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Abstract: Localization phenomena in light, scattering from random fluctuations of matter fields and

space–time metrics near a black hole horizon, were predicted to produce a pronounced peak in the

angular distribution of second-harmonic light in the direction normal to the horizon. Therefore,

the detection of second-harmonic generation may become a viable observational tool to study

spacetime physics near event horizons of astronomical black holes. The light localization phenomena

near the horizon may be facilitated by the existence of surface electromagnetic wave solutions. In

this communication, we study such surface electromagnetic wave solutions near the horizon of a

Schwarzschild metric, describing a black hole in vacuum. We demonstrate that such surface wave

solutions must appear when quantum gravity effects are taken into account. Potential observational

evidence of this effect is also discussed.
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1. Introduction

During the recent several years, enormous progress has been made in the imaging and
exploration of spatial regions located very near the event horizons of known astronomical
black holes [1–3]. However, many more experimental tools will be required in the future to
observe and study the complicated physics of these highly non-trivial spacetime regions
in more detail. In this communication, we will concentrate on the further development
of a recent proposal [4] to use optical second-harmonic (SH) generation as an alternative
observational tool to explore gravitational physics in the immediate vicinity of an event
horizon of a black hole. In ref. [4], it was demonstrated that SH generation must be strongly
enhanced when light from a distant star interacts with random fluctuations of various
fields (such as matter fields and fluctuating spacetime metrics) near an event horizon. This
strongly directional SH emission occurs due to localization phenomena in light scattering
from these fluctuations. It is directed away from the black hole perpendicular to the horizon,
and therefore it has a very good chance of escaping from the black hole. As illustrated in
Figure 1, this effect resembles the enhancement of SH radiation from randomly rough metal
surfaces, which also occurs in the normal direction on a metal surface [5,6]. The SH peak in
the normal direction occurs under external spatially coherent irradiation at any illumination
direction, provided that the randomly rough surface is capable of supporting surface
electromagnetic waves. When an external light source of frequency ω illuminates such a
random surface, it couples into a system of weakly localized surface electromagnetic modes.
Let us consider one of these surface modes which has a momentum k along the interface.
Upon surface propagation, this mode will experience a lot of backscattering, leading to the
generation of counterpropagating surface modes with momentum approximately equal to
−k. When these counterpropagating modes of frequency ω interact via any kind of surface
optical nonlinearity, they generate 2ω light. Due to momentum conservation, this SH light
may only have a nonzero wave vector component in the direction perpendicular to the
surface, leading to the observation of the strongly enhanced diffuse SH generation in this
direction. According to experimental observations [6], the angular width of this SH peak
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can be as small as a few degrees with respect to the mean normal, and its intensity appears
to be much larger compared to the diffuse omnidirectional SH background. While potential
observability of this very interesting effect has been established in [4], the theoretical
consideration in that work was limited only to the case of the Rindler metric, which
describes the immediate vicinity of the black hole event horizon. In this communication,
we perform a more realistic study of surface electromagnetic wave solutions near the
horizon of a Schwarzschild metric, describing a “real” astronomical black hole in vacuum.
We demonstrate that surface wave solutions must also appear under these more realistic
conditions (especially when quantum gravity effects are taken into account). Potential
observational evidence of this effect will be also discussed.

describing a “real” astronomical black hole in vacuum. We demonstrate that sur-
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Figure 1. (a) Randomly rough metal surfaces exhibit strongly enhanced SH generation in the direction

perpendicular to the surface under illumination with spatially coherent fundamental light. The inset

illustrates the typical distribution of the diffuse SH generation with respect to the normal angle to the

metal surface. (b) In a similar fashion, SH generation must be strongly enhanced when light from a

distant star interacts with random fluctuations of matter fields and spacetime metrics near the event

horizon. Escape of the SH light from the black hole is facilitated by the strongly directional character

of this effect [4].

