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Abstract: Phase space methods, particularly Wigner functions, provide intuitive tools for
representing and analyzing quantum states. We focus on systems with SU(2) dynamical
symmetry, which naturally describes spin and a wide range of two-mode quantum models.
We present a unified phase space framework tailored to these systems, highlighting its
broad applicability in quantum optics, metrology, and information. After reviewing the core
SU(2) phase-space formalism, we apply it to states designed for optimal quantum sensing,
where their nonclassical features are clearly revealed in the Wigner representation. We then
extend the approach to systems with an indefinite number of excitations, introducing a
generalized framework that captures correlations across multiple SU(2)-invariant subspaces.
These results offer practical tools for understanding both theoretical and experimental
developments in quantum science.

Keywords: quantum information; phase space; Wigner functions

1. Introduction

Phase space methods offer a compelling alternative to the traditional Hilbert-space
approach in quantum theory, providing useful tools for visualizing and analyzing quan-
tum states. Within this framework, observables are represented as functions instead of
operators, mirroring their classical counterparts while adhering to distinct algebraic rules.
By interpreting quantum mechanics as a statistical theory on phase space, this perspective
facilitates a more seamless and intuitive transition to the classical world [1–4].

The rudiments of the method were laid in the groundbreaking works of Weyl [5] and
Wigner [6]. Later, Groenewold [7] and Moyal [8] built upon this foundation, which has
since evolved into a comprehensive discipline with applications in numerous fields.

The cornerstone of this approach lies in a bona fide mapping that assigns operators
to functions (commonly known as the associated symbols) defined on a smooth manifold
with a well-established mathematical structure [9]. However, this mapping is not uniquely
determined; rather, a whole family of symbols can consistently correspond to a given
operator. In particular, quasiprobability distributions are the symbols of the density oper-
ator [10–15]. For continuous variables, such as Cartesian position and momentum—the
paradigmatic example that originally spurred interest in this field—the most widely used
mappings include the time-honored P (Glauber–Sudarshan) [16,17], W (Wigner) [6], and Q

(Husimi) [18] functions.
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The formalism has been generalized to systems exhibiting diverse symmetries. Beyond
the harmonic oscillator, an important example is the SU(2) symmetry, where the Bloch
sphere serves as the phase space [19–21]. Likewise, the Euclidean group E(2), associated
with the cylinder as its phase space, has produced valuable results [22–28], and plays a key
role in analyzing the orbital angular momentum of twisted photons [29]. More recently,
systems with SU(1,1) symmetry have been described using a two-sheeted hyperboloid as
the basic manifold [30,31], which plays a central role in modeling two-photon effects [32–35].
This topic has gained renewed interest with the advent of nonlinear interferometers, which
promise remarkable enhancements in phase measurement sensitivity [36–39]. Furthermore,
generalizations to broader classes of dynamical groups have also been investigated [40–45].

In the late 1980s, researchers began exploring how to represent qubits—and more gen-
erally, qudits—in phase space. In 1987, both Feynman [46] and Wootters [47] independently
proposed versions of the Wigner function for discrete systems. Feynman’s work, based
on earlier informal ideas about negative probabilities, focused specifically on spin-1/2
particles. Wootters, on the other hand, developed a more general approach using a discrete
toroidal lattice, which works for systems whose dimensions are prime powers. Since
then, there has been ongoing effort to extend this framework and make it more widely
applicable [48–56].

As quantum technologies advanced into the twenty-first century, the direct measure-
ment of phase space shifted from a theoretical goal to a practical and powerful technique.
The Wigner function, with its distinctive visual and mathematical properties, has become
essential in a wide range of research areas.

There are two primary experimental approaches to access the Wigner function: in-
direct and direct. The indirect method involves first reconstructing the full quantum
state—typically by determining the density matrix—and then computing the Wigner func-
tion through a mathematical transformation. This approach supports both continuous and
discrete variables. The review presented in [57] includes a complete and updated list of
references to recent experiments.

