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Barycentric and pairwise quantum Rényi leakages are
proposed as two measures of information leakage for
privacy and security analysis in quantum computing
and communication systems. These quantities both
require minimal assumptions on the eavesdropper,
i.e. they do not make any assumptions on the
eavesdropper’s attack strategy or the statistical
prior on the secret or private classical data
encoded in the quantum system. They also satisfy
important properties of positivity, independence,
post-processing inequality and unitary invariance.
The barycentric quantum Rényi leakage can be
computed by solving a semi-definite program; the
pairwise quantum Rényi leakage possesses an explicit
formula. The barycentric and pairwise quantum
Rényi leakages form upper bounds on the maximal
quantum leakage, the sandwiched quantum a-mutual
information, the accessible information and the
Holevo’s information. Furthermore, differentially
private quantum channels are shown to bound
these measures of information leakage. Global
and local depolarizing channels, that are common
models of noise in quantum computing and
communication, restrict private or secure information
leakage. Finally, a privacy-utility trade-off formula in
quantum machine learning using variational circuits
is developed. The privacy guarantees can only be
strengthened, i.e. information leakage can only be
reduced, if the performance degradation grows larger
and vice versa.
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1. Introduction

Quantum computing provides various improvements over classical counterparts, such as speed
up [1], security [2] and robustness [3]. These advantages have motivated considerable atten-
tion towards the theory and practice of quantum computing systems. A particularly fruitful
direction is quantum machine learning [4]. However, machine learning and data analysis can
result in unintended or undesired information leakage [5]. As quantum computing hardware
becomes more commercially available and quantum algorithms move to the public domain,
these privacy and security threats can prove to be detrimental in the adoption of quantum
technologies, particularly for real-world sensitive, private or proprietary datasets. Therefore,
we need to develop rigorous frameworks for understanding information leakage in quantum
systems and construct secure and private algorithms by minimizing unintended information
leakage. Note that the applications of these measures of information leakage are not entirely
restricted to quantum machine learning or data privacy. Even in quantum communication,
there is a need to understand how much information an eavesdropper can extract from the
underlying quantum systems [6].

A common drawback of current notions of information leakage, such as quantum mutual
information, accessible information and Holevo’s information, is an implicit assumption that the
intention of the eavesdropper or the adversary is known. It is assumed that the eavesdropper
is interested in extracting the entirety of the classical data that is encoded in the state of the
quantum system (for communication or analysis). While perfectly reasonable in computing the
capacity of quantum channels and developing information storage or compression strategies,
this assumption can be problematic in security or privacy analysis. In practice, we may not
know the intention of the eavesdropper. Imposing extra assumptions on the eavesdropper
is akin to underestimating its capabilities, which can be a lethal flaw in security or privacy
analysis. Furthermore, in the classical setting, it is shown that mutual information and its
derivatives are not suitable measures of information leakage for security and privacy analysis
[7]. These observations motivated the development of a maximal notion of information leakage
that is more suited to the task at hand [7,8].

Earlier attempts in developing the corresponding notion of maximal information leakage
in quantum systems resulted in maximal quantum leakage [6], which was shown to satisfy
important properties of positivity (i.e. information leakage is always greater than or equal to
zero), independence property (i.e. information leakage is zero if the quantum state is independ-
ent of the classical data) and post-processing inequality (i.e. information leakage can be reduced
if an arbitrary quantum channel is applied to the quantum state and therefore additional
processing cannot increase information leakage). These properties are cornerstones of axiomatic
frameworks for measuring information leakage in classical security analysis [7,8]. However, the
maximal quantum leakage proposed in [6] did not possess an explicit formula and an iterative
algorithm was required to compute it in general, cf accessible information [9].

In this paper, we propose two new measures of information leakage, namely, barycentric and
pairwise quantum Rényi leakages, based on the quantum Rényi divergence or the sandwiched
quantum Rényi relative entropy [10] of order . These two quantities form upper bounds for
the maximal quantum leakage in [6]. They both require minimal assumptions on the eavesdrop-
per, i.e. they do not assume the eavesdropper’s attack strategy is known and they do not require
priors on the secret or private classical data encoded in the states of the quantum system for
communication or analysis. Both barycentric and pairwise quantum Rényi leakages satisfy
important properties of positivity, independence and post-processing inequality. They also
satisfy unitary invariance, i.e. application of a unitary on the quantum state does not change the
information leakage. Unitary invariance in postulated to be important for a quantum measure
of information [10,11]. These measures are computationally superior to quantum maximal
leakage. The barycentric quantum Rényi leakage can be computed by solving a semi-defi-
nite program, while the pairwise quantum Rényi leakage possesses an explicit formula. The
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barycentric and pairwise quantum Rényi leakages form upper bounds for the sandwiched
quantum oa-mutual information, the accessible information and the Holevo’s information.
Finally, we show that differentially private quantum channels [12] bound the barycentric and
pairwise quantum Rényi leakages. Therefore, global and local depolarizing channels, that
are common models of noise in quantum computing devices and quantum communication
systems, are effective quantum channels for bounding private or secure information leakage.
Using this result, we develop a privacy-utility trade-off in quantum machine learning using
variational circuits. This fundamental trade-off demonstrates that the privacy guarantees can
only be strengthened, i.e. information leakage is reduced, if the performance degradation
becomes larger and vice versa. This is a novel characterization of the trade-off between privacy
and utility in quantum machine learning. An information-theoretic analysis of privacy-utility
trade-off in quantum machine learning has been missing. The closest analysis in this domain
is the privacy-utility trade-off in [13], based on a variant of differential privacy, known as
pufferfish privacy. Here, we relate utility to privacy via an operational notion of information
leakage, namely, maximal quantum leakage, by investigating barycentric and pairwise quantum
Rényi leakages. The effect of differential privacy in hypothesis testing is another interesting
related problem [14,15], but its set-up differs from quantum machine learning significantly.
There are also some limited results on numerical analysis of utility-privacy trade-offs [16,17],
which are often tied to specific structures and training algorithms used in the underlying
quantum machine learning model.

