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Abstract

One of the main achievements of relativistic heavy ion collisions is providing signa-
tures of the formation of the quark-gluon plasma (QGP). This deconfined phase
of strongly interacting matter is explored theoretically by Quantum Chorodyna-
mics (QCD), which is characterized by some peculiar aspects, making it challenging
to perform the first-principle computations. Therefore, various effective frameworks
have been developed to extend the scope of the theory and approach it in a simplified
manner.

In this Thesis, we investigate the transport properties of hot QCD matter in
the quasiparticle model. We consider quasiparticle excitations with quark and gluon
quantum numbers as effective degrees of freedom in the deconfined phase. The inte-
ractions with a hot medium are embodied in dynamical masses of the constituents
and temperature-dependent dispersion relations through the effective running co-
upling extracted from lattice QCD thermodynamics.

We study the temperature and flavor dependence of different transport parameters
of the deconfined matter in pure Yang-Mills theory and QCD with light and strange
quark flavors. The calculations are performed in kinetic theory under the relaxation
time approximation, with relaxation times that depend explicitly on the microscopic
two-body scatterings of the quasiparticles.

The shear viscosity to entropy density ratio in pure Yang-Mills theory exhibits
a characteristic non-monotonicity, with a minimum at the first-order phase transi-
tion. However, the ratio smoothens while showing a minimum near confinement in
the presence of dynamical quarks. We illustrate that this agrees with the results of
hydrodynamic simulations and perturbative QCD expectations at higher tempera-
tures.

We also investigate the bulk viscosity to entropy density ratio, which in pure
gluon plasma exhibits a rapid rise around the phase transition temperature, simi-
lar to lattice gauge theory and AdS/CFT observations. However, in the QGP, the
non-monotonic structure is totally dissolved due to the substantial contribution of
dynamical quarks. We observe an overall significant increase of the specific shear
and bulk viscosities in QCD, compared to the Yang-Mills theory, resulting from the
presence of dynamical quarks, with a major impact produced by the light quark
sector.

Moreover, we compute the bulk to shear viscosity ratio, which near the phase
transition temperature, behaves consistently to the scaling with the speed of sound
derived in the AdS/CFT. In contrast, it obeys the same parametric dependence as
in perturbation theory at high temperatures. This feature is not altered by inclu-
ding dynamical quarks, which, however, retards the system from restoring conformal
invariance. This analysis indicates that the employed quasiparticle model nicely cap-
tures the theory’s weak and strong coupling regimes.

The electrical conductivity of the QGP with quasiquarks is another transport para-
meter that we have examined in the quasiparticle model. We find that the behavior
of the individual flavor contributions agrees qualitatively well with the results of
lattice QCD simulations and with a class of phenomenological approaches.
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Finally, we employ the acquired shear viscosity in the investigation of charm quark
production. By comparing perfect QGP propagating longitudinally with the viscous
QGP also expanding in the transverse direction, we observe that the latter setup
significantly induces the production of charm-anticharm pairs. However, as QGP
approaches the phase transition temperature, the majority of heavy quarks annihi-
late in the perfect fluid. At the same time, in a viscous medium, the final number of
charm-anticharm pairs in certain cases equals the initial one, which agrees with the
experimental observations. We find a universal behavior of the charm quark number
as a function of temperature and time at the late stage of the QGP evolution. This
can be linked to the rate equation used in our calculations, which is characterized
by the general property of differential equations to have a universal (attracting)
solution.
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Streszczenie

Jednym z głównych osiągnięć relatywistycznych zderzeń ciężkich jonów jest dostar-
czenie dowodów na powstanie w wyniku tych zderzeń plazmy kwarkowo-gluonowej
(QGP). Ta faza silnie oddziałującej materii jest opisywana teoretycznie przez Chro-
modynamikę Kwantową (QCD), której szczególne aspekty utrudniają wykonywanie
obliczeń od podstaw. Dlatego opracowano szereg modeli efektywnych, które pozwa-
lają rozszerzyć zakres teorii i w uproszczony sposób podejść do różnego rodzaju
zagadnień.

W niniejszej pracy badamy właściwości transportowe gorącej materii QCD w
modelu kwazicząstek. Za efektywne stopnie swobody w fazie cząstek uwolnionych
przyjmujemy wzbudzenia kwazicząsteczkowe, posiadające liczby kwantowe kwarków
i gluonów. Oddziaływania składników materii z otoczeniem są zawarte w dynamicz-
nych masach i zależnych od temperatury energii tychże składników. Zależność zo-
stała wprowadzona poprzez efektywne sprzężenie, wyprowadzone z termodynamiki
QCD obliczonej na sieci.

Badamy zależność różnych parametrów transportu od temperatury i rodzajów kwar-
ków wmaterii opisanej poprzez czystą teorię Yanga-Millsa oraz przez QCD z uwzględ-
nieniem kwarków lekkich i dziwnych. Do obliczeń używamy kinetycznej teorii z przy-
bliżonym rozwiązaniem metodą czasów relaksacji, które wprost zależą od mikrosko-
pijnych rozproszeń kwazicząstek w ośrodku.

Stosunek lepkości ścinania do gęstości entropii w czystej teorii Yanga-Millsa
wykazuje charakterystyczną niemonotoniczność, z minimum obserwowanym przy
przejściu fazowym pierwszego rzędu. Jednak zachowanie tego stosunku wygładza
się w obecności kwarków dynamicznych. Te obserwacje zgadzają się z wynikami
symulacji hydrodynamicznych i oczekiwaniami teorii zaburzeń QCD w wyższych
temperaturach.

Badamy również stosunek lepkości objętościowej do gęstości entropii, który w
czystej plazmie gluonowej wykazuje szybki wzrost wokół przemiany fazowej, podob-
nie jak w teorii QCD na sieci i teorii AdS/CFT. Jednak niemonotoniczne zacho-
wanie stosunku lepkości objętościowej do gęstości entropii całkowicie znika w QGP
z powodu istotnego udziału kwarków dynamicznych. Obserwujemy ogólny znaczny
wzrost ww. stosunku w QCD, w porównaniu do teorii Yanga-Millsa, wynikający z
obecności kwazikwarków, przy czym główny wpływ na współczynnik transportu ma
sektor kwarków lekkich.

Ponadto obliczamy stosunek lepkości objętościowej do lepkości ścinania, który
w pobliżu temperatury przemiany fazowej zachowuje się zgodnie ze skalowaniem z
prędkością dźwięku wyprowadzonym w AdS / CFT. W przeciwieństwie do tego, w
wysokich temperaturach, stosunek ten podlega zależności parametrycznej, obliczo-
nej w teorii zaburzeń QCD. Ta cecha pozostaje, gdy układ zostaje uzupełniony przez
kwarki dynamiczne, lecz ich obecność opóźnia przywracanie niezmienności konforem-
nej układu. Analiza ta wskazuje, że zastosowany model kwazicząstek dobrze oddaje
tryby słabego i silnego sprzężenia w chromodynamiki kwantowej.
Przewodnictwo elektryczne w QGP uwzględniającej kwarki dynamiczne to kolejny
parametr transportu, który badamy w modelu kwazicząstek. Obserwujemy, że za-
chowanie poszczególnych składników przewodnictwa elektrycznego, pochodzących
od różnych zapachów kwarków, całkiem dobrze się zgadza z symulacjami QCD na
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sieci oraz z obliczeniami przeprowadzonymi w szeregu fenomenologicznych modeli.

Na koniec wykorzystujemy wyznaczoną lepkość ścinania do badania produkcji cięż-
kich kwarków powabnych. Porównując QGP w postaci płynu doskonałego poru-
szającego się w kierunku podłużnym do lepkiej QGP rozszerzającej się również w
kierunku poprzecznym, obserwujemy, że ta druga konfiguracja znacznie indukuje
produkcję ciężkich kwakrów i antykwarków. Jednak gdy QGP zbliża się do tempe-
ratury przemiany fazowej, większość ciężkich kwarków anihiluje w płynie doskona-
łym. Jednocześnie w ośrodku lepkim końcowa liczba ciężkich kwarków w określonych
przypadkach jest równa ich liczbie początkowej, co zgadza się z danymi doświadczal-
nymi. Obserwujemy uniwersalne zachowanie liczby kwarków powabnych jako funkcji
temperatury i czasu na późnym etapie ewolucji QGP. Zachowanie to można to po-
wiązać z równaniem produkcji kwakrów, które charakteryzuje ogólna właściwość
równań różniczkowych do posiadania uniwersalnego (przyciągającego) rozwiązania.
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Structure of the Thesis

The research in this Thesis is outlined as follows:
Chapter 1 introduces the essential elements of strong interactions and our

motivation to study the transport properties of the QGP. After briefly discussing
the main QCD features in Section 1.1, we focus on the phenomena occurring in the
deconfined matter and the corresponding transport parameters. Section 1.2 contains
an overview of previous studies of the QGP transport properties approached from
various perspectives. In Chapter 2, we introduce the general concept of the pheno-
menological quasiparticle model employed in this research. Chapter 3 discusses how
transport coefficients, such as the shear and the bulk viscosity, emerge in the de-
scription of viscous fluid dynamics, while Chapter 4 shows how they can be derived
in kinetic theory using Boltzmann equation in the relaxation time approximation
(Section 4.1).

We present a detailed computation of the relaxation times of quasiparticles in
Section 4.2. Various numerical results obtained in this research are comprehensively
discussed in Chapter 5, e.g. see Section 5.1 for the specific shear viscosity, Section 5.2
for the specific bulk viscosity, or Section 5.4 for the electrical conductivity. The
investigation of the charm quark production in perfect and viscous QGP is contained
in Chapter 6. The conclusions of our research are given in Chapter 7.

Additionally, in Appendix A, we provide a step-by-step analytical evaluation
of the scattering amplitudes for the elementary cross sections of massive particles,
while in Appendix B, the calculation of the weight factor entering the transport
cross section is presented.

10



Rozdział 1

Introduction

In a scientific world full of uncertainties, relativity, and unknowns, exploring strong
interactions from experimental and theoretical perspectives has proven to be a po-
werful source of knowledge about the matter and fields existing in the Universe.
Over the last several decades, the fundamental theory of strong interactions – Qu-
antum Chromodynamics (QCD) – has remarkably developed, and together with
the information collected from ultrarelativistic heavy ion collision experiments, has
led to significant progress in understanding the phenomena occurring in strongly
interacting matter [1–3].

1.1 Quantum Chromodynamics

The QCD is characterized by a few unique features which make it challenging to
describe the physics of strong interactions. The underlying degrees of freedom (d.o.f.)
of the theory are quarks (fermions) of different flavors and gluons (gauge bosons),
all carrying the color charge associated with the SU(3) gauge group [4].

There is a unique QCD phenomenon known as confinement, which implies
that the color-charged elementary particles cannot be isolated; hence it is impossible
to observe a single quark as a separate object [1, 5, 6]. This can be understood as
the opposite side of asymptotic freedom – a property related to the QCD coupling
strength, which increases with the increasing distance between strongly-interacting
elementary particles [7, 8].

Another peculiar feature of QCD is the spontaneous chiral symmetry bre-
aking [9]. Associated with the orientation of the particle’s spin relative to its direc-
tion of motion, the left- and right-handed chirality of quarks can be interchanged in
the QCD interaction if the masses of quarks can be neglected [1,6]. The assumption
of massless quarks is known as the chiral limit, in which the chiral symmetry in QCD
is exact. However, the quarks actually carry constant masses and when confined in
hadrons, do not form any degenerate chiral partners but lead to the bound states
of opposite parities and prominently distinct masses. This paradoxical observation
has been identified with the spontaneous breakdown of chiral symmetry [1, 6, 10].

The lattice gauge theory simulations provide numerical solutions to the QCD
equations, in which spontaneous chiral symmetry breaking and confinement are cer-
tainly manifested. We utilize one of the lattice QCD (lQCD) results in our studies
to take into account the main features of strong interactions, see Chapter 2.
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Rozdział 1. Introduction

Rysunek 1.1: The hypothetical QCD phase diagram with temperature T shown as
a function of baryon chemical potential µB. We schematically depict the quarks
(circles) and gluons (spirals) in the confined (Nuclear Matter and Hadron Gas) and
the deconfined (QGP) phases, with the first-order phase transition between them,
indicated by the solid line. The transition becomes a smooth crossover after reaching
the Critical Point [11] shown by the pink dot. In addition, at very high µB, the matter
reaches the color superconducting (CSC) phase [12]. The Tc and µc stand for the
critical temperature at vanishing µB, and critical chemical potential at vanishing Tc,
respectively.

One of the important goals of experimental and theoretical approaches to strong
interactions is to properly designate the possible phases of the QCD matter. Those
are illustrated in Fig. 1.1 by the simplistic QCD phase diagram, which covers va-
rious states of strongly interacting matter as functions of temperature T and baryon
chemical potential µB [1]. At Earth conditions, the quarks, interacting via gluons,
are bound in hadrons, such as the proton, neutron, etc. However, for higher T an-
d/or µB, i.e. when nuclear matter is strongly heated and/or compressed, the QCD
coupling decreases, and quarks and gluons are released from the bound states due
to the deconfinement phase transition, creating a particular state of matter known
as the Quark-Gluon Plasma (QGP) [1, 6]. Investigation of the transport properties
of the QGP with different quark content is the main scope of this Thesis.

Due to the dramatically different conditions at which the deconfined matter is cre-
ated, one can study its dynamical properties from different theoretical and pheno-
menological perspectives. Based on the asymptotic freedom, one assumes that in
the high-temperature regime, the deconfined matter can be described as a weakly
interacting gas, and therefore, perturbative QCD (pQCD) expansion becomes ap-
plicable [13]. On the other hand, the significant theoretical evidence for the QGP
existence comes from the lQCD simulations, which cover the non-perturbative QCD

12



Rozdział 1. Introduction

regime in the vicinity of the (pseudo)critical temperature Tc at vanishing chemical
potential. Currently, the ways of extending the lQCD data to finite µB are actively
developing [14]. While the lattice and perturbative approaches access the low- and
high-temperature QCD regimes, as an alternative, various phenomenological models
are used to cover a wide range of temperatures and baryon densities and effectively
connect the strongly and weakly coupled sectors of the QCD phase diagram. Moti-
vated to investigate the properties of hot QCD matter in a wide temperature range,
starting from the point of the QGP thermalization and finishing when it reaches the
hadronic phase, we employ the kinetic quasiparticle model (QPM) and discuss its
reliability in the following Chapters.

1.2 Transport Properties of Deconfined Matter

The data collected from the Large Hadron Collider (LHC) and the Relativistic Heavy
Ion Collider (RHIC) support the idea that the hot deconfined matter is created at
ultrarelativistic heavy ion collisions [2, 15–17]. Moreover, the flow observables, cha-
racteristic for strongly coupled media, have been extensively studied in ideal [17–25]
and viscous [26–34] hydrodynamics, confirming that the QGP is a strongly coupled
fluid.

In particular, it has been shown in [26] that the elliptic flow coefficient v2 can
be parameterized by the ratio of shear viscosity to entropy density, η/s, see Fig. 1.2.
The shear viscosity η is a transport parameter measuring the resistance of the fluid
against the momentum modifications. In other words, the shear viscosity is related
to inner friction, which arises in a longitudinally propagating fluid and causes the
irreversible momentum transfer from one part of the fluid to another. The shear
viscosity is usually presented as a dimensionless ratio to the total entropy density of
the system, η/s, since this specific parameter enters the hydrodynamic simulations
of the heavy ion collisions.

Since elliptic flow data shown in Fig. 1.2 can be parameterized to some extent
by the ideal hydrodynamics, one recognizes that the QGP constitutes a nearly per-
fect fluid [17, 23–26]. In fact, one of the values of the specific shear viscosity used
in Fig. 1.2, η/s = 1/4π ≃ 0.08, refers to the conjectured lower bound for all flu-
ids in nature and is known as the Kovtun-Son-Starinets (KSS) bound [35], which
has been obtained by applying the duality between the strongly coupled gauge and
weakly coupled gravity theories. Simulations with an evolution-averaged η/s based
on comparisons with combined experimental data from top-RHIC and LHC ener-
gies [24, 36, 37] extracted a possible range of 1 < (η/s)/(1/4π) < 5, however, those
estimates suffered from sizable systematic and statistical errors [38].

In Fig. 1.2, one additionally observes that as pT increases, the larger values of η/s be-
come more suitable to achieve a better agreement between the hydrodynamic results
and the experimental data for the elliptic flow. This implies that the dependence of
the shear viscosity on the surrounding conditions is relevant in the description of
the QGP properties.

Thus, more realistic studies consider a temperature dependence of the viscosity
coefficient [27,39]. It was found that the combined data favor an increase with T up
to a factor of 5 from RHIC to LHC [40]. A possible µB-dependence was investigated
in [41] finding a moderate increase with increasing µB. The wealth of accumulated
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Rozdział 1. Introduction

Rysunek 1.2: Figure taken from Ref. [26]. The elliptic flow coefficient v2 as a func-
tion of the transverse momentum pT . The experimental data from the STAR colla-
boration are approximated by the hydrodynamic model with different values of the
specific shear viscosity η/s, including the ideal fluid case with η/s = 0.

experimental data also made Bayesian estimate studies for the temperature [42] and
chemical potential [43] dependence possible, confirming the previous results.

The transport parameters of different systems are always sensitive to the relevant
d.o.f., their properties, and interactions within the fluid. The specific shear viscosity
used in Fig. 1.2 is undoubtedly tiny in comparison to the results found for other
fluids in nature. In Fig. 1.3, one can see that η/s for the deconfined matter reaches
much lower values than the specific shear viscosity of other media, and thanks to
this unique property, the QGP is often called „the most perfect fluid known” [15,52].
Note that the collected lattice gauge theory results for η/s consider the pure Yang-
Mills theory, i.e. the pure gluon plasma [46–48, 53]. For QCD, including dynamical
quarks, no explicit calculations exist. Estimates based on the results for Yang-Mills
theory and information from perturbative QCD [54] suggest a slight increase in the
presence of dynamical quarks [46,55].

