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Abstract: In physics, mathematics, and other disciplines, new integrable equations have been found
using the P-test. Novel insights and discoveries in several domains have resulted from this. Whether
a solution is oscillatory, decaying, or expanding exponentially can be observed by using the AEM
approach. In this work, we examined the integrability of the triple nonlinear fractional Schrodinger
equation (TNFSE) via the Painlevé test (P-test) and a number of optical solitary wave solutions
such as bright dromions (solitons), hyperbolic, singular, periodic, domain wall, doubly periodic,
trigonometric, dark singular, plane-wave solution, combined optical solitons, rational solutions, etc.,
via the auxiliary equation mapping (AEM) technique. In mathematical physics and in engineering
sciences, this equation plays a very important role. Moreover, the graphical representation (3D, 2D,
and contour) of the obtained optical solitary-wave solutions will facilitate the understanding of the
physical phenomenon of this system. The computational work and conclusions indicate that the
suggested approaches are efficient and productive.

Keywords: triple nonlinear fractional Schrodinger equation; quantum mechanics; Riemann-—
Liouville derivatives

1. Introduction

Currently, researchers are paying close attention to fractional calculus and its impli-
cations [1-5]. Fractional differential equations have been used to analyse a wide range of
fractal systems [6-8]. Nonlinear fractional partial derivative equations (FPDEs) have many
uses in the nonlinear sciences, including for electromagnetic radiation, electrolytic polarisa-
tion, visco-elasticity, optical fibres, control theory, data processing, quantum mechanics,
astrophysics, switches, as well as biogenetics [9-12]. It has been noticed that FPDEs play
an important role in dealing with and modelling nonlinear equations with applications
in complex analysis [13]. Due to their importance as complex mathematical tools for the
analysis and modelling of many biological and physical phenomena, fractional operators of
various types have been used in the natural and scientific fields. FPDEs are a generalization
of integer-order time-space partial differential equations that provide a concise repre-
sentation of nonlinear systems. The Caputo—-Riemann terminology [14], Fabrizio—Caputo
description [15], Atangana-Baleanu—Caputo concept [16], and Grunwald—Letnikov inter-
pretation [17] are by far the most extensively used fractional operator definitions, The
major applications of these soliton solutions are in optics and photonics, including in
the production of ultrafast laser pulses and the development of optical instruments for
particle manipulation.

Many researchers in various scientific and technical fields pay more attention to
dynamic systems described by FPDE today [18]. To study soliton solutions of FPDEs,
various effective and productive methodologies have been explored in the literature and,
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as a result, sophisticated mathematical methods based on computer software are used to
control these problems. Various authors systematically studied numerous experimental
and analytical methods to achieve accurate travelling waves, quantitative and approximate
solutions of all these models, such as the homotopy perturbation approach, the variational
iteration method, the variable separation algorithm, and many more [19-21].

Due to the widespread use of FPDEs in engineering and science, the analysis of exact
solutions of the nonlinear fractional Schrodinger equation (NFSE) has grown to the point
where it is becoming a major source of concern around the world. Nonrelativistic quantum
mechanical behaviour is explained by NFSEs, which are fundamental quantum physics
models [22]. In 1965, Feynman et al. [23] observed path integrals over Brownian trajectories
to construct the standard NFSE. Following that, new path integrals of Levy trajectories were
substituted for Brownian trajectories, resulting in the NFSE [24]. Later, Laskin [25] formu-
lated the space-time NFSE by using the quantum Riesz fractional approach. Since then, the
NFSE has attracted the attention of a number of authors; for instance, Naber [26] considered
the temporal NFSE under the Caputo fractional derivative. Muslih et al. [27] examined the
time-NFSE as well as its solution employed in the Caputo sense. Eid et al. proposed an
innovative NFSE model that included a nonsingular kernel, the fractional Caputo—Fabrizio
concept, and the newer fractional Mittag—Leffler function operator. Smady et al. [22] ex-
plained the periodic and approximate solitary solutions of the NFSE employing the method
of conformable residual series [28]. Guo et al. [29] used a class of energy procedures to
test for the occurrence and uniqueness of the temporal NFSE solution. Naber [26] solved
the NFSE for the first time in 2004. Furthermore, Jumarie [30] modified the fractional
definition of the Riemann-Liouville derivative (RLD) by specifying a limit on the fractional
difference to avoid the difficulties associated with deriving the constant fractionally. Many
phenomena, as well as the non-Markovian evolution of a free molecule in elementary
particle physics, fractional dynamics in quantum systems, the fractional Planck quantum
energy ratio, etc., are described using the NFSE [31-33]. The TNFSE equation is rich and
complex, and it can be utilized for mathematical analysis. Its solutions can display a variety
of behaviours, including as soliton propagation, wave packet spreading, and chaotic dy-
namics. The study of the equation can lead to new ideas and developments in mathematics
and physics.

