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In preparation for the Phase-II upgrade for the High-Luminosity LHC program, 72 improved Resistive Plate
Chambers (iRPC) will be installed in the third and fourth endcap disks of the Compact Muon Solenoid detector
during the annual technical stop 2024. This new generation of RPC detectors will operate in a low-angle
momentum (extending RPC coverage from pseudorapidity |7| = 1.9 to 2.4), in a high radiation environment,

and will bring a better space and time resolution for this challenging region. To ensure proper performance,
iRPC chambers undergo a series of quality control (QC) tests at each stage of the assembly chain. These tests
include QC1 for the basic components, QC2 for chamber elements such as gaps and cooling, QC3 for evaluating
the full chamber performance after production, which includes noise, efficiency, current, lastly QC4 for the
final validation of the chambers. In this work we present the different QC stages and discuss test results for
the newly built iRPCs at the assembly sites.

1. CMS muon system

The Compact Muon Solenoid (CMS) detector [1] is a general-
purpose apparatus that measures proton—proton and heavy-ion col-
lisions at the Large Hadron Collider (LHC) at CERN. LHC has been
operating at 13.6 TeV since the start of its third operational run, or Run
3, in July 2022. To enhance the sensitivity for new physics searches, a
major upgrade of the LHC, called the High-Luminosity LHC [2], has
been planned. This upgrade will increase the integrated luminosity
tenfold compared to the original design values. The current “Phase-I" of
LHC will end in 2026, followed by a shutdown for the High-Luminosity
LHC upgrade, which will be completed by 2029.

The muon detector is placed in the outermost part of CMS, as high
energy muons produced in LHC collisions can penetrate through the
material of the detectors placed along their path from the interaction
point. Muons, as electrons, interact weakly and electromagnetically, but
due to their larger mass, their probability to generate electromagnetic
showers is suppressed compared to electrons. This feature allows them
to penetrate through the Electromagnetic (ECAL) and Hadronic (HCAL)
calorimeters and the solenoid.

The muon system in CMS comprises a cylindrical detector featuring
a barrel section and two endcap sections. For the current phase, it
employs three types of gaseous detectors, namely drift tubes (DTs),
cathode strip chambers (CSCs), and resistive plate chambers (RPCs). For
the Phase-II, an upgrade in all types of detectors is taking place, and

new detectors based on Gas Electron Multiplication (GEMs) technology
are also being added.

2. improved Resistive Plate Chamber (iRPC)

The current RPC system consists of 480 chambers in the Barrel
and 576 chambers in the Endcap, organized into 4 stations: RB1-4
(barrel) and RE1-4 in the endcap region. This implies that the RPC
system is the only one that covers both the Endcap and Barrel locations.
Two upgrade measures are planned for the RPC system. Although the
existing RPC chambers can operate until the end of Phase-II, the Link
Board (LB) system, which connects the front-end board (FEB) to the
trigger processors, will be upgraded. Additionally, new detectors for
the forward region (RE3/1 and RE4/1) are proposed [3]. Their future
position can be observed in Fig. 1.

New improved RPC chambers will be installed complementing the
existing CSC chambers in that area. This upgrade is motivated by the
need to increase the number of hits per muon track up to || = 2.4.

A significant improvement in the iRPC compared to the already
installed RPCs is the reduced gap size of 1.4 mm (from 2 mm). De-
creasing the gap size will lead to a faster avalanche formation and
signal production, which lowers the charge threshold to less than 50
fC compared to 150 fC of traditional RPCs. Additionally, by reading
signals from both ends of the printed circuit board (PCB) strips, the
system will achieve impressive improvement in spatial resolution. The
time resolution of 0.5 ns is achieved because of the FPGA used on the
front end electronics. The fast time response enables us to achieve spa-
tial resolution of 1.5 cm in the radial direction, a significant reduction
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Fig. 1. The ‘iRPC high eta extension’ box indicates the position of the two new RPC
stations, RE3/1 and RE4/1, will cover the || = 1.8 to 2.4 region, complementing
the already existing CSCs in that » range [2]. The ‘RPC LB Upgrade’ box shows the
current RPC detectors with upgrades in the LB system. In the central part (left corner),
the position of the calorimeters (ECAL and HCAL) is observed, in addition to a new
detector for the update, the High-Granularity calorimeter (HGCAL).
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Fig. 2. Illustrations of the internal structure of an iRPC detector. The detector consists
of multiple layers, including two mylar sheets on the top and bottom for insulation,
two gaps (top and bottom), and two PCBs located on the left and right, all enclosed
within a Faraday cage.

from the 20-28 cm in the existing RPCs. Similarly, in the ¢ direction
resolution will improve to 0.3-0.8 cm, compared to 0.8-1.9 cm in RPCs
(strip pitch driven).