As an alternative, functional diagrammatic approaches to QCD were recently explo-
ited [56,57] to determine the shear viscosity in Yang-Mills theory from gluon spectral
functions via the Kubo relation [58]. Those are in favor of a quasiparticle structure
applied in this Thesis. The results presented in [57] are in reasonable agreement with
the lattice data and provide an estimate for QCD with Nf = 2 + 1 quark flavors
also indicating only a slight increase. Both first-principle approaches find a minimal
η/s of about 0.2 near the deconfinement transition temperature Tc with a moderate
increase with increasing T , which is qualitatively in line with the estimates from
fluid dynamical simulations. Similar results can be obtained from perturbation the-
ory with appropriately chosen scales in the running coupling [57,59].

Since first estimates indicated that η/s of the deconfined matter is close to the KSS-
bound, various QCD-like and phenomenological approaches were used to give an
explanation for the apparent perfectness of the QGP in terms of relevant d.o.f. The
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Rysunek 1.3: The shear viscosity to entropy density ratio η/s as a function of the
scaled temperature (T − Tc)/Tc for a number of fluids in nature. Tc denotes the
critical temperature at the endpoint of the liquid-gas phase transition of water
(H2O, circles) [44] and helium (He, dashed-dotted line) [44] while representing the
superfluid transition temperature for ultracold Fermi Gas (dashed line) [45] and the
deconfinement temperature for pure SU(3) theory. For the latter, the data collected
from lQCD simulations are shown by open symbols: circles and squares [46], penta-
gons [47], and diamond [48]. The solid horizontal line denotes the KSS lower bound
of η/s = 1/(4π) [35]. Similar figures can be found in [49–51].

specific shear viscosity of quark matter was investigated in Nambu-Jona-Lasinio (NJL)
model [60–67], the Polyakov-loop improved linear sigma model [68], or a Polyakov-
loop extended Quark-Meson model [69]. Further investigations were also made regar-
ding a Gribov-Zwanziger plasma [70]. Moreover, kinetic theory within partonic trans-
port simulations was exploited [71–74] as well as anisotropic fluid dynamics [75,76],
both supporting the idea of a medium composed of quasiparticle excitations.

It was a widespread paradigm that a quasiparticle description could not account
for the perfect fluidity observed for deconfined strongly interacting matter. The
first quantitative determination of the specific shear viscosity for pure Yang-Mills
theory described with massive quasiparticles has been found, refuting this para-
digm, an η/s ≃ 0.2 with a negligible T -dependence by using the Green-Kubo forma-
lism [77]. Based on the early works of [78,79], kinetic theory calculations considered
a medium composed of quasiparticles without residual mean field interaction [61,80]
and for pure Yang-Mills theory with mean field interaction term [81–84]. This idea
was extended to describe interacting hadronic matter at vanishing [85] and finite
chemical potential [86]. Further QPM predictions for QCD matter were presented
in [87] and in [88, 89], by taking into account the possible formation of turbulences
in an expanding QGP. Modeling quasiparticle interactions, the QPM was further
extended by including a finite collisional width in the quasiparticle spectral func-
tions [90–92].

Alongside the shear viscosity, another significant transport coefficient accompany-
ing the evolution of the deconfined matter is the bulk viscosity ζ. This parameter
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indicates the dissipation of the energy occurring in a fluid with a changing vo-
lume, i.e., ζ reflects the reaction of a strongly coupled system to its expansion or
compression.

Following the specific shear viscosity η/s, one usually studies the dimension-
less ratio of the bulk viscosity to the entropy density, ζ/s, since these quantities are
employed in the hydrodynamic equations [6, 93–95] and reflect the deviation of the
medium from local thermodynamic equilibrium.

The early studies of the bulk viscosity have investigated its origin in the heavy-
ion collisions [96], as well as its role in the clusterization of the QGP [97]. It has
also been shown that the bulk viscosity vanishes in the conformally invariant the-
ories [35]. Further results of the Green-Kubo approach [98,99] and the quasiparticle
Nambu-Johna-Lasinio model [61] predicted a rapid increase of ζ/s near the phase
transition temperature. Around Tc, the specific shear viscosity is anticipated to have
a minimum close to the conjectured KSS bound [35], while the ratio ζ/s is expec-
ted to exhibit a rapid rise around Tc, indicating its relevance for the hydrodynamic
evolution of the QGP.

The bulk viscosity of the deconfined matter has been evaluated in various fra-
meworks, such as the effective quasiparticle models [61,80,81,83,85,87], applying
the parton-hadron string dynamics [90], as well as the Nambu-Johna-Lasinio ap-
proach [61,62,65,66,100], the dynamical quasiparticle model (DQPM) [91, 101],
the Polyakov-loop extended Quark-Meson model [102], the Green-Kubo formalism
[98,103,104] and the holographic QCD [105–107]. Additionally, the ζ/s ratio is consi-
dered in the analysis of Gribov-Zwanziger plasma [108–110], while its criticality has
been used to probe the possible endpoint of the chiral phase transition [61,100,111].
At present, the lattice gauge theory simulations are able to compute the bulk visco-
sity in pure SU(3) theory only [47,48,112,113].

In contrast to the shear and bulk viscosities, the electrical conductivity σ, which
quantifies the ability of an arbitrary system to conduct the electric charge, has been
evaluated in lQCD, also with quarks taken into account [114–119]. Since the QGP
consists of electrically charged quarks, it is meaningful to investigate the charge cur-
rent in the deconfined matter to deepen the exploration of its dynamical properties.

It has been noticed that the electrical conductivity of the QGP influences the
diffusion of the magnetic field in medium [120], as well as the soft dilepton emis-
sion [121] and the photon production rate [122, 123]. Along with the results from
lattice gauge theory, the electrical conductivity of strongly interacting matter has
been deduced from the experimental data of the non-central heavy-ion collisions,
where strong electric and magnetic fields are produced [124–127]. The magnitude
of the electrical conductivity is also relevant for the chiral magnetic effect, which
indicates the violation of the CP-symmetry [4] in strong interactions [128].

The electrical conductivity of the deconfined matter has been examined using va-
rious methods, among which are phenomenological quasiparticle models [129–131],
the Green-Kubo formalism [129, 130, 132], the DQPM [91, 101, 133], the Polyakov
Quark-Meson model [102], the Anti-de Sitter/Conformal Field Theory (AdS/CFT)
correspondence [134] and the Color String Percolation approach [135].
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The characteristic property of the deconfined matter, considered the potentially im-
portant probe in diagnosing the QCD dynamics, is its flavor composition [136]. In
this Thesis, we investigate the above-discussed transport parameters in hot QCD
matter with different numbers of quark flavors: pure gluon plasma with Nf = 0, and
the QGP consisting of gluons, light quarks (as degenerate up and down flavors),
and strange quarks (Nf = 2 + 1). We compute the shear and bulk viscosities, as
well as the electrical conductivity within kinetic theory under the relaxation time
approximation (RTA) [60,78,137], combined with well-established quasiparticle mo-
del [80, 81,85,87,101,131,138]. The results will be presented in Chapter 5.

Moreover, we utilize the specific shear viscosity η/s to investigate charm quark pro-
duction in QGP with Nf = 2 + 1 quark flavors. Due to their large masses, charm
quarks are expected to survive through the evolution of the deconfined matter.
Hence their interactions with the QGP constituents are expected to deliver more
information about the non-trivial QCD dynamics in the deconfined phase. The pre-
cise determination of transport parameters as functions of temperature and chemical
potential and their incorporation into fluid dynamical simulations is one of the main
steps towards understanding the evolution of strongly interacting matter.
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Quasiparticle Model

In this Chapter, we introduce the concept of the quasiparticle model, whose va-
riations have been successfully applied in previous studies of different QGP proper-
ties [83,92,101,130,131,139–141]. While some of the systematic approaches to strong
interactions, such as pQCD or lattice gauge theory, are restricted to certain values
of the coupling/temperature, the advantage of the phenomenological quasiparticle
model is based on the possibility to aces both low- and high-temperature limits, and
therefore effectively connect the non-perturbative and perturbative QCD regimes by
constraining the model parameters.

The idea of quasiparticles has been widely used in strongly correlated systems [142]
and solid state physics, for example, to simplify the description of the electron
moving in an arbitrary (semi)conductor. One can „hide” the interactions between
the electron and surrounding atoms into the medium-dependent effective mass,
which in turn allows postulating that massive quasielectron moves freely in a solid
state [143]. For the analysis of the deconfined matter, the notion of quasiparticles
requires a reliable prescription of encoding strong interactions into the effective mas-
ses of quarks and gluons. This is achieved by making use of the expressions acquired
from Hard Thermal Loop (HTL) approach, which has proved to be a crucial tool to
study the (near-)equilibrium QGP properties in a systematic and gauge-independent
way [144].

The HTL arose as a resummation scheme for the diagrammatic approach to QCD.
It has been observed that at high temperatures, the resummation procedure is ne-
cessary to consistently account for the contributions at leading order in the coupling
constant g [145]. Such contributions emerge from the one-loop diagrams (hard ther-
mal loops), which by definition consider hard internal momentum of the order of T ,
and soft external momenta proportional to gT [145–147].
At high temperatures, the HTL approach supports and justifies a picture of weakly
interacting massive quasiparticles, as determined by the HTL propagators [87,148].
The earlier lQCD investigations of pure Yang-Mills theory also provided a major
hint that the theory contains effectively massive gluons since at high temperature,
the presence of low-momentum massive gluon modes has been pointed out [149].
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2.1 Dynamical Masses

In general, the effective mass of the quasiparticles can be understood as arising
from the energy contained in a strongly coupled system determined by the corre-
lation range of the interactions [87]. As each quark and gluon propagates through
the medium, it becomes dressed by the dynamically generated medium-dependent
self-energy Πi, emerging from the interactions with other QGP constituents. Mathe-
matically speaking, the effective masses of gluons g, light l, and strange s quarks,
as well as the corresponding anti-quarks, are defined in the QPM by

m2i = (m
0
i )
2 +Πi , (2.1)

where we include the current particle masses m0i with m
0
g = 0, m

0
l = 5 MeV and

m0s = 95 MeV. For Πi we employ the asymptotic forms of the gauge independent
HTL self-energies [150–152], which at µB = 0 read

Πg(T ) =
(
3 +

Nf
2

)
G(T )2

6
T 2, (2.2)

Πl(T ) = 2

m0l
√
G(T )2

6
T 2 +

G(T )2

6
T 2

 , (2.3)

Πs(T ) = 2

m0s
√
G(T )2

6
T 2 +

G(T )2

6
T 2

 , (2.4)

where the perturbative coupling has been replaced by an effective running co-
upling G(T ), which in a high-temperature regime resembles the perturbative one
for thermal momenta, p ∼ T . To describe pure Yang-Mills thermodynamics, the
above prescription is modified by setting Nf = dl,l̄,s,s̄ = 0. Note that as an ave-
rage medium effect, the dynamical masses are momentum-independent [149] while
exhibiting explicit and implicit dependence on temperature.

2.2 Effective Runing Coupling

Once the interactions are accounted as guided above, a system of quasiparticles
can be treated as a dilute gas of weakly interacting massive constituents. In the
present QPM, the deconfined matter is described by dynamical quarks and gluons
with effective masses and a residual mean field interaction which depends on the
temperature [138]. The complexity of the correlations is assumed to be encoded in
the quasiparticle dispersion relations, while the longitudinal plasmon and quark-hole
excitations are, instead, considered to be exponentially suppressed [153].

Based on the kinetic theory, the entropy density of the deconfined matter with
Nf = 2 + 1 at µB = 0, is given by the sum of different quasiparticle contributions,

s =
∑

i=g,l,l̄,s,s̄

di

∫ d3p

(2π)3

(
4
3p
2+m2i

)
EiT

f 0i , (2.5)

where di is the spin-color degeneracy factor, which explicitly depends on the num-
ber of colors Nc = 3 as dl,l̄ = 2NcNl = 12 for Nl = 2 light (anti)quark flavors,
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Rysunek 2.1: Left: Scaled entropy density s/T 3 as a function of scaled temperature
T/Tc. The quasiparticle model results (full symbols) are shown along with the lattice
gauge theory results for pure Yang-Mills theory (Nf = 0) [154] (open circles) and
for QCD with Nf = 2 + 1 [155] (open squares). Following the lQCD approach, we
use Tc = 260 MeV and Tc = 155 MeV for Nf = 0 and Nf = 2 + 1, respectively.
Right: The corresponding effective coupling G(T ) as a function of scaled tempe-
rature T/Tc employed in the description of the scaled entropy density in the left
panel. The errorbars highlight the estimates for the uncertainties obtained on the
lattice for s/T 3 [154, 155], which are then transferred to the result for the effective
coupling G(T ).

ds,s̄ = 2Nc = 6 for strange (anti)quarks and dg = 2(N2c − 1) = 16 for left- plus
right-handed transversal gluons [138]. The distribution function f 0i reads

f 0i = (exp(Ei/T )± 1)−1, (2.6)

where Ei =
√
p2 +m2i denotes the dispersion relation (energy) of the on-shell propa-

gating quasiparticle. The ± sign represents Fermi-Dirac (+) and Bose-Einstein (−)
statistics in thermal equilibrium. Note that we use natural units in all of the expres-
sions provided in this Thesis, i.e. kB = ℏ = c = 1 [6].

Figure 2.1 shows our results for the scaled entropy density s/T 3 compared to state-of-
the-art lattice gauge theory outcomes for pure Yang-Mills theory [154] andNf = 2+1
QCD with physical quark masses [155]. The temperature dependence of the effective
coupling G(T ) is adjusted in the QPM to describe the lattice data and accommo-
date non-perturbative effects near the deconfinement transition temperature Tc. The
results for G(T ) are shown in Fig. 2.1 (right). The depicted error bars reflect possi-
ble variations in G(T ) due to the errors reported for the lattice data shown in the
left panel of Fig. 2.1. The corresponding effective quasiparticle masses are exhibited
in Fig. 2.2.

While the changes in the entropy density in Yang-Mills theory indicate a first-order
phase transition, see Fig. 2.1 (left), s/T 3 is continuous for T around Tc in Nf = 2+1
QCD. Through the presence of dynamical quarks, the scaled entropy density is in-
creased by about a factor 2 − 3 in the deconfined phase. This is reflected in the
behavior of the effective coupling G(T ), see Fig. 2.1 (right). Except for T ≲ Tc,
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Rysunek 2.2: The effective mass mi(T ) (left) and the effective mass scaled with
temperature mi/T (right) as a function of T/Tc for different quasiparticle species.
In both panels, the same symbols stand for gluons (diamonds), strange (triangles),
and light (stars) quarks in QCD with Nf = 2 + 1, while circles represent the dyna-
mical masses of gluons in pure Yang-Mill theory.

where the effective coupling and, thus, the gluon quasiparticle mass must become
large to describe the sudden drop in the Yang-Mills entropy density, G(T ) is larger
for QCD than for Yang-Mills theory. Moreover, at larger T , both couplings exhibit
comparable slopes. This is in line with the perturbatively expected behavior of the
β-function and its Nf -dependence [138].

The QPM is capable of describing the lattice data for s/T 3 with the effective
coupling G(T ) and the corresponding temperature-dependent masses calculated
via Eq. (2.1) and shown in Fig. 2.2. For Nf = 0, an abrupt change in the effec-
tive gluon mass near Tc is responsible for describing a jump in the entropy density
at the first-order phase transition. For Nf = 2 + 1, the temperature profile of G(T )
becomes much milder and smoother at any temperature, which then influences the
behavior of the effective masses in full QCD. Whilemi/T at high T vanishes logarith-
mically in line with the perturbative coupling for p ∼ T , (see right panel of Fig. 2.2),
mi(T ) itself (left panel) rises approximately linearly with T in this regime, exhibits a
minimum somewhat above Tc, and becomes large near Tc. Similar behavior has been
observed in former studies for SU(2) [156] and SU(3) [157] theories. In the left panel
of Fig. 2.2, when plotted as a function of T/Tc, the gluon effective mass is found to be
comparable for Yang-Mills theory and QCD. The apparent Nf -independence in the
shown temperature interval is a consequence of the compensation of two effects, the
Nf -dependence in the dynamically generated gluon self-energy Πg(T ) in Eq. (2.2),
including the behavior of G(T ), and the Nf -dependence of the (pseudo-)critical tem-
perature.

For the main scope of this Thesis, we adopt the effective coupling G(T ) shown
in Fig. 2.1, additionally justifying its validity by computing the speed of sound squ-
ared, c2s, which contains the coupling’s derivative. However, to ensure the thermo-
dynamic consistency, broken by the medium-dependent dispersion relations [158],
evaluating the thermodynamic quantities at µB = 0, one has to introduce the
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temperature-dependent bag function, B(T ). The latter will provide an additional
medium dependence, through which all thermodynamic quantities will reproduce
the ideal gas formulas [87,101,159].

2.3 Speed of Sound

The speed of sound squared can be obtained from the entropy density expressed as
a function of temperature via

c2s =
s

T

(
∂s

∂T

)−1
, (2.7)

with the entropy density defined by Eq. (2.5). The results are presented in Fig. 2.3
for pure Yang-Mills theory (left) and for QCD with Nf = 2 + 1 (right).
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Rysunek 2.3: Speed of sound squared as a function of temperature. Left: The result
for pure Yang-Mills theory obtained in the quasiparticle model (full circles) is com-
pared with c2s deduced from the lattice data [154] (open circles), from the glueball
resonance gas with the Hagedorn spectrum [154,160] (diamonds), and from the ideal
gas of the lowest glueball [161, 162] (solid line). Right: The same quantity but for
Nf = 2 + 1 (full squares), in comparison to the corresponding result of the lattice
QCD simulations by [155] (open squares) and [163] (triangles) and to the hadron
resonance gas with the states below 2.5 GeV [161,162] (diamonds). The dashed ver-
tical lines indicate both theories’ (pseudo)critical temperatures.

In the left panel, one readily finds that the speed of sound squared of the
gluon plasma in the QPM is in excellent agreement, both in confined and decon-
fined phases, with the results deduced from the lattice data for the pressure and
energy density in pure Yang-Mills theory [154]. This arises from the effective run-
ning coupling G(T ) defined with the entropy density in the same lattice setup.

