a second fit is performed in the window defined by [¥' +2.507].

The mean parameter of the fit as defined above is referred as the jet energy response,
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distributions obtained in the 0.0 < 1 < 0.3 region for three

X, and the ratio between the standard deviation of the fit, o, and the jet energy response is

referred as the jet energy resolution.

The jet energy response is obtained in bins of 17 and pr of the jet, shown in figure[3.6 (a)}

which are delimited by the solid lines. The bullets mark the average (17, pr) of each bin and

the dashed line marks the coverage of the inner detector.
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Figure 3.6.: Definition of the n-pr bi-dimensional bins used to evaluate the jet
energy scale corrections (a) [71]. Response at the EM scale as a function
of the detector jet 1 for five different truth jet energy values (b) [114].
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3.4. Jet energy scale calibration

Figure[3.6 (b)|shows the jet energy response at the electromagnetic scale as a function of
the pseudorapidity of the jet for five values of the energy of the truth jet. The sudden changes
in the jet energy response along the pseudorapidity in the 0.8 < |n| < 1.4and 2.8 <|n| < 3.4
regions are due to the transitions between the barrel and endcap calorimeters and between the
hadronic endcap and the forward calorimeters, respectively. As observed the energy response
of jets at the EM scale is smaller than 1, i.e. the reconstructed jet Et is, in average, always

lower than the truth jet Et.
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Figure 3.7.: Jet energy response as a function of p’T’”’h, with the polylogarithmic

function fitted with Ny4x = 3 as defined in equation The pg to
p3 parameters shown correspond to the a, o to a,3 parameters in the
definition, respectively.

Figure shows the jet energy response as a function of the truth jet pt, for a central
n-bin. To obtain the jet energy corrections, the jet energy response is parametrised using six

polylogarithmic functions, .%, given by equation

Nmax
EM EM\T
F(EM) =Y ani (InE™) (3.5)
n=0
a, are the parameters of the function, which will be used to fit the variation of the
jet energy response with pr. For every 1 bin i, six fits are made, where the number of

parameters is varied by ranging the upper bound of the summation, Npax, from 1 to 6. The
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function which has the best goodness of fit, y2/ndf, is chosen to represent the jet response
at the electromagnetic scale [115]. For the 1 region shown in figure the minimum is
obtained for Nyax = 3 for this ) region and the corresponding fit function is shown in red.
The parameters of the fit are also presented in the figure.

The correction is then obtained by inverting the value of the function .# for a
pseudorapidity bin:
EEM

EEM+IES _ i (3.6)

Fi(EM)
The jet became corrected for the hadronic scale after this procedure.
The jet energy scale (JES) calibration constants are derived using non-diffractive
proton-proton collisions in a di-jet sample generated at leading order with PYTHIAG6, with

an MRST LO** [116]] parton distribution function set and AUET?2 for the simulation of the

underlying event.

Events selected for the JES evaluation were considered if the average transverse
momentum between the two leading reconstructed jets did not differ from the leading truth jet
by more than 40 % to remove events where one of the jets originated from a pileup collision.
Furthermore, a strict isolation is required between all jets that enter on the derivation to
be able to make direct “reconstructed jet” to “truth jet” comparisons suppressing energy
deposits from other jets. This isolation is achieved by requiring no other jet to be found
within a distance of 1.0 in the 1 — ¢ phase space. For each reconstructed jet, the distance in
the 1, ¢ plane to all the isolated truth jets is calculated. If the distance to the closest truth jet
is smaller than 0.3, the reconstructed jet is referred as matched to the truth jet.

3.4.2. Jet energy scale calibration performance

After performing the method just described, the jet energy response becomes closer to
unity, as shown in figure [3.8|(a) for the pseudorapidity region 0.0 < 1 < 0.3. Only in the
first pr bin the jet energy response differs from the unity by more than 1 %. Figure [3.8|(b)
shows the jet energy resolution obtained from the ratio between the standard deviation and
the mean from the Gaussian fit to the p/<’ / pi* ! ratio distribution, in the same 1 region. The
jet energy resolution is found to improve with the transverse momentum from about 21 % for

pr~25 GeV to less than 10 % after 100 GeV.

84



3.5. Residual in situ calibration and systematic uncertainties

=
N

©

w

[}
0 L = [
S [ 00<n<o03 B
o L ‘E I 0.0<n< 0.3
01.15) 50.25¢
> 5 ¢
2 I 8 L —m-
O 1.1 0 0.2-
= —= EM+JES = - -+ EM+JES
™1.05F L £0-13¢ -
} T -
1 -.-_."-"-I—-I—FI--I'I-I--I-—I-—I-H — 0 T —.—
L L -i-
L L -
L L ‘.'“"---_..___.q
0.95 0.05 s
' 107 10° 10 10°
pr [GeV] pr [GeV]
(a) (b)

Figure 3.8.: Jet energy response (a) and resolution (b) as a function of p’T”‘”‘ for the
0.0 <n < 0.3 region.

3.5. Residual in situ calibration and systematic

uncertainties

At this stage, both jets reconstructed in data and simulation are calibrated at EM+JES
scale. However, there is one additional calibration to correct for differences between data
and simulations. This residual in situ calibration derivation results from comparing the
reconstructed jet pr against reference objects in data and simulation. Since the protons
collide almost head-on, the transverse momentum before the collision should be zero and
the same should hold after the collision due to momentum conservation. This property is

used by three different techniques to determine the in situ residual corrections.

First, a jet can be balanced against a Z boson or a photon. This technique allows the
study of the jet at parton level because the Z boson or the photon are produced in direct
balance (DB) with the quark or gluon that have initiated the jet. Figure [3.9] shows the
Feynman diagrams for the production of these processes. Since the Z boson or the photon
are balanced against the quark or gluon and not the jet, a correction for out of cone radiation

is applied to the jet in these cases [71, [117]. These two methods are used to correct jets with
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pt up to 800 GeV.

Figure 3.9.: Feynman diagrams for the leading order production of single jets
associated to a photon or a Z boson.

In the in situ corrections for higher transverse momentum, jets are balanced against a
multi-jet recoil system. This is an iterative process that first corrects the pt of the jets in the
recoil system with the direct balance techniques. Next, the method uses the balance between

the vectorial sum of the jet’s pr in the recoil system, il

, and the leading jet pr to correct
the latter. Finally, these new corrections are used to correct jets with even higher prt, up to
1.7 TeV [118].

The average of the distribution of the ratio between the jet pr and reference object pr
was evaluated for data and simulation, obtaining the double ratio defined in equation
jet /pre f

RData _ <pT T >Data (3 7)

Ruc — (pi' /pi e

The reference object can be the Z boson, the photon or the multi-jet recoil system.
Additionally, the pt of the reference object is projected to the direction of the jet to improve

the pr balance.

3.5.1. Jet balanced against a Z boson

In the in situ calibration with the production of a single jet associated with a Z boson,
the Z boson is chosen from its leptonic decay to an electron-positron or a muon pair. Both the
energy scale of electrons [38] and the momentum scale of muons [59] are precisely known.

The average of the p’Tet / p% distribution is obtained for data and MC [[117]]. There are two
generators used to describe the Z+jet process. The baseline generator is POWHEG interfaced
with PYTHIAS8 for hadronization process, using the CT10 PDF set and the AUET2 tune.

This generator is used to obtain the in situ corrections for a jet balanced with a Z boson.
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3.5. Residual in situ calibration and systematic uncertainties

However, there are other generators which are used to simulate the multitude of processes in
ATLAS. The distribution of ( p’Tet /p%) is shown in figure as a function of p% for data
(black squares) and for the Z+jet samples simulated with POWHEG+PYTHIAS (red circle)
and with SHERPA (blue triangles). SHERPA used also the CT10 PDF set but had different
internal implementations of each event generator step and therefore was suitable to test the
theoretical uncertainties. The POWHEG generator had compatible ( p'Te ' / p%> with data expect
for the first bin, whereas SHERPA discrepancies occur below 35 GeV.
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Figure 3.10.: ( Tet / p%) as a function of the p% (a). The in situ correction is obtained
for jets balanced against a Z boson from the ratio of the POWHEG with
respect to data. Only statistical uncertainties are presented. Systematic
uncertainty on the evaluation of the in situ correction on jets balanced
against a Z boson(b). The individual uncertainties are summed in
quadrature to obtain the total uncertainty [117].

There are sources of systematic uncertainties due to limitations on the methods which
produce an uncertainty on the measurement of the jet energy scale. These systematic
uncertainties are then propagated to all analysis in ATLAS. The systematic uncertainties
are obtained from uncertainties on the detector, on the physics modelling or on the methods
used to evaluate the jet energy scale.

The largest contribution to the systematic uncertainty of the direct balance with a Z bo-
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son came from the MC generator modelling uncertainty, obtained from the POWHEG+PYTHIA8
response difference with SHERPA. The difference between the two generators is about 4 %
for jets with pt < 20 GeV and falls below 1 % after 40 GeV. The second leading contribution
to the systematic uncertainty is due to the out-of-cone correction applied in the Z+jet balance.
It was evaluated comparing the ( p’TGt /p%) obtained with the baseline simulation against data.
The estimative of the data-MC difference is about 1.2 % for p% < 70 GeV and becomes
about 0.1 % above 100 GeV. The remaining systematic uncertainties include variations on
additional radiation, the energy scale and resolution of the decays of the Z boson (electrons
and muons), and the quality selection conditions of jets. These uncertainty contributions are
smaller than 0.3 % [71,1177]]. The statistical uncertainties of the baseline generator of Z+jets
are only a significant systematic uncertainty source for p% < 30 GeV, becoming the dominant
contribution below 20 GeV with up to 2.8 % uncertainty. For p% > 40 GeV, this contribution
stabilises at about 0.6 %.

Figure shows each of the components tested for the jet energy scale uncertainty
as a function of the transverse momentum of the Z boson. The total uncertainty, represented
by the black line, is calculated from the quadratic sum of each independent component and
ranges from 3.8 % for low p% to 0.9 % at about 100 — 150 GeV.

3.5.2. Jet balanced against a photon

For the y+jet process, the baseline generator chosen is PYTHIA8 with the AUET? tune.
The resulting average of the p‘Tet / p% distribution as a function of p% is shown in ﬁgure
for data (black circles) and for the y+jet process simulated with PYTHIAS (red squares) and
with HERWIG (blue triangles) C++ version. HERWIG is a different event generator and uses
also different implementation of the underlying event tune, which is UE-EE-3 [119], and
of the hadronization process, making it a suitable generator to test theoretical uncertainties.
Both event generators used the CTEQ6L1 PDF set.

There are differences between data and the simulation with PYTHIAS of the order of
0.5 % for pgf > 100 GeV and slightly larger for the low—p% regime. Differences ranging from
negligible to 0.5 % are found when comparing the two generators except for the first p%
interval, 25 < p% <45 GeV.

The uncertainties obtained for this in situ calibration, include the same effects of out-of-
cone radiation, underlying event, additional parton radiation and JVF that were discussed for

the Z+jets case, in section[3.5.1] The theoretical uncertainties are obtained from comparisons
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Figure 3.11.: (p'/p}) as a function of the p)(a). The in sifu correction is
obtained for jets balanced against a photon from the ratio of the
PYTHIAS simulation with respect to data. Only statistical uncertainties
are presented. Systematic uncertainty on the evaluation of the
in situ correction on jets balanced against a photon(b). The
individual uncertainties are summed in quadrature to obtain the total
uncertainty [117]].

between the baseline generator, PYTHIAS, and the alternative generator, HERWIG++.

In addition to the systematic uncertainty sources referred above, there is another
uncertainty associated with the contamination of di-jet events, where one of the jets is
misidentified as a photon [120]. This effect, labelled as purity in figure 3.1T (b), dominates
the total uncertainty on the y+jet in situ technique up to photons with p% = 80 GeV, as
the di-jet background is relevant particularly at low pgf. The purity relative uncertainty is
as high as 3.2 % in the first p%—bin, becomes smaller than 1% at 70 GeV and negligible
above 200 GeV. The systematic uncertainty due to the out-of-cone radiation is smaller than
0.1 % for p?f > 80 GeV, and it is only relevant at low—p%, reaching 2.4 % in the first p%-bin.
The average of the p]Tet / p% distribution as a function of p% for HERWIG, shown by the blue
triangles in figure have a relative difference to PYTHIAS of about 1.6 % at low—p¥
and 0.2 % for p% > 80 GeV. This difference is taken as the uncertainty due to generator.
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3. Jet calibration and performance

The remaining systematic uncertainty components are no larger than 0.5 % (71, [117]. The
statistical uncertainty of the baseline generator of y+jets is less than 0.3 % for p% > 100 GeV,
reaching 0.8 % in the lowest p%—bin.

Figure[3.1T (b) shows each of the components tested for the jet energy scale uncertainty
as a function of the transverse momentum of the photon. The total uncertainty, represented
by the black line, is calculated from the quadratic sum of each independent component. The
total uncertainty is below 1 % for p% > 100 GeV and can reach up to 4.5 % for the lowest
p%—bin.

3.5.3. Jet balanced against multi-jet recoil system

The multi-jet balance, MJB, is defined as the ratio in equation @

pleading
MIJB = W (3.8)
where plTeadlng is the transverse momentum of the jet to be calibrated and pr™! is the

vectorial sum of all other sub-leading jets. The multi-jet balance is obtained for data and
simulation and the ratio between them defines the correction applied to data [118].

Figure shows the average of the multi-jet balance distribution as a function of
the transverse momentum of the recoil system for data (black circles) and simulation with
the SHERPA generator (blue triangles). The ratio between these distributions is shown in the
bottom panel and provides the correction required to calibrate the leading jet. The average
contribution from the two remaining in situ corrections is superimposed with the purple line.
The discrepancies between MC and data are always smaller than 1% and, in the region
300 < pfrec"“ < 800 GeV, the MC/data ratio are compatible to what was obtained for the
other two in situ calibrations.

The most important systematic uncertainties for the multi-jet method come from the
uncertainties of the other in siru methods due to the jets present in the recoil system. Their
impact on the multi-jet balance correction increase with prTeC"il from 0.6 % to 0.9 %, as shown
in figure [3.12 (b)] with red squares. The effect of the event selection conditions used in
this method, called fopology systematic uncertainties, is below 0.4 % in all pfl?’c"ﬂ range,
as shown with up filled blue triangles. To evaluate the impact on the generator selection, the

SHERPA default generator for the multi-jet balance is compared against POWHEG+PYTHIAS,
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Figure 3.12.: (p}'/pe!) as a function of the pi¢<®! (a). The in situ correction is
obtained for jets balanced against a multi-jet system from the ratio
of the SHERPA with respect to data. Only statistical uncertainties
are presented. Systematic uncertainty on the evaluation of the in
situ correction on jets balanced against a multi-jet system (b). The
individual uncertainties are summed in quadrature to obtain the total
uncertainty [118]].

PYTHIA8 and HERWIG. This contribution is referred as modelling (green open triangles)
and the contribution is 0.3 % to 0.4 % depending on the pﬁ9°°il region. Finally, there is an
uncertainty associated with the flavour composition of the jets in the recoil system, since
jets initiated by gluons have a calorimeter energy response different from jets initiated by
quarks [115]. The effect of this flavour uncertainty decreases with prTeCOil from 0.6 % to
0.2 %, as shown in purple down triangles in the same figure. The total uncertainty (black
circles) is calculated from the quadratic sum of these components and values about 1 %, with

no significant variation with prTe“"l.

3.5.4. Combination of the in situ measurements

Each of the in situ techniques provides data-MC comparisons just for one region of
pT, Where statistics are large enough. The Z-jet method evaluated the correction for jets
with pt between 17 and 250 GeV, while the y+jet method covered the intermediate region,
25 < pr < 800 GeV and the jet balance with the recoil multi-jet system was used for pr
between 300 GeV and 1.7 TeV.
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3. Jet calibration and performance

For the application of the in situ correction to data events, the information from these
three techniques has to be combined. This combination takes into account also the systematic

uncertainties of each method [71]. First, for each of the methods, the ( ;’t / prTef) is obtained

in prTef bins of 1 GeV, interpolating with second order polynomial splines. Since the jet
energy response is close to unity after the n — pr calibration (see section [3.4)), it is assumed
that pfl?f corresponds, in average, to the pr of the jet. The residual correction for the in
situ combination is then obtained for each bin through a ¥? minimization of the jet energy
response ratios. A weight is evaluated for each of the methods based on the distance to the
combination value. On figure these weights are shown for the 2011 data taking for
the three in situ techniques. Z+jet is the most important method up to about 100 GeV, in
which y+jet starts to dominate until 600 GeV. The multi-jet method takes over at this pr

value [71]].
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Figure 3.13.: Average relative weight of each in situ method for the combined
residual correction as a function of the pr of the jet(a) [71]. Inverse
of the residual correction obtained for the three method (markers) and
for the combination of them (black line) (b) [114]].

The measurements of the ratios between the jet energy response in data and the default
MC are summarised in figure for the three in sifu methods. The smaller and the
larger error bars for each of the measurements represent the statistical uncertainty and the
total uncertainty, respectively. The latter ranges from 3 % for jets with pt of 20 GeV to 1 %
after about 100 GeV. The solid black line is the combination of the three methods. The blue

and green bands are the statistical and total uncertainties of the combination, respectively.
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3.5. Residual in situ calibration and systematic uncertainties

The weights presented in figure are also applied to the uncertainties obtained in
sections [3.5.1] [3.5.2] and [3.5.3] to obtain the systematic uncertainties for the combination

of the three in situ methods. The resulting systematic uncertainties are those shown in

figure [3.14] With the weights applied, the uncertainty contributions from the Z+jet method

decrease rapidly for pJTet > 200 GeV. The same is also observed for the multi-jet method, with

no contribution for pJTEt smaller than 200 GeV. The flavour uncertainty component is absent

because it will be handled as a separate systematic uncertainty for jets in section The

modelling of the MC generator becomes the leading contribution to the uncertainty, apart

from the highest pt bin, where the statistical component of the simulation becomes the largest

effect for this method.
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Figure 3.14.: Relative systematic uncertainties for the three methods for the residual
in situ correction weighted by their contribution to the combined in situ

correction [[114]].
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A total of sixty-five uncertainty components arise from the in situ residual calibration,
but there are some correlations between them. To reduce the sources of uncertainty to the
relevant ones, the covariance matrix of the correction factors is diagonalized, obtaining the
non-correlated uncertainties from the eigenvectors of the matrix. The top five uncertainties
raised from this procedure are taken as systematic uncertainty sources. All the remaining
eigenvectors are combined into a single residual uncertainty source. Figure [3.15] shows
the result of this procedure. The five leading uncertainties corresponding to the leading
eigenvectors are shown with solid lines, and the dashed line indicates the combination of the

remaining.
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Figure 3.15.: Relative uncertainty as a function of the jet transverse momentum for
the reduced set of uncertainty components. The top five are shown
with filled lines and the combined residual uncertainty is shown with
the dashed line [71]].

3.6. Calibration of jets in the forward region

The in situ residual corrections presented in the section [3.5] with the Z+jet, y+jet and
multi-jet methods are applied only to jets in the central detector region. The inner detector is
necessary to evaluate the pr of the muons and electrons originating from the Z boson decay.
Beyond the inner detector coverage, there is no difference in the reconstruction of electrons
and photons. In the multi-jet method, the jets in the recoil system are also calibrated using

the first two methods, valid only at central pseudorapidity regions.
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3.6. Calibration of jets in the forward region

However, the balance in the transverse plane is still valid if one of the objects is forward
and the other is central, which is the base for the di-jet balance for the forward in situ
correction of jets [118]]. Here, the energy response of a jet in the forward region is compared
with the energy response of the jet in the central region, and the distribution of the ratio

between their transverse momenta is obtained:

forw

% ="1 (3.9)

ref

Pt

The correction, ¢, to be applied to the forward jet is the inverse of the average of the &%

distribution.

The statistics that results from the usage of the events with central-forward jet pairs are

low, so the method uses any reference jet to correct another jet with larger 1.

Figure [3.16] shows the relative jet energy response as a function of the average pr of
the two jets for the —1.5 < 1 < —1.2 range (c) and of the jet pseudorapidity when the two
jets have their average transverse momentum in the 220 < paTVg < 270 GeV range (d). The
data results are shown with black circles and compared against the simulations obtained
with SHERPA (blue triangles) and with POWHEG+PYTHIAS (red squares). The bottom panel
shows the MC/data ratio for each generator. The black line in the bottom panel shows the

residual correction.

Limitations on the di-jet method lead to systematic uncertainties due to the theoretical
modelling of the predictions, the topology selection for the event, to the pileup and the jet
energy resolution. The physics modelling uncertainty, shown by the purple continuous line
in figure[3.16](bottom), is the dominant uncertainty always for large pseudorapidity, reaching
almost 3 % for jets with pr = 35 GeV (a). For jets with pt = 300 GeV (b), this uncertainty
is reduced by half but still dominates for |17| > 1.5. The remaining uncertainties account
for variations on the event selection: the azimuth distance between the two jets, additional
radiation in the event and JVF. Also included are some pileup effects and the jet energy
resolution. Most of these uncertainties are negligible and always smaller than 0.3 %. The
statistical uncertainty is always smaller than 0.5 %, reaching this value at || = 3.5 for jets
with pt = 300 GeV. The black line that delimits the blue area is the total uncertainty obtained
from the quadratic sum of the individual systematic uncertainty components, that ranges
between 0.2 % and 3 % for central and forward low-pr jets, respectively, and about half in

the high-pr region.
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Figure 3.16.: Relative jet energy response as a function of p7® (a) and 1) (b) for data
and two generators. Relative systematic uncertainties from each of the
sources for pr = 35 GeV (c¢) and pt = 300 GeV (d) [118].

3.7. Systematic uncertainties on the jet energy scale

Figure shows the total systematic uncertainty on the jet energy response as a
function of the jet transverse momentum (a) and the jet pseudorapidity (b), grouping the
several systematic components. The uncertainty from the three in situ calibrations discussed
in section [3.5]is referred as the “Absolute in sifu JES”. This uncertainty only depends on the
jet pr and is the leading uncertainty for jets with pt < 25 GeV and with pt > 200 GeV. In the
most central 7-bin, this uncertainty goes as high as 3.5 % and 3 % for the lowest and highest
pT regions, respectively.

The uncertainty from di-jet method of the forward pseudorapidity region is referred as
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Figure 3.17.: Relative jet energy response systematic uncertainty as a function
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corresponds to the quadratic sum of the different terms and represents
the total systematic uncertainty on the jet energy scale

the “Relative in situ JES” discussed in the previous section. This uncertainty rivalizes with
the “Absolute in situ JES” at || = 3.1, for a pr = 40 GeV jet and becomes dominant for jets
with |n| > 3.3 with a contribution up to 3.2 %.

The pileup contribution, discussed in sections [3.2] and [3.6] for the central and forward
regions, respectively, contributes with an uncertainty of up to 2 % in both the low-pt and
forward regimes, becoming smaller in the remaining 1 — p regions.

There are two flavour uncertainties, related to the jet flavour composition and response,
that is discussed in section and their uncertainties are represented in the figure with the
dark blue and green lines. The flavour composition was found to have negligible contribution
in most pr and 7 regions. On the contrary, the flavour response is the dominant contribution
in the intermediate pt regime, with a contribution which decreases with pt from 2.25 % to
1.5 %.

The last systematic uncertainty in the figure, represented by the light-blue line is related
to the non-closure observed in the jet energy response for simulated events when the fast
simulation, referred in section [2.8] is used with the parametrization of the calorimeter
response and is discussed in section This uncertainty has a negligible contribution
regardless the 11— pr region.

There is an additional uncertainty, which is obtained for the b-jet energy response and is
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presented in section This uncertainty is not included in the figure because it is applied
only to b-jets and replaces the two flavour uncertainties.

3.7.1. Light flavour systematic uncertainties

The jet energy calibration constants discussed in section |3.4| are obtained using the
PYTHIA simulated di-jet sample, known as the inclusive sample, in which there is no
separation based on the flavour of the jets. However, if the study is performed separately
for jets initiated by quarks and by gluons, the jet energy response is known to be very
different [71, [121]. These two types of jets are distinguished in simulation only, through
the evaluation of which particle, quark or gluon, has the largest transverse momentum within

the jet, which will tag the jet as being a quark or a gluon initiated jet, respectively.
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Figure 3.18.: Jet energy response as a function of ptT””h for light quark and gluon
initiated jets (a). Difference between the responses for light quark and
gluon initiated jets for three simulations (b) [[71].

Figure shows the jet energy response, defined in section [3.4.1] for the two types
of jets: light-quark initiated jets (red triangles) and gluon initiated jets (blue squares). The
jet energy response for the inclusive jet case, which combines the two flavours, is also shown

with black circles for comparison. The jet energy response for gluon initiated jets is nearly
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3.7. Systematic uncertainties on the jet energy scale

always below one: the reconstructed transverse momentum of the jet in the calorimeter is in
average 1.5 % smaller than for the jet obtained from the stable particles at the generator level.
The discrepancies between the energy of the reconstructed and the truth jets for light-quark
initiated jets are even larger since the jet energy response exceeds 1 by 12 % in the ptT””h
range between 20 and 30 GeV, decreasing slowly to 1 % for jets with p’T””h =1TeV.
Assuming that the jet energy scale for jets initiated by quarks is independent of the

quark type, the systematic uncertainty for the gluon-quark dependence, A%, is given by

equation [3.10]

AR = Afo (Rq— Rg) + AR+ [ AR (3.10)

where A represents the uncertainty on a given measurement and the fraction of jets initiated
by quarks and gluons (fy and fy, respectively) is complementary: fq+ fo = 1. %4 and Z,
are the jet energy response for quarks and gluons, respectively. Figure [3.18 (b)| shows the
difference in the jet energy response between jets initiated by quarks and by gluons for three
different simulations with the objective of testing the different models for the hadronization,
which are observed to cause different jet energy response for quarks and gluons. The
default PYTHIA simulation (red closed circles) is used for the evaluation of the difference
in equation [3.10] The same PYTHIA generator is shown but using the PERUGIA tune instead
(black squares). The HERWIG++ generator (blue open circles) that has an independent
method for the hadronization process is also shown. The difference between the jet energy
response for quark and gluons initiated jets obtained with two PYTHIA simulations is not
very significant but the difference between PYTHIA and HERWIG++ can reach up to 3 %
truth

in some p7""-bins. This difference represents the uncertainty on the jet energy response of
gluons, AZg".

3.7.2. Heavy flavour systematic uncertainty

An additional jet energy scale systematic uncertainty, accounting for the uncertainty on
the simulation model for the production and hadronization of b-quarks has to be considered.
Jets are labelled as truth b-jets if there is a truth b-quark, within a AR = 0.3 distance of the
jet axis. c-jets are treated as light-quark jets.

The main physics process to evaluate the jet energy response to b-jets is di-jet events,

where b-jets are produced from gluon-splitting, g — bb. In 2011, the generators used
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Figure 3.19.: Fractional b-jet systematic uncertainty as a function of the transverse
momenta of the jet [[71].

for di-jet events [71] were PYTHIAG (red filled squares) and HERWIG++ (magenta open
circles) and figure [3.19](a) shows their b-jet energy response as a function of the pr of the
jet. Additionally, there is the b-jet energy response difference from replacing the default
underlying event tune of PYTHIA6, AUET2B, with PERUGIA 2011 to test the effect of
different underlying event tunes, which is shown with the purple triangles. Finally, the b-jet
energy response is also obtained with some additional dead material (purple open squares)
simulated in front of the calorimeter to evaluate the uncertainty of the detector knowledge.
Figure[3.19)(b) shows the contribution of each systematic term to the total b-jet energy scale
systematic uncertainty as a function of the jet transverse momenta. This evaluation is taken
from the relative difference in the b-jet response between the default simulation and the
alternatives. The impact of b-jet fragmentation on the systematic uncertainty is obtained
by replacing nominal PYTHIA6 parameters with the BOWLER-LUND and PROFESSOR
tunes [115] and is shown with the red filled squares. The total b-jet uncertainty, obtained
from the quadratic sum of the individual components is about 1.5 —2 % for pt below 80 GeV
and less than 1 % above that.

In addition to the di-jet process, ¢ events were also analysed, which were simulated with
POWHEG+HERWIG++ and MC @ NLO+PYTHIA6. The PYTHIA6 to HERWIG++ comparison
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3.7. Systematic uncertainties on the jet energy scale

tests the hadronization modelling of the b-quarks from the top decays. The POWHEG to
MC @NLO comparison evaluates the systematic uncertainty with different NLO generators.

The b-jet energy response and systematic uncertainty are also validated in data using
tracks to calculate the fraction of the transverse momentum of the jet carried by charged
particles as presented in equation [3.11}

—track
N DY G.11)

Py
This is obtained for jets that have been b-tagged with the MV1 algorithm with a weight
wmyl > 0.6, corresponding to the 70 % b-tagging efficiency discussed in section
The r parameter is evaluated for data and MC and the ratio between both can probe the
calorimeter energy scale to b-jets. Figure [3.20] shows the double ratio rga/rmc for di-jet
events (a) and 7 events (c), obtained for PYTHIA6 simulated samples with data from 2011
with /s =7 TeV. The yellow band represents the total uncertainty on the r parameters,
which include uncertainty terms from b-tagging and jet energy resolution, in addition to those
referred above. On the right side of figure [3.20] the b-jet energy scale systematic uncertainty
is decomposed and shown separately with different markers for the di-jet sample (b) and
for ¢t events (d). The total systematic uncertainty, obtained from the quadratic sum of the
individual components, is about 2 % for di-jets and 3 % for 7 events. The dependence on the

jet pr is small.

3.7.3. Uncertainty on the parametrized simulation of the calorimeter

As discussed in section [2.8] full simulation, in which GEANT4 is used to describe the
full detector, takes too long and the ATLASFASTII, or simply AF, with a parametrization of
the calorimeter response was used to reduce the processing time per event and increase the
available statistics.

Since the calibration factors of the jet energy scale and their uncertainties were
evaluated from full detector simulated samples, an additional uncertainty is taken into
account for the difference in the jet energy response when the fast parametrised simulation
is used. This uncertainty, evaluated with a di-jet sample, is required for analyses that use the
fast simulation. It has a negligible contribution, except for the transition region between the
endcap and the forward calorimeters (|n| &~ 3.2) where its value is 3.5 % for 2011 [122]. For
the final 2012 calibration, figure shows that this systematic uncertainty is smaller than
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Figure 3.20.: Calorimeter jet energy measurement (left) and systematic uncertainties
using tracks (right) in b-tagged jet event [71]] for di-jet (a-b) and ¢7 (c-d)

events.

0.3 %, independently from the transverse momentum and pseudorapidity of the jet.

The difference in the jet energy response between the full detector simulation, FS, and

that obtained with the parametrization of the calorimeter response, AF, observed for EM+JES
is about 1 —2 % for low-pr and smaller than 0.2 % for pt > 80 GeV, as shown in figure[3.21]

The jet energy response with the AF simulation is always larger than the response with FS

simulation and therefore the difference is negative.
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Figure 3.21.: Jet energy response difference between the full simulation (FS) of the
detector and the fast simulation (AF) with the parametrization of the
calorimeter as a function of p’{“’h for jets calibrated at the EM+JES
scale.

3.8. Single hadron response

The calorimeter response to hadrons was tested for the first time in test beam from 2000
to 2003, in which the ATLAS sub-detectors were tested individually with several beams [[123,
124]. Additionally, a full slice of the ATLAS detector was also exposed to high energy
particles in a combined detector test beam (CTB) in 2004 [[125, 126, [127]. The calorimeter
energy response was measured with electrons and charged pions, setting the base for the
electromagnetic and hadronic energy scale. The calorimeter energy response to isolated
hadrons is also called the single hadron response and was measured with charged pions with
a pseudorapidity in the 0.2 to 0.65 window and a momentum from 20 GeV to 350 GeV, using
CTB.

The uncertainty on the jet energy scale discussed in the previous sections can be used
for jets with pr up to 1.7 TeV. However, at the beginning of data taking in 2009 and
2010, there was not enough statistics of Z+jet, y+jet, di-jet or multi-jet, to evaluate this
uncertainty. At the time, the uncertainty was instead measured using data-MC comparisons
from the calorimeter response to hadrons. Jets are composed of hadrons and it is possible

to extrapolate the uncertainty of the charged hadrons to the jet uncertainty. Proton-proton
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3. Jet calibration and performance

collisions were used to obtain the uncertainty for charged hadrons for the low-momentum
range: up to 10 GeV. When combined with the results of CTB, it was possible to obtain the
jet energy scale uncertainty for jets with pt up to the TeV scale, early in the data taking.
To date, the methods to determine the jet scale uncertainty have limited statistics in the jet
very high pr range (see figure and the uncertainty is still obtained using the results
from single hadron response. In figure there is a sudden change in the derivative of
the function describing the “absolute in situ JES” (red line) located at 1.7 TeV, in which the
single hadron response uncertainty takes over.

