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Abstract We propose an inflationary primordial feature
model that can explain both the large and small-scale anoma-
lies in the currently measured cosmic microwave background
anisotropy spectra, revealing a clip of adventurous history
of the Universe during its primordial epoch. Although the
model is currently statistically indistinguishable from the
Standard Model, we show that planned observations such
as the Simons Observatory, LiteBIRD and CMB-S4 will
complement each other in distinguishing the model differ-
ences due to their accurate E-mode polarization measure-
ments, offering very optimistic prospects for a detection or
exclusion. The model predicts a signal of classical primor-
dial standard clock, which can also be used to distinguish the
inflation and alternative scenarios in a model-independent
fashion.

Introduction

The inflation scenario [1–7] is the leading candidate theory
for the primordial Universe that started the Big Bang. There
are high hopes that this knowledge will be advanced more
definitively with future astrophysical observations, and we
will be able to answer the important questions such as: Can
we rule out alternative scenarios to inflation, or vice versa,
using experimental data? For inflation models, can we learn
any details beyond the broad-brush picture that the inflation-
ary universe was dominated by a form of vacuum energy and
expanding with acceleration?

To meet these goals, experimental information beyond
the Standard Model of cosmology is necessary. An impor-
tant candidate of such information is signals of primor-
dial features. (See [8–10] for reviews.) Primordial features
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are strongly-scale-dependent deviations from the otherwise
approximately scale-invariant spectra of the primordial den-
sity perturbations. These spectra are being probed by a vari-
ety of observations that measure the large-scale distribution
of various contents of the universe. So far, measurements of
the cosmic microwave background (CMB) provide the most
precise data about the power spectrum of the density pertur-
bations [11,12]. Although being consistent with a featureless
power-law spectrum, the temperature and polarization spec-
tra of CMB anisotropies exhibit several statistically marginal
feature-like anomalies in both large and small scales [11,12].

At large scales, a dip in the spectrum has been noticed
around � ∼ 20 since WMAP [11]. At small scales, there
is an oscillatory feature near � ∼ 750 in the Planck data
[12,13]. Most of the model-building efforts so far have been
focused on addressing either one of these anomalies, because
they have qualitatively different characters.

It is well-known that the large scale anomaly may be
explained by a step-like sharp feature in the inflationary
potential [11,14–20], in which the dip is part of the signa-
ture sinusoidal running of sharp features, and the oscillation
amplitude can be made to decay quickly towards smaller
scales in order to agree with the data.

The small-scale anomaly has several possible explana-
tions. It might be due to a sharp feature signal which starts
at a larger scale [21]. It is unlikely the extension of the pre-
viously mentioned large-scale dip, because the amplitude of
the latter decays very quickly towards small scales. Another
possible explanation [12] is the resonant feature [22–26],
which can arise, for example, from periodic ripples in an
inflationary potential. This explanation does not address the
large-scale anomaly.

On the other hand, it has been noticed in [21,27] that these
two anomalous features may share the same origin through
the classical primordial standard clock (CPSC) effect [28–
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30], which we summarize below. From a top-down model-
building point of view, the inflaton trajectory is determined
by low-energy valleys of a potential landscape formed by
many fields. It is natural to expect that such a path may not
be straight and smooth (namely, have sharp features), and
to expect steep cliffs perpendicular to this path (namely, the
existence of many massive fields). Sharp features may tem-
porarily disturb the inflaton away from its eventual attractor
trajectory, and during the recovery process from the distur-
bance, some massive fields may be excited temporarily, oscil-
lating and then settling down around potential minima after
a few e-folds. In this picture, the disturbance generates the
sinusoidal-running signal as a candidate for the large-scale
anomaly, and the high frequency oscillation of a massive field
generates the resonant-running signal as a candidate for the
small-scale anomaly.

Despite this interesting possibility in model building, very
few explicit CPSC models have been constructed and none
of them fully compared with data [21,27]. It is challenging
to efficiently compare complicated feature models with data,
because of the sensitivity of feature model predictions on
background evolution and model parameters, and because
of the multi-modal posterior distributions of feature param-
eters in data analysis. The purpose of this work is to resolve
these challenges in data analyses and really start the model-
searching process that requires feedback from data, making
use of a recently developed methodological pipeline [31].
With these advances, the sensitivity of primordial features
on background evolution means that a precise measurement
of these signals can tell us many details about the under-
lying model. Combination of the bottom-up approach, that
examines the properties of the anomalies [11,12], and the top-
down approach, that classifies the phenomenological charac-
ters of different types of features [8], is often useful in putting
various model ingredients into place.