It is also instructive to compare the QPM outcome with the model for a
glueball resonance gas (GRG), which can be done with the parametric form for the
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entropy density suggested in [154],

sconf(T )
T 3

=
(
− 0.2 T

Tc
− 0.134F (T )

)
, (2.8)

F (T ) = log
[
1.024− T

Tc

]
. (2.9)

The above parameterization includes the contribution from the GRG beyond the
two-particle threshold, i.e., considering the Hagedorn density of states [160]. The
resultant c2s is found easily as

c2s =
(1.024Tc − T )

(
0.2 T
Tc
+ 0.134F (T )

)
(0.412Tc − 0.402T )F (T ) + T

(
0.686− 0.8 T

Tc

) , (2.10)

which well captures the behavior near Tc as seen in Fig. 2.3.

As a useful reference, one takes a simple model for an ideal bosonic gas, including
only the lowest glueball. The speed of sound squared is calculated analytically as in
the form [161,162]

c2s =
(
3 +

m20K2(m0/T )
4T 2K2(m0/T ) +m0TK1(m0/T )

)−1
, (2.11)

where K1,2 are the modified Bessel functions of the second kind. The parameter m0
denotes the glueball mass, and we take m0 = 2 GeV. The comparison with the GRG
and the QPM approaches, as well as with lattice results, clearly illustrates that it
is insufficient to describe the thermodynamics near Tc with the lowest state only,
and Eq. (2.11) fails even qualitatively although it describes the c2s better at lower
temperature.

In Fig. 2.3 (right), we present the c2s of the QGP with Nf = 2 + 1 quark flavors,
computed in the QPM and hadron resonance gas (HRG) model, as well as in lattice
QCD. Within the errors, the overall behavior of the QPM result is fairly consistent
with lattice QCD [155, 163]. The HRG model [161] describes the c2s relatively well
near the crossover, and an apparent deviation from the lattice data emerges just
above Tc, indicating that the hadronic picture of the QCD thermodynamics breaks
down.

The c2s exhibits a non-monotonicity around the corresponding Tc in the two
theories, whereas this behavior is much more robust in pure Yang-Mills theory. This
observation is linked to the rapid change of the entropy density as a function of
temperature at the first-order phase transition. At higher temperatures, the c2s ap-
proaches the Stefan-Boltzmann limit, c2s = 1/3. Related to that, in Section 5.3, we
will explore how the system recovers its conformality depending on the number of
quark flavors.

We have explicitly demonstrated that the QPM captures the non-perturbative pro-
perties of the bulk thermodynamic quantities not only in the deconfined phase but
also somewhat below Tc in pure Yang-Mills theory and full QCD with dynamical
quarks. However, we emphasize that such an agreement with the hadronic picture in
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the confined phase would not be expected for transport coefficients since they carry
the details of kinematics with entirely different constituents, i.e., hadrons versus
quarks and gluons.
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Relativistic Hydrodynamics

Before proceeding to the kinetic theory framework used in our research, we would
like to illustrate how transport parameters, such as shear and bulk viscosity, emerge
in relativistic viscous hydrodynamics. We start with the idealized case of perfect
fluid [6] and then introduce the dissipative processes considered in viscous media [10].

3.1 Ideal Hydrodynamics

The essential building block of the hydrodynamic equations is the conservation of
the energy-momentum (stress-energy) tensor T µν , given by [6, 10,93,94],

∂µT
µν = 0. (3.1)

For perfect fluid in global equilibrium, T µν is defined as

T µν0 =
[
(ϵ+ P )uµuν − Pgµν

]
= ϵ uµuν − P∆µν , (3.2)

where ϵ and P stand for the energy density and isotropic pressure, respectively,
defined in the local rest frame (LRF) of the fluid element [6]. The uµ denotes
the four-velocity (flow vector) of the fluid, which in LRF reads uµ = (1, 0⃗), while
gµν = diag(1,−1,−1,−1) is the metric tensor and ∆µν = gµν − uµuν is the operator,
projecting onto the space orthogonal to uµ.

Further, in local equilibrium, the stress-energy tensor of a perfect fluid is
obtained by postulating that ϵ and uµ depend on the spatial coordinate x [10],

T µν0 (x) = ϵ(x)u
µ(x)uν(x)− P (ϵ(x))∆µν(x). (3.3)

Here, along with the flow vector uµ(x), another primary fluid variable is the local
temperature T (x). The relativistic energy-momentum tensor of a perfect fluid is the
most general symmetric tensor, which becomes independent of any derivatives, once
it is expressed in terms of uµ(x) and T (x) [10].

From the stress-energy tensor T µν given by Eq. (3.2), and the conservation
law from Eq. (3.1), one can directly obtain the entropy density conservation equ-
ation [6, 10],

uµ∂µs = 0. (3.4)
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However, to solve the equations of motion of a perfect fluid, in addition to the above
equations, the equation of state (EoS) of the system should be known, e.g., pressure
as a function of the energy density, P (ϵ).

Perfect fluid dynamics holds in the limit of local thermal equilibrium, meaning
that the mean free path, i.e., the distance a particle travels freely between two nearest
scatterings, is sufficiently small. When this condition is violated, the system starts
to deviate from local thermodynamic equilibrium, resulting in a set of dissipative
effects. Those occur due to the irreversible transfer of momentum (and charge)
from one part of the system to another, naturally leading to the extension of the
framework to viscous hydrodynamics.

3.2 Viscous Hydrodynamics

The dissipative processes reflecting the thermodynamic irreversibility of mo-
tion are the characteristic features of any fluid in nature. Due to the presence of
inner friction (viscosity) and, eventually, thermal conduction between the fluid ele-
ments, a reasonable description of the relativistic fluid requires careful consideration
of these phenomena.

For a viscous medium, the energy-momentum tensor is usually expressed as a linear
combination of the tensor shown in Eq. (3.2) and an additional, dissipative term,
resulting into [164,165]

T µν = T µν0 +Π
µν , (3.5)

where the viscous Πµν component is usually defined, in the absence of any charges,
as a sum of the shear stress tensor πµν and the bulk pressure Π [10,166],

Πµν = πµν +Π∆µν . (3.6)

Further, the shear stress tensor reads

πµν = 2ησµν , (3.7)

with the shear viscosity coefficient η and the shear flow tensor

σµν = 2∆µναβ∂
αuβ. (3.8)

Above, ∆µναβ is the projection operator of the form [10,83]

∆µναβ =
1
2
(∆µα∆µβ +∆να∆νβ)−

1
3
∆µν∆αβ. (3.9)

The bulk pressure Π, which enters Eq. (3.6) is defined as the first-order diver-
gence of the flow vector [10],

Π = −ζ∂µuµ, (3.10)

introducing the bulk viscosity coefficient ζ. Investigation of the temperature and
flavor dependence of the shear and bulk viscosities in hot QCD is a primary goal of
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this research.

We emphasize that for conformal fluids, whose EoS obeys ϵ = 3P , the trace of the
energy-momentum tensor vanishes, leading to Π = 0. As a straightforward consequ-
ence, the bulk viscosity also vanishes in conformally invariant systems, ζ = 0 [167].
In Section 5.3, we will employ our results for the bulk viscosity to study how hot
QCD matter approaches the conformal limit, depending on the considered number
of quark flavors.

One can show that through the definitions provided by Eqs. (3.7) and (3.10), the
second law of thermodynamics is automatically satisfied [168], ∂µSµ > 0, with Sµ
representing the entropy four-current. With this assumption, supplemented by the
conservation equations, one obtains the hydrodynamic framework known as the
relativistic Navier-Stokes theory.

Using the formulation of Navier-Stockes hydrodynamics, and assuming that
the EoS of the medium is known, the transport coefficients can be directly obtained
from Green-Kubo relations [58, 169], by computing the correlation functions of the
energy-momentum tensor provided in Eq. (3.5). This is considered one of the main
approaches to transport properties of the QCD matter [98, 103,104,129,130,132].

The relativistic hydrodynamics specified in Navier-Stokes theory develops, however,
a series of issues connected to linear instabilities around equilibrium and the acausal
transmission of signals [170–172]. To fix such conceptual difficulties, Israel and Ste-
wart developed a second-order hydrodynamic formalism [168,173], which appears to
be the most popular framework used in the contemporary studies of the relativistic
fluid dynamics [38, 174–178].
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Kinetic Theory

The kinetic theory describes the macroscopic properties of the system in terms of
its microscopic structure, as we have already seen in the definition of the entropy
density given by Eq. (2.5). Therefore, the equilibrium thermodynamic quantities are
defined in the QPM as standard phase-space integrals over the thermal distribution
functions of dynamical quarks and gluons, which obey medium-dependent dispersion
relations. The thermodynamic integrals are dominated by excitations with thermal
momenta p ∼ T .

In QCD with Nf = 2 + 1, for a medium composed of quasiparticles, the
energy-momentum tensor in local thermal equilibrium reads [61,80]

T µν0 =
∑

i=g,l,l̄,s,s̄

di

∫ d3p

(2π)3
pµpν

Ei
f 0i , (4.1)

where the sum runs over different quasiparticle species carrying the four-momenta
of the general form pµ = (E, p⃗). The distribution function f 0i for fermions or bosons
is given by Eq. (2.6), with the temperature-dependent quasiparticle energy Ei and
degeneracy factors di. In pure Yang-Mills theory, the expression for T

µν
0 naturally

reduces to the gluon term, applying the corresponding effective coupling for Nf = 0.
A more sophisticated form of the energy-momentum tensor can be found in [81],
where it also incorporates the mean field term depending on the quasiparticle self-
energy.

The transport parameters are always related to the dissipative phenomena occurring
in non-equilibrated systems. Therefore we now postulate that the deconfined matter
appears slightly out of equilibrium, which implies that the quasiparticle distribution
function also deviates from its equilibrium value f 0i by the infinitesimal change δfi,

fi = f 0i + δfi, (4.2)

where fi denotes the non-equilibrium value of the statistics.
It straightforwardly follows from the above assumption that the stress-energy

tensor also departs from equilibrium, reading

T µν(fi) = T
µν
0 (f

0
i ) + δT

µν(δfi), (4.3)

where δT µν(δfi) considers the dissipative processes quantified by different dynamical
and transport coefficients. The δfi can be obtained from the Boltzmann equation
discussed in the next section.

28



Rozdział 4. Kinetic Theory

4.1 Boltzmann Equation

For each quasiparticle species i with medium-dependent dispersion relation, the
Boltzmann kinetic transport equation is defined as

(
pµi ∂µ +miF

µ
i ∂pµi

)
fi = Ci[{fi}] . (4.4)

The second term on the left-hand side (LHS) contains an external force on the quasi-
particles, F µi = ∂

µmi with pi,µF
µ
i = 0, induced by the residual mean field interaction

as a consequence of the temperature-dependent effective mass [81]. This term can
be neglected for simplicity, however it is essential when making contact between the
kinetic theory description and fluid dynamics discussed in Chapter 3, by defining
a covariantly conserved energy-momentum tensor from which transport coefficients
can be determined [179].

Since we consider the system to be out of but near the local thermal equilibrium, it
allows us to expand the Boltzmann equation around its equilibrium solution f 0i , such
that the LHS of Eq. (4.4) can be written in terms of gradients of the thermodynamic
variables. The collision operator Ci[{fi}] is taken as linearized in the deviation δfi =
fi − f 0i from equilibrium. Assuming that the distribution function fi relaxes to its
equilibrium value f 0i in the time interval τ , the collision term in the relaxation time
approximation (RTA) takes the form [180]

Ci[{fi}] = −
pµi uµ
τi

δfi , (4.5)

where τi is the relaxation time for species i in the presence of other quasiparticles.
We recall that in the LRF of the fluid, uµ = (1, 0⃗).

In the simplified RTA, neglecting the external force entering Eq. (4.4), one can find
the explicit form of the leading-order deviation of the energy-momentum tensor from
local thermal equilibrium [80],

δT µν = −
∑

i=g,l,l̄,s,s̄

di

∫ d3p

(2π)3
pµpν

E2i
pα∂α[τif 0i ], (4.6)

which depends on the relaxation times τi of the quasiparticles. A more complex
structure of δT µν can be found in [81–84], with the mean field interaction term ta-
ken into account.

The transport parameters of the deconfined matter can be derived by collecting
Eqs. (4.3) and (4.6), and matching the out-of-equilibrium kinetic expression for T µν

with its corresponding definition in fluid dynamics, see Eqs. (3.5)-(3.10). The step-
by-step derivation can be found in [131] for the electrical conductivity σ, and
in [78,80,81] for the shear η and bulk ζ viscosities. However, final expressions differ
from each other, depending on the consideration/neglection of the mean field inte-
raction term. We will provide the formulas employed in the QPM at the beginning of
the corresponding sections. See η in Eq. (5.1), ζ in Eq. (5.5), as well as σ in Eq. (5.12).

29



Rozdział 4. Kinetic Theory

Essentially, the Boltzmann equation provides a complete description of the micro-
scopic dynamics only for systems in the dilute regime, whereas a precise examination
of the high-density fluids requires higher-order corrections. Therefore, the distribu-
tion functions exhibit small fluctuations and tend to restore their equilibrium values
exponentially.

The RTA is valid in a diluted system, i.e., when the mean free path λ is greater than
the average interparticle distance d [60, 181],

λ ∼ τ ≫ d ∼ n−1/3, (4.7)

where n is the total particle number density of the system. In the QPM, we find that
at Tc in pure Yang-Mills theory, τ ∼ 0.4 fm and d ∼ 10−4 fm. When the temperature
reaches 3 Tc, the relaxation time remains of the same order, whereas the average
distance between the quasiparticles decreases to the order of 10−6 fm. Thus, the
condition, τ ≫ d, is satisfied in the range of temperatures considered in this Thesis.
Similar numbers satisfying the requirement are also found in QCD with Nf = 2+1.

Once the validity region of the RTA is cross-checked, we proceed with the
computation of the relaxation times τi, which need to be evaluated to obtain the
resulting transport parameters.

4.2 Relaxation Time Computation

In various approaches based on the kinetic theory, the momentum-averaged form
of the relaxation time (or the mean free path) is commonly used to conveniently
estimate the interactions between the system’s constituents [60,61,78,139,181,182].
In the original relaxation time approximation utilized in our model [183], the rela-
xation time τ is also introduced as a mean. However, depending on the microscopic
dynamics of the theory, τ can exhibit a strong momentum dependence which results
in extremely different values of transport coefficients [85]. Nevertheless, we assume
that the momentum-averaged relaxation time gives a correct order of magnitude of
the transport parameters investigated in the present quasiparticle approach [184].

In general, the relaxation time is inversely related to the number density of scattering
partners and the corresponding scattering cross section, which for a multicomponent
system follows in a matrix form as τ̂−1 = n̂ˆ̄σ [180]. For QCD with 2+1 quark flavors,
this explicitly reads

τ−1l
τ−1
l̄

τ−1s
τ−1s̄
τ−1g

 =

σ̄ll σ̄ll̄ σ̄ls σ̄ls̄ σ̄lg
σ̄l̄l σ̄l̄l̄ σ̄l̄s σ̄l̄s̄ σ̄l̄g
σ̄sl σ̄sl̄ σ̄ss σ̄ss̄ σ̄sg
σ̄s̄l σ̄s̄l̄ σ̄s̄s σ̄s̄s̄ σ̄s̄g
σ̄gl σ̄gl̄ σ̄gs σ̄gs̄ σ̄gg




n0l
n0l̄
n0s
n0s̄
n0g

 , (4.8)

where

n0i = di
∫ d3p

(2π)3
f 0i (4.9)

is the T -dependent particle number density of the quasiparticle species i in equ-
ilibrium. As mentioned previously, τi generally depends on the energy Ei of the
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quasiparticle, while we approximate τi by its mean value, using the energy-averaged
cross sections σ̄ij discussed below.

From Eq. (4.8), one finds the explicit form of the relaxation time for light
quarks,

τ−1l =
n0l
2

[
σ̄ud→ud + σ̄uu→uu

]
+ n0sσ̄us→us + n

0
s̄σ̄us̄→us̄

+
n0l̄
2

[
σ̄uū→uū + σ̄uū→dd̄ + σ̄uū→ss̄ + σ̄uū→gg + σ̄ud̄→ud̄

]
+ n0gσ̄ug→ug, (4.10)

or for gluons

τ−1g = n
0
l σ̄gu→gu + n0l̄ σ̄gū→gū + n

0
s σ̄gs→gs + n

0
s̄ σ̄gs̄→gs̄

+n0g[σ̄gg→gg + σ̄gg→uū + σ̄gg→dd̄ + σ̄gg→ss̄]. (4.11)

Note that in pure Yang-Mills theory, we have only τ−1g = n
0
gσ̄gg→gg. The above-

presented scheme is general and has also been used in [78,92,185,186] to evaluate
the relaxation times. However, other models involve cross sections different from that
used in our quasiparticle approach. We also note that the relaxation time defined
above is independent of momentum since it is introduced as a mean. However, with
given scattering amplitudes, one can evaluate the momentum-dependent relaxation
times, including inelastic collisions as instructed in [85].

The individual energy-averaged cross sections for the binary scattering processes in
the medium are given by [60]

σ12→34(T ) =
∫ ∞
sth

ds
∫ tmax
tmin

dt
dσ12→34
dt
(s, t;T )

× sin2 θ(s, t;T )(1± f 03 )(1± f 04 )P (s;T ) . (4.12)

We note that σ̄ depends on T both explicitly via the equilibrium distribution func-
tions f 0i (s;T ) and implicitly via G(T ) and mi=1...4(T ). In writing Eq. (4.12) we have
assumed that the center-of-mass (c.m.) of the system is at rest in the medium, such
that all entering quantities can be expressed in terms of the Mandelstam variables
s, t, and u, defined in Appendix A. Taking into account the possible phase-space
occupation in the final state, the factors (1± f 0i ) represent the in-medium effects on
the cross sections, corresponding to Bose enhancement (for gluons) or Pauli blocking
(for quarks and antiquarks). The integration limits in the four-momentum transfer,
tmin and tmax, are determined from the condition −1 ¬ cos θ ¬ 1, where θ is the
scattering angle, while sth = max[(m1 +m2)2, (m3 +m4)2].