The direct method, on the other hand, enables a point-by-point measurement of the
Wigner function without reconstructing the entire quantum state. This is possible because
the Wigner function can be expressed as the expectation value of a specific observable:
the displaced parity operator [58]. Measuring this value samples the Wigner function
directly [59,60], transforming an abstract concept into a measurable reality.

In this work, we revisit the foundations of Wigner functions for quantum systems
governed by SU(2) dynamical symmetry—a framework of particular relevance to spin-
like systems [61–63], where the full Hilbert space is effectively constrained to symmetric
subspaces. More generally, SU(2) symmetry, as realized through the Jordan–Schwinger
construction [64–66] (which expresses the su(2) algebra in terms of two harmonic oscil-
lator modes), provides a powerful and unifying approach to a wide range of two-mode
quantum systems. This includes strongly correlated systems [67], polarization of quantum
fields [68–72], and partially coherent classical Gaussian Schell-model beams [73–75], among
others, and has applications in quantum computing [76], and provides insights into the
spin–statistics connection [77,78]. Within this context, we offer conceptual and method-
ological tools that may guide a broad range of experiments in modern quantum science
and technology.

This paper is organized as follows. In Section 2, we briefly review the essential ingre-
dients needed to understand the phase space of the Wigner function for SU(2) dynamical
symmetry. In Section 3, we apply this formalism to a menagerie of quantum states that
have been proposed for quantum optimal sensing. The exceptional properties of these
states are rendered with striking clarity through their Wigner functions. This formalism is
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fully applicable in scenarios where the number of excitations in the system is fixed; in other
words, when working within a single Fock layer [79]. The case of an indefinite number
of excitations is addressed in Section 4, where we introduce a generalized SU(2)-based
phase-space framework capable of faithfully capturing the quantum correlations inherent
in superpositions across multiple SU(2)-invariant subspaces. Section 5 is devoted to illus-
trate this approach with simple examples that offer insight into the rich and sometimes
counter-intuitive structure of these correlations. Finally, our conclusions are summarized
in Section 6.

2. Wigner Function for a Spin S

Any quantum system with a Hilbert space of finite dimension 2S + 1 can be formally
regarded as a spin S. The dynamical symmetry group of such a system is SU(2), generated
by three self-adjoint operators Ŝ = (Ŝx, Ŝx, Ŝz)⊤ (the superscript ⊤ denoting the transpose),
that satisfy the commutation relations (with h̄ = 1 throughout)

[Ŝx, Ŝy] = iŜz, (1)

and cyclic permutations.
We consider here a pure spin-S state |ψ⟩ living in the Hilbert space HS, spanned by

the angular momentum basis {|S, m⟩ | m = −S, . . . , S} of the simultaneous eigenstates of
Ŝ2 and Ŝz. This space serves as the carrier of the irreducible representation (irrep) of spin S

of SU(2), which is isomorphic to C2S+1. Since physical states are identified up to an overall
phase factor (i.e., by rays in HS), the manifold of physically distinct states is given by the
projective space CP2S [80].

As heralded in the Introduction, the Jordan–Schwinger representation [64,65] provides
a useful way to realize the operators Ŝ in terms of two independent bosonic modes, specified
by operators â1 (â†

1) and â2 (â†
2) with standard commutation relations [âλ, â†

λ′ ] = δλλ′ , with
λ, λ′ ∈ {1, 2}. In this representation, the spin operators read

Ŝx = 1
2 (â1 â†

2 + â†
1 â2), Ŝy = i

2 (â1 â†
2 − â†

1 â2), Ŝz =
1
2 (â†

1 â1 − â†
2 â2), (2)

which are nothing but the Stokes operators for the two-mode problem [81] and the corre-
sponding phase space is naturally identified with the unit sphere S2.