Section [3.8.1] describes the method used for obtaining the single hadron response in
collisions. This measurement had low statistics of isolated tracks in the momentum range
between 10 GeV and 20 GeV. Part of the work done for this thesis was the development of
a trigger that would select such tracks and would be able to extend the method beyond this
momentum range. That work is discussed in section [3.8.2] and allowed a direct comparison
of the response between CTB and that obtained with collisions, validating the full pt range
of the jet energy scale uncertainty with the single hadron response. Additionally, this
trigger was able to collect enough data to validate the method also in a high-pileup regime.
Section [3.8.4]discusses this validation together with the results of the single hadron response
method.

3.8.1. Method description

The single hadron response is evaluated through the comparison between the energy
deposited in the calorimeter (E) by isolated hadrons and the precise measurement of its
momentum (p) in the inner detector [128]]. The distribution of the energy to momentum
ratio is then assessed for different momentum and pseudorapidity bins. The single hadron
response is also referred to as E/p. Data and Monte Carlo are compared to understand the
accuracy of the detector simulation.

The most interesting events to study the E/p observable are those in which a collision
occurs. During 2009 and 2010 data taking, most of the LHC bunches were empty. Events
were triggered if there was a simultaneous hit on both Minimum Bias Trigger Scintillators
(MBTS), located just before the endcap of the electromagnetic calorimeter. During 2011
and 2012, these Scintillators saturated, as more and more collisions took place. Almost
every LHC bunch was filled, and a random trigger was sufficient to select events with filled
bunches. This trigger chain started at L1 with a random trigger called RDO_filled. Both L2
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3.8. Single hadron response

and EF had no algorithm run. A large prescale was set at LL1 to limit the rate. This trigger
chain was denominated rd0_filled_NoAlg and called random trigger in the remaining of the
thesis. Events are further selected for analysis if there is at least one vertex, with more than
three reconstructed tracks with pr > 500 MeV.

The calorimeter response to single hadrons was studied only for calorimeter isolated
charged particles. This isolation is tested by propagating all the tracks reconstructed in the
inner detector to the second layer of the electromagnetic calorimeter. A track is accepted
for the E/p estimation if the impact point of the considered track is further than AR = 0.4 to
the closest track extrapolation. Once the isolated tracks are found, some additional quality
criteria are required. The track should have at least one hit in the pixel detector, at least six
hits in the semiconductor tracker, a transverse momentum above 500 MeV and small impact

parameter with respect to the primary vertex: |d0| < 1.5 mm and |z0 sinf| < 1.5 mm.

HAD{CALO .
Hadronic 0.2
Calorimeter

EM CALO
EM

Calorimeter

E3 Detector

Calorimeter layers

Mip selection:

AR < 0.1
v v
EM < 1.1 GeV  40-90% of track energy
(a) (b)

Figure 3.22.: Sketches of the E/p observable definition(a) adapted from refer-
ence [129]. Estimation of the neutral background from the E/p
observable (b).

After a track is accepted, the energy of all the topological clusters is summed if their
centres are inside a cone of AR = 0.2 around the extrapolation position of the track in the
calorimeter. A sketch of this sum is shown in figure[3.22 (a)] where clusters 2 and 3 are inside
the cone and their energy is summed: E = E; + E3. The E/p observable is obtained from
the ratio between this energy and the momentum of the track (p). This quantity is calculated
in bins of 1 and momentum of the track. Figure shows the distribution of the E/p

observable for tracks with momentum between 1.8 and 2.2 GeV. The spike in the distribution
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at zero corresponds to tracks that have no associated topocluster in the AR = 0.2 cone. This

effect is only non-negligible for low momentum tracks.
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Figure 3.23.: Distribution of the raw E/p observable (a) and the background E/p
estimation (b) for the tracks with momentum between 1.8 and 2.2 GeV
for the pseudorapidity region 0.0 < n < 0.6.

The main background for the E/p measurement is due to neutral particles that leave no
track in the inner detector, but their energies are collected in the calorimeter. It is composed
mainly, by 70 mesons. The method developed to subtract this background is based on the
identification of charged hadrons that induce late-showering in the calorimeter. Charged
hadrons will have low energy deposits in the EM calorimeter and will deposit most of their
energy in the hadronic calorimeter. Around them, an annulus is defined: 0.1 < AR < 0.2.
Events considered for the background estimation are required to have less than 1.1 GeV in
the electromagnetic calorimeter inside AR = 0.1 around the track (i.e. centre circle inside
the annulus) to resemble the minimum ionising like particle (MIP). The effect of the late-
showering is increased by requiring that the hadronic E/p, i.e. the ratio between the energy
deposited in the hadronic calorimeter and the track’s momentum, lies in the window between
0.4 and 0.9. The energy of the clusters from the electromagnetic calorimeter inside the
defined annulus is summed and extrapolated to the core cone, AR < 0.1, assuming a flat
distribution for the energy density of neutral background. The sketch in figure [3.22 (b)|
shows in orange, the area of the electromagnetic calorimeter region used for the background
estimation that is estimated to contain 75 % of the background contribution. The same 17 and
p-bins as before were used to evaluate the background. Figure shows the background
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3.8. Single hadron response

E/p estimation distributions for the same pseudorapidity and momentum region as before.
Only about one tenth of the total tracks can be used to evaluate the background E/p. The
corrected value of the E/p in each 1 — p bin is calculated by the difference between the

averages of the two distributions:

(E/p)" = (E/p)"™ —(E/p)" (3.12)

3.8.2. Trigger studies for E/p

The E/p study suffers from low statistics for tracks with momentum above 10 GeV
when using the random trigger, especially for the background measurement. One objective
of this thesis work was to search for different triggers to enhance the content of high-p
hadrons. Several already existent triggers were evaluated to try to provide unbiased results
for E/p, increasing the statistics.

The first possibility considered was muon triggered events using the existent thresholds
of 6 and 10 GeV. For this study, the isolated tracks were selected if they were separated by
more than AR = 0.4 from the muon that triggered the event. Figure shows the E/p
after background correction for the minimum bias trigger and the muon triggers with the two
referred thresholds. There is a systematic bias of the corrected E/p measurement for tracks
with p > 5 GeV. Figure [3.24 (b)| shows the distribution of the momentum of the tracks used
for E/p for the minimum bias trigger (black) and the muon trigger (blue). Since there was
a difference between the E/p corrected values for the default and the muon triggers and the
gain in high momentum tracks was not significant, the muon triggers were abandoned.

Another possibility was the usage of a tau-based trigger. The L1 required a hadronic tau
with an energy threshold of 5 GeV. At L2, a feature extraction algorithm, called reverse ROI,
retrieved the detector information from a square window of 0.6 x 0.6 in the 1 — ¢ phase
space, opened in the opposite direction of the L1 tau and the trigger hypothesis algorithm
searched for a track with a transverse momentum larger than 9 GeV. The top sketch of
figure shows this L2 requirement. The events in which this high-p track was found
would be sent to EF, where two isolation regions (bottom sketch) were defined. No other
track with pr larger than 1 GeV could be found within a distance of AR = 0.1 from the
track found at L2. The scalar sum of the pr of the tracks in the region 0.1 < AR < 0.3
could not be larger than 10 % of the pr of the selected track. The reverse ROI algorithm
could be applied with the opposite 11 and ¢ direction or just ¢ direction, and it formed the
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Figure 3.24.: Corrected E/p as a function of the track momentum in the most
central pseudorapidity region for the minimum bias trigger in black
and the muon trigger with 6 GeV (10 GeV) threshold in blue (red) (a).
Momentum distribution of the tracks chosen for E/p studies using
the minimum bias, the muon and the hadCalib triggers shown by the
black, red and blue lines, respectively, with the number of entries
normalised (b).

hadCalib_trk9 and hadCalib_trk9Phi triggers, respectively. The red line in figure [3.24 (b)]
shows the momentum distribution of the tracks selected by these triggers, with a much larger
increase of high-p tracks. However, the hadCalib trigger introduced a bias once more, as
shown in figure It shows different E/p corrected values for minimum bias (black)
and hadCalib (red) triggers, with the most significant observed for tracks with about 9 GeV,
where the trigger should start improving the results.

Although the hadCalib trigger inserted a bias in the E/p analysis, it increased the
statistics as intended and an extra effort was made to understand the origin of the bias.
The possible sources of the bias were the tracking and isolation in the EF, the tracking and
isolation in L2 and the L1 tau condition. Three new triggers were developed to test the origin
of the bias, using a new hypothesis algorithm at EF. This new algorithm extrapolated the
tracks inside the region of interest to the second layer of the calorimeter for the isolation
to be evaluated there, replacing the track isolation from the initial hadCalib triggers. The

objective was to have the trigger with the same isolation of the E/p analysis, discussed in

section [3.8.1]

108



3.8. Single hadron response

[ —e MinBias tri

gger

11 _TAUS . [ —=HadCalib trigger

—_— P / Track 9 1:
—?Q [ B O
AN 08¢ o

Track 9 “l.

(a) (b)

0.6}

i
i

L1 TAUS

0.4} e

0.2}

0 10 102
p (GeV)

Figure 3.25.: Sketches of the steps of the hadCalib trigger (a). Corrected E/p as a
function of tracks momenta for the minimum bias trigger (black closed
circles) and the hadCalib trigger (red open circles) (b).

The first trigger only had the new EF hypothesis algorithm applied, and the tau trigger
threshold increased to 8 GeV, using the same name: hadCalib_trk9. A second track threshold
of 18 GeV was used to increase further the high-p statistics: hadCalib_trk18. Figure
shows the corrected E/p as a function of the momentum of tracks for the beginning of data
taking in 2012. Although with reduced statistics, this figure shows clearly that the bias
is still present with this trigger. The second trigger chain used the same criterium at L1,
removed the L2 condition and applied the new hypothesis algorithm at EF. The trigger chains
were denominated hadCalib_LL1HAS&_trk9 and hadCalib_ILL1HAS8_ trk18, and their results are
shown in figure[3.26 (b)] The bias still appeared with this trigger.

The last created trigger started at L1 trigger by selecting filled bunch crossings
randomly, RDO_Filled, the same seed as the random trigger used for the default E/p analysis.
At L2, the trigger uses no algorithm, since there is no object to select a region of interest.
At EF, when the event builder is run, a feature extraction algorithm reconstructs all tracks
with pt larger than 500 MeV, referred full-scan tracking, and applies the new EF hypothesis
algorithm to them. The full-scan tracking algorithm with such a low-pr threshold was
implemented for the first time for this trigger. Finally, the trigger accepts the event if
there is any calorimeter isolated track in the event with ptr > 9 GeV. Like for the seeded-

based triggers, another threshold of 18 GeV is chosen to increase high-p statistics. These
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Figure 3.26.: Corrected E/p as a function of the tracks momenta for the random
trigger (black closed circles) and the hadCalib triggers with a track
threshold of 9 GeV (red open circles) and 18 GeV (blue squares) for
the three improved hadCalib triggers.

triggers were named hadCalib_L1RDO_trk9 and hadCalib_L1RDO0_trk18. Figure
show the preliminary studies from the beginning of 2012 data taking for the corrected
E/p measurement as a function of the momentum of the tracks for the random trigger and
the two L1RDO0-based hadCalib triggers. The differences between random and these new
triggers were negligible, and therefore it was concluded that the bias originated from the L1
condition. Looking only at this preliminary data, one sees that the hadCalib triggers already
introduce two new p-bins compared to the random triggers. Figure [3.27|shows a diagram for
the L1IRDO-based hadCalib trigger.

For the rest of the year, the two seeded triggers were discarded and the L1RDO-based
hadCalib triggers were kept. In the remaining of this section, the term “hadCalib” trigger
refers to the L1RDO-based triggers.

3.8.3. Performance of hadCalib in E/p measurement

A total luminosity of 911 nb~! and 1037 nb~! was used to study the trigger performance
for the 9 GeV and 18 GeV trigger thresholds, respectively. Additionally, 38.71 nb~! of
low-pileup proton-proton collisions selected with the random trigger were also used for
comparisons. Figure shows the prescales applied to the triggers used in the E/p analysis

during this period as a function of the runs considered. L1 random trigger, shown in green,
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Figure 3.27.: Diagram of the LIRDO-based hadCalib trigger algorithm with a 9 GeV
threshold. The other trigger chain is obtained just by changing the track
pr threshold.

had very large prescales up to the several tens of thousand, as referred in section [3.8.1] to
reduce the rate of these triggers. The two hadCalib triggers used a prescale of 1 up to run 95
and then they started to use a prescale of 2 in the beginning of each run, in which the pileup
was larger, and then going back to 1. A similar approach was used on the prescale for the L1

random and the EF random.

Figure shows the corrected average (E/p)“°’" as a function of the single
hadron’s momentum for the random trigger, for the hadCalib trigger with threshold 9 GeV
and for the hadCalib trigger with threshold 18 GeV. There is a good agreement between the
(E/p)"" measured with the three different triggers, demonstrating that the two hadCalib
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Figure 3.28.: Prescales applied during the runs considered for the E/p analysis in
this thesis for L1 random (green), EF random (black), and hadCalib
with tracking thresholds of 9 (red) and 18 GeV (blue). The solid (dash)
line represent the minimum (maximum) prescale applied for each run.

triggers do not introduce any bias in the E/p measurement. Figures[3.29 (b){and(3.29 (c)|show

the distribution of the number of entries in raw and background histograms, respectively, for
the most central pseudorapidity region 17| < 0.6. The results for other detector regions are
similar and are presented in the appendix [A] These triggers increase the number of events
accepted for the single hadron response evaluation with momentum above 10 GeV by a factor
of about 25, achieving their objective.

The value obtained for the E/p measurement with CTB was between 0.63 and
0.67, depending on the pseudorapidity, for a pion beam with £ = 20 GeV [127] and is
compatible with the values obtained in proton-proton collisions. Figure [3.30] shows the
ratio between the reconstructed energy at the calorimeter and the beam energy from CTB
as a function of the beam energy, for the two extreme pseudorapidity tested: n = 0.20 (a)
n = 0.65 (b). Additionally, although the second energy beam from CTB (50 GeV) is not
reached in collisions, the new hadCalib triggers can already probe the 20-30 GeV region
with a (E/p)“°™ = 0.70, which was the results obtained for the second energy beam from
CTB [127]. The next E/p measurement for the 30-40 GeV momentum range starts to have
a very large statistical uncertainty, as the number of accepted tracks for the background

estimation fall below ten.
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Figure 3.29.: Corrected average of the E/p distribution for the random (black
closed circles), hadCalib_tr9_L1RDO (red open circles) and had-
Calib_tr18_L1RDO (blue squares) triggers as a function of the single
hadron momentum (a). Statistics available in each bin of the
(E/p™) (b) and (E/pBY) (c) histograms.
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Figure 3.30.: E/p measurement in CTB as a function of the beam energy for two
pseudorapidities [127]]

Thanks to the development of these triggers, the single hadron response is now validated
in the momentum range near the first beam intensity from CTB for proton-proton collisions,

and the jet systematic uncertainty was obtained for the full pr-range.

The hadCalib triggers were also used to obtain the single hadron response in events

with a non-negligible pileup environment, which is discussed in section [3.8.4]
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3. Jet calibration and performance

3.8.4. Single hadron results

The single hadron response was studied for pileup-free environments using the
minimum bias triggers (MBTS and random), which occurred in 2010 and in one run in
the beginning of 2012 [130] with an integrated luminosity of 3.2 nb~! at /s =7 TeV and
0.1 nb~! at /s = 8 TeV, respectively. The (E/p)°®'" for the two most central |1]| regions is
shown in figure[3.31] The results obtained for real data are compared to the two physics lists
introduced in section 2.8t QGSP+BERT and FTFP+BERT [130]. The bottom panel in the

€’ in data and MC, for the two physics lists considered.

figure shows the ratio between (E/p)
There was a large improvement on the physics lists models from 2010 to 2012, in particular
in the most central |n| region, resulting in an improvement of the data-MC disagreement
from 10% in 2010 to 5% in 2012. In the next || region (0.6 < |n| < 1.1), the physics lists

models for the two years present the same discrepancy to data.
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Figure 3.31.: (E/p)“'" as a function of the single hadron momentum for tracks with
In] <0.6(a) and 0.6 < |n| < 1.1 (b) [130]. These results are shown
for 2012 in the top panel and 2010 in the middle panel, for data (black
markers), and two MC simulation models: FTFP+BERT (dashed line)
and QGSP+BERT (filled line). The bottom panel shows for both cases
the ratio between each simulation and the corresponding data.
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3.8. Single hadron response

The extrapolation of the energy response uncertainty from the single hadrons to a jet
environment requires the understanding of some additional calorimeter energy responses
systematic sources, such as the difference in the response between different hadrons and
between isolated and non-isolated hadrons. These were studied using charged pions and
(anti-)protons produced in Kg and (anti-)A decays without isolation requirements first
and then requiring isolation for the Kg and (anti-)A particles but not for their decay

products [131]. Further knowledge is needed for calorimeter response difference between:

* positive and negative charged hadrons;

* using or not events in which there was no cluster associated with the track (the E/p =0,
shown in figure [3.23));

* including or not the estimate of the pileup noise when building up the clusters;

* events with and without pileup.

For the last comparison, the hadCalib trigger played also an important role, as it run also in
events with a non-negligible pileup environment. This study used an integrated luminosity
of 499 nb~! and 551 nb~! for the 9 GeV and 18 GeV threshold, respectively, for p — p
collisions at /s = 8 TeV [130].

The resulted (E/p)“®"” is shown in figure 3.32 (a)| and [3.32 (b)| as a function of the

number of primary vertices, Npy, and the average number of interactions per bunch crossing,

(u), respectively, for the most central pseudorapidity bin and the tracks’ momentum ranging
from 1.2 to 1.8 GeV. The low-(u) data, taken with the random trigger, is shown in the first
corr

bin. There was no dependence of the (E/p)
bottom panel shows the ratio between the data recorded and the QGSP+BERT physics list,

with either of the pileup variables. The

with differences up to 25 % resulting mainly from fluctuations in the simulation model: the
data collected has a flat response with both pileup variables.

Figure [3.33] shows the average jet energy response (black line) and the systematic
uncertainties obtained with the single hadron response method, decomposed in the individual
components, as a function of the transverse momentum of the jet. The total uncertainty,
shown with the darkest blue shade, results from the quadratic sum of the components.
Comparing this result with the combination of the in situ techniques found in figure[3.13 (b)]
the two in situ measurements provide compatible uncertainties. The uncertainty with the E/p
method was an important validation of the systematic uncertainty derived with the other in

situ techniques.
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Figure 3.32.: (E/p)“" as a function of the pileup estimators Npy (a) and () (b).
The low-(ut) value of E/p, obtained with the random trigger is shown
in the first bin [130].
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Figure 3.33.: Mean jet response as a function of the jet transverse momentum for the
In| < 0.6 region in black. The jet energy scale uncertainty is shown for
the different sources of uncertainty and for their combination [130].

In the low-pr regime, pr < 250 GeV, the E/p technique in collisions dominates the
systematic uncertainty. In the intermediate region the uncertainty obtained with CTB is the
most important, up to 1.5 TeV, where the extrapolation from CTB to charged hadrons with
larger momentum dominates. As discussed already, the default in situ methods only allowed
the uncertainty to be obtained up to 1.7 TeV. Above this limit, the single hadron response

sets the jet energy scale uncertainty at about 3.5 %, for jets with larger pr. Figure[3.33]|shows
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3.9. The global sequential calibration

the uncertainty for jets with pt up to 3 TeV, almost 40% of the maximum available energy

from the proton-proton collision: /s = 8 TeV.

3.9. The global sequential calibration

The jet default calibration, EM+JES, was discussed in section [3.1.2l The global
sequential calibration (GSC) was introduced to reduce the discrepancy in the jet energy
response between jets initiated by quarks and jets initiated by gluons [115} [132], shown
in figure The objective of this calibration was to remove the dependence of the jet
energy response on some jet properties.

In this section, the GSC calibration method and its performance for different jets are
presented (sections [3.9.1]to [3.9.3)) followed by a discussion on the systematic uncertainties.
The section ends with a detailed evaluation of the improvements on the invariant mass of

b-jet pairs using GSC.

3.9.1. Introduction

Even after the calibration of jets with EM+JES, as described in previous sections, the
e/ ptT””h distribution is still dependent on different jet properties. The global sequential
calibration (GSC) was designed to remove the residual dependence of the jet energy scale
on certain properties of the jets, applying sequential corrections as a function of these jet
properties. The numerical inversion technique, used for the evaluation of the EM+JES

correction factors, is also used for the derivation of the GSC calibration constants.

A F' 3
2 2
joh o}
a reco I
-, peoTT — Y
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RN R{p=™, &)
g fplave P /pEve

Figure 3.34.: Illustration of the GSC method.
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3. Jet calibration and performance

The GSC calibration principle is illustrated schematically in figure [3.34] Suppose
that the pif«’/p¥: wh distribution depends on a certain property “x” and it is obtained
independently for two subsets of jets: one with low values of “x”, in red, and the other
one with high values of “x”, in blue. Suppose also that the “low x” distribution happens to
have an average value lower than the one marked “high x”. These two distributions sum up
to the distribution with a large width, shown in black in figure [3.34] The GSC method intends
to correct the two distributions in such a way that they will be aligned to the initial average
jet energy response, by applying a multiplicative factor in each bin of “x”. After GSC, the
sum of the distributions becomes narrower and therefore the resolution as a function of the

jet pr 1s improved.

The variables used for the GSC calibration are now described in the same order as
they are derived and applied. The first two properties are the energy fraction that the jet
deposits in the first layer of the hadronic barrel calorimeter, f7;.0, and in the last layer of
the electromagnetic calorimeter, f,,3. The former is only used within the pseudorapidity
coverage of TileCal, || < 1.7, whereas the latter within the coverage of the electromagnetic
calorimeter up to || = 3.5. These two properties of the jet measured in the calorimeter
are sensitive to differences in the electromagnetic and hadronic components of the jet and
to energy losses in the cryostat of the Liquid Argon electromagnetic calorimeter. Both
fractions are obtained at the electromagnetic energy scale, i.e. before the jet energy scale
calibration. The other two properties of the jet for which the dependencies are removed, use
the information of the inner detector to get track-based jet measurements. The number of
tracks associated with the jet, nTrk, is sensitive to the number of charged particles in the
jet. The other track-based property is referred as the track width, 7rkWidth, and reflects the
transversal distribution of charged particles in the jet. TrkWidth is calculated from the sum
of the distances between charged particles (tracks), i, and the centre of the jet, j, weighted by

the fraction of the charged particle pr with respect to the jet pt, as shown in equation [3.13}

Y. AR(i, j)
TrkWidth(j) = -

L A— 3.13
Y ph (3.13)

The association of tracks to jets uses again the ghost association that was described in
section These two track based properties are derived for jets with || < 2.5 and are

also sensitive to the difference in the jet energy response between quark and gluon initiated
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jets. For the same energy, light-quark initiated jets are more likely to have a lower number
of charged particles associated and their spread within the jet is also expected to be smaller
than gluon initiated jets [121]. Jets with a smaller number of charged particles should have
a larger contribution from neutral particles. Most of these particles are neutral pions that
decay into photon pairs. Since the electromagnetic energy scale is better known and the JES
corrections always increase the jet energy response, the light-quark initiated jets will have a

larger jet energy response than gluon initiated jets.

3.9.2. GSC derivation and performance for di-jet inclusive MC samples

The derivation of the calibration factors for GSC is obtained sequentially using the same
technique described in section [3.4.1] but now, instead of obtaining the jet energy response as
a function of the transverse momentum of the jet, the jet energy response is obtained as a
function of the jet properties described in section 3.9.1

For the derivation of the GSC calibration factors, 1 is binned in steps of 0.1 and the
bins of pr are adjusted to 30 equal logarithmic bins between 20 GeV and 1.2 TeV. A low
and a high threshold for each property are selected to have most of the statistics in all py and
N bins. Between the two thresholds of each property, 30 bins of the same size are selected.
The calibration factor for GSC is obtained from the ratio between the jet energy response
combined in the 30 bins of one given property and the jet energy response for the particular
property bin for which the calibration factor is being evaluated. This ensures that the overall
jet energy response does not change with the GSC calibration. The calibration factors are
obtained first for the f7;;.0 property, using the jet energy response at the EM+JES scale. After
this first correction is applied, the jets are calibrated with EM+JES+ f7;.0. This is then used
as input for the evaluation of the correction factors for the f,,,3 property, obtaining the jets
calibrated with EM+JES+ f7,.0+ fer3. The same procedure is applied sequentially to n7rk
and to TrkWidth. After the four corrections, the jets are calibrated to the EM+JES+GSC
scale or just GSC for simplicity.

To study the GSC calibration performance, the same bins of 1) and pt that were shown
for EM+JES in figure are used. For the closure tests, the jets are divided into 10
bins of each of the properties in order to have the same amount of statistics in each bin. For
each of the sub-regions and for each property, the pi® / pf* I distribution is obtained and the
mean and the width of the distribution is calculated using the same Gaussian fits, as described

in section [3.4.1] Then, the jet energy response is obtained as a function of that property.
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3. Jet calibration and performance

An example is given for the di-jet inclusive sample in figure showing
the Gaussian fits of the pf“’/ ptT””h distributions for the ten selected TrkWidth bins for
0.0<n <0.3 for ptT””h in the range between 80 and 100 GeV. This figure uses a rainbow
palette for the Gaussian distribution fits using violet for the smallest TrkWidth bin up to
the red for the highest bin of 7rkWidth. The Gaussian fit of the combined distribution of
this particular 11 —pr-bin is shown in black also in the same plot, scaled by a factor of 1/3,
for comparison. There is a clear misalignment of the Gaussian fits in each TrkWidth bin
with respect to the main Gaussian. Figure [3.35 (b)| shows the same Gaussian distributions of
the 10 bins of TrkWidth after the application of GSC. The Gaussian functions now became
aligned and the sum of all bins is a narrower Gaussian distribution. The same is shown in
figure with the jet energy response plotted as a function of TrkWidth for EM+JES in
blue and for GSC in red. After applying the GSC correction factors, the jet energy response
dependence on TrkWidth nearly disappears. The difference observed between the average of
the main Gaussian before and after GSC is applied is below 1 %. The improvement observed

in the relative resolution is about 20 %.

The jet energy response after each of the sequential calibration steps is plotted for
two representative jet transverse momentum ranges, [40,60] GeV and [250,300] GeV in
figures [3.36] and respectively, as a function of each calibration variables: f7;.0 (),
Jem3 (b), nTrk(c) and TrkWidth (d). Before any GSC correction (blue squares), there is a
visible jet energy response dependence on each of the variables. After the first calibration
step, shown with the black up triangles, the dependence on f7;;.0 is removed as shown in
figures [3.36|(a) and [3.37|(a). None of the subsequent calibration steps modifies the jet energy
response as a function of fr;.o. Variations on the jet energy response when applying the
subsequent calibration steps might have been visible if there were correlations between the
jet energy response as a function of f7;;.o or any of other three variables. These figures show
the application of GSC and therefore are considered to be a closure test of the procedure. In
figures [3.36|(b) and [3.37|(b), the jet energy response is plotted as a function of the variable
Jem3. After the first GSC correction factor is applied, there was some reduction in the
dependence of the jet energy response with f,,,3, but only the second correction, shown by
the green-down triangles, removes the dependence on this jet property. This might suggest
some small correlations between the fr;.0 and f,,3 properties. In fact, they were chosen
because they are sensitive to the energy deposited in the cryostat and to the development of
the jet shower, so this is expected. The sub-figures [3.36|(c) and [3.37)(c), show the jet energy
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Figure 3.35.: Example of the application of the GSC calibration to correct the jet energy
response with respect to TrkWidth, using inclusive di-jet events simulated
with PYTHIAS. The p°/ ptT””h distributions for EM+JES (a) and GSC (b)
use a rainbow colour palette for the different bins of TrkWidth. Jet energy
response as a function of the TrkWidth (c), before (blue squares) and after
(red circles) applying GSC.
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Figure 3.36.: Jet energy response as a function of fTile0(a), fEM3(b), nTrk(c) and
TrkWidth (d) for jets with 0.0 <1 < 0.3 and 40 < pif“’* < 60 GeV, using
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inclusive di-jet events simulated with PYTHIAS.

The histogram in red

represents the distribution of each of these variables. The blue squares show
the jet energy response without applying GSC and the black up triangles,
green down triangles, pink crosses and red circles show the jet energy
response after applying the first (fTile0), second (fEM3), third (nTrk) and
fourth (TrkWidth) GSC corrections, respectively.
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Figure 3.37.: Jet energy response as a function of fTile0(a), fEM3(b), nTrk(c) and
TrkWidth (d) for jets with 0.0 < 1 < 0.3 and 250 < pi“" < 300 GeV, using

inclusive di-jet events simulated with PYTHIAS.

The histogram in red

represents the distribution of each of these variables. The blue squares show
the jet energy response without applying GSC and the black up triangles,
green down triangles, pink crosses and red circles show the jet energy
response after applying the first (fTile0), second (fEM3), third (nTrk) and
fourth (TrkWidth) GSC corrections, respectively.
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response as a function of the third GSC correction variable, nTrk. The effect of the previous
corrections adjusts the jet energy response by less than 1 %. The application of the nTrk
correction, shown with the pink crosses, improves the spread of the jet energy response from
almost 10 % in the 40 < pt < 60 GeV bin to less than 2 % and in the 250 < pt < 300 GeV
from +5 % to less than 1 %. Finally, in sub-figures (d), the jet energy response is shown
as a function of the property TrkWidth. Although, the first and second variables contribute
almost nothing to the reduction of the dependence with TrkWidth, the correction of the third
property, nTrk, already reduces significantly the dependence on the TrkWidth variable, due
to correlations between these two variables. The spread of TrkWidth with GSC applied with
the nTrk property is reduced from about 10 % to 5 %. With the application of the last GSC
correction, TrkWidth, shown by the red circles, the discrepancy in the jet energy response is
reduced to less than 1 %. Looking back to the dependences of the jet energy scale with all
the GSC corrections, the spread of the red circles is smaller than 1 % in most of the cases and
it is always smaller than the initial spread of the blue squares which represent the jet energy
response from jets calibrated at the EM+JES scale. In the appendix in figure two more
p’{”’h bins and other pseudorapidity region are presented, with similar conclusions.

The overall jet energy response as a function of the truth jet transverse momentum
before and after the GSC is shown in figure and the jet energy resolution evaluated
as described in section [3.4.1]is shown in figure[3.38] (b) for jets in the central pseudorapidity
range: 0.0 < n < 0.3. On these plots, the two p’T’“’h bins discussed previously are indicated
with the arrows and the jet energy response and resolution are shown before and after each
of the GSC calibration steps. The jet energy response does not change by more than 1 %
with GSC, as intended. The jet energy resolution improves about 20 % throughout the pi* h
range with GSC. Similar results are obtained for the other 1 ranges, which can be seen in the
appendix [B] figure [B.2

3.9.3. Flavour performance

The detector energy response for jets originating from different flavoured quarks or
from gluons can be different, due to differences in the hadronization process that will
translate into differences in the jet properties, as for instance the number of charged versus
neutral particles produced. This was already observed when the light flavour systematic
uncertainty was discussed in section [3.7.1] and the jet energy response was shown as a
function of the truth jet pr in figure for light-quark and gluon initiated jets.
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Figure 3.38.: Jet energy response (a) and resolution (b) as a function of the truth
jet transverse momentum for inclusive di-jet events simulated with
PYTHIA8. The blue squares show the jet energy response without
applying GSC and the black up triangles, green down triangles, pink
crosses and red circles show the jet energy response after applying
the first (fTile0), second (fEM3), third (nTrk) and fourth (TrkWidth)
GSC corrections, respectively. Each figure shows the corresponding

p/r“_bin from figures and W

The identification of the jet flavour can only be done at truth level, using the generator
information. The classification of jets at truth level uses the same criteria discussed in
section [3.7.1] For the purpose of this thesis, c-jets are discarded and not used for further
studies.

