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1
INTRODUCTION

Version française

Les symétries sont omniprésentes dans la nature, et en conséquence elles ont un rôle unique
en physique. En particulier, le théorème découvert par Emmy Noether liant symétries et
quantités conservées [1] est extrêmement profond. Non seulement les symétries d’un sys-
tème peuvent être utilisées pour en faciliter sa description, elles sont également aux racines
de notre compréhension des lois fondamentales de la physique; de la mécanique classique
à la mécanique relativiste et quantique, et plus tard, en théorie quantique des champs, les
symétries ont toujours eu ce rôle central. Les espace-temps peuvent être définis par le biais
de leurs isométries et d’autres symétries (discrètes), e.g. le groupe de Galilée et le groupe
de Poincaré. En mécanique quantique, les symétries d’un système contraignent fortement
le spectre de son Hamiltonien. En théorie quantique des champs, la description des inter-
actions fondamentales est basée sur les symétries de jauge. Non seulement elles prédisent
l’existence de particules de spin-1, les bosons de jauge, elles contraignent également les
interactions possibles entre particules élémentaires.
Depuis la découverte de la première particule élémentaire, l’électron en 1895, la con-

struction expérimentale du Modèle Standard (MS) de la physique des particules et sa
confirmation se sont étendues sur plus d’un siècle. Avec la découverte des atomes, noy-
aux et ensuite des protons et neutrons, les idées atomistiques grecques se sont avérées
être réalisées dans la nature. D’autant plus avec la découverte dans les années 40 et 50
d’une large variété de particules hadroniques qui a résulté en la formulation du modèle des
quarks et finalement, à la ChromoDynamique Quantique (CDQ). Au coeur de la CDQ se
trouve le phénomène de liberté asymptotique découvert en 1973 par Gross [2], Wilczek et
Politzer [3]: l’intensité de la force forte augmente avec la distance entre deux objets colorés.
En particulier, la CDQ devient perturbative à faible distance, ou de manière équivalente,
à grande énergie. L’unification de l’électromagnétisme et de la force faible a commencé
en 1957 avec une proposition de Schwinger [4], qui ne pouvait cependant pas expliquer
pourquoi les interactions électromagnétiques conservent la symétrie de parité alors que ce
n’est pas le cas de la force faible. Quatre années plus tard, Glashow propose un modèle
électro-faible basé sur la symétrie de jauge SU(2)× U(1) qui introduit pour la première fois
un mélange entre le boson de jauge lié à U(1) et l’un de ceux liés à SU(2) [5]. De manière
indépendante, Salam et Ward propose un modèle similaire en 1964 [6]. Des développe-
ments supplémentaires dans l’étude des symétries de jauge spontanément brisées étaient
par la suite nécessaires afin d’expliquer la masse des bosons de jauge sans devoir briser
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explicitement la symétrie de jauge, et afin d’éviter les bosons de Nambu-Goldstone [7, 8]
non observés. Cela a été accompli indépendamment par trois groupes en 1964: Englert et
Brout [9], Higgs [10], et Guralnik, Hagen et Kibble [11]. La théorie électro-faible, telle que
présente dans le MS, a été formalisée par Weinberg [12] et Salam [13] en 1967 et 1968 re-
spectivement. La découverte des bosons W et Z et les mesures de précision établies par la
suite au grand collisionneur électron-positron (LEP) ont définitivement confirmé la validité
du modèle. Malgré ses succès formidables, le MS souffre cependant de nombreux problèmes
à la fois observationnels et théoriques, tels que son incapacité à décrire la matière noire,
l’instabilité quantique de l’échelle électro-faible (le problème de la hiérarchie) et l’origine
inconnue du secteur de saveur. Une théorie fondamentale de la physique des particules
devrait clairement adresser ces problèmes.
De grands collisionneurs de particules sont utilisés afin de sonder la matière aux échelles

les plus faibles et pour produire des particules lourdes en laboratoire. Aujourd’hui, le grand
collisionneur de hadrons (LHC) fonctionne à une énergie de centre de masse de 13 TeV, ce
qui permet une caractérisation précise de l’échelle du TeV, où des effets de nouvelle physique
sont attendus s’il existe une solution naturelle au problème de la hiérarchie. Le point
d’orgue des efforts expérimentaux et théoriques des siècles précédents se trouve assurément
dans la découverte d’une particule scalaire, aux propriétés très proches de celles du boson
de Higgs du MS, au LHC le 4 Juillet 2012 par les deux expériences généralistes ATLAS et
CMS [14, 15]. Avec une masse de 125.09 GeV [16], elle est également compatible avec les
contraintes directes du LEP [17] et du Tevatron [18], ainsi que les contraintes indirectes
dérivées des mesures de précision électro-faible du LEP [19]. Suite à ce premier triomphe,
des mesures de précision des propriétés de ce boson de Higgs ont été conduites jusqu’à
la fin de la première période d’exploitation du LHC. Aucune déviation significative des
prédictions du MS n’a été observée. Les taux de production et de désintégration de cette
particule sont des informations essentielles afin d’identifier sa vraie nature. Ils permettent
de déterminer ses couplages aux autres particules, et d’identifier de possibles nouveaux
modes de désintégration non présents dans le MS. Ces résultats permettent de contraindre
sévèrement des scénarios avec un secteur de Higgs étendu. Cela constitue la première
partie de ce manuscrit de thèse, composée des Chapitres 2 et 3. Dans le Chapitre 2, nous
détaillons en premier lieu la construction du MS. Après avoir rappelé son mécanisme de
brisure de la symétrie électro-faible, nous discutons plusieurs aspects du secteur de Higgs;
la présence de la symétrie custodiale et les contraintes théoriques d’unitarité et stabilité
en particulier. Nous présentons ensuite les modes de désintégration du boson de Higgs
du MS afin de poser les bases des études phénoménologiques qui suivent. Le secteur de
Yukawa est ensuite décrit. Finalement les problèmes du MS sont discutés plus en détail.
Dans le Chapitre 3, nous présentons les contraintes actuelles sur le secteur de Higgs.
Nous commençons par introduire les contraintes issues du LEP et du Tevatron, puis celles
obtenues au LHC. La détermination des nombres quantiques du boson de Higgs est discutée,
ainsi que celle de ses couplages. Nous présentons ensuite Lilith, un outil public développé
durant cette thèse afin de dériver des contraintes sur des scénarios de nouvelle physique
grâce aux mesures des taux de production et désintégration du boson de Higgs. Une étude
globale de ses couplages est ensuite réalisée en utilisant les résultats finaux de la première
période d’exploitation du LHC.
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Phénoménologiquement, il est possible d’étudier des modèles effectifs limités à une
gamme d’énergie assez restreinte, afin de raffiner notre compréhension du secteur électro-
faible à basse énergie. De ce point de vue, les modèles à deux doublets de Higgs (M2DH)
sont particulièrement intéressants et leur présence pourrait contraindre fortement la théorie
fondamentale sous-jacente. Dans la seconde partie de ce manuscrit, composée des Chapitres 4
et 5, nous étudions en détail la phénoménologie de ces modèles. Dans la première partie
du Chapitre 4, nous donnons une présentation générale des M2DH. Étant donné que le
boson de Higgs observé est compatible avec celui du MS, nous décrivons ensuite la limite
d’alignement, dans laquelle l’un des deux états propres de masse (pair sous CP) est aligné
dans la direction des valeurs moyennes dans le vide des deux doublets, ce qui lui confère
des propriétés proches de celles prédites par le MS. Dans le Chapitre 5, nous explorons
les conséquences de cette limite pour le LHC. En particulier, les mesures de précision des
propriétés de l’état à 125 GeV permettent de la contraindre. De plus, étant donné que
certains des états scalaires du M2DH peuvent être légers dans la limite d’alignement, nous
discutons des perspectives de les observer lors de la seconde période d’exploitation du LHC
et identifions des canaux de grand intérêt. Finalement, nous étudions la possible présence
de bosons de Higgs légers, en deçà d’environ 60 GeV, dans les M2DH.
La supersymétrie est une extension de la symétrie de Poincaré qui offre naturellement

une vue unifiée des fermions et bosons. Les modèles supersymétriques peuvent grande-
ment améliorer, voire résoudre, certains des problèmes du MS. En particulier, ils peuvent
offrir une solution naturelle au problème de la hiérarchie. Cependant, dans un modèle
phénoménologiquement viable, la supersymétrie doit être brisée spontanément et cela in-
troduit de nombreux nouveaux paramètres. En particulier, le secteur de la saveur d’un tel
modèle peut être complètement générique et cela peut mener à de graves contradictions
avec les observables de saveur, qui sont toutes en excellent accord avec les prédictions du
MS. L’hypothèse de Violation Minimale de la Saveur (VMS) tente précisément de résoudre
ce problème en permettant un alignement dans l’espace de la saveur entre les nouvelles
structures de saveur et celles du MS, au travers d’un principe de symétrie bien défini.
Cela sera le sujet de la dernière partie de ce manuscrit, composée du Chapitre 6. Dans ce
Chapitre 6, l’hypothèse VMS est introduite comme un moyen systématique de résoudre
les problèmes de la saveur au-delà du MS. Nous vérifions en particulier si un tel alignement
de la saveur peut être généré à haute énergie et être conservé à basse énergie sous le groupe
de renormalisation. Cette étude est effectuée pour les couplages violant la parité R et le
nombre baryonique dans le Modèle Standard Supersymétrique Minimal.
Nos conclusions sont finalement données dans le Chapitre 7.
Dans le reste de ce chapitre d’introduction, nous introduisons certaines notions à propos

