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To investigate the properties of the large # limit ofN = 1 SUSY Yang-Mills theory, we have started

a study for a reduced matrix model with an adjoint Majorana fermion. The gauge action is based on

the Wilson action and the adjoint-fermion one is the Wilson-Dirac action on a reduced lattice with

twisted gauge boundary condition. We employ the RHMC algorithm in which the absolute value

of the Pfaffian is incorporated. The sign of the Pfaffian is included with the re-weighting method

and separately measured as an observable. In this talk, we show the configuration generation

status towards the large # limit and the behavior of the lowest/lower eigenvalue(s) of the Wilson-

Dirac adjoint fermion operator. We investigated the sign of the Pfaffian and the critical hopping

parameters for the chiral limit. The sign of the Pfaffian is always positive on the configurations

we have generated. The critical hopping parameters derived from the eigenvalues of the Dirac

operator are consistent with those derived from the PCAC mass relation with non-singlet flavor

adjoint fermions.
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1. Introduction

Understanding the non-perturbative dynamics of Yang-Mills theories is one of the important

open problems in theoretical physics. One of the strategies to investigate this issue in a simplified

set up is the 1/# expansion. In the limit of large number of colours, Yang-Mills theory retains

many of the non-perturbative aspects of finite # theories while exhibiting a number of simplified

features, as planarity or volume independence. In this work, we combine the large # limit with

lattice techniques to investigate non-perturbatively N = 1 SUSY SU(#) Yang-Mills theory.

The approach we take for this study is based on the property known as volume reduction.

Lattice studies of pure SU(#) Yang-Mills indicate that finite volume effects disappear in the large

# limit, allowing to simulate the theory on a one-point lattice endowed with twisted boundary

conditions [1–3]. Reduction can as well be extended to include dynamical fermions in the adjoint

representation [4], in particular in the case of a single massless Majorana fermion that corresponds

to N = 1 SUSY. Although the lattice breaks supersymmetry, N = 1 SUSY gets restored in the

chiral and continuum limits [5]. This restoration can be investigated by analyzing the mass spectrum

and the SUSY Ward–Takahashi identity. In this work we followed an alternative approach based

on the analysis of the eigenspectrum of the adjoint Wilson fermion operator and the PCAC mass

of the non-singlet flavor pseudo-scalar–axial current channel. Here we present an account of the

methodology employed and the status of the simulations; a preliminary study of scale setting for

our results has been presented at this conference by P. Butti [6].

The paper is organized as follows. Next section is devoted to explain the model and the

methodology. In Section 3, we show the simulation results including the complex eigenvalues of

the adjoint Wilson fermion operator, the minimum absolute value of the eigenvalue of the adjoint

Hermitian Wilson fermion operator, and the chiral limit of the eigenvalue and the PCAC mass. We

summarize our results in the last section.

2. Model and Simulation method

2.1 Model

Our model is a volume reduced version of the lattice model with Wilson gauge and one adjoint

Majorana Wilson fermion actions with twisted boundary conditions. The partition function and the

action are defined by

Z =

∫ 4
∏

`=1

3*`Pf [��, ]4−(� [* ] , (1)

(� [*] = 1#

4
∑

`,a=1,`≠a

Tr
[

� − I`a*`*a*
†
`*

†
a

]

, (2)

�, = � − ^adj

4
∑

`=1

[

(1 − W`)+` + (1 + W`)+)
`

]

, (3)

where*` and+` are SU(#) matrices in the fundamental representation and in the adjoint represen-

tation, respectively. The gauge action (2) is the so-called twisted-Eguchi-Kawai (TEK) action [1–3].
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Twisted gauge boundary conditions are imposed through the twist phase factor I`a defined by

I`a = exp

[

2c:8
√
#

]

, Ia` = I∗`a for ` < a, (4)

where : is an integer coprime to
√
# . �, is the Wilson-Dirac fermion matrix in the adjoint

representation, � = W4W2 is the charge conjugation gamma matrix, and Pf [-] is the Pfaffian

for a skew-symmetric matrix -)
= −- . Using the properties that +

†
` = +)

` , �)
= −�, and

�W`�
)
= −W)` , we can prove the skew-symmetry as (��, )) = −��, . The weight Pf [��, ] in

the path integral given by eq. (1) introduces one dynamical adjoint Majorana fermion in the system.