The rest of the paper is organized as follows. We first present some preliminary material
on classical and quantum information theory in §2. We then formalize the barycentric and
pairwise quantum Rényi leakages in §3. We establish the relationship between these measures
of information leakage and quantum differential privacy in §4. We investigate privacy-utility
trade-off for quantum machine learning in §5. We finally conclude the paper in §6.

2. Preliminary information

In this section, we review some basic concepts from classical and quantum information theory.
A reader with this knowledge may benefit from directly jumping to §3.

(a) Random variables and classical information

Random variables are denoted by capital Roman letters, such as X €X and Y €Y.
A random variable X is discrete if the set of all its possible outcomes X is finite.
Any discrete random variable X is fully described by its probability mass function
px(x) =P{X =x}>0 for all x € X. The support set of the random variable X is defined as
supp(X) = supp(px) = {x € X | px(x) >0} € X. The set of all probability mass functions with
domain Xis A(X) = {r: X = Ry | ), e x7(x) = 1}.

For all @ € (0,1) U(1, «) and probability mass functions p, q such that supp(p) C supp(q), the
Rényi divergence (or relative entropy) of order « [18,19] is

1 _
do(pllg) = —glog| ) pi(0)q )|
X € supp(q)
All logarithms, in this paper, are in base 2 and, therefore, all the information quantities are
measured in bits. On a few occasions, we require a logarithm in the natural basis, which is
denoted by In( -) instead of log (- ). By convention, du(pllq) = < if supp(p) € supp(q) and a > 1.
For a <1, the same definition holds even if supp (p) € supp (q). For a =1, (and also a=0
which is not used in this paper), we define the Rényi divergence by extension:
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di(pll) = lim du(plg)= Y. p(x)log(pg’?)
X € supp(q)

d-(pllq) = hm do(pllq) = log( x€e supp(q) ZEX;)

Note that di(pllq) is the usual Kullback-Leibler divergence [20, §2.3]. Sibson’s a-mutual
information, an extension of mutual information in information theory [21], between random
variables X € Xand Y € Yis

Iot(X; Y) = H}f da(PXY“PX x q)/ (21)
q

where Pyy € A(X xY) is the joint probability mass function for the joint random variable (X, Y),
Py € A(X) and Py € A(Y) are the marginal probability mass functions for the random variable X
and Y separately, and g € A(Y) is any general probability mass function. By continuity [21], we
get

. P X,
L(GY) = lim L(X;Y) = Py v(x, y)log %,
“= (x,y) € supp(px) x supp(py) x(X)Ey (Y
L.(X;Y X;Y)=1o max P x)|,
(X;Y) = lim I(X;Y) =log y;y e yix(| ))

where I1(X;Y) is the common mutual information [20, §2.3]. For a more thorough treatment of
the Rényi divergence and a-mutual information, see [21].

(b) Quantum states and information

A finite-dimensional Hilbert space is denoted by H while the set of linear operators from # to
‘H is denoted by L(#). Further, P(H) C L(#) is the set of positive semi-definite operators on
Hilbert space H and S(H) C P(H) is the set of density operators on #, i.e. the set of positive
semi-definite operators with unit trace. The state of a quantum system is modelled by a density
operator in S(H). Lowercase Greek letters, such as p and o, are often used to denote density
operators or quantum states. A general formalism to model quantum measurements is the
positive operator-valued measure (POVM), i.e. a set of positive semi-definite operators F = {F}};
such that );F;=1. For a quantum system with state p and POVM F = {F}};, tr(oF;) = tr(Fip)
is the probability of obtaining output i when taking a measurement. This is typically called
Born’s rule. A quantum channel is a completely positive and trace-preserving mapping from
any S(H,) to another S(Hp). Calligraphic capital Roman letters, such as £ and N, are used to
denote quantum channels. For a more detailed treatment of basic definitions and properties in
quantum information theory, see [22].