Further, following [60, 61, 181], we include into Eq. (4.12) the phenomenological
weight-factor sin2 θ signaling the dominance of large angle scatterings for the mo-
mentum transfer. This procedure is known as the large angle scattering (LAS) as-
sumption, and σ12→34(T ) is the so-called transport cross section, relevant for the
viscosity coefficients [187]. Although the small angle scatterings prevail in the de-
confined matter, they are not sufficient to transport the momenta of order p ∼ T ,
typical for relativistic fluids [59]. Since the transport cross section is reduced in com-
parison to the isotropic one [60], it results in an increase in the relaxation time. We
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will come back to this issue in Section 5.1 by illustrating how LAS assumption af-
fects the shear viscosity coefficient, see Fig. 5.3. The exact computation of the sin2 θ
for different scatterings can be found in Appendix B.

Finally, P (s;T ) in Eq. (4.12) denotes the probability of finding a pair (3 4) in
the final state with c.m. energy squared s,

P (s;T ) = C
√
(s−m21 −m22)2 − 4m21m22 f 03 f 04 vrel(s;T ) ,

where the normalization constant C is fixed via∫ ∞
sth

ds P (s;T ) = 1, (4.13)

and vrel(s;T ) is the relative velocity between the two initial quasiparticles

vrel(s;T ) =
2s
√
(s−m21 −m22)2 − 4m21m22
s2 − (m21 −m22)2

. (4.14)

The differential cross section dσ/dt for the process (1, 2)→ (3, 4) entering Eq. (4.12)
is obtained from the corresponding total scattering amplitude squared |M|2 via

dσ12→34
dt
(s, t;T ) =

1
16π((s−m21 −m22)2 − 4m21m22)

|M12→34|2(s, t;T ). (4.15)

In |M|2, we sum over the spin/polarization and color d.o.f. in the final state and,
since the degeneracy factors di are included already in Eqs. (5.1) and (4.8), average
over the initial state. The individual amplitudes are computed perturbatively at tree
level for the elementary two-body scattering processes qq → qq, qq′ → qq′, qq̄ → qq̄,
qq̄′ → qq̄′, q̄q̄ → q̄q̄, gg → gg, qq̄ → q′q̄′, qq̄ → gg and gg → qq̄ among the massive
quasiparticles, where q = u, d, s and also exchanged gluons obey Eq. (2.1). It would
be interesting to study the temperature dependence of the transport parameters
when the cross sections include higher-order corrections or when more inelastic pro-
cesses, e.g., g → gg, gg → ggg, are considered.

The (anti)quark and gluon propagators, suppressing color indices, are modified in
the QPM, respectively, as

i

/p−ml,l̄,s,s̄
and

−igµν

p2 −m2g
. (4.16)

The exchanged gluon is dressed by interactions with the medium. Therefore by
expressing the gluon propagator in the Feynman gauge, we directly enforce the on-
shellness condition for the quasiparticles in the QGP. For the coupling, we employ
the effective coupling G(T ) shown in Fig. 2.1. As a useful example, in Appendix A,
we provide the step-by-step calculation of some scattering amplitudes for scatte-
rings of massive particles. We note that in the limit of mi=1...4 → 0, our analytic
expressions for all the differential cross sections dσ/dt agree with those presented
in [4, 185,188].

With the above-described setup, we compute the relaxation times τi in pure Yang-
Mills theory and QCD for Nf = 2+1. The corresponding results as functions of T/Tc
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Rysunek 4.1: The relaxation time τi as a function of the scaled temperature T/Tc
for different quasiparticle species. Pure Yang-Mills theory result for τg (circles) is
presented along with the results in Nf = 2+1 QCD, with diamonds showing gluons,
stars representing light quarks, and triangles standing for strange quarks. The QCD
results shown for τl and τg are obtained via Eqs. (4.10) and (4.11), respectively.

are exhibited in Fig. 4.1. In pure Yang-Mills theory, τg exhibits a sharp minimum
around Tc and a shallow maximum for about 2Tc before slowly decreasing with
increasing temperature. The pronounced non-monotonicity near Tc is caused by the
behavior of the QPM coupling G(T ).

A qualitatively similar observation can be made for light and strange quarks
in QCD. However, τl and τs are an order of magnitude larger, and both extrema
are smooth (via the smooth coupling behavior in the vicinity of the QCD crosso-
ver) and shifted towards slightly higher temperatures. Moreover, one observes that
the current quark mass m0i plays a considerable role only for T < 1.5Tc. In con-
trast, τg in QCD remains a monotonically decreasing function of T/Tc that is roughly
a factor 4 – 5 smaller than τl,s. In the next Chapter, we will see that all transport
parameters discussed in this Thesis directly depend on the relaxation times of the
quasiparticles. Therefore, it is clear that the main contribution to them will stem
from the quark and antiquark sectors. Furthermore, the increase of τg from pure
Yang-Mills theory to QCD highlights the impact of dynamical quarks in the QGP
on the effectiveness of gluons at equilibrating the momentum degradations.

Our major assumption in this study is that all the transport parameters for a given
particle species carry a common relaxation time. Each parameter is characterized
by a particular dissipative phenomenon formed in the viscous fluid, thus, the cor-
responding relaxation times are, in general, different. The shear viscosity emerges
at the longitudinal fluid motion; hence it is sensitive to the changes in the trans-
verse momentum density, which are carried on the microscopic level by the elastic
binary scattering processes included in Eq. (4.8). The bulk viscosity, on the other
hand, characterizes the diffusion of the particles during a uniform expansion of the
medium, therefore its relaxation time essentially depends on the inelastic collisions
changing the number density of the excitations [189]. In this context, within a sca-
lar field theory [104], response functions of the energy-momentum tensor have been
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carefully examined to derive the shear and bulk relaxation times. Further, electrical
conductivity measures the transfer of the electric charge separately from the mo-
mentum transfer, therefore resulting in a different relaxation time from those for the
shear and bulk viscosities. We will not take those complications into account and
will proceed with the computations of a set of transport parameters employing the
relaxation times τi presented in Fig. 4.1, aiming to clarify the dynamical role of the
quasiquarks in the QGP.
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Transport Parameters in
Relaxation Time Approximation

As discussed in Section 1.2, the hot QCD medium has unique transport properties
which can help to identify the dynamics of the matter produced at the early stages of
the heavy ion collisions. In this chapter, we discuss the role of transport parameters,
such as shear and bulk viscosity, as well as electrical conductivity, in the evolution
of the deconfined matter with different numbers of quark flavors. The results in pure
Yang-Mills theory will be juxtaposed to that in QCD with Nf = 2 + 1 to investi-
gate the impact of dynamical quarks and gluons onto the transport coefficients. In
addition, we will compare our results with the alternative QCD approaches, such as
lattice gauge theory, AdS/CFT, or perturbative QCD calculations.

5.1 Shear Viscosity

We study the temperature and flavor dependence of the specific shear viscosity of
strongly interacting matter in a framework with quasiparticle d.o.f. presented in
Chapter 2.

In kinetic theory for the QGP with Nf = 2 + 1, the shear viscosity is defined
as [78–81,85,179]

η =
1
15T

∑
i=g,l,l̄,s,s̄

∫ d3p

(2π)3
p⃗ 4

E2i
di τi f

0
i (1± f 0i ). (5.1)

The upper (lower) sign corresponds to Fermi-Dirac (Bose-Einstein) statistics f 0i gi-
ven by Eq. (2.6). We recall that Ei is the temperature-dependent dispersion relation,
di is the degeneracy factor, both defined as for Eq. (2.5), and τi is the relaxation
time shown in Fig. 4.1 for each quasiparticle species.

It is clear that at vanishing baryon chemical potential, µB = 0, the contri-
butions of quarks and antiquarks become equal, thus in QCD, Eq. (5.1) can be
rewritten as

η = ηg + 2(ηl + ηs), (5.2)

while in pure Yang-Mills theory we have η = ηg, applying the appropriate effective
coupling.
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Rysunek 5.1: Shear viscosity to entropy density ratio as a function of T/Tc
for pure Yang-Mills theory in the quasiparticle model (full circles) and QCD
with Nf = 2 + 1 (full squares). For comparison, the corresponding lattice gauge
theory results from [46] (open circles and open squares), [47] (pentagons), [48] (dia-
monds), and [53] (cross) are shown. The dotted line indicates the parametric re-
presentation of the results from the functional diagrammatic approach (FRG) [57],
while the horizontal solid line represents the KSS-bound of 1/4π [35].

Following the general trend, we present numerical results in the form of the specific
shear viscosity to entropy density ratio, η/s. This allows us to systematically com-
pare the QPM outcomes in both theories, as well as to juxtapose them with the
other approaches, such as lattice gauge theory, perturbative QCD calculations, or a
variety of effective models. Furthermore, thanks to the additivity of the transport
parameters, we carefully analyze the individual contributions coming from each qu-
asiparticle sector. This part of the research lies at the center of our efforts and helps
to understand the impact of the dynamical quarks and gluons on the properties of
hot QCD matter with different quark content.

In Fig. 5.1, we show the temperature dependence of the shear viscosity to en-
tropy density ratio for pure Yang-Mills theory. The ratio exhibits an abrupt, non-
monotonic change in its behavior around the first-order phase transition, with a
pronounced minimum at Tc and a mild, monotonic increase for larger T . This beha-
vior can be traced back to the effective coupling G(T ) and the entropy density s(T ).
It is an intriguing observation that the minimum of the specific shear viscosity re-
aches the KSS lower bound of 1/4π, without any fine-tuning of the relaxation time
τg, as it was, for example, done in [71]. We further compare our results with availa-
ble data from lattice gauge theory calculations [46–48,53] and with the results from
employing the gluon spectral function in the functional diagrammatic approach [57].
Overall, our results agree remarkably with the bulk of information collected from the
first-principle approaches. The global behavior found in [57] is within the reported
errors well captured by our model in a wide range of temperatures, in particular for T
above 1.3Tc, see the dotted line in Fig. 5.1 for a parametric representation. However,
near the critical temperature, we find a significantly stronger non-monotonicity with
a minimal η/s around Tc instead of slightly above Tc as a natural consequence of
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Rysunek 5.2: Shear viscosity to total entropy density ratio as a function of T/Tc in
QCD withNf = 2+1. The individual contributions ηi/s from light quarks (stars, as a
sum of up and down flavors) and strange quarks (triangles), with equal contributions
from their anti-quarks, as well as from gluons (diamonds) are shown along with the
total specific shear viscosity of the QGP (squares), corresponding to Eq. (5.2).

the first-order phase transition.

In Fig. 5.1, a direct comparison of the quasiparticle model results in full QCD and
pure Yang-Mills theory reveals a significant impact of the quark sector contributions
in the entire temperature range studied in this work. The sizeable increase of η/s
in the presence of dynamical quarks is in line with the observations made for the
relaxation times, see Fig. 4.1. Although the entropy density is about a factor 2 - 3
larger in QCD, this is not sufficient to balance the overall dominance of the quark
and anti-quark contributions. Moreover, the pronounced non-monotonicity at Tc in
Yang-Mills theory is significantly smoothened in QCD, reflecting the difference in
the order of the underlying phase transition.

Our results for η/s in Nf = 2 + 1 QCD are in quantitative contrast to the
functional estimate for QCD reported in [57], which indicated only a moderate in-
crease of the ratio for given T/Tc due to the presence of dynamical quarks. While
one might argue that our findings are within errors still compatible with the old
lattice gauge theory results for pure Yang-Mills theory [48], the bulk of available re-
cent first-principle information is well overestimated by our QCD result. Moreover,
we find a minimal η/s that is, at best, at the very upper edge of possible values
extracted for the QGP in early fluid dynamical applications [59]. We note, however,
that a very similar minimal value of the specific shear viscosity was found in other
strongly coupled quantum fluids, namely ultra-cold atomic Fermi gases at or near
the unitary limit. The shear viscosity of these physical systems can be studied expe-
rimentally, similar to flow experiments in heavy-ion collisions, through the fluid dy-
namical expansion of a trapped gas after removing the trapping potential [191–193].
Analyzing these experiments with a proper fluid dynamical framework [194] allows
one to extract η in the normal fluid phase as a function of temperature and density.
In a different study [195], a minimal specific shear viscosity of η/s = 0.5 ± 0.1 was
found just above the transition temperature to superfluidity. Moreover, an increase
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Rysunek 5.3: Left: Shear viscosity to total entropy density ratio as a function of
T/Tc in full QCD computed using the relaxation times based on transport cross
sections defined in Eq. (4.12) (LAS, squares) and using the isotropic cross sections
without the large angle scattering (LAS) assumption (circles). Right: The η/s ratio
as a function of temperature for the QGP with Nf = 2 + 1 obtained in the QPM
(circles) and computed from the Bayesian analysis by comparing a hydrodynamic
model to the experimental data with various assumptions. Figure taken from [190].
The black curves in the left and right panels are identical.

of η/s with T could be extracted in line with kinetic theory predictions [196], sup-
porting the idea of an underlying quasiparticle picture for the strongly coupled fluid.

The total ratio η/s in QCD with Nf = 2 + 1 quark flavors is additionally shown
in Fig. 5.2, alongside the individual contributions from light and strange quark sec-
tors, as well as from gluon one. We find a rather shallow minimum of about 0.4 aro-
und the pseudo-critical temperature Tc and a moderate, monotonic increase with T
at larger temperatures for the total ratio. Similar behavior can be seen for the indi-
vidual contributions ηi/s entering Eq. (5.1). This is a consequence of the dynamics
encoded in the quasiparticle masses via the effective coupling G(T ). Although all
the quasiparticles affect each other’s relaxation times through the effective masses
in the cross sections and number densities entering Eq. (4.8), one clearly observes
a hierarchy among the individual contributions that follows the inversed order in
the effective quasiparticle masses. As expected, the heaviest quasiparticles are the
most effective ones in equilibrating momentum degradations within the QGP. We
note that a similar but quantitatively different pattern was reported in [88,186]. We
find ηs/ηl < 0.5 approaching only slowly 0.5 with increasing T while ηg/ηl ¬ 0.2 in
the shown temperature range.

We recall that the results of our studies are based on the transport cross sections with
large angle scattering (LAS) approximation. However, to illustrate how this assump-
tion affects the behavior of transport coefficients, we also compute the specific shear
viscosity based on the total cross sections, i.e., excluding the weight-factor sin2(θ)
from Eq. (4.12). As shown in Fig. 5.3 (left), the η/s in QCD with Nf = 2 + 1,
the total specific shear viscosity based on transport cross sections is shifted towards
higher values, while when the LAS approximation is relaxed, the η/s ratio decreases
by a factor of ∼ 2/3 [60, 138], and appears close to the results of hydrodynamic
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Rysunek 5.4: Scaled shear viscosity η/T 3 as a function of scaled temperature T/Tc
for pure Yang-Mills theory (left) and QCD with light and strange quarks (right).
The results obtained in the QPM (circles for Nf = 0 and squares for Nf = 2+1) are
shown alongside a couple of perturbative approximations: using the next-to-leading-
log coupling-expansion result from Arnold, Moore, and Yaffe [54] (pQCD, hexagons),
and applying the parameterized relaxation time at leading-log order given by Hosoya
and Kajantie [78] (HK, triangles).

simulations [190] shown in the right panel of Fig. 5.3. For a comprehensive discus-
sion of Fig. 5.3 (right), we refer the reader to [190]. Here, we simply would like to
emphasize that the QPM result for η/s with no LAS assumption agrees with the
hydrodynamic outcomes much better than the result based on the transport cross
sections. Therefore, in Chapter 6, for the investigation of charm quark production
in viscous QGP, we adopt the time evolution found by [190] using our η/s result
shown in Fig. 5.3 (right).

Alongside the specific η/s ratio, one can effectively examine the shear viscosity
coefficient by constructing a dimensionless ratio of η/T 3, which naturally comes out
of the dimension of the entropy density, and the shear viscosity as well. Therefore,
in Fig. 5.4, we compare the shear viscosity of the deconfined matter obtained in
the quasiparticle model with perturbative QCD expectations. The next-to-leading-
log (NLL) expansion in the running coupling g as derived by Arnold, Moore and
Yaffe [54] gives the following result for the shear viscosity

ηNLL =
T 3

g4

[
η1

ln(µ∗/mD)

]
(5.3)

with coefficients η1 = 27.126 and µ∗/T = 2.765 for Nf = 0, while η1 = 106.66 and
µ∗/T = 2.957 for Nf = 3. The Debye screening mass reads m2D = (1 + Nf/6)g

2T 2

for SU(3) symmetry group [54]. Another perturbative parametrization of the shear
viscosity was proposed by Hosoya and Kajantie [78], reading

η =
64π4

675
T 3

g4 ln(4π/g2)

[
21Nf

6.8 (1 + 0.12(2Nf + 1))
+

16
15 (1 + 0.06Nf )

]
. (5.4)

The two terms in the square bracket mark the contributions from massless quarks and
gluons, respectively, which are both proportional to the relaxation times parametri-
zed at leading-log order in g.
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In the perturbative expressions given by Eqs. (5.3) and (5.4), we replace the
running coupling with our effective coupling G(T ) corresponding to the applied
number of quark flavors. For pure Yang-Mills theory presented in the left panel of
Fig. 5.4, we find that the scaled shear viscosity obtained in the QPM can be quanti-
tatively approximated by Eq. (5.4) proposed by Hosoya and Kajantie [78], although
it considers a system of massless gluons. The NLL perturbative result for η/T 3 [54]
overestimates the QPM result, even at the temperature of the order of 10T/Tc.

We observe the opposite tendency in the full QCD case (see the right panel of
Fig. 5.4), where at high temperatures, η/T 3 in the quasiparticle model approaches
within errors the pQCD expectation from Eq. (5.3). However, there is a significant
difference between the QPM result and the approximation proposed in [78]. Since
the latter describes a system of massless quarks and gluons, we can directly see the
influence of the quasiparticle masses on the shear viscosity in the QGP. The result
particularly depends on the number of quark flavors, since for the pure gluon pla-
sma, the results of our Eq. (5.1) and Eq. (5.4) with Nf = 0 appear much closer to
each other.

The shear viscosity obtained in this section is essential for the bulk to shear viscosity
ratio ζ/η, which is used to illustrate the restoration of conformal invariance in pure
Yang-Mills theory and QCD with quarks [184]. Parameterized by the speed of sound
squared, the ζ/η ratio additionally points out the non-perturbative and perturbative
QCD regimes, both well-captured in the present QPM. These and other issues will
be discussed in Section 5.3. Further, in Section 5.5, we will utilize the specific shear
viscosity to study its ratio to the electrical conductivity [197], while in Section 6.1,
the η/s will be taken into account in the analysis of charm quark production in
viscous QGP [198].

