Disclaimer

This note has not been internally reviewed by the D@
Collaboration. Results or plots contained in this note were only
intended for internal documentation by the authors of the note
and they are not approved as scientific results by either the
authors or the D@ Collaboration. All approved scientific results
of the D@ Collaboration have been published as internally
reviewed Conference Notes or in peer reviewed journals.

DO Clock Control and Test Program V3.02
4/30/91
R. Angstadt
(Original Version 1.03 by Bill Graves 1/31/90)

Please refer to the file "CLOCK.VER" for details of version
differences, enhancements, and bug fixes.

Background

This is an upgrade built on the previous version of
the clock software, "CT", originally written by Bill Graves.
The re-write was driven by the need to address more Selector
Fanout Modules than the 25 the original program allowed.
Also the original version was restricted to only one VME
crate by the Bit3 Interface. The new version features a
"device independent interface” programming style that allows
essentially the same program to be run either over the
Token Ring Network to communicate with any VME node on
the Network or to be run over the Bit 3 in the lab for testing.
See "IMPLEMENTATIONS" below.

Main Enhancements

Most of the original notes still apply to the actual
routines being called by the sub-menu picks but some of
the sub-menus have had considerable re-working or are all
new. The user interface has been moved more in the direction
of "PCPLOT" wherever it was quick and easy to do so for
quicker response to the user and for maintainability by
me. In places where the former interface was clearer and
the code was more difficult to understand the former
interface was left intact. This also helps provide continuity.

Generally all of the old *.txt file formats of this
version of "CT" are not the same the old version and are
incompatible with it. An exception is the Static and Dynamic
data files used to download (or upload) from the Sequencer
which have not been changed.

The old *.txt file formats were changed because they did
not have enough information in it's format, i.e., no VME Node
numbers. Also this versions file format is much more readable
with a comment string following the value so that file can be
easily edited by any standard program text editor. Another
reason no backward compatibility was maintained is because
almost all of the file handling software of the original version
has been replaced by more robust routines so that most run time
errors that used to occur when accessing non-existent files
should be eliminated. Also the addresses are now 32 bits and
are written by the program as hexadecimal values as opposed
to the high byte of a 24 bit address (in decimal). The user
may still input decimal addresses to the program by not

adding a "$" in front of the value.

A batch file "clock” has been created and put in the path
so that command will set the current defauit to the correct
sub-directory and start the "CT" program. Please see the
Versions section for more detail.

Another significant change is in the design philosophy
of this program. In general, this version has been changed
so that the menu picks do not read addresses from a default
file and then blast out to the Clock hardware the values
in the file. What happens is that the program will still
try to read the default files and get addresses, but then
it will read and display the values currently in the
hardware. Additional Menu Options have been provided for
manually saving and restoring old values from files.

This should allow this program to somewhat better co-exist
with other processes running on other computers if desired.

CT has been compiled using Turbo Pascal Version 6.0.
The Bit 3 requires a 16 bit AT slot although IBM's Token
Ring board only requires an eight bit slot. (The Token Ring
Version Probably could be made to work on an XT if one really
had too.)

The Bit 3 is a commercially made interface board set by (Bit3
Computer Corp.) that serves as a bridge between the AT bus and
the VME bus in which the FADC boards reside. The present set-up
of the Bit3 model #403 board set is that it provides a means of
mapping a 64Kb AT address software controlled movable window of
address space into the 0-16Mb (24bit) address space of the VME based
FADC crate. (The newer model #406 adapter allows 32 bit addressing
for $1,365 for a new VME card.) This program will operate
with either model as long as the program is set to match the
hardware with F7. The PC side of both models is "the same"
only the VME board is different. (The #406 has LED's on it
and the #403 does not.) Remember to use General Address Modifiers
to get over the Vertical Interconnect when using 32 bit addressing.
(General Address Modifiers have a 0 in the upper nibble: e.g.,
$39 changes to $09.)

IMPLEMENTATIONS

CT comes in three flavors depending on how the two compile
switches are thrown in "[0.INC". If the compiler switch "I0_VME"
is true, "DEFINED", then code that uses the Bit3 board will be
compiled. If "IO_VME" in set false, "UNDEF", then the Token Ring
code will be used. Another compiler switch, "BIT3POLL",
controls how the Bit3 board will be utilized when "IO_VME is
set true. If "BIT3POLL" is "DEFINED" =true then the Bit3 polling
version will be used.

For now I am adhering to the following naming conventions:

non-polling Bit3 version "CTNP.EXE" and
"CTNP.OVR"

polling Bit3 version "CTP .EXE" and
"CTP .OVR

(From Version 3.01 and above the polling Version is not supported.
Odd byte transfers as bytes do not work.)

Token Ring version "CTT .EXE" and
"CTT .OVR"

Copy whichever version you wish to run to "CT.EXE" and "CT.OVR"
and the "clock” batch file will then run the one you want
automatically. It is now necessary to copy the corresponding
overlay file as well.
To use the Bit3 non-polling version at the DOS prompt type:
“copy ctnp.exe ct.exe" (return) and then type
"copy ctnp.ovr ct.ovt" (return)
Then type "ct" and the Bit3 non-polling version will load.
To switch to the Token ring version at the DOS prompt type:
"copy ctt.exe ct.exe" (return) and then type
“copy ctt.ovr ct.ovr” (return)
Then when "ct" is typed the Token ring version will load.
In the lab on the fourteenth floor they would probably want
to run the non-polling Bit3 version for higher bandwidth in
testing. To actually run the Detector one will probably want
to run the Token Ring Version from the Control Room although
they can run either version from a P.C. on the 2ad floor
counting house if desired. Further details follow.

Bit3 Non-Polling Implementation

Be sure to set the program to use either 32 bit or
24 bit addressing with "F7" depending on whether you
are using the model #403 (24bit) or model #406 (32bit) Bit3
adapter. The only difference is the VME card: the model
#406 has three LED's on the front panel and the #403 has none.
Remember to use General Address Modifiers to get over the
Vertical Interconnect when using 32 bit addressing. (General
Address Modifiers have a 0 in the upper nibble: e.g.,
$39 changes to $09.)

The first Non-polling version is most similar to the previous
CT version. It uses the Bit3 board set to address the
DO Clock in VME address space. At run-time this version may
be distinguished by the phrase "non-polling via Bit3" on the
second line of the main menu.

It has a limitation in that the VME bus signal, "DTACK",
must be returned in ~15 micro-seconds or an error, "*VME
TIMEOUT*" will occur. This is a limitation of the Bit3
board set in conjunction with the PC bus. This error is misleading
since VME bus arbitration can take as long as ~120 micro-seconds.
(Most Motorola processors that serve as the bus arbiters
used here time out in the ~50-80 micro-second range depending
on which processor is being used.) Although the clock hardware
is much faster than this if the Control Crate is very busy then
this situation could still occur in theory.

Both Bit3 versions detect VME bus errors by specifically
checking Bit3 status registers after every read or write via

the Bit3. (They do not use interrupts for error handling.)
A small delay (this delay may have to be increased for machines
faster than a 20Mhz AST Premium/386C) has been added to all
writes on this version so that write errors may be properly
reported on the non-polling version when the Bit3 VME board
jumpers are not configured as the VME Bus Arbitrator.
This delay is to overcome pipelined writes and prevent only
reporting errors on every other write.

Be sure to set make

Bit3 Polling Implementation

(This flavor is no longer supported for Versions greater than
or equal to 3.01 due to the inability to accessing odd byte
addresses in this mode.)

Be sure to set the program to use either 32 bit or
24 bit addressing with "F7" depending on whether you
are using the model #403 (24bit) or model #406 (32bit) Bit3
adapter. The only difference is the VME card: the model
#406 has three LED's on the front panel and the #403 has
none. Remember to use General Address Modifiers to get over
the Vertical Interconnect when using 32 bit addressing.

(General Address Modifiers have a 0 in the upper nibble: e.g.,
$39 changes to $09.)

The second Polling version uses the Bit3 board set in a
"polling" mode to address the FADC cards in VME address space.
At run-time this version may be distinguished by the phrase
"this version for old and new cards via (polling) Bit3" on the
second line of the main menu.

To overcome the first version's premature timeout problems,

a second, Polling version was developed. In this version a VME
"*BUS ERROR*" will occur when DTACK is NOT returned from a VME
bus I/O operation as determined by the VME bus arbitrator. For

a MV133 card this is in the ~55-80 micro-second range. This

version operates the Bit3 board set in a mode where the PC polls

the Bit3 until VME DTACK is returned or has timed out. It then
checks the other Bit3 status bits and reports any other

errors before going on in the program. This method will

allow the Bit3 board to be placed in the DO control's crate

and access different Selector Fanout crates over different

Vertical Interconnects without physically moving the VME Bit3

board. If the VME Bus arbitrator hangs and does not return a

"*BUS ERROR*" signal the program will give up polling the Bit3

and generate "*POLL TIMEOUT*" The operator may set this program
polling timeout as they desire on F6.

Token Ring Implementation

This flavor is always using 32 bit addressing and the
address modifiers displayed on the menus are ignored. Address
modifiers are taken care of automatically by the Remote 68K
processing the message.

The Token Ring network for all I/O to the DO Clock. The
Bit3 board set is not used. It sends and receives DO control

messages (Bob Goodwin's S1 messages) over the Token Ring.

At run-time this version may be distinguished by the phrase

"this version for old and new cards via Token Ring" on the second
line of the main menu.

The advantage of this version is that it may talk to
any VME (clock or not) crate at FERMILAB that is connected
to the Token Ring via a DO control crate and Vertical Interconnect.

If the program reads a non-existent location via the
Token Ring "0" will be returned and if error checking is
turned on "*NT RD ERR*" will be displayed or something similar.
Downloads are automatically and/or manually verified by
reading back what was written. (The Bit3 version will typically
return $FF18 in an AST premium running at 10Mhz from a location
where no hardware is responding. IBM's specification for the AT
bus is that the AT should return $FFFF.)

When talking to hardware you know exists, if a
screen full of "*NET ERROR*" occurs, this is an indication
that the node you are talking to is not responding. Give it a
minute to re-boot itself and attempt to come back on the air.

In some case a manual (done locally) re-boot may be necessary.
If there is a bridge between your location and the node that
could be a problem as well. If the bridge is down it may have
to be powered down locally and re-started.

A "*NET ERROR*" may also occur if the message was
somehow garbled while traversing the Token Ring. This may
happen when a Token Ring node is taken off or inserted on to
the Ring. It means that the message protocol was violated
in some manner and could not be correctly decoded. It
could have been a checksum error or an invalid message type.

ADDRESSING

This latest release supports both 32 bit and 24 bit addressing
using the Bit3 #406 adapter (32 bit addressing) or the Bit3 #403
adapter. The previous "CT" program only supported 24 bit addressing
and could not easily be used over the Vertical Interconnect via
a Bit3. This version can but be sure to set the software switch
on F7 accordingly and to use the correct address modifier as
discussed in the "INITIALIZATION" section.

All versions now display the full 32 bit address wherever
a base address is called for. In most cases the old version
of "CT" only called for the high byte of a 24 bit address.
This byte was then internally shifted left 16 bits. This
is no longer the case. When converting the old files to
the new files format keep this in mind.

PROGRAM INITIALIZATION

The program first looks for the file "Defaults. txt"
which contains defaults used for controlling the Sequencer
module on F1. If it does not find this file it will
let you know that it failed to find the file in the current
sub-directory and then say that it is using some internal
compiled defaults.

If you are running the Token Ring version of CT then
the next file it looks for is "CT.INI". This is a human
readable ASCII file that contains the last word of the address
the PC will use as it's Local Area Network, LAN, address. It
must be unique for each PC or the program will not start. This
mechanism is used as a simple lockout mechanism to prevent two
users in different locations from inadvertently trying to access
the same hardware. If "CT.INI" is not found the user will be
prompted for a new filespec. The user may input a new filespec
or hit "ESC" to get out of this loop and exit CT.

If either of the Bit3 versions is being run the program
will initialize the Bit3 board. The program always sets itself
to use 24 bit addressing mode with the Bit3 model #403 VME
adaptor. If you want to run over the Vertical Interconnect
using the 32 bit addressing Bit3 model #406 you must set the
program to that mode with F7 first. This software switch
must agree with the hardware you are using or the program
will not work as intended.

Also remember when using the 32 bit #406 over the Vertical
Interconnect that the high nibble of the address modifier
generally gets set to 0. For example if you would normally
use $39 for the 24 bit non-Vertical Interconnect configuration
then one would use $09 if going over the Vertical Interconnect.
When using the Token Ring Version the Address Modifier is
ignored. Likewise if using the Bit3 version then the VME
node is ignored. Both are required in the data base so
that only one set of data files are required.

At this time the main menu is brought up and the user
is now in control. Be sure to manually set F7 to the correct
addressing mode. To this point nothing has been written to
VME hardware.

General Notes:

After CT has initialized itself and the main menu appears
the user may activate any of the sub-functions or sub-menus

CT then displays the Main Menu and awaits the next request.
If "Esc” is pressed while in any of the sub-menus the program
redisplays the Main Menu. The function keys and the "Esc" are
"hot", i.e., they take (relatively) immediate action when a key
is pressed without necessitating going back up to the main menu.
If running CT on a color monitor the fact that a menu pick is
"hot" is signified with the Capital key represented in yellow.

Interactive help is available by pressing the "Alt" key
and then the appropriate function key. Additionally, on most
sub-menus the "H" key provides help specific to that sub-page.
On the VME command line interpreter available on F 1,F2, and F3
typing "Help" followed by the "Enter" key will provide help for
valid commands. Most of the sub-menu help files may be customized
by the user as desired by editing the appropriate file with any
ASCII text editor. The name of the file assigned to a "Alt-Fn"
sequence is internal to the program but is displayed at the end.
Each display is 24 lines long.