If we define the operator N̂ = â†
1 â1 + â†

2 â2, one can verify that

Ŝ2 =
N̂

2

(

N̂

2
+ 11

)

, (3)

where 11 is the identity in HS. Therefore, the spin S corresponds to (half) the total number
of excitations, whereas the eigenvalue m corresponds to m = (n1 − n2)/2, where nλ is the
number of excitations in mode λ. Furthermore, since [N̂, Ŝ] = 0, different irreps can be
treated independently.

According to the axiomatic approach, we associate each operator Â acting on HS

with its symbol, WA(θ, ϕ), a c-number function defined in the unit sphere (θ, ϕ) ∈ S2.
Such a (invertible) map Â 7→ WA(θ, ϕ) depends on the ordering rules of functions of
noncommutative operators. Here, we will deal exclusively with the symmetric operator
ordering, also known as the Weyl ordering. This ordering is particularly advantageous
as it ensures a better semi-classical limit, preserving the connection between quantum
and classical descriptions. Additionally, it results in balanced quantum corrections in
perturbative expansions and is well-suited for spin systems [82]. For a more thorough and
detailed exploration, the reader is encouraged to consult the monograph [83].
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The map is established as

WA(θ, ϕ) = Tr[Â ŵ(θ, ϕ)], (4)

where ŵ(θ, ϕ) is a Stratonovich–Weyl quantizer [19]:

ŵ(θ, ϕ) =

√

4π

2S + 1

2S

∑
K=0

K

∑
q=−K

T̂S
Kq Y∗

Kq(θ, ϕ) = ŵ†(θ, ϕ). (5)

Here, YKq(θ, ϕ) are the spherical harmonics and T̂S
Kq are the irreducible tensor operators [84–86]

T̂S
Kq =

√

2K + 1
2S + 1

S

∑
m,m′=−S

CSm′
Sm,Kq |S, m′⟩ ⟨S, m| , (6)

with CSm
S1m1,S2m2

denoting the Clebsch–Gordan coefficients that couple a spin S1 and a spin
S2 to a total spin S. They are nonzero only when the standard angular momentum coupling
rules hold: m1 + m2 = m and |S1 − S2| ≤ S ≤ S1 + S2.

According to the properties of the Clebsch–Gordan coefficients, K takes the values
0, 1, 2, . . . , 2S, and −K ≤ q ≤ K, giving rise to (2S + 1)2 operators that constitute a basis for
the space of linear operators acting on HS. This is guaranteed by the property

Tr
(

T̂S
KqT̂S′†

K′q′

)

= δSS′δKK′δqq′ . (7)

These operators are, in general, non-Hermitian. However, due to their symmetry properties,
they satisfy the relation T̂S†

Kq = (−1)q T̂S
K−q for every fixed S. Most importantly, they have

the correct transformation properties under SU(2) transformations: for R(Θ) ∈ SU(2),
we have

R(Θ) T̂S
Kq R†(Θ) = ∑

q′
DS

q′q(Θ) T̂S
Kq′ , (8)

where DS
q′q(Θ) stands for the Wigner D-function [86] and we have used the compact

notation Θ = (ϕ, θ, ψ) for the three Euler angles characterizing the rotation.
The kernel ŵ(θ, ϕ) is normalized as

Tr[ŵ(θ, ϕ)] = 1,
2S + 1

4π

∫

S2

dΩ ŵ(θ, ϕ) = 11, (9)

with dΩ = sin θdθdϕ as the invariant measure on the sphere S2. All this ensures that
the symbol of any (trace class) operator Â is covariant under rotations and provides the
important overlap relation

2S + 1
4π

∫

S2

dΩ WA(θ, ϕ)WB(θ, ϕ) = Tr(ÂB̂). (10)

As required, the map is invertible, so the operator Â can be reconstructed from its
symbol via

Â =
2S + 1

4π

∫

S2

dΩ ŵ(θ, ϕ)WA(θ, ϕ). (11)