Let us consider the following triple NFSE [34]:

2
DfDip = DDk + - = pPp+pia—r),

Dt |pl? g
o _ Tt
Df|p[?

B
i + (1 =) Dkr, 1)

a,
Dir = —

where r and g are the real function of temporal ¢ and spatial x variables, and where f is

a real constant with |B| # 1, and p is a complex one. D,’? and Df are, respectively, the
modified RLD of functional orders “f” and “a” in term of “x” and “t”. Despite their
significance, figuring accurate and consistent solutions to these nonlinear fractional models
is incredibly difficult. It is a fundamental model of quantum mechanics that is used to
model many exciting complex and nonlinear physical mechanisms, including photonics,
harmonic oscillator, quantum condensates, fluid mechanics, shallow water waves, etc.
The NFSE is used to characterize the Heisenberg dynamical model, which was created
to evaluate what is consistent with quantum mechanics, as well as the Lagrange system,
which is further consistent with classical physics. The aim of this study was to investigate
optical solitons, bright, dark, coupled, trigonometric, rational, and hyperbolic solutions by
using an AEM approach, as well as the integrability via the P-test approach. The P-test has
been significant in the advancement of mathematical physics. It has been used for a wide
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range of physics topics, including the study of solitons, nonlinear waves, and quantum field
theory. Moreover, the AEM approach is fundamental in the realm of differential equations
and has played an important role in the advancement of modern mathematics and science.

This manuscript is organised as follows: We examine the P-test method in Section 2.
The P-test approach is implemented in detail in Section 3 to examine the integrability
of the governing system. The AEM scheme is explained in Section 4. In Section 5, the
AEM technique is used to achieve an optical soliton solution. The results are presented in
Section 6, and Section 7 covers the conclusion.

Definition
The crucial definition and parameters of Jumarie’s modification of the RLD are pre-
sented here, which are highly useful for presenting this work in a systematic manner.

let g : R — R be a continuous function. The modified RLD of order § is then provided
as follows:

e ht—0™ 1<g<a>—g<0>>da 5<0,
1g(t) = 15)%fot( —{)7%(g(¢)—g(0))dz 0<—-6<1, 2
[8‘5 ’")(f)](m, m<o<ml, m>1.

Now, let ¢ : R — R be D¢ differentiable function at a point t > 0 and f : R — R be D¢

7o

differentiable and defined in the range of “g”. Then,

1 Ifg(t) = tF, then D{tF = (BP0 for B> 0.
2. Dig(NF(1) = f(H)Dig(t) +g(t)DIf(t). \
3. Dyg(f(t) = Fg(f(1))Dif(t) = Dag(f (1)) (Ff (1)’

In the following, if g(#) has a modified RLD of order 6, then it is called D? differentiable.

2. Painlevé Test (P-Test)

Generally, the P-test is employed to predict the integrability of NLSEs [35,36].
Ablowitz et al. [37] proposed the P-test for examining the singularities structure for ODE.
Later, Weiss et al. [38] extended this test to PDEs, providing a strong framework for examin-
ing the integrability of various NLSEs. The ability to pass the P-test is a strong indicator that
the model under study can be solved using the inverse scattering transform (IST). NLSEs
are completely integrable or partially integrable, and their behaviour is observable [39].
There are also several approaches to solving completely integrable NLSEs, such as using the
IST or converting the equations to linear equations. However, since there is no other way
to determine whether a given NLSE is IST-decidable, the existence of the P-test property is
a reliable indicator of the NLSE's integrability [40]. The P-test [40] has following steps:

First, we calculate the dominant behaviour by letting

i(z) = mg#)(z), i=1,2,...N, 3)
where 77; denote the constants. We substitute Equation (2) into the following equation
H(n(z), m/(z), ni(z), ..., 1™ (z)) = 0. (4)

where H is a polynomial for determining the leading exponents B; € Z, while H has
components Hy, Hy, ..., Hy, and variable ¢(z) has components ;(z), 1/)2( ). N (2).