des symétries en physique des particules. Nous décrivons d’abord les symétries d’espace-
temps, puis les symétries de jauge et globales en théorie quantique des champs. En parti-
culier, une construction des théories de Yang-Mills au niveau classique est présentée. Les
effets quantiques sont brièvement discutés. Cette partie n’a pas pour but d’être exhaustive
mais nous permet de commenter des notions importantes de nos constructions théoriques.
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Symmetries are omnipresent in nature, and as a consequence, they have a unique role
in physics. In particular, Emmy Noether discovered the beautiful result that they are
associated with conserved quantities [1]. Not only can symmetries of a given system be
used to facilitate its description, they are also at the roots of our current understanding
of the fundamental laws of physics; from classical to relativistic and quantum mechanics,
and later on, in relativistic quantum field theories (QFTs), symmetries always had this
central role. Space-time frameworks may be defined through their isometries and additional
(discrete) symmetries, e.g. the Galilean group and the Poincaré group. In a quantum theory,
symmetries lead to strong constraints on the spectrum of the Hamiltonian. In QFT, our
modern understanding of the fundamental interactions is based on local gauge symmetries.
Not only they predict the existence of spin-1 particles, the gauge bosons, they also tightly
constrain the possible interactions between elementary particles.
From the discovery of the first elementary particle, the electron in 1895, the experimen-

tal development and establishment of the Standard Model (SM) of particle physics has
extended over more than a century. With the discovery of atoms, nuclei, and subsequently
of protons and neutrons, nature seemed to realize the ancient atomistic ideas of matter
being composed of elementary bricks. This certainly culminated with the discovery of a
large variety of hadronic resonances in the late 1940s and early 1950s that eventually lead
to the formulation of the quark model and later on, of Quantum ChromoDynamics (QCD).
At the heart of QCD lies the phenomenon of asymptotic freedom discovered in 1973 by
Gross [2], and Wilczek and Politzer [3]: the strength of the strong interaction increases with
the distance between two colored objects. In particular, QCD therefore becomes perturba-
tive at small distances, or at high energies. The unification of electromagnetism and weak
forces started in 1957 with Schwinger’s proposal [4], which could however not describe why
electromagnetic interactions are parity-conserving while weak interactions are not. Four
years later, Glashow introduced an electroweak SU(2)× U(1) gauge theory, introducing for
the first time a mixing between the U(1) gauge boson and the neutral component of the
SU(2) ones [5]. Salam and Ward independently proposed a similar model in 1964 [6]. De-
velopments in the study of spontaneously broken gauge symmetries were however needed
in order to explain the gauge boson masses without explicitly breaking the gauge symme-
try, and to escape Nambu-Goldstone’s massless bosons [7, 8]. This was achieved by three
independent groups in 1964; Englert and Brout [9], Higgs [10], and Guralnik, Hagen and
Kibble [11]. The electroweak model, as present in the SM, was finally formalized by Wein-
berg [12] and Salam [13] in 1967 and 1968 respectively. The discovery of the W and Z

bosons at CERN and the subsequent precision measurements of the electroweak sector at
the Large Electron Position (LEP) collider provided the full-fledged confirmation of the
model. Despite its tremendous success, the SM suffers from several shortcomings of both
observational and esthetical nature, such as the lack of a dark matter candidate, the quan-
tum instability of the electroweak scale (the hierarchy problem) and the unknown origin
of flavor in particular. A fundamental theory of particle physics should clearly provide a
solution to these problems.
Large colliders are used in order to directly probe matter at the shortest possible scales

and produce heavy particles in laboratories. Today, the Large Hadron Collider (LHC) runs
at a center of mass energy of 13 TeV, allowing precise characterization of physics at the
TeV scale, where new physics effects are expected if there exists a natural stabilization of
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the electroweak scale. All the experimental and theoretical efforts aimed at describing and
understanding the fundamental interactions surely culminated on July 4th, 2012 with the
discovery of a scalar particle, with properties very close to that of the SM Higgs boson, at
the LHC by the two multi-purposes experiments ATLAS and CMS [14, 15]. With a mass
of 125.09 GeV [16], it is also compatible with the bounds derived at LEP through precise
electroweak measurements [19] and direct searches from LEP [17] and the Tevatron [18].
Following this first triumph of the LHC, precision measurements of the Higgs boson were
conducted during the first LHC run, with no large deviation from the SM properties
observed. Measurements of the production and decay rates of the observed Higgs boson are
crucial to reconstruct its couplings to other SM particles and possibly identify the presence
of channels not present in the SM. Such results can then be used to derive important
constraints on extended Higgs sectors beyond the SM. This will constitute the subject of the
first part of this thesis manuscript, composed of Chapters 2 and 3. In Chapter 2, we detail
the construction of the Standard Model. After recalling its mechanism for spontaneous
electroweak symmetry breaking, we discuss various aspects of the Higgs sector; custodial
symmetry and theoretical constraints from unitarity and stability in particular. We then
present the SM Higgs boson decays as a basis for the phenomenological aspects dealt with
in subsequent parts of the manuscript. The Yukawa sector is then described. Shortcomings
of the SM are finally discussed. In Chapter 3, we present how the Higgs sector has so
far been constrained experimentally. We start by reviewing constraints from LEP and
Tevatron and go on with the searches performed at the LHC. The characterization of the
Higgs boson quantum numbers is discussed, as well as of its couplings. We then present
Lilith, a public tool developed during this Ph.D. thesis to derive constraints on new
physics scenarios from the measurements of the Higgs boson production and decay rates.
A global fit using all final run 1 results from then LHC is finally performed.

From a phenomenological point of view, it is possible to study effective models, suitable
for a limited range of energies, in order to refine our views of the electroweak sector at low
energy. Well-motivated effective models include simple extensions of the SM Higgs sector
such as the two-Higgs-doublet models (2HDMs). If present in nature, this Higgs structure
would shine a new light on the electroweak sector and its symmetry breaking mechanism,
it could also strongly constraint the underlying fundamental theory. In the second part of
this manuscript, composed of Chapters 4 and 5, we will study the phenomenology of such
models under the light of the results from the first run of the LHC. In the first part of
Chapter 4, we give a general presentation of the 2HDMs. As the observed Higgs boson
has properties close to the SM one, we then describe the alignment limit of the 2HDM,
in which one of the two CP-even mass eigenstate aligns with the direction of the vacuum
expectation values, thereby automatically acquiring SM-like properties. In Chapter 5, we
explore the phenomenological consequences of the alignment limit of the 2HDM. We show
and quantify how the precise measurements of the properties of the 125 GeV state are an
important probe of this limit. Moreover, since alignment does not necessarily involve the
decoupling of the extra Higgs states, we discuss the prospects to observe these additional
scalars at the second run of the LHC and pin-down channels with high potential. Finally,
we also explore the parameter region of the 2HDM in which light Higgs states, with masses
below ∼ 60 GeV, are present and explore its phenomenology at the LHC.
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Supersymmetry is an extension of the space-time Poincaré symmetry that naturally links
fermions and bosons together. Supersymmetric models can soften or even solve some of
the SM problems. In particular, it can provide a natural solution to the hierarchy problem.
However, in realistic models, supersymmetry should be spontaneously broken and this
introduces a plethora of new parameters. In particular, the flavor sector of such models
can be totally generic and this leads to severe problems with flavor observables, all in very
good agreement with the SM predictions. The Minimal Flavor Violation (MFV) hypothesis
precisely tackles this problem, by effectively aligning the new flavor structures with the
SM ones, through a well-defined symmetry principle. This will be the focus of the last
part of the manuscript, composed of Chapter 6. In Chapter 6, we present the MFV
hypothesis, a systematic way to ensure a flavor alignment through a symmetry principle
and a naturalness criterion, as a possible solution to the flavor puzzles beyond the SM.
In particular, we analyze whether such an alignment, if generated at a very high scale,
can hold down to low scales under the renormalization group evolution. This study is
performed for the baryonic R-parity violating couplings of the Minimal Supersymmetric
Standard Model.
Our conclusions are finally presented in Chapter 7.
In the rest of this introductory chapter, we introduce notions about symmetries in parti-

cle physics. We first describe space-time symmetries and then go on with gauge and global
symmetries in QFTs. In particular, a short construction of Yang-Mills theories at the clas-
sical level is performed. Quantum effects are briefly discussed. This section is not meant
to be exhaustive or even be a self-contained introduction to the subject but allows us to
comment upon important notions of our theoretical constructions.

Lie groups and algebras

Let us recall a few basic facts about Lie algebras and their representations (a very clear
and complete discussion can be found in, e.g., [20]). A Lie group G is both a group and a
smooth differentiable manifold. As such, its elements depend continuously and differentially
on a set of parameters θ = {θa}, where a ranges from 1 to nG, the dimension of the group.
In the following, we henceforth denote a general group element as g = g(θ) ∈ G. Focusing
on the region connected to the identity, the parametrization θa can be defined such that
g(0) ≡ e, where e is the group identity element, without loss of generality.
A representation ρ of the group G on a vector space V is a group homomorphism

ρ : g ∈ G→ Dρ(g) ∈ End(V ) , (1.1)

where End(V ) is the set of endomorphisms on V , satisfying D(e) = l1V and D(g1)D(g2) =

D(g1g2). The dimension of V is called the dimension of the representation. Given a basis
of V , the group elements can be represented as matrix transformations on the vectors v
of V , v → Dρ(g)v, or in components,

vi → (Dρ(g))i j v
j , (1.2)

where a sum over repeated indices is implied. While the group elements are only defined
through abstract relations among each other, representations allow to define concrete trans-
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formations on physical quantities through the matrices Dρ(g). Close to the identity, Dρ(g)

may be written as

Dρ(g) = l1V − iθaT aρ , (1.3)

where {T aρ } are the matrix representation of the so-called group generators. Away from the
identity, a general group element g connected to the identity can be represented in full
generality as

Dρ(g) = e−iθaT
a
ρ . (1.4)

If the matrix representations of the group generators are hermitian, Dρ(g) are then unitary
matrices for every element g, and such a representation is dubbed unitary,

Dρ(g)D†ρ(g) = Dρ(g)Dρ(g
−1) = Dρ(e) = l1V . (1.5)

For a given Lie group, there exists a natural representation called the adjoint representation.
This is the representation of the group on its own Lie algebra, V = G,

ad: G → G (1.6)
t → [t, .] , (1.7)

where the explicit matrix representation of the generators is given by the structure con-
stants of G, (T aadj)

ij = faij.
Though the explicit form of the {T aρ } depends on the specific representation, there exists

a local information about the group that does not depend on it. It is the Lie algebra G,
characterized by