Given the properties of the irreducible tensors, any operator can be expanded as

Â =
2S

∑
K=0

K

∑
q=−K

AKqT̂S
Kq, (12)
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with AKq = Tr(ÂKqT̂S†
Kq). In this way, its symbol takes the form

WA(θ, ϕ) =

√

4π

2S + 1

2S

∑
K=0

K

∑
q=−K

AKq YKq(θ, ϕ), (13)

and satisfies the normalization condition

2S + 1
4π

∫

S2

dΩ WA(θ, ϕ) = 1. (14)

The symbol of the density operator is precisely the Wigner function, whereas the
corresponding expansion coefficients ϱKq are the so-called state multipoles [85]. They
contain all the information about the state, but arranged in a manifestly SU(2)-invariant
form. Apart from their theoretical relevance, they can be experimentally determined using
simple measurements [87]. They are the Kth directional moments of the state and, therefore,
the multipoles resolve progressively finer angular features.

Let us consider the simplest case of a single qubit. This corresponds to S = 1/2 and
can be implemented in different physical systems, such as a spin 1/2, the polarization of a
photon, or a two-level atom. The Hilbert space is now isomorphic to C2; accordingly, the
density matrix can be expanded as (for simplicity, we omit the superscript 1/2, as there is
no risk of confusion):

ϱ̂ = ϱ00T̂00 +
+1

∑
q=−1

ϱ1qT̂1q, (15)

and one can check that
T̂00 =

1√
2

112, T̂1q =
1√
2

σ̂q, (16)

where 112 is the identity matrix in C2 and σ̂q are the spherical components of the Pauli
basis. We recall that a vector operator Â with Cartesian components (Âx, Ây, Âz)⊤ has
spherical components

Â+1 = − 1√
2
(Âx + iÂy) , Â0 = Âz , Â−1 =

1√
2
(Âx − iÂy). (17)

Due to normalization, ϱ00 = 1/
√

2 and the physical relevant information comes from
the dipole ϱ1q. In fact,

nq ≡
√

2ϱ1q = Tr(ϱ̂σq), q = 0,±1, (18)

are nothing but the spherical components of the Bloch vector [88]. In terms of this vector, n,
the Wigner function for the qubit reads

Wn(θ, ϕ) =
1√
2

[

Y00 +
+1

∑
q=−1

nqY1q(θ, ϕ)

]

. (19)

3. A Menagerie of Wigner Functions

The primary application of SU(2) in metrology is likely phase estimation. To this end,
we will attempt to illustrate quantum states commonly employed in quantum interfer-
ometry for such tasks and assess their usefulness based on these visualizations. In this
endeavor, the Wigner function introduced in this work proves highly valuable, as it enables
us to visualize the symmetry of a quantum state with respect to a given axis.
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We start with SU(2) (or spin) coherent states [89,90], as they are the most classical
states allowed by quantum mechanics. Their robustness against decoherence and their
natural emergence in systems with SU(2) symmetry make them a fundamental tool in both
theoretical and experimental quantum information.

They are defined in direct analogy with the standard coherent states, as a displaced
version on the sphere of a fiducial state that we take as the north pole:

|θ, ϕ⟩ = D̂(θ, ϕ) |S, S⟩ , (20)

where the displacement over the sphere is given in terms of the SU(2) ladder operators
Ŝ± = Ŝx ± Ŝy by D̂(θ, ϕ) = exp[iθ/2(e−iϕŜ+ − e+iϕŜ−)]. They can be expressed as

|θ, ϕ⟩ =
S

∑
m=−S

(

2S

S + m

)1/2
(

sin
θ

2

)S+m(

cos
θ

2

)S−m

e−i(S+m)ϕ |S, m⟩. (21)

The corresponding multipoles can be readily computed [62]; the result reads

ϱcoh
Kq = eiqϕ

(

tan
θ

2

)q S

∑
m=−S

(−1)S−m

(

2S

S + m

)1/2(
2S

S + m + q

)1/2

×
(

sin
θ

2

)2(S+m)(

cos
θ

2

)2(S−m)