Similarly, ¥(") (z) depicts the m;th order derivative of ¢(z) such that m = Z m;, while the
i=1
components of the independent variable z are z1, z, . . ., zN. If there are arbitrary coefficients

in the system, we assume them to be nonzero. Now, by inserting the above substitution
in Equation (3), in each equation, we equalize the lowest available exponents of g(z) to
construct a linear system in f;, the solution of which yields values for the coefficients ;.
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We allocate integer values to the free j; if some of the B;’s are yet undetermined. We adopt
the following substitution after evaluating f;:

$i(2) = 9i0(2)gP(2),  i=12,...,N, 5)

invoking it into Equation (3). Then, using the balance of the leading terms, we examine the
values of §; o(z), focusing only on those terms that have the smallest power of g(z).

Then, we determine the resonances. For each ; and ¢; o(z), integers p1 < pa < -+ < p
are calculated such that 1/;1-,,,], (z) becomes

1/) g'Bl Z l/’zk

wherei =1,2,..., N. We achieve this by placing

Yi(2) = $i0(2)8P(2) + 9is(2)g7 P (2), (6)

into Equation (3). Then, we choose the terms with the smallest powers g(z). The coefficients
at ¢; ;(z) are assumed to be equal to zero. This is resolved by commuting the values of p
for det(Q,) =0,

Qup =0, Yp=(Y1p Pop --- Pnp)".

When there is at least one integer resonance, the solutions to Equation (4) have alge-
braic branch points.

Next, the compatibility conditions are computed, and the integration constants are
evaluated. A system retains the property of Painlevé if ¢; , (z) is arbitrary to the highest-
level resonance. This is accomplished by inserting

i(z) = gPi(2) Ztm @)

into Equation (4), where p;, represents the integral with the greatest positive resonance.
Because of the vanishing coefficient of hP+™m"Powg, i p(z) should be arbitrary. We must
determine whether or not this compatibility criterion is fulfilled. In the system, the negative
power in g of the most singular terms is described by minpowg.

If all of the preceding procedures are performed and when all resonances satisfy the
compatibility constraints, then the system is said to be integrable and passes the P- test.

3. Implementation of Painlevé Test (P-Test)

We assume the following transformations:
p(x,t) = P(2)e",
q(x, 1) = Q(E),
r(x,t) = R(C)- ®)

kx® stP ntP
Mot T T 17 (a+1) + )
Where k, s, m, and n, are nonzero arbitrary constants, after substituting above transfor-
mation, (1) becomes:

where =

(ks — k*)P" + (m* — mn)P —

2P - PQ-R) =0, ©)
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where
—s
Q= 2/ (10)
(T+7)(s— (1 +7))k
and s
R = P?, (11)
(IT=7)(s—=(1—=7))k
Putting Equations (10) and (11) into Equation (9), we obtain:
— 2
pry Ml =n) ) 12
TR0 LT ot =0 (12)
The Painlevé test consists of three phases.
3.1. Dominant Behaviour Calculation
Assume the following;:
P(x,t) = {h%(x,t), (13)

where ¢ indicates the dominant behaviour and { indicates a constant. Now, invoking
Equation (13) into Equation (12) yields ¢ = —1. Consider the following assumption,

P(x,t) = Py(x,t)h%(x,1). (14)
Placing this value of ¢ into Equation (14) yields
P(x,t) = Py(x, t)h 1 (x,t). (15)
Placing Equation (15) into Equation (12) gives
Py(x,t) = —kvk — s, (16)
where P, represents the first integration constant.

3.2. Calculation for Resonances
Take

P(x,t) = Po(x, )hO(x, £) + Py(x, )10 (, 1), (17)

where r denotes the resonance associated with the dominant behaviour ¢. Now, placing
Equation (16) and ¢ = —1 into Equation (17) gives

P(x,t) = —kvk —syh =t (x,t) + Pr(x, )0 (x, t). (18)

By invoking Equation (18) in Equation (12) and equating the sum of the coefficients of
P,(x, t) to zero of the terms involving the smallest exponent of g(x, t), the resonances have
the following equation:

KP(—4+7r)(1+7r)(k—s)y* =0, (19)
Equation (19) yields

r=4, r=-1 (20)
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3.3. Computation of Integration Constants and Compatibility Condition