The iRPCs, illustrated in Fig. 2, feature a wedge-shaped design
with radially oriented readout strips positioned between the gaps.
These chambers operate in avalanche mode and consist of two gaps,
referred to as the top and bottom gaps. These gaps are formed by two
High Pressure Laminate (HPL) electrodes coated with a thin graphite
resistive layer, with the gas gap maintained by circular spacers between
the HPL [4]. The current gas mixture used for RPC operation and
testing is the standard CMS mixture: 95.2% C,H,F,, responsible for
generating primary ion—electron pairs; 4.5% iC,H,,, which prevents
photon feedback effects; and 0.3% SFg, an electron quencher.

The readout strips are integrated into a large trapezoidal PCB that is
divided into two sections (PCB-left and -right) to fully cover the active
area. Each PCB contains a total of 96 readout strips — 48 each in
the left and right sections. Compared to the existing RPC system, the
new readout scheme offers improved spatial resolution and reduces the
number of electronic channels by 60%.

All layers, including two insulation layers (mylar foils), two copper
plates for the Faraday cage, and the gas connection circuits, are stacked
inside a honeycomb panel-based box. To secure all layers in place, five
aluminum brackets are mounted on four sides of the box. Additionally,
the chamber is equipped with a fiber optic sensor to monitor envi-
ronmental parameters such as temperature, pressure, and humidity.
A patch panel is mounted on the aluminum frame to organize and
hold the mechanics and cables in position. Two FEBs hosting the front-
end electronics are connected directly to the PCBs, with two copper

Nuclear Inst. and Methods in Physics Research, A 1077 (2025) 170484

cooling pads placed on top of the FEBs to ensure temperature control.
A cover plate is installed on the top of the chamber to protect the FEB
connections and the cooling circuit.

3. Quality control (QC) tests

3.1. QC1 for detector components

The initial stage of quality control (QC1) focuses on inspecting and
validating essential components for detector assembly at procurement
sites. Key components include HPL for gaps, detector electronics, strip
PCBs, and copper cooling panels.

For iRPC FEBs, QC1 involves assessing each electronic module
within the FEB, covering components like SCA, GBTx, power supplies,
test points, etc. It verifies data transmission integrity, FEB firmware on
FPGAs, and tests TDCs and ASICs [5]. Performance is validated using
injection boards simulating iRPC behavior.

The QC1 process for strip PCBs includes verifying electrical con-
tinuity of each strip, checking for breaks or interruptions, and mini-
mizing crosstalk between neighboring strips [6]. Impedance values are
confirmed, and crosstalk evaluations are redone after soldering ERNI
connectors to prevent contact between strips.

3.2. QC2 for gas leak, spacer bonding and dark current

QC2 is a critical QC test conducted at the gap manufacturing facility
in the Korea Detector Laboratory. This process includes gas leak tests,
spacer bonding verification, and dark current scans to assess the perfor-
mance and reliability of the gaps. Only the gaps that successfully pass
these tests are approved for shipment to the chamber assembly sites.

Upon arrival at CERN’s 904 laboratory or Ghent University for
chamber assembly, a visual inspection is conducted and then QC2 tests
are repeated. This preliminary evaluation is essential to ensure the
integrity and functionality of the gaps before their integration into the
chambers.

3.2.1. Gas leak and spacer bonding test

A gas leak test setup in the laboratory is used for QC procedures
on gas gaps and chambers. It includes connection slots for Argon gas,
input/output connections for gas gaps/chambers, a flow meter, and T
connectors for gas distribution. A paraffin-filled bubbler serves as a
safety measure against excess gas pressure, protecting against potential
damage. A water column allows manual pressure measurement, with a
pressure sensor and analog gauge for monitoring pressure. The pressure
sensors are connected to a Pico ADC-24 data logger, which interfaces
with a PC for data recording using Pico logger software.