For all @ € (0,1)U (1, *), and arbitrary p € S(H) and o € P(#), the quantum Rényi relative
entropy [23] is

log (tr( agl- “)),

if the support set of p is contained within the support set of o, denoted by p < o, i.e. the kernel
of operator o lines within the kernel of operator p. By convention, Dy(p|0) =< if p & o and
a > 1. For a <1, the same definition holds even if p & o. For a = 1, >, we can define the quantum
Rényi relative entropy by extension:

Di(pllo) = lim De(ollo) = tr(e(log(e) ~ log(o))),

De(pllo) = -

Du(pllo) = lim Da(pllcf)—log a7,
j
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where p = ) ;v)]iXi| and o = Z j/lj|f>< Jj|- Note that D;(p||o) is the usual quantum relative entropy
[24]. Similarly, for all & € (0,1) U (1, =), and arbitrary p € S(H) and o € P(H) such that p <« o, the
quantum Rényi divergence or the sandwiched quantum Rényi relative entropy [10] is

D.(pllo) = 1 T log (tr((a%pa%)a))
= 1 T log (tr((dl?TaP)a))

a : 7lo8 (tr((p G%a)a))' 2.2)

Again, by convention, 5a(p||a) = if p K o and a > 1. For a <1, the same definition holds even
if p & o. Note that these alternative formulations stem from the fact that, for any two operators
0,0 € L(H), po and op have the same eigenvalues [25, exercise 1.3.7]. For « = 1, e, we can define
the sandwiched quantum Rényi relative entropy by extension:

Di(p |l 0):= lim Dq(p || 0) =tr(p(log(p) - log(0)),
D.(p |l 0):= lim Dy(p || 0) =log( inf {x € Rep < uo}),

where 51(p||a) = Dj(pl|o) is the usual quantum relative entropy [24] and 5m(p||cr) is the max-rela-
tive entropy [26].

Lemma 2.1. The following results hold for the sandwiched quantum Rényi relative entropy:

(a) Post-Processing Inequality: For any p € S(H) and o € P(H), such that p < o, and any quantum
channel &, Dyo(E(0)||E(0)) < Dylpl|o) for all a € [1, =];

(b) Order Axiom: ﬁa(p"cr) <0ifp<oand 5a(p||a) 20ifp2oforalla€[l,];

(c) Unitary Invariance: ﬁa(UpUJrHUoU*) = 5a(p||o)for all a € [1, o).

Proof. The data-processing inequality follows by setting a >1 and z = « [11, theorem 1], where
the case of a =< can be inferred by taking the limit a — . The order axiom and unitary
invariance follow from [10, theorem 2], where the cases of a =1, e follow taking the limit. [ |

Lemma 2.2. For any two mixture of states p=) . exT(x)p* and o=}, cxn(x)c* with
%, 0¥ € S(H) for all x € X and 1 € A(X), the max-relative entropy admits the quasi-convexity
relationship:

D..(pllo) < max D..(o*[c*).
xXEX

Proof. The proof follows from [26, lemma 9]. |

The quantum a-mutual information can be defined by expanding relation (2.1) to quantum
states as

I(A; B),,, = inf De(p4gloa ® 0B),
OB

where p,p denotes the bipartite quantum state in S(H,xHp) and p, = trg(osp) € S(Ha)-
Similarly, we can define the sandwiched quantum a-mutual information as

T o(A; B),,, = inf Do(pasllon ® 0p).
9B
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3. Information leakage to arbitrary eavesdropper

In this section, we first need to present the definition of maximal quantum leakage, originally
defined and studied in [6], to quantify information leakage to arbitrary eavesdroppers. To do so,
we need to borrow the following concepts from [6].

Let discrete random variable X € X model, the private or secure classical data. For any
x € X, quantum system A with state o} € S(H,) is prepared. The ensemble of the states
& = {px(x), p4}x e x captures the quantum encoding of the classical data. The average or expected
density operator is p, = E{pX} = ), ¢ x Px(x)p}, which models the state of the system A without
knowing the realization of a random variable X. We assume that an arbitrary eavesdropper,
who does not know the realization of the random variable X, wants to reliably guess or estimate
the realization of a (possibly randomized) discrete function of the random variable X, denoted
by a random variable Z, based on measurements from a single copy of the quantum state
of system A. The security analyst is not aware of the intention of the eavesdropper (i.e. the
nature of the random variable Z that is of interest to the eavesdropper). This set-up also covers
the case that the eavesdropper searches for the random variable Z, i.e. an attack strategy, that
results in the maximal information leakage. For a given POVM F = {F,}, ¢y, discrete random
variable Y € Y denotes the outcome of the measurement such that the probability of obtain-
ing measurement outcome Y =y € Y when taking a measurement on quantum state p} is
P{Y =y | X = x} =tr(0}F,). The eavesdropper makes a one-shot' guess of the random variable
Z denoted by the random variable Z. Maximal quantum leakage measures the multiplicative
increase in the probability of correctly guessing the realization of the random variable Z based
on access to the quantum encoding of the data via ensemble &£ = {px(x), pi}x e x-