We will reveal a candidate model that vividly describes
how, during the initial moment of the Universe, the infla-
ton is rolling at the top of an adventurous potential which is
nonetheless quite natural from the point of view of a land-
scape. The emerging picture is drastically different from that
of a single-field slow-roll model, but the feature signals in
the CMB are all small corrections. Furthermore, the reso-
nant part of this signal (namely, the clock signal), induced by
the oscillation of a massive field and taking a mostly model-
independent form, directly measures the scale factor of the
primordial Universe as a function of time a(t) [21,27–30].
Since a(t) is the defining property of a primordial universe
scenario, if measured it can be used to rule out alternative
scenarios in a model-independent fashion.

The best-fit CPSC model we find is currently statistically
indistinguishable from the Standard Model. Nonetheless, this
example illustrates the potential promise of this approach

and the prospects of learning the history of the primordial
universe from data.

We further demonstrate a nice future prospect, making use
of the model predictions in the polarization spectra of CMB
that are strictly correlated with those in the temperature spec-
trum. There are several ongoing (e.g. BICEP/Keck Array
[32]) and forthcoming experiments (e.g. Simons Observa-
tory (SO) [33], LiteBIRD [34], CMB-S4 [35]) in the follow-
ing decade that will measure the polarization of CMB with
unprecedented precisions. We forecast the prospects of the
SO, LiteBIRD, and CMB-S4 in constraining such feature
models, which currently remain elusive in the Planck data,
and find that they will provide decisive evidence in favor of
or against them.

The model

As summarized in [21,28], in general there are two simple
requirements for a model to be qualified as a CPSC model.
First, there should be two observable stages of inflation con-
nected by a sharp feature. Second, the sharp feature classi-
cally excites a massive field. The most model-dependent part
of the full CPSC signal is the amplitude of the sharp feature
signal and its smooth connection to the clock signal. We will
use a step potential as part of the sharp feature. In two-field
models and to connect with the oscillation of a massive field,
the placement of this step in model configuration is also cru-
cial and could lead to very different signals. Our model is
described by the following Lagrangian,

L = − 1

2
[1 + �(�)σ ]2 (∂�)2 − 1

2
(∂σ )2 − V (�, σ) , (1)

where the potential V (�, σ) takes the following form [36],

V (�, σ) = Vinf

{
1 − 1

2
C��2 (2)

+ Cσ

[
1 − exp

(
− (� − �0)

2

�2
f

Heav(� − �0) − σ 2

σ 2
f

)]}

and �(�) = ξ Heav(� − �0 − �T ). We note that we set
Mpl = c = 1 throughout this paper.

This Lagrangian describes a two-field inflation model in
which � is the inflationary direction and σ a field orthogonal
to �. The mathematical expressions of the potential V and
coupling � may be modified as long as they model the simple
geometric configuration illustrated in Fig. 1. The evolution-
ary history of the inflaton is described as follows.

During the first stage of inflation, the inflaton is rolling
at the top of a plateau, until it encounters a cliff, located at
� = �0 with height and width determined by Cσ and � f ,
and falls into a lower valley [39]. In the two-field space, the
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Fig. 1 A birdseye example of background trajectory in our model,
plotted over equipotential surfaces (redder means lower potential). In
terms of the Cartesian coordinates x and y shown here, for x < 0 the �

and σ are Cartesian with x = �− (�T +�0) and y = σ + ξ−1; while
for x > 0 they become radial coordinates as in [37,38] with r = σ+ξ−1

and θ = π/2 − ξ(� − �0 − �T ). The insets show how the inflaton
overshoots the bottom of the valley (yellow line) and climbs onto a side
of the cliff [top-right], and the clock oscillation [bottom-left]

path at the bottom of the lower valley starts out straight and
begins to curve after a distance �T . At the entrance of the
curved path, the inflaton overshoots the bottom of the valley
and climbs onto a side of the cliff, exciting the oscillation of
a massive field. Due to the Hubble friction, the oscillation
gradually decays and the inflaton settles down in the second
stage of inflation.