C
K−q
Sm,S−m−q, (22)

and, according to the general recipe in (13), the Wigner function turns out to be

Wϱ =

√

4π

2S + 1

2S

∑
K=0

K

∑
q=−K

ϱKq YKq(θ, ϕ). (23)

If, for simplicity, we assume that the coherent state is centered along the x axis (that is
|ϑ = π/2, φ = 0⟩, so that it is an eigenstate of Ŝx), we have

|π/2, 0⟩ = 1
2S

S

∑
m=−S

√

(2S)!
(S + m)!(S − m)!

|S, m⟩ . (24)

From here, we obtain

Wcoh(θ, ϕ) =

√

4π

2S + 1

2S

∑
K=0

√

2K + 1
2S + 1

K

∑
q=−K

Y∗
Kq(θ, ϕ)

S

∑
m,m′=−S

CSm′
Sm,Kq αmm′ , (25)

with

αmm′ =
1

22S

(2S)!
(S + m)!(S − m)!(S + m′)!(S − m′)!

. (26)

This expression is involved and can only be evaluated numerically. However, in the limit
S ≫ 1, this Wigner function simplifies to an approximate form, enabling more intuitive
analytical insights [83]:

Wcoh(θ, ϕ) ≃ (sin θ cos ϕ)2S−1(1 + sin θ cos ϕ). (27)

This Wigner function for the coherent state (24) is represented for various values of S in
Figure 1. As we can appreciate, this function is sharply peaked around the classical phase
space point (ϑ = π/2, φ = 0) and spreads over an area proportional to 1/S. As S increases,
the state becomes increasingly localized and so more classical.
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x x xy y y

z z z

S=2 S=4 S=8

Figure 1. Density plots on the unit Bloch sphere of the Wigner functions for spin coherent states
located at the X axis, with the indicated values of S. The scale of the colormap is indicated at the right.

The ultimate constraint on measurement precision in interferometry is dictated by
quantum effects. This limitation is most effectively analyzed using a Mach–Zehnder in-
terferometer, where output measurements serve to estimate the relative phase Φ between
its two arms. It is well established that, when an N-photon number state is injected
into one input port, the achievable phase sensitivity follows the standard quantum limit
(SQL) [91], scaling as Var Φ ∼ 1/N, where Var denotes the variance. Several theoretical
proposals [92–98] have aimed to surpass this limit, reducing phase variance to the Heisen-
berg limit, Var Φ ∼ 1/N2. However, these methods rely on two key constraints: they
require the phase difference to be either zero or very small to achieve optimal scaling, and
they assume access to the asymptotic limit of a large number of measurement repetitions.

For limited resources, it is better to look for states that give optimal phase precision
for single-shot estimation with no prior information. These states were identified by Berry
and Wiseman in ref. [99]; they have the expression:

|ψBW⟩ = 1√
S + 1

S

∑
m=−S

sin
[

(S + m + 1)π
2S + 2

]

|S, m⟩. (28)

They are particularly effective when combined with adaptive measurement strategies,
where phase shifts are dynamically adjusted based on prior outcomes, allowing for precise
estimation over a broad range of phase values.

The Wigner function of Berry–Wiseman states must be computed numerically, with the
results displayed in Figure 2. As observed, the central peak undergoes increased squeezing
as the parameter S grows, accompanied by small side oscillations.

x y

z

S=2 S=4 S=8

x y

z

x y

z

Figure 2. Density plots on the unit Bloch sphere of the Wigner functions for the optimal
Berry–Wiseman states (28) with the indicated values of S. The scale of the colormap is indicated at
the right.
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In the same vein, spin-squeezed states have been proposed to enhance the precision of
phase estimation beyond the SQL [100]. However, their advantage is primarily realized
in the asymptotic limit, where multiple measurement repetitions allow for statistical aver-
aging. In contrast, for single-shot measurements or scenarios where the phase shift is not
necessarily small or well-known, spin-squeezed states may not be the optimal choice.