On several sub-menu pages where files are used, there is an
option to do a directory of files without exiting CT. At program
initialization the masks are set to what one is probably interested
in but the opportunity exits to change the mask when it is displayed.
If a function key or "Esc" is pressed then CT will do whatever was
pressed without changing the mask. If the "Enter" key is hit after
the mask is displayed then the file directory using that mask will
be used. If the "Backspace" key is hit then the last character will
be deleted; then if another character key is pressed it will be
appended to the remaining mask. The first time the mask is displayed
if any key other than the "Backspace" or "Enter" is hit then the
whole string will be deleted and whatever key was first hit will be
the first letter of the new mask. The arrow keys and other IBM
editing keys are not implemented as editing keys, they delete the
old mask and display whichever key was pressed. See the DOS manual
"dir" command for further valid filespec information.

The user is free to use their own file names and extensions.

The ones used internally by the program are suggestions. In general
the user is not restricted by the program to use a specific

filename or extension except at program load time. Most file

types are determined by a string in the first line of the file

and checked internally by the program to avoid run-time errors
while reading the file. (For example a sequencer, "¥.seq", save/
restore file has different format than a selector fanout, "*.sf",
save/restore file.

MAIN MENU

"F1" Sub-Menu: "sequencer”
This is mostly the original CT main menu pick 1. It
provides options for controlling, saving, restoring,
downloading and plotting the Sequencer Clock module
memory or files.

"F2" Sub-Menu: "selector"
This is mostly the original CT main menu pick 2. It
allows reading and setting of the Selector Fanout modules.
This menu provides a method of reading the Selector
Fanout modules, adding, deleting, and modifying their
addresses and data, saving and restoring modules individually.
A sub-menu "Global save/restore” provides a means of saving
and restoring user created arbitrary lists of Selector Fanout
modules (for the whole detector or any part of it)! The only
limits on the current scheme is how much disk space is
available to DOS (as opposed to the old scheme of 25
Selector Fanout Modules.)

"F3" Sub-menu: "pcc"
This is an expanded and enhanced version of the original
CT main menu pick 3. It allows reading, setting, saving
and restoring of the PCC (Phase Coherent Clock) module.

"F4" "auto save on exit from above three"
Allows the user to turn on or off (manually) whether they

wish CT to always save their last settings to files on

the disk when they exit sub-menus. (If one is browsing

one may not want to be constantly over-write (good)

data?) "SF_DEF.TXT" is always automatically updated and
(only) contains another device (file) name which was

the last Selector Fanout the user was reading,.

"F6" { polling Bit3 version only }

"software limit on how many times to poll for vme dtack?"
Determines the upper limit on how many times the program will
check to see if VME "DTACK" has been returned before it will
give up. (In some places where error reporting is turned

on to the screen then "*POLL TIMEOUT*" should appear.

A good value for this for now seems to be about 100 tries.

If set to 1 then it will generally almost always time

out before the hardware responds.

"F7" { all Bit3 versions}

or

"use 32 bit mode?"

Set this software switch to agree with which Bit3 VME
version is hooked to your P.C. The 32 bit #406 is
easy to tell from the 24 bit addressing #403 because the
#406 has three LEDs on the front of it.

"F7" { Token Ring Version }

"number of times to retry token ring: 'n'"
If this is set > 1 and a network error is detected then
the error will not be reported to the user until after
the program has retried it the number 'n’ is set too.
If success is achieved before 'n’ is exceeded then no
network error will be reported to the user. This should
not be set excessively high or the program will appear
to "hang" while it tries to read some (sequence of)
non-eXistent addresse(s). There is a software clamp on
this to not let the user go < 1 or > 100. Thisisa
useful mechanism of overcoming a "noisy" network while
downloading/uploading memory in a straightforward manner.
(A noisy network may be caused by a lot of nodes physically
coming on and off the network or a node with a loose cable.)
However setting this > 1 can result in non-deterministic
results when trying to access custom deterministic hardware
that requires specific sequences of known quantities of reads
and writes in a particular order. Unless you know the
hardware intimately, 1 is the recommended setting.

It has no effect on the Block Network Transfers used
when accessing Sequencer memory during plotting, saving
and restoring.

"F8" "peek/poke vme."

This is new to the CT program. It has been brought in
almost unchanged for little effort from "PCPLOT". It

has been very useful in working with FADC's and VBD's.
Besides being useful to myself it may be useful to

others in working with the Clock hardware.
NOTE:
About data value byte order. When addressing clock hardware
words from this page the bytes will be swapped. This is
because of the clock hardware and not this software.

For F8 only:
when reading standard VME memory 16 bit words that represent
16 bit quantities as words, the bytes will be correctly
displayed by this page else if the data at that address was
byte data then the bytes will be swapped.

For the rest of "CT" (exclusive of F8):
(The rest of Version 2.0 of "ct" program is always swapping
bytes to the hardware but displaying them normally to the user.
Most save/restore files are this way except for the
sequencer download files.)

“F10" Immediately exits the program.

The Token Ring version the PC removes itself from the Network.

The polling version does nothing special at program termination.

On a normal exit all versions restore the old CRT text image.
Abnormal exits includes “C exits and infamous 201 errors.

(201 errors are unexpected "out of range errors” that the

program has failed to trap internally. They may be due to

unexpectedly large values input by the user or generated by

an unexpected value read from hardware.) Recording and

reporting the run time error and the address following it will

help in making the program more robust than it is.

Welcome to DO Clock Test V3.0Z
token ring version

Help (in general).

Fi
Fa
F3
F4
k7
K8

F10

sequencer (time line generator).

zelector fanout.

pce (oscillator) control

auto save on exit from above three (toggle)
number of times to retry token ring: 1
reek/poke vme.

eXit program.

current:

OFF

Help

F1
FZ
F3
F4
E7
F3

F10

Welcome to DO Clock Test V3.02
(non-polling) bit3 version

{in general).
sequencer (time line generator).

pce (oscillator) control
auto save on exit from above three (toggle)

uge 32 bit mode” on=32Zbit=#406 off=24bit=#403.

peek,/poke vme.

eXit program.

current:

current:

token ring. d0 clock sequencer test,//control or eXit, Quit or ESC
1 save/ /restore file (device): MAIN.ZEQ
CSRO = 30523
3 vme node: $073A CSR1 = $0004
4 module address: $10600000
5 error file: SCREEN 7 trigger bucket: 0
& error mask: $01FF 8 address modifier: $09
status: BC Phase
——————————————————————————————————— MEBIN MENU——— = e
toggle simple options sub-menu options

Clock is on/off I clear errors Download & file plot mer

A group is on/off J set errors Plot timeline memory mer

B group 1is on/off K reset clock Test clock menu

Group select A/B cave configuration N step through menu

Free run/sync Restore configuration Vme diagnostics

Enable outputs on/off List of files

Mode (step) is on/off Open dos door

F1 Sub-Menu: DO Sequencer Help Notes
12/16/90

This page is similar in function as the original Version

1.03 main menu pick one except that the user interface has
been slightly changed and that some menu picks have different
letters and have been re-located.

This page no longer reads the last selected address
and Downloads the Control Status Register automatically
although the user is allowed to do this by pressing the
“R" key for "Restore". The page reads "MAIN.SEQ"
to get the address and then reads the hardware and displays
it's current settings. Nor are the last downloaded settings
automatically saved to the file unless "auto save on exit is
enabled" on the main menu and the user type 'y’ or 'Y" to the
question asking if he wants to over-write the existing file.
Also the user may at any time manually over-write the existing
file with the "Save" option below.

"1 save/restore file"
Allows the user to select which file to use. If the file is
found then the program reads in the file's addresses and
filenames to read the Sequencer without changing the values
in the Sequencer control registers from the file as does
"Restore” in the menu pick below. (One can go to DOS and
type out the file to view it's format.) Also it may be
edited by hand. Note that this format is not the same as
for Version 1.03. Using this information the program then
continuously does byte reads of the (byte) registers and
display the results until a key is pressed. This button
calls the same routine that is called at program load time.
If the file is not found a warning message is displayed on
the screen.

When typing in the filename the following rules apply.
If the "Backspace" key is hit first then the string may be
deleted and changed one character at a time; else if a normal
ASCII character is struck the whole string will be deleted and
the user may input a new string. The arrow keys are not
implemented in editing this field. If the "ESC" key is
pressed the value will not be changed. Also if the
"Enter” key is pressed with no previous input the
old value will remain.

"3 vme node:"
This is a hex (byte) address of which DO Control Crate the
Sequencer is tied to through the Vertical Interconnect (VD).

"4 module address"”

This is the full 32 bit VME base address the Sequencer card

is set to. For both Bit3 versions note to check that if one

is using an address that is greater than 24 bits one must be
using a Bit3 406 adapter and the main menu pick "F7 use
thirty-two bit mode" must be set to "ON". When using the 24

bit addressing #403 Bit3 adapter then this must be set to "OFF".
If the #403 is being used the high byte of the 32 bit

address will be ignored but the program must still be set to

the correct state.

"$ error file:"

Controls where some output for some of the tests will be sent.
This may be any legal DOS disk and filespec (up to 79 character).
If this is set to "SCREEN" then output will come to the screen.
Some output will always come to the screen as well as the file.

"6 error mask"

Allows the user to ignore errors coming back from the Sequencer
error register. Entering O will ignore all bits and there

will be no errors. $O1FF is a good value to display the

normal bits you are interested in. You can set this in

hex by preceding your input with a "$" sign or else decimal

is assumed. If the "ESC" key is pressed the value will not

be changed. Also if the "Enter” key is pressed with no

previous input the old value will remain.

*7 trigger bucket: "

User input is clamped to the valid range of 0..1113.

Input is in decimal or use a "$" sign for hex. If the
"ESC" key is pressed the value will not be changed. Also
if the "Enter" key is pressed with no previous input the
old value will remain.

"8 address modifier"

This is the address modifier that the Bit3 will use to talk to

the VME crate. It is always in the file of data but is not used

if this program is doing I/O over the Token Ring. That way
only one set of Device files need be maintained no matter which
interface is being used.

A word about address modifiers is in order here. This version
has been modified so that it is always doing BYTE reads of the
SF byte registers so one needs to put in a valid BYTE VME address
modifier. Further if the program is being used over a Vertical
Interconnect then one needs to change the high nibble to $0.

For example if the hardware normally responds to $3D then when
using the VI one would use $0D.

"Clock is on/off"
Sets or clears bit 1 in CSRO which is the Clock_on bit.

"A group is on/off"
Sets or clears bit 8 in CSRO which is the group_A_on bit.

"B group is on/off"
Sets or clears bit 9 in CSRO which is the group_B_on bit.

"Group select A/B"
Sets or clears bit 10 in CSRO which is the Sel_gr A/B bit.

"Free run/sync"
Sets or clears bit 4 in CSRO which is the Free_run/Sync bit.

"Enable outputs on/off"
Sets or clears bit 2 in CSRO which is the Output/Enable bit.

"Mode (step) is on/off"
Sets or clears bit 3 in CSRO which is the Step_mode bit.

"I clear errors"

Sets bit 6 in CSRO, the Clear_errors bit, then clears the same bit.
The message "Errors Cleared." is then printed below option "Restore
configuration" on this menu.

"] set errors"”

Sets bit 0 in CSRO, the set_errors bit, then clears the same bit.
Before clearing the bit, CSRO is read, and if bit O is set, the
message "Errors Set." is then printed below option “Restore
configuration" on this menu. If bit O is not set then the
message "Could not set bit 0 in csr0" is printed instead

of "Errors Set."

"K reset clock"”

Sets bit 7 in CSRO, the Reset bit, then clears the same bit.
The message "Clock reset." is then printed below "Restore
configuration” on this menu.

"Save"
Reads the current values and writes them to the "1 save/ restore
file".

"Restore"
Reads the current "1 save/restore file” and writes the values to
hardware.

"List of files"

Allows the user to do a directory of files on the disk. The
current mask is displayed which the user may change by typing
in a new one: if the "Backspace" key is hit first then the

string may be deleted and changed one character at a time;

else if a normal ASCII character is struck the whole string

will be deleted and the user may input a new string.

The arrow keys are not implemented in editing this field.

When the user hits "Enter" then the program will shell out

to DOS and do a directory if there is memory available in the PC.

"Open a door to dos"

Allows the user to shell out to DOS and do what ever they can
with the remaining memory available including editing any
files. To return to the program hit "Enter" with out typing

in a string.

"Download & file plot menu"
Allows the static and dynamic Sequencer timeline RAM to

be either saved to a file or restored from a file.

Also new code has been written that allow the files to be

plotted in graphic or text modes. Some of the plotting control
options are set by the next menu pick "Plot timeline memory
menu"” below. This sub-menu has its own help notes under "H".

"Plot timeline memory menu"

Allows plotting the timelines currently in Sequencer RAM.
Note that in order to read Sequencer RAM the clock must
be off for the Static RAM and that the Dynamic RAM can
only be read from the inactive bank. This page makes
checks and asks questions similar to the "Download..."
menu-pick above. It will not automatically change the
state of the clock. It has no picks for changing the

state of the clocks as does the "Download..." menu above
so one should put the clock in the correct state before
plotting. This sub-menu has it's own help notes under "H".

“Test clock menu"

Is essentially the same sub-menu as it was previously under

"M: Clock Tests". Some bugs have been fixed. Specifically

it should say "test failed" when they fail now. Not all

sections are applicable in all versions: i.e., "A" "random
addressing test" is meant to be run with the Sequencer card

in an otherwise empty crate; "D" "address modifier test"

is meaningless over the Token Ring and it also will not

give the same results when working over the Vertical Interconnect.
The "Test clock menu" has it's own help notes.