5.2 Bulk Viscosity

In this Section, we present a detailed analysis of the specific bulk viscosity ζ/s,
which quantifies the energy dissipation in a system with changing volume, whether
it is expanding or being compressed.

In analogy to the shear viscosity coefficient, we determine the bulk viscosity ζ from
kinetic theory, assuming that the system deviates slightly from thermal equilibrium
and using the Boltzmann kinetic equation in the RTA. The bulk viscosity of the hot
QCD matter composed of quark and gluon quasiparticles reads [81,85]

ζ =
1
T

∑
i=g,l,l̄,s,s̄

∫ d3p

(2π)3
dif
0
i (1± f 0i )

τi
E2i

{(
E2i − T 2

∂Πi
∂T 2

)
c2s −

p2

3

}2
, (5.5)

with the same quantities as for the shear viscosity η in Eq. (5.1). We additionally
recall that c2s is the speed of sound squared given by Eq. (2.7), while Πi(T ) is the
quasiparticle self-energy given by Eqs. (2.2) – (2.4). One can deduce the bulk visco-
sity of the gluon plasma by setting Nf = 0 and i = g, and applying the effective
coupling appropriate for pure Yang-Mills theory. Note that in QCD at vanishing
chemical potential, the particle and antiparticle contributions to the bulk viscosity
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Rysunek 5.5: Temperature derivative of the effective coupling multiplied by the
negative quasiparticle masses as a function of T/Tc. The result in pure Yang-Mills
theory (circles) is compared to those for each quasiparticle species in QCD with
2 + 1 quark flavors: gluons (diamonds), light quarks (stars), and strange quarks
(triangles).

become equal, and ζ can be simplified in the same manner as the shear viscosity
in Eq. (5.2).

It is clear that the definition of the bulk viscosity is more complex than that for the
shear parameter, see Eq. (5.1), since ζ incorporates the speed of sound squared c2s,
as well as the term −∂Πi(T )/∂T 2. The derivative of the self-energy readily generates
a temperature derivative of the effective coupling in the form of −mi dG/dT . Since
this term plays an essential role in the behavior of the bulk viscosity, we compute it
separately for each quasiparticle species, both in pure Yang-Mills theory and QCD
with quarks. The numerical results are presented in Fig. 5.5. In pure Yang-Mills
theory, the derivative −mg dG/dT exhibits a prominent maximum at the critical
temperature Tc. In contrast, in QCD with Nf = 2+1, for any constituents, it varies
smoothly, and the strong non-monotonicity seen in the Nf = 0 case disappears.

One finds that the characteristic features of the quasiparticle masses and their ther-
mal profiles are encoded into the resultant bulk viscosity to entropy density ratio
ζ/s shown in Fig. 5.6. In pure Yang-Mills theory above Tc, the QPM result is fairly
consistent with the collected data sets from lattice gauge theory [112, 113, 199], as
well as to that from an approach based on the gauge-gravity correspondence [105].
In the confined phase, the lattice results show that the ratio continuously decreases
as temperature increases toward Tc, but this behavior is not captured either by the
holography or the QPM frameworks. As emphasized in Section 2, the present qu-
asiparticle model is unsuitable for describing the kinematics of glueballs, which is
essential to evaluate the total cross sections below Tc. Therefore, the bulk viscosity in
this region should be interpreted with caution. The observed minimum right below
Tc and the result at lower temperatures might be the artifacts of the quasiparticle
approximation, so they require further justifications in a more refined approach that
resembles confinement.
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Rysunek 5.6: Total bulk viscosity to entropy density ratio ζ/s in pure Yang-Mills
theory (full circles) and QCD with 2+1 quark flavors (full squares) as a function
of T/Tc. For comparison, the corresponding lattice gauge theory results from [113]
(open squares and hexagons), [199] (open triangles), and [112] (open circles and
diamond), as well as the holographic result from [105] (dashed line) are presented.

Fig. 5.6 also exhibits our specific bulk viscosity for the full QCD with quarks. The ζ/s
ratio obtained in the quasiparticle model appears above Tc in agreement with the
available set of lQCD data [112,113,199], even though the first-principle calculations
are performed in the pure SU(3) theory. Furthermore, it is an intriguing observation
that in the vicinity of the (pseudo)critical temperature, the bulk viscosity is less
flavor-dependent than the shear parameter shown in Fig. 5.1. In the QPM, there is
a pronounced, almost constant hierarchy between η/s for Nf = 0 and Nf = 2 + 1,
on the examined temperature range. Yet our results for ζ/s appear quite close to
each other around Tc, while achieving an approximately constant, a factor of 5 diffe-
rence at higher temperatures, starting from T ≳ 1.5Tc. Hence, the presence of light
and strange quasiquarks substantially contribute to the bulk viscosity coefficient,
causing a delay of the QGP approaching a non-interacting gas with ζ → 0 at high
T .

Fig. 5.7 shows the total specific bulk viscosity of the QGP for Nf = 2+1, along with
the contributions coming from different quasiparticle species. The ζl, s, g/s ratios are
evaluated individually by using i = l, s, g terms of the sum given by Eq. (5.5) and
dividing them by the total entropy density from Eq. (2.5). The light quarks bring
the main impact to the total bulk viscosity of the QGP, while the contributions of
strange quarks and gluons are relatively suppressed by their larger effective masses,
as illustrated in Fig. 2.2 and Fig. 5.5. We find that the strange quarks and gluons
contribute almost equally to the bulk viscosity coefficient via different quantum sta-
tistics encoded in the characteristic derivatives of the self-energies. The quantitative
resemblance between ζs/s and ζg/s is strongly affected by their individual properties
coming from the convolution of the degeneracy factors, the relaxation times, and the
effective masses entering the corresponding quasiparticle energies in Eq. (5.5). This
is a clear distinction to the specific shear viscosity shown in Fig. 5.2, where the
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Rysunek 5.7: The bulk viscosity to entropy density ratio as a function of T/Tc in
full QCD with quarks. The total QPM result (squares) is compared to the indivi-
dual contributions coming from light quark (stars), strange quark (triangles), and
gluon (diamonds) sectors. The antiparticle contributions are not included in the
shown ratios ζ l(s)/s, but equal the particle ones. The total ζ/s computed in the dy-
namical quasiparticle model (DQPM, solid line) for Nf = 2+1 [101] is also depicted.

strange-quark component is larger than the gluon one at any temperature [138].
Further, in Fig. 5.7, the total QPM result in full QCD is confronted with

that evaluated in the dynamical quasiparticle model [101]. The overall behavior as
functions of T/Tc in the two approaches is similar, whereas the ζ/s in the DQPM de-
creases much faster with the increasing temperature. The observed difference can be
traced back to the fact that in the DQPM, the quasiparticles carry finite lifetimes,
which reproduce the same lattice equation of state [155] but modify the expres-
sions for the relaxation times. This may explain the gap between the two results at
high temperatures. In addition, as discussed in the previous section, following the
standard prescription, we evaluated the transport cross sections applying the LAS
approximation [60,61,181], while this is not considered in [101].

The rapid growth of the bulk viscosity close to the deconfinement phase transition
is an outstanding feature of the SU(3) dynamics. While changing two orders of
magnitude close to Tc, the specific bulk viscosity vanishes at very high temperatures,
ζ/s → 0 as T → inf, implying that the hot QCD medium reaches the conformal
limit, mi → 0. Therefore, the bulk viscosity is considered as a measure for the
violation/restoration of conformal invariance [99]. In the next section, we adopt
the outcomes presented in Fig. 5.6 to investigate the dynamical properties of the
deconfined matter depending on the considered number of quark flavors. As will be
shown later on, combined with the shear viscosity, the bulk coefficient is capable
of pointing out the weak and strong coupling limits of QCD, which are both well-
captured in the present quasiparticle model.
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5.3 Bulk to Shear Viscosity Ratio

In the previous sections, we have illustrated how differently the deconfined matter’s
specific shear and bulk viscosities behave close to the (pseudo)critical temperature.
The η/s ratio then exhibits its minimum, reaching the 1/4π KSS bound in the pure
Yang-Mills case, and consistently increases with an increasing temperature. On the
other hand, the specific bulk viscosity ζ/s has a maximum at Tc and then decreases,
even by two orders of magnitude, on the examined temperature interval.

Since the dynamics of η and ζ drastically change with temperature, it is un-
doubtedly connected to the behavior of the running coupling, in our case, to the ef-
fective coupling G(T ). By taking the high-temperature limit in Eqs. (2.7) and (5.5),
we find that the bulk viscosity ζ vanishes as the speed of sound squared approaches
the value of 1/3, i.e., the Stefan-Boltzmann limit. Therefore, one can parameterize
the ζ/η ratio by the c2s to investigate the weak- and strong-coupling QCD domains.

For the viscosities evaluated perturbatively at high temperature, the ratio ζ/η is
given unambiguously by [54,200]

ζ

η
= 15

(1
3
− c2s

)2
. (5.6)

Quantitatively the same trend has been observed for an interacting photon gas [201],
and in scalar field theory [189].

In contrast, for strongly-coupled theories along with gauge/gravity duality [202],
the ratio behaves as [203]

ζ

η
∝
(1
3
− c2s

)
, (5.7)

which differs from Eq. (5.6) by the power of the c2s.
Yet another non-perturbative approach, which describes the Yang-Mills pla-

sma based on the Gribov-Zwanziger quantization [204, 205], leads to the ratio ζ/η
linearly proportional to the quantity ∆c2s = 1/3 − c2s [70], thus to an intriguing
agreement with the result from gauge-gravity duality. In a similar QPM framework
for pure Yang-Mills theory, it has been shown that the ratio ζ/η linearly depends
on ∆c2s near the first-order phase transition, whereas it scales quadratically with ∆c

2
s

at high temperature [81].

The bulk to shear viscosity ratio can be computed straightforwardly from Eqs. (5.5)
and (5.1) by employing the corresponding effective coupling and masses for pure
Yang-Mills theory and QCD with Nf = 2 + 1. Based on the previous observations
in [81,206,207], the full QPM results in two theories will be compared with the
linear and quadratic dependence on ∆c2s:

Linear:
ζ

η
= α

(1
3
− c2s

)
+ β, (5.8)

Quadratic:
ζ

η
= γ

(1
3
− c2s

)2
+ δ, (5.9)
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Rysunek 5.8: The bulk to shear viscosity ratio as a function of T/Tc. Left, pure
Yang-Mill theory: The exact QPM result (full circles), parameterized by linear (da-
shed line) and quadratic (solid line) ansatzes, using Eqs. (5.8) and (5.9), with the
fit parameters α = 4.5, β = −0.3, γ = 12, δ = 0.002. The lQCD data are deduced
from [47,199] (open diamonds), and [46,113] (open circles). Right, full QCD: The
ζ/η in the QPM (full squares), shown along with linear (checkered band) and qu-
adratic (plain-colored band) parametrizations in the c2s, here α = 2.15, β = −0.085,
γ = 14, δ = 0. In both panels, the pQCD result (pentagons) is computed from
Eq. (5.3) and (5.10) [54,200] with the corresponding G(T ).

with fit parameters α, β, γ and δ, assuming equal relaxation times for the shear and
bulk viscosities.

Figure 5.8 presents the bulk to shear viscosity ratio in pure Yang-Mills theory (left)
and in QCD with Nf = 2 + 1 (right). Consistently to the earlier study in thermo-
dynamics with Nf = 0 [81, 139], the QPM result is well captured by the linear an-
satz (5.8) near Tc, and by the quadratic one (5.9) at the higher temperature. A clear
changeover from the linear to quadratic scaling emerges at T ≃ 1.3Tc. Near Tc the
ζ/η in the QPM agrees reasonably well with the same quantity deduced from the
available lattice data [47, 199] and [46, 113]. Above T ≃ 1.4Tc, it is in line with the
pQCD prediction [54, 200], obtained from the next-to-leading-log (NLL) expansion
in the weak coupling. We recall that in this approximation, the shear viscosity is
given by Eq. (5.3),

ηNLL =
T 3

g4

[
η1

ln(µ∗/mD)

]
,

while the bulk viscosity is expressed in the NLL as

ζNLL =
g4 T 3

16π2

[
A

ln(µ∗2/mD)

]
. (5.10)

For Nf = 0, the set of parameters reads η1 = 27.126, µ∗1/T = 2.765, A = 0.443
and µ∗2/T = 7.14, while for Nf = 3, η1 = 106.66, µ

∗
1/T = 2.957, A = 0.657 and

µ∗2/T = 7.77 [54,200].
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Rysunek 5.9: The scaled temperature (left) and the bulk to shear viscosity ratio
(right) as functions of the conformality measure, ∆c2s = 1/3− c2s, normalized by its
value at Tc in pure Yang-Mills theory (full circles) and QCD with Nf = 2 + 1 (full
squares).

Shown in the right panel of Fig. 5.8, the QPM result for Nf = 2+1 retains the same
features observed in the Yang-Mills case. However, the changeover between the two
scaling behaviors appears at a higher temperature, T ≃ 2Tc. One observes a some-
what more significant distinction from the pQCD result, arising from the presence
of the dynamical quarks in the system.

Since the non-vanishing ζ quantifies how far the system appears from the conformal
limit, to look closer into the connection between the bulk viscosity and conforma-
lity, in Fig. 5.9, we show a flavor dependence of the ζ/η ratio as a function of the
measure ∆c2s (right panel), as well as the explicit temperature profiles of c

2
s at and

above Tc (left panel). Fig. 5.9 can be easily read by starting from the right-hand
side of each panel, when T = Tc in both theories, and then going to the left, in the
direction of the temperature increase. One finds that the speed of sound squared in
QCD approaches its conformal value (∆c2s = 0, or equivalently, c

2
s = 1/3) at high

temperatures considerably slower than in Yang-Mills theory, due to the presence
of dynamical quarks. Consequently, the appearance of dynamical quarks delays the
restoration of conformal invariance. Furthermore, the changeover of the two scalings
of ζ/η ratio given by Eqs. (5.8) and (5.9) is preserved, and one recognizes the regions
with linear and quadratic behavior in the c2s.

This subject finalizes our investigation of the shear and bulk viscosities in hot QCD
with different numbers of quark flavors. The more advanced studies of the viscosity
coefficients incorporate the additional factors present at heavy ion collisions, such
as the momentum anisotropy [72], the finite chemical potential and chiral phase
transition [186], the impact of the magnetic field [208,209], and many others.

5.4 Electrical Conductivity

The electrical conductivity σ is another valuable transport parameter in the
investigation of the dynamical and transport properties of QCD. In the medium
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with non-zero electrical conductivity, σ characterizes the linear response of the sys-
tem to the external electric field, which generates the electrically charged current.
Mathematically speaking, it can be expressed by the vector form of Ohm’s Law [131],

J⃗ = σE⃗, (5.11)

where J⃗ denotes the electric current, while E⃗ stands for the applied electric field. In
ultrarelativistic heavy ion collisions, the electrical conductivity quantifies the reac-
tion of the deconfined matter to the produced electric field.

In kinetic theory under the RTA, the electrical conductivity of hot QCD me-
dium with Nf = 2 + 1 reads [131]

σ =
1
3T

∑
i=u,ū,d,d̄,s,s̄

∫ d3p

(2π)3
p2

E2i
q2i diτif

0
i (1− f 0i ), (5.12)

where the quark electric charge qi is given explicitly by qu = −qū = 2 e/3 for up,
and qd,s = −qd̄,s̄ = −e/3 for down and strange (anti)quarks. The electron charge
reads e =

√
4πα with the fine structure constant α ≃ 1/137. In contrast to our

previous notation, due to the different electric charges of up and down quarks,
their contributions are evaluated separately in the electrical conductivity. We first
compute σu and σd with new degeneracy factors du, d, s = 6, and then denote the
contribution from light quark sector as σl = σu + σd.

Due to the charge neutrality of gluons, they do not directly contribute to the
above equation. Therefore, in the pure Yang-Mills theory, the deconfined matter is
characterized by vanishing electrical conductivity, σg = 0. However, one should keep
in mind that the interactions with dynamical gluons are encoded in the relaxation
times of light and strange quasiquarks entering Eq. (5.12).

In the left panel of Fig. 5.10, we present the electrical conductivity scaled by
the temperature, σ/T , including the results of various approaches. The QPM re-
sult is quite consistent with the earlier study [129], where σ has been evaluated in
the Green-Kubo formalism and in the RTA. A slight difference from the approach
employed in [129] arises from such key features as the parameterization of the effec-
tive coupling reproducing the same EoS as used in our QPM [155], as well as the
alternative definition of the effective mass of quarks,

m2q = g
2T 2/3, (5.13)

with no dependence on the bare mass m0i . The above expression implies that all
dynamical quarks are degenerate, unlike in our QPM, with strange quarks distingu-
ished from the light flavors. We have already seen that the larger mass suppresses the
individual contribution to shear and bulk viscosity from the strange quark sector,
see Figs. 5.2 and 5.7.

Moreover, in the alternative quasiparticle framework by Puglisi et al. [129],
the relaxation times are computed from the cross sections of the form [130]

σijtr(s) = β
ij G4

16πm2D

s

s+m2D
h(a), (5.14)
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Rysunek 5.10: Left: The total electrical conductivity scaled with temperature as a
function of T/Tc. Besides our QPM result (full squares), we show the results in other
approaches collected in [129]: the pQCD-based calculation (diamonds), the Green-
Kubo formalism (triangles), and the QPM with a different setup (dashed line).
The solid line corresponds to the DQPM result [101], while the result of the lat-
tice simulations is shown by open squares [118, 119]. Right: The total σ/T ratio of
the QGP (full squares) along with the light (stars) and strange (triangles) quark
components. The corresponding lattice data is deduced from [118,119] for the total
electrical conductivity (open squares) and for light and strange quark contributions
(crosses and open triangles, respectively). Here, our σl,s/T ratios do not include the
antiparticle contributions for a direct comparison to the lattice QCD data which
considers just the particles.

where βij is the coefficient referring to the different scatterings of quarks and glu-
ons, βqq = 16/9, βqq

′
= 8/9, βqg = 2, βgg = 9. The Debye mass m2D = G

2(T )T 2

is originated from the HTL approach, s denotes the Mandelstam variable, while
h(a) = 4a(1 + a)[(2a+ 1) ln(1 + 1/a)− 2] with a = m2D/s represents anisotropy of
the scatterings [130].