[T a, T b] = ifabcT c, (1.8)

where fabc = −f bac are the structure constants of the Lie algebra, [. , .] is a bilinear skew-
symmetric internal product satisfying the Jacobi identity and the {T a} form a basis of
the Lie algebra.1 The structure constants are defined at the algebra level and therefore
do not depend on a specific group representation. On a given representation, the matrix
form of the {T a} are fixed, and Eq. (1.8) is realized with the usual matrix commutator.
For abelian Lie groups, all group generators commute and all structure constants therefore
vanish, fabc = 0. Geometrically, the Lie algebra is defined on the tangent plane at the
origin of G, as such, it encodes a local property of the group. The group generators {T a}
are seen here to form a basis of G and a generic vector of the Lie algebra can therefore be
written as θaT a. In the case of simply connected algebras, a Lie group can be constructed
out of the exponential map. However, this construction is not unique, two Lie groups can
share the same Lie algebra, i.e., have the same local properties near the identity, but differ
globally.
Lie algebras with no proper ideal are called simple, i.e., there does not exist a subset

I ⊃ G such that for any element i of I and x of G, [i, x] ∈ I with I 6= G, {0}. All simple

1 An algebra is a vector space over a field, e.g. the field of real or complex numbers, with an internal bilinear
product. As such, the {T a} can indeed be interpreted as a set of vectors forming a basis of the algebra.
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Lie algebras are known and were classified by Cartan [21]. Semi-simple Lie algebras are
algebras with no abelian proper ideal, they can also be constructed as a direct sum of com-
muting simple Lie algebras. Compact semi-simple Lie algebras [possibly including some
U(1) factors] are at the basis of gauge theories, the reason is that a necessary condition for
the unitarity of the theory is the existence of a non-degenerate positive-definite bilinear
form on the gauge Lie algebra G × G → R, see Section 15.2 of [22]. For semi-simple Lie
algebra, such a form is automatically given by the Killing form. It guarantees the existence
of a positive-definite gauge kinetic term.

Space-time symmetries

Einstein’s principle of relativity states that the laws of physics have the same form in
any inertial frames and that there exists a maximal finite velocity for the propagation of
interactions. Physics in the Minkowski space-time can naturally account for this principle.
The components of the metric are given by

ηµν = Diag(+1,−1,−1,−1) (1.9)

where, for our purposes, a flat 3+1 dimensional space-time is considered. While Einstein’s
principle can be accounted for in a curved space-time, we stick to the flat Minkowski space
here as we will only be interested in the interaction of particles over very small distances
where geometrical effects play no role beyond those of special relativity. This then naturally
leads us to the study of the isometries of the 3+1 Minkowski space-time. These are the
linear transformations that leave the space-time interval invariant,

ηµνdx
′µdx′

ν
= ηµνdx

µdxν , (1.10)

where µ, ν = 0, 1, 2, 3 and,
x′
µ

= Λµ
νx

ν + aµ. (1.11)

Combining Eqs. (1.10) and (1.11), the matrix Λ should then satisfy

ηµν = ηρσΛρ
µΛσ

ν . (1.12)

Following Weinberg’s notation [23], if T (Λ, a) denotes such a transformation, it is easy to
show that the composition of two of them is given by

T (Λ′, a′)T (Λ, a) = T (Λ′Λ,Λ′a+ a′), (1.13)

The set of such transformations forms the inhomogeneous Lorentz group or the Poincaré
group. The elements are referred to as either inhomogeneous Lorentz transformations or
Poincaré transformations. The group structure is indeed justified as the identity transfor-
mation is given by T ( l1, 0), the inverse element is given by

T−1(Λ, a) = T (Λ−1,−Λ−1a), (1.14)

and the composition of two Poincaré transformations is a Poincaré transformation as shown
in Eq. (1.13). From Eq. (1.12), it is clear that (detΛ) = ±1. The +1 (−1) solution is
(not) connected to the identity and define proper (improper) transformations. Moreover,
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it is easy to see that Λ0
0 is either larger than +1 or smaller than −1. A transformation

with Λ0
0 ≥ 1 is called orthochronous as it leaves the direction of the time untouched.

The subgroup of transformations without translation, T (Λ, 0), is called the homogeneous
Lorentz group. In the following, we will refer as the Lorentz group, the set of homogeneous
proper-orthochronous Lorentz transformations, generically called Lorentz transformations
for short.
Considering an infinitesimal Lorentz transformation

Λµ
ν = δµν + ωµν , (1.15)

it easy to see that ω is anti-symmetric, ωµν = −ωνµ from Eq. (1.12). The Lorentz group is
thus 6-dimensional. Three parameters parametrize space rotations (3 Euler angles), while
the three remaining ones parametrize boosts (3 rapidities for instance). The Poincaré group
has therefore dimension 6+4=10, where 6 is the dimension of the Lorentz group and 4 is
the number of independent space-time translations.
The Lie algebra of the Poincaré group can be derived from the infinitesimal form of

T (Λ, a). Considering transformations connected to the identity, Λ = l1 + ω and a = ε, we
can generically parametrize them as

T (1 + ω, ε) = 1− i

2
ωµνJ

µν − iεµP µ, (1.16)

where Jµν = −Jνµ are the Lorentz generators while P µ are the space-time translation
generators. Examining the product T (Λ, a)T ( l1 + ω, ε)T−1(Λ, a), one can obtain the trans-
formation laws of J and P under a general Poincaré transformation. The algebra of the
Poincaré group is then obtained by identifying all terms of the same order in ω and ε,

[Jµν , Jρσ] = i (ηνρJµσ + ησµJνρ − ηµρJνσ − ησνJµρ) , (1.17)
[P µ, Jρσ] = i (ηµρP σ − ηµσP ρ) , (1.18)
[P µ, P ν ] = 0. (1.19)

The vectors J = {(1/2)εijkJ
jk}, K = {J i0} and P = {P i} can be identified with the

angular-momentum, boost and momentum vectors respectively, using the previous com-
mutation relations. The 0-th component of P µ is identified with the energy operator,
the Hamiltonian H. One can show that the Hamiltonian commutes with the angular-
momentum and momentum three-vectors but not with the boost vector. States can thus
be labeled according to their angular-momentum j and momentum p.
The (complexified) Lorentz algebra, Eq. (1.17), is equivalent to two independent, i.e.,

commuting, SU(2) algebras, the left and right ones. Indeed, defining,

JR,L =
J± iK

2
, (1.20)

Eq. (1.17) can be written as, [
J iL, J

j
L

]
= iεikjJkL , (1.21)[

J iR, J
j
R

]
= iεikjJkR , (1.22)[

J iL, J
j
R

]
= 0 . (1.23)
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The quantities JR,L are therefore generators of SU(2) algebras. Spinorial representations of
the Lorentz group can thus be represented by two half-integers (jL, jR) and have dimension
(2jL + 1)(2jR + 1). The simplest non-trivial representations are 2-dimensional, (1/2, 0) and
(0, 1/2) and are called the left-handed and right-handed Weyl spinors, respectively. In the
following, we will denote a generic left-handed Weyl spinor by ψL and a right-handed one
by ψR. On such representations, the generators take the form of the Pauli matrices σi.
Considering the transformations of ψL and ψR under the Lorentz group, one can show that

ψcL ≡ iσ2ψ∗L ∈
(

0,
1

2

)
, ψcR ≡ −iσ2ψ∗R ∈

(
1

2
, 0

)
. (1.24)

This defines the charge conjugation operation on Weyl spinors, an operation that trans-
forms a left-handed Weyl spinor to a right-handed one and vice-versa. Experimentally, we
know that for scales above O(100 GeV) fermions need to be described by Weyl spinors, as
weak interactions maximally break parity. Indeed, under a parity transformation, an object
in the representation (jL, jR) is transformed to an object of (jR, jL), see Eq. (1.20) where
J transforms as a pseudo-vector while K as a true vector under a parity transformation.
Below the weak scale, however, electromagnetic interactions conserve parity and a more
appropriate basis for spinor representations should be considered: the Dirac representation
whose elements are the Dirac spinors,

Ψ =

(
ψL

ψR

)
∈
(

1

2
, 0

)
⊗
(

0,
1

2

)
, (1.25)

Bosonic representations of the Lorentz group are easy to construct. Equation (1.11) with
aµ = 0 defines a contravariant vector. Covariant vectors can be defined as

x′µ = Λ ν
µ xν , (1.26)

with Λ ν
µ = ηµρη

νσΛρ
σ, while general tensors are defined as

T ′
µ1µ2...
ν1ν2...

= Λµ1
ρ1

Λµ2
ρ2
... Λ σ1

ν1
Λ σ2
ν2
... T ρ1ρ2...σ1σ2...

. (1.27)

One can then define various types of field representations of the Lorentz group, i.e., infinite-
dimensional representations. In particular, the scalar, Weyl spinor, Dirac spinor and vector
fields representations are instrumental in the construction of QFTs. With them, Lorentz-
invariant field theories describing interactions between particles can then be constructed.
For that, explicit representations of the generators Jµν and P µ are found,

Jµν = Lµν + Sµν , Lµν = i(xµ∂ν − xν∂µ) (1.28)
P µ = i∂µ , (1.29)

where Lµν is the orbital angular-momentum while Sµν is the internal spin part whose
explicit form depends on the Lorentz representation.
No matter the Lorentz representation, particle states are asked to be invariant under

space-time translations and can thus be labeled by the eigenvalues of the Poincaré Casimir
operators, see e.g. [23, 24] for explicit details. There are two of them, the mass operator
PµP

µ which has value m2 on a representation of mass m, and the Pauli-Lubanski operator
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W µWµ, where W µ = −(1/2)εµνρσJνρPσ, whose value depends on whether the representa-
tion is massive (m2 6= 0) or not (m2 = 0). In the massive case,W µWµ = −m2j(j+1) where
j is an half-integer, the spin. Such a representation has 2j + 1 degrees of freedom, labeled
by jz = −j,−j + 1, . . . , j− 1, j. In the massless case, representations only have one degree
of freedom, the projection of their angular-momentum on their direction of motion, the
so-called helicity h. This quantity is quantized and takes half-integer values, both positive
and negative. Of course, under a parity transformation, the helicity of a representation
changes sign. In a parity invariant theory, such as electromagnetism, it is thus natural
to group together the two helicity states with opposite h into a single particle with two
degrees of freedom ±h. The photon is precisely defined with two degrees of freedom, called
polarization, ±1. The graviton, on the other hand, is defined with the two polarizations
±2. As weak interactions are not invariant under parity, the neutrino state with h = −1/2

and the one with h = +1/2 actually represent two different particles, respectively called
the neutrino and the anti-neutrino.
Guided by symmetry principles, one is naturally lead to the question of identifying the

most general symmetry of the S-matrix of a quantum field theory. A famous theorem was
proved in 1965 by Coleman and Mandula [25] who showed that the symmetry group of
quantum field theories can only consist of a direct product of the space-time Poincaré
group and the possible internal symmetry groups. This means in particular that the ac-
tion of the internal group generators on the space-time part can only be trivial. However,
this result only holds for space-time generators that are bosonic. Ten years later, Haag,
Lopuszanski and Sohnius [26] proved that the space-time symmetry can be extended to
the supersymmetry, the largest space-time symmetry compatible with quantum field theo-
ries. Supersymmetric generators are fermionic (anti-commuting) objects and therefore can
transform a bosonic state into a fermionic one and vice-versa. Supersymmetry offers a
unified view of fermions and bosons.