"N step through"

From section 4.4.3:

"Upon selecting option N, the users enters the step through
menu. The current state of the Sequencer (CSRO) is saved and the
Sequencer is: put in step mode, turned on, outputs are enabled,
and put in free run mode. When one exits Step Through, the
previous state of the Sequencer is restored. Step Through

is a way of verifying the contents of Sequencer RAM. It allows
one to examine the potential state of the timing lines at any
desired bucket. Step through will only work if a file has been
loaded into the Sequencer. The Line Status column of the Step
Through menu shows the RAM contents of the current bucket..."
This sub-menu has it's own detailed help notes.

"VME diagnostics"
Is also the same as it was before under 4.4.4 "O: VME Diagnostics".
Upon selecting this option, the user enters the VME Diagnostics.
VME Diagnostics is a simple BASIC - like language intended for the
debugging of VME modules. VME Diagnostics has no immediate mode:
program lines are preceded by a line number, and programs are
executed when a run command is entered. The VME Diagnostics prompt
is >. At the prompt, a user may type in a valid command, or a line
number followed by a valid VME Diagnostics instruction. If one
responds to the > prompt with and "h", the help screen for VME
Diagnostics is printed:

commands:

ERASE filename: erases file < filename >

NEW: clears program currently in memory

TYPE filename: types file < filename>

LIST: types program currently in memory

LOAD filename: loads file < filename> into memory
DIR directory: gives directory of <directory >

SD: shows the current path

CD directory: changes current directory to < directory >
HELP

SAVE: saves the program currently in memory to disk
RUN: runs the program currently in memory

I: initializes bit3 outside of help. in help shows more instructions.
X: exit bit3 basic

If you want to see the set of instructions, type i.
If you want to return to the VME test cursor, type r.

If one responds with i, one sees the list of valid instructions:

instructions:

REM remark

PRINT var, "string"

GOTO line number

VRD (vme address, address modifier, variable to read data into)
Vme Read, Double byte

VWD (vme address, address modifier, variable or constant to write)
Vme Write, Double byte

VRB (vme address, address modifier, variable to read data into)
Vme Read, Byte

VWB (vme address, address modifier, variable or constant to write)
Vme Write, Byte

BERDIS disables printing of vme errors

IF var or const, = < >, variable or const THEN line number

ELSE line number
variable name = variable name or expression + variable name or const
END halts program execution at this point

** hexadecimal numbers should be entered preceded by a '$' **
** do not do double byte operations (vwd, vrd) with odd addresses **

To execute a command you don't have to type in the whole command,
only the bold letters. The following sections elaborate on the
above help screens.

4.4.4.1. Syntax

The only parameters which the VME Diagnostics command set
uses are < filename> and <path>. These parameters have exactly
the same syntax in VME Diagnostics that they have in DOS.

The instruction set of VME Diagnostics takes as parameters
variable names, constants, line numbers, and print strings.

A variable name consists of a letter A-Z followed by up to 13
letters or numbers in any order. A variable name may not be a

reserved word. Reserved words are:

4.4.4.2. Erase

Erase < filename> attempts to erase the file < filename> from
the current path. If the file does not exist in the current
path an error message is printed.

4.4.4.3. New

New clears the VME Diagnostics memory of any program. If a
user has a 100 line VME Diagnostics program typed in, and then
types new, the program will be gone forever unless it has been
previously saved to disk.

4.4.4.4. Type
Type <filename> attempts to type the < filename> in the

current path. If the file does not exist in the current path,
an error message is printed.

4.4.4.5. List
List outputs the program which is currently residing in VME
Diagnostics memory to the screen.

4.4.4.6. Load

Load < filename> loads the file < filename> from the current
path into VME Diagnostics memory. If the file does not exist
in a current path, an error message is printed.

4.4.4.7. Dir
Dir <path> outputs the directory of path to the screen.
If <path> is a non-existent path, an error message is printed.

4.4.4.8. Sd
Sd outputs the current path to the screen.

4.4.49. Cd
Cd <path> changes the current directory to <path>. If <path>
is and invalid path, an error message is printed.

4.4.4.10. Help
Outputs a help screen to the CRT.

4.4.4.11. Save

Save <filename> saves the program currently residing in VME
Diagnostics memory to disk in the current path. If < filename>
is in invalid filename, an error message will be printed.

4.4.4.12. Run

The Run command compiles and runs the program which is
currently residing in VME Diagnostics memory. If there are
syntax errors, and error message will be printed, and the
program will not be executed.

44413 I
I initializes the Bit 3 interface and returns a status message.

(On the Token Ring Version it does nothing.)

44414 X
X exits VME Diagnostics and returns the user to the calling
menu.

4.4.4.15. Rem
‘Rem is the VME Diagnostics remark delimiter. The line is
ignored by the compiler.

4.4.4.16. Print
Print allows the user to print the values of variables and
print strings to the screen. The syntax of PRINT is as
follows: print may be followed by any combination of variables
names and print strings separated by commas.

4.4.4.17. Goto

Goto <linenumber > transfers program control to the statement
at line number. If the line number is invalid, a syntax error
is generated.

4.4.4.18. Vrd

Vrd (address, address modifier, variable name) does a read
on VME bus in A24:D16 mode of address < address> , with address
modifier <address modifier>, and stores the data in <variable
name>. Both address and address modifier can be constants -
for example, the following programs perform the same function:

10 ADDR = $802000
20 AM = $3D
30 Vrd(ADDR,AM,RDATA)

10 Vrd($802000,$3D,RDATA)

If the VME cycle does not terminate normally (with DTACK),
and the printing of bus errors is not disabled, one or more
of the following messages will be printed when the read occurs.
For the bit 3 version:
"*BIT3 TIMEOUT*'
"*PARITY ERROR*'
"*VME BUS ERROR*'
"*POLL TIMEOUT*"'
'* VME crate disconnected or not powered! *';

For the Token Ring version:
"*NET ERROR*' { generic read or write net error }
"NET RD ERR*' { is short for "network read error." }
"NET WT ERR*' { is short for "network write error." }

In the case of the bus error message, no module responded
with DTACK to the read cycle, so the system controller
asserted the BERR line. In the case of the time out message,
no module has returned DTACK, and the system controller
hasn't asserted BERR with in the Bit3 timeout period of

15 micro-seconds for the non-polling version.

(Note: for the polling version the user may set how
many times the software will poll for DTACK with F6.

For the Token Ring Version if no DTACK occurs the error
is not always returned to the caller. For downloading
the "Verify" operation overcomes any limitation that might
occur. If the user reads a location where there is nothing
there to pull no DTACK, 0 is returned. So for the Network
version right now O means 0 or no DTACK. Another possibility
is that the DO VME control node was not there and did not
respond or that somehow the message was garbled and/or the
message checksum did not agree. Garbled messages can occur
when there is electrical noise on the network for some reason.
This program has an automatic re-try feature that is user
changeable at run time on F7. When this is set greater with
n > 1 then no errors will be reported to the user unless it
failed all n times. This automatic re-try feature is not
presently supported on Sequencer block memory accesses.)

4.4.4.19. Vrb

(Note: "Vrb" accessing the byte in question by word read
and the correct byte is returned. Word access Address
Modifiers should be used.)

Vrb (address, address modifier, variable name) does a read
on VME bus in A24:D8 mode of address <address>, with address
modifier <address modifier>, and stores the data in < variable
name>. Both address and address modifier can be constants -
for example, the following programs perform the same function:

10 ADDR = $802000
20 AM = $3D
30 Vrb(ADDR,AM,RDATA)

10 Vrb($802000,$3D,RDATA)

Error messages are the same as "Vrd"

4.4.4.20. Vwd

Vwd (address, address modifier, variable name) does a write
on VME bus in A24:D16 mode of address <address>, with address
modifier <address modifier>, and stores the data in < variable
name>. Both address and address modifier can be constants -
for example, the following programs perform the same function:

10 ADDR = $802000

20 AM = $3D

30 WDAT = $1234

40 Vwd(ADDR,AM,WDAT)
10 Vwd($802000,$3D,$1234)

Error messages are the same as "Vrd"

4.4.4.21. Vwb

(Note: "Vwb" really accesses the VME by word. This

means the Bit 3 flavors should use word Address Modifiers.

On write operations the word is first read into P.C. memory,
the byte is changed and then the whole word is written back

to VME memory. This is not an indivisible read-modify-write
VME cycle but completely separate VME bus operations. On
the Network version there could be as much as 12 milli-seconds
between the read and write cycles. Word access Address
Modifiers should be used.)

Vwb (address, address modifier, variable name) does a write
on VME bus in A24:D8 mode of address <address> , with address
modifier <address modifier>, and stores the data in < variable
name>. Both address and address modifier can be constants -
for example, the following two programs are the same:

10 ADDR = $802000

20 AM = $3D

30 WDAT=$12

40 Vwb(ADDR,AM, WDAT)

10 Vwd($802000,$3D,$12)
Error messages are the same as "Vrd"

4.4.4.22. Berdis

Berdis controls the printing of VME bus operation status
errors. VME Diagnostics defaults to printing the errors, but
to scope loop one will want to shut off the printing.

4.4.4.23. If Then Else

The if then else structure is provided to allow program
control based on data values. The only tests available
are equal and not equal. There are four forms:

IF xxxx=yyyy THEN linenumber 1

IF xxxx < >yyyy THEN linenumber 2

IF xxxx=yyyy THEN linenumberl ELSE linenumber2
IF xxxx < >yyyy THEN linenumber1 ELSE linenumber2

In the IF THEN structure, if the branch condition is not
true, program execution continues with the next line. The
symbols xxxx and yyyy may be variable names of constants,
hence the following two programs perform the same function:

10 VAR] = 1

20 VAR1 = 2

30 IF VARI < > VAR?2 then 40 ELSE 100

40 PRINT "VAR1 AND VAR2 WERE NOT EQUAL", VARI1," ",VAR2
50 END

100 PRINT "VAR1 AND VAR2 WERE EQUAL"

10IF 1 <>2 THEN 40 ELSE 100

40 PRINT "ONE IS NOT EQUAL TWO"
50 END

100 PRINT "ONE EQUALS TWO"

4.4.4.24. End
End returns the user back to the VME Diagnostics prompt, >.

10

download timeline menu or eXit, Quit or ESC
Help
List of *x.dat
Display timeline graph of current files to screen
Make a timeline text file to file.tl
looK (browse) file.tl

Choose static filename. current: STATBOUT.DAT
Browse static file.

Save sequencer static memory to STATBOUT .DAT
Restore & verify static memory from STATRBOUT.DAT
Verify sequencer static memory to STATBOUT . DAT
Fick dynamic filename. current: DYNBOUT.DAT
braoWse dynamic file.

sAve sequencer dynamic memory to DYNBOUT . DAT

rEstore & verify dynamic memory from DYNBOUT.DAT
verlfy sequencer dynamic memory to DYNBOUT .DAT

Turn clock off.

turn Unselected group off.
turn selected Group off.
Open a door to dos.

download timeline menu or eXit, Quit or ESC

"Help"

Displays this file one screen at a time. This page
allows the user to both "Save" Sequencer memory to
a file on the P.C.'s disk and also to "Restore"

files to the Sequencer's timeline memory. It also
provides the ability to plot the timelines from

the memory files.

"List of .."

Provides an easy way to see what files already exist.
The user is prompted to edit the mask or if "Enter” is
pressed the current mask will be used.

"Display timeline graph of current files to screen”
It reads the files selected below and plots the timelines.
This is the same as "F1", "Plot.." , "Graphic display to
screen of timelines" except the data is read from a file
instead of Sequencer memory. Most of the plotting options
are controlled from this other page including setting
the value of the "Increment..", what kind of printer
is attached to the P.C., and control of whether the static
address lines come out on the bottom or top of the plot.
There was not room to bring these features to this page.
Files are selected with the "Choose static filename"
and "Pick dynamic filename" options below.
For help on using the plot and its associated menu
see the help on "F1", "Plot...".

"Make a timeline text file to FILE.TL"

is the same as "F1", "Plot.." , "Save (write) current timelines
to” except that the user has no option to change the output
file. The user may however "Open a door to dos" and use the
DOS "copy" or "rename" commands to manipulate files.

The format of the output of this file is the exact same as

on the other menu. Also this file comes in two flavors
depending on where the user wants the address lines. This

is again set from "F1", "Plot.." menu with the "Display
static address lines (toggle)" (TOP or BOTTOM). This
controls where on the plot and for the timeline files the

Static Address lines will be positioned. When set to "TOP"
the normal timelines will be displayed first, 1 to 24, and

then the sixteen address lines, 25 to 40. When this is set

to "BOTTOM" the sixteen address lines will be on the
bottom followed by the 24 timelines which will be numbered
25-40. This flag also controls the plot on the "download
timeline menu”. This switch controls both the "Save (write)
current timelines"” and the "Graphic display to screen of
timelines” menu picks on this sub-menu as well as the "Make a
timeline text file..." and "Display a timeline graph of

current files” on the "Download" sub-menu pick of "F1".

file "DZERO SEQUENCER HARDWARE DESCRIPTION"
mnemonic description by M. Fachin, C. Rotolo 1/18/90

"upa" = upper parity ="HPARITY" bit D11 of dynamic memory.
“syn" = synch ="SYNC_REF" bit D12 of static address memory.
"be" = beam crossing="BC_REF" bit D12 of static address memory.
‘Ipa" = lower parity ="LPARITY" bit D14 of static address memory.
“bet" = be trigger ="BC_TRIG" bit D15 of static address memory.

“looK (browse) FILE.TL"

Allows the user to look at the data without going to DOS.
The "Browse" utility must be available in the current
path for this to work.

"Choose static filename."
Allows the user to select which static file to save or
restore from.