Numerical results and effective parameters

We follow the methodology of Ref. [31] and directly compare
numerical results on power spectrum with data.

A typical example of the primordial power spectrum
(PPS) from this model is shown in Fig. 2. Note that there
are two kinds of characteristically different running behav-
iors at large and small scales, respectively. At the large
scales k < kr , there is the sharp feature signal with its
signature sinusoidal running ∼ sin(2k/k0 + phase), which
starts near k = k0. At the small scales k > kr , the clock
signal starts to appear with its signature resonant running
∼ ( 2k

kr
)−3/2 sin(mσ

H ln 2k
kr

+phase). These properties are quite
robust against model variations. On the other hand, the enve-
lope of the sharp feature signal and its connection and relative
amplitude to the clock signal are strongly model dependent,
and play a crucial role in determining part of the model con-
figuration.

As outlined in [31], when comparing a multi-parameter
model with data, it is often convenient to first construct an
equal number of effective parameters in terms of the model
parameters. Each of these effective parameters describes a
distinct property of the feature signal in the power spectrum.
The Lagrangian (1) contains eight model parameters. Vinf

and C� parameterize the scale of the inflationary potential

Fig. 2 The PPS of the bestfit model with the effective parameters:
Vinf = 5.45 × 10−14, C� = 0.0189, Cσ = 3.15 × 10−8, Cσ /�2

f =
0.495, mσ /H = 18.5, ξσ f = 0.0580, NT = 1.17, N0 = 14.38.
These gives 
Pζ |dip/Pζ0 � 0.28 and 
Pζ |clock/Pζ0 � 0.038. In this
model, k0 ≈ 6.66 × 10−4Mpc−1, corresponding to the bottom of the
dip located at kdip ≈ 2 × 10−3Mpc−1 or equivalently �dip ∼ 20; and
kr ≈ 4.38 × 10−2Mpc−1 or �clock ∼ 600

and its slope, respectively. These two parameters are the same
as those in the simplest single field model and no more trans-
formation is needed. The other six parameters are as follows.
�0, Cσ and � f specify the location, depth and width of
the step, respectively. σ f describes the width of the trough,
which together with some other parameters also determines
the mass of the massive field σ . �T gives the distance to the
curved path, and 1/ξ is the radius of the curved path.

We first fix the slow-roll parameter ε to a small value,
e.g. 10−7, which determines the overall energy scale of the
model. As long as ε is small, ε � 10−3, its value does not
change the phenomenology of the model after proper rescal-
ings of other parameters. The following is the identification
of the effective parameters [40].

The depth of the dip feature in the PPS is determined by
the height of the step


Pζ |dip

Pζ0
≈ 1 −

(
1 + 3Cσ

ε

)−1/2

, (3)

and the extensiveness of the sinusoidal running is determined

by the width of the step, 
k ∼ k0

√
Cσ /�2

f . These relations

suggest two effective parameters:

Pζ |dip
Pζ0

and Cσ /�2
f .

The amplitude of the clock signal, in addition to its running
property mentioned previously, is determined by the initial
velocity of the inflaton entering the curved path, the radius
of the path and the mass of the σ -field:


Pζ |clock

Pζ0

∣∣∣
amp

≈
√

2π

3

ε

Cσ

(ξσ f )
2
(mσ

H

)1/2
, (4)

where mσ /H ≈ √
6Cσ /σ f . This suggests two more effec-

tive parameters, log10 mσ /H and 
Pζ |clock
Pζ0

.
The transition between the step and the curved path is most

conveniently described by the number of e-folds the inflaton
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spends in-between, NT ≈ (�T /σ f )(H/mσ ), which we use
as another effective parameter.

The last effective parameter is the overall k-location of the
feature, which we parameterize as N0, defined as the e-fold
from the beginning of inflation, at which the inflaton crosses
the location of the step �(N0) ≡ �0 [41].

In total, the power spectrum is specified by six more than
that in the Standard Model. In term of effective parameters,
the starting locations of sharp feature and clock signal, k0

and kr , are related by kr ≈ exp(NT )mσ

H k0.