The result corresponding to pQCD estimation in Fig. 5.10 (left) is obtained
from the alternative QPM utilizing the perturbative coupling [129]

gpQCD =
8π
9
ln−1

[ 2πT
ΛQCD

]
, (5.15)

where ΛQCD is the QCD scale parameter [4]. Since the present quasiparticle fra-
mework captures the non-perturbative QCD features through the effective coupling
G(T ), our result tends to approach the pQCD estimation only at high temperatu-
res. Similar behavior has also been observed for the specific shear viscosity in pure
Yang-Mills theory and QCD with quarks, see Fig. 5.4.

Further, near Tc, we find that the QPM fairly captures the behavior of σ/T
found in the lattice QCD simulations [118, 119], see open symbols in the left panel
of Fig. 5.10. We also recognize an overall qualitative agreement of our σ/T with
the DQPM result [101], although, in this approach, σ/T yields a somewhat smaller
value at any temperature. A similar trend was already observed in the case of the
specific bulk viscosity ζ/s, see Fig. 5.7. The quantitative difference between the two
effective approaches arises due to the finite widths of the quasiparticles employed
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in [101] and the LAS assumption in the QPM [138], the application of which leads
to a systematic upward-shift of any transport parameter.

To look into the role of different quark flavors in the total electrical conductivity,
we present the individual contributions from light and strange quark sectors.

The right panel of Fig. 5.10 exhibits that the light-quark contribution is larger
than that of the strange quarks, as anticipated with their mass differences shown in
Fig. 2.2. The corresponding lattice data [119] near Tc is relatively compatible with
the QPM result, whereas the discrepancy between them emerges at T ≃ 1.5Tc and
increases gently with temperature. This can be attributed to the fact that the lattice
setup includes the pion mass mπ = 384(4) MeV [119], heavier than the physical one
used in our model-building. In fact, by increasing the bare mass of light quarks, we
obtain a decrease in electrical conductivity, which is smaller than the result with
physical quark masses at any temperature.

5.5 Shear Viscosity to Electrical Conductivity Ra-
tio

We now make use of the results for the electrical conductivity discussed above and
the specific shear viscosity presented in Section 5.1 to compute their relative ratio,
(η/s)/(σ/T ). In the pioneering work discussing this coefficient [130], it was shown
that (η/s)/(σ/T ) complements the ratio of gluon to quark scattering rates and ap-
pears to be independent of the effective coupling. Therefore, the relation between
these quantities may help us to understand the comparative role of gluons to quarks
in the evolution of the QGP.

From Eqs. (5.1) and (5.12), it follows that the electrical conductivity depends on the
relaxation times of quarks. At the same time, the shear viscosity contains an addi-
tional term created by the presence of gluons. Therefore, the quantity (η/s)/(σ/T )
depends on the ratio of gluon to light and strange quarks relaxation times.

The shear viscosity also differs from the electrical conductivity by its tem-
perature dependence, which among other terms, is encoded in the ratio p4/E2i
in Eq. (5.1), and p2/E2i in Eq. (5.12). Since η and σ equivalently depend on the
effective coupling and masses, we expect that the influence of these details cancels
to a large extent in the (η/s)/(σ/T ) ratio. As a result, the shear viscosity to elec-
trical conductivity remains sensitive only to the ratio τg/(τl + τs). This observation
agrees with the conclusion in [130], although the same relaxation times for all types
of quarks were assumed, unlike in our approach, where strange quarks are distingu-
ished from the light ones.

Fig. 5.11 exhibits the temperature dependence of the ratio (η/s)/(σ/T ) in various
quasiparticle approaches for QCD with Nf = 2 + 1. Our result is acquired from
the total η/s and σ/T shown in Fig. 5.2 and 5.10, respectively. The impact of
the LAS assumption applied in Eq. (4.12) vanishes, leading to identical outcomes
for (η/s)/(σ/T ) ratio based either on the transport or isotropic cross sections.

Despite a few discrepancies in the models’ setup, we find an excellent agreement
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Rysunek 5.11: The ratio of the shear viscosity to the electrical conductivity as a
function of T/Tc obtained in different QPM approaches. The results from our quasi-
particle model based on transport (LAS, full squares) and isotropic (no LAS, open
squares) cross sections are presented along with the dynamical quasiparticle mo-
del [101] (DQPM, solid line), and the quasiparticle approaches by Thakur et al. [131]
(dash-dotted line) and Puglisi et al. with pQCD components [130] (diamonds). The
horizontal line indicates the value (η/s)/(σ/T ) = 4/(e2N2c ) ≈ 4.85 obtained from
AdS/CFT correspondence [35,134].

between the DQPM [101] and our QPM approach. While η and σ in both frames
are evaluated using Eqs. (5.1) and (5.12), with the effective couplings determined
from the lQCD entropy density [155], the DQPM additionally incorporates finite
widths of the quasiparticles [101]. Moreover, their relaxation times are defined from
the isotropic cross sections, i.e., by excluding the phenomenological weight factor
sin2 θ(s, t,mi,j,i′,j′(T )) from Eq. (4.12). Our detailed study justifies that the influ-
ence of the effective coupling and masses is compensated. We also find a similar
cancellation mechanism for finite widths of the quasiparticles in the (η/s)/(σ/T )
ratio. The observed agreement can be traced back to the relaxation times, which
are modeled similarly and depend on the same types of the two-body scattering
processes [92, 138]. Thus, both approaches equivalently maintain the microscopic
interactions between the constituents of the deconfined matter.

Fig. 5.11 also shows the result of Thakur et al. [131] obtained in the alternative qu-
asiparticle framework. There, the dynamical quarks and gluons are dressed with the
self-energies proposed in Eqs. (2.2) – (2.4), however, significant simplifications are
done by taking the relaxation times as for massless particles [78], see Eq. (5.4), and
applying the coupling based on the former lQCD data for pure SU(3) theory [211].
These assumptions lead to a systematic underestimation of the shear viscosity to
electrical conductivity ratio obtained by Thakur et al. [131]. The ratio, in this case,
also appears to be the least sensitive to temperature changes. Compared to the other
approaches, it remains approximately constant in the explored temperature range,
exhibiting a slight increase near Tc.

We further juxtapose our (η/s)/(σ/T ) to the result acquired in the quasiparticle pic-
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ture by Puglisi et al. [130] which uses the pQCD-type cross sections and coupling
from Eqs. (5.14) and (5.15), as well as the identical relaxation times for all quark
flavors. The behavior of (η/s)/(σ/T ) is qualitatively compatible with the QPM and
DQPM results. However, it is more than 2 times suppressed in the whole temperature
interval due to the much higher values of the scaled electrical conductivity σ/T [197],
see Fig. 5.10.

In general, the (η/s)/(σ/T ) ratio in the quasiparticle models shows a pronounced
increase toward the pseudocritical temperature and is expected to reach an appro-
ximately constant value at higher temperatures. In contrast, from the AdS/CFT
predictions for η/s [35] and σ/T [134], one obtains (η/s)/(σ/T ) = 4/(e2N2c ) ≈ 4.85,
i.e., a constant value at any temperature.

More advanced studies of the shear viscosity to electrical conductivity ratio in QCD
consider the momentum anisotropy [131], the influence of magnetic field [212], or
very high density of the system [135].
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Charm Quark Production

The information collected from the experimental and theoretical investigations of
charm quarks and their bound state, charmonium (c c̄), proved, as has been predicted
in [213], that they can be used as direct probes of the dynamics of the quark-gluon
plasma [2,214–218].

Therefore it is highly important to analyze not only the production of charmo-
nium in heavy ion collisions but also the production mechanism of charm quarks in
the quark-gluon plasma. If one describes the QGP in terms of massless quarks and
gluons, the charm quark production will be insignificant due to the large amount
of energy required to produce the massive charm-anticharm pair [219]. However, if
the system is expressed in terms of massive (quasi)particles, especially with dyna-
mically generated effective masses, the scatterings among them may significantly
increase the production of charm quarks in the deconfined medium. Therefore inspi-
red by [136,182,219–221], we investigate the process of the charm quark production
in hot QCD and study how their number changes with changing properties of the
deconfined matter.

As previously, we consider the QGP withNf = 2+1 to be in thermal equilibrium and
describe it using the quasiparticle d.o.f. with effective masses and coupling discus-
sed in Chapter 2. While dynamical quarks and gluons contribute to the EoS, charm
quarks are added to the system as „obstacles” with constant masses, mc = 1.3 GeV,
which do not impact the thermodynamics of the QGP [222]. Initially, charm qu-
arks are out of chemical equilibrium, which is quantified by the fugacity parameter
λc, indicating the deviation of the statistical phase space density from f 0c [182].
Therefore, in contrast to the equilibrium statistics for light (strange) quarks and
gluons given in Eq. (2.6), the charm quarks are described by Jüttner distribution
for fermions [220,223],

fc(λc) = λc
(
eEc/T − λc

)−1
, (6.1)

where Ec =
√
p2 +m2c denotes the charm quark energy. The above expression coin-

cides with Fermi-Dirac distribution from Eq. (2.6) for λc = 1, i.e., once the charm
quarks equilibrate.
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Rysunek 6.1: The temperature T as a function of time τ for longitudinal propagation
of perfect QGP (1D, solid line) and 2+1-dimensional expansion of viscous QGP
(squares) Both evolution schemes consider the deconfined matter with Nf = 2 + 1
and carry the same initial conditions, τ0 = 0.2 fm, T0 = 0.624 GeV [190]. The dashed
line represents the QCD pseudocritical temperature, Tc = 0.155 GeV [155].

6.1 Time Evolution of the QGP

We study the evolution of charm quarks in hot QCD, assuming two different scena-
rios of the medium expansion:

i) Longitudinal (1D) propagation of perfect fluid, known as Bjorken flow, with
time evolution specified by the scaling solution [224]

T (τ) = T0(τ0)
(
τ0
τ

)1/3
, (6.2)

where τ denotes the time, and T0(τ0) denotes the initial conditions. The prescription
is known as Bjorken flow [224].

ii) Longitudinal and transverse, i.e., (2+1)D, expansion of the viscous fluid,
whose time evolution is acquired from the second order viscous hydrodynamic simu-
lations [190] incorporating the temperature-dependent specific shear viscosity η/s
computed in the QPM from the isotropic cross sections [138], see Fig. 5.3 (right).
This QPM result appears to be in line with η/s obtained from hydrodynamic simu-
lations [190].

Both systems are considered as boost-invariant [6], and share common initial
conditions, T0 = 0.624 GeV, τ0 = 0.2 fm [190]. This allows us to illustrate how the
shear viscosity, as well as the number of dimensions, affects the QGP lifetime.

Fig. 6.1 shows the time evolution of the QGP in i) and ii) cases. We observe that the
curves coincide numerically, even though they describe different fluids (perfect and
viscous) expanding in various numbers of dimensions (1D and (2+1)D, respectively).
Applying the same initial conditions illustrates that viscous QGP evolving in (2+1)D
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reaches the crossover temperature Tc faster than the perfect deconfined medium
propagating longitudinally, with a time difference of around 2 fm. This observation
agrees with a general expectation that the energy dissipation is larger in a more
viscous fluid expanding in more dimensions, leading to a shortened lifetime of such
a system. We recall that at the pseudocritical temperature shown in Fig. 6.1, one
expects a crossover phase transition from the deconfined to the hadronic phase.

6.2 Rate Equations

To find how the fugacity of charm quarks λc, and therefore the number of cc̄ pairs,
changes with temperature and time, following [220,221] we utilize the rate equation
defined as

∂µn
µ
c (λc) = ∂µ[nc(λc)u

µ] = Rc

1− (nc(λc)
n0c

)2 , (6.3)

with the out-of-equilibrium number density of charm quarks

nc(λc) = dc
∫ d3p

(2π)3
fc(λc), (6.4)

containing the spin-color degeneracy factor dc = 6. The charm quark number density
becomes nc(λc = 1) = n0c in equilibrium. We recall that u

µ is the four-velocity of the
fluid discussed in Chapter 3. The production rate of charms quarks Rc is defined as

Rc =
1
2
σ̄gg→cc̄ (n0g)

2 + σ̄ll̄→cc̄ (n
0
l )
2 + σ̄ss̄→cc̄ (n0s)

2, (6.5)

and depends on the thermal-averaged cross sections computed at the leading order
for massive (quasi)particles [222], as well as on the number density of dynamical
quarks and gluons in equilibrium, see Eq. (4.9). Additionally, the factor of 1/2 in
the above equation is introduced to avoid the double counting of gluons [182].

In contrast to our previous studies [138,184,197], where we employ the transport
cross sections [60, 61, 181], this research incorporates the total (isotropic) cross sec-
tions computed from Eq. (4.12) by excluding the large angle scattering assumption.
The rate equation satisfies the assumption that as charm quarks reach the chemical
equilibrium, the production and annihilation rates become equal [221], which implies
that the square bracket in Eq. (6.3) vanishes, leading to ∂µn0c

µ = 0.

For a purely longitudinal propagation described by the i) scenario, one can simplify
the LHS of Eq. (6.3), assuming the flow velocity of the system is in the LRF,
uµ = (1, 0, 0, 0) [182,220],

∂µ[nc(λc)uµ] = uµ∂µnc(λc) + nc(λc)∂µuµ =
∂nc(λc)
∂τ

+
nc(λc)
τ

. (6.6)

On the other hand, for (2+1)D evolution in ii), the flow velocity changes because of
an additional propagation in the transverse plane. For the purpose of this calcula-
tions, we express the flow velocity in cylindrical coordinates [6] and rewrite the LHS
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Rysunek 6.2: The charm quark fugacity λc as a function of time (left) and corre-
spondingly temperature (right) for different initial values of λ0c . The open bullets
show λc in the i) case of perfect QGP propagating only longitudinally, while full
symbols represent the ii) evolution of hot QCD medium expanding in (2+1)D, with
temperature-dependent shear viscosity taken into account. The vertical line in the
right panel indicates the QCD pseudocritical temperature.

of Eq. (6.3) as [221,225],

∂µ[nc(λc)uµ] =
1

τ R2(τ)
∂

∂τ

(
τ R2(τ)nc(λc) ⟨uτ ⟩

)
, (6.7)

where R(τ) is the transverse radius of the system given by

R(τ) = R0 + a(τ − τ0)2. (6.8)

We apply R0(τ0) = 7 fm [219,225,226] for the initial radius, and a = 0.043 fm−1 for
the transverse acceleration. This value satisfies the condition of the QGP evolution
in (2+1)D, where it hadronizes at τ ≃ 11 fm [198], see Fig. 6.1.

Further, ⟨uτ ⟩ in Eq. (6.7) is the averaged time component of the four-velocity,
which is expressed in terms of the transverse radius as [221,225,227]

⟨uτ ⟩ = 2
R2(τ)

∫ R(τ)
0

dr

(dR(τ)
dτ

)2
r

R(τ)

−1/2 , (6.9)

assuming the uniform density distribution in the transverse plane.

Once Eq. (6.3) is rewritten as guided in Eq. (6.6) or Eq. (6.7), depending on the
expansion scenario, we solve it numerically for the arbitrary initial values λ0c of the
charm quark fugacity [222].

The time evolution of the charm quark fugacity is presented in the left panel
of Fig. 6.2. In perfect QGP undergoing the Bjorken flow ( the i) case), the charm
quark fugacity first increases with time and then decreases, independently of its
initial value. The turning point becomes less sharp and shifts towards higher τ for
lower λ0c . In contrast to that, in the ii) scenario for (2+1)D expansion of viscous
QGP, all the λc(τ) are flattened. As τ grows, the solutions either slowly increase
(for λ0c ≪ 1) or smoothly decrease (for λ0c ⪆ 10) on the whole examined time and
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temperature ranges. For the intermediate values of λ0c , one can observe a behavior
similar to λc(τ) in the i) scenario but with a less pronounced turning point.

We additionally observe that for i) and ii) evolutions individually, all the λc(τ)
tend to overlap each other at high τ . Such a tendency may be related to the universal
behavior of the solutions of the differential equations when there exists a particular
attractor to which all the other solutions converge [228].

Fig. 6.2 (right) exhibits numerical results for the charm quark fugacity as a function
of temperature. The T axis is reversed to correspond to the horizontal (time) axis in
the left panel of Fig. 6.2. As a function of temperature, we see that all the fugacities
first increase with the decreasing T and then start to drop until they reach the
common universal solution for i) and ii) evolutions separately. At the pseudocritical
temperature, λc ̸= 1, therefore, in the QPM, the charm quarks will not reach the
chemical equilibrium. In addition, at T ≃ 0.2 GeV and below, the hierarchy between
the λc(T ) curves in i) and ii) case changes, and the fugacity in (2+1)D viscous
QGP becomes larger than in 1D perfect medium, independently of the initial λ0.
This leads us to the conclusion that at the final stage of the QGP evolution, the
resulting number of charm quarks will be higher when the QGP expands in all
spatial dimensions with the shear viscosity considered.

6.3 Charm Quark Number

With the behavior of the charm quark fugacity at hand, we can investigate the
evolution of the charm number density nc(λc) given by Eq. (6.4), and the resulting
number of cc̄,

Ncc̄(λc, τ) = nc(λc)V (τ), (6.10)

where the number of charm quark pairs Ncc̄ equals the product of their number
density and the volume V (τ) of the deconfined matter. In the ii) case of (2+1)D-
expanding viscous QGP, we determine the volume from [221,225]

V (τ) = πR2(τ) τ, (6.11)

with the transverse radius defined in Eq. (6.8). On the other hand, in i) expansion
scheme of the perfect fluid propagating longitudinally, the volume does not change
in the transverse plane, and the QGP is assumed to be a cylinder with a constant
radius. Therefore in the above equation, for 1D evolution, we set R(τ)→ R = 7 fm,
which matches the initial radius of the viscous QGP in the ii) scenario.

Fig. 6.3 shows the number of charm quark pairs Ncc̄(λc, τ) as a function of time (left)
and decreasing temperature (right) in hot QCD medium evolving in space and time
as described in i) and ii) scenarios. We study the behavior of charm quark number
for the following initial values of cc̄ pairs: N0cc̄ = 13.8, 20 and 30 [219, 221], which
correspond to the initial fugacity: λ0c ≃ 0.05, 0.071 and 0.12, respectively [198].