If the "Backspace" key is hit first then the
string may be deleted and changed one character at a time;
else if a normal ASCII character is struck the whole string
will be deleted and the user may input a new string.
The arrow keys are not implemented in editing this field.

"Browse static file."

Allows the user to look at the static file selected above

without going to DOS. The "Browse" utility must be available
in the current path for this to work.

"Save sequencer static memory to..."
Reads CSRO to make sure the Sequencer is off as this memory
cannot be validly read while the Sequencer is running.
If it is not off the user is informed and the operation
is aborted. The user may then decide if he really
wants to "Turn clock off" below (this is the same control
as "Clock...” on F1.)

If the clock is off then the P.C. reads the Sequencer
static memory locations as defined by the base address and
other parameters on "F1" into the file "..." as selected by "
Choose". If the file already exists the user is asked if he
wants to over-write it. Only a "y" or "Y" will over-write the
file. It is not a good idea to overwrite original source
files using this method as various read errors may occur and
then corrupt the files. It is a good idea to change this to a
new file before saving. After the file is saved the memory
is again read and compared to what was just written to the
file as in "Verify.." below. This file is in the same format
as files that may later be downloaded.

"Restore & verify static memory from ..."

Reads CSRO to make sure the Sequencer is off as this memory
cannot be validly accessed from the VME bus while the Sequencer
is using it to generate timelines (on). If the Sequencer

is not off the user is informed and the operation is aborted.

The user may then decide if he really wants to "Turn clock off"
below (this is the same control as "Clock is on/off" on F1.)

If the clock is off then it reads the file specified under
"Choose static filename" and loads it into Sequencer Static memory
locations as defined by the base address and other parameters
on "F1". The program then reads back the just loaded Sequencer
memory and compares what was read back to the file reporting
errors to output as specified on "F1", "5 error file". (If
"SCREEN" is entered here then error output will be to the screen.
A summation is always reported to the screen.) In this version
all of the errors are reported. Since this can go on for a long
time if the address are not set up right on "F1" the user may
use the "ESC" key to abort the list.

The following is a more detailed description from the original
Bill Graves document:

"The message 'reading from file' will be printed in the cleared
window. The static file is opened and read into an array - the
first 1113 double byte data words are read from the file, converted
and stored in the first 1113 locations in the array. The next
2982 locations are set to 0. At this point, half of the
array is filled, and this half will eventually be loaded
into the Next Address portion of Sequencer RAM. Because the
locations past address 1112 are 0, if for some reason the
Sequencer strays from its normal O to 1112 address range,
it will return to address 0. Now the next 1113 data words
are read from the file, converted and stored in the array
starting at index 4096. The remaining 2982 array locations
are set to 0.

If during the course of loading the array from the file,
the program runs out of data (the file is to small) or there
is data left at the end of the load (the file is too large),
the message 'file size mismatch in load' will be printed.

Before attempting to write the data to the Sequencer,
the Sequencer's CSRO is read to make sure the Sequencer is off
(attempting to access the static portions of Sequencer memory with
the Sequencer on will result in Bus Errors). If the sequencer is
on, the message 'please turn clock off' will be printed, a low
pitched beep will be heard, then the message 'hit a key to return’
will appear in the window. Upon hitting a key the user will be
returned to the download main menu where the Sequencer may be
shut off.

If the Sequencer is off, the data is written to the
Sequencer and the verify begins. Once again, the file is read
and loaded into an array. The static part of the Sequencer RAM
is read into another array, and the two arrays are compared.

If the arrays are not the same, the message 'verify failed at
addr=xxxxxXXxx wrote yyyy read zzzz' is printed..."

"If the file sizes were incorrect, the message 'file size
mismatch during verify' will be printed. If the verify was ok,
then the message 'download and verify ok' will be printed, and a
high pitched beep will be heard. If something went wrong, a low
pitched beep will be heard.

The prompt 'hit a key to return’ will then be printed.

Upon hitting a key, the user will be returned to the download

main menu. "

"Verify sequencer static memory to ..."

The following is a more detailed description from the original
Bill Graves document:

"The static file is read and loaded into an array. Before
attempting to read the data from the Sequencer, the Sequencer's
CSRO is read to make sure it is off (attempting to access the static
portions of Sequencer memory with the Sequencer on will result in
Bus Errors). If the Sequencer is on, the message 'please turn clock
off' will be printed, a low pitched beep will be heard, then the
message 'hit a key to return' will appear in the window. Upon
hitting a key the user will be returned to the download main menu
where the Sequencer may be shut off.

The static part of the Sequencer RAM is read into another
array, and the two arrays are compared. If the arrays are not
the same, the message 'verify failed at addr=xxxxxxxx wrote yyyy
read zzzz' is printed..."

"If the file sizes were incorrect, the message 'file size
mismatch during verify' will be printed. If the verify was ok,
then the message 'download and verify ok’ will be printed, and a
high pitched beep will be heard. If something went wrong, a low
pitched beep will be heard.

The prompt 'hit a key to return' will then be printed.

Upon hitting a key, the user will be returned to the download
main menu."

"Pick dynamic filename."
Allows the user to select which dynamic file to save or
restore from.

If the "Backspace"” key is hit first then the
string may be deleted and changed one character at a time;
else if a normal ASCII character is struck the whole string
will be deleted and the user may input a new string.
The arrow keys are not implemented in editing this field.

"broWse dynamic file."

Allows the user to look at the dynamic file selected above
without going to DOS. The "Browse" utility must be available
in the current path for this to work.

"sAve sequencer dynamic memory to..."

Reads the Sequencer dynamic memory locations as defined by
the base address and other parameters on "F1" into the
file "..." as selected by "Pick". If the file already

exists the user is asked if he wants to over-write it.

Only a "y" or "Y" will over-write the file. It is not

a good idea to overwrite original source files using this
method as various read errors may occur and then corrupt
the files. It is a good idea to change this to a new file
before saving. After the file is saved the memory

is again read and compared to what was just written to the
file as in "verlfy.." below. The ability to truely read
the memory is conditional on that bank of memory being

off. The program makes this check and does not read the
memory and write to the file unless the user selected bank
is off.

"tEstore & verify dynamic memory from ..."

Reads the file specified under "Pick dynamic filename" and
loads it into Sequencer dynamic memory locations as defined by
the base address and other parameters on "F1" if the bank
chosen is off. If it was off then the program reads back
Sequencer memory and compares it to the file reporting errors
to output as specified on "F1", "5 error file". (If "SCREEN"
is entered here then error output will be to the screen.

A summation is always reported to the screen.)

The following is a more detailed description of this menu
pick which corresponds to the original Bill Graves document:

"...loads the data from the dynamic file into the unselected
dynamic RAM area (based on the state of the Sel_gr A/B bit in
CSRO), reads the unselected dynamic RAM area back and compares
the data. In order to download dynamic data the unselected area
of dynamic RAM must be turned off.

"... The message 'reading from file' will be printed in the
cleared window. The dynamic file is opened and read into an
array - the first 1113 double byte data words are read from the
file, converted and stored in the first 1113 locations in the
array. The next 2982 array locations are set to $0800. Because
the locations past address 1112 contain $0800, if for some reason
the Sequencer strays from its normal O to 1112 address range, a
parity error will occur.

If during the course of loading the array from the file,
the program runs out of data (the file is to small) or there is
data left at the end of the load (the file is too large), the
message 'file size mismatch in load' will be printed.

Before attempting to write the data to the Sequencer, CSRO
is read to make sure the unselected bank of dynamic RAM is off
(attempting to write data to the dynamic portions of Sequencer
memory while they are on will result in Bus Errors). If the
unselected bank is on, the message 'please turn off the unselected
group' will be printed, a low pitched beep will be heard, then
the message 'hit a key to return’ will appear in the window.
Upon hitting a key the user will be returned to the download menu
where the unselected bank may be shut off.

If the unselected bank is off, the data is written to the
Sequencer, and the verify begins. Once again, the file is read
and loaded into an array. The unselected dynamic bank of Sequencer
RAM is read into another array, and the two arrays are compared.
If the arrays are not the same, the message 'verify failed at
addr=xxxxxxxx wrote yyyy read zzzz' is printed..."

"If the file sizes were incorrect, the message 'file size
mismatch during verify' will be printed. If the verify was ok,
then the message 'download and verify ok’ will be printed, and
a high pitched beep will be heard. If something went wrong, a
low pitched beep will be heard.

The prompt 'hit a key to return' will then be printed.

Upon hitting a key, the user will be returned to the download

main menu."

"verlfy sequencer dynamic memory to ..."

Reads the file specified under "Pick" and compares it
to what is in the Sequencer dynamic memory reporting
any differences as above.

The following is a more detailed description of this menu
pick which corresponds to the original Bill Graves document:

"The Verify Dynamic differs from the static verify in that
the user is prompted for the dynamic group (A or B) to verify.
This group may be selected or unselected and on or off.

Once again, the dynamic file is read and loaded into an array.
Before attempting to read the data from the Sequencer, CSRO is
read to see which dynamic group is currently selected. If group
A is selected, the following message appears:

'group A is currently selected

verify to group A or B?'

If group B is currently selected, the message states 'group
B is currently selected'. The user will be prompted until an
A or B (in upper or lower case) is entered. If the desired
group is off, the actual verify happens. If the desired group
is on, one of two messages will occur:

'please turn off the unselected group'
or

'please turn off the selected group’
depending on whether the group is selected or unselected.

A low beep will be heard, and the message * hit a key to
return' is printed. The user is then returned to the main
download menu where the group may be turned off.

"Turn clock off"

Is repeated here from "F1" for the users convenience.
It turns off the Sequencer by clearing the Clock_on bit
in CSRO.

"turn Unselected group off. "

Is repeated here from "F1" for the users convenience.
Shuts off the unselected dynamic group by clearing either
the Group_A_on bit or the Group_B_on bit in CSRO.

"turn selected Group off"

Is repeated here from "F1" for the users convenience.
Shuts off the selected dynamic group by clearing either
the Group_A_on bit or the Group_B_on bit in CSRO.

"Open a door to DOS"

Passes whatever the user type's to DOS without leaving

the program until the user hits the "Enter" key. Then

it comes back into the program. "CT" is still using up
considerable memory of DOS's precious 640k bytes so there
may not be enough to do what you want.

memory plot menu or eXit, Quit or ESC

Help

Minimum (first) bin to start from. current: O
Ending bin. current: 1112
U {down) is represented by current: .

1 {(up! 1s represented by current: -
Text display to screen of timelines

Display static address lines (toggle) current: TOP
Aute increment on x-axis by current: 100
Ibm pro,/graph printers=con.epson=off. current:
Graphic display to screen of timelines

List of output files. current mask: *x.tl

File to act on. current: read.tl

Save (write) current timelines to file: read.tl

read. tl
read.tl (use "print"
read.tl to "lptl".

o DOS

Browse file
Print file
Copy file
Open a door

ot oo

in DO3S first!)

OFF

e
=]
I
i}
et
)
-
]

|

23]

3
(R %] ..
(% B <Y

ey 20 :

LA G4 : 1

e t H f { i

Tian 2l { ’ i b
e 3

1

0.0 & cy 417.0 556.0 695.0 73.0 1112.0/

Grid {toggle) ON ..,
Auto erase 1],
Line data o8 ... i
Incrarent x-axis 100 i

R,

HE
T

i
H
!
.
i

8
7
5
I;
4
2
2
9
o
i
g

p

o el o nd

—

™

(2L I I I)

AQuit

Frint

i R e
N e ael
L i

e R) e P P

Bot. y IL2
Strt x ;;5 - . o ; 5 N !
Bnd w E !

'3 g?y?sx 0.9 1390 278.0 417.0 556.0 695.0 £34.0 973.0
: 1Vis.

‘Grid {tozala) ON ..,

‘Auto erase | J i
‘Line data oN L !
Increment x-axis 100 ;

namory tinmelines jast p

funciion key fo JQuit

))
N . H ¥ H
HPARITY 40 ok N S ;
TL22 39
Ay 3R b i '
itadl AY o 3, 4 I
37 [1 ! JH
3 T ; ! -
35 - T T] ; if
puiaais B == i M -
I s il
- ; TE
b v i
H
¢ ey
; i
- v !
i+
: i

I

[l S e g

[R

e

e e S L Y A~ RS RO R - B e O TR L I O o e 23
SRR SN P T .

Cut D B3 B DO 0D DD DI DS B G el Call Gl G

[y
[N

[ronCl ool SRR AN S = L R

e o o v
l“ e e

g
]
d €H D

Sl ol SUR VTN SN,

e}

divis,

Orid {toggle) O ...
futo erase N ...
Line data N -
‘Increment x-axis lGﬂ

R AT
'm&wﬁmw@wmwﬁ
1

. =down=, " -upzi

timeline 0..22 status. u 0-11 address s 1b
bucket tririrtttr1222y L'1ybope bucket
mo. 012345678901 23456789012a012345678901ncat no.
O T 0
R RSSO DRSS
3 T 3
R 4
Yo L 5
B T 6
L 7
U)
S T 9
0 T L 10
o T 1
L 12
T, 13
Moo Tt 14
T 15
B T 16
T 17
B T 18
W T .19
20 S L . 20

¥ (13

Memory Timeline Display/Plot Sub-Menu Detailed Help Notes

"Help."

Displays this file one screen at a time.

This page reads the Sequencer hardware selected on "F1"
in the same way that the "F1" "N step through menu"

uses the hardware. It interferes with the normal operation
of the clock. Please refer to the "Fermilab Users Guide

DO Clock Control and Test Program V1.03" by Bill Graves
1/31/90 section 4.4.3 through 4.4.3.4.

"Minimum (first) bin to start from."

Determine the first bin to start displaying to the screen.
Valid bin numbers are 0 to 1112. Input is clamped inside
of the valid range.