Gauge symmetries

Our present formulation of fundamental interactions is based on gauge theories: quantum
field theories invariant under a local gauge group. Without knowing it, Maxwell was the
first to introduce such a theory in 1861–1862 (which moreover satisfied Eintein’s principle
of relativity). The first non-abelian gauge theory was proposed by Yang and Mills [27] in
order to provide a local description of the approximate isospin symmetry observed in strong
interactions. Following Yang and Mills’ construction, let us build a local gauge theory, with
gauge group G (generically non-abelian), for a single Dirac fermion species ψ, in a unitary
representation ρ of G,

ψ(x)
G−→ ψ′(x) =

(
e−iθa(x)Taρ

)
ψ(x) ≡ R(x)ψ(x) . (1.30)

The free Dirac Lagrangian density is

LDirac(x) = ψ(x)(i/∂ −m)ψ(x), (1.31)

where for notation simplicity, the explicit references to the space-time point x will be
omitted from now on. While the mass term is clearly gauge invariant, the kinetic terms
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transforms non-trivially under G because the gauge parameters θa depend on the space-
time point,

ψ
′
i∂µψ

′ = ψ(i∂µ l1ρ + ∂µθaT
a
ρ )ψ. (1.32)

Inspired by the classical electrodynamics minimal-coupling procedure, the covariant deriva-
tive is introduced,

Dµ ≡ ∂µ l1ρ − igT aρAaµ = ∂µ l1ρ − igAµ , (1.33)

where g is the gauge coupling, Aaµ the gauge field and Aµ ≡ T aρA
a
µ is the Lie algebra-valued

gauge field. Under the replacement ∂µ → Dµ in Eq. (1.31), the Dirac Lagrangian will be
locally gauge invariant if D′µψ′ = RDµψ, which fixes the gauge field transformation,

A′aµ = R AµR
† − i

g
(∂µR)R† . (1.34)

This replacement also completely fixes the interaction term between the fermion ψ and the
gauge fields. Under an infinitesimal gauge transformation,

δAaµ ≡ A′aµ − Aaµ = −1

g
∂µθaT

a
ρ + fabcθbA

c
µ . (1.35)

Defining the Lie algebra-valued field strength tensor Fµν as [Dµ, Dν ]ψ ≡ −igFµνψ,

Fµν = ∂µAν − ∂νAµ − ig[Aµ,Aν ], (1.36)

which fixes the gauge transformation,

F′µν = R FµνR† , (1.37)
δF a

µν ≡ F ′aµν − F a
µν = fabcθbF c

µν . (1.38)

From Eq. (1.37), it is clear that a gauge invariant kinetic term for F can be written as

Lgauge = −1

2
Tr (FµνFµν) = −1

4
F a
µνF

a,µν , (1.39)

where the normalization factor is such as to reproduce Maxwell’s equations for an abelian
gauge field and the group generators are normalized as Tr(T aT b) = (1/2)δab. In the abelian
case, i.e., G =U(1), fabc = 0 and T a = l1ρ, and all results known from quantum electrody-
namics are recovered. In particular, Fµν is gauge invariant on its own, allowing for kinetic
mixing of various U(1) groups. The generalization of this gauge theory to several fermion
species or to a direct product of gauge groups is straightforward. Scalar and vector particles
may be added to the particle content by the exact same reasoning.
The construction of non-abelian gauge theories certainly does not stop there. Even at the

classical level, an additional term is needed to regularize the partition function of the the-
ory that would otherwise be infinite as a result of the gauge redundancy: the gauge fixing
term. Very tightly connected to this matter is the presence of Faddeev-Popov ghosts [28],
which can alternatively be seen as a way to eliminate gauge degrees of freedom in a pure
gauge theory. While gauge fixing obviously breaks the gauge symmetry of a theory, there
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is an underlying symmetry under which the full theory is invariant, the Becchi-Rouet-
Stora-Tyutin (BRST) symmetry [29, 30], which is deeply linked to the renormalizability of
the theory and to possible gauge anomalies. While our approach was essentially algebraic,
Yang-Mills theories are geometrical by nature and have a very elegant picture in the con-
text of differential geometry, see e.g. [31, 32] for details.

Global symmetries

The complete Lagrangian of a gauge theory is invariant under its gauge group G, but
may also be invariant under additional global symmetries that were not explicitly asked
for, the accidental symmetries. Naturally, a Lorentz-invariant theory is invariant under the
discrete CPT symmetry [33, 34], but there might be additional continuous symmetries.
Global symmetries and conservation laws have profound connections in field theory.

Noether’s theorem [1] states that a theory invariant under a global symmetry group, G
of dimension nG, has nG conserved currents on-shell. Let us consider a theory describing
a collection of fields φi, invariant under a global symmetry G. Under an infinitesimal G
transformation, the fields transforms as

φ(x)→ φi(x) + εafi,a(φ, ∂φ), (1.40)

where a = 1, ..., nG is a group index. The currents

jaµ = − ∂L

∂(∂µφi)
fi,a, (1.41)

are then conserved for fields satisfying the classical equation of motions, i.e., on-shell fields.
This theorem is indeed proven by splitting the total action variation under an infinitesimal
G transformation into a surface term and local terms, the latter leading to the Euler-
Lagrange equations.
The free Dirac Lagrangian, Eq. (1.31), happens to be invariant under two global acci-

dental symmetries,

ψ → eiαψ, (1.42)
ψ → eiγ5βψ (if m = 0), (1.43)

respectively called vector (V) and axial (A) U(1) symmetries. The naming becomes trans-
parent when the two associated currents are obtained,

jµV = ψγµψ ⇒ ∂µj
µ
V = 0 , (1.44)

jµA = ψγµγ5ψ ⇒ ∂µj
µ
A = 2imψγ5ψ . (1.45)

where the axial current is conserved only for m = 0 as expected. More generally, for
ψ in a unitary representation ρ of a global symmetry group G, under an infinitesimal
transformation ψ transforms as

ψi → ψi − iθa(T aρ )ijψ
j, (1.46)

where i, j are representation indices and the nG conserved currents are then given by

jaµ = ψiγµ(T aρ )ijψ
j. (1.47)
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An important theorem about global symmetries is Nambu and Goldstone’s one [7, 8].
Although initially stated in the context of a theory of superconductivity, its reach is uni-
versal. For any global symmetry of dimension n spontaneously broken, the spectrum of
the theory necessarily involves n massless scalar particles, now called Nambu-Goldstone
bosons, that have the quantum numbers of the previously conserved current. If however,
the symmetry is slightly explicitly broken before spontaneous breaking, the scalar fields
acquire a relatively low mass and are called pseudo-Nambu-Goldstone bosons.
Another very important concept of quantum field theories is that of anomalies. So far our

discussion was limited to conserved currents at the classical level. However at the quantum
level, classical currents need not be conserved. Essentially, the failure of the classical picture
may come from the regularization of the theory needed at the quantum level in the presence
of gauge fields. The axial current, Eq. (1.45), is actually anomalous in the presence of a
gauged background. In Quantum Electrodynamics for instance,

∂µj
µ
A = 2imψγ5ψ +

e2

16π2
εµνρσF

µνF ρσ. (1.48)

An important physical consequence of this result is that it explains the decay of the neutral
pion in two photons, which would otherwise have a very small width in the absence of the
anomalous term and be in strong disagreement with the experimental observation [35, 36].
This mismatch between the experimental observation and the theoretical prediction led
Adler, Bell and Jackiw to discover anomalies in the late 1960’s [37, 38]. Another important
consequence is that, in the SM, baryon B and lepton L numbers are anomalous. ’t Hooft
computed the rate at which ∆B+L 6= 0 processes (sphaleron transitions) take place [39], it
turns out to be proportional to exp(−8π2/g2

weak), an extremely small number at our energy
scales. (See however [40] for a recent reappraisal of the possibility to observe these processes
at colliders and [41, 42] for phenomenological studies.) However, in the early universe,
at high temperature, the rate of such transitions might have been non-negligible. This
paved the way to the construction of consistent scenarios of baryogenesis, e.g. electroweak
baryogenesis [43] or leptogenesis [44]. Anomalies of gauged symmetries are more critical,
they indicate an inconsistency of the theory at the quantum level and interfere with the
renormalization procedure. There are thus consistency conditions on the particle content
and on the gauge group of the theory in order to avoid them. It is quite intriguing that the
SM fulfills these relations while it was, in no way, constructed to avoid such anomalies.

14



Part I

SETT ING THE STAGE

In this part, we first construct the Standard Model of particle physics, with
a strong emphasis on the Higgs sector and the various theoretical constraints
that it is subjected to. The Yukawa sector is also described in detail. We then
discuss how the Higgs sector has been experimentally constrained so far at
LEP, the Tevatron and the LHC. Making use of the precise measurements of
the production and decay rates of the observed Higgs states, one can infer
severe constraints on the parameter space of new physics models. This is the
purpose of the public tool Lilith that we then introduce. Finally, to end this
part, we perform a global fit to the Higgs couplings using the final Run 1 LHC
results.