We employ a Markov chain Monte Carlo (MCMC) algorithm to generate configurations from

(1). To do this, we need to include the Pfaffian in the MCMC algorithm. In general it is proved

that the Pfaffian is real but positivity is not guaranteed. In order to avoid a negative sign probability

weight for MCMC, we transform the partition function as follows:

Z =

∫ 4
∏

`=1

3*`sign (Pf [��, ])
�

�det[&2
, ]

�

�

1/4
4−(� [* ] , (5)

where &, = �, W5 and the property |Pf [��, ] | =
�

�det[&2
,
]
�

�

1/4
is used. We can then apply

MCMC algorithms to (5) with a positive weight
�

�det[&2
,
]
�

�

1/4
4−(� [* ] . The sign of the Pfaffian

should be incorporated in measured observables using re-weighting.

2.2 Simulation method

We employ the rational Hybrid Monte Carlo (RHMC) algorithm [7, 8] to incorporate the

fractional power of the fermionic determinant. To attain that goal
�

�det[&2
,
]
�

�

1/4
is rewritten in the

following pseudo-fermionic integral form:

�

�det[&2
, ]

�

�

1/4
=

∫

3q3q†4−(& with (& = Tr
[

q†' (−1/4)
#'

(&2
, )q

]

, (6)

where q is the pseudo-fermion field in bi-fundamental form for the adjoint representation. When

we apply the Hermitian Wilson-Dirac matrix &, to the pseudo-fermion field q in bi-fundamental

form, we get

&, q = �, W5q = W5q − ^adj

4
∑

`=1

[

(1 − W`)W5*`q*
†
` + (1 + W`)W5*

†
`q*`

]

, (7)

where the traceless condition Trq = 0 is imposed to remove the unwanted U(1) contribution before

the multiplication. '
(?)
#'

(G) is the #'-th order rational polynomial approximation to G? defined by

G? ≃ '
(?)
#'

(G) ≡ U
(?)
0

+
#'
∑

9=1

U
(?)
9

G − V
(?)
9

. (8)

The rational approximation (8) for (&2
,
) ?q requires the inversion of (&2

,
− V

(?)
9

)−1q for which

the multi-shift conjugate gradient algorithm is employed.
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1 (#, :) ^adj

0.360 (289, 5) 0.1760, 0.1780, 0.1800, 0.1820, 0.1840

0.350 (169, 5), (289, 5), (361, 7) 0.1775, 0.1800, 0.1825, 0.1850, 0.1875

0.340 (169, 5), (289, 5), (361, 7) 0.1850, 0.1875, 0.1890, 0.1910, 0.1930

Table 1: Model parameters. We accumulated over 600 configurations for each pair of (#, :) and ^adj.

The parameters {U (?)
9

, V
(?)
9

} are determined to minimize the metric: maxG∈[0,1]

�

�

�(G) ? − '
(?)
#'

(G)
�

�

�,

for a real number interval G ∈ [0, 1]. To minimize the metric for the matrix &2
,

, the lowest and

largest eigenvalues of &2
,

should be monitored. In the RHMC algorithm we monitor the exterior

eigenvalues at the beginning and the end of each molecular dynamics (MD) evolution and choose

the polynomial order #' to satisfy the metric below double precision tolerance 10−15. With the

parameters, the value of the total Hamiltonian is precisely evaluated for the Metropolis test. To

compute the exterior eigenvalues of &2
,

, which has the symmetry �(&2
,
)�−1

= (&2
,
)) with

� = W5� resulting in a two-folded eigenspectrum, we employ an improved thick-restart Lanczos

type algorithm [9] to treat the degeneracy.

On the other hand, the rational polynomial parameters {U (?)
9

, V
(?)
9

} and the order #' have to

be the same for every MD evolution trajectory to make the RHMC algorithm exact. The polynomial

order for the MD evolution and eigenvalue interval [0, 1], and then the parameters {U (?)
9

, V
(?)
9

}, are

tuned during the thermalization steps to sufficiently cover the measured exterior eigenvalues with a

low approximation tolerance, and the tuned value is kept for all MD trajectories in the production

run.

The sign of the Pfaffian can be determined by counting the number of negative real eigenvalues

of �, [10–12]. On each configuration *` generated by the RHMC algorithm, we compute the

complex eigenvalues of �, near the origin of the complex plane using ARPACK [13, 14] to

determine the sign used in the reweighting method when evaluating observables.

3. Simulation results

3.1 Model Parameters

The TEK model exhibits a first order phase transition separating the weak and strong coupling

regions. To approach the proper continuum limit, simulations at finite lattice cut-off should be

performed in the weak coupling region. For the current model (1), with a single adjoint Majorana

fermion, a first order phase transition line separating the weak and strong coupling regions remains.