The distributions of fr;e0, fem3, nTrk and TrkWidth are shown in figures [3.39]and [3.40]
for three types of jets (light-quark, gluon and b-jets) and for inclusive jet flavour, for the
same 7 and pr-bins as before. In order to make shape comparisons, all the distributions
are normalised to unity. In the LHC, the dominant production process of di-jets is gg — gg
and for this reason, the inclusive di-jet sample simulated with PYTHIAS has a large content
of gluon initiated jets, about 75 % [71]. Therefore, the black curve, representing the gluon
initiated jet distributions is always closest to the red curve (inclusive distribution). The light-

quark initiated jets distribution is shown by the green curves. These jets have, in particular,
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3. Jet calibration and performance

a smaller number of charged particles associated with the jet and the weighted pt average
of the position of the charged particles is found to be closer to the jet centre with respect
to gluon initiated jets, as observed in the nTrk and TrkWidth distributions, respectively.
In the distributions of f7;.0 and f.,3, the light-quark initiated jets distributions are more
spread over than for gluon initiated jets but the average value is consistent with both types
and properties. Additional p7 “h and 1-bins are shown in appendix [B|in figure and the

shapes are similar.

The jet energy response is shown in figure (top) as a function of ptT””h for
0.0 < n < 0.3 before (a) and after (b) applying GSC, separately for b-jets (black circles), for
jets initiated by gluons (blue squares), and for jets initiated by light-quarks (red up triangles).
The inclusive response is also shown as in figure [3.38] for comparison with the green down
triangles. The default EM+JES jet energy response for quark initiated jets is always above the
jet energy response for gluon initiated jets, with the light-quark initiated jet energy response
being slightly higher than the response for b-jets. The jet energy response variation for the
different jet types can be as large as 10 % for low-pr jets, decreasing to about 4 % for jets
with pr > 500 GeV. There are also differences in the jet energy response after GSC for the
different jet types but considerably smaller, within 2 % for pr > 80 GeV and up to 5 % for
very low pr jets, close to the reconstruction threshold. GSC is, therefore, able to reduce
the flavour dependence in the di-jet sample. The jet energy response for b-jets after GSC is

applied is also reduced to values closer to unity.

B hadrons have about 20 % probability of decaying leptonically for a muon or an
electron and the corresponding neutrino [4]. However, neither muons nor neutrinos are
included in the reconstruction of the truth jet when the calorimeter energy response to jets
is evaluated. Therefore, the energy of b-jets calibrated with GSC is always inferior to the
energy of the original b-quark, and therefore further jet energy calibration steps will be
required. One of these steps is implemented in the ZH analysis to correct for the energy
of the muon in the jet (see section 4.8.2)). This correction is not applied in the re-evaluation
of GSC-specific systematic uncertainties for b-jets, which is discussed in the section[3.9.4.1]

The bottom plots of figure m show the jet energy resolution as a function of p’T’“’h,

for each jet flavour before (c) and after (d) applying GSC. The jet energy resolution does not
have a large dependence on the jet flavour. Therefore, the improvement of 20%, discussed in
section is similar in all jet flavours. Additional p¥ uh_bins are shown in appendix [Bfin
figure with similar behaviour.
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Figure 3.39.: Distributions of f7;.0(a), fem3 (b), nTrk(c) and TrkWidth (d) for jets with
0.0 <n < 0.3 and 40 < pif“* < 60 GeV, normalised to unity, for different
jet flavour compositions of di-jet events simulated with PYTHIA8. The b-jet
flavour is shown in blue, gluon initiated jets in black, light-quark initiated
jets in green and the inclusive jet flavour in red, with different line styles.
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Figure 3.40.: Distributions of fr;.0(a), fem3 (b), nTrk(c) and TrkWidth (d) for jets with
0.0 <1 < 0.3and 250 < pi“"* < 300 GeV, normalised to unity, for different
jet flavour compositions of di-jet events simulated with PYTHIAS. The b-jet
flavour is shown in blue, gluon initiated jets in black, light-quark initiated
jets in green and the inclusive jet flavour in red, with different line styles.
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Figure 3.41.: Jet energy response (top) and resolution (bottom) as a function of the truth
jet transverse momenta, obtained with inclusive di-jet events simulated with
PYTHIAS, for the different jet flavour compositions: b-jets (black circles),
gluon initiated jets (blue squares), light-quark initiated jets (red up triangles),
and inclusive jets (green down triangles). The default calibration, EM+JES,
is shown on the left and the improved calibration, GSC, is shown on the right.
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3.9.4. Evaluation of GSC specific systematic uncertainties

The jet systematic uncertainties were measured by comparing the jet response between
data and simulation using in situ techniques [71], discussed in section In addition
to the EM+JES baseline uncertainty, other uncertainties have to be considered. They are
estimated with simulation and validated with data. The uncertainties obtained for EM+JES
were validated for GSC again by data and MC comparisons except for the MC specific
systematic uncertainties: b-jet response and jet energy response differences of the fast versus
full simulations. In the following sections, the evaluation of these uncertainties is presented.

Another MC based systematic uncertainty was discussed in section|3.7.1|and is related
to the difference in the jet energy response for jets initiated by light-quarks and jets initiated
by gluons. Section [3.9.3]|shows that this difference is greatly reduced after GSC.

3.9.4.1. Uncertainty on the response to b-jets

The jet energy response systematic uncertainty, due to differences in the fragmentation
model of the b-quarks, was determined by comparing, for different simulation models, the jet
energy response for b-jets from the di-jet and 77 processes. The b-quarks are hadronized with
different simulations and their jet energy response is validated using jets which have been
b-tagged and comparing data to simulations [133]. This systematic evaluation used truth
b-jets, as discussed in section However, in section there were some differences
observed between the GSC property distributions for inclusive jets and those from b-jets,
specially for low-p/. uth jets. For this reason, it becomes necessary to evaluate if the estimation
of the b-jet flavour uncertainty is still valid for GSC.

In the tf process, two b-quarks are created in each event, which results in a sample
enriched on b-jets. The chosen simulations for this process used the POWHEG generator
interfaced with PYTHIA®6 to simulate the hadronization. This is the same sample used for the
simulation of the #f process in the ZH analysis and more details will be given in section 4.4
This simulation is compared to other ¢ samples, generated with ACERMC interfaced with
PYTHIAG for the hadronization but tuned with “more” and “less” parton shower by changing
the parameters of the PYTHIAG settings for initial and final state radiation [134]]. The energy
response for b-jets is evaluated for each sample as a function of p“" in figure for
the most central n-bin. The #f process simulated with POWHEG+PYTHIAG is shown with
the black square, and the sample simulated with the ACERMC+PYTHIA6 with more (less)

parton shower is shown with the blue circles (red triangles). The b-jet energy response,
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Figure 3.42.: b-jet energy response as a function of pf uth for three t7 samples simu-

lated with POWHEG+PYTHIAG (black squares), ACERMC+PYTHIAG

with less (blue circles) and more (red triangles) parton shower, for
EM+JES (a) and GSC (b) for jets with 0.0 < n < 0.3.

obtained with jets calibrated before (after) the application of the GSC calibration, is shown
on the left (right). Some additional 1-bins are shown in appendix [B]in figure[B.5] After GSC
is applied, the jet energy response for b-jets decreases, similarly to what happened already in
the di-jet sample. To make the evaluation easier, the difference between the energy responses
for b-jets for the two ACERMC samples with respect to the one obtained with the POWHEG
sample are shown in figure [3.43] for EM+JES (a) and GSC (b). The green band represents
the b-jet systematic uncertainty evaluated for EM+JES [135)]. After applying the GSC
calibration, the difference in the energy response for b-jets relative to POWHEG+PYTHIAG,
produced with different MC generators and parton shower tunes, becomes smaller than the
uncertainty band. This means that the uncertainty derived for EM+JES can also be used for
GSC.

It is also necessary to evaluate possible b-jet energy scale uncertainties when consid-
ering b-quarks originating in the decay of a colour singlet resonance. The energy response
for b-jets is compared using four different processes: ZH, Z+jets, tf and ZZ. These four

processes are the most relevant processes in the ZH analysis: the signal and the three
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Figure 3.43.: b-jet energy response difference between the two ¢ samples simulated
with ACERMC+PYTHIA6 with less (blue circles) and more (red
triangles) parton shower and the POWHEG+PYTHIAG sample, for
EM+]JES (a) and GSC (b) for jets with 0.0 < n < 0.3. The green band
represents the b-jet systematic uncertainty obtained for the EM+JES
calibration.

leading backgrounds, respectively, as it will be discussed in chapter @l The objective of
this evaluation is to test different b-jet production mechanisms. In the ZH and ZZ processes,
a b-jet pair results from the decay of a colourless resonance, the Higgs and the Z boson,
respectively. In the 77 process, a b-quark is created from the decay of each of the top quarks.
Finally, in the associated production of b-jets with a Z boson, the b-quarks result mainly
from gluon-splitting, similar to the di-jet production used in the GSC derivation. For this
evaluation, the energy response for b-jets using the ZH signal and three background processes
is shown in figure [3.44] for the central pseudorapidity bin, before (a) and after (b) applying
the GSC calibration. The ZH signal process is simulated with PYTHIA8 and shown with the
red circle, the ¢f process is shown again with the black squares, the Z+b-jets simulated with
the SHERPA generator is shown with the blue up triangles, and the diboson ZZ production
is simulated with POWHEG+PYTHIAS8 and shown by the green down triangles. More details

on these samples are given in section 4.4] The differences between the jet energy response
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Figure 3.44.: b-jet energy response with EM+JES (a) and GSC (b), for jets with
0.0<n <0.3, for the signal process for the ZH analysis (red
circles) and for the three leading backgrounds: 7 (black squares),
Z+b-jets (blue up triangles), and ZZ (green down triangles).

obtained for different samples in each p’T””h bin is smaller after applying GSC. The b-jet
energy response difference of each of the background processes is calculated relative to
the signal process, ZH, and compared again with the b-jet uncertainty obtained for the
EM+JES calibration. The relative difference with ZH is shown in figure [3.45| before (a) and
after (b) applying GSC. Before applying GSC, the only b-jet energy response within the b-jet
uncertainty band for the ZH process is the diboson process ZZ as in both the b-quarks result
from a colourless resonance decay. After the GSC calibration is applied, the discrepancies
in the energy responses for b-jets, originating from different processes are much smaller and
nearly all the differences are located inside the b-jet systematic uncertainty band obtained for
EM+IJES. Figure B.6|in the appendix [B] shows other 7-bins with similar conclusions.

Based on these two evaluations, no additional systematic uncertainty was added.
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Figure 3.45.: b-jet energy response difference between the signal process for the ZH
analysis and each of the three leading backgrounds: ¢ (black squares),
Z+b-jets (blue up triangles), and ZZ (green down triangles), with
EM+]JES (a) and GSC (b), for jets with 0.0 < 1 < 0.3. The green band
represents the b-jet systematic uncertainty obtained for the EM+JES
calibration.
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3.9.4.2. Difference in response between full and fast simulation

Section referred already the importance of the parametrised version of the
calorimeter energy response in the production of nearly all the samples used for the ZH
search. A systematic uncertainty accounting for the difference in the response between full
simulation (FS) of the detector with GEANT4 and the parametrised version ATLASFASTII
(AF) has to be evaluated and considered in any analysis using jets. This uncertainty
was evaluated for EM+JES with the inclusive di-jet sample. It is, therefore, necessary to
understand if this systematic uncertainty is also enough to cover the differences between the
full and the fast simulation, when using GSC.

Figures [3.46] and show the distributions of the four jet properties used in the
GSC calibration, for jets with 0.0 <1 < 0.3, using the same p’T””h—bins as before. The
lines represent the inclusive distributions for the di-jet sample obtained with the full
detector simulation (blue full line) and for the ATLASFASTII parametrised simulation of the
calorimeter (red dashed line). Small discrepancies are found in every variable distribution
and in every p’T””h—bins. Additional 17 and ptT””h—bins are found in the appendix [B| in
figure (B.7

The jet energy response as a function of the p’T””h is shown in ﬁgure(a) for jets with
0.0 < n < 0.3, for the di-jet inclusive flavour samples before (after) applying GSC shown
by the blue squares (red circles), obtained with the full simulation (open markers) and fast
simulation (closed markers). The jet energy response with the ATLASFASTII is observed
to be systematically higher when compared with the full simulation of the detector for both
EM-+JES and GSC. Figure [3.48|(b) shows the relative difference in the jet energy response
between the full simulation (FS) and ATLASFASTII (AF), FS-AF. The AtlasFastIl non-
closure systematic uncertainty obtained for EM+JES is shown by the blue shaded band. The
difference for EM+JES between the jet energy response with FS and with AF lies inside the
expected systematic uncertainty, except for a couple of bins at low p7- uh Conversely, after
GSC is applied, the jet energy response difference is around 0.5 % larger than the EM+JES
based systematic uncertainty at high—ptT””h, starting around 200 GeV. For this reason, an
additional 0.5 % term was added to this systematic uncertainty.

This systematic uncertainty was then validated using the POWHEG+PYTHIAG generated
tt sample. Despite having a jet flavour composition completely different from the di-jet
sample, since the GSC calibration objective is the removal of flavour dependence, the #7

sample is a good candidate to test this new systematic uncertainty. Additionally, since each
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Figure 3.46.: Distributions of the jet properties, fTileO(a), fEM3(b), nTrk(c) and
TrkWidth (d), for inclusive di-jet events simulated with PYTHIAS, for jets
with 0.0 <1 < 0.3 and 40 < pt < 60 GeV, normalised to unity and obtained
for different detector simulations: full simulation (FS) and ATLASFASTII
(AF) simulation shown by the blue filled line and red dash line, respectively.
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ATLASFASTII (AF) simulation shown by the blue filled line and red dash
line, respectively.
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Figure 3.48.: Jet energy response (a) as a function of the p’T””h, for the parametrised and
the full simulation for jets with 0.0 < 1 < 0.3, using inclusive di-jet events
simulated with PYTHIA8. Comparison between the ATLASFASTII (closed
markers) and the full simulation (open markers) of the detector. Jet energy
response difference (b) between the full and fast simulation, FS-AF. The jet
energy response for the EM+JES (GSC) calibration is shown by blue squares
(red circles). The blue band in (b) is the measured systematic uncertainty
obtained for the ATLASFASTII non-closure with the EM+JES calibration.

event in the 77 samples should contain at least two b-quarks from the top quark decay, it
can validate the additional fast simulation systematic uncertainty for a sample enriched with
b-jets. Figure (a) shows the jet energy response as a function of p’T””h in the central
n-bin. The difference in the jet energy response between ATLASFASTII and full simulations
is shown in figure (b). It shows that the difference is strongly dependent on p¥ uh when
using EM+JES. The same systematic uncertainty band for EM+JES is shown for comparison.
After GSC is applied, the difference falls outside this uncertainty band but the extra 0.5 %
determined previously for the di-jet sample still accounts for the observed discrepancies,

validating this new uncertainty. Appendix [B|shows other 1-bins in figure
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Figure 3.49.: Jet energy response (a) and response difference between the parametrised and
the full simulation (b) as a function of the p{*” for jets with 0.0 < 1 < 0.3,
using the flavour inclusive #f sample. The figures show the comparison
between the ATLASFASTII (closed markers) and the full simulation (open
markers) of the detector. The jet energy response for the EM+JES (GSC)
calibration is shown by blue squares (red circles). The blue band is the
measured systematic uncertainty obtained for the ATLASFASTII non-closure
with the EM+JES calibration.

3.9.5. Invariant mass studies

It has already been shown that GSC improves the jet energy resolution (section [3.9.2).
In this section, the effect of GSC on the resolution of the invariant mass of a b-jet pair (and
therefore on the H — bb searches) will be evaluated. The estimation of the improvement in
the invariant mass resolution is studied for a narrow resonance, decaying to b-quarks, when
the jets are reconstructed with the anti-kt algorithm and calibrated with EM+JES and with
the EM+JES+GSC. Since this work has a special focus on the Higgs boson search, the same

jet selection used in the ZH analysis is applied in this study.

Sections [4.5] will discuss the ZH selection in detail, whereas here only the selection of
the reconstructed jet and the event are referred. This work uses only the ZH process simulated

with the PYTHIA8 generator.
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Jets are required to be in the calorimeter acceptance region, |1| < 4.5, and to have a
transverse momentum above 25 GeV, when they are within the inner detector acceptance
(In] < 2.5) or above 30 GeV for || > 2.5. The JVF criterium, discussed in section[2.7.5] is
applied to reject pileup jets. The event is required to have exactly two reconstructed b-tagged
jets with MV1 value corresponding to the 80 % operating point of b-tagging efficiency.
Events with more than two jets are vetoed. Both reconstructed and truth jets are required to
be isolated, as described in section [3.4.1|and the reconstructed jet is required to be matched
to the closest truth b-jet within the distance AR < 0.3. These two selections ensure that the
two reconstructed jets which were b-tagged are the same produced in the hadronization of

the two b-quarks from the Higgs boson decay.

3.9.5.1. Invariant mass with reconstructed jets

The distributions of the invariant mass of the di-b-jet system are not symmetrical due
to initial state radiation (ISR) and final state radiation (FSR) effects discussed in section [2.8]
In ISR, a gluon is emitted in the same direction as one of the b-jets, increases the energy
of that b-jet and consequently the invariant mass of the b-jet system. Such events will
populate the high invariant mass region. In FSR, one of the b-quarks radiates one gluon
which is reconstructed as a different jet and the resulting invariant mass of the b-jets will
have a smaller value, populating the low invariant mass region. For this reason, a Bukin
function [136] is used to fit the invariant mass distributions. This function is composed
of a Gaussian core with two asymmetric exponential shaped tails. The fit is performed
centred on the maximum of the distribution with a window of four times the RMS of the
m,, distribution. The width of the Gaussian core of the Bukin fit is used to evaluate the
resolution in the invariant mass distribution before and after applying GSC.

The invariant mass distributions are obtained for five bins of the Higgs boson transverse
momentum, using generator level information, with boundaries of 90 GeV, 120 GeV,
160 GeV and 200 GeV (see figure [3.50). These will be the same boundaries of the regions
defined in section {4.5] for the transverse momentum of the Z boson. Figure [3.50] shows the
distributions of the invariant mass of the two reconstructed b-jets, with the b-jets calibrated at
EM+JES (GSC) scale with the blue (red) markers. The lines represent the Bukin fit applied
to the distribution with the respective colour. The figures present also the parameter retrieved
from the Bukin fit for the average and for the width of the fitted distribution.

The ratio between the widths, o, from the distributions for EM+JES and GSC evaluates
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the improvement in the m,; resolution due to the GSC calibration from equation [3.14}

oEM+IES
Improvement = (W — 1) X 100% (3.14)

The mean value of the Gaussian core of the Bukin fit that represents the peak central position
and the width of the fit shown are summarised in table These central position values
provide an estimate of the measured Higgs boson mass.

As shown in section the b-jet response with GSC becomes closer to unity.
However, the truth jets, used in the evaluation of the GSC calibration, do not include muons
or neutrinos, since only the particles that deposit their energy in the calorimeter are included.
After applying the GSC calibration, the mean value of the m,j distribution decreases by
around 2.3 GeV, moving away from the truth Higgs boson simulated mass, 125 GeV. This
effect is due to the energy of muons and neutrinos, which were not included in the jets and

no correction was yet applied for that.

Nevertheless, both ISR and FSR affect the calculation of the di-b-jet invariant mass
resolution so, in the next section, another method is used to separate these effects from the

improvement.

EM+JES GSC Improvement

mean | width | mean | width (%)

p¥ <90GeV | 116.7 | 164 | 1147 | 159 32+£00

90 < p¥ <120GeV | 120.0 | 15.8 | 117.7 | 15.1 43 +0.1

120 < p¥ <160 GeV | 120.2 | 16.1 | 117.3 | 154 47 +£0.1

160 < p¥ <200GeV | 120.8 | 13.1 | 1184 | 12.8 2.7+£0.1

p¥ >200GeV | 1254 | 10.8 | 121.5 ] 99 94+0.3

Combined | 118.6 | 16.0 | 1163 | 154 394+0.0

pr-bin

Table 3.1.: Mean and width of a fit to a Bukin function of the m,}, distributions when
the b-jets are calibrated with EM+JES and GSC. The last column shows
the improvement observed in the invariant mass resolution due to the GSC
calibration.
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Figure 3.50.: Invariant mass of the two reconstructed b-tagged jets in bins of the truth
Higgs boson transverse momentum for jets calibrated with EM+JES
(blue squares) and GSC (red circles). The distributions are fitted with a
Bukin function. The mean and width obtained from the fit are shown.



3.9. The global sequential calibration

3.9.5.2. Invariant mass ratio

To disentangle the improvement of the invariant mass resolution from the initial and
final state radiation effects, an invariant mass ratio between the reconstructed and truth bb-
invariant masses is defined: mZ%CO / mggth.
using the truth b-jets, i.e. jets that include a b-quark and are reconstructed at particle level

The truth mass of the Higgs boson is calculated

using the anti-kt algorithm with R = 0.4 including all particles except muons and neutrinos.
Figure w shows the distributions of the m, > / mggth ratio with the same colours used
before. Now a Gaussian fit is adopted instead of the Bukin function since one expects
symmetric tails. The fit is done in an interval obtained of +2 x RMS from the centre of
the distribution. Table [3.2] summarises the parameters, mean and width obtained from the

Gaussian fit.

The mean value of the Gaussian distribution becomes closer to 1 after the GSC
calibration, which is a consequence of the better jet energy scale obtained with GSC, as
shown in section W The width of the m;>* / mgll;th improves by around 6.2 % for the
lowest pr-bin of the Higgs boson. The improvement increases with the Higgs boson pt up
to 11.5 % in the most sensitive range p¥ > 200 GeV, with an average improvement of 6.1 %

when all the Higgs boson pr-bins are considered together.

EM+JES GSC Improvement

mean | width | mean | width (%)

p¥ <90 GeV | 1.066 | 0.105 | 1.044 | 0.099 6.2 £0.0

90 < p¥ <120 GeV | 1.056 | 0.096 | 1.031 | 0.090 6.9 + 0.1

120 < p¥ <160 GeV | 1.046 | 0.087 | 1.019 | 0.081 7.8 £ 0.1

160 < p¥ <200 GeV | 1.039 | 0.080 | 1.011 | 0.074 8.4 +0.1

p¥ >200GeV | 1.035 | 0.083 | 1.008 | 0.074 | 11.5+£0.3

Combined | 1.060 | 0.100 | 1.036 | 0.095 6.1 £0.0

pr-bin

Table 3.2.: Mean and width of a Gaussian fit to the mi%co / mg};th ratio distribution
obtained when jets are calibrated with EM+JES and GSC. The
improvement in the resolution (width) with GSC with respect to EM+JES
is shown in the last column.
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Figure 3.51.: Invariant mass ratio between the reconstructed and the Higgs boson invariant mass
calculated using particle level truth b-jets for jets calibrated with EM+JES (blue
squares) and GSC (red circles). The mean and width of the Gaussian fit is also
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3.9.6. Summary of the GSC conclusions

The global sequential calibration (GSC) was developed to remove the dependence of the
jet energy response on some jet properties. The energy fraction deposited by the jet in the
first layer of the Tile calorimeter and in the last layer of the electromagnetic calorimeter, are
sensitive to the energy losses in the cryostat between the calorimeters and to differences in
the jet energy response between the electromagnetic and the hadronic cascade developments
in the hadronic calorimeter. Two other jet properties use the number of charged particles and
their transverse distribution in the jet to distinguish between light-quark and gluon initiated
jets and to reduce the jet energy response dependence on the jet flavour.

GSC was derived as a sequence of corrections for each of the properties. Using the
same simulation as for the jet energy scale derivation, the flavour inclusive di-jet sample, the
jet energy response as a function of each jet property was studied, before and after each of
the corrections and was found to change only when the correction was applied. This study
concluded that the jet energy response in each 1n-pr interval did not differ more than 1 %
with respect to the values obtained with EM+JES, as intended. GSC improved the jet energy
resolution by 20 % relatively to the result obtained with the EM+JES default jet calibration.

Next, the performance of GSC was studied for different jet flavours. The jet energy
response had a strong dependence on the jet flavour after the EM+JES calibration for the
di-jet sample used to derive it. This sample is dominated by gluon initiated jets, which were
found to have a jet energy response below 1 by about 2 %. About 25 % of the jets in the
sample were initiated by light quarks, which had a jet energy response larger than 1 by more
than 8 % at low-pr decreasing to a 1-2 % for pt > 400 GeV. The b-jets that exist in this
sample result from gluon-splitting and their jet energy response was above 1 by up to 4 %.
In all cases, the jet energy response with EM+JES had larger absolute differences to 1 than
GSC. This study concluded that, after GSC was applied, the jet energy response becomes
closer to 1 for all jet flavours. The maximum difference observed from 1 after GSC was 4 %
for light-quark initiated jets for jets with pr < 30 GeV.

After this, it was necessary to evaluate the systematic uncertainties. These were
obtained using the same in sifu techniques to derive the uncertainties at the EM+JES scale but
applied to GSC. The EM+JES uncertainties were found valid with GSC. The only systematic
uncertainties that required further corrections were simulation related, which accounted the
differences in the jet energy response for heavy flavour jets and different detector simulation

conditions.
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The systematic uncertainty on the jet energy response for heavy flavoured jets results
from differences in the hadronization models of various simulations. Two evaluations were
carried out to assess this systematic uncertainty. The hadronization model was tested
using different simulations of the ¢ process, which feature three different hadronization
parametrisations of PYTHIA6. The jet energy response from the default parametrisation
was compared with hadronization parametrisations simulating less and more parton shower
in the final state. The differences in the jet energy response with respect to the default
parametrisation were compared against the b-jet flavour systematic uncertainty derived for
EM+JES. This evaluation showed that, after GSC is applied, the heavy flavour uncertainty
from EM+JES was enough to cover the differences in the jet energy response from the
hadronization differences. The second evaluation had the objective of studying the energy
response for b-jets for the most relevant processes of the ZH analysis: the ZH process and
the three most important background processes, Z+jets, ZZ and ¢f. This evaluation allowed
the comparison of different processes that produce b-jets: colourless resonance decay in the
ZH and ZZ processes, the decay of top quark in the ## process and gluon-splitting (like in
the di-jet main process) in the Z+jets process. In this case, the difference in the jet energy
response between each of the background processes relative to the ZH sample was compared
to the same b-jet flavour systematic uncertainty obtained for EM+JES and validated with
GSC in the previous evaluation. After GSC was applied, the discrepancy on the jet energy
response between the four processes was reduced, such that the differences in the jet energy
response were contained in the systematic uncertainty band obtained for EM+JES. These two
evaluations concluded that the EM+JES heavy flavour systematic uncertainty can be used for
GSC. Moreover, this study concluded that GSC was able to reduce the differences in the jet

energy response for b-jets produced from different processes.

Concerning the different detector simulations, the di-jet sample is obtained using a
full simulation of the detector and a fast simulation, which uses a parametrisation of the
energy response of the calorimeter. Many analyses use the fast simulation that increases the
statistics. One of them is the ZH analysis, which simulated almost every process with this fast
simulation version of the detector. The difference in the jet energy response was evaluated by
comparing the full simulation (FS) and the ATLASFASTII (AF) fast simulation of the detector
for the EM+JES and GSC calibrations using the di-jet sample. With the default calibration,
the difference in the jet energy response followed closely the uncertainty band obtained by

the ATLAS jet performance group for EM+JES, as expected. However, after applying GSC,
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an additional contribution to this uncertainty of 0.5 % was necessary. As GSC reduces the
flavour dependence, a t7 sample was also used to validate this effect. The 0.5 % additional
uncertainty was also enough to accommodate the FS-AF response differences in the ¢7 sample
after GSC is applied.

Finally, the ZH analysis is particularly interested in the GSC calibration to improve
the invariant mass m,j resolution and hence enhance the sensitivity of the ZH signal. Two
tests were performed to assess the improvements in the invariant mass resolution. In the first
one, a Bukin function was used to fit the asymmetric m,; distributions of the Higgs boson.
The width of this distribution improved by up to 9.4 % for the most sensitive pr-bin of the
Higgs boson, p¥ > 200 GeV. Additionally, to suppress the effects of FSR and ISR, the ratio
between the reconstructed Higgs boson mass and truth Higgs boson mass, defined as the
invariant mass reconstructed with truth b-jets from the Higgs boson decay (excluding muons
and neutrinos), was used. The improvements were up to 11.5 % for p¥ > 200 GeV, in this

case.
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4. ZH analysis

“Ultimately, it's up to the fish...”

(Lee David Zlotoff, MacGyver
Season 1, Episode 11,
“Nightmares”)

4.1. Introduction

The H — bb decay has not been observed yet, and its observation is the only way to
probe the coupling of the Higgs boson to the b-quark [82]. H — bb is the most probable
Higgs boson decay, with a branching ratio of 57.5 % at the 125.09 GeV [19] value of the
Higgs boson mass. Therefore, it is essential to measure this decay to constrain its total decay
width, I'(H), and to understand if the recently found Higgs boson is the Standard Model
Higgs boson.

In hadron colliders such as LHC, it is impossible to distinguish the H — bb signal
from the direct bb production, with several orders of magnitude larger cross section (see
figure[1.9). For this reason, this search can only be performed using channels which provide
additional clean signatures. In the VH associated production of the Higgs boson with a
vector boson, W or Z, the leptonic decay of the vector boson supplies the signatures that
allow distinguishing the Higgs boson events from the huge backgrounds.

The VH association production channel is divided into three channels: in the O-lepton
channel, a Z boson decays into a pair of neutrinos and the event is selected by a large missing
transverse energy; the 1-lepton channel corresponding mainly to WH associated production
in which the W boson decays to a charged lepton and a neutrino; while the 2-lepton channel
corresponds mainly to the ZH associated production, when the Z boson decays into a pair
of charged leptons. In all these cases, there are in addition two b-jets from the Higgs boson
decay. In this thesis, only muons and electrons are considered as charged leptons. The

combined study of the three channels is referred as VH analysis in this thesis, while the
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2-lepton channel study, which is the object of study in the thesis, is referred as ZH analysis.

The main disadvantage of the Higgs associated production with a vector boson
compared to the other production mechanisms is the lower cross section. For the WH
associated production, the cross section is 0.703+0.018 pb, whereas for ZH it is nearly a
factor of two smaller: 0.414+0.016 pb. These values are calculated at next-to-next-leading-
order in QCD and next-leading-order in electroweak corrections at the centre of mass energy
of \/E =8 TeV [22]]. Also, the W and Z bosons decay further, so the product between
the cross section, ¢, and the branching ratio, BR, describes better the difference between
channels. The BR of the W — /v decay is around 10 %, while for the Z boson decaying
to neutrinos, the BR is about 20 % and for the Z boson decay to charged leptons the BR is
around 3 %. Taking this into account, the 6 x BR product for the WH — ¢vbb is around four
times larger than for the ZH — ¢¢bb channel, as shown in table

Channel o (pb) | BR (V— leptons) | o x BR (fb)

ZH — vvbb | 0.41440.016 20.004-0.06 % 474+ 3
WH — evbb | 0.703+0.018 10.7540.13 % 42+ 2
WH — uvbb | 0.703+£0.018 10.5740.15 % 4242
ZH — eebb | 0.4144+0.016 | 3.363+0.004 % 8.6+0.5
ZH — pubb | 0.414+0.016 |  3.366+0.007 % 8.740.5

Table 4.1.: Calculation of the product ¢ x BR. Branching ratio includes also the
leptonic decays of taus [4].

Notwithstanding, the presence of two high-pr isolated leptons reduces considerably the
multi-jet background so in the 2-lepton channel this background will be very small. Also,
the ZH event is entirely reconstructed (two charged leptons and two b-jets), allowing the
improvement of the background rejection and the application of a global kinematic fit to

improve the bb mass resolution.

4.2. Overview of the ZH — ((bb analysis

Figure [4.1] shows the manipulation process of events in the ZH analysis. The first step
is to select only events that have fired the leptonic triggers used in the analysis. Quality
criteria are applied to select events in which the detector was working in good conditions,

and well-reconstructed electrons, muons and jets, which are referred to as physics objects.
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Figure 4.1.: Scheme of the treatment of events in the ZH analysis.