While in the QGP obeying 1D perfect fluid scenario, the number of cc̄ pairs first
mildly grows with time and starts to decrease above τ ≃ 3 − 4, we observe more
intensive changes of Ncc̄ in viscous QGP expanding in 2+1 dimensions, see left panel
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Rysunek 6.3: The number of charm quark pairs Ncc̄ as a function of time τ (left)
and temperature T (right) in the QGP with Nf = 2 + 1. The results obtained
in the i) 1D case of perfect QGP are shown by open symbols, while full symbols
represent the number of charm quarks in viscous QGP expanding additionally in
the transverse plane, the ii) (2+1)D scenario. In both panels, the curves start from
the initial conditions, τ0 = 0.2 fm (left) and T0 = 0.624 GeV (right). The right panel
additionally exhibits the QCD pseudocritical temperature (vertical line).

of Fig. 6.3. The number of quarks first rapidly increases, exhibiting a pronounced
maximum at τ ≃ 8 fm, and decreases afterward even faster, independently of the
initial number of charm quark fugacity.

In both dynamical scenarios, we initially see that more charm quarks are
produced in the QGP due to the creation and annihilation processes considered
in Eq. (6.5). At some point, depending on the QGP dynamics and the initial num-
ber of charm quarks, the cc̄ pairs start to annihilate, leading to the observation that
the resulting curves overlap each other at high τ , i.e., in the vicinity of the pseudo-
critical temperature. This resembles the behavior of the fugacity λc shown in Fig. 6.2.

Further, in the right panel of Fig. 6.3, we readily notice that the maxima of the Ncc̄
curves are shifted towards lower temperatures for higher initial values of the charm
quark number. We also recognize that in perfect QGP described by i) scenario, the
final number of the cc̄ pairs is Ncc̄ ≃ 5, which is at least 2 times smaller than the
numbers incorporated initially. Thus, in the i) framework, most of the charm quarks
annihilate before the deconfined matter reaches the hadronic phase.

On the other hand, in the ii) viscous expansion, independent of the initial
number of charm quarks, their final number reaches a value of Ncc̄ ≃ 35 at the
corresponding time τ ≃ 11 fm (see Fig. 6.1). This implies that in the QPM, all the
initially considered heavy quarks survive the evolution of viscous QGP. For certain
initial values, even more charm-anticharm pairs are produced, which differs from
the experimental observations, where the charm quark number is closely preserved
during the QGP evolution [2, 229].

The present QPM outcomes can also be juxtaposed to the alternative quasiparticle
frameworks [219,221], where due to the much shorter lifetime of the QGP, the final
number of charm quarks is much higher than observed in Fig. 6.3. However, if we
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consider that the QGP hadronizes at τ = 6− 8 fm, just as in [219,221], we observe
that Ncc̄ is much higher and clearly depends on the initial value, compared to our
actual results.

One should keep in mind that the results shown in Fig. 6.3 are obtained within
the simplifying assumption that the light and strange quarks, as well as gluons,
remain in chemical equilibrium, while the charm quarks do not contribute to the
EoS. The first steps towards improving the current status require the extension of
the QPM to QCD with Nf = 2+ 1+ 1 [230], and complementing the system of the
differential equations, which should consider the out-of-equilibrium scenarios for all
quasiparticles presented in the QGP. These are the tasks of our ongoing project,
whose results will be reported elsewhere.
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Conclusions

The main scope of this work was to investigate the transport and dynamical proper-
ties of the deconfined matter with different numbers of quark flavors and analyze the
role of dynamical quarks and gluons in hot QCD at vanishing chemical potential.
For this purpose, we have employed a well-established quasiparticle model (QPM)
approach combined with kinetic theory in the relaxation time approximation.

The deconfined matter is described by the dynamical gluons (and quarks) carrying
effective masses that depend on the self-energies originating from the hard thermal
loop approach. The temperature- and coupling-dependent masses enter the quasi-
particles’ dispersion relations and are adjusted through the effective coupling to
describe the equilibrium entropy density provided by first-principle lQCD simula-
tions. Interestingly, the gluon thermal mass for pure Yang-Mills theory and QCD
appeared to be compatible when plotted as a function of scaled temperature T/Tc.
This is a consequence of the compensation of the Nf -dependence in the deconfine-
ment transition temperature Tc and the gluon self-energy.

To verify the validity of the QPM to bulk thermodynamic quantities near the phase
transition, we have computed the speed of sound squared, c2s, in the QPM and the
hadron resonance gas model and confronted it with the corresponding lattice results.
We found that the QPM captures exceptionally well not only the behavior at high
temperature, but also that in the vicinity of the phase transition, and even slightly
below Tc. The c2s below but near Tc requires a tower of hadronic resonances, and this
non-trivial physics is properly encoded in the effective coupling.

The transport parameters, such as the shear and bulk viscosity, the electrical con-
ductivity, and their various relative ratios, were computed from the kinetic theory
expressions, assuming that all transport coefficients are characterized by the common
relaxation times τi. For the individual quasiparticle species, the τi were evaluated
from the microscopic scattering amplitudes of the elementary two-body scatterings
among the massive quarks and gluons.

We observed that the shear viscosity to entropy density ratio, η/s, exhibits a sharp
minimum at Tc in pure Yang-Mills theory which coincides with the KSS bound, 1/4π,
conjectured via gauge-gravity duality. The result near Tc is consistent with all
the available lattice data within the errors. Moreover, the behavior at tempera-
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tures higher than 1.3Tc agrees fairly well with the functional diagrammatic appro-
ach [57]. Introducing quark-quasiparticles strongly modifies the temperature depen-
dence of η/s in QCD with Nf = 2+ 1. The pronounced non-monotonic structure of
the ratio at Tc in pure Yang-Mills theory is replaced by a smooth behavior with a
shallow minimum around the pseudo-critical temperature in QCD. This modifica-
tion is also reflected in the behavior of the quasiparticle relaxation times.

In contrast to the functional estimate of η/s for QCD reported in [57], our micro-
scopic calculations reveal a major impact of the dynamics carried by quasiquarks
as relevant effective d.o.f. on top of the gluons. The non-trivial dynamics of those
quasiparticles enter the scattering cross sections, which significantly contribute to
the specific shear viscosity. Another intriguing observation is that the quasiparticle
approach in the QCD with quarks yields a scaled shear viscosity, η/T 3, comparable
in magnitude to the perturbative QCD result at high temperatures.

We have also illustrated the impact of the large-angle scattering (LAS) ap-
proximation, which was applied to evaluate the energy-averaged transport cross
sections. The LAS prescription leads to systematically larger contributions to η/s
than employing fully isotropic cross sections.

In contrast to the specific shear viscosity, the bulk viscosity to entropy density ra-
tio ζ/s has a more complex structure, thus requires a detailed analysis of its compo-
nents, e.g., due to its dependence on the temperature derivative of the self-energies
and the speed of sound squared. In pure Yang-Mills theory, we observed that the
temperature derivative of the gluon effective mass yields a striking peak at the criti-
cal temperature and this, though much weakened, results in a mild non-monotonicity
in the ratio ζ/s.

We have noticed that the specific bulk viscosity decreases as temperature increases,
consistently to the general anticipation, and conformal invariance becomes restored
at high temperature. The inclusion of the light and strange quasiquarks considera-
bly modifies the ζ, as well as the entropy density s. For the QGP with Nf = 2 + 1,
the ratio ζ/s does not exhibit any apparent non-monotonicity around the crossover.
It decreases with increasing temperature much slower than in the Nf = 0 case, in-
dicating a larger breaking of scale symmetry.

Given the bulk and shear viscosities, we constructed the ratio ζ/η to confront the
linear and quadratic dependence on the measure ∆c2s = 1/3− c2s representing a de-
viation from conformal invariance. We found that the ratio scales linearly near Tc,
as predicted in the AdS/CFT approach [203], then switches to the quadratic beha-
vior consistently to the perturbative QCD result [54,200]. The emerging changeover
depends on the quark flavors: in pure Yang-Mills theory, it appears at T ≃ 1.3Tc,
whereas in QCD with Nf = 2 + 1 at T ≃ 2Tc. Thus, the segment in temperature
where one finds the system non-perturbative is interestingly extended in the pre-
sence of dynamical quarks. The QPM well captures the smooth but Nf -depending
changeover to describe the non-perturbative and perturbative domains. Thus, we re-
cognized a systematic connection between the two opposite QCD regimes. We also
found that the presence of quasiquarks results in a significant delay in restoring
conformal invariance at high temperature, compared with pure Yang-Mills thermo-
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dynamics.

We additionally studied the electrical conductivity of the QGP with Nf = 2 + 1.
The ratio σ/T is observed to be qualitatively consistent with earlier results in a class
of the quasiparticle frameworks [101, 129], as well as with the recent lattice QCD
results [119]. In particular, the individual contributions to the electrical conductivity
were calculated separately for the light and strange quarks and confronted with the
corresponding lattice data. Our outcomes are quantitatively close, though systema-
tically lower than the lattice data, which is connected to the fact that the lQCD
simulations were carried out for a heavy pion mass.

Further, we have investigated the behavior of the shear viscosity to electrical con-
ductivity ratio, (η/s)/(σ/T ) and observed that it compensates the details of the
effective coupling and masses but preserves the overall dependence on the relation
between the relaxation times of gluons and quarks. Therefore, the ratio is a valu-
able quantity to compare the role of quarks and gluons in various effective models.
We found a remarkable agreement with the (η/s)/(σ/T ) ratio deduced from the
results of the alternative, dynamical quasiparticle model. The observed consistency
justifies that both approaches identically accommodate the microscopic interactions
between the QGP constituents, despite somewhat different quasiparticle treatments.

Finally, to illustrate the application of the specific shear viscosity, we have explored
the evolution of the charm quark fugacity λc and the charm quark pairs Ncc̄ in hot
QCD medium with Nf = 2 + 1 quark flavors. For the evolution of the QGP, we have
adopted the result of the hydrodynamic simulations of viscous QGP expanding in
all spatial dimensions, i.e., (2+1)D [190]. We juxtapose this result to Bjorken flow,
i.e., the longitudinal (1D) propagation of perfect fluid.

Solving the rate equation for the charm quark fugacity λc, we have observed
that its behavior depends significantly on the QGP evolution scenario at its early
stages. At the same time, as the system approaches the crossover, the dynamics
of λc becomes universal. This observation is further transferred to the evolution of
the number of cc̄ pairs, where we have recognized that independently of the initial
fugacity λ0c , in the QPM, all the solutions are attracted to the same value, indivi-
dual for 1D and (2+1)D expansions. We have noticed in perfect QGP that the final
number of charm quarks is much lower than the initial one. On the other hand, in
viscous deconfined medium, for specific values of λ0c , the initial and final numbers
of cc̄ pairs are approximately equal, which coincides with the experimental outcomes.

We have quantified the impact of dynamical quarks on the significant transport pa-
rameters in hot QCD. The QPM was shown to provide a systematic link between
the non-perturbative and perturbative physics relevant to the transport properties
of the deconfined matter. Therefore, the framework developed in this Thesis can be
straightforwardly applied to study other transport coefficients and their phenome-
nological impact on the QCD observables.

Besides, a more realistic estimate requires further extensions going beyond the ma-
jor assumptions made in this Thesis, i.e., the vanishing baryon chemical potential,
the approximation of the solution to Boltzmann equation with the momentum-
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independent relaxation time, the application of the common relaxation times for all
transport parameters, or the restriction to the binary scatterings only. Those can be
implemented into our kinetic approach in the future, offering more reliable medium
profiles of the transport coefficients.

62



Dodatek A

Scattering Amplitudes of Binary
Processes

This Appendix contains a detailed computation of the squared scattering am-
plitudes, |M|2, of some binary elastic scatterings between massive particles. We
work in the center-of-mass (c.m.) reference frame shown in Fig A.1.

Rysunek A.1: Schematic illustration of the scattering in the center-of-mass frame,
where (1,2) denotes the incoming and (3,4) the outgoing scattering partners, and θ
is the scattering angle.

The scattering partners carry the momenta, defined as

pi = (Ei, p⃗i), (A.1)

while their scalar (dot) product, considering metric tensor gµν = (1,−1,−1,−1),
reads

pi · pj = EiEj − p⃗ip⃗j, (A.2)

with the energy Ei =
√
p2i +m2i .

We introduce convenient Mandelstam variables, s, t, and u, defined as functions of
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the four-momenta of the interacting particles in the c.m.,

s = (p1 + p2)2 = m21 + 2p1 · p2 +m22 = m23 + 2p3 · p4 +m24, (A.3)
t = (p1 − p3)2 = m21 − 2p1 · p3 +m23 = m24 +m22 − 2p2 · p4, (A.4)
u = (p1 − p4)2 = m21 − 2p1 · p4 +m24 = m22 +m23 − 2p2 · p3. (A.5)

It can be shown that in the massless limit, s + u + t = 0, while from the above
expressions, we obtain

s+ t+ u = m21 +m
2
2 +m

2
3 +m

2
4. (A.6)

Further, using the properties of the c.m. frame, it can be shown that

E1 + E2 = E3 + E4 =
√
s, (A.7)

which will be utilized in the following evaluation.

Once the scattering amplitude is known, the differential cross section for two-body
scattering can be conveniently computed when expressed as a function of Mandel-
stam variables,

dσ

dt
=

|M|2

16π[(s−m21 −m22)2 − 4m21m22]
. (A.8)

A.1 qq′ → qq′

In this Section, we compute the scattering amplitude for the cross section of
two different quark flavors, i.e., u d → u d, u s → u s, etc. Note that in our model
mu = md ̸= ms, therefore in the following derivation, we keep the general masses,
mi = 1...4 to prevent simplification of some terms when m1 = m2, which in case of
u s→ u s is not true.
The Feynman diagram describing the qq′ → qq′ process is of the t−channel type
[4] and is shown in Fig. ?? Along with the (1, 2) → (3, 4) notation for incoming
and outgoing particles, we additionally use ij → i′j′ below to denote initial- and
final-state color factors related to the SU(3) gauge group. The scattering amplitude
related to Fig. A.1 reads

−iM = ū(p3, s3)(−igγµ(t)ai′i)u(p1, s1)
−iδabgµν
p2g −m2g

ū(p4, s4)(−igγν(t)bj′j)u(p2, s2) (A.9)

Above, we follow the standard Feynmann rules [4], where u(pi,j, si,j) is a spinor
which denotes the incoming fermion with momentum pi,j, spin si,j, and additionally
with mass mi,j = mi′,j′ which will explicitly enter the expressions later, and now
is skipped to shorten the notation. The outgoing fermion spinor is ū(pi′,j′ , si′,j′),
while (−igγµ(t)a,bi′i ) denotes vertex and the gluon propagator in Feynmann gauge,
mentioned in Section 4.2, reads

−iδabgµν
p2g −m2g

. (A.10)
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Rearranging terms in Eq. (A.9) leads to

−iM = ig2
[
ū(p3, s3)γµ(t)ai′iu(p1, s1)

]
δabgµν
p2g −m2g

[
ū(p4, s4)γν(t)bj′ju(p2, s2)

]
= (A.11)

ig2(ta)i′i(ta)j′j
[
ū(p3, s3)γµu(p1, s1)

]
gµν

p2g −m2g

[
ū(p4, s4)γνu(p2, s2)

]
. (A.12)

−iM = ig2

p2g −m2g
(ta)i′i(ta)j′j

[
ū(p3, s3)γµu(p1, s1)

]
gµν

[
ū(p4, s4)γνu(p2, s2)

]
= (A.13)

ig2

p2g −m2g
(ta)i′i(ta)j′j

[
ū(p3, s3)γµu(p1, s1)ū(p4, s4)γµu(p2, s2)

]
. (A.14)

The squared amplitude is computed as

|M|2 = (−iM)(−iM)∗, (A.15)

which explicitly reads

|M|2 =
(
g2(ta)i′i(ta)j′j
p2g −m2g

)2 [
ū(p3, s3)γµu(p1, s1)ū(p4, s4)γµu(p2, s2)

]

×
[
ū(p3, s3)γνu(p1, s1)ū(p4, s4)γνu(p2, s2)

]∗
. (A.16)

The parameters (ta)i′i(ta)j′j are the SU(3) group theory factors, which for the calcu-
lation of the scattering cross section must be summed over final and averaged over
initial quark colors. The detailed calculation can be found in [4]. Here, we utilize
the resulting number, ((ta)i′i(ta)j′j)2 = 2/9. We further apply to Eq. (A.16) the
conjugation property, (ū1γµu2)∗ = ū2γµu1, reading

|M|2 = 2
9

g4

(p2g −m2g)2
[
ū(p3, s3)γµu(p1, s1)ū(p4, s4)γµu(p2, s2)

]

×
[
ū(p2, s2)γνu(p4, s4)ū(p1, s1)γνu(p3, s3)

]
. (A.17)

Introducing indices in the two brackets above allows to change the order of terms,
and naturally leads to the trace :

|M|2 = 2
9

g4

(p2g −m2g)2
[
ūa(p3, s3)γ

µ
abub(p1, s1)ūc(p4, s4)γµcdud(p2, s2)

]

×
[
ūe(p2, s2)γνefuf (p4, s4)ūg(p1, s1)γ

ν
ghuh(p3, s3)

]
= (A.18)

=
2
9

g4

(p2g −m2g)2
[
ub(p1, s1)ūg(p1, s1)γνghuh(p3, s3)ūa(p3, s3)γ

µ
ab

]

×
[
ud(p2, s2)ūe(p2, s2)γνefuf (p4, s4)ūc(p4, s4)γµcd

]
= (A.19)

2
9

g4

(p2g −m2g)2
Tr
[
u(p1, s1)ū(p1, s1)γνu(p3, s3)ū(p3, s3)γµ

]

×Tr
[
u(p2, s2)ū(p2, s2)γνu(p4, s4)ū(p4, s4)γµ

]
. (A.20)
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Under the traces presented in Eq. (A.20), we can use a spin summation, rule [4] for
fermions, ∑

s1

u(s1, p1)ū(s1, p1) = /p1 +M1, (A.21)

where /p1 = γ
µpµ, with Dirac matrix γµ. This leads to

|M|2 = 2
9

g4

(p2g −m2g)2
Tr
[
(/p1 +m1)γ

ν(/p3 +m3)γ
µ
]
Tr
[
(/p2 +m2)γν(/p4 +m4)γµ

]
. (A.22)