Equation (12) satisfies the P-test if P,(x, t) is arbitrary for the highest resonance level.
For verification, assume the following:

P(x,t) = hg(x,t)%Pq(x,t)h"(x,t), (21)
q=0

where 7, is the greatest resonance, and in our instance, r;; = 4. Equation (20) gives the
following results:

P(x,t) = h~(x,t) qu(x,t)hq(x,t). (22)
q=0

By putting Equation (21) into Equation (11), by collecting the same powers g(x,t), and
by equating them to zero at different levels g, we calculate P;(x,t), g = 1,2,...,4.
Thus, for g = 1, this ensures

Py(x,t) =0, (23)

atg =2,
Py(x,t) = _m(m—n) 24
2\ X, ) 6\/]: ’ ( )

atg =3,
P3(x,t) =0, (25)

atg =4,
P4(X, i’) = P4(x,t). (26)

where Py(x,t) is an arbitrary constant. As a result of the analysis, the defining model
satisfies the criteria of the P-test, since there are no compatibility conditions and both
resonance conditions are satisfied.

4. Auxiliary Equation Mapping (AEM) Technique

Consider the TNFSEs in one dimension to understand the basic scheme of AEM, which
can be written as follows:

T(v, D%v, Dfv, D*DPv,...) = 0, (27)

where v is an analytic function and D?, DB, D*DP are the fractional operator in terms of
the modified RLD with respect to “x” and “#”. While T is a polynomial function that has
higher-order linear and nonlinear derivative terms.

For transforming independent variables into a single variable, assume the following
wave transformation:

v(x, t) = v(Q)ec, (28)

_kx™ b _ B
where (= F(DZH) + r(fs+1)' = r(”;il) + r(gﬂ)'

Utilizing Equation (28) reduces Equation (27) into the following ODE:

T(v, v v V",..)=0. (29)
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Now, assume Equation (29) has a general solution as follows [41,42]:

v0) = Y 4 (0) + 3 bpe?(®)+ Y ey 2(0)0(0) + 3. dy(L Dy e (a0)
p=0 p=—1 p=2 =1 eld)

where the ap, by, ¢, and d,, are arbitrary constants and ¢(¢) meets the following auxil-
iary solution:

do

¢'(0)* = (5)% = 1e*(0) + 10’ (9) + pae*(6), (31)
Q" (6) = n10(6) + %#202(60 +2u30°(0), (32)
Q" (6) = 1 +3p20(0) + 6p30°(0)¢'(6), (33)

1
0" (6) = 50(0) (2% +15p1120(9) + 5(343 + 8p1 3 * (9))
+60p21130°(0) + 481130 (6)), (34)

where puy, yp, and p3 are constants. By placing Equation (31) together with Equation (30)
into Equation (29), we obtain a set of equations, which can be solved by using Mathematica
software; then, the parameter values can be obtained.

5. Implementation of Auxiliary Equation Mapping (AEM)
From Equation (12),

m(m—n)P+ 2

/!
Po k(s —k) (s — k)2 — k22

P3=0. (35)

Now, utilizing the homogeneous balance principle, Equation (35) yields n = 1. There-
fore, it yields the general solution of the form

_ b Q'(¢)

Placing Equation (36) along its derivative into Equation (35), then collecting all the
coefficients of the same powers 0" (&) o(¢) (m = 0,1,2,...n), (n =0,1), we obtain a
system of algebraic equations that provides solutions from which, using Mathematica, we
can obtain different and newly generalized solitary wave solutions with constants a,, a1, by,
dq, and by using Equation (8), we obtain the following solutions:

Case 1:

(36)

a, =0, a, =0,
 2ag(—m?s? + 2m2sk — m2k? + m>*k? + mns? — 2mnsk + mnk* — mny*k> — 2aZks + 2a2k?)
B pok(—s + k) (—s + k + vk) (s — k + 7k)
_ —m?s? + 2m?sk — m*k? + m>2k* + mns® — 2mnsk + mnk? — mny*k* — 6a3ks + 6a2k?
o= k(—s+k)(—s + k+vk) (s — k+ 7k) '
M2 = M2, M3 = U3.

by

7
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By inserting all values into Equation (36) and by employing Equation (8), the following

solutions of Equation (1) are achieved [41,42]:

B L o _mx® ntP
pa(xt) = [— b ﬂC(l—l—tanh( 2 )) }el<r(a+1)+r(ﬁt+1)>,
, absechz(g)
2 @ 2_
qua(x,t) = =S (e a6(1+tanh( ; )) 2
, (I+7)(s—Q+7)k| b scc 2 ()
2
s bl(bz—ac(1+tanh(ﬁ)) N
ri1(x, ) = B |
nie ! (T=7)(s—=(1=7)kl| absechz(g) J

i mx® ath
pra(xt) = "1% b(#{; @))} ()

—s [blw —bcscwfa@))r
A+7)(s— (T+9))k|  2acsc(v—ac) ’

qip(x,t) =

B . b1 (V3 — bese(v/—ag)) 1>
1’1/2(9@ t) = (1 — ,)/) (S _ (1 _ f)/))k |: 2a CSC(\/jag) ] '

bib };(ﬁi’flﬁr(ﬁn)
1+ tanh(¥; Ve ))

p1a(x,t) = { (

) 2
(x,t) = - v }
q1,3(x, (T4+9)(s—1+7))k _a<1+tanh(@)) ,

) (x t)_ S [ blb :|2
0 = T 6= TR L1+t (9))

7 i _mx® nth
pra(x,t) = —bi (0% —ac) el<r(ﬂé+1)+r(ﬁt+1)>’
' ab
- b (2F2 2
qra(x,t) = S by (b¢ ac)] ,
' T+7)(—@+7)kl ab
b (h2F2 2
7’1,4(x,t) = S bl(b g ac):| I
(I=7)(s—(1=7)k| b
1 [ _mx® ntP
p15(x,t) = [ ( bib el<r("‘“>+F(ﬁt+1))’

all+ coth(@)) J

2
q15(x,t) = = { " }
5(x, (T+v)(s — (1+7)k a(l—i—COth(@)) ,

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)
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. byib ]2
T xrt = 51
15(x 1) (1_7)(5—(1—7))k{ (1+coth(\[ )) v
Case 2:
ap=ay, 4o =0, by =0y,
_ _ mm—n)
dl = 0/ M1 = k(-s—'—k)l

2 =0, pz=ps.

By inserting all values into Equation (36) and by employing Equation (8), the following
solutions of Equation (1) are achieved [41,42]:

L S ma® nth
(o) — {ala(l +coth(¥%) ) . byb ]el(rw +m)l -
b a(1+coth(@))
—5 '{11{1(1+C0th(@)) b]b 12
q2,1(x,t) = + , (53)
(R R/ R (15 com(2)
s ala(l—i—coth(\[ )) bib 12
21 (xr t) = 1 1 k b + N ’ (54)
4daaieVC by (eV% —b)? — 4ac} i(%Jrr('yfl))
1) = , 55
p22(x,t) (V% —b)? e + = e (55)
- Vag Vag _ py2 _ 2
G2 (1) = s [ 4aaqe n by (e b) 4ac] / (56)
’ (1+7)( = L+ 7))k [ (evee —b)? — 4ac daeVa
vag Vag _ p\2 _ 2
Fao(x, ) = s [ 4daaqe n by (e b) 4ac] ’ (57)
’ (T=7)(s— (1 =7))k [ (ev® —b)2 — dac 4aeVal
[ —aaysech?( \/55) b+ Zﬁtanh(@)) i(r(";ﬁ"l) +r<’gfl)>
P2,3 (xl t) - \[ \/EC e 7 (58)
b+ 2/ac tanh (Y5 £ asec h?(Y5*)
—s —am sechz(‘[T) bl(b+2\/ﬁtanh(@)) 2
q2,3(x/ t) = |: - :| ’ (59)
(I+7)(s—(1+7))k b + 2+/ac tanh( C) asechZ(@)
s —aay sech2(VEE) by (b+2\/actanh(¥2£))]?
7’2,3(x, t) = |: - :| ’ (60)
(I=7)(s—=(1=7))k b+2\/ﬁtanh(@) asechz(@)
—acn esA(Y5E)  by(b+ 2y mwcot(Y5E) | i iyt )
paa(x,t) = e , (61)
b+2/—ac cot(@) accscz(\/?g)
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(x,t) = —s [ —acalcscz(\/?é) _bl(b—i—Z\/—iaccot(‘/?é))}2 @
e IR CEA) b+2\/f7aCcot(\/jﬂé) acscz(@) ,
ro4(x,t) = S [ —acalcscz(\/?g) _bl(b—i-Z\/—iaccot(‘/?é))}2 )
AT e Uk 2y (5E)  awa(GE) )

dameV® by(1 - daceVie) ] ()