Since the reconstruction and identification algorithms do not apply any overlap removal by
default, an electron might also be reconstructed as a jet, or if a muon radiates it might be
reconstructed as an electron. Therefore, overlap removal criteria are used to reject repeated
physics objects. The particular properties of the ZH — ¢/bb events are used to distinguish
between the ZH signal and background events and referred to as topology selection. Events
are then categorised according to the multiplicity of jets, the transverse momentum of the
reconstructed Z boson, and the MV 1c weight of each jet used for the identification of b-jets.
Some physics object properties are not modelled correctly in the simulations and corrections
are derived from data-MC comparisons or obtained from higher order simulations. The
analysis is further enhanced by improving the resolution of the reconstructed jets that result
in the Higgs candidate. One of them, the global sequential calibration, is one of the objects
of study of this thesis (see section[3.9). The invariant mass of the reconstructed Higgs boson

is then registered in histograms for each of the categorisation regions for further analysis.

The effect of the systematic uncertainties is evaluated by running the full analysis but
varying in the simulation each source of systematic uncertainty by one standard deviation.
The resulting modified distributions of the Higgs boson invariant mass are also registered
for further analysis. Other systematic uncertainties result from the modelling of signal and

backgrounds, which include those obtained from the corrections to the simulation.

Finally, a statistical procedure uses all the invariant mass distributions from the nominal
analysis and the systematic uncertainties to normalize simultaneously all the backgrounds to
fit the data. At the same time, this global fit will extract the value of the signal strength
parameter, U, as discussed in section
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4.3. Data sample and integrated luminosity

The LHC had an outstanding performance during 2012: the instantaneous luminos-
ity increased from around 0.5x10* cm™2s~! [47] at the beginning of 2011 to almost
8x10% cm™2s~! in 2012. In figure the evolution of the peak luminosity per LHC
fill along 2012 is shown, reaching a maximum of 7.73x 10 cm~2s~!. The total integrated
luminosity as a function of the day in 2012 is shown in figure 4.2(b) The evolution of
the integrated luminosity delivered by LHC to ATLAS appears in green with a cumulative
value of 22.8 fb~!, whereas the ATLAS trigger system recorded 21.3 fb~! (in yellow)
corresponding to a data taking efficiency of 93.4%. Table [d.2] gives the percentage of each
sub-detector up-time and good quality data. The combined efficiency was 95.5%, meaning

that 20.3 fb~! of data has good quality to be used in physics analysis, as shown in blue in the

figure A2(6)
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Figure 4.2.: Peak luminosity per fill during 2012 data taking period (a) and total
integrated luminosity delivered, recorded and good for analysis (b) [47].

4.4. ZH signal and background characterization

In the ZH analysis, the production of a Higgs boson with a Z boson is called the signal

process. There are however other physics processes similar to the signal event, known
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4.4. ZH signal and background characterization

ATLAS p — p run: April-December 2012
Inner Tracker Calorimeters Muon Spectrometer Magnets
Pixel | SCT | TRT | LAr | Tile | MDT | RPC | CSC | TGC | Solenoid | Toroid
999 1 99.1 1 99.8 199.1 | 99.6 | 99.6 | 99.8 | 100. | 99.6 99.8 99.5
All good for physics: 95.5%

Table 4.2.: Percentage of the up-time with good quality data of each sub-detector
obtained during 2012 data taking [137].

as backgrounds. The leading or irreducible backgrounds are those that present the same
signature as the signal process and have usually a higher cross section production. Other
backgrounds, known as reducible, result from a misreconstruction of any physics object,
faking the same signature as the signal. Although the efficiency of the event selection of the
analysis rejects most of such events, their cross section is even higher than the irreducible
backgrounds and several events can be accepted.

Different Monte Carlo (MC) generators were used to simulate the hard scattering
process for the signal and each of the backgrounds in the ZH analysis. Table 4.3| summarises
for each sample, the corresponding generator, parton density function (PDF), underlying
event (UE) tune and order of cross section computation and will be described in next sections.

Almost all samples use the ATLAS FAST II detector simulation to speed up simulations
and increase the available statistics for each MC sample as discussed in section [2.8

The simulations have to be normalised to the total integrated luminosity of the data, to
allow for data-MC comparisons. The luminosity of an MC simulated sample, MClumi, is

calculated as:

rw

MClumi = ———,
o xBR x gr

4.1)

where o is the cross section of the given process, BR is the branching ratio of the produced
particles decay, & is the generator level filter efficiency of the process and ¥ is the sum of
the product of all MC weights. The MC weights include only the pileup, the vertex weight
and the p% weight for the signal sample, that will be discussed in section
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4.4. ZH signal and background characterization

Table [4.3] also provides information on the absolute number of simulated events,
Nevents. The cross-section, o, of each process in this table is the product of the
inclusive cross-section by the leptonic/hadronic filter efficiency and the higher-order k-
factors discussed in section 2.8 Uncertainties on the cross-section of the signal and
background samples are discussed in section .10} The MC weight sum, in the last column
of the table is used for the calculation of the simulation luminosity for each sample using
equation4.1] Finally, ¢ refers to the three charged leptons and Vv is the corresponding neutrino
and jj corresponds to a hadronic decay of a vector boson, W — ¢'G or Z — g, where ¢’ is a
quark with a different flavour and absolute charge from gq.

The distributions for each MC sample will then be scaled by:

[ pdaa 20.3

1 = =
ST MClumi ~ MClumi(fb)

4.2)

4.4.1. Signal process

The primary production Feynman diagram of the Higgs in associated production with
a Z boson is shown schematically in figure 4.3} a quark-anti-quark interaction produces a
virtual Z boson, which decays into a real Z boson and a Higgs boson. Additionally, in
the search presented in this thesis, the Z boson decays either to an electron-positron or a
muon-anti-muon pair and the Higgs boson decays to a pair of b-quarks. The total cross
section also receives a non-negligible contribution from two other Feynman diagrams, both
initiated by gluons. In figure a triangle quark loop will produce the virtual Z boson.
In figure §.4(b)] the final Z and Higgs bosons are produced directly in the square loop.
Together, the gluon-initiated ZH production that includes the Feynman diagrams shown in
figure contributes with 32.46 fb (8.5 % of the total cross section) [[138]].

The ZH — ¢¢bb process is referred as signal and the Feynman diagrams shown in
figures d.3|and 14| represent the tree-level production and decay of this process. Higher order
diagrams are also accounted as the signal, although they were calculated only with next-to-
next-to-leading-order (NNLO) and next-to-leading-order (NLO) for QCD and electroweak
corrections, respectively.

Both signal samples use the ATLAS underlying event tune 2 (AUET2) [102, [103]] to
simulate the underlying event. The branching ratio and decay widths are calculated with
HDECAY [106], described in section[2.8]

The Higgs associated production with a Z boson initiated by gluons was simulated with
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4. ZH analysis

Figure 4.3.: Feynman diagram of the production of the Higgs boson associated to a
Z boson, initiated by quarks.

Y
N

Z
l=e,u {=elu
N A Y
b b
e ey =
h H A
b b
(a) (b)

Figure 4.4.: Feynman diagrams of the production of the Higgs boson associated to
a Z boson, initiated by gluons through a triangle (a) and a squared (b)
loop.

the POWHEG [93]] event generator for the hard scattering process, interfaced with PYTHIA8
for the shower propagation and the cross-section calculation was obtained at next-to-leading-
order in QCD. This sample uses the PDF set CT10 [84]]

In the ZH sample, the Z boson is forced to decay into a pair of charged leptons
(including tau leptons) and the Higgs boson to a b-quark pair.

4.4.2. Leading backgrounds

The leading backgrounds for the ZH analysis, by the order of importance, are the
production of a bottom-anti-bottom quark pair together with a Z boson (Z+b-jets), the
production of a top-anti-top pair of quarks (¢7) and the production of a pair of Z bosons
(Z27).

The production of Z+b-jets is the most important background. A quark-anti-quark pair
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4.4. ZH signal and background characterization
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Figure 4.5.: Leading order Feynman diagrams of the three irreducible backgrounds
of the ZH channel: Z+b-jets (a), t7 (b) and ZZ (c).

interacts producing a Z boson which decays into an electron-positron or a muon pair. One
of the quarks radiates a gluon which is split into two b-quarks. The Feynman leading order
diagram for this process is shown in figure[4.5 (a)l Also considered as part of this background
is the decay from the Z boson to tau-leptons, which can also decay to electrons or muons.
The simulation of the Z+b-jets sample is performed with SHERPA 1.4.1 [92]. The cross
section is calculated at next-to-next-to-leading-order in QCD and uses the CT10 PDF set.
SHERPA deals with the underlying event internally. The simulation of the Z+jets background
is divided into three exclusive samples: events with at least one bottom hadron (Z+b), events
with at least one charmed hadron but no bottom hadron (Z+c) and events with neither a
bottom hadron nor a charmed hadron (Z+light). The bottom and charmed hadrons selected by
the filter are presented in table[2.2] In addition, there are six exclusive slices depending on the
pt of the Z boson, 0 - 40 GeV, 40 - 70 GeV, 70 - 140 GeV, 140 - 280 GeV, 280 - 500 GeV
and above 500 GeV to increase the number of events with high transverse momentum of the
vector boson. Table 4.3{shows the total number of events for all p% slices and the full list will
be shown in appendix [C.1]

In the #f production, each of the top quarks decays to a b-quark and a W boson
(t — Wb) with a BR in the Standard Model close to 100 %. This process is a background
in the ZH analysis when both W bosons decay to the same lepton flavour and a neutrino
(W — £v). One of the Feynman leading order diagram for this process is presented in
figure For the simulation of the ¢ sample, the hard scattering process for this
sample is processed with POWHEG, interfaced with PYTHIAG6 [88] for the hadronization

157



4. ZH analysis

procedure. The 7 cross section is obtained at next-to-next-to-leading-order in QCD including
next-to-next-to-leading-log (NNLL) of soft gluon terms with TOP++. The uncertainties on
the cross-section from PDF and o are calculated using the PDF4ALHC prescription [[139]
using the MSTW2008 68% CL NNLO [140, [141], CT10 NNLO [84 [142] and NNPDF2.3
5f FEN [143] PDF sets, added in quadrature to the scale uncertainty. The PDF set chosen
was CTEQ6L1 and the underlying event used was the Perugia2011C tune [102, [103]. A
leptonic filter was applied in this sample: at least one of the W bosons produced in the top
decay had to decay leptonically. The inclusive cross-section for the ¢7 production in 8 TeV is
Oy = 253ﬂ§ pb and after applying the leptonic filter the value is about 140 pb.

In the diboson ZZ production, one of the Z bosons decays into a pair of charged leptons
(Z — £0) and the other decays to a pair of b-quarks. The Feynman leading order diagram
for this process is presented in figure The simulation of the ZZ process is performed
using the POWHEG generator, with cross sections calculated at next-to-leading-order, and
the hadronization was dealt with PYTHIAS. It uses the CT10 PDF set and the AUET?2 tune
to simulate the underlying event. A filter was applied to this sample to ensure that one of the
Z bosons has a leptonic decay and the other a hadronic one.

The multi-jet background can not be simulated in particular due to the difficult of the
fake leptons modeling. This background is therefore estimated from data with the method
discussed in section 4.4.4l

4.4.3. Remaining backgrounds

From the remaining backgrounds, the only one with a relevant contribution to the
ZH analysis is the production of a Z boson with two jets not resulting from b-quarks but
nonetheless misidentified as b-jets. The leading order Feynman diagrams for the production
of non-b-jets in association with a Z boson are shown in figure 4.5 (a)| if the b-quarks are
replaced by a c-quark or by a light flavoured quark. As discussed in section the
b-tagging algorithm has an inefficiency of 9.57 % for c-jets and 0.74 % for light-jets at the
intermediate operating point. However, the cross section to produce Z+non-b-jets events is
about one order of magnitude higher that to produce Z+b-jets events. The SHERPA generator
with the veto on B-hadrons, discussed in section[4.4.2] is used to simulate this background.

Other two backgrounds with still some relevance to the ZH analysis are the production
of a top quark and a W boson (Wt) and the production of a Z and a W bosons (ZW). In the
former, the top quark decays nearly 100 % of the times to Wb. The event contains two W
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4.4. ZH signal and background characterization

bosons that may decay to a lepton of the same flavour. If there is another jet in the event,
this might be (mis)identified as a b-jet and produce the same final state as the ZH process.
In the ZW, the Z boson decays into a charged lepton pair and the W boson decays into two
quarks. If the jets originated from these quarks are misidentified as b-jets, the event becomes
a background to the ZH channel. The Wt process is simulated with the ACERMC [93]
generator and the hadronization is handled by PYTHIA6. The PDF set and underlying tune
are the same used for ¢t (CTEQ6L1 and P2011C, respectively) and the cross sections are
calculated at leading-order. The simulation details of the WZ process are the same as for
the ZZ diboson production and a filter is applied to select events where the W boson decays

leptonically.

Other backgrounds have a negligible impact in the ZH analysis. However, since the
final VH search includes also the O-lepton and the 1-lepton channels, their backgrounds are

shortly described.

The leading backgrounds of the 0-lepton channel is also the Z+jets production but with
the Z boson decaying to neutrinos. A similar change occurs in the ZZ background. The same
generator, PDF set, underlying event tune and hadronization as the corresponding simulation
for the 2-lepton channel are used. Since two charged leptons will be required for the ZH
analysis (see section [4.5) and these samples are created without them, they were ignored for

the ZH analysis.

The leading backgrounds of the 1-lepton channel is the W+jets production. This process
differs from the Z+jets process by only one less charged lepton. However, the cross section
production of W+jets is about a factor of 10 higher than Z+jets. If there is an additional
charged lepton in the event, this process can produce the same final state as the signal
ZH. In particular, if the W boson is produced with a pair of b-jets and one of the b-jets
decays leptonically, this new lepton might be reconstructed as isolated. If the b-jet decays
hadronically instead, one of the charged hadrons might be reconstructed as a fake electron.

The simulation of the W+jets background is the same as that for Z+jets.

Three more processes are considered as backgrounds for the WH channel: the
production of a pair of W bosons (WW), and the production of a single top quark in
the s- and t-channels. For the WW process, with a similar simulation as other diboson
processes, the background to the ZH analysis, results from the combination of two effects,
the (mis)identification of additional jets in the event as b-jets and the reconstruction of the

two leptons from the W boson decays as originated from the Z boson decay. In the production
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4. ZH analysis

of a single top in the t-channel, a gluon splits in two b-quarks and one of them interacts with
another quark through a W boson producing a top quark. The top decays as before, resulting
in an event with two b-jets and a lepton. If one of the b-quarks decays also leptonically, that
lepton might be reconstructed as isolated. Finally, in the single top s-channel, a top quark
is produced together with a b-quark. The top decays into Wb and the W may decay into a
charged lepton and the corresponding neutrino. One of the B-hadron decay with electrons
or muons (BR ~ 21 % combined) provides the additional lepton of the same flavour if it
is reconstructed as isolated. These backgrounds are expected to give a small to negligible
contribution on the ZH — £¢bb analysis, being more important for the 1 lepton channel.
These two single top production processes are simulated with the POWHEG generator and

the same configuration as the Wt-channel process for the remaining simulation steps.

4.4.4. Multi-jet background estimation and uncertainty

The multi-jet background can not be simulated and is estimated by data-driven methods.
Multi-jet background arise from two jets that are misidentified as leptons or from leptonic
decays in the jets when the leptons are reconstructed as isolated.

A multi-jet dominated sample is obtained by requiring non-isolated leptons. This
test uses all tracks inside a AR = 0.2 cone, excluding the lepton track, around the lepton
and requires that the scalar sum of their transverse momentum is larger than 10 % of the

transverse momentum of the lepton:
p%RZO'z, tracks

lepton
T

4.3)

This region defines templates for the multi-jet background for different distributions,
assuming that the shape of those distributions does not depend on the isolation cut.

To obtain the correct normalisation of this multi-jet template, a fit is performed
using the distribution of the invariant mass of the two leptons. Events selected for this
fit are required to contain exactly two leptons and at least two jets. The fit uses myy
distributions from three processes: the Z+jets background, the multi-jet template and all other
backgrounds considered together. The normalisation of Z+jets and the multi-jet template are
allowed to float to fit the number of background events to the data distribution, keeping all
other backgrounds fixed. This fit is done independently in events where two, one or no

jets are identified with the b-tagging algorithm MV Ic, obtaining normalization factors of
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2.2240.20, 1.89£0.04 and 2.36 + 0.02, respectively.
The multi-jet contribution is of the order of a few percent for electrons and negligible

for muons.

4.5. Event selection

4.5.1. Triggers

Table 4.4 presents the muon and electron triggers used for the event selection. The
ZH analysis uses the lowest unprescaled triggers threshold for the main triggers of the
analysis: mu24i_tight for muons and e24vhi_medium1 for electrons. Both triggers use
a track isolation requirement to reduce the sensibility to pileup and have a threshold of
24 GeV on the reconstructed transverse energy (momentum) of the electron (muon) in the
HLT. The isolation condition is achieved if the ratio between the scalar sum of the transverse
momentum of all charged particles (except the lepton) within a AR = 0.2 cone from the
lepton and the transverse momentum of the lepton is below the threshold present in the table.
Furthermore, to recover the loss of efficiency at high-pt due to the isolation criteria, the ZH
analysis uses the mu36_tight muon and e60_medium]1 electron triggers without isolation,
with a threshold of 36 GeV and 60 GeV, respectively. Finally, the 2-lepton analysis also uses
events selected by the di-lepton triggers 2mul3 and 2e12Tvh_loosel. These require at least
two leptons with smaller thresholds: 13 GeV for muons and 12 GeV for electrons to improve
the efficiency for low-pt leptons, below 24 GeV. Finally, if one event is recorded in both

Muon and Egamma streams (see section [2.3), it is removed from the latter.

4.5.2. Quality criteria

Data events are grouped into runs that lasted for several hours and are separated in
luminosity blocks with a duration of about one minute each. Data quality cross-checks of
all data taken are used to produce a good runs list (GRL) to ensure that only data with good
performance of the full detector is used in the analysis.

Additionally, events might be flagged as problematic during the reconstruction due to

detector malfunction and are rejected at analysis level:

* LAr error: noise burst in the liquid Argon electromagnetic and hadronic calorimeters.
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4. ZH analysis

Stream Trigger name Number | Threshold | Track isolation
mu24i_tight >1 24 GeV 0.12
Muon mu36_tight >1 36 GeV none
2mul3 >2 13 GeV none
e€24vhi_mediuml1 >1 24 GeV 0.10
Egamma e60_mediuml >1 60 GeV none
2e12Tvh_loosel >2 12 GeV none

Table 4.4.: List of triggers used in the ZH analysis in 2012. The track isolation is
defined as the fraction between the sum of the tracks pt in a AR =0.2
cone and the pr of the particle that triggers the event.

* Tile error: noise burst in the Tile calorimeter.
* Tile trips: a low voltage power supply in a module was sporadically switched off [[144]].
* Incomplete events resulting from hardware problems.

* Bad jet events: reconstructed jets that do not correspond to real jet energy deposits in
the calorimeter but to hardware problems, to the interaction of the beam with residual

gas or the collimator or cosmic muons overlapping with a jet [115].

Additionally, the event is required to have at least one vertex with three or more tracks

associated to ensure that at least one collision took place.

4.5.2.1. Muons selection

In section five types of muons were described. For the muon selection, the
Combined and Segment Tagged muons are treated in the same way, as single category:
uCB+ST . The same happens for the Standalone and Silicon Associated Forward muons,

Calo are treated as a

combined in the category uSA+FW . The Calorimeter-tagged muons, |
single category.

Table indicates the selection conditions for the three categories of muons. Since
the uB+ST and the u®“° muon categories use the inner detector, the tracking quality
requirements described in section[2.7.1.T]are applied to them: at least one pixel and five SCT
hits, no more than two silicon holes and, for uCB”T muons, at least five TRT hits [59]]. The

number of pixel hits includes the number of dead sensors. The same happens for the number
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4.5. Event selection

Muon category

Selection

CB+ST SATFW pCalo
Inner Detector track quality criteria
Number of pixel hits >1 none >1
Number of SCT hits >5 none >5
Number of Si holes <2 none <2
Number of TRT hits >5 none none
Impact parameter criteria
|do| | < 0.1 mm none < 0.1 mm
|zosin@] | < 10 mm none < 10 mm

Selection conditions
Pseudorapidity | |n| <2.7 | 25<|n|<2.7 | |n|<0.1
pr | >7GeV > 7 GeV > 20 GeV

Track isolation 0.1 none 0.1

Table 4.5.: List of selection conditions for the muons.

of SCT hits. The TRT hits include the TRT outliers, which cannot be more than 90 % of

the value. These criteria ensure the quality of the muon track reconstruction. The u¢#+57

Calo

and u muon types are also required to have a small impact parameter with respect to the

leading primary vertex, |dp| < 0.1 mm and |z9sin 8| < 10 mm to reduce the probability that

the muon originates from a leptonic decay of a heavy hadron or from a pileup interaction.

CB+ST muon, as the

CB+ST

A 4o muon is rejected if it distances less than AR = 0.1 from a u
two algorithms could reconstruct the same muon. The muon with higher quality, u
is kept and the other one discarded. If a muon trigger selects the event, the muon(s) that
pass the selection is (are) required to be the one(s) that fired the trigger, i.e., if the distance
between the EF muon and the reconstructed muon is smaller than 0.1, in the 1 — ¢ plane.
pCB+ST SA+FW
muon spectrometer. The identification of u
so a tighter pr threshold of 20 GeV is used for those.

muons are required to have pr > 7 GeV, to be reconstructed in the
Calo

and u
muons was optimised for pt > 20 GeV [39],

CBHST and u€°), must have

Finally, a muon which has a track in the inner detector (u
its track isolated from other tracks. The isolation parameter is defined as the ratio between
the scalar sum of the pr of tracks, excluding the muon, that fall in a cone of AR = 0.2 around

the muon and the pr of the muon. The distribution of this parameter is shown in figure {.6|
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Figure 4.6.: Normalised distributions to the same number of entries of the track
isolation for u“B+57 (a) and u“° (b) muons. The signal ZH sample
(red circles), tf (yellow triangles) and Z+b-jets (blue squares).

for the ZH, #f and Z — pu samples, normalised to the number of events of the latter sample.
Muons accepted for the ZH analysis must have this ratio below 0.1 to reject multi-jet events ﬂ
This selection is also efficient to reject part of the ¢ background.

All the muons fulfilling the criteria referred are labelled loose muons. Furthermore, to
select muons originating from the leptonic decay of a Z boson, the transverse momentum of
at least one muon is required to be larger than 25 GeV. Muons that fulfil this last requirement

CB+ST

and belong to the u category are labelled signal muons.

4.5.2.2. Electron selection

Electrons are reconstructed with Er > 7 GeV and |N¢yysrer| < 2.47 (see section .
Additionally, electrons in the ZH analysis must be reconstructed using the VeryLooseLH
identification criteria [66].

If an electron trigger selects the event, the reconstructed electron(s) is (are) required to

be the one(s) that fired the trigger. Like in the muon selection, this implies that it should be

'The complementary selection is used when choosing muons for multi-jet events as it was described in

section @}
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closer than 0.1 in the 1, ¢ plane to the closer EF reconstructed electron.

Electrons must be isolated from other charged particles, requiring the scalar sum of the
pr of the tracks in an R = 0.2 cone around the electron track to be inferior to the 10 % of the
electron Et. This requirement removes most of the multi-jet background, in which electrons
originate from leptonic decays within jets and photon conversion processes. Figure4.7|shows
the track isolation variable distribution for the same three samples as for muons, Z+jets, ¢
and ZH, before the electron selection conditions. The distributions are normalised to the
number of events of the Z+b-jets sample to compare their shapes. Besides removing the
multi-jet events, this criterion is also very efficient to reject ¢7 events. As for the muon case,
inverting this selection is used to form the multi-jet template.

An electron passing these selection criteria is labelled loose electron. The electrons in
this analysis result from the leptonic decay of a Z boson, so loose electrons with Et > 25 GeV

are also labelled signal electrons.
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Figure 4.7.: Distributions for electrons of the track isolation obtained for the signal
ZH sample in red, tf in dark yellow and Z+b-jets in blue, normalised to
the number of entries from Z+b-jets.

4,5.2.3. Jets

Jet reconstruction and performance were discussed in some detail in chapter 3| Here,

the particular selection for the ZH analysis is presented.
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4. ZH analysis

Jets are reconstructed with the anti-kt algorithm [75] with parameter R = 0.4 and
calibrated at the EM+JES scale. The global sequential calibration (GSC) is applied on top of
the EM+JES to improve the jet energy resolution.

In the ZH analysis, jets are defined in the pseudorapidity range of the calorimeter,
In| < 4.5. The pr of jets must be above 20 GeV in the central region (|| < 2.5) and above
30 GeV in the forward region, in which the jet energy scale and uncertainty are well set (see
chapter [3). For low-pr jets, pr < 50 GeV, a JVF threshold of 0.5 was applied to reject jets
from pileup. Jets that fulfil these criteria are labelled loose jets. If a loose jet is in the central

region, it is also designated signal jet.

4.5.2.4. Overlap removal

When the detector reconstructs two different objects in the same position, an overlap
removal procedure is used to decide which one to keep and which one to discard. Electrons
leave an energy deposit in the EM calorimeter, and most of them are reconstructed and
pass the selection criteria of jets. The same effect can happen with muons that radiate
hard Bremsstrahlung. In some cases, there can be a semi-leptonic decay inside a jet and
a muon emerging might be reconstructed. Finally, muon Bremsstrahlung radiation might
be reconstructed as an electron. For the particle not to be counted twice, the ZH analysis

performs the following overlap removal steps in sequence:

el-jet All jets within a distance AR < 0.4 from an electron are removed.
mu-jet A jet with less than four associated tracks is removed if it is within a distance AR < 0.4
from a muon.
jet-mu If the jet has more than four associated tracks the muon is removed instead.
mu-el The electron is removed if it is within a distance AR < 0.2 from a u8+57 or puSA+FW
muon.

Calo

el-mu If the electron overlaps with a u muon, the muon is removed because it was not

reconstructed in the muon spectrometer and so the electron is considered.

4.5.3. Event topology selection

Events with both types of leptons, electrons and muons, are discarded. There must be at

least one signal lepton and one additional loose lepton with the same flavour, in the event. If
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there are any other additional loose leptons, the event is rejected. At this stage, the topology

of the event has exactly two loose leptons, where at least one of them is a signal lepton.
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Figure 4.8.: Distributions of the invariant mass of the lepton pair (a) and the missing
transverse energy (b). The arrows indicate the accepted events for the
nominated criteria. The histograms are cumulative for the signal and
background and the black markers are data points.

The reconstructed invariant mass of the two leptons, my,, should be compatible with
the mass of the Z boson. Only events falling inside the mass region 83 < my, < 99 GeV are
accepted. Figure presents the reconstructed lepton invariant mass in events passing
the quality criteria, trigger and lepton selection. The coloured histograms show the signal
and the background samples stacked one after the other, with the black bullets corresponding
to the data points with its statistical uncertainty. Each simulation sample is normalised to
the integrated luminosity of .Z= 20.3 fb~!, as discussed in section The colour scheme
applied to the simulation samples is uniform throughout this chapter and is detailed here: the
ZH signal appears in red, top quark samples appear in yellow, Z+jets events in blue, W+jets
in green and dibosons in grey. Different shades of green and blue may be used to separate
light flavour from heavy flavour jets. Particularly, in figure 4.8 (a)] the three shades for V+jets
correspond, to the three different filters applied to these backgrounds, as it was explained in

section {1.4] darker shade corresponding to a heavier quark in the filter. The same applies to
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4. ZH analysis

the top (separation between single top and ¢7) and the diboson (separation in ZZ, WZ and
WW) backgrounds. The bottom panel shows the ratio between the data and the sum of all
simulation samples for comparison. The discrepancy of 20 — 30 % in the data/MC ratio for
the regions outside the Z mass window is due to the multi-jet background that results from
the data driven method as discussed in section4.4.4]and was not included. The mass window
selects the region where the data/MC ratio is closer to unity, and the multi-jet background
has a small contribution. In the ## background, where both tops decay leptonically, the two
emerging leptons should have no correlation so their invariant mass is spread along the whole
range of masses displayed, as it is seen in figure The other backgrounds suppressed
by the mass window requirement are W+jets, WW and single top, that do not have a Z boson
decaying to leptons and therefore the di-lepton invariant mass also spreads evenly across the

spectrum.

In the ZH — ({bb analysis, all the final state particles in the event can be reconstructed.
Therefore, the missing transverse energy, defined in section is expected to be small.
For that reason, the missing transverse energy is required to be below 60 GeV. This condition
reduces further the background with neutrinos in the final state: ¢z, single top, W+jets and
dibosons WW and WZ. Figure shows the Et distribution for events passing the my,
requirement. The vertical line indicates the E1 selection condition. The excess of events
observed in data in comparison to MC at low Er is attributed to the multi-jet background.
Since neutrinos are not produced in multi-jet events, their missing transverse energy should
also be small.

The event is required to have at least two signal jets, i.e. two jets reconstructed with the
acceptance of the inner detector (so they can be b-tagged) and with pt > 20 GeV. Events
with jets in the forward region (|n| < 2.5) are vetoed to reduce the 17 backgroundﬂ

There must be exactly two jets identified as originating from b-quarks (b-tagged jets),
and they are required to be the two jets with higher pr. They are obliged to have an
MV lc value greater than 0.405, which corresponds to the 80 % operating point efficiency, as
discussed in section This criterium reduces the Z+jets background, in which either jet
is not initiated by a b-quark, and the W+b-jet events, in which a B-hadron decays leptonically
and produces an isolated lepton.

2This forward jet veto criteria is driven by the 0- and 1-lepton analysis and is not expected to improve the
signal-to-background ratio in this case. In fact, table will show a decrease in the S/ /S + B ratio for
this selection. However, this cut is applied to the 2-lepton analysis to keep the same jet selection as in the
other two analysis.
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4. ZH analysis

The distribution of the distance AR between the two b-jets, in the (17, ¢ )-plane, is shown
in figure .9] at this stage. The AR separation between the two b-jets is required to be above
0.7 if the transverse momentum of the reconstructed Z boson, p%, 18 below 200 GeV as shown
in the sub-figures 4.9(a-d), signalised by the vertical line at 0.7. This criterion helps to reduce
the Z+b-jets and multi-jet backgrounds, as b-jets from gluon splitting tend to be emitted in
the same direction, which does not happen if the b-jet pair results from a colourless particle
decay such as the Higgs or the Z boson. The distance between the two b-jets is also required
to be below a given p%-dependent value as shown in table which helps to reduce further
the ¢ and Z+jet backgrounds. The motivation for this cut is the phase space of the Higgs
boson mass which constrains the maximum aperture between the two b-jets. Figures 4.9)(a-
e) show the AR distribution between the two b-jets and, the vertical line corresponds to the

selections.

p% window (GeV) | <90 | 90— 120 | 120 — 160 | 160 —200 | > 200
AR upper selection | 3.4 3.0 2.3 1.8 1.4

Table 4.6.: p% dependent selection on the distance AR between the two b-jets.

Given that the mass of the Higgs boson is 125 GeV, each of the b-jets is produced
on average with an energy around 60 GeV, while the pt spectrum of the Z+b-jets sample,
the dominant background at this point, decreases more rapidly. Hence, the leading jet pr
is required to be larger than 45 GeV. This condition will also reduce the ZZ background
by about 30 %. Figure 4.9 (f)] shows the distribution of the leading b-jet pr, with an arrow
indicating the events that are accepted. This selection was historically placed between the
two AR selections just discussed.

Table indicates the expected number of events that survive each of the selection
conditions, for the MC signal and the main backgrounds samples, Z+jets, ZZ and ftf,
normalised to the integrated luminosity. The remaining backgrounds are summed together
in the “Other BG” column. The topological selection referred in this section is applied
sequentially. The reduction of the number of events for each sample is shown in the
bottom row in percentage and calculated by the ratio between the survivals of the full
topological selection and the initial number of events. The signal efficiency referred as
acceptance, is about 8 %. The event reduction in the irreducible backgrounds samples varies
from about 0.887 % in the dibosons ZZ sample to 0.181 % in the Z+b-jet sample. The

reducible backgrounds, present in the “Other BG” column, are reduced by up to six orders
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4.5. Event selection

of magnitude.