2. Results

In order to demonstrate the existence of surface electromagnetic wave solutions near a
black hole event horizon, we must solve Maxwell’s Equations in Vacuum in the presence of
a gravitational field [7]:

∂Fik

∂xl
+

∂Fli

∂xk
+

∂Fkl

∂xi
= 0 (1)

1
√
−g

∂

∂xk

(

√

−gFik
)

= 0 (2)

where Fik is the electromagnetic field tensor.
Consideration of electromagnetic wave propagation near a black hole event hori-

zon in [4] was based on the well-known analogy between these Maxwell equations in a
curvilinear spacetime metric gik(x, t) and the macroscopic Maxwell equations describing
electromagnetic fields in the presence of matter background with some non-trivial electric
permittivity tensor εij (x, t) and magnetic permeability tensors µij (x, t) [7]. For example, the
equations of electrodynamics in the presence of a static gravitational field look exactly like
Maxwell’s equations in some macroscopic electrodynamic medium, in which

ε = µ = g−1/2
00 (3)

where g00 is the temporal component of the metric tensor. Following this approach, let us
consider the static Schwarzschild metric describing an astronomical black hole in vacuum:
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ds2 =
(

1 −
rs

r

)

dt2 −
dr2

(

1 − rs
r

) − r2
(

dθ2 + sin2 θdφ2
)

(4)

where rs = 2γM/c2 is the Schwarzschild radius of the black hole [7]. The corresponding
equivalent material parameters are:

ε = µ =
1

√

1 −
rs

r

(5)

Let us consider solutions of the macroscopic Maxwell equations in such a spherically
symmetric geometry. The spatial variables in the Maxwell equations written in the spherical
coordinates partially separate, and without the loss of generality we may assume field
dependencies proportional to ei(mφ−wt), where m is an integer. The macroscopic Maxwell
equations may be written using the spherical coordinates (r,θ,φ) as [8]:
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1
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∂
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(

r2µHr

)

+
µ

sin θ

∂

∂θ
(sin θHθ) +

imµ

sin θ
Hφ = 0 (13)

These equations may be simplified if we assume that m = 0, which may be achieved
for any given light ray by choosing the proper system of coordinates. Moreover, if m = 0 the
TM and TE polarized solutions may be separated, so that for the TM solutions (for which
Eφ = Hr = Hθ = 0) we obtain:

Er =
ic

ωεr sin θ

∂

∂θ

(

sin θHφ

)

(14)

Eθ = −
ic

ωεr

∂

∂r

(

rHφ

)

(15)

Substitution of Equations (14) and (15) into Equation (8) gives rise to the following
wave equation for the TM polarized light:

−
ε

r

∂

∂r

(

1

ε

∂

∂r

(

rHφ

)

)

−
1

r2

∂
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(

1
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∂
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(
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)

)

=
εµω2

c2
Hφ (16)

Let us search for the approximate solutions to Equation (16) which have the following
functional form:

Hφ ∼ eikθrθ (17)
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where rkθ >> 1 is assumed. Under such an assumption, the wave equation may be re-written as:

−
ε

r

∂

∂r

(

1

ε

∂

∂r

(

rHφ

)

)

−
εµω2

c2
Hφ = −k2

θ Hφ (18)

which may be recast as a one-dimensional Schrödinger equation for an effective wave
function defined as ψ = Hφr/

√
ε:

−
∂2ψ

∂r2
+

(

−
1

2ε

∂2ε

∂r2
+

3
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− εµ
ω2

c2
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∂2ψ

∂r2
+ Vψ = −k2

θψ (19)

In the latter equation, V plays the role of an effective potential and −k2
θ plays the

role of a total energy. Based on the expression for ε and µ from Equation (5), the effective
potential near a Schwarzschild black hole equals

V = −
ω2

c2

1
(

1 −
rs

r

) −
rs

(

1 −
rs

4r

)

2r3
(

1 −
rs

r

)2
+

3r2
s

16r4
(

1 −
rs

r

)2
≈ −

ω2rs

c2ρ
−

3

16ρ2
(20)

where we have assumed that r = rs + ρ and ρ << rs. This potential (plotted schematically
in Figure 2) appears to be real and well-behaved even below the horizon, even though
the effective ε and µ parameters themselves are imaginary (as defined by Equation (5)).
Moreover, as noted in [4], the divergence of this potential at ρ = 0 is supposed to be tamed
by the quantum gravity effects. Note that such a situation is not unusual in macroscopic
electrodynamics. A similar situation is observed in the recently discovered surface electro-
magnetic waves guided by strongly lossy gradient structures [9]. We should also mention
that the spacetime metric of a black hole interior is typically obtained as an analytical
continuation of the conventional Schwarzschild metric (Equation (4)) above the horizon, in
which the dynamical roles of the temporal and radial coordinates are interchanged [10]. It
is easy to verify that such an exchange does not affect Equations (1) and (2). Therefore, the
effective potential described by Equation (20) appears to be reasonably well justified.
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Figure 2. Basic shape of the effective potential from Equation (20) near the horizon.
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Let us analyze the eigenstate solutions of this effective Schrodinger equation. We
should note that very near the horizon, the potential energy term proportional to 1/ρ2 will
always dominate. However, this only happens at very short distances when