Dans cette première partie, nous construisons en premier lieu le Modèle Stan-
dard de la physique des particules, avec une attention particulière portée au
secteur de Higgs et aux diverses contraintes théoriques qui s’y appliquent. Le
secteur de Yukawa est également décrit en détail. Nous discutons ensuite des
caractérisations expérimentales du secteur de Higgs effectuées au sein des colli-
sionneurs de particules LEP, Tevatron et LHC. En utilisant les mesures précises
des taux de production et désintégration du boson de Higgs observé, il est possi-
ble de dériver des contraintes sévères sur l’espace de paramètres de scénarios de
nouvelle physique. C’est précisément l’objet du code public Lilith que nous in-
troduisons dans la suite. Finalement, pour clôturer cette première partie, nous
effectuons un ajustement global des couplages du Higgs en utilisant les résultats
finaux de la première période d’exploitation du LHC.
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2
THE STANDARD MODEL OF PARTICLE PHYS ICS

After decades of investigation, the Standard Model of particle physics [2, 3, 5, 9–13] still
remains unshaken and stands as our best description of the microscopic dynamics of nature
so far. It is quite exceptional that the most complex phenomena we have observed can be
described by such a compact theory. Though it will only take us a few pages to write down
the SM at the classical level, one should certainly not mistake this apparent simplicity
for triviality. Indeed, in addition to the important aspects linked to the quantization and
renormalization of the theory, profound phenomena lie in the core of the SM: confinement,
anomalies, instantons etc. or in general, non-perturbative and topological effects. Though
these subjects will not be described in this manuscript, they should be kept in mind in
order to fully appreciate the SM.
In order to build the SM, four ingredients are needed. The first one is a description of a

space-time and its associated symmetries. In our case, we are only interested in describing
the (local and unitary) interactions between particles over short spatial distances, thus, a
flat Minkowskian space-time associated to the Lorentz invariance are what we need. The
question of supersymmetry will partially be addressed in Section 6. The second ingredient
is obviously a list of the objects that we want to study, i.e., the particle content of the
theory. Today, for the SM, this list is an established experimental input. The third ingre-
dient is a description of how these particles interact which is given by the gauge group
as discussed in the Introduction. The SM gauge group, GSM, is given by GSM = SU(3)c×
SU(2)L× U(1)Y and is also an experimental input.2 The gauge couplings of these three
groups are denoted respectively g3, g and g′ in the following. A particular focus will be given
on the SU(2)L× U(1)Y part in the following, the electroweak (EW) sector, which will spon-
taneously be broken to U(1)em. Finally, the last ingredient, though not strictly mandatory,
is the renormalizability criterion which allows us to focus on operators of dimension 4 at
maximum. Operators of dimension larger than 4 may be considered in the framework of
effective field theories (EFTs), they are parametrically suppressed by powers of a scale
Λ at which the transition between the SM and a more fundamental theory occurs.3 The
SM itself should be viewed as a low-energy approximation of a more fundamental theory,
which is no surprise in light of the various open questions that it leaves unanswered and

2 Regarding the electroweak part, as S. Weinberg expressed it, “Leptons interact only with photons, and with
the intermediate bosons that presumably mediate weak interactions. What could be more natural than to
unite these spin-one bosons into a multiplet of gauge fields ?" [12].

3 More specifically, it is the scale at which the heavy states of the fundamental theory are integrated out. If
the mass splittings between these states are large, several scales may be introduced.
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2.1 the particle content

its intrinsic problems. These questions and issues will be discussed in Section 2.5. Let us
now start our technical description of the SM.

2.1 the particle content

In practice, in the context of QFTs, we associate a field to all particles that are described.
Two criteria enter this association. First, the Poincaré representation of the particle de-
termines the nature of the field, i.e. massive or massless spin-0, 1/2, 1, 3/2 or 2 particles,
while higher-spin are theoretically disfavored (for elementary particles). Second, the quan-
tum numbers of the particle determines the field’s behavior under a group transformation.
The SM particle content and the associated notation used throughout the manuscript is
given in Table 1.

Fields SU(2)L notation Spin SU(3)c SU(2)L U(1)Y L B

×3 families



Q (uL, dL)T 1/2 3 2 +1/3 0 1/3
U (uR)c 1/2 3̄ 1 −4/3 0 -1/3
D (dR)c 1/2 3̄ 1 +2/3 0 -1/3
L (νL, eL)T 1/2 1 2 −1 1 0
E (eR)c 1/2 1 1 +2 -1 0

G G 1 8 1 0 0 0
W (W 1,W 2,W 3)T 1 1 3 0 0 0
B B 1 1 1 0 0 0

H (H+, H0)T 0 1 2 +1 0 0

Table 1: Particle content of the SM and conventions for the field notations. All Lorentz, gauge
and flavor indices have been omitted for simplicity. The first two columns introduce
the notation for the particle fields. The L and R subscripts indicate the left and right
chiralities respectively. Note that U,D and E refer to the charge conjugate of right-
handed fields and are thus left-handed. The fourth column gives the fields quantum
numbers under the SM gauge group GSM . The hypercharge normalization is such that
the U(1)em charge reads Q = T3 + Y

2 . The last column gives the usual lepton and baryon
number assignments. Three families of fermions need to be considered.

The hypercharge Y is normalized such that the electric charge will read Q = T3 + Y/2

after electroweak symmetry breaking (EWSB), with T3 being (the third component of) the
weak isospin. The lepton (L) and baryon (B) number assignments, defined more explicitly
later, are also given. From this table, one clearly sees an asymmetry between the quark and
lepton sectors: the absence of a right-handed neutrino. As no such particle was observed
experimentally and neutrinos were considered to be massless for a long time, the SM
was originally built in this fashion.4 It is certainly trivial to add a right-handed neutrino,

4 This also rises the question of the nature of the neutrinos; they could either be Dirac or Majorana fermions,
see [45] for a review.
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2.2 free gauge bosons

however we refrain from doing so as the neutrino sector will not play any role in what follows.
Similarly, one can easily extend this particle content with new hypothetical fields. Examples
are singlet extensions of the SM, multi-doublet Higgs sectors, triplet Higgs extensions and
vector-like fermions. Care should however be taken when introducing new (non vector-like)
fermions, as they can contribute to gauge anomalies. Anomaly-free sets of fermions should
be constructed in order to maintain the consistency of the quantized theory.
A central point of the SM is that it is a chiral theory, this means that the left and

right-handed particles behave differently under the gauge group. As can be seen in Table 1,
only left-handed particles (right-handed antiparticles) feel the weak SU(2)L interaction
while their right-handed counterparts do not: parity is maximally violated [46]. This fact
ultimately calls for a Higgs sector in order to generate mass terms for the fermions.

2.2 free gauge bosons

The gauge bosons kinetic terms are written as

Lgauge = −1

4
Ga,µνGa

µν −
1

4
W b,µνW b

µν −
1

4
BµνBµν , (2.1)

where a = 1–8 and b = 1–3 are SU(3)c and SU(2)L gauge indices respectively. For non-
abelian gauge fields, this term thus induces 3- and 4-point interactions among gauge bosons,
see Eq. (1.36).
Similar (CP-violating) terms built upon the dual field strength tensors could also be

written in principle,

Lgauge = θtotc
g2

3

32π2
Ga,µνG̃a

µν + θL
g2

32π2
W b,µνW̃ b

µν + θY
g′2

32π2
BµνB̃µν , (2.2)

where X̃µν = (1/2)εµνρσXρσ and εµνρσ is the totally anti-symmetric Levi-Civita tensor
with ε0123 = +1. Such terms are actually total derivative and thus, by Gauss’ law, do
not lead to any physical effect if the gauge fields approach zero at infinity sufficiently fast
enough. For non-abelian groups, there exists on the contrary a special configuration of the
fields with non-vanishing surface terms, which can then lead to physical effects. It turns
out that the SU(2)L term has actually no physical consequence and only the QCD term
has a possible role in nature.5 This new operator induces a contribution to the neutron
electric dipole moment [49, 50]. Experimental measurements force θtotc to be less than about
10−10 [51]. There is however a priori no reason why this parameter should be that small.
This is the strong CP-problem. The leading solution to this puzzle comes from Peccei and
Quinn [52, 53] and involves a new pseudoscalar particle, the axion [54, 55]. Despite decades
of direct and indirect searches for such a particle, no sign of it was found so far [56].
Mass terms such as

Lmass = m2
gG

a,µGa
µ +m2

WW
b,µW b

µ +m2
BB

µBµ (2.3)

5 An explanation of this mechanism and of the underlying physics is beyond the scope of this section, which
is intended to introduce the Higgs and Yukawa sectors of the SM. Essentially, it relies on the fact that
the Adler-Bell-Jackiw anomaly, see e.g. Eq. (1.48) in the context of Quantum Electrodynamics, has the
same form as the θ-operators. An anomalous symmetry transformation can then be performed in order to
cancel some CP-violating terms, see [31, 47, 48] for proper introductions.

19



2.3 the higgs sector

are not gauge invariant. At this level, pure gauge theories thus imply massless gauge bosons.
There exists a way to render the U(1) gauge boson massive while keeping the consistency
and renormalizability of the theory. For this, a scalar field coupling to Bµ is introduced
with a local transformation under U(1) such that the gauge invariance is actually present
(but not manifest). This is the Stuckelberg mechanism [57]. While this works perfectly well
for abelian gauge fields, extensions of this mechanism to non-abelian theories may lead to
non-renormalizable and non-unitary theories [58]. In the SM, another mechanism is needed
to describe the electroweak gauge bosons masses.

2.3 the higgs sector

In order to break the electroweak gauge group and provide mass terms to the electroweak
gauge bosons (and subsequently unitarize the longitudinal scattering of the latter, see
Section 2.3.3), a complex SU(2)L doublet of scalar fieldsH, with non-vanishing hypercharge,
acquiring a vacuum expectation value (vev) is introduced. The doublet can be parametrized
in terms of four real or two complex scalar fields,

H =
1√
2

(
φ3 + iφ4

φ1 + iφ2

)
=

1√
2

(
φ+

φ0

)
. (2.4)

where the second equality is an a posteriori result, in which the charges under U(1)em are
supposed to be known.