Definition 3.1. (Maximal quantum leakage). The maximal quantum leakage from random variable
X through the quantum encoding of the data via ensemble € = {px(x), pA}x e x 1S

_ PiZ=2)
Q(X—) A)PA = S;:}l)}r: SZl:lg log W (3,1&)
= sup I.(X;Y
up (XY) (3.10)
=sup lo max tr (o4F,)|, 3.1c
up g(y%:y max tr (o5 y)) (319

where, in relation (3.1a), the inner supremum is taken over all random variables Z and Z with equal
arbitrary finite support sets and the outer supremum is taken over all POVMs F = ({F,}, ¢y with
arbitrary finite set of outcomes Y.

As noted in [6], there is no explicit formula for the maximal quantum leakage and an
iterative algorithm must be used to compute this quantity for various quantum encoding
methods. This motivates developing upper bounds for maximal quantum leakage that are
easier to compute. Here, we develop two upper bounds for the maximal quantum leakage and
show that these novel quantities also satisfy important properties or axioms for measures of
information leakage; they are, however, considerably simpler to compute. They can be either
reformulated as a semi-definite program or possess an explicit form.

Proposition 3.1. The maximal quantum leakage from random variable X through the quantum
encoding of the data via ensemble € = {px(x), p}x e x is upper bounded by

>, m(x)ek

< mi D..|o%
QX = M= 0l 12X P (pA vy

'Tt is shown that number of guesses is immaterial in evaluating the maximal information leakage [6].
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Proof. For all « > 1, we have

L] 5 )

1 e
<pios (e e (e, ) )

log(|X 1 A
- i(—|1|) + max ) log(tr((pApAa ) ))

xeX

I(X;Y) <

_log(1X]) ,

N (AX
o1+ max Dy(rallea)

where the first inequality follows from [27, eqns (17) and (23)]. Therefore,

IL(X;Y) = lm I(X;Y)

INA

Jim - max De(plloa)
= max  lim Dq(pjllpa) (32)
_ N X

= max Dw(pillpa), (33)

where relation (3.2) follows from lemma A.1 in Appendix A. Finally,

QX — A),,

i X->A
2y QX A,
= min sup [.(X;Y
px € AKX) {Fylli ( )
min  sup max D.(o%
or el {F]P max (eallpa)

IN

min  max Du(p%
pr oAby Tex (Pallpa)

7

= min max D.|p}
px €EAX) xeX

Z PX(X')PX
x' eX
where the first equality follows from that Q(X — A),, is not a function of py, the second
equality follows from the definition of Q(X — A),,, the inequality follows from relation (3.3),
the third equality follows from that max, ¢ x D..(03]lp,) is not a function of {Fy}, and the last
equality is based on rewriting o, as Zx, e x px(x)es. |

This upper bound suggests introducing a new measure of information leakage for quantum
encoding of classical data, referred to as barycentric quantum Rényi leakage. Barycenter, a
term popular in astrophysics, refers to the centre of mass of two or more bodies that orbit one
another. In this instance, barycenter refers to a quantum states that minimizes the worst-case
distance for all quantum encoding (0}) e x- Barycentric quantum divergences have been used in
the past to measure the information content of a quantum encoding, albeit when the distance
cost is in a sum form [28].

Definition 3.2. (Barycentric quantum Rényi leakage). The barycentric quantum Rényi leakage
from random variable X through the quantum encoding of the data via ensemble € = {px(x), P4}x e x IS

B(X = A),,:== min max Dok

TEAX) xe

%, n)es) G4

x'eX

The following corollary immediately follows from proposition 3.1 and definition 3.2.

Corollary 3.1. (X = A),, < B(X = A),,.

!
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Remark 3.1. (Quantum Rényi divergence radius). Note the similarity between barycentric
quantum Rényi leakage in relation (3.4) and quantum Rényi divergence radius in [29, eqn (85)]:
Rad({piliex) = inf sup Du(p}llo). 3.5)
ceESH) xeX
The difference between these two measures is that, in relation (3.4), the minimization is over the convex

hull of {p%}x e x while, in relation (3.5), the minimization is over the set of all density operators. In
general, it is easy to see that

Rad({pilx e x) < B(X — A),,.

Understanding whether these two notions of information are identical remains an open question.

The barycentric quantum Rényi leakage satisfies important properties or axioms for
information leakage: positivity (the information leakage is greater than or equal to zero),
independence property (the information leakage is zero if the quantum state is independent
of the classical data), post-processing inequality (the information leakage can be reduced if
a quantum channel is applied to the state) and unitary invariance (the information remains
constant by application of a unitary operator on the quantum state). The corresponding classical
properties of positivity, independence and post-processing have been postulated to be of utmost
importance in security analysis [7].