A gas leak test result is shown in Fig. 3, after filling the gap with
Argon to a pressure of approximately 15 mbar, the gas leak test shows
just a decrease of 0.15 mbar/10 min, well below the limit of 0.4
mbar/10 min. The spacer bonding test consists in laying a transparent
template, with the spacers location marked on it, on top of the gap and
applying pressure on each individual spacer. Damaged spacer would
easily be noticed as they would cause a high spike in pressure. In Fig.
3, this test is displayed between approximately 1600-1900s indicated
smooth transitions between spacer components, ensuring good bonding
quality. Overall, the detector demonstrated tight gas seals and secure
spacer bonding, meeting the required standards for reliability. There-
fore, the gap is able to progress to the next QC test stage. At this stage,
even a single spacer being damaged would result in the rejection of the
gap, and it will not be used for chamber production.



M.A. Ali et al.

CMS Preliminary CERN 904 lab
Chamber Type: RE4/1
16.58 Acceptance Pressure Drop: 0.4mbar/10min
16.56
16.54
= 73
8 % H
£ 16,521 & 2
= X @
e |3 g
216501 2 H
16.48 2
16.46
16.44
1000 1200 1400 1600 1800

Time [seconds]

Fig. 3. This plot shows the gas leak tightness and spacer bonding test for an iRPC gap
at CERN 904 iRPC assembly site [7], after the gaps were manufactured in Korea and
air shipped to CERN.
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Fig. 4. Dark current test results for a half chamber as a function of the effective high
voltage (HV.) for an iRPC gap. In the linear Ohmic region, the current increases
proportionally with the voltage. The exponential rise in current begins around 4000
V-5000 V, marking the transition to the exponential region.

3.2.2. Dark current test

For conducting dark current QC tests on gas gaps and chambers, a
CAEN SY 1527LC multi-channel power supply system with integrated
CAEN A1526 6-channel (15 kV) high voltage (HV) boards is utilized.
The HV channels are managed through the visual interface of the power
system.

The dark current test is completed to know if the appropriate
electron avalanche is produced within the voltage range. The tests were
conducted at 16 high-voltage (HV) points to analyze the Ohmic and
exponential behavior of the gas gap. Fig. 4 shows the result.

The Ohmic behavior is clearly observed below 6.0 kV, followed by
an exponential increase beyond this threshold. Based on this observa-
tion, 5.0 kV is chosen to assess the current in the Ohmic regime, while
7.4 kV serves as the reference for the exponential regime. For this QC
stage, the maximum acceptable current is 0.75 pA at 5.0 kV and 2.5 pA
at 7.4 kV.

In the case of dark current tests, particularly for the iRPC chambers,
custom in-house software connected to the HV boards is employed,
consistent with the software used during the RE4 RPC assembly.

After that, concerning the study of performance of the assembled
chamber in assembly sites, data from those plots are summarized for
the aim of criteria validation. Fig. 5 shows that these results align
remarkably well with the acceptance criteria, establishing a consistent
performance evaluation, while Fig. 5(a) 5(b) examines the Ohmic
(exponential) behavior.
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(a) Currents measured at 5000 V, highlighting the Ohmic behavior re-
gion. The maximum observed current reached 0.59 uA, with an average
current of 0.14 uA, well within the acceptance criteria of 0.75 uA. There-
fore, establishing a consistent performance evaluation.
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(b) Currents measured at 7400 V, illustrating the characteristics of the
exponential region driven by the avalanche process. The maximum ob-
served current was 1.96 pA, with an average current of 0.41 uA, con-
forming to the acceptance criteria of 2.5 pA, ensuring consistent evalua-
tion of the system’s performance.

Fig. 5. Current measurements of iRPC production gaps tested at the assembly sites
(CERN 904 and Ghent). All tests were performed under controlled laboratory conditions
with an ambient temperature of 21 °C, relative humidity of 55%, and gas humidity of
40%.

3.3. QC3 for chamber validation

After chamber assembly, a visual inspection ensures the integrity of
external connections. Gas leak and dark current tests are repeated to
validate gap condition. Leak tests are crucial due to assembly manipu-
lations and the presence of multiple connections. Spacer bonding test
is omitted in QC3 due to full chamber closure. Dark current tests were
performed in QC3, by monitoring the current at 16 HV points, to ensure
the desired behavior.

In QC3 stage, three scintillator + SiPM (silicon photomultiplier)
set in coincidence with an area of 30 x 40 cm?. Chambers, equipped
with 1 portable FEB on each side (left and right), were tested using
cosmic muons. To exclude events caused by cosmic muon showers, an
additional scintillator was placed near the chambers to serve as a veto
detector.

Fig. 6 shows the muon hit profile obtained with this setup config-
uration. The position of the hit takes into account the time difference
from both sides of the readout strip.