"Ending bin, "

Determine the last bin to start displaying to the screen.
Valid bin numbers are 0 to 1112. Input is clamped inside
of the valid range.

"0 (down) is represented by"
This allows the user to choose the ASCII character which
will represent the binary value of 0.

"1 (up) is represented by"
This allows the user to choose the ASCII character which
will represent the binary value of 1.

"Text display of screen of timelines"

Reads the sequencer memory by "stepping” through it
and displays the timelines in a character based mode
modulo 24 of the bucket number.

"Display static address lines (toggle)" (TOP or BOTTOM)
Controls where on the plot and for the timeline files the
Static Address lines will be positioned. When set to "TOP"
the normal timelines will be displayed first, 1 to 24, and
then the sixteen address lines, 25 to 40. When this is set

to set to "BOTTOM?" the sixteen address lines will be on the
bottom followed by the 24 timelines which will be numbered
25-40. This flag also controls the plot on the "download
timeline menu". This switch controls both the "Save (write)
current timelines" and the "Graphic display to screen of
timelines" menu picks on this sub-men as well as the "Make a
timeline text file..." and "Display a timeline graph of
current files" on the "Download” sub-men pick of "F1".

file "DZERO SEQUENCER HARDWARE DESCRIPTION"
mnemonic description by M. Fachin, C. Rotolo 1/18/90

"upa” = upper parity ="HPARITY" bit D11 of dynamic memory.
"syn" = synch ="SYNC_REF" bit D12 of static address memory.

"be" = beam crossing="BC_REF" bit D12 of static address memory.
"lpa" = lower parity ="LPARITY" bit D14 of static address memory.
“bet" = be trigger ="BC_TRIG" bit D15 of static address memory.

“Auto increment on x-axis by"

Pertains to the next menu pick. This allows the user to
change the size of how many bins to jump when incrementing
the plot from the Graphic sub-menu. This was put here
instead of the graphic due to space limitations.

“Ibm pro/graph printers =on.epson=off."
If "current= ... OFF" then this program is set to
work with an Epson FX (9 pin) dot matrix printer
when the Epson DIP switch set to Epson mode. (See your
printer manual as they vary.)
If current= ...ON" then this program is set to
work with the IBM Professional and Graphics printers
and compatible (including Epson set to IBM compatible mode).
(If your plot comes out with funny vertical separations
in it then change this and try it again!)

"Graphic display to screen of timelines"

Reads the Sequencer memory into the P.C. by "stepping"
through Sequencer memory. It then plots the timelines.
This has it's own menus associated with it allowing the
user to expand the plot or look at a particular section

of the timelines in detail in a graphical manner. It only
reads the Sequencer once and keeps reploting what it read
until the user presses the "Escape" key or another function
key. To make use of the "Increment.." feature set the "
End x" to the same as what "Auto increment” is set to first
and then press "I" for "Increment..". The x-axis maximum
is clamped and there is auto wrapping logic in the code on
the x-axis minimum. These clamps and wrapping are only valid
on the "Increment.." feature so they may be manually
over-ridden.

All 1113 buckets of all 40 timelines are always being
plotted. If the scaling is changed during the plot it is
possible to not see anything happening and not to see
a plot. It may be necessary to strike a key (the spacebar
is usually safe) to get the screen to refresh after changing
one or more of the following:

"Quit" goes all the way out to the main menu.

"Print" tries to open "LPT1" as a file and then

write an image of the screen to it.

“Top y" meaningful values here are 2-40. Can be used
with below to select a range of timelines.
Changing this will automatically adjust the
number of y divisions to be the number of timelines
you are plotting but you may over-ride this
with the "Y divis." pick yourself.

"Bot y" meaningful values here are 1-39. Can be used
with above to select a range of timelines.
Changing this will automatically adjust the

number of y divisions to be the number of timelines
you are plotting but you may over-ride this
with the "Y divis. " pick yourself.
"Strt x"Determines which R.F. bucket (0-1112) will be lined
up at the left plot axis.
"End x"Determines which R.F. bucket (0-1112) will be lined
) up at the right plot axis.
"X divis." How many x-axis divisions will be on the plot.
"Y divis." How many y-axis divisions will be on the plot.
"Grid" Turn on and off the dashed lines on the inside of the
plot.
"Auto erase" Is probably not very useful here but it can
be used to stop erasing the screen after the user
changes one of these menu picks.
"Line data" Turns on and off connecting the buckets with lines.
It can be hard to see a single pixel but one might
only be interested in them. Note that x-axis
plot for an EGA and VGA adapter is 512 x-axis pixels
between the margins. It is possible to have this
off and still look (mostly) like lines when packing
512 or more buckets into this space.
"Increment x-axis..." Adds the value displayed and set
on the calling menu to both the "Strt x" and "End x"
values to save time. This has some auto-wrap
logic.

"List of output files."

Provides an easy way to see what files already exist.
The user is prompted to edit the mask or if "Enter" is
pressed the current mask will be used.

"File to act on."
This is the file name that this page will use to write to,
or print from.

"Save (write) current timelines to file: ..."

Reads the Sequencer memory by "stepping” it as above into
P.C. memory and then writes this information to the "File
to act on."”

WARNING:

THERE MUST BE ENOUGH AVAILABLE MEMORY IN YOUR MACHINE
FOR THE FOLLOWING TO WORK. (If you are calling this

program from another there may not be enough left

for these to dynamicaily use the extra memory that

they need.)

"Browse file"

Allows the user to look at the data without going to DOS.
The "Browse" utility must be available in the current
path for this to work.

"Print file"

Passes the name of the file to the DOS "print" queue buffer.
WARNING: this can have unwanted side effects!
If the DOS "print" queue buffer was not previously run
or set up before this program was loaded then DOS sets
up the "print" queue buffers in the memory after the
memory this program is using. Then when this program is
exited DOS will not recover the program memory because the
"print" buffers were loaded after it. The only (normal)
way to recover this memory is to reboot as DOS cannot
recover fragmented memory.

(This problem may be avoided by allocating memory
at boot time by placing the following two lines in your
autoexec. bat file:

"mode LPT1:
print/d:LPT1"

The exact form of this may vary slightly from clone to
clone so see the DOS "mode" and "print" commands for
your machine.)
WARNING:

It is possible to exit or "Open a door to dos" and

delete the file you sent to the printer before the

it has finished printing. If this happens then

only part of the file will be printed.

If the file is a longer file then the DOS "print"

buffers and the printer's buffers then the file

will be deleted before it gets to the printer.

(This is true unless you are using a more sophisticated

"spooling” print queue utility than the standard simple

DOS one.)

"Copy file..."

Uses the DOS "copy" command to copy the file to the
DOS device "Ipt1" which is normally the printer.

Use this instead of "Print" to avoid the memory buffer
problems mentioned above. (A possible penalty here
is that it may tie up the machine longer while the

file is being printed. This depends on the file length
and the length of the printer's hardware buffer.)

"Open a door to DOS"

Passes whatever the user type's to DOS without leaving

the program until the user hits the "Enter" key. Then

it comes back into the program. "CT" is still using up
considerable memory of DOS's precious 640k bytes so there
may not be enough to do what you want.

RO G DO O w e

o

iy

ram/register/address tests or eXit, Quit, or ESC

address switch test.

random read addressing test. (for "bit3" in empty crate.)
csr test

address modifier test (for "bit3" only).

static "RAM" test

dynamic bank "A RAM" test

dynamic bank "B RAM" test

next sequencer address "RAM" test

lcop any opticon "B-H" until key pressed

loop all options "B-H" until key pressed

error message destination. current: SCREEN

additional information current: .. OFF

how many of the first ram failures to display. current: 17

help.

your choice 7

DO Sequencer Clock Test Sub-Sub-Menu
4/11/91

This page is similar in function as the original Version
1.03 main menu pick one except that the menu picks "K"
through "N" have been added.

A lot of the following is mostly quoted from section
4.4.2.1 through 4.4.2.12 of the original Version 1.03 Users
Guide DO Control and Test Program by Bill Graves. My
changes and comments are in parenthesis preceded by the
word "Note: ",

4.4.2.1. Suggested Test Procedure

(Note: this suggestion was originally intended for the original
version which ran only in the lab. Tests 'B' and 'D' are
meaningless at DO or over the Token Ring.)

It is recommended that the tests be run in the order in which
they appear in the menu. Once tests B-H work, one should select
option J and let the tests run continuously for 5 minutes or so.

If a test fails, read the test description below, and enter the
VME Diagnostics (option V in the main menu) and write a small
program which will allow you to look with an oscilloscope and
see what is wrong with the Sequencer.

4.4.2.2. Test descriptions

The following sections explain what is being tested in each test,
and how the tests work. Upon receiving an error message while
testing the Sequencer, a technician should be able to read the
appropriate section and know where to look on the Sequencer (and
how to write a smaller test in the VME Diagnostics) in order to fix
the problem.

llA"
4.4.2.3. Address Switch Test
Upon selecting A in response to the Clock Tests menu, the
user begins the address switch test. The screen will clear and the
following message will appear:
Now commencing address switch test

Set DO Clock address switch to $80.

After each beep, switch in the next switch position, until
they are all set.

Hit a key to begin

The address switch test works by telling the technician to
set the Sequencer address switch to $80, then doing a read of the
Sequencer control/status register. After each read, the computer
beeps, telling the technician to switch the next Sequencer address
switch until all the switches have been switched, resulting in an
address of $FF. If the returned VMEbus status from each read was
not DTACK, the following error message is printed:

Did not respond to VMEbus address xxxx

(Note: currently the Token Ring Version does not report
"no DTACK". This test will not correctly work over the
Token Ring on this version.)

In this error message, xxxx is the value to which the
Sequencer address switch should be set. The Sequencer has
not responded to a read of its control/status register.

If the Sequencer has passed this test, the next line to
appear on the screen will be:

test passed

set your switch back to xxx

Type any key to exit

"B"
4.4.2.4 (random read) address test.
(Note: This test is obviously not to be run in place at DO.
It should only be run in the lab in an empty crate via the
Bit 3. and not over the Token Ring.)
Upon selecting B from the Clock Tests menu, the user begins
the address test. The screen will clear, and the following message
will appear:

Now commencing address test

The address test performs its function by generating a random
VMEbus address, and doing a read on VMEbus using this address.
This procedure is repeated 1000 times. If the Sequencer responds
to and invalid address, the following message will appear:

Addr test: Received dtack to address of xxxxxxxx

In this error message, xxxxxxxx is the VMEbus address which was
being read from when the DTACK was received. It may be that the
DTACK came from some other board int the VME crate(s)...
non-essential VMEbus slaves should be removed from the crate before
testing the Sequencer. If the Sequencer passes this test, the next
line to appear on the screen will be:

test passed
Type any key to exit

In order to be a valid Sequencer address, the upper 8 bits of an
(upper 8 bits of a 24 bit) address must correspond to the address
switch setting, and the low 16 bits must be $2000, $2001, $4000,
$40001 or in the range $8000-$FFFF.

"CN
4.4.2.5 CSR Test

Upon selecting C from the Clock Tests menu, the user begins
the control/status register test. The screen will clear, and the
following message will appear:

Now commencing CSR test

The CSR test performs its function by setting and clearing

bits in the CSRs and reading the CSRs back to see if they contain
the correct data. Pseudocode for the CSR test is as follows:

set clock_on in CSRO
read CSRO
If clock_on = O then call error_message

clear clock_on in CSRO
read CSRO
If clock_on = 1 then call error_message

set output_enable in CSRO
read CSRO
If output_enable = 0 then call error_message

clear output_enable in CSRO
read CSRO
If output_enable = 1 then call error_message

set step_mode in CSRO
read CSRO
If step_mode = O then call error_message

clear step_mode in CSRO
read CSRO
If step_mode= 1 then call error_message

set free_run in CSRO
read CSRO
If free_run = O then call error_message

clear free_run in CSRO
read CSRO
If free_run = 1 then call error_message

set group a_on in CSRO
read CSRO
If group_a_on = O then call error_message

clear group_a_on in CSRO
read CSRO
If group_a_on = 1 then call €rror_message

set group_b_on in CSRO
read CSRO
If group_b_on = O then call error_message

clear group b_on in CSRO
read CSRO
If group_b_on = 1 then call error_message

set sel gr a in CSRO
read CSRO
If sel_gr_a = O then call error_message

clear sel_gr a in CSRO
read CSRO
If sel_gr_a = 1 then call error_message

set set_errors in CSRO

read CSRO

If set_errors = O then call error_message
read CSR1

If CSR1 < > $1ff then call error_message

the error messages look like:

csr test: expected xxxx in csrx but read yyyy after setting
(or clearing) the zzzz bit in csrx.

If the Sequencer passes the CSR test, the next screen will be:

test passed
Type any key to exit

ND"

4.4.2.6. Address Modifier Test

(Note: this test is only applicable for the Bit 3 Versions.)
Upon selecting D from the clock Tests menu, the user begins

the Address Modifier test. This test checks to see that the

Sequencer only responds to valid address modifier codes. The

screen will clear, and the following message will appear:

Now commencing address modifier test

The Address Modifier test performs its functions by attempting
reads of the Sequencer CSRO with various invalid address modifiers.
The returned VMEbus status is expected to be bus error - if it

is not, an error message is printed. Pseudocode for the address
modifier test is as follows:

for address_modifier = 0 to 40
read Sequencer CSRO
if VME status = ok and address modifier is not valid
then errmsg1
if VME status not ok and address modifier is valid
then errmsg2
for ct = 1 to 100
generate random address modifier
read Sequencer CSRO
if VME status = ok and address modifier is not valid
then errmsg3
if VME status not ok and address modifier is valid
then errmsg4

the various error messages are:

1) Read CSR with an am of xx and received no berr

2) Error: Read CSR with a valid am of xx and received no dtack
3) Read CSR with a random am of xx and received no berr (Bit 3 error)
4) Error: Read CSR with a valid random am of xx and received no dtack

If the Sequencer passes the address modifier test, the next screen
will be:

test passed
Type any key to exit

Valid address modifiers are $39 and $3D.