171



*93ejuad1ad UT SJUSAD PAJI[AS JO UOTIORIY
oy} SMOYS MOI ISe[ YL |, _qF £'0T = 5" JO ANsourun| pajeIsajur oy o} pasIeutiou e pajussaid sroquinN
"SpUNOoI3oeq UTRW Y} Pue [BUSIS A} JOJ UOIPUOD UONI[AS YO8 IIIJB SJUIA SUIAIAINS JO JoqUINU PJddxH :*Lp dqRL

(%) uonoexy
»—0I1X(90°'0F65T) | 90°0F68°0 | T00°0FEFE0 | €000FI8I0 IF8 SI10AD PAIO[S
vL F €60C [ FLIT S FSS6 LEFT18E [ F8¢ | moysnyv
8 FOLLT I F ¥¢C S F Lol o F 6005 1 F6¢ | A2D sy < (kd
TET F 296% I F LOE 9 F ISTI SS F T6SL I F ey | momopyv
vET F 6£CS I F 80¢ 9 F €LIT 9S F 096L I F ey | s12lq 7 {povxa
TO6LT F 080596 SFL6IY | O F 869¢ 00T F 90£96 I FOI1 | 0124 12f promiof
0981 F 9L69%01 SFLYSY | 11 F S6er 11T F 008L01 TF 9Tl | s1alpusis 7 <
8876 F 0T61¥L91 9F9v0L | TI F 8TIS €8S F LY0609 | TF T9T | A2D 09 > L7
0tS6 F ¥6LSY691 9 F 12TL 81 F O¥Ell 88C F 989179 | TF ILI | A2D 66 > 1w > €3
LYLOT F LTOVLYIT | LF ¥#S16 | 9S F €8¥111 TS9O F LEOY9L | TF 90T | Suryoru 814
LYLOT F 6969LY1T | LF 1916 | 9S F 616111 TS9 F890S9L | TF LOT | suoidaj asoo] ¢
€80TT F ¥11SH8CT | L F V86 | 6S F 188¢€TI GL9 F SLST1T8 | T F €TT | uoida] jpusig |
0vOPy F CIYESTILT | 6 F LEOVT | TOT F €9891€T | 96L F 8¥€9¥11 | T F SI€ | 2dds uoidag
18L9L F #0€81+108 | 11 F 0¥0FC | 1LT F 8SH0€9T | #801 F 8TSOLOT | € F 8LY | 4235141
1TOLL F 9STHL9908 | 1T F 9SHHT | 6LT F 8SPE8LT | ¥601 F 8TTOE0IT | € F 16 | Uouaa)as aiofog
Dg s1PYO 77 u qQ+7 HZ UUSREIEIN

172



4.5. Event selection

Additionally, tables 4.8 and [4.9] presents individually the number of events that survive
for each of the other backgrounds. 97 % of the events that survive all the selection come
from the samples Z+c-jets and Z+light jets, with 69 % (1145 events) and 28 % (583 events),
respectively. In the remaining, the dibosons WZ and the channels Wt and t from single top
production, with about 1 % each. The survival rate of the event selection reaches 1x 1077 %
in W+light jets. The event selection removes all generated events from the diboson WW

sample and the s-channel from single top production.
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4. ZH analysis

The topological event selection to the ZH analysis was designed to reduce the number of
background events, while keeping the number of expected signal events as large as possible.
The ratio in equation |4.4{is often used to characterise the signal-to-background relationship,

where S (B) is the number of signal (all background) events.

S
VS+B

(4.4)

Table shows the expected number of events surviving each event selection, for
signal (ZH) and for all simulated events (S+B), which can be compared to the surviving
events from data. The disagreement observed between the number of data and simulated
events is attributed to the missing multi-jet events that are not simulated and possible
mismodelling of the normalization of some simulated samples. The last column shows the
ratio defined in equation [4.4] that increases from 0.044 after the trigger and lepton selection,

to 0.449 after all the selection criteria.

Selection ZH S+B data | S/\/S+B

lepton and trigger | 206 £ 2 | 22360107 £ 10767 | 24714836 0.044
83 <myy <99 GeV | 171 =2 | 17586212 9558 | 17736618 0.041
Er <60GeV | 162 +2 | 17366303 + 9506 | 17532357 0.039

> 2 Signal jets | 126 £+ 2 1163843 £+ 1872 | 1198934 0.117
forward jet veto | 116 £ 1 1069396 + 1803 | 1100965 0.112
exactly 2 b-jets | 43 £+ 1 14724 £ 145 15677 0.354

AR low cut | 43 + 1 14054 + 143 15043 0.362
pol>45Gev | 39+1 9119 £ 94 10093 0.408

AR high cut | 38 -1 7115 + 83 7903 0.449

Table 4.10.: Number of surviving events for the signal, signal+total background
and data. The last column shows the improvement on the signal-
to-background ratio obtained from equation 4.4 These numbers are
normalised to the integrated luminosity of .% = 20.3 fb~! during 2012
data taking.
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4.5. Event selection

4.5.4. Event categorization

The signal region is composed of events that pass all the event selection, discussed
in section 4.5.3] It is referred simply by 2fag region. A jet is considered to be b-tagged
if its MV1c weight is above 0.405, which corresponds to a b-tagging efficiency of 80 %.
Two additional operating points are used with higher thresholds of MVl1c of 0.7028 and
0.9237, which correspond to b-tagging efficiencies of 70 % and 50 %, respectively. With this
division, the ZH analysis defines three signal regions based on the value of the MV 1c weight
of the two b-tag jets, as schematically shown in figure If any of the b-jets have MVlc
values corresponding to efficiencies between 80 % and 70 %, the event is considered to be
in the loose-loose tag region or LLtag. If not and any of the b-tag jets have MV 1c values
corresponding to efficiencies between 70 % and 50 %, the event is considered to be in the
medium-medium tag region or MMtag. Finally, if both b-tag jets have their MV 1c values
corresponding to efficiencies below 50 %, the event is considered to be in the tight-tight tag
region or TTtag. The events with only one b-tagged jet form the /fag control region, while

events with no b-tagged jet form the Orag control region.

50%

70%

b
100%

Figure 4.10.: Schematic diagram of the three b-tagging signal regions and the two
control regions. The b-tagging efficiencies are shown on the right.

To reduce the large statistical uncertainty on the simulated Z+c and Z+light back-
grounds after the b-tagging conditions, a parametrized b-tagging was applied to jets from
events in the Otag region to simulate the distribution in the 2fag region. Three possible
values of the MV 1c weight are considered to these jets: 0.5539, 0.81325 and 0.9618, which

correspond to the midpoint between the MV1c weights attributed to the operating points
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4. ZH analysis

referred in table 2.1} A randomly MV 1c weight, chosen from the three values according to
the efficiency distribution, is attributed to the Otag jets and an additional weight is added to
the event to account for the efficiency of the parametrized b-tagging. This method allowed the
reduction of the statistical uncertainty in the 2tag region and to obtain smooth distributions
of the backgrounds.

As one of the b-quarks can radiate a gluon, which can be reconstructed as a different
jet, the ZH analysis also considered regions depending on the multiplicity of the jets in the
event, 2jet and 3jet. The signal and control regions are then sub-divided into the multiplicity
of jets and the number of b-tagged jets, according to the three b-tagging conditions: loose,
medium and tight. These regions often appear combined. For example, the label MMrag2jet
corresponds to the signal region with two jets, where both have their MV 1c weight values
between the 50 % and the 70 % b-tagging efficiencies.

The ZH analysis uses a particular control region to study the ¢7 background. It is defined
by requiring one electron and one muon in the event, with the remaining event selection
conditions applied. It is called the fop e-u control region. ¢f events dominate such region,

while the remaining backgrounds have a negligible contribution.
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o) —e— Data 2012
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Figure 4.11.: Comparison of the distribution of the transverse momentum of the
Z boson between the signal, ZH, and the main background, Z+jets,
samples. The signal multiplied by 70 is also shown with the red
line [82].

There are five pr regions of the Z boson candidate because the p% spectrum of
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4.6. ZH analysis software validation

the ZH sample is very different from the dominant background (Z+jets), as observed in
figure Although the highest p% bin has the least statistics, it is where the ratio from
equation [4.4|is expected to be higher. The pZ bins are: p% <90 GeV, 90 < p% <120 GeV,
120 < p% < 160 GeV, 160 < p% < 200 GeV and p% > 200 GeV.

Considering all these divisions, the VH analysis defines almost two hundred control and

signal regions when considering the three channels.

4.6. ZH analysis software validation

Different ATLAS groups performed the VH analysis using different analysis software.
Additionally, groups could choose either an Athena-based analysis and use the AOD object
format or the ROOT framework, to analyse the D3PD format. Since it is essential that all the
groups obtain the same result, the groups performed detailed comparisons of the number of
events surviving each of the selection conditions on specific signal samples. This comparison
was called “cut flow challenge” and was divided into three stages. First, 10 % of the events
simulated of the Higgs signal sample from the 1-lepton analysis (WH) were used to validate
the object classification, that is the same in all three channels. Then, 10 % of the qqZH signal
sample was used to validate the event yields after each of the event topology selection of the
2-lepton analysis, discussed in the last section. Finally, one real data run was also used to
validate the event yields after each condition of the ZH topology selection, corresponding to
an integrated luminosity of about 5 pb~!.

Although twelve groups participated in the VH analysis, only four, referred as LIP (my
group), A, B and C, were involved in the 2-lepton analysis and are mentioned in this thesis.
To facilitate the reading, tables for the object comparison between LIP and other groups
were placed in appendix [C.2] Very small differences are observed, always in the permille
level. The second and third stages are particular for the ZH analysis. Table @.11]is similar
to that shown in section 4.5.3] with each selection applied sequentially. However, the values
shown in this table are the absolute number of events generated for the signal ZH sample, i.e.,
without the normalisation to the integrated luminosity. Columns A to C show the absolute
difference with the LIP group in the number of events after each requirement. The same
table shows the number of events for data, from the Muon and the Egamma streams. For
these streams, group B have not filled out the numbers so that column does not appear in the
table.
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4. ZH analysis

. qqZH sample Muon stream Egamma stream

Selection
LIP A|B|C LIP| A |C LIP| A| C
none | 298773 | -52 | 0| O || 147283 | -8 | O || 159596 | -3 | -1
Lepton type | 292250 | -47 | 0| 0 | 147283 | -8 | 0 || 159065 | -4 | O
1 Signal lepton | 191297 | -40 | 0| O 33894 | -6 | 0| 56634 |-3| 0
2 Loose leptons | 133942 | -18 | 0| O 3107 110 3518 0| O
Leptons veto | 131290 | -180 | 0| O 3104 | -16 | O 3486 | 0| O
Trigger | 123137 | -178 | 0| O 3047 | -15| O 3343 | 0| O
Trig matching | 122805 | -142 | 0| O 3042 | -15 | O 3328 1| O
83 <my <99 GeV | 101619 | 25| 0] O 2302 00 2087 1| 0O
E1 < 60 GeV 95674 | -81 | -1 -1 2221 110 20241 1| 0
> 2 Signal jets | 72720 | -43 | -2 | -2 143 00 1271 0| O
Forward jet veto 67405 | -38 | -2 | -2 136 010 113 0| O
Exactly 2 b-jets | 25348 | -17 | -1 | -1 0 00 1100
AR low cut 25260 | -17 | -1 | -1 0 00 100
pl%l >45 GeV | 23418 | -15| -1 -1 0 00 1100
AR high cut | 22698 | -16 | -1 | -1 0 00 0,00

Table 4.11.: Validation of the event selection for the analysis performed in this thesis
(labelled LIP) comparing with three other groups that contributed for
the 2-lepton analysis. The identification of the selection number was
given in section .5 Only the LIP columns have the absolute number
of events, while the remaining columns show the absolute difference to
this value. Group B did not fill out the numbers for data validation and
hence was removed from the table.

Group A shows the largest differences with respect to other groups. The difference
between LIP and the B and C groups is, for the ZH sample, 4.4 x 1073 % for the final selection
(and less before it). No differences were found between this analysis and that performed by

group C with the data sample.

4.7. Corrections to the simulation

Simulation can only explain the reality of the detector and the different processes

with a limited precision. There were corrections derived to improve the simulation, for
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4.7. Corrections to the simulation

the efficiencies (reconstruction, identification and trigger) and for the energy/momentum
resolution of leptons used in the analysis (see section [2.7)). These corrections are applied to
the MC simulations as event weights. Additionally, there are also corrections related to the
particle generation. They result in a generator related weight that is the product of various
corrections, which can come either from a priori conditions imposed to the simulation or
from mismodelling of any physical parameter. Table 4.12] presents the list of corrections
applied, with a short description.

The production of the simulated samples happened before 2012 data taking started.
Therefore, neither the pileup nor the z-position of the primary vertex distributions was
available for the production. The best possible estimate was input to the simulations.
The comparison of these two distributions between the data and the three most important
simulation samples for the ZH analysis is shown in figure The three MC distributions
are normalised to the data. The ratio between the data and each of the MC distributions
is shown in the lower panels in figure and @.12 (b)| for the average number of

interactions per bunch crossing and for the z-position of the leading primary vertex. These

Corrections Name Short description
Reconstruction ) ) )
) ] Efficiency corrections for muons and electrons, described
Leptons Identification | , )
. in section [2.7.1.2)and [2.7.2.1|respectively.
Trigger
Pileup Corrects the pileup in MC to data
Global Corrects the z coordinate of the primary vertex in MC to
Vertex z

data.

p% in ZH Corrects the distribution of the truth p% in the ZH sample.

p% in Z+jets | Corrects the distribution of the truth p% in the Z+jets sample.

Process
A¢ in Z+jets | Corrects the A¢ distribution in the Z+jets sample.
dependent ——
op Corrects the distribution of the average truth pr of the two
in

P top quarks in the 77 sample.

Efficiency Corrects for the efficiency of the b-tagging algorithm.
b-tagging MC corrections to account for differences in the b-tagging

MC-to-MC

efficiency for simulations different than PYTHIA6

Table 4.12.: Summary table enumerating the corrections applied to the MC simulated
samples in the ZH analysis.
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Figure 4.12.: Distribution of the average number of interactions per bunch
crossings (a) and of the longitudinal position of the leading primary
vertex (b) for signal (red down triangles), Z+b-jets (blue squares) and
tt (yellow down triangles) MC samples compared to the data (black
circles), evaluated before the pileup and z vertex corrections.

ratios are then used to derive the corrections, which are applied to each of the simulated data

samples.

Since the main signal sample was generated at leading-order with PYTHIAS, cor-
rections have to be applied to take into account higher order terms in the cross section
calculation. The distribution of the p% at truth level in the signal ZH sample is calculated
by the HAWK Monte Carlo program [1435], with next-to-leading-order electroweak (EW)
corrections. Figure shows the correction to the leading-order, as a function of the p%
for ZH — vvbb, in green, and for ZH — (¢bb (red and black). Two alternative methods
to handle photons collinear with the charged leptons are shown for the ZH sample: either
assuming perfect isolation (black, bare), which is applied only to the Z— uu case, or
performing a recombination of the photon with the lepton, mimicking the approach of
electrons in electromagnetic showers (red, rec) and is applied to the Z— ee case. The

correction of the number of signal simulated events ranges between 5 and 15 % for Z boson

182



4.7. Corrections to the simulation

with p% up to 300 GeV.

dpw [%0]
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Figure 4.13.: Relative electroweak NLO corrections for the p% distribution in
ZH — vvbb (green) and ZH — ((bb (red and black) [21]]. The “bare”
approach treats leptons as perfectly isolated and the “rec” includes a
recombination between the lepton and the photon.

The SHERPA simulation of V+jets was found to have a mismodelling in the distributions
of the transverse momenta of the vector boson and of the azimuth distance between the two
jets [82], as observed in figures[4.14](a) and[4.14|(b), respectively. These distributions use the
0-tag control region, where the Z+jet backgrounds dominate and the remaining backgrounds
are negligible. Three different shades of blue represent the three different filters applied to
the Z+jet samples, corresponding the darkest shade to the heaviest quark. The discrepancy
between data and MC is visible. The correction, taken from a linear fit applied to the
ratio between the data and simulation distributions, appears at the bottom. Applying the
corresponding weight to the simulation distributions lead to a better data-MC agreement as
it is observed in figure 4.14](bottom).

The tf POWHEG+PYTHIAG6 sample predicts a harder top-quark pr spectrum than
data [146]. The spectrum of the average pr of the two top quarks is compared between
data and MC, the later using the top quark truth pt value. The data-MC ratio distributions
provide a weight to be applied to this sample.

For each b-tagged jet in the event, a pr and 17 dependent b-tagging efficiency correction

is applied. The objective of this correction is to match the efficiencies in simulation to those
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Figure 4.14.: Comparison between the distributions of p% (left) and A¢ (right) of
data and the simulation before (top) and after (bottom) applying the
SHERPA corrections. Data is shown with black markers and the three
filters of the Z+jets background sample is shown in three shades of

blue.

184



4.8. Improvements to myj resolution

in data (see section [2.7.6). Additionally, since the b-tagging efficiencies were obtained with
a POWHEG+PYTHIAG sample of ¢7 and such efficiencies are dependent on the parton shower
and hadronization models, two other samples are tested, SHERPA and PYTHIAS, to evaluate
sample dependent b-tagging efficiencies. A specific MC-to-MC additional correction is then
applied to samples that model parton shower and hadronization different from PYTHIA6 as
another weight which is applied to each of the jets, depending on the truth flavour of the jet,
defined in section 2.7.5.3

4.8. Improvements to m,; resolution

Table[d.10]showed that the number of signal events is diminutive when compared to the
total number of background events, even after applying all the topological selection. It is,
therefore, crucial to obtain the best possible resolution in the invariant mass of the bb pair to

improve the sensitivity to the Higgs boson signal.

> Sf
3 *J.Ldt:20.2fb'l W ziis
n [
a¥
c |
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07 | |
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Figure 4.15.: Distribution of the invariant mass, m,g, for the qqZH signal sample.
The arrows indicate effects that contribute to the limited resolution.

Figure [4.15] shows the invariant mass distribution for the b-jet pair, m,j, for the qqZH
signal sample, after the full event selection is applied. Some effects contribute to the limited

resolution. The high-mass tail is due mainly to the initial state radiation (ISR). Energy from
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4. ZH analysis

pileup may also enter the jet radius and contribute to this tail. The final state radiation
(FSR) is one of the effects responsible for the low-mass tail. Another effect results from
the B-hadrons that decay leptonically to a muon and a neutrino that are not measured in the
calorimeter. The jet energy resolution (JER) is the main responsible for the width of the
distribution.

The following procedures were applied to improve the invariant mass n1;:

* JER is reduced with the global sequential calibration (GSC).

* A special correction is applied to correct for the muon in the case of leptonic B-meson
decays reducing the effect observed in the low-mass tail.

* An event kinematic fit is used to improve even further the jet energy resolution, since

all objects are well reconstructed in the event.

4.8.1. Global sequential calibration

The sensitivity to the Higgs signal is directly related to how the invariant mass peak
of the b-jet pair, m,j, is resolved. To improve the mass resolution, the global sequential
calibration, GSC, studied in section was applied in the ZH analysis.

Figure 4.16] shows the m,; distribution obtained with the EM+JES calibration (blue
squares) and with GSC (red circles) for each of the p% bins considered in the ZH analysis.
This distribution is not symmetrical due to ISR and FSR effects so a Bukin function [136]]
was used to fit them. Applying GSC, the width of the Gaussian core of the Bukin function
becomes narrower, as shown in table [4.13] that summarises the fit parameters obtained for
the Bukin mean and width. The improvement is again obtained from equation [3.14] The last
column of table 4.13| shows these improvements in percentage. The resolution enhancement
is larger for high transverse momenta of the Z boson, up to 18.5 % in the most sensitive p%
bin and about 1 %, for the five bins combined.

The mean value of the invariant mass distribution with GSC becomes smaller, since the
jet energy scale was derived using truth jets, which contain neither muons nor neutrinos, as

discussed in section [3.4]

4.8.2. Correction for muon inside the jet

B hadrons can decay leptonically, emitting a muon and a neutrino which is not

reconstructed in the calorimeter. Such jets are reconstructed with pr lower than it should
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Figure 4.16.: Invariant mass of the b-jet pair in the signal sample qqZH after the ZH event
selection, for five p% regions (a-e) and combining all regions (f). The default jet
calibration, EM+JES, is shown in blue circles and GSC in red squares. 187
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4.8. Improvements to myj resolution

EM+JES GSC Improvement in
pr bin mean width mean width the resolution (%)

p% <90GeV | 1151 +£02 | 169+0.1 | 113.3+£0.2 | 16.1 +0.1 4.97 £ 0.04
90 < p% <120GeV | 1171 +£04 | 16.6 0.2 | 1147+03 | 153 +0.2 85+0.2
120 <p% <160GeV | 1183 +04 | 164 £0.2 | 1163 +0.3 | 152 +0.2 7.9 + 0.1
160 < p% <200GeV | 1202 £0.6 | 152£03 | 1174+05 | 144+0.3 5.6 0.2
p% >200GeV | 122.7+04 | 147 +0.3 | 1209+ 0.3 | 124+ 0.2 18.5+0.5

Combined | 116.6 £+ 0.2 | 16.4+0.1 | 1152+ 0.1 | 16.2 + 0.1 1.23 +0.01

Table 4.13.: Result from applying a Bukin fit to the invariant mass distributions,
before and after implementing the GSC calibration. The mean and
width values correspond to Gaussian function for the core of the
distribution and are presented in GeV. The improvement is calculated

from equation

be since part of their energy is taken away by the muon. A muon is searched for, matching
the jet within a distance AR < 0.4 and with pt > 4 GeV. The energy of the muon is added
to the jet energy. The equivalent energy deposit in the calorimeter of a minimum ionising
particle is removed from the total energy, to avoid double counting. This method is known
as W-in-jet correction. Figure shows the effect of this correction: the low-mass tail of
the distribution is reduced. In each of the p% bins, the distribution obtained with just GSC is
shown once more for comparison. A Bukin function is also adjusted to the m,}, distribution
and table shows the Bukin fit parameters, mean and width, after applying the u-in-jet
correction on the left, with the improvement exhibited with GSC (see table @) shown in
the penultimate column. The mean value of the Bukin fit is closer to the truth value of the
Higgs boson mass and the resolution improvement with respect to that obtained with GSC is

14 % inclusive in p% and up to 21 %, if considering the p% > 200 GeV region.

4.8.3. Kinematic fit

One of the biggest advantages of the ZH analysis with respect to the 0-lepton and
1-lepton analysis is the possibility to reconstruct all the particles that form the ZH event:
two muons or two electrons, and two b-jets. These four objects should be balanced in
the transverse plane and the missing transverse energy measured should result mainly from

miscalibrations of the b-jets. A kinematic likelihood fit (KF) uses the good resolution of
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4. ZH analysis

w/ l-in-jet w/ kinematic fit Improvement
pr bin mean width mean width w.r.t. GSC (%)
p% <90GeV | 1150+£0.1 | 143 +0.1 | 1182+£0.1 | 120+£0.1 | 12.6 = 0.1 | 342+ 0.4
90 < p% <120GeV | 1153 +£03 | 13.6 £0.2 | 120.1 0.2 | 11.8 £0.1 | 125£0.2 | 29.7 £ 0.5
120 < p% <160GeV | 1158 £03 | 13.3£0.1 | 1200+ 0.2 | 10.1 =0.1 | 143 +0.2 | 50.5 0.8
160 < p% <200GeV | 117.5£05 | 120£0.2 | 1205+0.3 | 9.1 £0.1 | 20.0+0.5 58 +1
p% >200GeV | 1205+03 | 102£0.2 | 121.8+0.2 | 7.7+0.1 | 21.6 £0.5 61 +1
Combined | 116.24+0.1 | 142 4+0.1 | 1194 +£0.1 | 11.5+0.0 | 14.1 +0.1 | 409+ 0.3

Table 4.14.: Improvement observed in the invariant mass resolution, resulting from
applying the Bukin fit to the invariant mass distributions obtained with
the L-in-jet correction and the kinematic fit on top of GSC. The mean
and width values are in GeV. The improvement is calculated from

equation

muons and electrons and the knowledge of the event pt balance to apply a correction to the
b-jets energy.

The inputs for the likelihood are the energy/momentum, pseudorapidity and azimuth
angle of the four particles. The fit uses as constraints the invariant mass of the two
leptons with a Breit-Wigner distribution, considering the mass and width of the Z boson,
the transverse components of the momentum (px and py) of the £0bb system to be 049 GeV.
The energy/momentum of the leptons are constraint to with a Gaussian function with the
uncertainty on the scale as the standard deviation.

Two constraints are applied to the energy of jets. Using the qqZH sample with the event
selection up to the “Exactly 2 b-jets” requirement, reconstructed jets are compared to anti-kt
truth jets including muons and neutrinos. Truth and reconstructed jets are matched using the
same criterium as described in section [3.4.1] without isolation. The constraint is obtained
from transfer functions such as the one in figure 4.18] Additionally, the kinematic fit uses
the pr spectrum obtained for truth b-jets (excluding muons and neutrinos) from the qqZH
sample after the full ZH event selection as another prior.

The result from applying both the p-in-jet correction and the kinematic fit is shown in
figure with the black markers. Table 4.14] also shows the Bukin mean and width after
applying the kinematic fit.

The improvement of applying both the Li-in-jet and the kinematic fit to the invariant

mass m,j, distribution with respect to just applying GSC is calculated from equation @ and
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4.9. Signal extraction and background normalization
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Figure 4.18.: Transfer function used as input for the kinematic fit [147]].

shown in the last column. As the kinematic fit corrects also the neutrino from semi-leptonic
decays, the mean value becomes closer to the simulated value for the Higgs boson mass
(125 GeV). The improvement including the kinematic fit with respect to the GSC was about
41 % when combining all p% bins, and reaching 61 % when considering events in which the
Z. boson had a p% larger than 200 GeV.

Considering the total improvement resulting from the three methods with respect to the
nominal jet calibration, EM+JES, it is 42.6 % for combining all p% regions and 90.9 % just
for the p% > 200 GeV region.

4.9. Signal extraction and background normalization

The signal-strength parameter, u, is the parameter of interest of the ZH analysis and
compares the theoretical to the observed value of the product between the cross section
production of the ZH process and the branching ratio of H — bb, as discussed in section
The cross section production of the ZH backgrounds are several orders of magnitude higher
than the ZH signal, as it was shown in figure @} Therefore, it is essential to have the best
possible knowledge of these backgrounds.

A statistical fitting procedure, known as global fit, uses a binned profile likelihood
function, which is constructed as the product of Poisson-probability terms [82]. The input
of this method is the invariant mass distribution of the two b-jets in events that survive the

topological selection and those selected by the fop e-u criteria, and the distribution of the
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4. ZH analysis

MV Ic values of the leading jet in events from the /tag region.

The simulated signal and background distributions are stacked together and compared
to the data. In each figure, the bottom panel shows the ratio between the number of events
observed in data and the number of expected signal (i = 1) and background events summed
together. Using the truth flavour, discussed in section [2.8] of the each jet that form the
Higgs boson candidate, the Z+jets background is separated in six subsamples: Z+bb, Z+bc,
Z4bl, Z+cc, Z+cl, and Z+1. The first four subsamples are sometimes combined into Z+hf
(heavy flavour). The quadratic sum of the experimental systematic uncertainties, that will be
discussed in section is represented by the grey band. The uncertainty shown on the

bullet points of the ratio corresponds to the statistical uncertainty of the data.

The distributions of the invariant mass m,j were re-binned in intervals of 20 GeV to ac-
commodate the expected maximum number of signal events in one bin: 110 < m,; < 130 GeV.
The shape of the signal distribution is also shown in these plots, with a red line with different
normalisations for visibility purposes, to allow comparisons with the background. For events

with three jets the m,j; distribution considers the invariant mass of the two b-jets.

Figure [4.19)shows the invariant mass m,,; distribution for four of the regions, where the
signal-to-background ratio should be larger: the MMTag and TTtag and combining the three
most significant intervals of p%: p% > 120 GeV. The contribution from the Z+jet background
in the 7T region, other than Z+bb is negligible for both two (a) and three (b) jet multiplicities.
There are some differences between the distributions obtained with data and those from the
simulation but there is still very large statistical uncertainties. Just these four histograms are
expected, from the Standard Model (1 = 1), to contain only seven events originated from the

ZH process.

Another distribution that helps to set the normalisation of the Z+jets background is the
MV lc weight of the b-jet in events from the /-tag control region. Figure shows
this variable distributions for events with a reconstructed Z boson with p% < 120 GeV. The
top e-U region is shown in figure for the same p% region. The major contribution
in this region is the ¢ background, as expected. There is also a large multi-jet background
in this plot. However, the data seems to have the same number of entries as the ## sample,
which might suggest some problem in the estimation of the multi-jet background in this

region, which was estimated without correlation with other regions.
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Figure 4.19.: Invariant mass of the two b-tagged jets for four signal regions. The top
(centre) histograms correspond to events with two (three) jets, combining those
with a reconstructed Z boson with p% > 120 GeV for the Medium (left) and
Tight (right) b-tag region. Same distribution in the fop e-y control region for
p% < 120 GeV (bottom-right) and MV 1c weight of the leading b-tagged jet in the
Itag region (bottom-left). The multi-jet background is not normalized and only its

shape should be considered.
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4. ZH analysis

4.9.1. The statistical model

The distributions of the di-b-jet invariant mass and the MV 1c of the leading b-jet are
fed to a complex binned profiled likelihood fit [82| [148]]. Equation .5 shows the expression

of the likelihood, which is composed of two terms.
L= HHPois (pr| Vir) -pr(ap\ap) 4.5)
r b )4

The first term is a product of Poisson functions for each bin of the signal and control
regions, which were defined in section[4.5.4] It gives the probability of finding ny, events of
data on a given bin b of a region r when a particular number is expected from simulation,

Vpr. This per-bin prediction is given as:
Vor = .U'Sbr(ap) +Bbr(ap) (4.6)

The signal-strength parameter (i), introduced in section [I.6] multiplies the number
of events predicted for the ZH signal for that bin and region, S, and By, is the number
of background events for the same bin and region. The number of expected signal and
background events in each bin depends on some nuisance parameters p, associated to the
systematic uncertainties that will be described in section .10

The second term of the likelihood is used to constrain these nuisance parameters, with
a penalty term that will decrease the likelihood if any of the parameters deviates from its
nominal value. It uses a Gaussian centred at a,, the average value with the respective
uncertainty (o)), obtained by the performance groups in the ATLAS collaboration and from
priors obtained in the modeling of the simulated signal and backgrounds, and «, represents
the shift from the nominal value: Gaus(ocp;ap, Gp). However, some nuisance parameters are
normalisations of the diverse samples of the analysis so a negative o, is not physical. For
this reason, a log-normal probability distribution function is used instead, which corresponds
to a change of variable:

a, — Inay, (4.7)

The normalization of the #f, Z+bb and Z+cl processes in two jet events enter with
Poisson terms in the likelihood and are allowed to float. When combined with the other
lepton channels of the VH search, the normalisation W+bb and W+cl are also unconstrained,

and the ¢ normalisation is obtained separately for the three lepton channels. In this case,

194



4.10. Systematic uncertainties in the ZH analysis

the parameter of interest, 1, can be obtained for each channel separately, combining 0 and 2
leptons or combining the three channels.

The di-b-jet invariant mass distribution is re-binned for the fit, to reduce bin-by-bin
statistical fluctuations and uncertainties associated to them. In addition to the improvement
on the statistical fluctuation from simulation, this rebinning concentrates the bins where the
signal-to-background ratio is larger in the middle of the histogram. The bins of the m,;

distributions are performed according to the Z-function defined in equation {.8]

Z=2zsfs+zBfB (4.8)

where fg (fp) is the fraction of the number signal (background) events in a certain interval
and zg and zp are parameters of the rebinning. Considering m,; intervals finishing on the
last bin, the Z-function is calculated after adding each bin. When Z > 1, the interval is
considered as one of the transformed m, bins. The following bins then finished on the bin
before the beggining of the just selected interval until all bins are considered. The parameters
were optimize for this analysis with values of zg = zp = 4 for 2 jets and zg = zg = 2 for 3 jets
multiplicity events. The transformed m,; distribution is shown in figure #.20|for two regions.
Due to technical requirements, histograms entering the fit are required to have the same bin

size as 1s also shown in this figure and, for that reason, there are no scale in the x-axis.