One of the most critical quantity to measure during this stage is the
efficiency, defined by the ratio of the number of detected muons to the
total number of triggers. Fig. 7 shows the efficiency measured for one
tested chamber. A detected muon is considered as at least one hit within
the scintillator projected area. Maximal efficiency reaches 99% for all
four different readout windows.

Fig. 8 shows the intrinsic noise distributions in Hz/cm? for one of
the iRPC production chambers. This noise rate is measured by counting
the number of hits in a variable time window. The ratio between the
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Fig. 6. The plot shows a 3-dimensional reconstruction of muon hit positions for an
iRPC chamber at a working point with a charge threshold of 40 fC.
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Fig. 7. Cosmic muon detection efficiency versus effective high voltage (HV,). Effi-
ciency peaks at 99%, with the working point is identified at 95% (HV},.)+150 V. The
“RxLW”s in the legend are the receive latency windows, where “x” indicates different
window sizes, in this case 36/24/18/12. There is no drop in efficiency even when
lowering RXLW, allowing multiple FEBs to be used with the same backend system.

number of hits and the readout time gives the observed noise rate. This
quantity is divided by the active detector area (strips area) to obtain the
rate per square centimeter. 1 Hz/cm? is well within the expected range
(< 5 Hz/cm?). This data was obtained with a corresponding charge
threshold of ~ 40 fC.

In an iRPC, strips in PCB vary due to the shape of detector, widths
ranging 0.60-1.23 cm. At this QC stage, measurements are done from
the high radius side of chamber, with strips around the scintillators
measuring about 1 cm. This variation impacts spatial resolution. Fig. 9
represents the cluster size, defined as the number of consecutive strips
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Fig. 9. The plot shows the cluster size distribution at a working voltage of 7.05 kV
for an iRPC detector.

fired when a muon crosses the detector. The total number of hits (two
TDC data from each side of the same strip), recorded for each readout
strip on the PCB, is shown in Fig. 10.

Highly occupied strips in the center ranging from strip number 10 to
number 38 of the plot correspond to the region from triple coincidence
of three scintillators used as an external trigger. Referring to Fig. 11,
chambers show high efficiency with mean value of 97.7% at working
points shown in Fig. 12 with mean value of 7 kV.
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Fig. 11. The histogram depicts the statistical distribution of Efficiency at Working Point
values obtained from tests conducted using a portable FEB with charge threshold of ~
40 fC for both the left and right strip printed circuit boards.

3.4. QC4 for stability and verification

After chamber production and QCS3 tests, all qualified chambers are
transported to the CMS RPC lab at CERN, building 904. QC4 is the final
chamber test, it involves three steps: QC4.1, QC4.2 and QC4.3.

* QC4.1 - Cooling leak test, gas leak test, and dark current scan.

* QC4.2 - Long term HV stability, chambers remain at working
point for a minimum period of a month. Currents, pressure,
temperature and humidity are constantly being monitored. A
chamber does not qualify in QC4.2 for installation in CMS if the
current exceeds 2.5 pA. In Fig. 13, the down HV layer shows a
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Fig. 12. The histograms depict the statistical distributions of HV Working Point (WP)
values obtained for newly built iRPC chambers, from their cosmic quality control testing
in assembly sites of (a) Ghent and CERN 904 and (b) CERN 904 only, conducted using
a portable Front-End Board (FEBv23) with charge thresholds of (a) 40 fC and (b) 30
fC. The tests were done on both left and right strip printed circuit boards, testing each
half of the chamber separately. It provides a visual representation of the distribution
WP values, with a mean of 7 kV.
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Fig. 13. Results of the QC4.2 long-term stability chamber validation test. The current
of one of the two HV layers of an iRPC production chamber at 7 kV over a period of
more than a month is shown.

stable trend, therefore it achieved a validation stamp from QC4.2

protocol.
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* QC4.3 — Chamber tests with final FEBs. This test however, is
currently ongoing and will be reported in a future publication.

The cosmic test bench has five scintillator + SiPM paddles for
triggering and seven racks for iRPC chambers.

4. Conclusions

The production of the improved Resistive Plate Chambers (iRPCs)
is in its final stage. A total of 62 chambers have been assembled to
date, including 27 for the RE3/1 endcap station and 35 for RE4/1. The
quality control procedures for iRPC assembly have been successfully
validated for mass production. The results are uploaded to the CMS
Construction Database for RPC data, which was adapted and validated
to accommodate iRPC QC tests during the project.

The first two mass production chambers were installed on the CMS
detector in the winter of 2023, the 70 remaining chambers will be
installed in the year-end technical stop YETS24.
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