Pas(x,t) = [1 — 4aceVas * 4geVas ’ 64)
g25(x, 1) = — [ daaeV™t | by(1— daceV'l) ] i 65)
A (T+79)(s — (1+ 7))k |1 — 4acevac 4aeV/at ’
ras(x,t) = : [ dameV™e | by(1— daceV') } 2 66)
P (1—9)(s— 1 —=2))k[1—4acevai 4geVial

Case 3:
a1 =0,

o m2k? + m2y2k? — m?s% + 2m2sk + mnk? — mny?k? + mns? — 2mnsk
0~ —2sk + 2k2 '

—2m(m —n)

by = by, d1:0,V1:m, =0, pz = us.

By inserting all values into Equation (36) and by employing Equation (8), the following
solutions of Equation (1) are achieved [41,42]:

. mx® utP
by (eV? —b)? — 4ac] el<m+r<ﬁil)>

pa(x,t) = |a, + Toovi , (67)
() = e ] )
) = o 2 ] ©)

P32 (x,t) [ao—l—blc\f} ( =V 'fol)), 720)
G32(x,t) = A6 =( 1+ [ao+b1c\f} (71)
r3a(x,t) = 6T { +b1c\/§]2, (72)

S ma® nth
b1(b+2v/—ac) tan( ) } el<r(a+1) Jrr(ﬁtﬂ) ) ) (73)

paz(x,t) =
o asec?( Fé)
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Balxt) = (1+ 7)(5_—3(1 + 7))k [ao " e j;/ej(c\)/;gs ) ]2' 7
) = (e bl(bf:ej%f = r' 7
Bl t) = 3 v)(s_—s(l )k a " 2 _:bc c(:c:z?j;(f)) | 77)
R e e e - c(:c;?gf))z: L™
pas(xf) = bl\/z; - C??ﬂ ) 79)

Bl 1) = (1+7) (S:S(l + 7))k {a" bl\/zgacsf: %\a/;ﬂ 2’ (80)
e e T T e : o

Case 4:

1
ap = Ao, M :0, bl = —dy, dl = 5\/’)/2k2—52+25k—k2,
—2(—m?s? + 2m?sk — m?k? + m?y?k? + mns? — 2mnsk + mnk?> — mny*k* — 6a3ks + 6a2k?)

P = k(—s + k) (—s2 + 25k — K2 + 12K2) ’
—2(—m?s? + 2m?sk — m?k? + m?y?k? + mns? — 2mnsk + mnk?> — mny*k* — 2a2ks + 2a2k?)
2= k(—s+k)(—s + k+vk) (s — k+ 7k) ’
Uz = 0.

By inserting all values into Equation (36) and by employing Equation (8), the following
solutions of Equation (1) are achieved [41,42]:

o[ B bsec(vTal) _ diy/=avasin(v=ad)] (st ety )

pai(x,t) = |a, + 2asec(y—a?) b 1 Vo cos(y/a2) } , (82)
B —s b1V/6 —bsec(v/—ag)  div/—avésin(v—ag)]?

S (e IR ) {”” 2asec(y/—ag) b+ /o cos(v—at) ] 5

(84)

raq(x,t) = s [a +b1\/5—bsec(\/—7§) _dl\/?a\/gsin(\/?ag)r
H Q=) (—AQ-7)k[” 2asec(y/—ag) b+ /6 cos(v/—af)
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paa(et) = | a0 + b1(b€ab ac) azcdlﬂ:2§2] < a+1>+r<ﬁ+1>>, (85)

- - by (bE2 —ac)  2diab*¢ 1*
120 = e @k {”0 @ - bZCJ ’ )

B s by(b& —ac)  2diab*¢ 17
el = e e

b1 (b +2v/~actan(Y5%)
) = 0
Pas(xt) [a asecz(@)
_d1<ﬁsec2<ﬁé>z¢—7ccos<m bsmM@)] (st eritin) )
2(b+2v/ actan(‘ﬁg)) ’
- RSNE
4310 (1+7)(s— 1 (T+y)k[” asecz(@)
Vase(Y5"%)2y/~ac cos(Vag) bs‘“(f@)} (89)
2(b +2\/—actan(rc)) ,
B s ~ by(b+2y/—actan( )
ra3(x,t) = (1=7)(s—=(1—7))k {ao asecz(@)