Data comparison and best fit

Our data analysis is based on publicly available latest
Planck data of CMB temperature and E-mode polariza-
tion. Following the Planck inflation paper [12], we use
commander_dx12_v3_2_29 for temperature anisotropies
andsimall_100x143_offlike5_EE_Aplanck_B for
E-modes, both at � = 2 − 29; at high-�, we use the unbinned
Plik bin1 likelihood for TT, TE, EE anisotropies [42].
We refer to this dataset as P18.

Multi-modality of the posterior distributions of the feature
parameters is expected [31]. Therefore we use nested sam-
pling through the PolyChord [44–46] implementation in
CosmoMC [47]. From the samples in the data analysis, we
plot the posterior distributions of the parameters and, impor-
tantly, compute the Bayesian evidence Zi of the model i . The
latter helps us compare our model to the featureless, baseline
model.

Together with the cosmological parameters, i.e.ωb, ωc, τreio

and 100 ∗ θs , we vary the inflationary parameters as well as
the nuisance parameters. The priors for the effective param-
eters are chosen as follows: log10 Pζ∗ ∈ [−8.82, −8.1],
C� ∈ [0.002, 0.04], N0 ∈ [13, 15.5], 
Pζ |dip

Pζ0
∈ [0, 0.5],

Cσ /�2
f ∈ [0, 2.5], NT ∈ [0, 1.2], log10 mσ /H ∈

[0, log10 75], 
Pζ |clock
Pζ0

∈ [0, 0.35]. With these choices, the
locations of both the dip feature and the clock signal are
allowed to appear in the whole range of multipoles probed
by Planck.

Planck constraints on the parameters describing the fea-
ture amplitudes and the frequency of the clock signal are
shown in purple in Fig. 3. Full triangle plots showing con-
straints on all parameters are presented in a companion paper
[40]. Although our CPSC model provides a better fit than
the baseline model, due to introduction of extra parame-
ters, it is indistinguishable from the Standard Model accord-
ing to the Jeffreys’ scale [48] with the Bayes factor being
ln B ≡ ln(Zfeature/Zfeatureless) = −0.13 ± 0.38. This con-
firms no evidence of features in Planck data, consistent with
previous analysis [12,31].

Fig. 3 Constraints from P18 and projected constraints on the param-
eters characterizing the amplitude of the dip and the amplitude and
frequency of the clock signal

Fig. 4 Residual plots for our best fit candidate. P18 data points and
error bars are plotted in purple, whereas the forecast error bars for Lite-
BIRD, SO and CMB-S4 are plotted in green, blue and gold, respectively.
Errors for � > 30 are binned with binwidth 
� = 60

As mentioned previously, these analyses nonetheless pick
up an interesting bestfit candidate. A clear peak around
mσ /H ∼ 18 stands out in the posterior. From the analysis of
the samples we observe that almost all the better likelihood
points concentrate around that mode. Using BOBYQA [49],
we obtain the bestfit candidate and quantify the improve-
ment in the fit to P18 [50]. Our bestfit candidate’s PPS is
presented in Fig. 2 and the corresponding CMB residuals in
Fig. 4. The 
χ2 = 19.8 improvement over the featureless
model includes those from the dip feature, fitting low-� data
(
χ2

low−T = 5.34 and 
χ2
low−E = 1.11), and those from the

clock signal, fitting high-� data (
χ2
high−� = 13.31).

The improvement in fit can be appreciated by looking at
the residual plot in Fig. 4, which clearly shows that it is
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driven not only by the better fit to the dip in the TT residuals
around � ∼ 20, but also by the sinusoidal running of the sharp
feature signal and, in particular, the clock signal. The latter
starts around � � 600 and addresses the dip followed by a
bump in the TT residuals around � ∼ 750 and the associated
feature in the TE residuals. The sinusoidal running part of the
sharp feature signal also provides some weaker improvement
in fits to the bump in the EE residuals around � ∼ 60 and the
dip around � ∼ 350.

