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В коллективном методе ускорения ионов эффективная сила, удер-
живающая ионы в электронном сгустке, пропорциональна его плотности 
[1]. Увеличение размеров сгустка связано в основном с неполной ком-
пенсацией его заряда, поэтому возникает проблема фокусировки сгуст-
ка при ускорении. 

В модели коллективного ускорителя ОИЯИ сгусток представляет 
собой кольцо электронов с эллиптическим поперечным сечением. Ради-
альный размер эллипса хорошо удерживается постоянным магнитным 
полем, в котором движется кольцо. В работе [2] рассматривались неко-
торые методы фокусировки в направлении движения кольца-продоль-
ной фокусировки. Оказывается, что металлический экран обладает фо-
кусирующими свойствами, но для практического применения этого эф-
фекта необходимо ослабить действие экранированного магнитного поля. 

В этой работе рассмотрена фокусировка кольца при ускорении с 
помощью металлического цилиндра, разрезанного вдоль образующих 
(беличье колесо). 

Рассмотрим движение в такой системе тонкого кольца с радиусом 
а, образованного вращающимися со скоростью ν электронами. Кольцо 
как целое движется коаксиально с цилиндром в положительном направ-
лении. Нас будут в основном интересовать компоненты поля Еz и Нг, 
определяющие силу FZ .B собственной системе они имеют вид: 
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Здесь Ег и HJ: собственные поля кольца в свободном простран-
стве, 1п(х) К„ (х)—модифицированные функции Бесселя, штрих оз-
начает производную по полному аргументу, b—радиус цилиндра, N— 
число разрезов, —плотность заряда в собственной системе координат, 
коэффициенты а m-am· Cm и с m неизвестны и определяются из гра-
ничных условий. Граничные условия на ленте в собственной системе 
кольца совпадают с условиями Леонтовича [3] для переменных полей в 
лабораторной системе. На щели требуется непрерывность всех компо-
нент поля. Вычисление коэффициентов a m =aj n =aj n

1 , c m —с^ис^ сводится 
к решению систем функциональных уравнений типа: 

2 ' e
im9x3;M = Q п р и 

πς3,Μ 
<|ψ|<π 2 ' e

im9x3;M = Q п р и 
ι 

<|ψ|<π 
ш 

eim9x3;M = Q п р и 
ι 

<|ψ|<π 

Σ eim*lm[il— χ®·"(1-χ;· Μ) при eim*lm[il— χ®·"(1-χ;· Μ) при 

ΙΦΚ-
tqs.M 

ΙΦΚ- 1 (2) 

ε m ^ 
1 

» m 1 (2kb)2rmN(|k|b)k'mN(|k|b) ε m ^ 2|rnN|kmN(|k|b)ImN(|k|b) » m 1 
|mN| 

х э — ι , х м = -2(kb)»I1(|k|b)k1(|k|b) х э — 
4*bk0(jk|b)I0(/k|b) 

, х м = -
Ν 

х з л с в я з а н о с a m i C m соотношениями; 

аш 
ι 

Ро Ιο (|k|a)k0(|k|b) c m = ( — l ) m + 1 p0v I,(|k|a) 
χΜ πι аш 

ι 2π ImN(|k[b)kmN(|k|b) 
c m = ( — l ) m + 1 

2TCh(|k|b) 
χΜ πι 

q9=d— ширина щели, qM=c—ширина лентц, / = d + c . Вид уравнений 
совпадает с полученными в работе [4], отлича'ясь от них лишь опре-
делениями е т и х. Решение этих уравнений проводилось в соответ-
ствии с методикой [4] на ЭВМ. При стремлении величин а, Ь-»оо 
при сохранении Ь—а, результаты согласуются с работой [2]. 

С учетом экранированных полей частица совершает колебания, ко-
iop6ie описываются уравнениями: 
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где g и f— размеры малого сечения кольца, гкл—классический ра-

диус электрона, γ 0 = —! , Ne—линейная плотность частиц, \> 
V  1 — v2/ca 

ζ—отклонение частицы в г и ζ—направлениях. 
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Для экспериментального осуществления этого метода фокусировки 

нужно выбрать наиболее оптимальное значение для p, N и q=πd/l.Вы-

берем p=0,8- Ясно, что с увеличением расстояния между стенкой и коль-
uом, фокусирующая сила падает (Табл. 1). Приближение к стенке 

опасно, так как может возникнуть неустойчивость кольца как целого 
(2). 

Табл. 1 

p\ N=30 
q=π/2 

Tоэ
z 

TоM
z 

Tо
z 

0,8 1,84 -0,16 1,68 
0,6 0,28 -0,009 0,27 

Удобно сделать равными длину щелей и лент ( q=π/2). При q = 0 

беличье колесо переходит в сплошной цилиндр и фокусирующая сила 
определяется только разницей между электрической и магнитной 
силами, связанной с кривизной системы [2,5]. Значение q=π соответ-
ствует кольцу в свободном пространстве. Расчеты показывают, что фо-

кусирующая сила мало зависит от q, когда q близко к π/2. Число разре-
зов определяется зависимостью от него амплитуд, гармоник сш≥1 и 
фокусирующей силы. Оценки показывают, что: 

Τ (m+1)э
2 

~ ( p ) N . (5) Τ mэ
z ~ ( p ) N . (5) 

Численные расчеты подтверждают эту оценку (5). 



С увеличением числа разрезов растет фокусирующая сила и уменьша-
ется дефокусирующая. (Табл. 2). 

Табл.  2 

Ν \ 
Ρ = 0,8 

q=π/2 

Tоэ
z TоM

z Tо
z 

5 1,25 - 0 , 3 8 0,87 

10 1,61 - 0 , 3 6 1,2.5 

30 1,84 - 0 , 1 6 1,68 

Таким образом, «беличье клесо» является анизотропным экраном, 
который задерживает аксиальное электрическое поле и пропускает 

нормальное магнитное. При q=π/2 и малом числе разрезов расстояние 

между полосами довольно большое, и часть аксиального электрического 
поля проходит между ними наружу. При увеличении N увеличивается 
число силовых линий электрического поля, которое заканчивается на за-
рядах лент, (заряды на ребрах), а это значит, что растет поле внутри 
трубы. 

Дефокусирующая магнитная сила в Fz связана с компонентой Н г 

для которой на металлической полосе должно выполняться условие Н г = 
= 0 . Это значит, что Нг компонента магнитного поля свободно про-
ходит в щели между лентами, значительно искривляясь около них. По-
ле, связанное с искривлением магнитной силовой линии около середи-
ны ленты, в основном остается внутри системы (если N=0, то все маг-

нитное поле Нготражено). При увеличении N и сохранении q = π/2 все 

более увеличивается роль ребер лент и связанное с ними провисание 
магнитного поля наружу. 

Итак, в модели коллективного магнитного ускорителя ионов ОИЯИ 
параметры фокусирующей системы выбраны следующими: 

p=0,8; q = 
π , N=30. p=0,8; q = 2 , N=30. 

Это дает значения Т0
r=1 68, Т0

r = 1,33 и обеспечивает те же размеры 
кольца при ускорении, что и в адгезаторе в конце сжатия. 

Точность проведенных расчетов определяется выбором верхнего 
предела интегрирования в формулах, которые позволяют оборвать сис-
тему уравнений (2) на некотором значении m m а х . В нашем случае m m a x = 

= 10, верхний предел интегрирования t=15, точность расчетов выше 
1%. 
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