Consider the case where S is integer. Then, a state which comes close to minimizing
the squeezing parameter is the Yurke state [101]:

|ψYurke⟩ =
sin α√

2
|S, 1⟩y + cos α|S, 0⟩y +

sin α√
2
|S,−1⟩y, (29)

where |S, m⟩y denote eigenstates of Ŝy. The minimum value of the squeezing parameter
(which is of the order 1/S) is achieved as α → 0 [102]. In this limit, the state is invariant
under a rotation of π around the z axis. That is, in a single-shot measurement, it would be
impossible to distinguish between a rotation of φ and one of φ + π.

Yurke states exhibit quantum correlations and interference properties that make them
particularly well-suited for interferometric phase estimation. These states enable sensitivity
beyond the standard quantum limit by leveraging entanglement and quantum superpo-
sition. Their Wigner functions, depicted in Figure 3, provide a visual representation of
their phase space structure, revealing a high degree of symmetry. This symmetry is a key
indicator of their potential for phase estimation, as it reflects the underlying coherence and
phase resolution capabilities of the state.

S=2 S=4 S=8

x
y

z

x
y

z

x
y

z

Figure 3. Density plots on the unit Bloch sphere of the Wigner functions for Yurke states (29) with
α = 0.1 and the indicated values of S. The scale of the colormap is indicated at the right.

Finally, we consider the famous NOON states [103], which, when expressed in the
|S, m⟩ basis, take the form

|ψNOON⟩ =
1√
2
(|S, S⟩+ |S,−S⟩). (30)

Like Yurke states, NOON states enable phase measurements with a sensitivity
√

S times
better than that of a coherent state [100]. Their key advantage lies in their ability to achieve
Heisenberg-limited phase estimation. However, they are invariant under a z-rotation of
π/S, which imposes a strict requirement on prior knowledge of the phase. Specifically,
for NOON states to be useful in practical applications, the phase must already be known
to an accuracy of at least π/(2S). This constraint significantly limits their applicability in
scenarios where the phase is initially unknown or needs to be estimated over a broad range,
making them less versatile than other quantum-enhanced states such as spin-squeezed or
Yurke states. In addition, NOON states are highly sensitive to photon loss or decoherence:
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even the loss of a single photon can drastically reduce their performance, making them
impractical for many real-world applications.

The Wigner function for NOON states can be directly calculated; the final result is

WNOON(θ, ϕ) =
1
2

[

W|S,S⟩(θ, ϕ) + W|S,−S⟩(θ, ϕ) + NS sin2S(θ) cos(2Sϕ)
]

, (31)

where

NS =
1

22S−1(2S)!

√

(4S + 1)!
2S + 1

. (32)

Here, W|S,S⟩ and W|S,−S⟩ represent the Wigner functions of two spin coherent states located
at the north and south poles of the Bloch sphere, respectively. The third term introduces
an interference pattern characterized by a band of fringes along the equator, with the
number of negative regions equal to 2S. As S increases, this interference pattern becomes
more localized along the equator. Additionally, the term sin2S(θ) significantly suppresses
the Wigner function between the equator and the poles. This effect is visually evident
in Figure 4.

x y

z

x y

z

x y

z

S=3 S=5 S=8

Figure 4. Density plots on the unit Bloch sphere of the Wigner functions for NOON states, with the
indicated values of S. The scale of the colormap is indicated at the right.