2.3.1 Spontaneous electroweak symmetry breaking

The most general renormalizable, Lorentz and gauge invariant Higgs potential for this weak
doublet is

VSM = −µ2H†H + λ(H†H)2 =̂ λ

(
H†H − µ2

2λ

)2

, (2.5)

where =̂ denotes the equivalence of the two potentials up to a constant term. Vacuum
stability demands λ to be positive while the existence of an electroweak breaking vacuum
requires µ2 > 0. The SM provides a description of the potential instability, but not an
explanation as why a wrong-sign mass term is needed. An important mass scale appears,
the Higgs vacuum expectation value,

v ≡ µ2

λ
, (2.6)

it is the field value which minimizes the above potential. By Poincaré invariance, v has to
be constant over all space-time. Writing H as a collection of four real scalar fields, as in
Eq. (2.4), v may in principle be distributed among all the four components. Physical argu-
ments however lead us to seek for a solution in which only the neutral CP-even component
of the doublet, φ1 acquires a vev. Indeed, the charged component should not acquire a vev
as we live in a vacuum in which the electric charge is a good quantum number. Further-
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2.3 the higgs sector

more, since our vacuum is CP-conserving, the CP-odd component of the doublet cannot
acquire a vev. It is then particularly useful to rewrite H as

H = exp

[
−iΠaσ

a

2

]
1√
2

(
0

v + h

)
≡ R

1√
2

(
0

v + h

)
, (2.7)

where R is an SU(2) matrix, and h is the field that will lead to the physical massive
Higgs boson. The matrix R can be constructed explicitly in terms of the original four φi
components. The number of degrees of freedom is then conserved: 3 Goldstone bosons
parametrized in Πa and h, versus the four real scalar fields φi. Having expressed H as
such, the Goldstone bosons can be gauged away through an SU(2)L transformation with
matrix R−1, this is the unitary gauge. In this process, the SU(2)L gauge fields are redefined
according to Eq. (1.34), acquiring a longitudinal component.
The electroweak gauge boson masses can be found from the Higgs kinetic term, (DµH)†(DµH),

where in the unitary gauge,

DµH =

[
∂µ l12×2 − ig

σa
2
W a
µ − ig′

Y

2
Bµ

]
1√
2

(
0

v + h

)
. (2.8)

Developing, we have,

(DµH)†(DµH) ⊃ (v + h)2

4

[
g2

2

(
2W+

µ W
−µ +W 3

µW
3µ
)

+
g′2

2
BµB

µ − gg′W 3
µB

µ

]
, (2.9)

where the W±
µ fields have been defined as

W±
µ =

W 1
µ ∓ iW 2

µ√
2

. (2.10)

It is indeed possible to show that the above combinations have indeed well defined electrical
charges under U(1)em. The W± mass and the neutral mass matrix in the (W 3, B) basis
are

m2
W± =

g2v2

4
, (2.11)

M2
W 3−B =

v2

4

(
g2 −gg′
−gg′ g′2

)
. (2.12)

Note that since W 3 is part of the SU(2)L triplet containing W 1 and W 2, the (1,1) matrix
element also corresponds to m2

W± . The vanishing determinant of the mass matrix reveals a
massless gauge boson, the photon, associated to a surviving U(1) symmetry under which
the vacuum is invariant. The remaining massive state, the Z boson, has a mass,

m2
Z = Tr(M2

W 3−B) =
g2 + g′2

4
v2. (2.13)

The three generators of SU(2)L map the vacuum to three independent directions, one
of which happens to be the same as the U(1)Y direction. This is a sign of an underlying
symmetry. Indeed, under a hypercharge transformation, Y = y l1,

H0 → exp [−igθY Y ]H0 ' H0 +
1√
2

(
0

−iθY yv

)
. (2.14)
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2.3 the higgs sector

While under an SU(2)L transformation in the third SU(2)L direction,

H0 → exp
[
−iθ3

σ3

2

]
H0 ' H0 +

1√
2

(
0

i θ3
2
v

)
. (2.15)

The two transformations thus map the vacuum to the φ2 direction, see Eq. (2.4). A combi-
nation of these two transformations can therefore leave H0 invariant if θY = θ3/(2y). The
generator of this symmetry is the electric charge Qem

exp
[
−iθ3

σ3

2

]
× exp [−iθY Y ] = exp

[
−iθ3

(
σ3

2
+
Y

2y

)]
≡ exp [−iθemQem] . (2.16)

Generalizing this result for any representation,

Qem = T 3 +
Y

2
. (2.17)

The electroweak gauge group SU(2)Y× U(1)Y is broken to U(1)em. The photon and Z

fields are obtained in the process of diagonalization as

Zµ = cos θWW
3
µ − sin θWBµ (2.18)

Aµ = sin θWW
3
µ + cos θWBµ, (2.19)

where cos θW = g/
√
g2 + g′2 is the cosine of the electroweak Weinberg mixing angle. The

electromagnetic gauge coupling e can easily be found by considering the gauge transforma-
tions of W 3

µ and Bµ, see Eq. (1.35),

W 3
µ → W µ

3 −
1

g
∂µθem, (2.20)

Bµ → Bµ −
1

g′
∂µθem. (2.21)

First, the invariance of Zµ under U(1)em, yields to

cos θW
g
− sin θW

g′
= 0⇒ tan θW =

g′

g
. (2.22)

Defining e through the gauge photon field transformation,

Aµ → Aµ −
1

e
∂µθem, (2.23)

then yields to,

1

e
=

sin θW
g

+
cos θW
g′

=
g′

g
√
g2 + g′2

+
g

g′
√
g2 + g′2

=

√
1

g2
+

1

g′2
. (2.24)

This relation can also be easily found by rewriting the covariant derivative in terms of the
Aµ field.
Defining the ρ parameter [59] as

ρ ≡ m2
W

cos2 θWm2
Z

, (2.25)
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2.3 the higgs sector

we have ρSM = 1 at tree-level in the SM, in very close agreement with the experimental
result ρ = 1.00040 ± 0.00024 [60]. In general, for a model with n Higgs multiplets in the
representations 2Ti + 1 of SU(2)L, with hypercharges Yi and vevs vi,

ρ =

∑
i

[
Ti(Ti + 1)− 1

4
Y 2
i

]
v2
i∑

i
1
2
Y 2
i v

2
i

. (2.26)

Considering a single Higgs representation, ρ = 1 is thus achieved if T (T+1) = 3Y 2/4, under
the condition that T + Y/2 is an integer (the larger electric charge in this representation).
The first few pairs that satisfy the two conditions are (T, Y ) =(0, 0), (1/2, 1), (3, 4), (25/2,
15), (48, 56) and (361/2, 209). The SM Higgs, with the (1/2, 1) representation, is thus
the minimal non-trivial realization of ρ = 1 in the SU(2)L×U(1)Y electroweak model. Note
however that Higgs representations above it cannot actually couple to the SM fermions
and are thus irrelevant phenomenologically. Though this success of the SM might seem a
simple coincidence, it is in fact the consequence of an underlying symmetry, the custodial
symmetry [61, 62].

2.3.2 Custodial symmetry

Following Eq. (2.4), we can write,

H†H =
1

2

4∑
i=1

φ2
i ≡

1

2
ϕ2 , (2.27)

where ϕ2 can be seen as the squared norm of a 4-dimensional vector of R4. As such, the
Higgs scalar potential is invariant under SO(4) transformations, under which all four real
scalar fields φi rotate into one another. The SO(4) algebra is isomorphic to that of a
product of two SU(2) factors, which we denote here as SU(2)L× SU(2)R (left and right
transformations). Using the self-conjugacy property of 2: iσ2H

∗ ∼ H ∼ 2, one can combine
H̃ ≡ iσ2H

∗ and H into a single 2× 2 matrix Φ defined as

Φ = (iσ2H
∗ H) =

(
φ0∗ φ+

−φ+∗ φ0

)
, Φ†Φ =

(
ϕ2 0

0 ϕ2

)
, (2.28)

which transforms as Φ→ ULΦU †R under a SU(2)L× SU(2)R transformation. In particular,
Tr
[
Φ†Φ

]
is invariant under both left and right transformations. The invariance under

SU(2)L× SU(2)R can most easily be seen by expressing the scalar potential as,

VSM =
λ

4

(
1

2
Tr
[
Φ†Φ

]
− µ2

λ

)2

. (2.29)

In the vacuum, 〈Φ〉 = v l12×2, and SU(2)L× SU(2)R is broken to the diagonal subgroup
SU(2)V which is isomorphic to SO(3), the custodial symmetry group.
Assuming the existence of such a symmetry in the vacuum (no matter its origin and

the realization of the electroweak breaking), (W 1,W 2,W 3) should be a triplet of SU(2)V ,
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2.3 the higgs sector

hence all three components should be mass-degenerate. Based on this, the mass matrix in
the (W 3, B) basis has the generic form

M2
V =

(
m2
W± Y

Y Z

)
, (2.30)

where Y and Z ≥ 0 are unknown real parameters. To reproduce m2
γ = 0, the determinant

ofM2
V should vanish, i.e., Zm2

W − Y 2 = 0. Using the definition Eqs. (2.18) and (2.19) of
cos θW , the photon mass can be expressed as

m2
γ = c2

WZ + s2
Wm

2
W± − 2sW cWY = 0, (2.31)

where the shorthand notation cW ≡ cos θW , sW ≡ sin θW is used. This leads to

c2
WZ = s2

Wm
2
W± , (2.32)

using the determinant condition. Finally, using Tr(M2
V ) = m2

Z = m2
W± + Z we get

m2
Zc

2
W = m2

W± , (2.33)

and thus ρ = 1. The conclusion holds irrespective of the explicit realization of electroweak
symmetry breaking and is thus a sole consequence of the custodial symmetry of the vacuum.
Let us now discuss the two explicit violation of custodial symmetry in the SM. So far we

did not consider the Higgs kinetic term, which takes the form 1
2

Tr
[
(DµΦ)†(DµΦ)