Theorem 3.1. The following properties hold for the barycentric quantum Rényi leakage:

(a) Positivity and independence: B(X — A),, > 0 with equality if and only if o = pX for all x,x' € X;
(b) Unitary invariance: B(X — A)y,,ut = B(X — A),, for any unitary U;
(c) Data-processing inequality: B(X — A)g(p,) < B(X — A),, for any quantum channel £.

Proof. We start by proving part (a) by contradiction. First, note that B(X — A),, 20 because
QX = A),, <B(X - A),, (see corollary 3.1) and Q(X — A),, >0 [6, proposition 1]. If o} = o3 for
all x, x" € X, we get

= 1 D X
B¢ A), = i, e D e

> 7T(x’)pi‘{)

x'eX

— : N X|| AX
~nin - max D.. (04lea)

=0,

where the second equality follows from }, . xm(x)=1. On the other hand, B(X — A),, =0
implies that, for all x € X and nt € A(X), p} = Z n(x)p}. This is only possible if p} = o3 for
all x, x' € X.

x' € X

Now, we can prove part (b). The proof of this part follows from that

5M(Upff\U+ » n(x’)Upf,’U*) = 5M(Upff\U+ U( > onx)es U*)
x'eX x'eX
=D.. (pii > ﬂ(x’)pi‘{),
x' e X

where the second equality follows from unitary invariance in lemma 2.1.
Finally, we can prove part (c). Note that
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- [eten] X rexreen) - b-{ewnle( 3 meei)
x' eX x' eX
<D.. (pii Y nx)ex),
x' e X

where the equality stems from the linearity of £ and the inequality follows from the data-pro-
cessing inequality in lemma 2.1. [ ]

Proposition 3.2. (Semi-definite programming for barycentric quantum Rényi leakage). The
barycentric quantum Rényi leakage from random variable X through the quantum encoding of the data
via ensemble € = {px(x), P4A}x e x can be computed using the semi-definite programming:

min
neAX), ueR K

s.t. pASH Y m(x)eL, Vx € X.

x'€X
Proof. The proof immediately follows from the definition of D... |

Proposition 3.2 shows that, although the barycentric quantum Rényi leakage still does not
possess an explicit formula, its computation is far simpler than the maximal quantum leakage
(cf [6]). It should however be noted that the computational cost of solving the semi-definite
program in proposition 3.2 grows in a polynomial manner with the dimension of the matrices
[30], which in turn grows exponentially with the number of qubits used to encode the classical
data.

Example 3.1. (Basis/index encoding). Consider a random wvariable X with a support set
X=A{1,...,2"} for some positive integer n. Assume that a basis or index encoding strategy
is used, that is, o} =|xXx| for all x€X. In [6], it was shown that QX — A), =n. To
compute the barycentric quantum Rényi leakage, we can use theorem 3.2 to demonstrate that
B(X > A),,= min max (1/m(x)) = n. This demonstrates that the upper bound in corollary 3.1 can be

] j meAX) xe
tight in some cases.

In what follows, we further simplify the upper bound in proposition 3.1 to drive a simpler
measure of information leakage with an explicit form.

Proposition 3.3. The barycentric quantum Rényi leakage from random variable X through the
quantum encoding of the data via ensemble £ = {px(x), P4}x e x is upper bounded by

B(X — A),, < max Du(p}le})-
x,x'eX

Proof. The proof follows from the quasi-convexity of the max-relative entropy because
Dulpill Xy e x6)PR) = Dol Ly PN L, e 5 (X)) < maxe e x Du(eillo); see lemma 2.2. n

This upper bound suggests introducing another measure of information leakage for
quantum encoding of classical data, referred to as pairwise quantum Rényi leakage. This notion
of information leakage possesses an explicit formula in terms of the max-relative entropy
in quantum information theory and is hence more amenable to theoretical analysis (see the
subsequent two sections for examples of such analysis); however, as we demonstrate later, it is
more conservative.

Definition 3.3. (Pairwise quantum Rényi leakage). The pairwise quantum Rényi leakage from
random variable X through the quantum encoding of the data via ensemble £ = {px(x), p}x e x s

R(X = A)p, = max. Du(p}ll%)- (3.6)
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The following corollary immediately follows from corollary 3.1, proposition 3.3 and definition
3.3.

Corollary 3.2. 9(X — A),, <B(X = A),, <R(X = A),,.

Similarly, the pairwise quantum Rényi leakage satisfies important properties of positiv-
ity, independence, post-processing inequality and unitary invariance. These properties are
established in the following theorem.