4.10. Systematic uncertainties in the ZH analysis

The systematic uncertainty sources for the ZH analysis can be divided into experimental
and theoretical. The former are the uncertainties associated with the detector and the
reconstruction of the physics objects. The latter are related to the limited theoretical
knowledge of the signal and background processes and their simulations. The following
sub-sections present the list of systematic uncertainty sources considered in the ZH analysis.
To evaluate the total systematic uncertainty, all the systematic uncertainties are summed

quadratically.

4.10.1. Experimental systematic uncertainties

The experimental systematic uncertainties result from the uncertainty that exists on the

energy scale and resolution of each physics objects used in the ZH analysis. To evaluate
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Figure 4.20.: Example of two m,, distributions entering the global fit after passing
the re-bin transformation for the MMtag2jet(a) and TTtag2jet(b)
regions with p% between 120 and 160 GeV. The red line indicates the
number of signal events multiplied by 20 in (a) and 10 in (b).

the effect on the analysis of each source of experimental systematic uncertainty, the affected
quantity is shifted up or down according to the uncertainty parameter and the full analysis
is redone. The variations in the m,}, distribution are registered and are used in the global
fit, discussed in section [4.9.1] to evaluate the systematic uncertainties on the expected signal

strength.

Figure [4.21] shows the relative experimental systematic uncertainties as a function of
the invariant mass distribution of the two b-tagged jets. It considers events with 2 or 3 jets,
in which the two leading jets are b-tagged and inclusive in the transverse momentum of the
Z boson. The different lines represent the relative uncertainty estimated from the different
physics objects: missing transverse energy (soft term) in blue, muons in red, electrons in
green, jets in pink and the b-tagging in brown, using different dashed lines. The details of
the uncertainty on each physics objects will be explained next. Additionally, the light green
line shows the uncertainty in the integrated luminosity from the 2012-Run at a centre of mass
of /s =8 TeV, which had a value of 20.2 fo~!, with an uncertainty of 2.8 % [82]. The black

solid line represents the total experimental systematic uncertainty. It varies between 6.5 %
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4.10. Systematic uncertainties in the ZH analysis

and 14.5 % for invariant masses m, in the range 10 — 250 GeV.
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Figure 4.21.: Experimental systematic uncertainty on the invariant mass distribution
obtained separately for different physics objects: Et soft (blue),
muon (red), electron (dark green), jet (pink), b-tagging (brown) and
luminosity (light green). Histogram obtained from the quadratic sum
of the deviations from each experimental uncertainty to the nominal
sum of the signal and background simulated samples.

Uncertainties on the reconstruction, identification and trigger efficiencies, obtained
from data-MC comparison, are taken into account for muons and electrons. Uncertainties
on the momentum/energy scale of these leptons are also considered. These uncertainties
have typically a small effect in the analysis, as shown in figure .21] (about 1.5 % for both
electron and muon).

The propagation of the other systematic sources, such as energy calibration of the
physics objects, to £t is obtained by recalculating £ for every systematic variation. There
is also a systematic uncertainty on the energy scale and resolution of the soft terms of the
missing transverse energy, defined in section However, it has a negligible impact
on this analysis, as shown in figure 4.21] with a variation on the nominal invariant mass
distribution smaller than 1 %.

There are several sources of systematic uncertainties on the jet energy scale. Since
each one changes the pr of the jets, the number of jets that pass the 20 GeV transverse

momentum requirement also changes. The ZH analysis considers the uncertainties associated
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4. ZH analysis

to the in situ calibration (6 sources after the decorrelation described in section [3.5.4)), the
energy response difference between light and gluon jets (described in section [3.7.1), the
n-intercalibration (described in section [3.6)), the pileup (described in section and the
additional uncertainties derived for the global sequential calibration (see section [3.9). Each
of the referred systematic uncertainties was propagated to the ZH analysis. The effect of
all these systematic uncertainties in the invariant mass distribution ranges from 2 to 6 %,
depending on the bin. In some category regions, this is the leading experimental systematic
uncertainty.

The corrections on the b-tagging efficiency (see section also have sources of
systematic uncertainty that affect this analysis. These uncertainties are also obtained from
data-MC comparisons, separately for b-jets, c-jets and light flavoured jets, in bins of MVlc
operating point and jet transverse momentum. Light flavoured jets had also an 17-dependent
uncertainty. A method, similar as for jets, decorrelated the b-tagging uncertainties [/8]] into
35 components that are considered for the ZH analysis: 10 for b-jets, 15 for c-jets and 10 for
light flavoured jets [82]]. Another b-tagging uncertainty is considered for samples simulated
with generators different than PYTHIA6 due to the MC-to-MC correction, discussed in
section .7 The uncertainty considered was 50% of the correction. Figure @.21] shows
a relative uncertainty in this m,j distribution up to 5 %. The b-tagging uncertainty is the

dominant experimental systematic uncertainty in the ZH analysis.

4.10.2. Uncertainties in the modelling of the ZH signal process

Whereas the experimental systematic uncertainties relate on how well known are the
reconstructed physics objects, the theoretical or modelling uncertainties, result from the
knowledge of the simulated processes.

An uncertainty of 3.3 % is considered for the branching ratio of the Higgs decay to bb,
determined with HDECAY, accounting for N4ALO QCD and NLO EW corrections [82} [138]].
After the topological selection, the contributions from other decay modes besides to bb are
less than 1 % [82]].

The calculated cross section obtained at NNLO QCD has an uncertainty of 3.1 %,
evaluated from varying the factorization and renormalization scales up and down by a
factor of 2 for this calculation [138]]. Two additional uncertainties to the cross section
were evaluated from the PDF4LHC recommendations [[139] following the NLO prescription.

One of the uncertainties is on the o parameter at the Z mass scale. Comparing the cross
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4.10. Systematic uncertainties in the ZH analysis

sections obtained with three different PDF sets, another uncertainty results from the relative
differences between them. These two uncertainties are combined in quadrature resulting in a
value of 2.5 %. Table 4.15|shows the separation of the uncertainties on the cross section for
the quark and gluon initiated process.

The selection, described in section 4.5.3] chose only a small fraction of events. A
similar procedure to that just described for the cross section was used to derive uncertainties
of the effect of scale/PDF variations on the fraction of signal accepted events (acceptance).
These uncertainties were obtained separately for two and three jet multiplicities, and for the
gluon and quark initiated processes, ranging from 1.5% to 5 %. Table @.15] shows again
the uncertainties on acceptance for each category. Additionally, when the scale was varied,
the p% distribution was also affected and a shaped systematic uncertainty was added to the
acceptance, based on a linear envelope on the p# ratio distribution between the different
scales and the nominal (tg /ur = 1). The uncertainty varied from 1 % (2 %) for p% =50 GeV
to 3 % (8 %) for p% =200 GeV in the quark (gluon) initiated process. The same exercise was
carried out for the PDF uncertainties, with no evidence of a p% dependence.

A systematic uncertainty is considered for changes in the parton shower and hadroniza-
tion by comparing two simulations with the NLO POWHEG generator, one of them interfaced
with PYTHIAS and the other with HERWIG for propagation processes. Variations on the
acceptance were found to be about 8 %, reaching 13 % for 3-jet and p% > 120 GeV.

Finally, a shape systematic uncertainty is considered for the electroweak NLO cor-
rection (discussed in section of 2.5 % for p% > 200 GeV and about 2 % in other p%
ranges [82]].

Table [4.15|summarises the systematic uncertainty sources considered for the two signal
samples and their associated uncertainties. The signal strength parameter itself is left to float

freely in the global fit, since it is the objective of this analysis.

4.10.3. Uncertainties in the modelling of the Z+jets background

The Z+jet is the leading background of the ZH analysis and is expected to dominate
also the systematic uncertainties.

A 50 % uncertainty was estimated for the shape correction on the p% distribution.
The shape correction on the A¢ distribution for Z+jets vetoing C and B-hadrons was also
evaluated with a 50 % uncertainty. After requiring the two b-tagged jets condition, the

slope in the ratio between the A¢ distribution for data and MC vanished, which resulted
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Uncertainty source Value
Branching ratio 3.3%

Cross section (scale) 1 % (qqZH) 50 % (ggZH)
Cross section (PDF) 2.4 % (qqZH) 17 % (ggZH)
Acceptance (scale) 1.5—-34%
Acceptance (3-jet) 33-3.6%

Scale of p% Shape
Acceptance (PDF) 2—5%

Parton shower 8—13%

NLO EW correction on p% Shape

Table 4.15.: Summary of the uncertainty sources considered in the signal samples.

in considering an uncertainty of 100 % on this shape correction, for Z+hf events.

The jet composition of the Z+jets background was not accurate enough and the
normalization of each sub-sample was obtained from data-MC comparisons in control
regions, using the global fit (see section4.9.1)). The 0-tag control region was highly enriched
with events from the Z+/ category, as it was seen in figure 4.14] and a systematic of 5 %
on the normalization of this region was established from the data-MC comparison. For the
remaining categories, the systematic uncertainties were not so trivial. A different simulation
of the Z+jets process, generated with ALPGEN [94]] and interfaced with HERWIG for parton
shower and hadronization, was used to estimate the systematic uncertainties. The comparison
between these two simulated samples provided uncertainties on the ratios between two
components: 12 % on the normalization ratio between the Z+bb category and the remaining
heavy flavour categories (Z+bc, Z+bl and Z+cc). An additional 20 % uncertainty was
estimated for the ratio in the normalizations between 2 and 3 jet multiplicities for the Z+hf
category, and of 26 % for the Z+cl category.

A comparison of the m,j distributions in the 2-tag combined region between data and
the default simulation (SHERPA), shows that another shape systematic uncertainty on this
process has to be considered. The invariant mass window 100 < m,; < 150 GeV is excluded
from the comparison. An increase in the m,j, distribution at 50 GeV by 3%, would decrease
the distribution by 5% at 200 GeV, with a linear dependence on m,;. This uncertainty covers
the differences between the two simulations discussed, SHERPA and ALPGEN, and no other

uncertainty was added.
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4.10. Systematic uncertainties in the ZH analysis

Table 4.16] summarises the systematic uncertainty sources considered for Z+jets.

Uncertainty source | Value
A9 (b1,b2) | Shape
p% Shape

Z+I[ normalisation | 5%
Z+13/2-jetratio | 5%
Z+cl 3/2-jetratio | 26 %
Z+hf 3/2-jetratio | 20 %
Z+bc | Z+bbratio | 12%
Z+bl | Z+bb ratio | 12 %
Z+cc | Z+bbratio | 12%

myy, | Shape

Table 4.16.: Summary of the uncertainty sources considered in the Z+jets samples.

4.10.4. Uncertainties in the modelling of the 77 background

About 13 % of the events that survive the topological selection are expected to originate
from the #f process. So any systematics resulting from modelling of this process are expected
to have a non-negligible effect on the signal strength parameter.

A correction was applied to the average pr of the two top quarks in the ¢f process, as
discussed in section[4.7] The systematic uncertainty considered for this correction is 50 % of
the correction.

The normalization of the 77 background is allowed to float freely in the global fit and is
obtained from the fop e-u control regions. Events in this region mostly lie in the 2-jet region,
with a p%4 < 120 GeV. Extrapolation to the 3-jet and high-p% regions result from additional
uncertainties, obtained by comparing the nominal POWHEG+PYTHIA6 simulation that uses
the CT10 PDF set (see section [E[) with other simulated samples:

* the same generator, but using the HERAPDF [149] PDF set.

* the same generator, but using HERWIG for hadronization.

* the same hadronization scheme, but different tree-level generators (MC @NLO [150]
and ACERMC [93])).

Multi-leg LO generator (ALPGEN) with PYTHIAG6 for hadronization.
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4. ZH analysis

* the effect of changing the amount of ISR and FSR by changing the default parameters
in PYTHIAG6, with the ACERMC generator.

The uncertainties estimated from these comparisons were 20 % for the ¢ normalisation of
events with three jets and 7.5 % for the normalisation of events with p% > 120 GeV.

A linear shape systematic uncertainty was evaluated on the invariant mass distribution
from the comparison of the ¢f simulations referred. If there was an increase on the m,g
distribution of 3 % at m,; = 50 GeV, the distribution would decrease by 1 % at m,; = 200 GeV
for events with two jets and p% > 120 GeV. A similar behaviour was observed for events with
three jets but with opposite sign. For the low—p% region, the shape uncertainty on the my
distribution is smaller.

Table 4.17) summarises the four sources of uncertainty found for the 7 background.

Uncertainty source | Value

Top-quark pr | Shape
3/2-jetratio | 20 %
High/low—p% ratio | 7.5%
myj | Shape

Table 4.17.: Summary of the uncertainty sources considered in the ¢f process.

4.10.5. Uncertainties in the modelling of the ZZ background

The ZZ background is expected to be only a small fraction of the events that survive
the topological selection. However, this background still have about six times more events
than the signal ZH sample and there ought to be some overlap between the invariant mass
distributions of this background and the signal, from the large widths observed in this
distribution, in section Therefore, the contribution to the systematic uncertainty on the
signal strength parameter should also be non-negligible.

The scale and PDF uncertainties on the cross section and acceptance of the ZZ
background were evaluated using the same procedure as for the ZH. The renormalization
and factorization scales are also varied by a factor of two and 1/2 and the differences on
the cross section are obtained in the five p% bins and the two jet multiplicities (two and
three jets) and considered as the systematic uncertainty. This uncertainty increases with

p%, reaching for p% larger than 200 GeV, about 12 % for 2 jet events and 17 % for three jet
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4.11. ZH analysis results

events. The uncertainty on the PDF, following the same PDF4LHC procedure defined for
the signal process, is 3 % in both jet multiplicities, with no correlation found between the
p% bins. Different hadronization models are evaluated also, replacing the default simulation,
PYTHIAS8, with HERWIG. A shape uncertainty is considered in the m,j; distribution in this

case. Table 4.18] summarizes uncertainty sources evaluated for the ZZ background.

Uncertainty source | Value

Cross section and acceptance (scale) | 3—17 %
Cross section and acceptance (PDF) 3%

my; | Shape

Table 4.18.: Summary of the uncertainty sources considered in the ZZ process.

4.10.6. Uncertainties in the modelling of the remaining backgrounds

The signal and the Z+jets, f and ZZ processes are the only backgrounds with a
significant contribution in the ZH analysis. Tables |4.8| showed that the contribution of the
remaining backgrounds accounts for less than 1 % altogether, after applying the topological
event selection. These backgrounds affect, however, the 1-lepton and the O-lepton analysis
and were evaluated in detail and described in reference [[82]].

For the estimated multi-jet background, that was estimated from data, as described in
sectiond.4.4] a systematic uncertainty of 100 % is assumed, uncorrelated between the normal

analysis regions and the fop e-u control region.

4.11. ZH analysis results

The signal strenght parameter obtained with the analysis described in this thesis was
u = —0.69ﬂ:§§. The negative value of the signal strenght parameter indicates a statistic
flutuation of the data. The Standard Model prediction, u = 1, is still within two stardard
deviations from this result. Table shows the contributions from the statistical and
some systematic uncertainties to the total uncertainty. The impact on the total error from
the individual uncertainty components was estimated by fixing the nuisance parameter to
nominal, and calculating pt. Then, the same nuisance parameter is shifted up and down by

its uncertainty, and calculating ¢ again. The quadratic difference to the nominal calculated
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U is the impact of this nuisance parameter. The same procedure is followed for the other
nuisance parameters. The second column of table {.19] shows the impact on the total
error thus evaluated, summing quadratically the uncertainties. The third column shows the
fractional error impact from the quadratic difference from total uncertainty and each of the
impacts. The uncertainty on the ZH analysis is dominated by the statistical uncertainty
with a contribution of 63 %. The specific uncertainties evaluated for the new calibration
for jets (see section , Jet b-jets and Jet AFII, are shown in the table and have small
contributions to the uncertainty of (. The other jet systematic uncertainties and the b-tagging
uncertainties are the dominant sources of experimental uncertainties, contributing 1-2% to
the total uncertainty of the result. The modelling of the simulations is dominated by the

normalization uncertainty of the Z+jet background.

The expected signal significance obtained from the fit was 0.84. Since the signal
strenght parameter was negative the observed significance is zero by default. In addition
to the signal strenght parameter, the background normalizations and respective uncertainties
are shown in Table

Figure .22 shows the m,j distributions for the two regions where the signal-to-
background ratio is expected to be the largest: events in the boosted region, p% > 200 GeV,
with the medium and tight b-tagging criteria, after the global fit. These regions are therefore
those most relevant for the signal strenght parameter extraction. However, in these plots the
number of observed events is much smaller that those expected with and even without the
Higgs boson predicted by the stardard model. Particularly, the number of events expected
with (without) the Standard Model Higgs boson, in the three bins centred at 125 GeV, was
10.6 (9.2) and the observed number of events was 8. This is the reason why the signal

strenght parameter was negative.

Figure 4.23| shows the MV 1c weight distribution of the b-jet in the /-b-tagged control
region (a) and the my; distribution in the fop e-u control region (b). In the latter, the
overflow is included in the last bin. After the global fit, simulation and data agree within
uncertainties. Particularly, the large change in the top e-pt control region results from the

multi-jet background becoming negligible after the fit.

Appendix [C.3|shows all the distributions used in the fit: prefit and post-fit, before and
after applying the m,; tranformation discussed in section The first two p% regions have
enough statistics to make precise comparisons between the data and the predicted simulation
distributions. The difference to the unity of the data/MC ratio is often smaller than 10 %
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4.11. ZH analysis results

p=—0.69"]33

Uncertainty source | Impact on error | Fractional error impact
Statistical iéjSS tg%%
Systematics fgj%% f%
Jets fg:%gé ﬂ:%
Jet AFII OO 0013
Jet b-jets i8;8§21 tgﬁ%g%
Jet Flavour comp tg:ggﬁ 8%(9)%
Jet Flavour resp f818§é§ 0237%
MET 00t 00017
Muons i8;8}3§ tgig(l)é?%
Electrons t8;82§§ j—Lgﬁ 1491;2
All b-tagging f8£6 f%}%
Luminosity i818§§2 fgjgg??/i
VH o038 it
Z+jets o428 1%
ttbar f8182§3 tg:gg%
77 +0.0090 +0.0046%

—0.012 —0.091%
All normalizations fg:ig‘: f{iiﬁ,‘j

Table 4.19.: Signal strenght parameter with the total uncertainty resulted from the
global fit. The impact on some of the uncertainties sources and the
fraction from the total uncertainty estimated from the global fit.

Parameter Nominal value | Total uncertainty
Zbb normalisation 0.95 +0.05
Zcl normalisation 0.75 +0.11
tf normalisation 1.05 +0.06

Table 4.20.: Floating background normalisations and uncertainties.

and never larger than 20 %. The diboson ZZ contribution is always present, as it behaves
with the same signature as the signal process. The 7 background is relevant in the low-pZ
regime with a negligible contribution for p% > 160 GeV. The multi-jet background, evaluated

with the procedure in section #.4.4] was very small and becomes negligible after the fit in
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Figure 4.22.: Invariant mass of the two b-tagged jets after the fit for p% > 200 GeV
for events with two jets for the b-tagging regions: MM (a) and TT (b).
The dashed line corresponds to the background distribution before the
fit.

all regions. The lighter components of the Z+jet background, Z+cl and Z+1, have negligible
contributions in the MM and TT b-tagging regions.

4.12. Combined VH analysis

Section [.T] introduced the VH analysis as composed of three different channels: 0, 1
and 2-lepton analyses. The objective of this section is to refer the global results from the
combined analysis, describing the analysis methods used. In addition to the ZH analysis, the

LIP group also made contributions to the WH analysis (1-lepton channel) [151].

4.12.1. Multivariate analysis

The ZH analysis contemplated in this thesis uses a set of event selection criteria,
described in section [4.5] to select a region, where the number of events from the signal

divided by those from the backgrounds was as large as possible. This technique is called
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Figure 4.23.: MV 1c weight distribution in the /-fag control region in events with two
jets, after the fit (a). Invariant mass of the two b-tagged jets after the
fit in the fop e-u control region (b). Both distributions refer to events
with p% < 90 GeV. The dashed line corresponds to the background

distribution before the fit.

a cut-based analysis. There was another complementary analysis which used a multivariate
procedure, the boosted decision trees (BDT) method [152,153], present in the ROOT toolkit

for multivariate analysis (TMVA) [154]. Softer selection criteria are applied to the event

topology to prepare these trees. The physics objects selection and overlap removal are the

same in both cut-based and multivariate analysis. The differences in the event selection

are summarised on table 4.21] The di-lepton invariant mass is loosened to the 71-121 GeV

window, and the selections of the missing transverse energy and the high cut of the angular

distance, AR, between the two b-tagged jets are removed. This allows the BDT to better

optimise the selection. Furthermore, the multivariate analysis considers only two p4-regions,

above and below 120 GeV, instead of the original five regions.
A set of 14 variables was used in the BDT:

¢ the transverse momentum of the Z boson, p%;

* the invariant mass between the two leptons, my;

* the missing transverse energy, £7;
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4. ZH analysis

Selection Cut-based analysis | Multivariate analysis

Di-lepton invariant mass | 83 <my, <99 GeV | 71 <my; < 121 GeV
Missing transverse energy Et < 60 GeV Removed

AR high cut p%-dependent Removed

Table 4.21.: Changes in the selection between the cut-based analysis and the
multivariate analysis [82].

« the transverse momentum of the b-tagged jets, pr”! and pr??;

* the b-jets MV 1c weight, wf{,}v 1o and wﬁf‘, 163

* the invariant mass between the two b-jets, n1,;

* the angular distance of the two b-jets, AR(b1,b2);

* the difference of the pseudorapidity between the two b-jets, An(b1,52);

* the difference of the pseudorapidity between the Z boson and the Higgs candidate,
An(Z,H);

* the difference of the azimuth angle between the Z boson and the Higgs candidate,
AY(Z,H);

* in three jet events, the transverse momentum of the third jet, ij3;

* in three jet events, the invariant mass of the three jet system, m,j, ;;

The starting point of the BDT method is the training procedure, that uses a set of the
signal and background events after the loose selection discussed above and normalised to
the same value. A decision tree looks to one of the variables and evaluates the selection
in iterative steps to choose the best threshold that separates the signal from the background
events. TMVA does this for every variable in the list. The variable and cut that has the
most discriminating power is chosen to split the tree into two branches. The same process
is repeated for each of the branches until some specific conditions stop the growing of the
tree and the final member of the tree is called leaf. The condition to stop the growth of the
tree can be the events falling below a certain number, reaching the maximum number of
selections (layers), or if the chosen variable-cut pair no longer has a significant separation
power. Each of the leafs is considered to be either signal or background. Depending on
the signal/background fraction in the leaf, events are given a weight +1 or -1, respectively.
Some of the leafs will have events that were misclassified by the decision tree. The boosting
technique gives a larger weight (a boost) to such events and executes the optimisation

procedure again as described above. This process is repeated several (even hundreds) of times
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4.12. Combined VH analysis

saving each decision tree. A final BDT output variable is constructed using the weighted
average of the classification weights. The BDT output distribution, which varies from -1 to
+1, is obtained for data and each of the backgrounds.

The BDT is trained independently for different signal regions, considering events with
p% below/above 120 GeV, events with two/three jets and even/odd event number. Since
simulation samples are not infinite, the training of odd and even event number does not
produce the same BDT result. The BDT that is trained with events with the odd number
is applied to the events with even number to estimate this bias. To minimise the statistical
uncertainty, the opposite also happens: trained BDT with odd event number applied to even

number events. Finally, the same BDTs are also applied to data events.

e e
Data 2012 Data 2012
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Figure 4.24.: BDT output distribution in the 2-lepton channel for events with two
jets and combining the MM and TT b-tagged regions, after applying
the global fit [82].

In the multivariate analysis, the BDT output distributions replace the invariant mass
distributions in the two b-tagged jet regions to be used in the global fit discussed in
section 4.9.1] Additionally, to reduce the statistical uncertainty, the MM and TT b-tagged
regions are combined into a single BDT output. Figure 4.24]shows the BDT distributions for
this combined b-tagged region for low-(a) and high—p% (b) region, after the fit is performed.

In the first bins, the 7 background dominates, so its normalisation is constrained from this
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4. ZH analysis

part of the BDT distribution and the fop e-u region is no longer needed. The signal events
are expected to populate the region with a larger BDT output variable.

4.12.2. Run-1 VH results

The best fit results for the VH analysis were obtained with the multivariate analysis
and using the three lepton channels for the 2012 data taking. For the 2011 data, the
integrated luminosity was smaller leading to large statistical uncertainties, so only the cut-
based analysis was used in the Run-1 combination [82]. The cut-based analysis from 2012

data taking was used as one of the validations of the MVA results.
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Figure 4.25.: Distribution of the logarithm of the ratio between the number of events
from signal to those from background for the 2-lepton channel (a) and
the combination of the 0-, 1- and 2-lepton channels (b) [82].

Figure[4.24showed the BDT output distribution for two regions of the 2-lepton analysis.
To obtain a single histogram that summarises the BDT outputs information from all regions,
the ratio between the number of signal and background events is evaluated in each of the
BDT output bins. Figure 4.25](a) shows the distribution of the logarithm of this ratio for the
2-lepton analysis. The bottom panel shows the relative difference to the background-only

hypothesis of data (black markers) and with the hypothesis of the Standard Model Higgs
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4.12. Combined VH analysis

boson at 125 GeV (red line). Figure 4.25|(b) shows the distribution of the logarithm of the
ratio between the number of signal and the number of background events for the combination
of the three lepton channels. This figure shows smaller fluctuations when combining the
three channels. The histograms show that the data observed is compatible with both the null
hypothesis (no Higgs boson) and the existance of the Standard Model Higgs boson, due to

the large uncertainties observed.
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Figure 4.26.: Signal-strength parameter, ut, obtained from a global fit combining
the 0-, 1- and 2-lepton channels and separating the /s =7 TeV pp
collisions (2011 data) from /s =8 TeV (2012 data)(a). Signal-
strength parameter, p, obtained from a combined fit of the
Vs =7TeV and /s =8 TeV pp collisions (full Run-1 dataset) for
the three analysis channels (0-, 1- and 2-leptons) separately and
combined (b) [82]].

Figure 4.26](a) shows the signal-strength obtained from the global fit combining the 0-,
1- and 2-lepton channels for cut-based analysis in 2011 and for the multivariate analysis in
2012. Figure [4.26|(b) shows alternatively the combination of the two data taking periods but
separating the three analysis channels. The /s =8 TeV analysis with increased statistics,
a better understanding of the systematics and the usage of a multivariate analysis was able
to have a much smaller uncertainty than /s =7 TeV. The combined result of the signal-
strength for Run-1 with the three lepton analysis was 0.52 +0.32(stat.) £ 0.24(syst.), for a
Higgs boson mass of 125.36 GeV [82].

The combined cut-based analysis of the three channels obtained a signal-strength
parameter of 1.23 4-0.44(stat.) +0.41(syst.) and a observed (expected) significance of 2.2 ¢

211



4. ZH analysis

(1.9 o). The multivariate analysis expected significance was of 2.5 o. For this reason, the
latter was chosen as the nominal analysis.

The results obtained in the ATLAS collaboration were also compatible with those
from the CMS collaboration, that reported a signal strength parameter of 1.0 0.5, with
an expected and observed significances of 2.1 [[155]. The analysis of Run-2 data is now
underway and preliminary /s = 13 TeV results from 2016 summer conferences set the value
in p=0.21703%(stat.) =0.36(syst.) [156].
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5. Conclusions and outlook

The LHC started a golden age of experimental particle physics in the testing of the
theoretical predictions of the Standard Model. The discovery of the Higgs boson in 2012, by
the ATLAS and CMS experiments, was undoubtedly one of the greatest marks of particle
physics. As a physicist from one of these experiments, I analysed LHC proton-proton
collisions data to determine if this particle is compatible with the Standard Model Higgs
boson or if it brings hints of any new physics.

A particular physics search is the measurement of the H — bb decay, the major
branching ratio for the 125 GeV Higgs boson. This decay is, however, one of the most
challenging channels to be studied for in a proton-proton collider such as LHC. Nearly every
inelastic collision produces quarks and gluons that hadronize and are only well reconstructed
as jets. It is impractical for any detector to save all the events from the LHC collisions at a
rate of 20 million per second. One Higgs boson is produced every ~17 seconds (assuming
an instantaneous luminosity of . = 1033 cm~2s~!) but this decay mode can only be studied
with a trigger that provides a clear signature, such as the associated production. The objective
of this thesis was the search for the H — bb decay when the Higgs boson is produced in
association with a Z boson. The leptonic decay of the Z boson to muons or electrons provides
the required signature in an event where all the physics objects are fully reconstructed.

The analysis of the ZH search channel is, however, still dominated by background
processes, where the largest contributions are the production of jets associated with a Z
boson, the production of a pair of top quarks and the production of a pair of Z bosons. For
this reason, a clear understanding of the detector is crucial. This thesis makes use of the
leptonic decay of the Z boson to an electron pair or a muon pair. As the reconstruction
of these pairs of particles is relatively straight forward, I dedicated most of my effort to
the improvement of the knowledge of the reconstructed jets from the Higgs boson decay

H — bb, enhancing two aspects which are discussed in the following.

The first one is the calorimeter response to single hadrons, discussed in section [3.8] It
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plays a major role in the validation of the jet energy scale systematic uncertainty and in the
setting of the jet energy scale uncertainty for jets above 1.8 TeV. Before my work developed
for this thesis, there was no information on the single hadron response in the energy range
from 10 to 20 GeV, due to lack of statistics in collision events. The development of two
triggers that unbiased the E/p measurement while selecting high momentum and isolated
tracks was one of the objectives of my work. The triggers extended the momentum coverage
from the E/p collision measurements up to 30 GeV, which provided an overlap with the
method used before collisions, validating it. Additionally, the triggers developed were run
in a large pileup environment and validated the uncertainty up to an average number of

interactions per bunch crossing of () = 20.

The other main contribution to the knowledge of the calibration of jets was the Global
Sequential Calibration (GSC) that reduced the jet energy response dependence with the jet
flavour. I tested and used it in the context of the ZH analysis, i.e. using it for b-jets. GSC
removed the jet energy response dependence from some of the jet properties that are usually
used to identify the flavour of the jets. The complete set of conclusions from this study
was already discussed in section [3.9.6] and I just refer here the most relevant ones. The
systematic uncertainty from the jet energy response difference between jets initiated by light
quarks and jets initiated by gluons was reduced to negligible values, after using GSC as
intended. The b-jet systematic uncertainty was verified to be still valid after the application
of GSC, when comparing the jet energy responses among different generators, among the
various hadronization models and among the three leading background processes of the ZH
analysis (referred above) when comparing with the signal process. The GSC calibration
required, however, an additional systematic uncertainty of 0.5 % for MC samples that use the
fast simulation of the detector, where a parametrization of the calorimeter response is used
instead of the full simulation of the detector with GEANT4.

The main result of the global sequential calibration was the improvement of the jet
energy resolution by about 20 %, and I also studied the improvement obtained on the
distributions of the invariant mass between the two reconstructed b-jets, when applying this
calibration. This calibration was able to enhance the invariant mass resolution up to 18.5 % in
the most sensitive region of the ZH analysis, where the reconstructed Z boson has a transverse

momentum larger than 200 GeV.

An independent ZH analysis, discussed in chapter |4, was performed in close collabor-

ation with colleagues from other institutes. A comparative analysis if all the results allowed
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the validation of the performance software tools for the physics objects and the validation
of the independent software of the analysis, with differences evaluated at the per-mille level.
From a statistical combination fit, the signal strength parameter was obtained with a value of
u= —0.69f}§§. The total uncertainty obtained still shows compatibility with the Standard
Model Higgs boson (u = 1) and with the strength parameter value achieved with the VH
combination for /s =8 TeV: u = 0.65Jj8:i(3). The work developed in this thesis resulted in
a 0.850 of expected signal significance. The final value using the three alternatives of VH
was 2.50 when considering a multivariate analysis.