After a brief survey of the parameter space {1, ^adj}, we roughly determined the position of this

line and have generated configurations with parameters pertaining to the weak coupling region as

tabulated in Table 1. Details on the scale setting and the meson spectrum with fundamental fermions

have been presented at this conference by P. Butti and can be found in [6].

We employ the RHMC algorithm described in the previous section for the configuration

generation. Each configuration is separated with five trajectories with a trajectory length of g = 1

and with HMC acceptance rates greater than 70%. Numerical computations were done on the

following computer systems: (i) SX-ACE at Osaka University, (ii) Oakbridge-CX at University

4
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Figure 1: Complex eigenvalues of �, (Top: # = 169, Middle: # = 289, Bottom: # = 361).

of Tokyo, and (iii) Subsystem B of ITO system at Kyushu University. The code for the RHMC

algorithm is primarily written in Fortran 2003.

3.2 Sign of the Pfaffian, lowest eigenvalues, and chiral limit

We evaluated the sign of the Pfaffian by counting the number of negative real eigenvalues of

�, . Figure 1 shows the eigenvalue distribution of �, in the complex plane. We compute 100

eigenvalues close to I = −0.1 in the complex plane with the shift-invert mode of ARPACK on each

configuration, and all eigenvalues are overlaid in the plane. At the lightest adjoint fermion mass

at each 1 and (#, :), we did not observe any negative real eigenvalues. As expected, for heavier

fermion masses, negative real eigenvalues are also not present, as we explicitly checked for various

cases. We conclude that for our simulation parameters in Table 1, the sign of the Pfaffian is always

positive.

The dependence on ^adj of the expectation value of |_min |, corresponding to the eigenvalue of

&, with lowest absolute value, is displayed on Figure 2. We expect that |_min | is a linear function

of the mass of the Majorana fermion, with vanishing value corresponding to the chiral limit. The

5
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0.00

0.05

0.10

0.15

0.20

0.25

0.30

5.1 5.2 5.3 5.4 5.5 5.6 5.7

0
𝑚

P
C

A
C

1/^adj

1 = 0.340 (#, :) = (361, 7), ^2 = 0.19365(5)
1 = 0.350 (#, :) = (361, 7), ^2 = 0.18845(2)
1 = 0.360 (#, :) = (289, 5), ^2 = 0.18417(3)

Figure 3: ^adj dependence of the PCAC mass.

^adj dependence is fitted with the following functional form:

|_min |2
(

^adj

)2
= �

(

1

^adj

− 1

^2

)2

+ X

#2
, (9)

where, as explained earlier, |_min |2 is the expectation value of the lowest eigenvalue of&2
,

measured

during the RHMC algorithm. The last term in the right hand side of (9) represents the finite # (or

finite volume correction with twisted boundary conditions) and ^2 is the critical hopping parameter.

�, ^2 and X are fitting parameters. We fit all the data simultaneously as a function of (^adj, #) at

each 1, and this functional form describes well all our data.

The critical hopping parameters from |_min | can be compared with those determined from the

PCAC mass of adjoint Dirac-fermion meson correlation functions [15]. We construct non-singlet

flavor meson correlation functions made of adjoint Wilson-Dirac fermions [16, 17]. The ^adj

dependence of the PCAC mass from the pseudo-scalar–axial vector channel is shown in Figure 3,

where the results at the largest value of # are extrapolated linearly in 1/^adj for each value of 1.

The resulting critical hopping parameters are given by:

^2 = 0.19365(5) [PCAC], 0.19360(5) [|_min |] at 1 = 0.340, (10)

^2 = 0.18845(2) [PCAC], 0.18856(5) [|_min |] at 1 = 0.350, (11)

^2 = 0.18417(3) [PCAC], 0.18417(4) [|_min |] at 1 = 0.360. (12)

6
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Although we use the PCAC mass at the largest # for each 1 and the limit of # → ∞ is not taken,

the critical ^2 determined from both methods are consistent.

4. Summary

We have generated ensembles for the reduced matrix model with one adjoint Majorana fermion

and twisted gauge boundary conditions, with the aim of studying the large # limit of N = 1 SUSY

SU(#) Yang-Mills theory. We simulated three different bare couplings at 1 = 0.360, 0.350, 0.340

and several values of # . We have analyzed the point of SUSY restoration by looking at the spectrum

of &, and also at the PCAC mass in the non-singlet flavor pseudo-scalar–axial vector channel.

We have found consistency in the value of the critical hopping parameter obtained from these two

determinations.
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