Theorem 3.2. The following properties hold for the pairwise quantum Rényi leakage:

(a) Positivity and Independence: R(X — A),, 20 with equality if and only if o} = ok for all
x,x' €X;

(b) Unitary Invariance: R(X = A)yp,ut = R(X = A),, for any unitary U;

(c) Data-Processing Inequality: R(X — A)g(py < R(X — A),, for any quantum channel £.

Proof. We start by provmg part (a). Note that R(X — A),, = max, Do(0lllp%) = Du(obllok) = 0. If
0% = p} for all x,x" € X, Do(o}]le}) =0 for all X', x € X. Therefo){'e R(X — A),,=0. On the other
hand, if R(X — A),, =0, it means that, for all x, x" € X, D..(03]le}) = 0, which is only possible if
P4 = P5-

The proof for part (b) is similar to the proof of part (b) of theorem 3.1 because lemma 2.1
results in D..(UpiU'|UpLU") = D.(0}lp}) for all x, x' € X.

The proof of part (c) follows from that D EEDIEPY)) < DulpXll0h), where the inequality is a
consequence of lemma 2.1. |

Example 3.1. (Basis/index encoding (continued)). Note that, because p}. < o if x # X', we can
easily see that R(X - A),, = max, v e xD-(0}l0}) = =. Therefore, the upper bound relating to R(X — A),, in
corollary 3.2 can be loose in this instance. This measure of information leakage can be conservative in
general.

We finish this section by investigating the relationship between the barycentric and pairwise
quantum Rényi leakage with the sandwiched quantum a-mutual information and accessi-
ble information. Consider the following classical-quantum state representing the ensemble

E= {pX(x)/ pfl}x ex-
Pxa= %px<x>|x><x| ® o}

Recall that the sandwiched quantum a-mutual information of the classical-quantum state oy, is
given by I(X; A),,, = infy Do(pxallox ® o), where py = tra(ox)-

Proposition 3.4. The sandwiched quantum a-mutual information of the classical-quantum state px 5
is upper bounded by

To(X; A)py, STl X; A)py, S BX = A)p, SR(X = A)p,

PxA

Proof. First, T X5 A)y, < T «(X; A),,, is a direct consequence of in [10, theorem 7]. Now, note that

D.. (Pxallox ® o) ZXPX(X)|X><X| ® pall Z px(x)[x)}x| ® o

IN

max D.. (|x){x| ® pilllx){x| ® o)

x€X

IN

n X
max D..(040),
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where the first inequality follows from the quasi convexity of the max-relative entropy
in lemma 2.2 and the second inequality is the post-processing inequality in lemma 2.1,
ie. Do(N (PN (0)) < D(p}llo) with quantum channel A(p) = [x)x|® p for any x € X. An
alternative proof for the second inequality can be derived by using the additivity axiom [10,
theorem 2]. Therefore,

T(X; A)py, = inf D(pxallox ® 0)

<i D..(0%
< inf max D(pjl0)

< i D.. [ 0%
‘nénAf(X) I;?;g(D”(pA

5 e
x' eX

This concludes the proof.
An important notion of information in quantum information theory is accessible information
[22, p. 298]. For ensemble & = {px(x), i}« e x, the accessible information is

Inc(€) = sup [1(X;Y).

{Fyly

In addition, the Holevo’s information [31] (also see [22, p. 318]) is

x(€) = L(X; A),, = H(py) - %px(x)H(pi%),

where H(p) = —tr(plog(p)) is the von Neumann quantum entropy. The next proposition provides
a relationship between accessible information, and the barycentric and pairwise quantum Rényi
leakage.

Proposition 3.5. I(£) < ¥(£) £ B(X = A), < R(X — A),.

Proof. First, note that the Holevo bound demonstrates that I.(€) < I1(X; A),,, [31]. Further-
more, I1(X;A),,, =11(X;A),,,. In addition, I(X;A),,, <1(X;A),,, [10, theorem 7]. The rest
follows from proposition 3.4. |

4. Quantum differential privacy and depolarizing channels

Differential privacy is the gold standard of data privacy analysis in the computer science
literature [32]. Differential privacy has been recently extended to quantum computing
[12,33,34]. The aim of differential privacy in quantum computing is to ensure that an adversary
e.g. eavesdropper, cannot distinguish between two ‘similar” datasets based on measurements of
the underlying quantum system, cf hypothesis-testing privacy [35]. Similarity is modelled using
a neighbourhood relationship.

Definition 4.1. (Neighbouring relationship). A neighbouring relationship (over the set of density
operators) is a mathematical relation ~ that is both reflective (p ~ p for all density operators p) and
symmetric (o ~ o implies o ~ p for any two density operators p, o).

An example of a neighbouring relationship can be defined using the trace distance over
quantum density operators, ie. p ~ o if |jp-o|;<x for some constant k¥ >0 [33]. This is
formalized in the following definition.

Definition 4.2. (Closeness neighbouring relationship). p ~ o if |0 —of]; < .
Note that other neighbouring relationships can be embedded in differential privacy. For

instance, two quantum density operators can be neighbouring if they encode two private
datasets that differ in the data of one individual [32].
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Figure 1. The upper bound for B(X — A)Dp, 4,0 Versus probability parameter p.