]
, where

(DµΦ) ⊃ +ig′ σ3
2
BµΦ. We see that because of the explicit σ3 matrix, the kinetic term is

SU(2)L× SU(2)R invariant only if g′ = 0, i.e., custodial symmetry is explicitly broken in
the SM due to hypercharge interactions. Note also that Eq. (2.28) implicitly asked for H
to be neutral under U(1)Y . The W a dependent terms of the kinetic term are custodial
symmetric if the weak gauge bosons form a custodial triplet. Another source of custodial
breaking comes from the Yukawa sector. Exact custodial invariance would otherwise require
mass-degenerate up- and down-fermions in each family.
Since custodial symmetry is explicitly broken in the SM, radiative corrections to the

ρ parameter proportional to the breaking of SU(2)V are expected. Though g′ 6= 0 in the
SM, corrections proportional to g′ only arise at the two-loop level [63]. Corrections due to
the mass splitting between quark doublets arise at one-loop and are proportional to the
loop-function F [63],

δρ =
1

(4πmW±)2
F (mu,md) , (2.34)

where,

F (mu,md) = m2
u +m2

d −
2m2

um
2
d

m2
u −m2

d

ln

(
m2
u

m2
d

)
, (2.35)

which indeed vanishes in the custodial limit mu = md. The most important contribution
thus comes from the third quark family, mt � mb, for which F (mt,mb) ' m2

t .
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WL

WL WL

WL

Z, γ, h Z, γ, h

Figure 2.1: Tree-level contributions to WLWL →WLWL in the SM.

2.3.3 Theoretical constraints

Unitarity

While massless gauge bosons only have two transverse degrees of freedom, massive ones
have a supplementary longitudinal component. In the SM, the latter comes from the
Nambu-Goldstone bosons absorbed by the gauge fields after spontaneous EWSB. The scat-
tering processes of such modes in the high-energy limit are to be considered with attention
as they may lead to a violation of unitarity, as e.g. in νeνe → W+

LW
−
L , ZLW±

L → ZLW
±
L

andW+
LW

−
L → W+

LW
−
L . Indeed, according to the equivalence theorem [64], the high-energy

limit of an amplitude involving longitudinal gauge bosons can be obtained by replacing
the latter by their corresponding Nambu-Goldstone bosons, i.e.,

M(W+
L ,W

−
L , ZL, ...) =M(w+, w−, z−, ...) +O

(
E

mW,Z

)
(2.36)

where w± and z denote the Nambu-Goldstone bosons associated toW± and Z respectively,
and E the typical momentum exchange. Here Nambu-Goldstone bosons actually refer to
any scalar x that couples derivatively to a gauge boson X, i.e., L ⊃ mXX

−
µ ∂

µx++ h.c.
Considering for definiteness the 4-point contribution to the WLWL → WLWL scattering,
leftmost diagram in Fig. 2.1, we therefore observe that M4W ' E4/v4 where v is the
characteristic scale associated to the Nambu-Goldstone bosons. The amplitude has a very
large quartic divergence, leading to violation of unitarity at large enough energies.
Let us consider the previous example, WLWL → WLWL, in more details. At tree-level,

seven diagrams need to be considered: the 4-point interaction and the Z, γ, h-mediated
ones in the s and t channels as shown in Fig. 2.1. The longitudinal polarization vector of
a massive W± propagating along the z-axis, with 4-momentum kµ = (E, 0, 0, kz), can be
written εµL(k) = (kz, 0, 0, E)/mW± which, for E � mW± , takes the form εµL ' kµ/mW± .
Considering the first diagram, the Feynman rule for the 4-W vertex can be read off the
gauge kinetic term

−1

4
W a
µνW

µνa ⊃
(

1

4i

)
ig2W−µW−νW+ρW+σ [2ηµνηρσ − ηµρηνσ − ηµσηνρ] . (2.37)

It is then clear that the amplitude for this diagram increases as first and second powers of
Mandelstam variables [65] at high-energy, indeed, in this limit,

M4W ' g2 kµ1
mW±

kν2
mW±

kρ3
mW±

kσ4
mW±

[2ηµνηρσ − ηµρηνσ − ηµσηνρ] . (2.38)
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2.3 the higgs sector

For E � mW± , one can write Mi = Aix
2 + Bix + Ci + O(1/x) where x = s/(4m2

W±) '
E2/(4m2

W±) and i labels the seven contributions to the process (see e.g. [66] for a recent and
comprehensive discussion). One should however sum up all relevant contributions before
concluding. Ignoring the Higgs contributions so far (which actually do not contribute to the
A term), and summing over the five other diagrams leads to an exact cancellation among
the various Ai. The high-energy behavior is therefore dominated by the term proportional
to x, with

∑
4W,Z,γ Bi = g2 for the forward scattering. Unitarity would then be violated for

M' g2E2

4m2
W±

& 16π2 ⇒ E &
8πmW±

g
' 3 TeV. (2.39)

This argument provides the scale at which tree and loop diagrams have approximatively
the same size, i.e., the scale at which perturbation theory breaks down and the theory
becomes strongly coupled. A stronger bound may be derived considering the various scat-
tering channels involving the longitudinal components of the gauge bosons. One can as well
use a partial wave decomposition and the optical theorem to formally derive such bounds.
Assuming that the unitarity-violating behavior should be regularized by an extra sector
provided a no-go theorem to the LHC, something had to be found beyond the electroweak
gauge sector [67]. In Higgs-less models, a typical E2-growth of the longitudinal vector bo-
son amplitudes is expected. Finally, summing up all gauge boson and Higgs contributions,
an exact cancellation among the terms proportional to x occur, leaving only the constant
term and terms with negative powers of E. The SM Higgs sector is therefore seen to uni-
tarize the scattering of longitudinal gauge bosons. Using the partial wave decomposition,
Lee, Quigg and Thacker derived an upper bound on the Higgs mass by requiring tree-level
unitarity: m2

h < 8π
√

2/(3GF ) ' (1 TeV)2 [68, 69]. Today, it remains to be checked experi-
mentally whether such a unitarization mechanism is at work in nature or not.

Triviality and Stability

Important constraints on the Higgs parameters and the scale of applicability of the EW
model can be derived considering the renormalization group evolution of the Higgs self-
coupling λ(Q2) [70]. At one-loop, considering the Higgs, gauge bosons and the dominant
top fermionic contribution, one finds [71]

dλ

d logQ2
=

1

16π2

[
12λ2 + 6λy2

t − 3y4
t −

3

2
λ(3g2 + g′2) +

3

16

(
2g4 + (g′2 + g2)2

)]
, (2.40)

where yt is the top Yukawa coupling. Representative examples of the diagrams leading to
these terms can be found in Fig. 2.2.
In the strong λ regime, the evolution equation can be approximated as

dλ

d logQ2
' 3

4π2
λ2, (2.41)

which leads to the solution

λ(Q2) =
λ(v2)

1− 3
4π2λ(v2) log

(
Q2

v2

) , (2.42)
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t

t W, Z

W, Z

Figure 2.2: Representatives diagrams contributing to the Higgs self-coupling beta function at the
one-loop level.
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Figure 2.3: Left panel: Triviality (upper band) and stability (lower band) bound on the Higgs mass
as a function of the renormalization scale Q from [72]. Only the region in between the
two bands is allowed. Right panel: Running of λ in the SM at the 2/3-loop level for
mh = 125.1 GeV and mt = 173.3 GeV from [73]. Around 1010 GeV, the central value
of λ turns negative.

where λ(v2) = m2
h/(2v

2). For a given Higgs massmh, the λ evolution will thus hit a Landau
pole at the scale QL for which the denominator vanishes,

QL = v exp

[
4π2v2

m2
h

]
. (2.43)

Conversely, if we require our model to be perturbative until the Planck scale ∼ 1019 GeV,
we obtain an upper bound on the Higgs mass mh . 144 GeV. This is called the triviality
bound, as only a trivial theory, λ(Q2) = 0 ∀Q2, is free from a Landau pole.
As the Higgs potential should be bounded from below, i.e., λ(Q2) > 0, it is also primor-

dial to look at the behavior of λ around 0. The evolution then reads
dλ

d logQ2
' 1

16π2

[
−3y4

t +
3

16

(
2g4 + (g′2 + g2)2

)]
, (2.44)

and is mostly dominated by the negative top contribution which tends to destabilize the
Higgs potential, on the contrary to the gauge contributions that slightly stabilize it. As yt,
g and g′ are also subject to RG running, a coupled system of differential equations should
actually be solved. For simplicity, let us assume that these quantities are actually constant.
We can then solve for λ,

λ(Q2) =
m2
h

2v2
+

1

16π2

[
−3y4

t +
3

16

(
2g4 + (g′2 + g2)2

)]
log

(
Q2

v2

)
. (2.45)
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Figure 2.4: Left panel: Branching ratios of the SM Higgs as a function of mh. Right panel: Higgs
total width in the SM as a function of mh. Both results are from the LHC Higgs Cross
Section Working Group (LHC-HXSWG) [75–77].

Requiring stability of the potential down to a given scale Q thus imposes a lower bound
on mh, the stability bound.
A detailed and fully consistent computation of these bounds were performed in Ref. [72]

and lead to the result shown in the left panel of Fig. 2.3. The Higgs potential can only be
stable up to the Planck scale ∼ 1019 GeV if the Higgs mass is the 130-180 GeV range. With
an observed Higgs mass of 125.1 GeV, the stability bound is violated around 1010 GeV [73],
see right panel of Fig. 2.3. This does not however bring our universe in an unstable state,
but rather, due to the measured top mass, to a metastable state for which the decay lifetime
is several orders of magnitude larger than the age of our universe.
These arguments however suppose that the SM is the correct description of fundamental

interactions up to the scale Q considered. If instead a more fundamental theory kicks in
at a lower scale, the corresponding new contributions to the λ running should be evalu-
ated. It has been shown that even Planck-suppressed operators can sizably influence these
conclusions [74]. Care is thus needed when interpreting such results.