4. Generalized Wigner Function

In two-mode systems, fluctuations in the number of excitations are generally inevitable.
As described in (3), the corresponding phase space becomes then foliated into a series of
nested spheres, with radii proportional to the excitation number—commonly referred to as
Fock layers in photonic systems [104]. To address this structure, we must extend earlier
approaches to encompass systems whose state spaces form a direct sum of distinct SU(2)
irreps. Our strategy follows the framework introduced in ref. [63], which employs a natural
generalization of irreducible tensor operators [85]; namely,

T̂SS′
Kq =

S

∑
m=−S

S′

∑
m′=−S′

√

2K + 1
2S′ + 1

CS′m′
Sm,Kq |S′, m′⟩ ⟨S, m| . (33)

The range of the indices is still |S − S′| ≤ K ≤ |S + S′| and −K ≤ q ≤ K. The tensors (33)
also form an orthonormal basis

Tr
(

T̂
S1S′

1
K1q1

T̂
S2,S′

2†
K2q2

)

= δS′
1S′

2
δS1S2 δK1K2 δq1q2 , (34)

and transform under rotations as in (8).
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In consequence, we can expand any operator as

Â = ∑
S,S′=0, 1

2 ,1,...

S+S′

∑
K=|S−S′ |

K

∑
q=−K

ASS′
Kq T̂SS′

Kq . (35)

By redefining the summation indices as J = S + S′, q′ = S′ − S and applying the
resummation identity

J

∑
q′=−J

J

∑
K=|q′ |

aq′K = ∑
K={0, 1

2 }

K

∑
q′=−K

aq′K, (36)

where {0, 1
2} indicates that K takes values starting from 0 for integer J and from 1

2 for
half-integer J, we obtain the following result:

Â = ∑
J=0, 1

2 ,1,...
∑

K={0, 1
2 }

K

∑
q,q′=−K

A
J+q′

2
J−q′

2
Kq T̂

J+q′
2

J−q′
2

Kq ≡ ∑
J=0, 1

2 ,1,...

ÂJ . (37)

Now, we can define the corresponding Stratanovitch–Weyl quantizer as

ω̂J(Θ) = ∑
K={0, 1

2 }

K

∑
q,q′=−K

√

2K + 1
J + 1

DK
qq′(Θ)T̂

J+q′
2

J−q′
2

Kq . (38)

This quantizer possesses all the desired properties [105] and can be used as an invertible
mapping of arbitrary operator into c-number functions. The symbol of the operator Â can
be consequently defined as

W J
A(Θ) = Tr[Â ω̂J(Θ)], (39)

so that

W J
A(Θ) = ∑

K={0, 1
2 }

K

∑
q,q′=−K

√

2K + 1
J + 1

A
J+q′

2
J−q′

2
Kq DK∗

qq′(Θ). (40)

One immediately finds the reconstruction to be

ÂJ =
J + 1
16π2

∫

dV W J
A(Θ) ω̂(Θ), (41)

where dV = sin θdϕdθdψ. Note that if Â acts in a single irrep of SU(2), then q′ = 0 in this
equation and we recover the standard symbol as discussed in the previous section.

An important remark is in order. Since we do not fix the dimension of the group
representation, the quantizer—and consequently the associated symbols—depends on three
angles. In this setting, the mapping defined in (40) does not correspond to a representation
of operators on a classical phase space, which must possess even dimensionality. The key
distinction from the conventional Stratonovich–Weyl mapping lies in its capacity to fully
reconstruct an operator, including the density matrix, rather than merely projecting onto
irreducible subspaces. Nevertheless, the J-symbol of any operator confined to a single SU(2)
irreducible representation is independent from the angle ψ and adheres to the standard
Stratonovich–Weyl form. It is also noteworthy that the index J assumes only integer values
for symbols that do not depend on the angle ψ.
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5. Examples

Let us illustrate this new approach with a couple of simple examples. First of all, the
J-symbols of the su(2) algebra have the crystal-clear form

W J
Sk
(Θ) =

√

J
2

(

J
2 + 1

)

nk ∑
M=0,1,...

δJM. (42)

Here, the δ-functions indicate the admissible values of the index J and nk are components
of the unitary vector n = (cos ϕ sin θ, sin ϕ sin θ, cos θ).