The LHC increased in 2015 the centre of mass energy from /s =8 TeVto /s = 13 TeV,
which increases the cross section production of all processes, particularly the production of
the ¢ process. Both the WH analysis and the O-lepton analysis have an enormous background
contribution from this process. However, in the ZH analysis, by applying a very tight
criterium on the b-tagging and requiring that the Z boson is produced boosted (large-pr),
this background is reduced to negligible values. Since the cross section production of the
ZH process is expected to increase by the same amount as the Z+jets background, for the
same amount of collected data the ZH analysis should have an improvement on the expected

significance.
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A. Appendix E/p

This appendix shows additional n-ranges for the neutral background corrected (E/p)
for the random trigger and the two hadCalib triggers.
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Figure A.1.: Corrected average of the E/p distribution for the random (in black),
hadCalib_tr9_L1RDO (in red) and hadCalib_tr18_L1RDO (in blue)
triggers as a function of the single hadron momentum (left). Statistics
available for the (E/p™) (centre) and (E/pBC) (right).  See
section [3.8.3|for further details.
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B. Appendix GSC

This appendix shows additional transverse momentum and 7-bins for the jet energy
response and jet energy resolution, with respect to the figures discussed in section (3.9
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Figure B.1.:

Jet energy response as a function of the GSC variables, frii0, fem3s
nTrk and TrkWidth, in the first, second, third and fourth columns,
respectively. The blue squares show the jet energy response without
applying GSC and the black up triangles, green down triangles, pink
crosses and red circles show the jet energy response after applying the
first (frie0), second (fem3), third (nTrk) and fourth (TrkWidth) GSC
corrections. The histogram in red represents the distribution of each
of these variables. Two additional pr-bins for the 0.0 <1 < 0.3 (first
two rows) and one additional 1 region: 0.8 <1 < 1.2 (last two rows).
Further details are found in section @
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Figure B.2.: Jet energy response (left) and resolution (right) as a function of the
truth jet transverse momentum for the inclusive di-jet events simulated
with PYTHIAS8 for —0.3 < n < 0.0 (top), 0.3 < n < 0.8 (centre) and
0.8 < n < 1.2 (bottom). The blue squares show the jet energy response
and resolution without applying GSC and the black up triangles, green
down triangles, pink crosses and red circles show the jet energy
response after applying the first (fTile0), second (fEM3), third (nTrk)
and fourth (TrkWidth) GSC corrections. Further details are found in

section @
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Figure B.3.: Distributions of f7;.o0 (first column), f,.,3 (second column), nTrk
(third column) and TrkWidth (fourth column), normalised to unity,
for different jet flavour compositions of di-jet events simulated with
PYTHIAS. The b-jet flavour is shown in blue, gluon initiated jets
in black, light-quark initiated jets in green and the inclusive jet
flavour in red, with different line styles. Two additional p{*"-bins
for the 0.0 < n < 0.3 (first two rows) and one additional 1 region:

0.8 <n < 1.2 (last two rows). Further details are found in section[3.9.2]

235



o
w
a

o
«
o

g i ® Dbjet g ® bjet g F o Dbjet g ® bjet
c [-03<n<0 m gjet c -0.3<n<0 u gjet k=1 r-03<n<0 u gjet = -0.3<n<0 u gjet
o r S S . 5 .
a f A lgdet a A Igjet S 03 A lgdet S o. A Igjet
B 1.15- v inclusive g1l v inclusive 2 v _inclusive 2 v inclusive
3 ) . 5 ) §D. 5 5 0.25)
[} N () i I} == @
§ | § L s O e s O
g f T 3 Lol g f S B -
™ 1.05 v - ™ 1.05 ™ 0.15} ™ 0.15
o ""-.-‘,_._*..,* o [ HFHF P .
e, S
. ey i, s 0.1 0.1
1 1 s *-ﬁ] s
‘=
r -
5 5 -
EMJES di-jet process SC di-jet process 0.05 MJIES di-jet protesm 0.0 SCdi-jet process
0.95 I 0.95 I | I I
102 truth 103 102 truth 103 102 truth 103 102 truth 103
pit (Gev) pit (Gev) P (Gev) py" (GeV)
2 1.2r ® bjet 2 1. ® bjet S 0'35: ® bjet g 0.35 ® bjet
g [ 03< 0. " get g 0.3<n<0: u get 'g r 03< 0, " get 'g 0.3< n<0: u get
a o A lg-jet o - A Igdet S 03¢ A lget S 03] A Igdet
S 1.15¢ v _inclusive B 115 v inclusive 2 v _inclusive 2 v _inclusive
—_ = 25| = 25
| 3 o —-- by
=4 =4
5] L 5] - g 02 +§ S 0=
5 r sl 5 e o e e
™ 1.05 RS ™ 1.05 S 015 S 0.5
A= S e == i
o gy i e [ * ==
=~ e A g 0.1 0.1
1 TS t ===
1 - & ! igeprters £ ’ﬂ " -
5 5| -
[ EMJESdi-jet process SC di-jet process 0.05) MJES di-jet process’ Iﬁ 0.05 SCdi-jet process
0.95 I 0.95 | I
10° truth Ly 10° truth g 10° truth Ly 10° truth g
pr (Gev) P (Gev) pr (Gev) prt (Gev)
% 1.2r o Dbjet g 1. ® bjet g 0‘35: o Dbjet g 0.35 ® bjet
= [ 08< 1.2 m gjet =1 08< 1.2 u gjet k=] r08< 1.2 u gjet k=1 08< 1.2 u gjet
s} r S S b 5 .
a f A lgdet a A Igjet S 03 A lgdet S o. A Igjet
B 1150 v inclusive g 1L v inclusive 2 v inclusive 2 v inclusive
> [ > S, 0.25 . 0.25
8 11 g 11 B ~ 8 d
- g M 2 o) 2o
[} r . L o [ [ —a
3 [ s o] .- B F = 5
™ 1.050 " i  1.05] o 1 ™ 0.15F = 0.15 - ]
. v £ ]
t —a- -0--<>"+ N gy NI e ] r = == b
o ~ s o | e, . 0.1- = 0.1 . ]
T = im g ki e g . 1
[ - 1 Hnai ]
EMJES dijet process SC di-jet process ] 0.05 MJES di-jet process’ | 0.0 SCdi-jet process gt
0.95 0.95 I I | I I [l
102 truth 103 102 truth 103 102 truth 103 102 truth 103
pit (Gev) pit (Gev) P (Gev) py" (Gev)

236

Figure B.4.: Jet energy response as a function of the jet p:

futh for the different jet

type samples. In the first (second) column the jets are calibrated with
EM+JES (GSC). The third and forth columns are the resolutions as
a function of the jet p{™”" for jets calibrated at EM+JES and GSC,
respectively. Jet energy response and resolution obtained for the di-
jet simulated sample with PYTHIAS separating light-quark initiated
jets (red up triangles) gluon initiated jets (blue squares), b-jets (black
circles) and inclusive jets (green down triangles). The plots are shown
for —0.3 < n < 0.0 (top), 0.3 <n < 0.8 (centre) and 0.8 < n < 1.2
(bottom). Further details are found in section @
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Figure B.5.: b-jet energy response and response difference with EM+JES (two left
columns) and GSC (two right columns), for jets with —0.3 <1 < 0.0
(top row), 0.3 < n < 0.8 (middle row) and 0.8 < 1 < 1.2 (bottom
row), with the #f process simulated with POWHEG+PYTHIA6 (black
squares) and with ACERMC+PYTHIA with more parton shower (blue
circles) and less parton shower (red triangles). The jet energy response
differences are done with respect to the POWHEG+PYTHIA6 sample.
The green band represents the b-jet systematic uncertainty obtained for
the EM+JES calibration. Further details are found in section[3.9.4]

237



3 1.2r ® ZH125 Pythia8 8 0.y /77771 JES bijet Syst. Uncert. g 1.2r ® ZH125 Pythia8 8 0.y /77771 JES bijet Syst. Uncert.
g [-03<n m i PowhegPythia g -03<n W i PowhegPythia S [-03<n<0 m i PowhegPythia g -03<n W i PowhegPythia
a L A Z_ee+B Sherpa S A Z_eesBSherpa a L A Z_ee+B Sherpa S A Z_ee+B Sherpa
2 115 v zzeounerpynias | 2 v 22 povheqpyias 9 115 v zzeounerpynias | £ v 22 povheqpyis
2 o 5 o. 2 5 o.
> 1 > 1
5 I * 2 + [1 8 | ' 2 1
E 1.1 . g ,// | —-- ] E 1.1 - g /// * ]
7] Q (7] o
N il s YA 2 T~ h o e
2 105 S KA 2 I s 1 8 1
oL - 3 ] L A ] —— ]
L - _t 5 . 4 I Bae @
[ ﬁ:! -0.05 [ fyf, S -0.05
1 + S 1 - ¥ 5
T -1 o [ [ o o
EMJES b- i El b-jet SC b-jet i GSC b-jet
0.95! -0.1 0.95! -0.1
10° o 10° 10° o 10 10° o 10 10° o 10
pr (Gev) pr (Gev) Py (Gev) Py (GeV)
2 1.2r ® ZH125 Pythias 8 0.3 VZZ77] JES briet Syst. Uncert, 2 1.2p ® ZH125 Pythias 8 0.3 /27 JES briet Syst. Uncert,
g [ 03< m i PowhegPythia 5 03<n B PowhegPythia g r 03< 0 m i PowhegPythia 5 03<n B PowhegPythia
o + A Z-.ee+B Sherpa a—) A Z-ee+B Sherpa o + A Z-.ee+B Sherpa a—) A Z-ee+BSherpa
o 115 o v 77 PowhegPythiag £ 05 v oz S 1.15¢ v 77 PowhegPythiag £ (05 v oz
= 5 0.05 27 £ o005
> 1 > 1
g 11 i g = |15 L = 2 * ]
1 , . -l 1 1 , 1
5 - g o7 Z ] 6 ~ S o7 )
- 7 0 / /ﬂ - L 7] [0} /ﬂ
© ae o s 1 o L @ /A
™ 1.05 > " + 1 ™ 105 & > 7z E
r - 3 . [ e o ]
L R L *
r Qg 29,05 r Es B =1 2005
ki '-p;.y 2 3 ] 2
[ t o] [ o}
[ EMJES b i El b-jet [ GSCb-et - G et
0.95 -0.1 0.95 -0.1
10° , 10° 10° n 10° 10° , 10° 10° \ 10°
P (Gev) pt (Gev) P (Gev) pt (Gev)
% 1.2r ® ZH125 Pythia8 8 0.y /77771 JES bt Syst. Uncert. g 1.2r ® ZH125 Pythia8 8 0.3 /77771 JES biet Syst. Uncert.
g [ 08< 2 m i PowhegPythia g 08< B i PowhegPythia S [ 08< 1.2 m i PowhegPythia g 08< W i PowhegPythia
a L A Z_ee+B Sherpa S A Z.eesBSherpa a L A Z_ee+B Sherpa S A Z.ee+BSherpa
Q LIS v 7z PowhegPythias £ (05 ¥ 27 PowhegPythia8 P 1150 v 7z PowhegPythia8 £ (05 v 27 PowhegPythia8
o 3 o. 2 3 o.
> = > 1
S 3 w15 g ]
5 [ g o7 15 [ O 2 o7 ]
[ L Eo L
5 [ = g 9 o s g o I,
™ 1.05 o = (e N 4 ™ 105 s = b
s - = e ! ] [ = j=d - ]
o8
[ " Tadger S 005 r = il 2-0.05
1 & 1 'i...% ; 5]
1 . 1
b it = b =
L v (73 L (7}
EMJE i El b-jet SC b-jet i GSC b-jet
0.95! -0.1 0.95' L -0.1
10° o 10° 10° o 10 10* o 10 10? o 10
pr (Gev) pr (Gev) Py (Gev) pr (GeV)

Figure B.6.: b-jet energy response and response difference with EM+JES (two left
columns) and GSC (two right columns), for jets with —0.3 <1 < 0.0
(top row), 0.3 < n < 0.8 (middle row) and 0.8 < 1 < 1.2 (bottom
row), for the signal process for the ZH analysis (red circles) and for
the three leading backgrounds: 7 (black squares), Z+b-jets (blue up
triangles), and ZZ (green down triangles). The jet energy response
differences are done with respect to ZH process. Further details are
found in section[3.9.4]
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Figure B.7.: Distributions of f7;;.o (first column), f,,,,3 (second column), nT'rk (third
column) and TrkWidth (fourth column), normalised to unity, for the
inclusive di-jet events simulated with PYTHIAS using the full simulation
(filled blue line) and fast simulation (dashed red line) of the detector
Two additional pr-bins for the 0.0 <1 < 0.3 (first two rows) and one
additional 7 region, 0.8 < 1 < 1.2 (last two rows). Further details are

found in section @
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Figure B.8.: Jet energy response for the inclusive di-jet events simulated with
PYTHIAS8 (first column) and the inclusive #f sample simulated with
POWHEG+PYTHIAG6 (third column).
between the parametrised and the full simulation as a function of the

truth

Pt

column).

Jet energy response difference

for the di-jet sample (second column) and the ## sample (fourth

Jets in the pseudorapidity region —0.3 < 1 < 0.0 (top
row), 0.3 < n < 0.8 (middle row) and 0.8 < n < 1.2 (bottom row).
Comparison between the ATLASFASTII (closed markers) and the full
simulation (open markers) of the detector. In all figure, the jet energy
response for the EM+JES (GSC) calibration is shown by blue squares

(red circles).

The shaded blue band in the jet response difference
plots corresponds to the measured systematic uncertainty obtained for
the ATLASFASTII non-closure with the EM+JES calibration. Further
details are found in section @



C.

C.1.

Appendix ZH

Information on simulated samples

In this section, additional informations of the simulated samples used in the ZH analysis

are given. Samples that have the * in the process refer to those for which there was no AFIT
fast simulation available and the full simulation of the detector, discussed in secion was
used instead.

ZH signal with Higgs mass of 125 GeV

MCid  Process Nevents o xBR EF Y w' MClumi(fb1)
161827 qqZH(— ((bb) 2098998 2.231x1072 1 2.920x10° 1.309x10°
189340 ggZH(— eebb) 100000 6.300x10~" 1 64.72 102.7
189341 ggZH(— uubb) 100000 6.304x10~" 1 64.46 102.5
189342  ggZH(— tTbb) 100000 6.312x10°! 1 64.83 102.7

Top backgrounds

MCid  Process Nevents G xBR &F Y MClumi(fo")
117050 ti(— LvblvD) 99930891 253.0 0.543 9.951x107 724.7
110101 single-¢ (t channel) 8996990 87.80 0.324 7.672x10° 269.8
110119 single-¢ (s channel) 5995993 5.610 0.324 5971x10° 3284
110140 single-t (Wt channel) 19937980 22.40 1 1.985x 108 887.4

Diboson backgrounds

MCid  Process Nevents o xBR EF Y MClumi(fb~1)
181966  ZZ(— ¢lhh) 3999995 1.207 1 4.561x10°% 3779
181968 WZ(— hhtl) 1500000 1.594 1 2.382x10° 1494
181970 WZ(— ¢vhh) 9999988 4.870 1 4.849x107 9957
181971 WW 9999994  52.44 1 5.081x107 9690

Table C.1.: List of the samples for signal, and the top and diboson backgrounds
with the Values for MCid, number of generated events, ox BR, filter
efficiency, } w' and MClumi calculation. Further details are given in

section @
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C. Appendix ZH

p% <40 GeV: 6 xBR= 1242 pb
MCid  Process Nevents &f Y w MClumi(fb1)
167749 Z(—ee)+b 3999000 0.02797 1.092x10° 31.43
167750 Z(—ee)+c 2999995 0.2832  1.433x10° 4.068
167751 Z(— ee) +1 4978999 0.6886  2.820x10° 3.302
167752 Z(— up)+b 3997997 0.02796 1.091x 106 31.40
167753 Z(— up)+c 2937995 0.2835  1.405x10° 3.988
167754 Z(— up)+1 4993999 0.68872 2.827x10° 3.311
167755 Z(—tt)+b 3997994 0.02794 1.091x10° 31.40
167756 Z(— tT)+c 2998998 0.2833  1.434x10° 4.070
167757 Z(— tt)+1 4989999 0.6889  2.825x10° 3.309
40 < p% < 70 GeV: 0 x BR=78.95 pb
MCid  Process Nevents &f Y w MClumi(fb1)
180543 Z(—ee)+b 1199999 0.07067 2.636x10° 47.24
180544 Z(— ee)+c 600000 0.3420  1.580x10° 5.856
180545 Z(— ee)+1 1399998 0.5876  3.958x10° 8.531
180546 Z(— pu)+b 1199000 0.07067 2.637x10° 47.25
180547 Z(— up)+c 599000 0.3414  1.576x10 5.839
180548 Z(— up)+1 1398999 0.5877  3.955x10° 8.525
180549 Z(— tt)+b 1198999 0.07078 2.637x10° 47.24
180550 Z(— 77)+c 600000 0.3416  1.579x10° 5.852
180551 Z(— t7)+1 1399996 0.5876  3.954x10° 8.523
70 < p% < 140 GeV: 6 x BR=33.03 pb
MCid  Process Nevents &f Y MClumi(fb~1)
167797 Z(—ee)+b 1366999 0.08252 2.891x10° 106.0
167798 Z(— ee)+c 999999 0.3550  2.389x10° 20.38
167799 Z(— ee)+1 1999998 0.5626  5.079x10° 27.34
167800 Z(— pu)+b 1394999 0.08259 2.952x10° 108.3
167801 Z(— up)+c 1000000 0.3549  2.391x10° 20.40
167802 Z(— up)+1 1996998 0.5620  5.071x10 27.29
167803 Z(— tT)+b* 1399396 0.08256 2.961x10° 108.6
167804 Z(— tT)+c* 999998 0.3551  2.392x10° 20.41
167805 Z(— tT)+1* 1969693 0.5625  4.999x 10 26.90

Table C.2.: List of the samples for the three lower p% slices of the Z+jets background
with the values for MCid, number of generated events, ox BR, filter
efficiency, Y w' and MClumi calculation. Further details are given in

section @
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C.1. Information on simulated samples

140 < p% < 280 GeV: 6 x BR=4.447 pb
MCid  Process Nevents &f Y MClumi(fb~1)
167809 Z(— ee)+b 999999 0.09526 2.055x10° 482.0
167810 Z(— ee)+c 399999 0.3692  8.881x10* 53.82
167811 Z(— ee)+1 600000 0.5343  1.395x10° 58.50
167812 Z(— puu)+b 987999 0.09532 2.031x 10° 476.4
167813 Z(— uu)+-c 399000 0.3700  8.848x10* 53.62
167814 Z(— uu)+1 599500 0.5344  1.392x10° 58.36
167815 Z(— t7)+b 798998 0.09546 1.642x10° 385.3
167816 Z(— tt)+c* 399999 0.3695  8.865x10* 53.72
167817 Z(— tt)+1* 598897 0.5333  1.389x10° 58.26
280 < p% < 500 GeV: 6 x BR=0.2707 pb
MCid  Process Nevents &f Yw MClumi(fo~1)
167821 Z(—ee)+b 180000 0.1071  3.639x10% 1253
167822 Z(— ee)+c* 49899 0.3874  1.059x10% 101.4
167823 Z(— ee) +1* 49999 0.5062  1.092x10% 79.63
167824 Z(— uu)+b 175000 0.1073  3.542x10% 1220
167825 Z(— up)+c* 50000 0.3864  1.060x10% 101.6
167826 Z(— up)+1* 50000 0.5055  1.095x10% 79.79
167827 Z(— tt)+b 180000 0.1072  3.645x10% 1255
167828 Z(— 17)+c* 50000 0.3848  1.057x10% 101.2
167829 Z(— t7)+1* 49899 0.5072  1.088x10% 79.31
p% > 500 GeV: 6 xBR=0.01490 pb

MCid  Process Nevents &f Yw MClumi(fo1)
167833 Z(—ee)+b 90000 0.1152  1.810x10% 1.051x10%
167834 Z(— ee)+c* 10000 0.3985 2067 346.7
167835 Z(—ee)+1* 50000 0.4848  1.062x10* 1470
167836 Z(— pup)+b 100000 0.1161  2.012x10*  1.169x10*
167837 Z(— uu)+c 10000 0.3986 2073 347.8
167838 Z(— uu)+1 10000 0.4869 2129 294.5
167839 Z(— 17)+b 90000 0.1163  1.812x10% 1.052x 104
167840 Z(— 17)+c* 10000 0.3932 2060 345.7
167841 Z(— t7)+1* 149900 0.4856  3.174x10% 4391

Table C.3.: List of the samples for the three higher p% slices of the Z+jets background

with the values for MCid, number of generated events, ox BR, filter

efficiency, Y w' and MClumi calculation. Further details are given in

section @
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pY¥ < 40 GeV: 6 xBR=1.207x10° pb
MCid  Process Nevents  &f Y MClumi(fb~1)
167740 W(—ev)+b 14997980 0.01279 4.342 x10° 28.12
167741 W(—ev)+c 9998989  0.04900 3.036 x 10° 5.481
167742 W(—ev)+1 49885967 0.9380 2.7867x10’ 2.452
167743 W(— uv)+b 14989485 0.01280 4.318 x10° 27.97
167744 W(— uv)+c 9992484 0.04251 2.864 x10° 5.582
167745 W(— uv)+1 49846965 0.9446  2.7820x10’ 2.448
167746 W(—tv)+b 14925982 0.01279 4.323 x10° 28.00
167747 W(— tv)+c 9993984 0.04615 2.960 x 10° 5.344
167748 W(—tv)+1 49920968 0.9409  2.7875x10’ 2.453

40 < p¥ <70 GeV: 0 xBR=718.2 pb
MCid  Process Nevents &f Y w' MClumi(fb~ 1)
180534 W(—ev)+b 2999998 0.03455 6.740x10° 27.17
180535 W(—ev)+c 4499994 0.1718  1.140x10° 9.400
180536 W(—ev)+I1 16997491 0.7934  4.774x10° 8.344
180537 W(— uv)+b 2996996 0.03455 6.732x10° 27.13
180538 W(— uv)+c 4498998 0.1658 1.137x10° 9.379
180539 W(— uv)+I1 16988984 0.7998  4.771x10° 8.339
180540 W(—1v)+b 2998997 0.03455 6.738x10° 27.16
180541 W(—1v)+c 4498999 0.1692 1.138x10° 9.382
180542 W(—1v)+1 16996492 0.7962  4.776x10° 8.347

70 < p¥ < 140 GeV: 6 xBR=275.7 pb
MCid  Process Nevents &f Y MClumi(fo1)
167761 W(—ev)+b 2000000 0.04593  4.260x10° 33.65
167762 W(—ev)+c 2996497 0.2010  6.893x10° 12.61
167763 W(—ev)+1 4998998 0.7527 1.265%10° 6.074
167764 W(— uv)+b 1998999 0.04592 4.257x10° 33.63
167765 W(— uv)+c 2995999 0.1951  6.877x10° 12.58
167766 W(— uv)+1 4998992 0.7587 1.266x 10° 6.079
167767 W(— tv)+Db* 1999893 0.04594 4.262x10 33.67
167768 W(— Tv)+c* 2999890 0.1989  6.894x10° 12.61
167769 W(— tv)+1* 4999786 0.7548 1.266x 10° 6.080

Table C.4.: List of the samples for the three lower p%v slices of the W+jets

background with the values for MCid, number of generated events,
o x BR, filter efficiency, } w' and MClumi calculation. Further details
are given in section@
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C.1. Information on simulated samples

140 < p¥ < 280 GeV: 6 xBR=34.29 pb
MCid Process Nevents &f Y wi MClumi(fb~1)
167770 W(—ev)+b 4998995 0.06314 1.030x 10° 475.6
167771 W(—ev)+c 1999997 02220  4.290x10° 56.99
167772 W(—ev)+1 2000000 0.7150  4.636x10° 18.87
167773 W(— uv)+b 4983993 0.0632  1.026x10° 473.9
167774 W(— uv)+c 1995998 02165 4.274x10° 56.79
167775 W(—uv)+1 1993999 0.7203  4.622x 10° 18.81
167776  W(—tv)+b 3998996 0.06317 8.237x10° 380.4
167777 W(— tv)+c* 1998688 0.2202  4.286x10° 56.94
167778 W(— tv)+1* 1999994 0.7161  4.641x 10° 18.88
280 < p¥¥ < 500 GeV: 6 x BR=2.023 pb
MCid  Process Nevents &f Y MClumi(fb~1)
167779 W(—ev)+b 899999 0.08299 1.823x10° 1084
167780 W(— ev)+c* 199898 0.2345  4.134x10% 88.13
167781 W(— ev)+1* 499891 0.6820 1.093x10° 78.85
167782 W(— uv)+b 898000 0.08312 1.820x10° 1083
167783 W(— uv)+c* 199998 0.2285  4.127x10* 87.99
167784 W(— uv)+1* 499698 0.6878  1.093x 10° 78.88
167785 W(—tv)+b 898999 0.08305 1.820x10° 1083
167786 W(— 1v)+c* 199998 0.2327  4.125x10% 87.96
167787 W(— tv)+1* 499998 0.68400 1.092x10° 78.77
pY > 500 GeV: 6 xBR=0.1118 pb
MCid  Process Nevents & Y w MClumi(fo1)
167788 W(—ev)+b 100000 0.09952 2.011x 10 1804
167789 W(—ev)+c 10000 0.2444 2034 75.36
167790 W(—ev)+1 10000 0.6574 2097 28.48
167791 W(— uv)+b 90000 0.09946 1.810x10% 1624
167792 W(— uv)+c* 10000 0.2385 2013 74.60
167793 W(— uv)+1* 49700 0.6584  1.050x10* 142.6
167794 W(—tv)+b 90000 0.09973 1.802x10* 1616
167795 W(— 1v)+c* 10000 0.2422 2030 75.22
167796 W(— tv)+1* 49998 0.6600  1.055x 10* 143.4

Table C.5.: List of the samples for the three higher p%’ slices of the W+jets
background with the values for MCid, number of generated events,
o x BR, filter efficiency, Zwi and MClumi calculation. Further details
are given in section @
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C.2. ZH software validation with objects and regions.

The number of selected objects (muons, electrons and jets) is evaluated independently
for each of the selections applied. The rows in bold show the number of events passing the
combination of all the cuts above. Tables [C.6] [C.7] and [C.§] present the validation of muon,
electron and jet selections, respectively. The overlap removal is also validated and the results
are shown in table[C.9] Very few small differences are observed. After all the selections are
applied, these differences are always well below one permille.

1CFHT muons LSV uons

Selection LIP| A |B|C Selection Lip| A |B|C

None | 308776 | 0 | 0 | O None | 23856 | O | 0| O

Number of pixel hits | 283019 | 0 | 0 | O || Pseudorapidity 7926 | 0 | 0| O

Number of SCT hits | 285751 | 0 | 0 | O PT 4778 | 13 | 0 | O

Number of Si holes | 288450 | 0 | 0 | O Loose 2704 | 0 | 0 | O
Number of TRT hits | 284841 | 0 | 0 | O 1 muons

Track quality | 277351 | O | 0| O None | 256436 | 0 | 0 | O

|do| | 189286 | O | 0 | O Track quality | 284140 | O | O | O

|zosin@| | 226882 | 0 | 0| O pr| 103821 | 0 | 0| O

Pseudorapidity | 288450 | 0 | 0 | O |do| | 220896 | O | O | O

pr | 152297 | 89 | 0 | O |zosin@| | 198821 | 0 | O | O

Track isolation | 183454 | -15 | 0 | O || Pseudorapidity | 13264 | O | O | O

Loose | 97162 | 5 | 0 | 0 || Trackisolation | 244383 | 0 | 0 | O

pr>25GeV | 87240 | 36 | 0 | 0 OR pCB+ST | 229096 | -11 | -2 | -1

Signal | 73467 | -1 | 0| O Loose 1653 | -2 | 0 | 0

Loose muons total (u¢B+ST 4y SAFFW Caloy 1101519 | 3 [ 0 | 0

Table C.6.: Validation of the muon selection for the analysis performed in this thesis
(labelled LIP) comparing with three other groups that contributed to the
ZH analysis. The selection column shows each of the cuts applied.
More details in the muons selection were given in table {.5] and in
section E.S.Z.IL The OR pB+ST relates to the overlap removal made
between p BT and p¢“° muons. The LIP columns show the number
of muons of each type that pass the corresponding selection alone for the
LIP group. The remaining columns, labelled A to C refer to the absolute
differences in the number of muons from three different groups relative
to the LIP group, as explained in section @
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Loose | 100885
Er>25GeV | 365261
Signal 72460

Selection LIP | A|B|C
None | 3388073 | 0 | 0 | O
Algorithm | 1293957 | 0 | 0 | O
VeryLooseLH | 156859 | 0 | O | O
Pseudorapidity | 2293302 | 2 [ 0 | O
pr| 868224 |0 |0 |0

Et | 1546277 | 0 [ 0| O

0(0|0

0(0]0

0(0|0

Table C.7.: Validation of the electron selection for the analysis performed in this
thesis (labelled LIP) comparing with three groups that contribute to the
ZH analysis. The selection column shows each of the cuts applied. The
LIP column shows the number of electrons that pass the corresponding
selection alone for the LIP group. The remaining columns, labelled A to
C refer to the absolute differences of the number of electrons from three
different groups relative to the LIP group, as explained in section 4.6
More details on the electron selection are given in section[4.5.2.2]

Selection LIP| A |B|C
None | 1935448 | 0 [ O | O
Non-negative energy | 1935448 | 0 | 0 | O
Pseudorapidity | 1908125 | 0 | 0 | O
pr| 933006 | -5]0 |0

JVF | 1351066 | 0 | 0 | O

Loose | 829169 | -5 | 0 | 0
n<25|1528019 | -2 |00
Signal | 766557 | -5 | 0 | 0
B-hadron | 432065 | -1 | 0 | O
C-hadron 13849 | -2 1 0 | O
Light-hadron | 273676 | -2 | 0 | O
Tau particle 46967 | 0 |0 | O

Table C.8.: Validation of the jet selection for the analysis performed in this thesis
(labelled LIP) comparing with three other groups that contributed to
the ZH analysis. More information on the selection of jets is given in
section #.5.2.3] The LIP column displays the number of jets of each
type that pass the corresponding selection alone for the LIP group. The
remaining columns, labelled A to C refer to the absolute differences in
the number of jets from three different groups relative to the LIP group,
as explained in section@
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Selection LIP | A

Loose jets after (el-jet) | 735501 | -5
Loose jets after (mu-jet) | 730537 | -2
Loose muons after (jet-mu) | 98578 | O
Loose electrons after (mu-e¢) | 100572 | O
/.LC“I" muons after (e-mu) 1506 | -2

N oNoNoNollv!
N oNoNoNalle)

Table C.9.: Validation of the overlap removal selection for the analysis performed
in this thesis (labelled LIP) comparing with three other groups that
contributed to the ZH analysis. The selection column represents the steps
taken in the overlap removal and are described in section[#.5.2.4]

p%—region: p% <90 GeV 90 < p% <120 GeV || 120 < p% < 160 GeV ‘

b-tag-region | LIP| A | B|C| LIP| A |B C|LIP A|lB C
litag2jets | 2335 | -1 | 0| O 614 |-1] O 0443 0] O 0
mmtag2jets | 3823 | -1 | 0| O] 955|-2| O 0 718, 0| O 0
tttag2jets | 4159 | -3 | 0| O | 1061 | -2 | O 01 800 |-1]-1 -1
lltag3jets | 589 | -1 | 0| O 172 0| O 0134, 0| O 0
mmtag3jets | 893 | -1 | 0| 0| 283 | 0| O 0222, 0| O 0
tttag3jets | 937 | 0| 0| O 340| 0] O 01267 (-1] 0 0
>4jets | 473 0|0 184 0 01 165 0 0

p%-region: | 160 < p% < 200 GeV || p% > 200 GeV

b-tag-region | LIP | A | B ClILIP| A|B|C
lltag2jets | 214 | O | O 0|/174, 0| 0] O
mmtag2jets | 332 | 0| O 00405 0] 00
tttag2jets | 412 |1 0| O 0445 |-1{ 0|0
litag2jets | 82 | 0| O 0| 96| 0| 0| O
mmtag2jets | 135 | 0| O 0199, 0| 0| O
tttag2jets | 175 0| O 0183 |-1]0/|0
>4 jets | 107 0 01 172 00

Table C.10.: Validation of the b-tagging and p%—regions for the analysis performed
in this thesis (labelled LIP) comparing with three other groups that
contributed to the ZH analysis. These regions are described in
section 4.5.4] The LIP column displays the number of events of each
region the LIP group. The remaining columns, labelled A to C refer
to the absolute differences in the number of events from three different
groups relative to the LIP group. Missing values correspond to values
not reported by a group.
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C.3. Distributions for the fit

C.3. Distributions for the fit

This section shows the distributions that are used in the global fit discussed in section[4.9]
and it includes those presented for the ZH results in section d.T1] The first (last) column of
figures shows the invariant mass distributions for the two b-tagged jets before (after) the
global fit. The figures in the centre are the transformed m,; distributions, as discussed in
section 4.9.1] that are used for the background normalization and for the signal strength
parameter extraction. The five rows in each figure correspond to the 5 p%-bins used in
the fit (see section 4.5.4)). Table [C.11] makes the correspondence between the signal and
control regions of the analysis and the respective distributions / figures. For the region of
1-tag, the distributions that enter in the global fit are the MV 1c weight of the jets with the
largest transverse momentum. There is no transformation on this variable, so the figures
only show the distributions before the fit on the left, and after it on the right. Since the
main purpose of this distribution is the evaluation of the normalization of the Z+non-b-jet
background, only the first p% bins are used. Each figure shows the distribution of m,j; or
MV lc of the backgrounds stack together, with the expected number of signal events (1 = 1)
on top. Additionally, the prefit histograms (left) show with the red line the ZH distribution
alone multiplied with a factor for visibility. The post fit distributions have also a dashed blue
which represents the initial simulation distribution before the global fit.