( Vasec?(¥5%)2/=ac cos(v/ag) —bslnw«s))]

—d; (90)
2(b+ 2\/—actan(rg))

6. Results and Discussion

In this section, we analyse our findings and correlate our gained solutions to previous
results of this system. Some optical soliton solutions of space-time-fractional NLSE via
three different strategies were obtained by Gang et al. [43]. A conformable NLSE with a
second-order temporal and group velocity dispersion was observed by Rezazadeh et al. [44].
A locally extrapolated exponential splitting scheme for the fractional spatial NLSE was
investigated by Liang et al. [45]. By employing the Riccati expansion approach, some
periodic and kink soliton solutions for nonlinear time-fractional differential equations were
obtained by Emad et al. [46]. Linearized compact ADI schemes for the space-fractional
NLSE were explored by Chen et al. [22]. A fast linearized conservative finite element
method for the fully coupled NLSE was investigated by Meng et al. [47]. Travelling wave
solutions for TNFSEs were investigated by Alabedalhadi [34]. Guo [48] obtained standing
waves for a fractional NLSE by employing the method of commutator estimates and
concentration compactness.

In this manuscript, the P-test was employed to check the integrability of TNFSEs. For
the integrability, the first constant of the integration was calculated in Equation (15). The
resonance was calculated in Equation (19). The other remaining constants of integrations
were computed in Equations (22)—(25). There was no compatibility condition and both
resonance conditions were verified. Therefore, the governing systems fully satisfied the
P-test criteria. The AEM approach was implemented to obtain optical solitary wave
solutions. Figure 1 show a smooth soliton solution Figure 2 show a bright soliton solution
Figures 3 and 4 also show a smooth soliton solution. Figures 5-9 shows kink soliton
solution. There is a singularity in its wave form. Figures 10-12 shows smooth kink
soliton solution. And Figure 13 shows bell kink soliton solution. Some of the solutions
disclosed in this research study have not yet been published in the literature. These two
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approaches are simpler and more productive than other methods, they can also yield
multiple soliton solutions at the same time, and they can also be applied to other FPDEs.
More sophisticated and time-consuming algebraic computations can be performed with
the help of mathematical packages (Mathematica). It is anticipated that the solutions
presented here will be useful in further numerical analysis and will help in explaining
some physical phenomena. This study is only an initial work, further applications to some
other nonlinear physical systems can be explored and require considerable attention in
many areas of physics and engineering, such as optics, fluid dynamics, plasma physics,
and biological systems, where these obtained solitary wave solutions can be used. Optical
communications, ocean wave modelling, plasma physics, and biological signal transmission
are also some additional examples of their applications.

(b) (c)

Figure 1. The parametersarea =2,b=15c=1,k=2,s=2,m=1,n=1a =1, =1, and
I' = 1. The figure provides a pictorial illustration of py 1 (x, t): (a) displays the 3D plotin [—-0.01, 0.01]
and [—2, 2], (b) displays the 2D plot in [-2, 2] and [—5, 5], (c) displays the contour plot.
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Figure 2. The parametersarea =2,k =2,s =2, m=1,n=1b=15c=1,vy=2,a =1,

B=1,T =1,and § = 5. The figure provides the pictorial illustration of g1 2(x, t): (a) displays the 3D
plot in [-0.01, 0.01] and [—2, 2], (b) displays the 2D plot in [-20, 20] and [—10, 10], (c) displays the
contour plot.
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(b) (c)
Figure 3. The parametersarea =2,k =2,s=2,m=1,b=15,c=1,n=1,vy=2,a=1,=1,

and I’ = 1. The figure provides the pictorial illustration of 1 3(x, t): (a) displays the 3D plot in [—3, 3]
and [—0.03, 0.03], (b) displays the 2D plot in [—3, 3] and [—5, 5], (c) displays the contour plot.

(a) (b) (c)
Figure 4. The parametersarea =2,k =2,s=2,m=1,n=1,b=15c=1,vy=2,a=1,=1,

and I = 1. The figure provides the pictorial illustration of g1 4(x, ¢): (a) displays the 3D plotin [—1, 1]
and [—0.01, 0.01], (b) displays the 2D plot in [—10, 10] and [—20, 20], (c) displays the contour plot.