We now proceed with performing the traces,

Tr[(/p1 +m1)γ
µ(/p3 +m3)γ

ν ] = (A.23)

Tr[/p1γ
µ
/p3γ
ν + /p1γ

µm3γ
ν +m1γµ/p3γ

ν +m1γµm3γν ] = (A.24)

Tr[p1αγαγµp3βγβγν + p1αγαγµm3γν +m1γµp3βγβγnu+m1γµm3γν ] = (A.25)

Tr[p1αp3βγαγµγβγν +m1m3γµγν ] = p1αp3βTr[γαγµγβγν ] +m1m3Tr[γµγν ]. (A.26)

The Dirac matrices obey various trace identities, among which we use [4]

Tr[γαγµγβγν ] = 4(gαµgβν − gαβgµν + gανgµβ), (A.27)
Tr[γµγν ] = 4gµν , (A.28)

to rewrite Eq. (A.26) as

p1αp3βTr[γαγµγβγν ] +m1m3Tr[γµγν ] = (A.29)

p1αp3β4(gαµgβν − gαβgµν + gανgµβ) + 4m1m3gµν = (A.30)

4(p1αgαµp3βgβν − p1αgαβp3βgµν + p1αgανp3βgµβ) + 4m1m3gµν = (A.31)

4(pµ1p
ν
3 − p1 · p3 gµν + pν1p

µ
3) + 4m1m3g

µν = (A.32)

4(pµ1p
ν
3 + p

ν
1p
µ
3) + 4(m1m3 − p1 · p3)gµν . (A.33)

Similarly, for second trace in Eq. (A.22) we have

Tr[(/p2 +m2)γµ(/p4 +m4)γν ] = 4(p2µp4ν + p2νp3µ) + 4(m2m4 − p2 · p4)gµν . (A.34)

Inserting Eqs. (A.33) and (A.34) into Eq. (A.22), we arrive at

|M|2 = 2
9

g4

(p2g −m2g)2
[
4(pµ1p

ν
3 + p

ν
1p
µ
3) + 4(m1m3 − p1 · p3)gµν

]

×
[
4(p2µp4ν + p2νp3µ) + 4(m2m4 − p2 · p4)gµν

]
= (A.35)

16
9

g4

(p2g −m2g)2
[
pµ1p
ν
3p2µp4ν + p

µ
1p
ν
3p2νp3µ + p

µ
1p
ν
3m2m4gµν + · · ·

]
, (A.36)
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where for all terms in the bracket, we perform the four-vector dot product, e.g.,

pµ1p
ν
3p2µp4ν = (p

µ
1p2µ)(p

ν
3p4ν) = (p1 · p2)(p3 · p4), (A.37)

which leads us to

|M|2 = 16
9

g4

(p2g −m2g)2
[
(p1 · p2)(p3 · p4) + (p1 · p4)(p3 · p2) + (p1 · p3)m2m4

−(p1 · p3)(p2 · p4) + (p1 · p4)(p3 · p2) + (p1 · p2)(p3 · p4) + (p1 · p3)m2m4

−(p1 · p3)(p2 · p4) + 2(p2 · p4)m1m3 +m1m2m3m4gµνgµν

−m1m3(p2 · p4)gµνgµν − (p1 · p3)(p2 · p4)− (p1 · p3)(p2 · p4)

−(p1 · p3)m2m4gµνgµν + (p1 · p3)(p2 · p4)gµνgµν
]
. (A.38)

Collecting the same terms, and using gµνgµν = 4, the squared amplitude significantly
simplifies to

|M|2 = 16
9

g4

(p2g −m2g)2
[
(p1 · p2)(p3 · p4) + (p1 · p4)(p3 · p2)

−(p1 · p3)m2m4 − (p2 · p4)m1m3 + 2m1m2m3m4
]
. (A.39)

One can recognize the four-momentum scalar products entering the above expres-
sion with the definitions of the Mandelstam variables, therefore it is convenient to
rewrite |M|2 in terms of s, t, u given by Eqs. (A.3) – (A.5),

|M|2 = 16
9

g4

(p2g −m2g)2
[
s−m21 −m22

2
s−m23 −m24

2
+
−u+m21 +m24

2
−u+m22 +m23

2

−m2m4
−t+m21 +m23

2
−m1m3

−t+m24 +m22
2

+ 2m1m2m3m4
]

(A.40)

We recall that the calculation is performed for qq′ → qq′ scattering, therefore
m1 = m3 and m2 = m4, while the momentum transfer, i.e., the gluon momentum,
reads p2g = t, since the diagram of this scattering is of the t-channel type [4]. With
these modifications, the squared amplitude becomes

|M|2 = 16
9

g4

(t−m2g)2
[(s−m21 −m22)2

4
+
(−u+m21 +m22)2

4

+m22
t− 2m21
2
+m21

t− 2m22
2
+ 2m21m

2
2

]
= (A.41)

16
9

g4

(t−m2g)2
[(s−m21 −m22)2

4
+
(−u+m21 +m22)2

4

+m22
(
t− 2m21
2
+m21

)
+m21

(
t− 2m22
2
+m22

)]
= (A.42)

16
9

g4

(t−m2g)2
[(s−m21 −m22)2

4
+
(−u+m21 +m22)2

4
+
t(m21 +m

2
2)

2

]
. (A.43)
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Now we eliminate the variable u, using Eq. (A.6), obtaining the final expression for
the scattering amplitude squared mentioned in Section 4.2,

|M|2 = 16
9

g4

(t−m2g)2
[(s−m21 −m22)2

4
+
(s+ t−m21 −m22)2

4
+
t(m21 +m

2
2)

2

]
. (A.44)

Combining the two above equations and setting mi = 0, we obtain the exact
expression provided in [4] for ud→ ud cross section.

Applying the crossing symmetry [4] to Eq. (A.44), i.e., by crossing t and s
channels, one can straightforwardly obtain the amplitudes for the qq̄ → q′q̄′ scatte-
rings.

A.2 qq̄ → qq̄ cross section

In this Section we provide the detailed computation of the scattering ampli-
tude for the qq̄ → qq̄ process, i.e., for quarks and antiquarks all of the same flavor,
uū→ uū, etc. These cross sections are described by the two Feynman diagrams, in
s and t channels, therefore the total squared amplitude will be obtained from.

|M|2 = |Ms|2 + |Mt|2 + 2MsM∗t (A.45)

s channel
We now simplify our notation as u(pi, si) = ui, and introduce vi (v̄i) denoting the
incoming (outgoing) antiparticle spinor, with different spin-summation rule,∑

s1

v(s1, p1)v̄(s1, p1) = /p1 −M1. (A.46)

For the diagram in s channel, the scattering amplitude reads

−iMs = v̄2(−igγµtaij)u1 −
−iδabgµν
p2 −m2g

ū3(−igγνtbi′j′)v4 = (A.47)

g2

p2g −m2g
taijt
a
i′j′(v̄2γ

µu1)(ū3γµv4). (A.48)

When squared, the amplitude can be evaluated step-by-step using the techniques
presented in the previous section:

|Ms|2 =
2
9

g4

(p2g −m2g)2
(v̄2γµu1)(ū3γµv4)(v̄4γνu3)(ū1γνv2) = · · · = (A.49)

2
9

g4

(p2g −m2g)2
Tr
[
( /p2 −m2)γµ( /p1 +m1)γν

]
Tr
[
( /p4 −m4)γµ( /p3 +m3)γν

]
= (A.50)

2
9

g4

(p2g −m2g)2
Tr
[
p2αγ

αγµp1βγ
βγν + p2αγαγµm1γν −m2γµp1βγβγν −m2γµm1γν

]
×Tr

[
p4αγ

αγµp3βγ
βγν −m4γµm3γν

]
= (A.51)

2
9

g4

(p2g −m2g)2
(
p2αp1βTr[γαγµγβγν ]−m2m1Tr[γµγν ]

)
×
(
p4αp3βTr[γαγµγβγν ]−m4m3Tr[γµγν ]

)
(A.52)
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Above, Tr[p2αγαγµm1γν ] = Tr[m2γµp1βγβγν ] = 0 due to the product of the odd
number of Dirac matrices. Similar terms are therefore neglected under the second
trace in Eq. (A.51).

Using the trace identities

Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ), (A.53)
Tr[γµγν ] = 4gµν , (A.54)

we get:

|Ms|2 =
2
9

g4

(p2g −m2g)2
(
p2αp1β 4(gαµgβν − gαβgµν + gανgµβ)−m2m14gµν

)

×
(
p4αp3β 4(gαµg

β
ν − gαβgµν + gαν gβµ)−m3m44gµν

)
= (A.55)

8
9

g4

(p2g −m2g)2
[pµ2p

ν
1 − (p2 · p1)gµν + pν2p

µ
1 −m2m1gµν ]

×[p4µp3ν − (p4 · p3)gµν + p4νp3µ −m3m4gµν ] = (A.56)

8g4

9(p2g −m2g)2
[
pµ2p4µp

ν
1p3ν − (p4 · p3)p

µ
2gµνp

ν
1 + p

µ
2p3µp

ν
1p4ν −m3m4p

µ
2gµνp

ν
1

−(p2 · p1)p4µgµνp3ν + (p2 · p1)(p4 · p3)gµνgµν − (p2 · p1)p4νgµνp3µ

+(p2 · p1)m3m4gµνgµν + pν2p3νp
µ
1p4µ − (p4 · p3)pν2gµνp

µ
1 + p

ν
2p4νp

µ
1p3µ

−m3m4pν2gµνp
µ
1 −m2m1p4µgµνp3ν

+m2m1(p4 · p3)gµνgµν −m2m1p4νgµνp3µ +m1m2m3m4gµνgµν
]
. (A.57)

We then rewrite the four-vector products and collect similar terms in the bracket,[
(p2 · p4)(p1 · p3)− (p4 · p3)(p2 · p1) + (p2 · p3)(p1 · p4)︸ ︷︷ ︸−m3m4(p2 · p1)

−(p2 · p1)(p4 · p3) + 4(p2 · p1)(p4 · p3)− (p2 · p1)(p4 · p3) + 4m3m4(p2 · p1)

+ (p2 · p3)(p1 · p4)︸ ︷︷ ︸−(p4 · p3)(p2 · p1) + (p2 · p4)(p1 · p3)−m3m4(p2 · p1)
−m2m1(p4 · p3) + 4m2m1(p4 · p3)−m2m1(p4 · p3) + 4m1m2m3m4

]
, (A.58)

and insert it to the Eq. (A.57), obtaining

|Ms|2 =
8g4

9(p2g −m2g)2
[
2(p2 · p4)(p1 · p3) + 2(p2 · p3)(p1 · p4)+

2m3m4(p2 · p1) + 2m2m1(p4 · p3) + 4m1m2m3m4
]

(A.59)

Using Mandelstam variables from Eqs. (A.3) – (A.5), and the fact that in the s chan-
nel, the momentum transfer is p2g = s, we finally get:
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|Ms|2 =
8g4

9(p2g −m2g)2
[(t− 2m22)(t− 2m21)

2
+
(u−m21 −m22)2

2
+

2m1m2(s−m21 −m22) + 4m21m22
]

(A.60)

t channel
The second diagram for this process is in the t channel,

iMt = ū3(−igγµtaii′)u1
(−iδabgµν
p2g −m2g

)
v̄2(−iγνgtbjj′)v4. (A.61)

When squared, the scattering amplitude reads

|Mt|2 =
2
9

g4

(p2g −m2g)2
(ū3γµu1)(v̄2γµv4)(v̄4γµv2)(ū1γµu3) = (A.62)

2
9

g4

(p2g −m2g)2
Tr[(/p3 +m3)γ

µ(/p1 +m1)γ
ν ] Tr[(/p4 −m4)γµ(/p2 −m2)γν ] = (A.63)

8g4

9(p2g −m2g)2
[pµ3p

ν
1 − (p3 · p1)gµν + pν3p

µ
1 +m1m3g

µν ]

×[p4µp2ν − (p4 · p2)gµν + p4νp2µ +m4m2gµν ] = · · · = (A.64)

8g4

9(t−m2g)2
[(s−m21 −m22)2

2
+
(u−m21 −m22)2

2
+ t(m21 +m

2
2)
]

(A.65)

s− t cross term
In Eq. (A.45), the final term is still missing, which is the cross term between the
two channels,MsM∗t . The step-by-step evaluation can be performed by the reader
based on the previously given scheme. We provide the final expression, reading

MsM∗t = −
16g4

27(s−m2g)(t−m2g)

×
[(u−m21 −m22)2

2
− t(m21 +m

2
2)

2
+m1m2(u− s)

]
. (A.66)
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Collecting all the terms, we obtain the total squared amplitude of the following form

|M|2 = |Ms|2 + |Mt|2 + 2MsM∗t =

8g4

9

 1
(s−m2g)2

{(t− 2m22)(t− 2m21)
2

+
(u−m21 −m22)2

2
+ 4m21m

2
2

+2m1m2(s−m21 −m22)
}

+
1

(t−m2g)2
{(s−m21 −m22)2

2
+
(u−m21 −m22)2

2
+ t(m21 +m

2
2)
}

−2
3

1
(s−m2g)(t−m2g)

{(u−m21 −m22)2
2

− t(m21 +m
2
2)

2
+m1m2(u− s)

}. (A.67)
Our final expression can be further simplified by eliminating the u variable. We note
that for mi = 0, Eq. (A.67) corresponds to the results presented in [4] for uū→ uū
scattering of massless quarks. Moreover, from the above equation, one can obtain
other two-body scattering amplitudes from the associated symmetries. Crossing s
and u channels delivers the amplitude for the qq → qq and q̄q̄ → q̄q̄ scatterings [4,60].
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Large Angle Scattering
Approximation

As stated in Section 4.2, the scatterings with large angle dominate the momentum
transfer and therefore considered relevant in the evaluation of the transport parame-
ters. Therefore, in order to compute the transport cross sections under the large angle
scattering (LAS) assumption considered in Eq. (4.12), one needs to evaluate a phe-
nomenological weight-factor sin2 θ, which depends on masses of the (quasi)particles
participating in the scattering.

Following Fig. A.1, the scattering angle in the c.m. frame can be expressed in
terms of Mandelstam variables as

p⃗ · p⃗′ = |p⃗| · |p⃗′| cos θ. (B.1)

We can further specify the four-vector product between the initial and final states,

p1 · p3 = E1E3 − |p⃗1||p⃗3| cos θ. (B.2)

Combining that with the definition of Mandelstam variable t and Eq. (A.6), we
obtain the scattering angle expressed in terms of Mandelstam variables and the
(quasi)particle masses,

cos θ =
s(t− u) + (m21 −m22)(m23 −m24)√

λ(s,m21,m22)
√
λ(s,m23,m42)

, (B.3)

with λ(a, b, c) given by

λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bs =
[a− (

√
b+
√
c)2][a− (

√
b−
√
c)2] = a2 − 2a(b+ c) + (b− c)2. (B.4)

The sin2 θ factor is then computed from the trigonometric identity

sin2 θ = 1− cos2 θ =

1− [s(t− u) + (m21 −m22)(m23 −m24)]2

[s2 − 2s(m21 +m22) + (m21 −m22)2] [s2 − 2s(m23 +m24) + (m23 −m24)2]
. (B.5)

Now we can simplify the above equation to the case when m1 = m2 = m3 = m4,
which corresponds to the scatterings qq → qq, qq̄ → qq̄, and gg → gg, considered
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in this Thesis. Using the relations between Mandelstam variables for particles with
identical masses, s+ t+ u = 4m2, i.e., u = 4m2 − s− t, we get

sin2θ = 1− [s(t− u)]2

[s2 − 4sm2] [s2 − 4sm2]
= 1− s2(t− 4m2 + s+ t)2

[s2 − 4sm2]2
= (B.6)

[s− 4m2]2 − (2t+ s− 4m2)2

[s− 4m2]2
=
−4t(t+ s− 4m2)
[s− 4m2]2

, (B.7)

which corresponds to the result given in [61] for uū → uū scattering studied in
the NJL model.

There are other explicit forms of sin2 θ, depending on the masses of initial and
final paticles. For example, for scatterings of the type qq̄ → q′q̄′, qq̄ ↔ gg, where
identical masses of initial states differ from the masses of final ones, i.e, m1 = m2
and, separately, m3 = m4.

In Eq. (B.5), we, therefore, change the notation to identify equal masses. Using
m2 → m1 and m4 → m3, we get

sin2 θ = 1− [s(t− u)]2

[s2 − 2s(m21 +m21)] [s2 − 2s(m23 +m23)]
= (B.8)

1− s2(t− (2m21 + 2m23 − t− s))2

s(s− 4m21) s(s− 4m23)
= 1− (2t+ s− 2m

2
1 − 2m23)2

(s− 4m21) (s− 4m23)
= (B.9)

−4[m
4
1 +m

4
3 − 2m23t− 2m21(m23 + t) + t(s+ t)]
(s− 4m21)(s− 4m23)

. (B.10)

Finally, sin2 θ for the processes with m1 = m3 and outgoing m2 = m4, such as
qq′ → qq′, qq̄′ → qq̄′, or qg → qg. Simplifying Eq. (B.5) by usingm3 → m1, m4 → m2,
the scattering angle reads

sin2 θ = 1− [s(t− u) + (m21 −m22)2]2

[s2 − 2s(m21 +m22) + (m21 −m22)2]2
= (B.11)

1− [s(2t+ s− 2m
2
1 − 2m22) + (m21 −m22)2]2

[s2 − 2s(m21 +m22) + (m21 −m22)2]2
= (B.12)

−4st[m
4
1 +m

4
2 − 2m22s− 2m21(m22 + s) + s(s+ t)]

[s2 − 2s(m21 +m22) + (m21 −m22)2]2
. (B.13)

We note that the formulas obtained above are valid not only for quasiparticles with
medium-dependent masses but for any scatterings of particles, i.e., with constant
masses, as well as with vanishing masses. For the latter, one obtains the relevant
expressions by setting mi = 0.
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