Definition 4.3. For any €, 8 > 0, a quantum channel £ is (¢, 6)-differentially private if
tr(ME(p)) < exp(e)tr(ME(0)) + 6, (4.1)

for all measurements 0 < M < I and neighbouring density operators p ~ o.

An interesting concept is to measure the effect of the quantum differential privacy on
information leakage.

Proposition 4.1. B(X — A)g,,) < R(X = A)gp, </In(2) if ok ~ o3 for all x,x' € X under any
neighbouring relationship and the quantum channel £ is (¢, 0)-differentially private.

Proof. From [12, lemma II1.2] (with § =0), we get Do(EEHIEPY)) < ¢/In(2). Note that the
division by In (2) is caused by the use of natural basis in the definition of the differential privacy
and logarithms in [12]. This shows that R(X — A),, < ¢/In(2). The rest follows from corollary
3.2. ]

A physical noise model for quantum systems is the global depolarizing channel:

Dy, a,(p) = d—pAI +(1-p)e, 4.2)

where d4 is the dimension of the Hilbert space H 4 to which the system belongs and p € [0,1] is
a probability parameter. The larger the probability parameter p, the noisier the global depolariz-
ing channel Dp g4,

Proposition 4.2. B(X — A)p, , (o) < R(X = A)p, , (o, < l0g(1 +2(1 = p)da/p).

Proof. Reference [12, lemma IV.2] demonstrates that D, 4, is (¢, 0)-differentially private with
€=In(1+2(1- p)da/p). Note that, here, we set x =2 as always |0} — 0% <2 for any two density
operators o} and pX. Finally, note that In (1+2(1 - p)d/p)/In (2) = log (1 +2(1 - p)d/p). The rest
follows from propositions 3.5 and 4.1. |

Figure 1 illustrates the upper bound in Proposition 4.2 versus probability parameter p. This
clearly demonstrates that by increasing p, the amount of leaked information, measured by both
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the barycentric and pairwise quantum Rényi leakage, tends to zero. This is established for
the global depolarizing channels. However, in quantum computing devices, each qubit can be
affected by local noise. To model this case, assume that the Hilbert space H4 is composed of k
qubits so that d, = 2%, The local depolarizing noise channel is defined as

DEf=Dp2® @D, 4.3)

where a depolarizing channel D), , acts locally on each qubit.
Proposition 4.3. B(X — A)pek(,) < R(X = A)pek(,) < log(1 +2(1 - p)da/p).

Proof. The proof is similar to that of proposition 4.2 with the exception of relying on corollary
IV.3in [12]. ]

5. Quantum machine learning

In this section, we consider variational circuits for implementing quantum machine learning
and analysing privacy-utility trade-off in these models. The first step in a variational circuit is
an encoding layer that transforms the classical data, i.e. input of the quantum machine learning
model, into a quantum state. In the notation of §3, the ensemble £ = {px(x), o4}x e x is used to
model this layer. The next layer is a variational unitary Ug with tunable parameter 6. After this
layer, the state of the quantum system is UgpsUs. Finally, measurements are taken to determine
the output label. The measurement can be modelled by POVM O = {O.}, where the outcome ¢
denotes the class to which the input belongs. Figure 2 illustrates a variational quantum machine
learning model with encoding unitary V, and variational circuits Up. Here, the quantum states
are initialized at |0)® - ® |0) and, therefore, we have p%=V,0)® - @ |0X0| ® --- ® (0| V7.
Training the quantum machine learning model entails finding parameters 6, e.g. by gradient
descent, to minimize the prediction error based on a training dataset. To achieve private
machine learning, we can add a global or local depolarizing channel to ensure differential
privacy or to bound the information leakage (in the language of this paper). The performance
degradation caused by the quantum channel € is

T(€) = max ) ltr(OUspAUS) - tr (0 (UapiUD), (5.1)

which captures the changes in the probability of reporting each class by the addition of the
quantum channel €. The following proposition provides an upper bound for the performance
degradation caused by the global depolarizing channel.

Proposition 5.1. (D, 4,) <2p(d4 —1)/d 4.
Proof. Note that

3 [tr (O UgpUS) = tr (0D, 4, (UapUR))| < |Ue05US ~ D, 0, (Uap3 U8y
c

< sup [lo0=Dpa,0)ly
o€ S(Ha)
where the first inequality follows from [22, exercise 9.1.10, pp. 239] and the second inequality
is a consequence of maximizing over the state. For any o € S(H ,4), spectral decomposition can
be used to write 0 =), c 7A(2)|z)(z| with 1 € A(Z) and orthonormal basis {|z)}, ¢z for H, (so
|Z| = d4). Therefore, we have
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Figure 2. A variational quantum machine learning model with encoding unitary V', and variational circuit Us.
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Figure 3. Privacy-utility trade-off region when using the global depolarizing channel for d 4 = 2. The solid curve depicts
the upper bound in corollary 5.1.
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=p Y A2 (1—di)|z> z| - di Z IZ'><Z’|
1

e

where the inequality stems from the convexity of the trace norm [22, exercise 9.1.11, p. 239].
This concludes the proof. |