ρ <<
3λ2

64π2rs
(21)

where λ is the wavelength of light at infinity. At larger distances, the effective potential
is Coulomb-like. An extensive analysis of solutions of the Schrödinger equation with a
“Coulomb plus inverse-square potential”

V = −
B

ρ
+

A

ρ2
(22)

may be found in [11]. If A > −1/8, the energy eigenstates of this potential are:

E(n) = −
2B2

(

2n − 1 +
√

1 + 8A
)2

(23)

In contrast, if A < −1/8, the ρ-component of the spatial frequency diverges near
ρ = 0, and there is no finite ground state (the particle falls into the horizon). Since in our
case A = −3/16 < −1/8 (see Equation (20)), we have obtained a familiar conclusion that
there are no zero-geodesics near the surface of a black hole within the scope of classical
treatment of the Schwarzschild metric. In the absence of quantum gravity effects, every
photon falls towards the horizon, and it is inevitably absorbed by the black hole. However,
based on the general properties of the 1D Schrödinger equations [12], it is well-known that
the case of 1/ρ2 potential is a borderline case, which separates potential wells exhibiting
finite ground energy states from the much more divergent potential wells in which a finite
ground state may not exist. In particular, any potential well that is weaker than 1/ρ2

exhibits a finite ground state. Therefore, the emergence of a cutoff for any particular reason
in the divergent 1/ρ2 behavior of the potential V(ρ) near a black hole event horizon (for
example, due to the emergence of quantum gravitational minimum length lmin of the order
of the Planck scale) leads to the emergence of a well-defined ground eigenstate among
the wave functions described by Equation (19). This eigenstate, located at kθ~lmin

−1, gives
rise to a fundamental guided surface electromagnetic wave propagating near the horizon.
Note that the field configuration and the dispersion law of this mode strongly resemble
the charge density wave in a gradient waveguide described in [9]. In addition, a set of
well-defined excited surface states will also appear in this limit, which at large n will
tend to

E(n) = −k2
θn ≈ −

B2

2n2
(24)

due to the Coulomb-like character of the attractive potential V(ρ) at large ρ. The dispersion
law of these excited modes appears to be:

kθn ≈
ω2rs√
2c2n

(25)

Thus, our detailed consideration reveals a family of surface electromagnetic wave
modes near the horizon, which justifies the proposal [4] to use optical SH generation
(mediated by these modes) as an observational tool to explore gravitational physics in the
immediate vicinity of the horizon.
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3. Discussion

The presence of surface electromagnetic wave solutions near the horizon in the more
general framework of a Schwarzschild metric further justifies the theory of SH generation
near the horizon, which was developed in [4]. This theory is virtually identical to the theory
of strongly enhanced directional SH generation from randomly rough metal surfaces [5].
The latter theory was confirmed in the experiments with randomly rough metal surfaces
capable of supporting surface electromagnetic waves [6], in which a narrow SH peak in the
normal direction was observed under external spatially coherent laser illumination at any
illumination direction. This interesting effect appears to be a generic property of systems
which support surface electromagnetic modes and exhibit weak disorder. An essential
similarity between the surface plasmon geometry described in [5,6] and an astronomical
situation in which light from a distant star interacts with a black hole horizon (see Figure 1),
arises from the fact that the illuminating light in both cases has a very high degree of spatial
coherence. Since photon interference is the root cause of the localization effects in light
scattering, such effects are only possible for spatially coherent illumination. Distant stars
indeed provide a source of such spatially coherent illumination (which is somewhat similar
to laser light) because of their small angular dimensions.