Forecast with CMB polarization

Assuming the DTT
� ,DEE

� ,DTE
� from the best fit as the fidu-

cial angular power spectra, using the projected noise power
spectra from the upcoming SO, LiteBIRD, and CMB-S4 ,
we forecast future constraints on our model. SO is a ground
based observation with a polarization noise an order of mag-
nitude lower than Planck (which was ∼ 52µK). It will
start taking data in 2023. LiteBIRD, planned to be launched
around 2029, is a full sky CMB mission with a sensitiv-
ity of 2.2µK-arcmin in polarization and 0.5◦ resolution.
While SO covers 40% of the sky (compared to 70% by
LiteBIRD), it has a much finer resolution (better than 3′).
CMB-S4 is designed to reach a sensitivity of 1µK-arcmin
with nearly 500,000 detectors and is expected to detect the
high-� CMB peaks to a much better accuracy compared SO.
While it has not been funded yet, CMB-S4 has received
strong support by the ASTRO2020 report [51]. The projected
error-bars for the three observations are plotted in Fig. 4.
In the forecast analysis, we consider the following combi-
nations of experiments: Planck+SO, Planck+SO+LiteBIRD
and Planck+S4+LiteBIRD. We refer the readers to Ref. [40]
for a detailed discussion of our analysis. We plot projected
constraints on top of Planck ones in Fig. 3.

Future experiments will play complementary roles in con-
straining the model. SO, while impressively increasing the
constraints on the clock frequency, will not be able to defini-
tively detect neither the clock signal nor the dip feature
because of residual degeneracies induced by the poor con-
straints on the latter. With the launch of LiteBIRD, though,
the constraining power at large scales will increase drasti-
cally, being capable of detecting the dip feature amplitude,
which will be constrained away from 0 at more than 4σ . Pin-
ning down the dip feature will also help to fully exploit the
exquisite power of SO at high-�, leading to a 5σ detection
forecast of the clock signal. For Planck+LiteBIRD+SO, we
find a projected Bayes factor of +22.7, suggesting that in less
than a decade we may be able to provide decisive evidence in
favor of or against our model. CMB-S4 will further increase
constraints on the clock frequency.

Conclusions and discussions

CMB anomalies may hint at primordial physics beyond the
standard model of cosmology. In this letter, we have pro-
posed a full classical standard clock model of inflation where
a sharp feature exciting massive-field oscillations addresses
the low and mid-� anomalies, whereas anomalies at high-
� are instead fitted by the clock signal. The improvement
in the χ2 for the global best-fit candidate, characterized by
a clock field with an effective mass ∼ 18 times the Hub-
ble scale of inflation, is 
χ2 ∼ 19.8. According to the
Bayesian evidence, this model is currently indistinguishable
from the Standard Model. Assuming such a candidate as a
fiducial cosmology, we have performed a forecast for future
CMB experiments and highlighted the complementarity of
measurements of E-mode spectra across different scales. We
find these experiments offer promising prospects within the
next decade: Simons Observatory and LiteBIRD, joint with
the Planck data, will be able to place significant constraints
on all parameters of our model, and CMB-S4 will further
improve these constraints. These results also suggest promis-
ing prospects of model-building and testing of primordial
feature models such as the one presented in this work. If
detected, such a model can provide vital information about
the origin of the Big Bang, ranging from a direct evidence for
the inflation or an alternative scenario to detailed dynamics
of the inflation model.

Besides signatures in CMB, primordial feature models
also leave correlated imprints in the large-scale distributions
of galaxies [55–64] and atomic hydrogen [65,66], which will
be further tested in future Large-Scale Structure and 21cm
observations. Besides power spectrum, feature models also
generate correlated signals in primordial non-Gaussianities
[22,67–72]. It would be interesting to compute the bispec-
trum of this model and examine its observability.

As mentioned, the anomalies in the CMB power spec-
tra can also be fit [12] by other inflationary models, includ-
ing pure sharp feature models [14–16,18–20,67,73–75] and
simple resonant models [22–26]. It is also possible that such
features are generated by models of alternative scenarios to
inflation [76,77], or models containing non-standard primor-
dial clocks [28,78–80]. Our forecast on the size of error bars
from future CMB polarization experiments offers some opti-
mistic notes on the prospects of experimentally distinguish-
ing many of these different cases if the amplitude of the signal
is similar to that of the best-fit model in this Letter, although
these aspects deserve to be studied more extensively.

All these add to the exciting prospects of probing the his-
tory of the primordial Universe using data from near future
observations.
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