"E"
4.4.2.7. Static RAM test

Upon selecting E from the Clock Tests menu, the user begins
the Static RAM Test. This test verifies the integrity of the
static data memory. The screen will clear, and the following
message will appear:

testing static ram
The first test involves writing, reading and comparing of known
data to all of the RAM. The known data in this case is the address
to which the data is going. The following message is output:
using address as data
If this test passes, the next test begins - this time the data
$AAAA is written to every location. The following message is
output:
using aaaa as data
If this test passes, the next test begins - this time the data
$5555 is written to every location. The following message is
output:
using 5555 as data
If this test passes, the next test begins - this time random
data is written to every location. The following message is
output:
using random data
If compare errors do occur, the following error message is output:
data error at addr xxxxxx, wrote XXXX, read Xxxx
Only the first (Note: this is now controlled by the user with
menu pick "M") errors are output, but the rest are counted,

and at the end of the compare the total number of errors is output:

total errors in test =xxxx

If there was a compare error in a test, the following tests don't
execute - so if the test using AAAA as data has a compare error,
the next two tests (5555 and random) don't execute. If all of the
tests execute and the Sequencer passes, the message "tested ok" is
output, otherwise, "test failure” is output. The final message,

as always, is "Type any key to exit".

llFll
4.4.2.8. Dynamic bank A RAM test

Upon selecting F from the clock Tests menu, the user tests
the Group A Dynamic Data Memory to verify its integrity. The
known data in this case is the address to which the data
is going. The screen will clear, and the following message
will appear:

testing dynamic ram - bank A
The first test involves writing, reading and comparing of
known data to all of the Dynamic Group A RAM section. The
following message is output:

using address as data
If this test passes, the next test begins - this time the
data SAAAA is written to every location. The following
message is output:

using aaaa as data
If this test passes, the next test begins - this time the
data $5555 is written to every location. The following
message is output:

using 5555 as data
If this test passes, the next test begins - this time the
random data is written to every location. The following
message is output:

using random data

If compare errors do occur, the following error message is
output:

data error at addr XXXXXXxx, wrote xxxx, read XXxXx
Only the first (Note: this is now controlled by the user with
menu pick "M")) errors are output, but the rest are counted
and at the end of the compare the total number of errors is
output:

total errors in test=xxxx

If there was a compare error in a test, the following tests don't
execute - so if the test using AAAA as data has a compare error,
the next two tests (5555 and random) don't execute. If all of the
tests execute and the Sequencer passes, the message "tested ok" is
output, otherwise, "test failure" is output. The final message,

as always, is "Type any key to exit".

"G"
4.4.2.9. Dynamic bank B RAM test

Upon selecting G from the clock Tests menu, the user tests
the Group B Dynamic Data Memory to verify its integrity. This
test verifies the integrity of the Dynamic Group B section of
Sequencer memory. The screen will clear, and the following
message will appear:

testing dynamic ram - bank B
The first test involves writing, reading and comparing of
known data to all of the Dynamic Group B RAM section. The
known data in this case is the address to which the data
is going. The following message is output:

using address as data
If this test passes, the next test begins - this time the
data $AAAA is written to every location. The following
message is output:

using aaaa as data
If this test passes, the next test begins - this time the
data $5555 is written to every location. The following
message is output:

using 5555 as data
If this test passes, the next test begins - this time the
random data is written to every location. The following
message is output:

using random data

If compare errors do occur, the following error message is
output:

data error at addr xxxxxxxx, wrote XxXxx, read xxxx
Only the first ((Note: this is now controlled by the user with
menu pick "M")) errors are output, but the rest are counted
and at the end of the compare the total number of errors is
output:

total errors in test=xxxx

If there was a compare error in a test, the following tests don't
execute - so if the test using AAAA as data has a compare error,
the next two tests (5555 and random) don't execute. If all of the
tests execute and the Sequencer passes, the message "tested ok" is
output, otherwise, "test failure" is output. The final message,

as always, is "Type any key to exit".

"H"
4.4.2.10. Next Sequencer Address Ram test

Upon selecting H from the clock Tests menu, the user begins
the Next Sequencer Address RAM test. This test verifies
the integrity of the next address section of Sequencer memory.
The screen will clear, and the following message will appear:

testing next address ram
The first test involves writing, reading and comparing of
known data to all of the next address RAM section. The
known data in this case is the address to which the data
is going. The following message is output:

using address as data
If this test passes, the next test begins - this time the
data SAAAA is written to every location. The following
message is output:

using aaaa as data
If this test passes, the next test begins - this time the
data $5555 is written to every location. The following
message is output:

using 5555 as data
If this test passes, the next test begins - this time the
random data is written to every location. The following
message is output:

using random data

If compare errors do occur, the following error message is
output:

data error at addr xxxxxxxx, wrote xxxx, read Xxxx
Only the first (Note: this is now controlled by the user with
menu pick "M")) errors are output, but the rest are counted
and at the end of the compare the total number of errors is
output:

total errors in test=xxxx

If there was a compare error in a test, the following tests don't

execute - so if the test using AAAA as data has a compare error,
the next two tests (5555 and random) don't execute. If all of the
tests execute and the Sequencer passes, the message "tested ok" is
output, otherwise, “test failure" is output. The final message,

as always, is "Type any key to exit".

"I loop any option 'B-H' until key pressed”

When "I" is selected the user is prompted to enter B - H or ESC

to eXit. Any other input is ignored. "The individual tests run

almost the same when looping, except that there is an added "

field that is updated on how many loops have been executed.
This is good for troubleshooting the electronics with a

scope as the tests just repeat,

“J loop all options 'B-H' until key pressed"
Upon selecting option J from the main menu the user enters the
loop on all options B - h world. This allows the user to loop
on all of the looped tests until a key is pressed. The screen
will clear, and the tests B - H will begin executing in sequence.
When H is done, the loop starts again with B. This continues
until a key is pressed.

The individual tests run almost the same when looping, except
that there is an added message on most errors:

Ipet = xxx

this Ipct is just a count of how many times the test B - H have
been run. Also, errors won't result in some tests not being
executed - the tests will loop until a key is pressed whether it
is passing or failing.

"K error message destination"

Allows the user to re-route most error message. If it
says "SCREEN" then all output will be put to the CRT.
If any other filespec is put there than most output

will go to disk with some summary messages still always
coming to the screen.

"L additional information™

If this is on then more information will be output on
some tests. This may be useful in seeing what is
going on.

"M how many of the first ram failures to display"

This allows the user to set how many RAM errors messages
to display before suppressing the rest. This provides

a way of turning off and controlling the message
suppression feature.

"N help"

Displays this file one screen at a time. There is no
going backwards except to hit the ESC key and start
over. At the end of the file the filename will be
displayed so the user may print this out or look at

it with another utility such as "browse" or even edit
this file with a text editor.

step through menu

fi
o)

{

ct 3@

ange coarse key value. current=

ep through buckets by using above
step 1,2,3,4,5,6,7,8,9 for their

ot menu of sequencer memory using

Goto a bucket

eXit back to the main menu

¥

DG

3O
]

Enter the letter of your choice:

100 buckets
value.

respecitve no. of buckets.

step through mechanism.

Line Statu

TLO)
TL1)
TLZ)
TL3)
TL4;
TLS
TL8)
TL7)
TL8)
TLS)
TL10O)
TL11)
TL1Z)
TL13)
TL14)
TL15)
TL18)
TL17)
TL18)
TL19)
TL20)
TL21)
TL22)

Up
UP
UF

down
down
down

down

down
down
down
down
down
down
down
down
down
down
down
down
down
down
down

DO Sequencer Step Sub-Sub-Menu Help Notes
4/11/91

This page is similar in function as the original Version
1.03 main menu pick one except that the user interface has
been slightly changed and the ability to plot the memory
using the step through algorithm has been added.

A lot of the following is mostly quoted from section
4.4.3 through 4.4.3.4 of the original Version 1.03 Users
Guide DO Control and Test Program by Bill Graves. My
changes and comments are in parenthesis preceded by the
word "Note:".

4.4.3 Option N: Step Through (of F1)

Upon selecting option N, the users enters the step through
menu. The current state of the Sequencer (CSRO) is saved and the
Sequencer is: put in step mode, turned on, outputs are enabled,
and put in free run mode. When one exits Step Through, the
previous state of the Sequencer is restored. Step Through
is a way of verifying the contents of Sequencer RAM. It allows
one to examine the potential state of the timing lines at any
desired bucket. Step through will only work if a file has been
loaded into the Sequencer. The Line Status column of the Step
Through menu shows the RAM contents of the current bucket
(displayed by the bucket #xxx in the center of the screen)...

"Help"

Displays this file one screen at a time. There is no
going backwards except to hit the ESC key and start
over. At the end of the file the filename will be
displayed so the user may print this out or look at

it with another utility such as "browse" or even edit
this file with a text editor.

"Change coarse key value. current= xxxx buckets"
(4.4.3.1: old Option V: Assign Coarse Key)

The purpose of (...this option..) is to allow one to
change the value of the coarse key (key s) from its default
of 100. Valid values for the coarse key are 10-1113.
...the user will be prompted "type in the value you wish the
coarse key to have:" valid responses result in the value of the
coarse key being changed. Invalid responses result in error
messages, and the user is prompted again for a valid response.
A response of less than 10 results in the message "A fine key
already has this value" being output. A response of greater
than 1113 results in the message "Values cannot exceed 1113"
being output.

(Note: User input is in decimal unless preceded

by a '$' which means that user input is in hex.)

"Step through buckets by using above value. "
(4.4.3.2. Option S: Step Coarse)

When the user selects option S, the bucket number is
increased by the value of S, and the state of the timing
lines at that bucket is displayed.

4.4.3.3. Options 1-9: Step Fine

When the user selects options 1 - 9 the bucket number is
increased by the selected number, and the state of the
timing lines at that bucket is displayed.

"Plot menu of sequencer memory using step through mechanism."
This is a new menu with it's own help notes. It allows

several means of displaying all of memory buckets. It's

draw back is that it is a little slow in gathering all

of the information in this manner. It is especially

slow in the Token Ring Version.

4.4.3.4. Option G: Goto a bucket

Upon selecting option G., the user is prompted: "Type
in the value of the bucket you wish go to:". Valid responses
are from 0-1112. If the response contains an non number key,
the message "Stick to number keys, please” is output, and
the user is prompted again for a valid response. If the
response is a negative number, the message "No negative values
allowed" is output, and the user is prompted again for a valid
response. If the response is greater than 1112, the message
"Values cannot exceed 1112" is output, and the user is prompted
again for a valid response, the bucket number is changed and the
state of the timing lines is displayed.

step test plot menu or eXit, Quit or E3C

Help

Minimum (first) bin to start from. current: 0
Ending bin. current: 1112
0 {(down) is represented by current: .

1 (up) is represented by current: .
Text display to screen of timelines

Display static address lines (toggle) current: TOP
Auvto increment on x-axis by current: 100
Ibm pro/graph printers=zon.epson=off. current: .. OFF
Graphic display to screen of timelines

List of output files. current mask: *.tl

File to act on. current: read.tl

Save (write) current timelines to file: read.tl

Browse file read.tl
Print file read.tl (use "print"” in DOS first!)
Copy file read.tl to "lptl".

Open a door to DOS

Step Timeline Display/Plot Sub-Menu Detailed Help Notes

These help notes are the same in function as the Memory Timeline
..." ones except that the data plotted is obtained using the
step through mechanism and is much slower especially over the
network. A lot of the internal variables on this page are the
same as the ones on "F1" plot,

This is really more of an exercise of the Sequencer hardware
than it is to plot it; the plot is just to display the results
of exercising the hardware. The Sequencer is put in step mode,
turned on, outputs are enabled, and put in free run mode.
Step Through starts at bucket O reads that location, increments
the bucket, reads the next location and so on until all 1113
buckets have been stored in the P.C.'s RAM. So it somewhat
automates the previous page. The two pages should give the
same results. It is a way of verifying the contents of
Sequencer RAM. 1t allows one to examine the potential state of
the timing lines at any desired bucket. Step through will only
work if a file has been previously loaded into the Sequencer.

"Help. "

Displays this file one screen at a time.

This page reads the Sequencer hardware selected on "F1"
in the same way that the "F1" "N step through menu"

uses the hardware. It interferes with the normal operation
of the clock. Please refer to the "Fermilab Users Guide
DO Clock Control and Test Program V1.03" by Bill Graves
1/31/90 section 4.4.3 through 4.4.3.4.

"Minimum (first) bin to start from. "

Determine the first bin to start displaying to the screen.
Valid bin numbers are 0 to 1112. Input is clamped inside
of the valid range.

"Ending bin. "

Determine the last bin to start displaying to the screen.
Valid bin numbers are 0 to 1112. Input is clamped inside
of the valid range.

"0 (down) is represented by"
This allows the user to choose the ASCII character which
will represent the binary value of 0.

"1 (up) is represented by"
This allows the user to choose the ASCII character which
will represent the binary value of 1.

“Text display of screen of timelines"

Reads the sequencer memory by "stepping" through it
and displays the timelines in a character based mode
modulo 24 of the bucket number.