As a second example, we consider the two-mode Bell-like states

|Ψ±⟩ = 1√
2
(|1⟩A|0⟩B ± |0⟩A|1⟩B), |Φ±⟩ = 1√

2
(|0⟩A|0⟩B ± |1⟩A|1⟩B), (43)

where |1⟩A|0⟩B indicates one photon in mode A and vacuum in mode B, and so on. These
states have been used to explore the bizarre feature of vacuum–one photon entangle-
ment [106–110], which has been demonstrated in the laboratory [111].

In the angular momentum basis, they are represented as

|Ψ±⟩ = 1√
2
(| 1

2 , 1
2 ⟩ ± | 1

2 ,− 1
2 ⟩), |Φ±⟩ = 1√

2
(|0, 0⟩ ± |1, 0⟩). (44)

Interestingly, each state |Ψ±⟩ belongs to a single irrep with S = 1
2 and the standard SU(2)

Wigner map (5) can be used; the result reads

WΨ±(θ, ϕ) =
1
2
(1 ±

√
3 sin θ cos ϕ). (45)

This Wigner function is plotted in Figure 5. Their complementary character under the
swapping of the phase ϕ can be clearly observed.

x
y

z

x
y

z

Figure 5. Density plots on the unit Bloch sphere of the states |Ψ±⟩. The scale of the colormap is
indicated at the right.

In contradistinction, the states |Φ±⟩ are the superpositions from two irreps with S = 0
and S = 1, and the generalized Wigner function is required to capture their correlation
properties. In particular, the density matrices of these states can be decomposed as

ϱ̂Φ± =
1
2

[

T̂00
00 ±

(

T̂10
10 − T̂01

10

)

+
1√
3

T̂11
00 −

√

2
3 T̂11

20

]

, (46)
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which includes nondiagonal tensors T̂10
10 and T̂01

10 , accounting for the interference between
subspaces. A direct calculation gives now

W J
Φ±(Θ) =

1
2

[

δ0J ±
√

3 sin θ cos ψδ1J +

(

1
3
−
√

5
2

3 cos2 θ − 1
3

)

δ2J

]

. (47)

The Wigner function resides in the subspaces corresponding to J = 0, 1, 2. The term
δ1J , however, is associated with the action of the operator |0, 0⟩⟨1, 0|+ |1, 0⟩⟨0, 0|, which is
nondiagonal in the SU(2) representation basis. This term captures a key characteristic of the
Wigner function for Bell-like states; namely, the presence of coherence between different
spin polarization states.

This nondiagonal structure implies that the Wigner function encodes quantum coher-
ence across different irreps, which is reflected in the dependence on the angle ψ. When this
term is integrated over ψ, it yields a mixed state ∼ |0, 0⟩⟨0, 0|+ |1, 0⟩⟨1, 0|, corresponding to
J = 0 and J = 2 terms. It is interesting to observe that the term ∼ δ1J has a similar structure
as the significant contribution in WΨ±(θ, ϕ), after replacing ϕ → ψ in the latter; meanwhile,
the phase ϕ typically reflects a relative phase between spin components in a fixed irrep,
and the phase ψ can thus be interpreted as encoding relative phase between different irreps.
The pieces J = 1 and J = 2 are plotted in Figure 6, confirming the previous comments.

x xy y

z z

J=1 J=2
Figure 6. Density plots on the unit Bloch sphere of the pieces J = 1 and J = 2 corresponding to the
Wigner function (47). The scale of the colormap is indicated at the right.

6. Conclusions

Visualizing how discrete systems work helps us understand the complexity of quan-
tum states, operations, and computations. We have introduced a comprehensive toolbox
that enables the definition of Wigner functions for qubits and symmetric multi-qubit sys-
tems, offering an intuitive representation of quantum states on the Bloch sphere. Unlike
density matrices, this approach provides a more accessible depiction of quantum coherence,
superposition, and entanglement, while facilitating the analysis of quantum operations
and gate effects. By seamlessly connecting theory with practice, the visualization of qubits
enhances the accessibility and practicality of quantum information tasks.
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