Region Figure

LL signal region with events with 2 jets | Figure|C.1

LL signal region with events with 3 jets | Figure [C.4

MM signal region with events with 2 jets | Figure|C.2

MM signal region with events with 3 jets | Figure|C.5

TT signal region with events with 2 jets | Figure|C.3

TT signal region with events with 3 jets | Figure|C.6

Top e — 1 control region with events with 2 jets | Figure|C.7
1-tag control region with events with 2 jets | Figure |[C.8
1-tag control region with events with 3 jets | Figure|C.9

Table C.11.: Correspondence between signal and control regions and the respective
figures.
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Figure C.1.: Invariant mass distributions for the two b-tagged jets. Further details
are given in appendix[C.3]
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Figure C.2.: Invariant mass distributions for the two b-tagged jets (continued).
Further details are given in appendix
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Figure C.3.: Invariant mass distributions for the two b-tagged jets (continued).
Further details are given in appendix [C.3]
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Figure C.4.: Invariant mass distributions for the two b-tagged jets (continued).
Further details are given in appendix
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Figure C.5.: Invariant mass distributions for the two b-tagged jets (continued).
Further details are given in appendix [C.3]
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Figure C.6.: Invariant mass distributions for the two b-tagged jets (continued).
Further details are given in appendix
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Figure C.7.: Invariant mass distributions for the two b-tagged jets (continued).
Further details are given in appendix [C.3]
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Figure C.8.: MV Ic weight distributions of the b-jet in events in the /tag region with
2 jets. Further details are given in appendix[C.3]
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Figure C.9.: MV 1c weight distributions of the b-jet in events in the /tag region with
3 jets. Further details are given in appendix [C.3]

258



D. Acronyms
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r

TrkWidth
nTrk

AF

AFII
ATLFAST-II
AOD
ATLAS

AUET2
BDT
BERT
BR

C/A
CaloTag
CB
CERN
CMS

CTB

DAQ

DB

EB

EF

Egamma
EM

EMIES
EM+JES
EM+JES+GSC
EMEC
EMiso

ESD

EW
FastCaloSim
FCal

fEM3

FSR
FTFP

Sriteo

g-jet
GRL
GSC
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Width of a particle - inverse of decay rate

Track width of the jet

Number of tracks inside the jet

ATLAS Fast Simulation with FastCaloSim

ATLAS Fast Simulation with FastCaloSim

ATLAS Fast Simulation with FastCaloSim

Analysis Object Data

A Toroidal LHC AparatuS. Refers to the detector, to the experiment or
to the collaboration

ATLAS underlying event tune 2

Boost Decision Tree

Bertini model for nucleon-nucleon classic scattering
Branching ratio

Cambridge/Aachen jet cluster algorithm

Calorimeter-tagged muon

Combined muon

Nuclear Research European Centre

Compact Muon Solenoid. Refers to the detector or to the collaboration.
The direct competition of the ATLAS experiment

Combined Test Beam

Data Acquisition

Direct balance method

Event Builder

Event Filter

(stream) events selected by electron and photon based triggers
Electromagnetic

Jet energy scale based on the electromagnetic calibration

Jet energy scale based on the electromagnetic calibration
GSC applied on top of EM+JES

LAr electromagnetic end-cap calorimeter of ATLAS
Electromagnetic isolation ring

Event Summary Data

Electroweak

Fast Calorimeter Simulation

Forward calorimeter of ATLAS

Ratio between energy deposited in last layer of EM calorimeter and the
total energy of the jet at the EM scale

Final state radiation

FRITIOF model with Precompound

Ratio between energy deposited in first layer of TileCal and the total
energy of the jet at the EM scale

gluon initiated jet

Good Runs List

Global Sequential Calibration



hadCalib
HADcore
HADiso
HEC
HL-LHC
HLT

ID

ISR

ISR

JER
JetTauEtMiss

JVF
L1

L2
LAr
LC+JES
LCW+JES
LCW
LEP
LH
LHC
LIP
LL
LLH
LO
1g-jet
MBTS
MC
MDT
MET
MIP
MM
MPV
MS
MV1
MVlic
MVA
NLO
NNLL
NNLO
Npy
OR
PES

Hadronic calibration triggers

Hadronic core region

Hadronic isolation ring

Hadronic end-cap calorimeter of ATLAS
High Luminosity LHC

High Level Trigger

Inner detector - inner tracker

Intersecting Storage Rings

Initial state radiation

Jet energy resolution

(stream) events selected by jet, tau and missing transverse energy based
triggers

Jet vertex fraction

Level 1 of trigger in ATLAS during Run-1
Level 2 of trigger in ATLAS during Run-1
Liquid Argon calorimeters

Jet energy scale based on the LCW

Jet energy scale based on the LCW

Local hadronic cluster weightning

Large Electron-Positron collider
Likelihood

Large Hadron Collider

Laboratério de Instrumentacdo e Fisica Experimental de Particulas
Light-light tagging

log-Likelihood

Leading order

Light-quark initiated jet

Minimum Bias Trigger Scintillators
Monte Carlo simulation

Monitored Drift Tubes of ATLAS
Missing transverse energy

Minimum ionising like particle
Medium-medium tagging

Most probable value

Muon Spectrometer of ATLAS

Default b-tagger based on multivariate analysis
Same as MV 1 but with better c-jet rejection - used in ZH analysis
Multivariate analysis

Next to leading order

Next to next to leading log

Next to next to leading order

Number of primary vertices

Overlap removal

Photon energy scale
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PDF
pdf
POPOP
PS

PS

PT
PTP
PU
QCD
QED
QGSP
RDO
RDO
RMS
ROI
ROS
RPC
Run 1
Run 2
SA

SC
SCT
SF
SM
SPPS
SPS
ST
TDAQ
TGC
TileCal
TMVA
TRT
TT

TT
UE
VH

WH

ZH
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Parton distribution function

Probability distribution function

1,4-bis-(2-(5-phenyloxazol-2-yl))-benzene

Proton Synchrotron accelerator in CERN

Prescale

Pass-through

para-terphenyl-benzene

Pile-up

Quantum chromodynamics

Quantum electromagnetic dynamics

Quark-Gluon String model with Precompound

Random triggers at L1

Raw Data Object

Root mean squared

Region of interest

Readout system

Resistive Plate Chambers of ATLAS

First LHC data taking from 2010 to 2012

Second LHC data taking from 2015 and still on-going

Standalone muon

Synchro-Cyclotron

Semiconductor tracker of ATLAS

Scale factor

Standard Model of particle physics

Super Proton-Anti-Proton Synchrotron

Super Proton Synchrotron

Segmented-Tagged muon

Trigger and Data Aquisition of ATLAS

Thin Gap Chambers of ATLAS

Tile hadronic barrel Calorimeter of ATLAS

Toolkit for MVA

Transistion Radiation Tracker of ATLAS

Trigger towers

Tight-Tight tagging

Underlying event

channel or analysis of the search for the Higgs boson in association with a
vector boson (W or Z boson), in which the Higgs decays into a b-quark pair
and the vector boson decays leptonicaly

channel or analysis of the search for the Higgs boson in association with a W
boson, in which the Higgs decays into a b-quark pair and the W boson decays
into a charge lepton (muon or electron) and a neutrino

channel or analysis of the search for the Higgs boson in association with a Z
boson, in which the Higgs decays into a b-quark pair and the Z boson decays
into two charge leptons (muons or electrons)



List of Figures

[1.1. The Standard Model elementary particles.| . . . . . ... ... ... .. ...
(1.2. Illustration of the spontaneous symmetry breaking in two dimensions.| . . . .

2
7

[1.3. Feynman diagrams for the main Higgs boson production processes at the LHC.| 9

(1.4. Higgs production cross section and respective uncertainties as a function of

the Higgs bosonmass.| . . . . .. ... .. ... ... ... . .. ... 10

[1.5. Feynman diagrams for the Higgs boson decays.| . . . . . ... ... .. ... 11
[1.6. Branching ratios with total uncertainty and total decay width of the Higgs [
[ bosonas a functionof itsmass.) . . . . . . ... Lo Lo 11
[1.7. Standard Model best fit for the Higgs boson mass with and without consid- |
ering the measurements of ATLAS and CMS experiments.| . . . ... .. .. 13

|1.8. Measured k-factors relation between fermions and bosons, for the different |
decay modes of the Higgsboson.| . . . . . ... .. ... ... ... ..... 15

(1.9." Production cross section for a given channel and correspondent event rate |
estimate production for the nominal LHC Luminosity.|. . . . . . ... .. .. 16

[2.1. The CERN accelerator complex and locations of the main experiments.| 21
2.2. The ATTAS detector] . . . . . . . .. .. . . 22
[2.3. Solenoid and toroid barrel of the ATLAS magnetic system.| . . . . . ... .. 24
2.4, Inner detector and its sub-detectors.] . . . . . . ... ... 25
[2.5. Transverse and one quadrant side views of the muon spectrometer.| . . . . . . 26
[2.6.  ATLAS calorimeter system.|. . . . . . . . . . .. ... ... ... ... 27
[2.7. Electromagnetic shower 1 the accordion shaped electromagnetic calori- |
meter. Segmentation of the LAr electromagnetic barrel calorimeter.| . . . . . 28

[2.8. Representation of Tile calorimetercells.| . . . . .. ... ... ... .. ... 29
[2.9. Overview of the trigger and data acquisition system.|. . . . . . . . .. .. .. 32
[2.10. Trigger towers distribution for one octant of the calorimeter in the 1 — ¢ plane.| 33
[2.11. Sliding window representation with 4 x 4 trigger towers.| . . . . . .. .. .. 34
[2.12. Pileup information in the ATLAS detector.|. . . . . . .. ... .. ... ... 38
[2.13. Data flow from real events from the detector until the analysis.| . . . . . . .. 39
[2.14. Example of application of the sliding-window algorithm to find clusters.| . . . 40
2.15. Electronic noise for the ATLAS calorimeters . . . . ... ... ... .... 41
[2.16. Pileup noise for the Tile calorimeter. Total noise for the LAr calorimeters.| . . 42
[2.177. Example of application of the topological algorithm to some clusters.| 43
[2.18. Sketch of a track trajectory with its main information.| . . . . . . .. .. . .. 44
[2.19. Muon reconstruction efficiencies for different muon types.| . . . . . . .. .. 48

263



List of Figures

[3.16. Relative jet energy response and systematic uncertainties in the forward region.| 96

264

[2.20. Reconstruction efficiency scale factor for combined muons.|. . . . . . . . .. 49
[2.21. Trigger efficiency and trigger efficiency scale factor for events with either |

[ mu24i or mu36 muon triggers. . . . . . ... ... 50
[2.22. Di-muon 1nvariant mass distribution of Z — uu candidate events.| . . . . . . 51
[2.23. Electron 1dentification efficiency in 2012 Z— eeevents.|. . . . . . . . . . .. 53
[2.24. Electron reconstruction efficiency and the reconstruction-identification effi- |

| cilency combination.| . . . . . ... ..o Lo 54
[2.25. Trigger efficiency obtained at the three levels for electrons.| . . . . . . . . .. 56
[2.26. Electron energy scale most probable value and energy resolution.|. . . . . . . 57
[2.277. Correction parameters of the electron momenta for scale and resolution.| . . . 58
12.28. Di-electron 1nvariant mass distribution of Z— ee candidate events.| . . . . . . 59
[2.29. Missing transverse energy distribution for Z — pp event.|. . . . . . . . . .. 61
[2.30. Sketch of a collision showing the different typesof jets.| . . . . . . . . . . .. 62
[2.31. Fluxogram of the sequential clustering method to reconstruct jets.| . . . . . . 63
[2.32. Reconstruction of the jets of an event using three sequential clustering |

[ algorithms.| . . . . . . .. .. 64
[2.33. Performance of the MV1 b-tagging algorithm. . . . . . . .. ... ... ... 67
[2.34. Measured b-tagging efficiencies and scale factors obtained for b-jets, c-jets |

| and light flavoured jets.| . . . . . . .. . ... oL 68
[2.35. Next-to-leading order 1n electroweak Feynman diagrams of the ZH produc- |
[ tionmechanisml. . . . . . . . . . .. 70
[3.1. Overview of the ATLAS jet calibration m 2011, . . . . . ... ... .. ... 77
[3.2. Voronoi regions for one event seeded by the clusters in the calorimeter.|. . . . 78
[3.3. Dependence on the Npy and on the (i) of the reconstructed jetpr. . . . . . . 79
3.4. Resolution on the 1 and ¢ positionof thejet.| . . . . . .. ... ... .. .. 80
3.5. pkeo/ptreh distributions obtained for three py regions| . . . . . ... .. .. 82
[3.6.  Definition of the n-pt bi-dimensional bins. Response at the EM scale.| . . . . 82
[3.7. Jet energy response with the polylogarithmic function.| . . . . . .. .. . .. 83
[3.8. Jet energy response and resolution.| . . . . . ... oL oL 85
[3.9. Feynman diagrams for the leading order production of single jets associated |

[ toaphotonoraZboson.| . . . ... ... ... o . 86
3.10. (pk'/p%) as a function of the p# and systematic uncertainty, . . ... .. .. 87
3.11. (pk'/pk) as a function of the p’. and systematic uncertainties,. . . . . . . . . 89
3.12. (pr'/pel) as a function of the p°! and systematic uncertainties| . . . . . 91
[3.13. Average relative weight of each in situ method for the combined residual |
rrection and the inverse of the residual correctionf. . . . . . . . .. .. .. 92

[3.14. Relative systematic uncertainties for the three methods for the residual in situ |

| correction weighted by their contribution to the in situ correction.. . . . . . . 93
[3.15. Relative uncertainty for the reduced set of uncertainty components.|. . . . . . 94



List of Figures

[3.17. Relative jet energy response systematic uncertainty.| . . . . . . . . . ... .. 97
[3.18. Jet energy response and response difference for light quark and gluon [

mitlated jets.. . . .o ..o 98
[3.19. Fractional b-jet systematic uncertainty.| . . . . . . .. .. ... ... .. ... 100

[3.20. Calorimeter jet energy measurement and systematic uncertainties using tracks.{102
[3.21. Jet energy response difference between the full and the fast simulation of the |

detector with for jets calibrated with EM+JES.|. . . . .. ... ... ... .. 103
[3.22. Sketches of the E /p observable definition and of the estimation of the neutral |
background from the E/p observable| . . . . ... ... ........... 105

[3.23. Distribution of the raw E/p observable and the background E /p estimation.| . 106
[3.24. Corrected E/p as a function of the track momentum for the minimum bias |

trigger and the muon trigger. Momentum distribution of the tracks chosen

for E /p studies using the minimum bias, the muon and the hadCalib triggers,

| with the number of entries normalised] . . . . . . .. .. ... .. ... ... 108
[3.25. Sketches of the steps of the hadCalib trigger. Corrected E/p for the minimum |
bias and the hadCalib triggers.| . . . . . . .. .. .. ... ... ... ... 109

[3.26. Corrected E/p for the random trigger and for the three improved hadCalib |
(IIZEETS.| . . . . o o o e 110

[3.27. Diagram of the LIRDO-based hadCalib trigger algorithm with a 9 GeV [

[3.28. Prescales applied during the runs considered for the E/p analysis,| . . . . . . 112
[3.29. Corrected average of the E /p distribution for the random, hadCalib_tr9_L1RDO0

and hadCalib_tr18_L1RDO triggers. Statistics available for the (E/p"™") and

(E/pPC) histograms.| . . . . .. .. ... ... 113
3.30. E/pmeasurement in CTB.| . . . ... ... ... .. ... ......... 113
3.31. (E/p)°"" as a function of the single hadron momentum in two || regions.| . 114
[3.32. (E/p)°"" as a function of the pileup estimators Npy and (1), . . . . . . . .. 116
[3.33. Mean jet response and uncertainty obtained with single hadron response.[. . . 116
(3.34, Illustration of the GSC method.. . . . . . ... ... ... ... ... .... 117
[3.35. Example of the application of the GSC calibration to correct the jet energy [
response with respect to TrkWidth.|. . . . . . . . .. ... ..o L. 121
[3.36. Jet energy response as a function of the GSC properties for jets with [
40 <P <60 GeV. ... 122
[3.37. Jet energy response as a function of the GSC properties for jets with [
250 < U <300GeV . ... 123
3.38. Jet energy response and resolution as a function of p’T””h. ........... 125

3.39. Distributions of the GSC properties for jets with 40 < p*"* < 60 GeV, for |

| different jet flavour compositions] . . . . . ... ... ... ... ... .. 127

3.40. Distributions of the GSC properties for jets with 250 < p#“"* < 300 GeV, |

for different jet flavour compositions] . . . . . .. . ... ... ... .... 128

265



List of Figures

3.41. Jet energy response and resolution as a function of p7- uth for the different jet |
| flavours compositions] . . . .. ... ... 129
|3.42. b-jet energy response as a function of pf- uth for three t7 simulated samples.| . 131
[3.43. b-jet energy response difference between the two ACERMC+PYTHIA6 |
| samples and the POWHEG+PYTHIA6 sample for the ¢f process.|. . . . . . . . 132
[3.44. b-jet energy response for the signal process for the ZH analysis and for the |
| three leading backgrounds.| . . . . . . . ... ... o o 0oL 133
[3.45. b-jet energy response difference between for the signal process for the ZH |
[ analysis and each of the three leading backgrounds.| . . . . . . ... ... .. 134
[3.46. Distributions of the GSC properties for jets with 40 < pr < 60 GeV, ob- |
[ tained for the detector full and fast simulation . . . . . .. . ... ... .. 136

[3.48. Jet energy response and response difference between the fast and full |
| simulation of the detector using the inclusive di-jet sample| . . . . . . . . .. 138
[3.49. Jet energy response and response difference between the fast and full |
| simulation of the detector using the inclusive ¢ sample.| . . . . . . .. .. .. 139
[3.50. Invariant mass of the two reconstructed b-tagged jets in the ZH signal sample.| 142
(3.51. Invariant mass ratio between the reconstructed and the truth Higgs boson |
[ invariant mass in the ZH signal sample.| . . . . .. .. ... ... ... .. 144
4.1. Scheme of the treatment of events in the ZH analysis.| . . . . . ... .. ... 151
4.2, Peak luminosity per fill during 2012 data taking period and total integrated |
| luminosity delivered, recorded and good for analysis.| . . . . . ... ... .. 152
“4.3. Feynman diagram of the production of the Higgs boson associated to a Z |
| boson, mitiated by quarks.| . . .. ... oo o000 156
4.4. Feynman diagram of the production of the Higgs boson associated to a Z |
[ boson, initiated by gluons.] . . . . . ... ... o Lo 156
“4.5. Leading order Feynman diagrams of the three irreducible backgrounds of the |
[ ZHchannell . . . . . . .. .. L 157

4.8. Distributions of the invariant mass of the lepton pair and the missing |
| franSVErSe ENETEY.| . . « v v v v v v e e e e e e e e e e e e e 167
4.9. Distributions of the distances between the two b-jets and the transverse |
| momentum of the leadingb-jet.|. . . . . . ... ... oL 169
4.10. Schematic diagram of the three b-tagging signal regions and the two control |
[ TEEIONS.| . . . v o o e e e e e e e e e e e e 177
@.11. Distribution of the transverse momentum of the Z boson for the signal |

process and the background.| . . . . ... ... o oL L.

266



List of Figures

@.12. Distribution of the average number of interactions per bunch crossings and [
| of the longitudinal position of the leading primary vertex for signal and [

| background.| . . . . . ... 182
4.13. Relative electroweak NLO corrections for the p% distribution in the signal |
| PrOCESS. .« v v v v i e e e e e e e e 183
4.14. Comparison between the distributions of p% and A¢ before and after applying |
[ the SHERPACOITECHONS] . . . . .« v v vttt e e 184
.15. Distribution of the invariant mass, m,;, for the qqZH signal sample| . . . . . 185
4.16. Invariant mass of the b-jet pair in the signal sample qqZH after the ZH event |
[ selection using the default jet calibration, EM+JES, and GSC.| . . .. . . .. 187

@.17. Invariant mass of the b-jet pair, 1n the signal sample qqZH, after the ZH event [
| selection. Result of applying the (i-in-jet correction and the kinematic fit on [
| topof GSC.| . . . . . o 188

.18. Transfer function used as input for the kinematic it . . . . . . ... ... .. 191

#.19. Invariant mass of the two b-tagged jets for four signal regions and in the [
| top e-U control region. MV 1c weight of the leading b-tagged jet 1n the /zag [

[ TEEION., . . . . . e e e e e 193
#.20. Example of two m,; distributions entering the global fit after passing the |
[ re-bin transformation . . . . . . ... Lo Lo 196
4.21. Experimental systematic uncertainty on the invariant mass distribution ob- |
| tained separately for different physicsobjects.| . . . . . .. ... ... ... 197
.22, Invariant mass of the two b-tagged jets afterthe fit.| . . . . . . .. ... ... 206
4.23. MV 1c weight distribution 1n the /-fag control region. Invariant mass of the [
| two b-tagged jets after the fit in the fop e-u control region.| . . . . . . . . .. 207

@4.24. BDT output distribution 1n the 2-lepton channel after applying the global fit.| . 209
.25. Distribution of the logarithm of the ratio between the number of events from [

| signal to those from background.| . . . . . ... ... ... 00 0oL 210
4.26. Signal-strength parameter, (U, obtained from a global fit.|. . . . . . . . . . .. 211
IA.1. Corrected average of the E /p distribution for the random, hadCalib_tr9_LIRDO |

[ and hadCalib_tr18_LIRDO triggers.| . . . . .. ... ... ... ... .... 231
[B.1. Jet energy response as a function of the GSC variables. Two additional pr- |

[ bins for the 0.0 <1 < 0.3 and one additional 1 region: 0.8 <n < 1.2f. . . .233
[B.2. Jet energy response and resolution for three additional n-regions.|. . . . . . . 234
[B.3.  Dustribution of the GSC properties. Two additional pr-bins for the 0.0 <n < 0.3 |

[ and one additional n region: 0.8 <N < 1.2 . .. ... .. ... ... .... 235
[B.4. Jet energy response for the different jet type samples for three additional [

| M-TEZIONS.| .« . v v v v v e v e e e e e e e e e e e e e 236

[B.5. b-jet energy response and response difference with ¢ simulated samples. [
| ‘Two additional pr-bins for the 0.0 <1 < 0.3 and one additional 1 region: [
| 0.8<n<1.2]. . . 237

267



List of Figures

[B.6. b-jet energy response and response difference for the signal process for the |
| ZH analysis and for the three leading backgrounds. Two additional pr-bins |
[ for the 0.0 < 1 < 0.3 and one additional 1 region: 0.8 <1 < 1.2 . . .. .. 238

[B.7. Daistributions of the GSC properties for the inclusive di-jet sample using the |
| full and fast simulation of the detector for two additional pr-bins for the |
| 0.0 < n <0.3 and one additional 1 region: 0.8 <n <1.2) . . ... ... .. 239

[B.8. Jet energy response for the inclusive di-jet events samples and the inclusive |
| tt sample. Jet energy response difference between the parametrised and the |
| full simulation for the di-jet and #¢ samples.| . . . . . .. ... .. ... ... 240

(C.1. Invariant mass distributions for the two b-tagged jets.| . . . . . . . . . . . .. 250

|C.2. Invariant mass distributions for the two b-tagged jets (continued).|. . . . . . . 251

|C.3. Invariant mass distributions for the two b-tagged jets (continued).|. . . . . . . 252

|C.4. Invariant mass distributions for the two b-tagged jets (continued).|. . . . . . . 253

(C.5. Invariant mass distributions for the two b-tagged jets (continued).[. . . . . . . 254

|C.6. Invariant mass distributions for the two b-tagged jets (continued).[. . . . . . . 255

(C.7. Invariant mass distributions for the two b-tagged jets (continued).|. . . . . . . 256

(C.8. MVlc weight distributions of the b-jet in events in the /tag region with 2 jets.| 257

(C.9. MVIc weight distributions of the b-jet in events 1n the /7ag region with 3 jets.| 258

268



List

of Tables

[1.1.  Laist of properties of the particles in the Standard Model.| . . . . . ... . .. 3
[2.1.  Summary of the MV1c properties for the three operating points.| . . . . . . . 69
[2.2. Bottom and charmed hadrons selected by the filter present in the SHERPA [

V+jets backgrounds.| . . . . ..o oo oo 72
[3.1." Mean and width of a fit to a Bukin function of the m,; distributions when the |

b-jets are calibrated with EM+JES and GSC). . . . . .. ... ... ... .. 141
3.2. Mean and width of a Gaussian fit to the m®/ mg,-t‘th ratio distribution |

obtained when jets are calibrated with EM+JES and GSC.| . . . . . . . . .. 143
{.1. Calculation of the producto xBR.. . . . .. ... ... ... ... .. ... 150
4.2, Percentage of the up-time with good quality data of each sub-detector [

obtained during 2012 data taking [137].| . . . . . .. ... .. ... ... .. 153
@.3.  Information on the simulation samples for the signal and backgrounds.|. . . . 154
4.4, List of triggers used in the ZH analysisin 2012.f . . . . ... ... ... ... 162
4.5, List of selection conditions for the muons. . . . . . . ... ... ... ..., 163
4.6. p% dependent selection on the distance AR between the two b-jets.| . . . . . . 170

477 Expected number of surviving events after each selection condition for the [

signal and the main backgrounds.|. . . . . . . .. .. ... ... ... .. .. 172
4.8. Expected number of surviving events after each selection condition for the |
V+jetbackgrounds.| . . . . ... Lo L 174
4.9. Expected number of surviving events after each selection condition for the [
single top and diboson WW and WZ backgrounds.| . . .. .. ... .. ... 175
4.10. Number of surviving events for the signal, signal+total background and data.| 176
{.11. Validation of the event selection for the analysis performed 1n this thesis |
comparing with three other groups that contributed for the 2-lepton analysis.| . 180
{.12. Summary table enumerating the corrections applied to the MC simulated [
samples inthe ZH analysis.|. . . . . ... ... ... ... ... ... ... 181
4.13. Result from applying a Bukin fit to the invariant mass distributions, before [
and after implementing the GSC calibration.| . . . . . . ... ... ... ... 189
@.14. Improvement observed 1n the invariant mass resolution, resulting from |
applying the Bukin fit to the mvariant mass distributions obtained with the |
U-in-jet correction and the kinematic fiton topof GSC.| . . . . . . .. .. .. 190
@.15. Summary of the uncertainty sources considered in the signal samples.| . . . . 200

269



List of Tables

4.16. Summary of the uncertainty sources considered in the Z+jets samples.| . . . . 201
4.17. Summary of the uncertainty sources considered in the ¢ process.| . . . . . . . 202
4.18. Summary of the uncertainty sources considered in the ZZ process.| . . . . . . 203
4.19. Signal strenght parameter with the total uncertainty resulted from the global |
I T 205
4.20. Floating background normalisations and uncertainties.| . . . . ... .. . .. 205
4.21. Changes 1n the selection between the cut-based analysis and the multivariate |
| analysiS. . . . . L. L 208
(C.1. List of the samples for signal, and the top and diboson backgrounds with the |
[ simulation and normalization information.) . . . . . .. ... ... L 241
IC.2. List of the samples for the three lower p% slices of the Z+jets background |
L with the simulation and normalization information. . . . . . . .. ... ... 242
IC.3. List of the samples for the three higher p% slices of the Z+jets background |
L with the simulation and normalization information . . . . . ... ... ... 243
IC.4. List of the samples for the three lower p% slices of the Z+jets background |
L with the simulation and normalization information. . . . . . . ... ... .. 244
IC.5. List of the samples for the three higher p7 slices of the Z+jets background |
L with the simulation and normalization information) . . . . . ... ... ... 245
|C.6. Validation of the muon selection for the analysis performed in this thesis |
| comparing with three other groups that contributed to the ZH analysis.| . . . . 246
|C.7. Validation of the electron selection for the analysis performed 1n this thesis |
[ comparing with three other groups that contributed to the ZH analysis.| . . . . 247
(C.8. Validation of the jet selection for the analysis performed in this thesis |
| comparing with three other groups that contributed to the ZH analysis.| . . . . 247
(C.9. Validation of the overlap removal selection for the analysis performed 1n this |

thesis comparing with three other groups that contributed to the ZH analysis.|. 248

C.10. Validation of the b-tagging and p4%-regions for the analysis performed in this |

thesis comparing with three other groups that contributed to the ZH analysis]. 248

[C.11. Correspondence between signal and control regions and the respective figures.|249

270



	Abstract
	Resumo
	Sumário
	Agradecimentos
	The Higgs boson in the Standard Model
	Introduction
	Particles in the Standard Model
	Description of electroweak theory
	The Higgs mechanism
	Higgs boson phenomenology
	Higgs boson production at LHC
	Higgs boson decay modes

	Higgs discovery and measurements
	The Hb decay search

	The ATLAS Experiment
	CERN and the LHC
	Main experiments

	The ATLAS detector
	Magnetic system
	ATLAS Trackers
	Calorimeters

	Trigger and data acquisition
	Introduction
	Level 1
	High level trigger
	Further details

	The pileup challenge
	Data reconstruction for real events
	Detector object reconstruction
	Sliding window and topological clusters
	Track and vertex finding

	Reconstruction and performance
	Muons
	Electrons and photons
	Taus
	Neutrinos and missing transverse energy
	Jets
	Identification of b-jets

	Monte Carlo simulation

	Jet calibration and performance
	Introduction
	Motivation
	Jet calibration scheme

	Pileup offset correction
	Origin correction
	Jet energy scale calibration
	Calibration procedure
	Jet energy scale calibration performance

	Residual in situ calibration and systematic uncertainties
	Jet balanced against a Z boson
	Jet balanced against a photon
	Jet balanced against multi-jet recoil system
	Combination of the in situ measurements

	Calibration of jets in the forward region
	Systematic uncertainties on the jet energy scale
	Light flavour systematic uncertainties
	Heavy flavour systematic uncertainty
	Uncertainty on the parametrized simulation of the calorimeter

	Single hadron response
	Method description
	Trigger studies for E/p
	Performance of hadCalib in E/p measurement
	Single hadron results

	The global sequential calibration
	Introduction
	GSC derivation and performance for di-jet inclusive MC samples
	Flavour performance
	Evaluation of GSC specific systematic uncertainties
	Invariant mass studies
	Summary of the GSC conclusions


	ZH analysis
	Introduction
	Overview of the ZH b  analysis
	Data sample and integrated luminosity
	ZH signal and background characterization
	Signal process
	Leading backgrounds
	Remaining backgrounds
	Multi-jet background estimation and uncertainty

	Event selection
	Triggers
	Quality criteria
	Event topology selection
	Event categorization

	ZH analysis software validation
	Corrections to the simulation
	Improvements to mb  resolution
	Global sequential calibration
	Correction for muon inside the jet
	Kinematic fit

	Signal extraction and background normalization
	The statistical model

	Systematic uncertainties in the ZH analysis
	Experimental systematic uncertainties
	Uncertainties in the modelling of the ZH signal process
	Uncertainties in the modelling of the Z+jets background
	Uncertainties in the modelling of the t background
	Uncertainties in the modelling of the ZZ background
	Uncertainties in the modelling of the remaining backgrounds

	ZH analysis results
	Combined VH analysis
	Multivariate analysis
	Run-1 VH results


	Conclusions and outlook
	Bibliography
	Appendices
	Appendix E/p
	Appendix GSC
	Appendix ZH
	Information on simulated samples
	ZH software validation with objects and regions.
	Distributions for the fit

	Acronyms
	List of Figures
	List of Tables