"Display static address lines (toggle)" (TOP or BOTTOM)

Controls where on the plot and for the timeline files the
Static Address lines will be positioned. When set to "TOP"
the normal timelines will be displayed first, 1 to 24, and
then the sixteen address lines, 25 to 40. When this is set

to set to "BOTTOM" the sixteen address lines will be on the
bottom followed by the 24 timelines which will be numbered
25-40. This flag also controls the plot on the "download
timeline menu". This switch controls both the "Save (write)
current timelines” and the "Graphic display to screen of
timelines" menu picks on this sub-men as well as the "Make a
timeline text file...” and "Display a timeline graph of
current files" on the "Download" sub-men pick of "F1".

file "DZERO SEQUENCER HARDWARE DESCRIPTION"
mnemonic description by M. Fachin, C. Rotolo 1/18/90

“upa” = upper parity ="HPARITY" bit D11 of dynamic memory.
"syn" = synch ="SYNC_REF" bit D12 of static address memory.
"bc"” = beam crossing="BC_REF" bit D12 of static address memory.
“lpa" = lower parity ="LPARITY" bit D14 of static address memory.
"bet" = be trigger ="BC_TRIG" bit D15 of static address memory.

"Auto increment on x-axis by"

Pertains to the next menu pick. This allows the user to
change the size of how many bins to jump when incrementing
the plot from the Graphic sub-menu. This was put here
instead of the graphic due to space limitations.

"Ibm pro/graph printers=on.epson=off,"
If "current= ... OFF" then this program is set to
work with an Epson FX (9 pin) dot matrix printer
when the Epson DIP switch set to Epson mode. (See your
printer manual as they vary.)
If current= ...ON" then this program is set to
work with the IBM Professional and Graphics printers
and compatible (including Epson set to IBM compatible mode).
(If your plot comes out with funny vertical separations
in it then change this and try it again!)

"Graphic display to screen of timelines"

Reads the Sequencer memory into the P.C. by "stepping"
through Sequencer memory. It then plots the timelines.
This has it's own menus associated with it allowing the
user to expand the plot or look at a particular section

of the timelines in detail in a graphical manner. It only
reads the Sequencer once and keeps reploting what it read
until the user presses the "Escape" key or another function
key. To make use of the "Increment.." feature set the "
End x" to the same as what "Auto increment” is set to first
and then press "I" for "Increment..". The x-axis maximum
is clamped and there is auto wrapping logic in the code on
the x-axis minimum. These clamps and wrapping are only valid
on the "Increment.." feature so they may be manually
over-ridden.

All 1113 buckets of all 40 timelines are always being
plotted. If the scaling is changed during the plot it is
possible to not see anything happening and not to see
a plot. It may be necessary to strike a key (the spacebar
is usually safe) to get the screen to refresh after changing
one or more of the following:
"Quit" goes all the way out to the main menu.
"Print" tries to open "LPT1" as a file and then
write an image of the screen to it.
"Top y" meaningful values here are 2-40. Can be used
with below to select a range of timelines.
Changing this will automatically adjust the
number of y divisions to be the number of timelines
you are plotting but you may over-ride this
with the "Y divis." pick yourself.
"Bot y" meaningful values here are 1-39. Can be used
with above to select a range of timelines.
Changing this will automatically adjust the
number of y divisions to be the number of timelines
you are plotting but you may over-ride this
with the "Y divis. " pick yourself.
"Strt x"Determines which R.F. bucket (0-1112) will be lined
up at the left plot axis.
"End x"Determines which R.F. bucket (0-1112) will be lined
up at the right plot axis.
"X divis." How many x-axis divisions will be on the plot.
"Y divis." How many y-axis divisions will be on the plot.
"Grid" Turn on and off the dashed lines on the inside of the
plot.
"Auto erase" Is probably not very useful here but it can
be used to stop erasing the screen after the user
changes one of these menu picks.
“Line data” Turns on and off connecting the buckets with lines.
It can be hard to see a single pixel but one might
only be interested in them. Note that x-axis
plot for an EGA and VGA adapter is 512 x-axis pixels
between the margins. It is possible to have this
off and still look (mostly) like lines when packing
512 or more buckets into this space.
"Increment x-axis..." Adds the value displayed and set
on the calling menu to both the "Strt x" and "End x"
values to save time. This has some auto-wrap
" logic.

"List of output files."

Provides an easy way to see what files already exist.
The user is prompted to edit the mask or if "Enter" is
pressed the current mask will be used.

"File to act on."
This is the file name that this page will use to write to,
or print from.

"Save (write) current timelines to file: ..."

Reads the Sequencer memory by "stepping” it as above into
P.C. memory and then writes this information to the "File
to act on. "

WARNING:

THERE MUST BE ENOUGH AVAILABLE MEMORY IN YOUR MACHINE
FOR THE FOLLOWING TO WORK. (If you are calling this

program from another there may not be enough left

for these to dynamically use the extra memory that

they need.)

"Browse file"

Allows the user to look at the data without going to DOS.
The "Browse" utility must be available in the current
path for this to work.

"Print file"
Passes the name of the file to the DOS "print" queue buffer.
WARNING: this can have unwanted side effects!
If the DOS "print" queue buffer was not previously run
or set up before this program was loaded then DOS sets
up the "print" queue buffers in the memory after the
memory this program is using. Then when this program is
exited DOS will not recover the program memory because the
"print" buffers were loaded after it. The only (normal)
way to recover this memory is to reboot as DOS cannot
recover fragmented memory.

(This problem may be avoided by allocating memory
at boot time by placing the following two lines in your
autoexec.bat file:

"mode LPT1: .
print/d:LPT1"

The exact form of this may vary slightly from clone to
clone so see the DOS "mode" and "print" commands for
your machine.)
WARNING:

It is possible to exit or "Open a door to dos" and

delete the file you sent to the printer before the

it has finished printing. If this happens then

only part of the file will be printed.

If the file is a longer file then the DOS "print"

buffers and the printer's buffers then the file

will be deleted before it gets to the printer.

(This is true unless you are using a more sophisticated

"spooling” print queue utility than the standard simple

DOS one.)

"Copy file..."

Uses the DOS "copy" command to copy the file to the
DOS device "Ipt1" which is normally the printer.

Use this instead of "Print" to avoid the memory buffer
problems mentioned above. (A possible penalty here
is that it may tie up the machine longer while the

file is being printed. This depends on the file length
and the length of the printer's hardware buffer.)

"Open a door to DOS"

Passes whatever the user type's to DOS without leaving

the program until the user hits the "Enter" key. Then

it comes back into the program. "CT" is still using up
considerable memory of DOS's precious 640k bytes so there
may not be enough to do what you want.

token ring

vellow=hot pick unless in a column menu then
arrow keys moves blue cursor & change vals.
Device name (file)=
$O73A

Node # of vme=

selector fanout control or eXit,

Module address= $10300000
Address modifier= $39

test73a.sft

@uit or ESC

"enter” exits column menu.
reverse green=-current pick.
List devices (files)

Open a door to dos

Vme diagnostics

Time delay: 1bns

Help cave Restore Erase Browse (device) file Global save/restore
lpick=rev all stat lpick=rev lpick=rev lpick&stat lpick
2:TL Router P3:TL Selector P3:Busy Router PZ:Busy Selector Clock Out Outp
InO-3 to: Qut0-3 from: BusyIn to: BusyCOut from:
0: TLOO-C3 ChO = 18 0:Busy0 C: Busy0O MCLK direc
1: TLO4-07 Chl = 20 1:Busyl 1: Busyl PCLK retin
2: TLOB-11 Ch2 = 2 Z:Busy? Z: BusyZ2 disabled
3: TL12-15 Ch3 = 3 3:Busy3 3: Busy3
4: TL16-19 ChO enabled 4:Busy4 4: Busy4
5: TL20-23 Chl disabled 5:disabled 5: disabled
8: TL Sel Ch2 disabled 6:selector 6: router
7: disabled Ch3 disabled 7:disabled 7: disabled
register readings follow: flashing display may indicate vme read prror(u)
router: $FF ch0 $12 busy sel/router: $F7 con. stat. reg.= $F7
chl $34 local/remote= remote
ch? $22
ch3 $23

F2 Sub-Menu: DO Clock Selector Fanout Help Notes
11/5/90

This page no longer reads the last selected address
and Downloads it automatically although the user is allowed
to do this by pressing the "R" key for "Restore”. The page
reads the last selected "Device" (address file) to get the
address and then reads the hardware and displays it's current
settings. Nor are the last downloaded settings automatically
saved to the file unless "auto save on exit is enabled” on
the main menu and the user type 'y’ or 'Y" to the question
asking if he wants to over-write the existing file. Also
the user may at any time manually over-write the existing
file with the "Save" option below. The last device selected
is stored in the file "SF_DEF.TXT" which is still
automatically updated by the program.

This page allows the user to change which Selector Fanout
Module (SFM) is being read by the program. While not in any of
the column menus and a hot key is not pressed the program is
constantly doing byte reads of the (byte) registers and comparing
them to values it has last read. If they are different then the
display flashes annoyingly.

Light gray (white) is information of how to interpret the
display and helps divide the page into sections. The Capital
letters in the top part are hot and cause a menu pick to be
activated. If the user does not want to change the value of
the menu pick, the "ESC" or "Enter" key should abort changing
the value.

The information "1pick=rev" is a reminder that the item
in reverse video (green) is the current reading from that column.
"all stat" is short for "all status” meaning that everything in
the column may be changed and is being read back. "1 pick&stat"
means that there is both. Either MCLK or PCLK is selected and
that "enabled” or "disabled" will be displayed below it.

This section has not changed from the previous program.

The section under "register readings follow" is the raw
hex reading from the byte registers that were previously on
the top of the old program. Hopefully they have been moved
to more roughly correspond to their decoded columns and be
a little more meaningful.

"Device name (file)"
If the "Backspace" key is hit first then the
string may be deleted and changed one character at a time;
else if a normal ASCII character is struck the whole string
will be deleted and the user may input a new string.
The arrow keys are not implemented in editing this field.

A device name is really any legal DOS filespec which may
include a disk and sub-directory as part of the filename,
up to 79 characters is valid. See a DOS manual for further
information on DOS filenames. When the user enters a new
device name the program looks for that file.

If the file is found the program reads in the Node,

VME module base address (menu pick "M"), and the address
modifier in the file. Using this information the program
then continuously does byte reads of the (byte) registers
and compares them to the values it has last read. If they
are different then the display flashes annoyingly while
not in a column menu or a hot key is not being processed.

If the file is not found the assumption is that the user
wants to create, add, or make a new device! It goes through a
series of questions to determine how you want to do this.
The possibility exists to use the present settings of "N","M",
and "A" or to change them interactively. If "Enter" is
pressed the old value will prevail. ESC will get you out
of the question tree. The files that are created are human
readable and have comment strings to the right of them so
that they may be easily manipulated through DOS: "copy", "rename",
"delete”, and/or edited with an editor program.

"Node # of vme"
This is a hex (byte) address of which DO Control Crate the SFM
is tied to through the Vertical Interconnect (VD).
If this is changed the "Device name" above is changed by
the program to "UNKNOWN.SF". This mechanism is enforced by the
program as a way of trying to prevent accidental corruption of
a Device and it's address. There is no backward lookup mechanism
for looking up a (file) name from an address.

"Module address"
This is the full 32 bit VME base address the SFM is set to.
Please note that if one is using an address that is greater
than 24 bits one must be using a Bit3 406 adapter and the
menu pick "3irty-two bit add” must be set to "ON". When using
the 24 bit addressing #403 Bit3 adapter the "3irty-two bit
add" must be set to "OFF". If the #403 is being used the
high byte of the 32 bit address will be ignored.
If this is changed the "Device name" above is changed by
the program to "UNKNOWN.SF". This mechanism is enforced by the
program as a way of trying to prevent accidental corruption of
a Device and it's address. There is no backward lookup mechanism
for looking up a (file) name from an address.

" Address modifier"
This is the address modifier that the Bit3 will use to talk to
the VME crate. It is always in the file of data but is not used
if this program is doing I/O over the Token Ring. That way
only one set of Device files need be maintained no matter which
interface is being used.
If this is changed the "Device name" above is changed by
the program to "UNKNOWN.SF". This mechanism is enforced by the
program as a way of trying to prevent accidental corruption of
a Device and it's address. There is no backward lookup mechanism
for looking up a (file) name from an address.
A word about address modifiers is in order here. This version
has been modified so that it is always doing BYTE reads of the
SFM byte registers so one needs to put in a valid BYTE VME address

modifier. Further if the program is being used over a Vertical
Interconnect then one needs to change the high nibble to $0.

For example if the hardware normally responds to $3D then when
using the VI one would use $0D.

"List devices (files)"

Allows the user to do a directory of files on the disk. The
current mask is displayed which the user may change by typing
in a new one: if the "Backspace” key is hit first then the

string may be deleted and changed one character at a time;

else if a normal ASCII character is struck the whole string

will be deleted and the user may input a new string.

The arrow keys are not implemented in editing this field.

When the user hits "Enter" then the program will shell out

to DOS and do a directory if there is memory available in the PC.

"Open a door to dos"

Allows the user to shell out to DOS and do what ever they can
with the remaining memory available including editing any
files. To return to the program hit "Enter" with out typing

in a string.

"Vme diagnostics"

Goes into another part of the original program that is a command
interpreter. For help on this please refer to the end of the

F1 help notes.

“Time delay"
Is the same thing it was in the original program.

"Help"
Displays this file one screen at a time.

"Save"
Reads the current values and writes them to the "Device name"
file.

"Restore”
Reads the current "Device name" file and writes the values to
hardware.

"Erase!l

Deletes the current "Device name" file from the current sub-
directory (or filespec). If this key is hit accidently the

file may easily be recovered by immediately hitting the "Save"
menu pick which will re-write the file with the current address
program settings and current hardware readings.

"Browse"

Allows the user to look at a "Device" file. The format is

a human readable ASCII hexadecimal number followed by a
descriptive text string describing which byte register it is.

"Global save/restore”

Brings up a sub-menu which allows saving and restoring from
a file containing a list of "Device" (file) names. This
menu has it's own help file.