It is also important, however, that SH light directed perpendicular to the event horizon
has the most chances to leave the neighborhood of a black hole. As a result, such an SH light
may become a dominant component of its visible emission. Indeed, the omnidirectionally
scattered fundamental (ω) and SH (2ω) light will be predominantly re-absorbed by the
black hole. As a result, for a distant observer, the intensity of the diffuse fundamental
and SH light will be substantially attenuated in comparison with the directional second-
harmonic peak. While the observation of such an SH emission may not be easy, the
described effect may be used to obtain unique experimental information on the inner
workings of quantum gravity. Similar to Hawking radiation, the described SH emission
is caused by the quantum gravitational effects at very high spatial frequencies (of the
order of the Planck scale). On the other hand, localization effects induced by the quantum
spacetime fluctuations, which are necessary for the directional SH generation to occur, do
not play a substantial role in Hawking radiation. Another important distinction between
these two effects is that Hawking radiation is an internal property of a black hole, while
the directional SH radiation represents a black hole’s reaction to the external illumination.
Therefore, the described directional SH generation and Hawking radiation are two very
different effects of quantum gravity.

Another potentially interesting consequence of the newly obtained surface electro-
magnetic wave solutions, which look very similar to the charge density waves in gradient
waveguides [9], is that we may potentially assign an interesting direct physical meaning
to the holographic principle [13]. According to this guiding principle of quantum gravity,
the physical description of a volume of space can be thought of as encoded on a surface
bounding this volume, such as a gravitational horizon. As we have seen from Equation (5),
from the electromagnetic point of view, a horizon corresponds to a surface where ε = µ →
∞, which means that a horizon must act as an electric and magnetic mirror (see Figure 3).
For example, an electric charge q located at a distance l from the horizon must induce a
redistribution of surface charge density σ on the horizon defined as:

σ(x, y) = −
ql

2π(x2 + y2 + l2)
3/2

(26)

and leads to the appearance of an “image charge” in the mirror. As a result, the real
volume physics will be dutifully “reflected” by the 2D redistribution of these surface
charges. Excitation and propagation of the newly obtained surface charge density waves at
the horizon may provide a real physical mechanism behind holographic imaging. Note,
however, that a self-force acting on an accelerated charge indeed has a contribution, which
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may be interpreted as a Coulomb force from an image charge reflected in a distant Rindler
horizon (see for example [14]).

As far as observational consequences of the black hole SH emission are concerned,
it may potentially be detected as a weak anomalously blue-shifted light source whose
total brightness must be proportional to the surface area of the black hole and the square
of the total incident light intensity provided by nearby light sources. Assuming that the
optical nonlinearities near the horizon must be extremely strong due to enormous field
intensities near the horizon, the second-harmonic conversion efficiency may be considerable
(for example, in some solid-state physics situations, SH conversion efficiency reaches up
to ~10%). This argument provides reasonably optimistic chances of the detection of SH
light generated by a black hole located in a dense stellar association or in a center of a
bright galaxy.

 =
 →∞



 



( )



= −

+ +

“image charge” in the mirror. As a result, the real vol-
ume physics will be dutifully “reflected” by 

Figure 3. Appearance of image charges reflected in the mirror is caused by propagation and redistri-

bution of surface charges σ.

We should also mention that experimental observations of SH light from various
astronomical sources are not unusual. In particular, we can mention observations of SH of
the cyclotron line in the spectra of such high-mass bright X-ray sources as 4U1907+09, which
were obtained by the BeppoSAX [15]. Since such highly massive bright X-ray sources are
widely believed to be powered by black holes, these and similar experimental observations
may potentially need to be re-analyzed in search of evidence of the highly interesting
quantum gravity effects described above.
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Even though it may be difficult to observe these effects in astronomical observations,
one might also observe these effects in the higher-dimensional mini-black holes on the
Planck mass scale, which would be observed in future accelerator experiments [16]. When
the black hole mass approaches the order of the Planck mass due to Hawking radiation, it
would be expected that quantum gravity effects would also lead to quantum fluctuations in
the background metric. In four dimensions, such modified background geometries would
be given by the quantum deformed Schwarzschild black holes [17], the black holes in the
noncommutative models [18], and black holes in the asymptotically safe gravity [19].

4. Conclusions

In conclusion, we have demonstrated that localization phenomena in light scattering
from random fluctuations of matter fields and quantum spacetime in the vicinity of a black
hole horizon may produce an intense peak of second-harmonic light directed perpendicular
and away from the horizon. Therefore, detection of second-harmonic generation may
become a viable observational tool to study spacetime physics near event horizons of
an astronomical black hole. The light localization phenomena near the horizon may be
facilitated by the existence of surface electromagnetic wave solutions. Such surface wave
solutions must appear when quantum gravity effects are taken into account. Potential
observational evidence of this effect has been discussed, which indicates the experimental
viability of the proposed technique.
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