(a) (b) (c)
Figure 5. The parametersarea =2,s =2, m=1,n=1,v=2a=1,b=15c=1k =2,
B =1,and T = 1. The figure provides the pictorial illustration of p; 5(x, t): (a) displays the 3D plot

in [—0.07, 0.07] and [—0.9, 0.9], (b) displays the 2D plot in [—10, 10] and [—20, 20], (c) displays the
contour plot.
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(@) (b) (c)
Figure 6. The parametersarea =2,k =2,s=2,m=1,n=1,y=2,a=1,b=15c=1,=1,
and T = 1. The figure provides the pictorial illustration of py 1 (x, t): (a) displays the 3D plot in [—3, 3]
and [—0.4, 0.4], (b) displays the 2D plotin [—7, 7] and [—2, 2], (c) displays the contour plot.

(a) (b) (c)
Figure 7. The parametersarea =2,k =2,s =2,m=1,n=1,b=15c=1,vy=2,a=1,=1,

and T = 1. The figure provides the pictorial illustration of py»(x, t): (a) displays the 3D plot in [—3, 3]
and [—0.4, 0.4], (b) displays the 2D plotin [—7, 7] and [—2, 2], (c) displays the contour plot.
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(a)

(b) (c)
Figure 8. The parametersarea =2,k =2,s=2,m=1,n=1,b=15c=1,a=1,=1,and

I' = 1. Pictorial illustration of py3(x, t): (a) displays the 3D plot in [—0.01, 0.01] and [—3.75, 3.75],
(b) displays the 2D plot in [-5, 5] and [—10, 10], (c) displays the contour plot.
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() (b) (o)
Figure 9. The parametersarea =2,k =2,s=2m=1,n=1,b=15c=1La=1,6=1,
and T' = 1. Pictorial illustration of g5 4(x,t): (a) displays the 3D plot in [—1, 1] and [—0.75, 0.75],
(b) displays the 2D plot in [—10, 10] and [-17, 17], (c) displays the contour plot.
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Figure 10. The parametersarea =2,k =2,s =2, m=1n=1b=15c=1,v=2,a =1,
B =1,and T = 1. The figure provides the pictorial illustration of 1 5(x, ): (a) displays the 3D plot in

[—0.01, 0.01] and [—0.75, 0.75], (b) displays the 2D plot in [—20, 20] and [—10, 10], (c) displays the
contour plot.
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Figure 11. The parametersarea =2,k =2,s =2, m=1,n=1b=15c=1,v=2,a =1,
B =1,and T = 1. The figure provides the pictorial illustration of 73 1 (x, t): (a) displays the 3D plot
in [-0.01, 0.01] and [—0.75, 0.75], (b) displays the 2D plot in [-5, 5] and [—7, 7], (c) displays the
contour plot.
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Figure 12. The parametersarea =2,k =2,s=2,m=1,b=15,c=1,n=1,vy=2,a=1,8=1,
and I' = 1. The figure provides the pictorial illustration of 3, (x, t): (a) displays the 3D plotin [—1, 1]
and [—0.03, 0.03], (b) displays the 2D plot in [—5, 5] and [—10, 10], (¢) displays the contour plot.
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(a) (b) (c)
Figure 13. The parametersarea = 2,k = 2,s =2, m =1, n =1,b =15c=1a =1,
B =1,and T = 1. The figure provides the pictorial illustration of p33(x,t): (a) displays the 3D
plotin [—0.01, 0.01] and [—10, 10], (b) displays the 2D plot in [—5, 5] and [—10, 10], (c) displays the
contour plot.

7. Conclusions

Using the mathematical computing software tool Mathematica, the P-test and the AEM
technique were used to determine the integrability and some new optical solitary wave
solutions of the TNFSE with modified RLD derivatives. These obtained solitons solutions
are widely used in optics and photonics including the production of ultrafast laser pulses
and the development of optical instruments for particle manipulation, while these soliton
solutions are not directly used in most everyday applications, they do have significant
indirect uses in domains such as communication, materials processing, and oceanogra-
phy. There have been numerous graphical presentations of solitary periodic, kink-shaped,
and singular solutions. These algorithms are efficient for finding a single exact solution
and working with the nonlinear fractional governing equations existing in physics.
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