Corollary 5.1. The following privacy-utility trade-off holds when using the global depolarizing
channel:
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B(X — A)Dp,dA(pA) < R(X - A)D

p,dA(pA)
4(ds-1
<log (1_2dA)+F((DA—pd)) )
r LA

Proof. Proposition 5.1 shows that 1/p<2p(ds—1)/(dsI(Dp,q,)). Combining this with the
inequality in proposition 4.2 finishes the proof. |

Figure 3 illustrates the privacy-utility trade-off region when using the global depolarizing
channel for d, =2. The solid curve depicts the upper bound in corollary 5.1. Note that, as
expected, the privacy guarantees can only be straightened, i.e. information leakage is reduced,
if the performance degradation is larger. Recently, the utility-privacy trade-off in quantum
machine learning was also considered in [13]; however, in that paper, different notions of utility
(i.e. diamond distance) and privacy (i.e. quantum pufferfish privacy) were considered. Note
that here we are relating utility to an operational notion of information leakage, that is, maximal
quantum leakage, through barycentric and pairwise quantum Rényi leakages.

6. Conclusions and future work

Two new measures of information leakage for security and privacy analysis against arbitrary
eavesdroppers, i.e. adversaries whose intention is not known by the analyst, are proposed. They
satisfy important properties of positivity, independence, post-processing inequality and unitary
invariance. They can also be computed easily. Differentially private quantum channels are
shown to bound these new notions of information leakage. Finally, the fundamental problem of
privacy-utility trade-off in quantum machine learning models was analysed using the proposed
notions of information leakage. Future work can focus on developing optimal privacy-preserv-
ing policies by minimizing the information leakage subject to a constraint on the utility. This
approach is widely used in classical data privacy literature when using information-theoretic
notions for security and privacy analysis. Furthermore, these measures can be used for the
analysis of wiretap or cipher channels, where the eavesdropper is generalized (not interested in
estimating the entire secret data but can also focus on part data recovery).

Data accessibility. This article has no additional data.

Declaration of Al use. We have not used Al-assisted technologies in creating this article.

Authors” contributions. E.F.: conceptualization, formal analysis, investigation, methodology, writing—original
draft, writing—review and editing.

Conflict of interest declaration. We declare we have no competing interests.

Funding. No funding has been received for this article.

Acknowledgements. The author is thankful to Theshani Nuradha for bringing [13] to his attention and providing
useful comments and suggestions for improving the current paper. The author would like to also thank
the anonymous reviewers for finding a minor mistake in the proof of theorem 3.1, shortening the proofs
of propositions 3.3 and 3.4 by appealing to quasi-convexity and post-processing inequality, and tightening
the results of proposition 5.1 and corollary 5.1 by developing a bound that relies on the dimension of the
quantum system.

Appendix

A. Technical lemma

Lemma A.1. lim, . .. max, ¢ x Da(p3llo4) = maxy e x limg — « Da(p%l04) -
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Proof. Note that lim, -, .. Do(03[lp4) = D-(p}llp.4), which is finite because p < p4 by definition.
Therefore, for all a > 0, there exists @, . such that [D(0}04) — D(0}4ll04)| < € for all a > &, .. This
implies that

Du(p3llpa) — € < Da(plloa) < Dolpfllon) + €, Var 2 @, o, ¥x € X. (A1)

Based on this inequality, we can prove that
max De(pjllp4) = € < max Dy(pjlloa) < max Du(pjllpa) +€ Vo = max @y, . (A2)
xeX xeX xeX x€eX

The proof for this come from a contrapositive argument. For proving the upper bound,
assume that there exists & > max, e x @y, such that max, ¢ x De(pillpa) > maxy e x Du(ollon) + €.
Therefore, there exists x'€ X such that Dy(o}]l0.) >5M(pff,||pA)+e for all x e X. This
implies that 5a(pj§'||pA) >[~)N(pj§'||pA)+€, which is in contradiction with equation (A
1). For proving the lower bound, assume that there exists o> max,ex @y such
that max, e x Do(05]l04) — € > maxy e x Du(0illoa). Therefore, there exists x' € X such that
De(p} o) - € > Do(pfllp4) for all x € X. This implies that D..(o% ) — € > Da(0304), which is
in contradiction with equation (A 1). Equation (A 2) shows that, for all € >0, there exists
® = Maxy e x Ay ¢ such that

|max D.(p}lles) - max Da(o}lloa)l <€ Vo > &..
x €X x €X

In addition, &, = max &, . < e because X is finite. This concludes the proof. [}
xeX
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