5.2 Control Columns

The control columns are the vehicle by which the user controls
the Selector fanout. One can move from column to column only when
the "cursor” is at the top of the columns. One moves from column
to column via the right and left arrow keys. When you get over
the column you would like to change hit either the down arrow key,
or the return key. The "cursor” will move down to the currently
selected function (in the TL Selector column, the cursor just moves
to the first option). In general one moves the cursor up and down
in the column (using the up and down arrow keys) until the cursor
is over the desired selection, then hits enter to select the option.
The exceptions are in the TL Selector column, and in the Clock Out
column (see below).

5.2.1. TL Router

There are eight options in this column. The following table
displays what gets written to the TL Router register when the
user selects a particular option:

TL Router Selection Value Written to TL Router Register

TLO-3 0
TLA-7 1
TL8-11 2
TL12-15 3
TL16-19 4
TL20-23 5
P31/0 6
nowhere 7

5.2.1. TL Selector

The TL Selector is the most unusual column in the Selector
Fanout Control menu. The user goes down to the desired rows
with the up and down arrow keys as usual, but uses the left
and right arrow keys to select the desired state of each row.
In the first four rows, the values range from 0 to 23. In the
bottom four rows, the values are enabled and disabled.
When the entire column is in the desired state, the user hits
enter to write the data to the various TL Output Selector
registers. The following table shows the actual data written
to those registers for each possible selection:

TL Output Selection =~ Value Written to TL Selector Register

Ch = 0, enabled 0
Ch = 1, enabled 1
Ch = 2, enabled 2

3

Ch = 3, enabled

2

Ch = 23, enabled 23

Ch = 0, disabled 32
Ch = 1, disabled 33
Ch = 2, disabled 34
Ch = 3, disabled 35
Ch = 23, disabled 55

5.2.3. Busy Router

There are seven options in this column. The following table
displays what gets written to bits 0-2 of the Busy Selector/Router
register when the user selects a particular option:

Value Written to bits 0-2 of
Busy Router Selector Busy Selector/Router Register

Busy0 0
Busy1l 1
Busy2 2
Busy3 3
Busy4 4
selector 6
nowhere 5

5.2.4. Busy Selector

There are seven options in this column. The following table
displays what gets written to bits 4-6 of the Busy Selector/Router
register when the user selects a particular option:

Value Written to bits 4-6 of
Busy Selector Selector Busy Selector/Router Register

Busy0 0
Busyl 1
Busy2 2
Busy3 3
Busy4 4
router 6
nowhere 5
5.2.5. Clock Out

Although there are only three rows in this column, there
are four possible selections. The MCLK and PCLK options work
like the others do, but when one moves down to the enabled/
disabled row, the left and right arrows keys are used to
toggle between enabled and disabled. When the entire column
is in the desired state, the user hits enter to write the data
to bits 1 and 2 of the Control and Status Register. The
following table shows the exact data written to bits 1 and 2
for each combination of options:

Value Written to bits 1 and 2 of

Clock Out Selection Control and Status Register

MCLK and enabled 0

PCLK and enabled 1

MCLK and disabled 2

PCLK and disabled 3
5.2.6. Output

There are two options in this column. The following table
displays what gets written to bit O of the Control and Status
register when the user selects a particular option:

Value Written to bit O of
Output Selection Control and Status register

direct 0
retime 1

giobal save/restore for selector fanout modules

Help for this page
List files
Process file of sf device filenames. current: DEFAULT.LIS

=
& f
Browse above file.
e

Qpen a door to dos

eXit, Quit or ESC

DO Clock Selector Fanout Global Save/Restore Help Notes
11/5/90

"Help for this page"
Displays this file one screen at a time.

"List files"
Allows the user to do a directory of files on the disk. The
current mask is displayed which the user may change by typing
in a new one: if the "Backspace" key is hit first then the
string may be deleted and changed one character at a time;
else if a normal ASCII character is struck the whole string
will be deleted and the user may input a new string.
The arrow keys are not implemented in editing this field.
When the user hits "Enter" then the program will shell out
to DOS and do a directory if there is memory available in the PC.
NOTE:

When making new "*.lis" files with your favorite editor
the string "*sflist" must be the first line of the file.
Also there should not be apparent blank lines including the
last line. The end-of-file marker should be at the end of
the list to avoid the disconcerting message: "device file:
not found=not done". A blank line or null string probably
contains a hidden carriage return (or other hidden ASCII
characters). If the character is a carriage return (Enter
key) then that gets filtered out by the PASCAL "readIn"
procedure and does not get echoed to the screen in the
error message. Carriage returns and other hidden characters
are not legal characters as part of a filename.

"Process file of sf device filenames. "

Allows the user to change the file name to either Save

to disk ("Upload") or Write from disk to hardware ("Download").
This file is a list of "Device name" (files) to be processed.

The name may be changed similarly to "List devices" above.
There is no provision built into the program to maintain these
lists. It is expected that any normal (program) text editor be

used to create these files such as DOS's "EDLIN".

"Browse above file."
Allows the user to look at the contents of the above filename.

"Save (read hardware and write to disk)."

Reads the "Process file.." device names and tries to open
them. If it finds the file it reads the address, node, and
address modifier, then the program reads the hardware and
re-writes the device file with the latest readings.

"Restore (read disk and write to hardware)."

Reads the "Process file.." device names and tries to open
each device file, read the contents and then writes to hardware
the values in the device file.

"Open a door to dos"

If there is enough memory available this will allow the user to

use any DOS commands including an editor to create, and modify
new "* lis" files.

token ring rpcc control or eXit, Quit or E3C
yvellow=hot pick

error bits: RF_MISGEING SYNC_TIMING SYNC_MISSING

1 =
mclk delay =
mode = normal
set errcrs
clear errcrs

|95 R SN h I SV

Address (pcc base add.)}) $10070000
Token ring node $OT73A
Bit three add. mod. $39

List files
File for current device TEST73A.PCC
Save to above file.
Restore from above file to hardware.
Open a door to dos.

Vme diagnostics

F3 Sub-Menu: DO PCC Help Notes
12/16/90

This page is similar in function as the original Version

1.03 main menu pick three except that the user interface has
been slightly changed and that some menu picks have different
letters and have been re-located. Also a few more DOS
functions have been added including saving and restoring

to a user specified file.

This page no longer reads the last selected address
and Downloads the Control Status Register automatically
although the user is allowed to do this by pressing the
"R" key for "Restore". The page still reads "DEFAULTS.PCC"
to get the address and then reads the hardware and displays
it's current settings. Nor are the last downloaded settings
automatically saved to the file unless "auto save on exit is
enabled” on the main menu and the user type 'y' or 'Y"' to the
question asking if he wants to over-write the existing file.
Also the user may at any time manualily over-write the existing
file with the "Save" option below. The last device selected
is stored in the file "SF_DEF.TXT" which is still
automatically updated by the program.

"Address"

This is the full 32 bit VME base address the PCC card is set to.
Please note that if one is using an address that is greater

than 24 bits one must be using a Bit3 406 adapter and the

menu pick "3irty-two bit add" must be set to "ON". When using
the 24 bit addressing #403 Bit3 adapter the "3irty-two bit

add" must be set to "OFF". If the #403 is being used the

high byte of the 32 bit address will be ignored.

"Token ring node"
This is a hex (byte) address of which DO Control Crate the PCC
is tied to through the Vertical Interconnect (VD.

"Bit three add. mod."

This is the address modifier that the Bit3 will use to talk to

the VME crate. It is always in the file of data but is not used

if this program is doing I/0 over the Token Ring. That way
only one set of Device files need be maintained no matter which
interface is being used.

A word about address modifiers is in order here. This version
has been modified so that it is always doing BYTE reads of the
SFM byte registers so one needs to put in a valid BYTE VME address
modifier. Further if the program is being used over a Vertical
Interconnect then one needs to change the high nibble to $0.

For example if the hardware normally responds to $3D then when
using the VI one would use $0D.

"List of files"
Allows the user to do a directory of files on the disk. The

current mask is displayed which the user may change by typing
in a new one: if the "Backspace” key is hit first then the

string may be deleted and changed one character at a time;

else if a normal ASCII character is struck the whole string

will be deleted and the user may input a new string.

The arrow keys are not implemented in editing this field.

When the user hits "Enter" then the program will shell out

to DOS and do a directory if there is memory available in the PC.

"File for current device"

Chooses the filename to "Save", "Restore”, or "Use" as below.
If the "Backspace” key is hit first then the

string may be deleted and changed one character at a time;

else if a normal ASCII character is struck the whole string

will be deleted and the user may input a new string.

The arrow keys are not implemented in editing this field.

If the file is found then the program reads in the above
file's addresses and filenames to read the PCC without
changing the values in the PCC control registers from
the file as does "Restore” in the menu pick below. If the
file is not found a message informing the user that the no
address values have been changed. The user is free to change
any address or value and to save into the same file.

"Save"
Reads the current values and writes them to the "File for
current device: " above.

"Restore”
Reads the current "File for current device: " above and writes
the values to hardware.

"Open a door to dos"

Allows the user to shell out to DOS and do what ever they can
with the remaining memory available including editing any
files. To return to the program hit "Enter" with out typing

in a string.

"VME diagnostics”

Goes into another part of the original program that is a command
interpreter. For help on this please refer to the end of the

F1 help notes.

F8 menu: peek,/poke vme

Hex cutput toggle {onzhex. off=dec.}? current=
Addres=s to poke. current:
Location to peek. current:
Copy poke address to peek address

Value to write. current:

Mcdifier (address) for vme 1/0. current:

Pecek word 1 time.

Write word 1 time.

Read continuously.
Forever write (until a key is pressed).

Both poke & peek 1 time.
Do poke & peek continuously

1 process file vme.dat
2 change above file to process. current=
3 directory of files. current mask=

57

vme .dat
¥.dat

F8 menu: peek/poke vme
Hex output toggle (onzhex. off=dec
Address to poke.
Location to peek.
Copy proke address to peek address
Value to write.

Node no. fadc vme crate in hex

Peek word 1 time.
Write word 1 time.

Read continuously.

.) ocurrents .. QFF
current: 8388607
current: 8388607
current: 0

current: $073A

Forever write (until a key is pressed).

Both poke & peek 1 time.
Do poke & peek continuously

process file vme.dat
Z change above file to process.
3 directory of files.

[

current= wvme.dat
current mask= X.dat

"F8" Detailed Notes

“Hex output" controls whether this pages numeric values
are displayed in Hex or Decimal. Especially useful with F2,
F6, and F8 to have the data in the base of your preference.

"Address to poke "
Which VME address other menu picks this page that write to
VME memory will act on.

"Location to peek”
Which VME address other menu picks this page that read from
VME memory will act on.

NOTE:

When reading standard VME memory 16 bit words that represent
16 bit quantities as words, the bytes will be correctly displayed
by this page else if the data at that address was byte data then
the bytes will be swapped.

(The rest of the "ct" program is always swapping bytes to
the hardware but displaying them normally to the user. Save/
restore files are this way except for the Sequencer timeline
files. Generally the addressing of the clock hardware is backwards
from standard VME hardware.)

"Copy poke address to peek address"
An easy way to make both addresses above the same.

"Value to write"
This changes the value that will be written out when "W, "C",
"B", or "A" is pressed.

“Node no. fadc vme crate in hexadecimal..."
{ Token Ring Version only.}
Which VME control node is being addressed.

"Modifier (address) for vme i/o..."

{ Bit 3 versions only. }

This is the address modifier that the Bit3 will put on the VME

bus when it peeks and pokes. Changing this changes it for

the whole program! If the VME Bit3 board is physically in the
FADC crate then the recommended value here is 61 decimal ($3D).
If the VME Bit3 board is in a DO control crate and addressing

an FADC crate over the Vertical Interconnect then the recommended
value is 13 decimal ($D).

"Peek word 1 time"
Reads the address entered in "Location address..." once and
displays the resuit.

"Write word 1 time"

Outputs the word (unsigned 16 bit) displayed in "Value to write"
to the VME "Address to poke...".

"Read continuously"
Same as "Peek word 1 time" but does it until the user stops the
process.

"Continuous write"
Same as "Write word 1 time" but does it until the user stops the
process.

"Both poke & peek 1 time"
Does a write followed by a read cycle to the VME via the Bit3
using the addresses and value specified above.

"Alternately poke & peek continuously”

Does a write followed by a read cycle to the VME via the Bit3
using the addresses and value specified above until the user
stops the process.

'1 process file 'xxx.yyy
Is a way for the user to generate and send an arbitrary list
of word reads and writes into VME address space from the
file "xxx.yyy" in the default directory of the default disk
that "pcplot” is currently using. The first line of the
file should begin with the string "*list". The second
line is ignored by the program but useful as a column header
reminder for humans. The columns in order are the VME
address, the value to write, the VME address modifier,
write or read, a line comment field. A space must be
between the fields. In the fourth column a "1* writes
to VME and anything else, "0" will read and display the
value read to the screen and the address it read it from.
If there is a lot of reading going on the user may toggle on
and off the printer with control-Print Screen.

An actual extract of the file is from one used to test
a VBD:

*[ist

add val addmod '1'=write comment_string

0 $9C $29 1! reset and write protect

0 $C $29 1 ! set write protect of the VBD off

8 $2 829 1 ! crate type = Central det.

$A $3008 $29 1! low 16 bit address of event counter

$486820 $1 $3D O !read of Z.S. chan length register slot 13 chan 0
$486800 $1 $3D 1 !write pattern to slot 13 chan 0

'2 change above file to process. '
Allows the user to specify the name of the file to process.
The first line of the file should = "*list". See above.

'3 directory of list files.'

Allows the user to see a list of files on the disk using the
mask. The user is allowed to change the mask interactively
after selecting this pick or use the default mask by hitting
the "Enter" key.