2.3.4 Higgs decays

The SM Higgs boson couples to all fermions and massive gauge bosons in a precise and well-
defined way. Indeed, the Higgs couplings to SM particles depend solely on their masses, see
next subsection. This is very good news as this allows to compute all the various branching
ratios as a function of a unique parameter, the Higgs mass which is itself not predicted by
the theory and was only recently measured precisely [16]. All other relevant parameters,
i.e. the gauge boson and fermion masses, the Higgs vev and the gauge couplings can indeed
be considered as fixed [60]. The branching ratio of the SM Higgs as a function of its mass
are shown in the left-panel of Fig. 2.4.
At tree-level, the Higgs partial width for the decay into two fermions is simply given by,

Γ(h→ ff̄) = N f
c

mh

8πv2
m2
fβ

3
f , (2.46)
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where N f
c = 1(3) for leptons (quarks) and βf = (1−4xf )

−1/2 where xf = m2
f/m

2
h. While the

width is proportional to β3
f for a scalar Higgs, it would be linear on βf in the case of a pseudo-

scalar, this dependence can be used to discriminate between various parity hypotheses. The
partial width grows linearly with the Higgs mass, while it grows quadratically with the
fermion mass. For fixedmh, there is therefore a strong hierarchy in branching ratios between
the various fermionic final states. Figure 2.4 indeed illustrates this behavior, BR(h→ bb) >

BR(h → ττ) > BR(h → cc) for any mh. The decays into the first and second generation
of fermions are extremely suppressed and alternative ways to probe the corresponding
couplings should be considered to experimentally probe them, see e.g. [78] for an attempt
to access hee coupling in atomic transitions and [79] for the hcc coupling in h → J/ψγ.
Naturally, the above expression should be corrected with radiative corrections. The largest
effect comes from QCD corrections for the Higgs decay into light quarks, leading to an
approximative 40% suppression with respect to the Born level result [80, 81].
Turning to the massive electroweak gauge bosons V = W±, Z, for a Higgs boson below

160 GeV the two gauge bosons cannot be both on-shell, and the only open channels are
h→ V (∗)V ∗. Although suppressed by the virtuality of the gauge boson, such decay channels
may actually be very important because of the large hV V coupling, Fig. 2.4 shows that
for mh & 130 GeV WW ∗ is the primary Higgs decay channel. Though mW± < mZ , the
Higgs decay in W+W− dominates over ZZ on the full mass range since the two Z’s are
identical particles. Above the kinematic threshold, the partial width takes the form

Γ(h→ V V ) = NV
m3
h

16πv2

√
1− 4xV

(
1− 4xV + 12x2

V

)
(2.47)

where NW±(Z) = 2(1) and xv = m2
V /m

2
h. The partial width grows as the third power of the

Higgs mass, and the total Higgs width is thus completely dominated by the V V decays for
mh & 160 GeV as can be seen in the right-panel of Fig. 2.4. For mh � mZ , i.e., xV ' 0,
the partial width for h → W+W− is two times larger than for h → ZZ as expected from
a simple counting of the degrees of freedom.
Finally, the h → gg, h → γγ and h → Zγ decays necessarily occur through loop-

processes as the Higgs does not couple directly to massless particles. The h→ gg decay goes
through loops of colored-particles, the top quark (and the bottom quark to a less extent)
providing the dominant contribution in the SM because of its large mass. At leading-order,
the partial width takes the form [82],

Γ(h→ gg) =
α2

3m
3
H

72v2π3

∣∣∣∣∣34 ∑
q

Ah1/2(τq)

∣∣∣∣∣
2

, (2.48)

where τq = m2
h/(4m

2
q),

Ah1/2(τ) = 2 [τ + (τ − 1)f(τ)] τ−2, (2.49)

and

f(τ) =

 arcsin2√τ if τ ≤ 1

−1
4

[
log 1+

√
1−τ−1

1−
√

1−τ−1 − iπ
]2

if τ > 1
. (2.50)
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The function Ah1/2 approaches 4/3 (0) in the large (vanishing) quark mass limit. In partic-
ular, Ah1/2(τt) ' 1.4, Ah1/2(τb) ' (1.2 + 4.1i)× 10−2, Ah1/2(τc) ' (0.4 + 5.3i)× 10−3, showing
that the dominant contributions are indeed from the top quark and the bottom quark to a
lesser extent. Next-to-leading order QCD corrections lead to a 70% (40%) increase of the
partial width for mh . 2mW± (mh ' 1 TeV) [83].
The partial width h→ γγ is given by,

Γ(h→ γγ) =
α2m3

h

256v2π3

∣∣∣∣∣∑
f

N f
c Q

2
fA

h
1/2(τf ) + Ah1(τW )

∣∣∣∣∣
2

, (2.51)

where

Ah1(τ) = −[2τ 2 + 3τ + 3(2τ − 1)f(τ)]τ−2. (2.52)

TheW± and fermion amplitudes have a different sign by virtue of Wick’s theorem and this
leads to a destructive interference between the two. In models of new physics (NP), the top
and W± amplitudes might be rescaled independently and this can have interesting phe-
nomenological consequences. It is clear that these loop-induced processes form a window
to NP. Heavy new charged particles may not be directly produced in colliders but can con-
tribute to the loop-induced Higgs decays. Precision measurements of the Higgs properties
are of primary importance in that respect. We extend and quantify these considerations in
the next chapter.
The total Higgs width is then defined through,

Γhtot, SM =
∑
f

Γ(h→ ff̄) +
∑
V

Γ(h→ V (∗)V (∗)) + Γ(h→ gg, γγ, Zγ), (2.53)

and the various branching ratios are given by,

BR(h→ Y )SM =
Γ(h→ Y )

Γhtot, SM
. (2.54)

Beyond the SM (BSM), the Higgs boson may have new decay channels accessible. Col-
lectively noting the additional width contributions as ΓBSM, the Higgs total width and
branching ratios would be modified as

Γhtot, BSM ≡ Γhtot, SM + ΓhBSM, (2.55)

BR(h→ Y )BSM = BR(h→ Y )SM

[
1− ΓhBSM

Γhtot, BSM

]
, (2.56)

where ΓhBSM/Γ
h
tot, BSM ≡ BR(h → BSM)BSM. The existence of such new decay channels

would modify the branching ratios to SM particles.
As can be seen from Eq. (2.5), the Higgs boson also interacts with itself through triple

and quartic self-couplings. The h∗ → hh and h∗ → hhh decays are however very sup-
pressed. These are nonetheless the only experimental direct probes of λ, the parameter
that determines the shape and stability of the Higgs potential. As such, the experimental
determination of the Higgs self-couplings is crucial to fully confirm the SM EWSB mech-
anism. Although the quartic interaction is not expected to be observable at the LHC [84],
unless immensely enlarged by new physics effects, the triple Higgs coupling is the subject
of many phenomenological studies and the prospects to measure it in the second run of
the LHC are interesting [85, 86].
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2.4 the yukawa sector

2.4 the yukawa sector

2.4.1 A flavor mismatch

Since the gauge boson interactions to fermions are flavor blind, i.e., the covariant derivative
does not carry any flavor index, the fermion kinetic term is invariant under independent
unitary transformations of the five SM fermion representations in flavor space,

LK =
∑
k,I

ψ̄Ik(i /Dk)ψ
I
k

ψIk→g
IJ
k ψJk−−−−−−→ LK (2.57)

where gk ∈ U(3)k, k = Q,U,D,L,E and I = 1, 2, 3 is a flavor index. This large symmetry
group is noted GF ≡U(3)Q×U(3)U×U(3)D×U(3)L×U(3)E, the flavor symmetry group [87],
under which,

Q→ gQQ, L→ gLL, U → Ug†U , D → Dg†D, E → Eg†E . (2.58)

Using the isomorphism U(3)' SU(3)×U(1), GF is usually written as GF = SU(3)5×U(1)5.
This symmetry and its consequences will be discussed in more details in Chapter 6, where
the idea of Minimal Flavor Violation is introduced.
The SM Yukawa Lagrangian is given by,

−LYukawa = U IYIJ
U Q

JH +DIYIJ
D Q

JH̃ + EIYIJ
E L

JH̃ + h.c. , (2.59)

where I, J = 1, 2, 3 are flavor indices, H̃ = iσ2H
∗ and YU,D,E are 3 × 3 matrices in flavor

space. The Yukawa sector is the only source of (explicit) breaking of the flavor symmetry
in the SM. Note that there still remains some phase freedom, in particular the global
subgroups gQ = gU = gD = eiB and gL = gE = eiL are conserved, this is nothing less than
the baryon and lepton number conservations U(1)B,L. As can be seen, their conservation
is purely accidental in the SM. After EWSB, in the unitary gauge,

−LYukawa ⊃
v√
2

(
ūIRYIJ

U u
J
L + d̄IRYIJ

D d
J
L + ēIRYIJ

E e
J
L + h.c.

)
, (2.60)

this will eventually lead to fermions-Higgs interactions and fermion mass terms. The
Yukawa couplings can be brought to a diagonal form through singular value decompo-
sitions,

v√
2
V u†
R YuV

u
L = mu,

v√
2
V d†
R YdV

d
L = md,

v√
2
V e†
R YeV

e
L = me, (2.61)

where mu,d,e are diagonal matrices with real positive entries. Because of the SU(2)L gauge
symmetry, both up and down left-handed quarks should be rotated with the same matrix
under a GF transformation. Since V u

L is generically different from V d
L , both the up- and

down-type quarks cannot be brought to their mass-eigenstates simultaneously at this level.
Performing the following GF rotation, and thereby fixing the GF freedom,

gQ = V d
L , g†U = V u†

R , g†D = V d†
R , gL = V e

L , g†E = V e†
R , (2.62)

the Lagrangian is brought to the form,

−LYukawa ⊃
v√
2

(
ūIR(muV

u†
L V d

L )IJuJL + d̄IRm
IJ
d d

J
L + ēIRm

IJ
e e

J
L + h.c.

)
. (2.63)
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Defining the Cabibbo-Kobayashi-Maskawa (CKM) matrix [88, 89] as VCKM ≡ V u†
L V d

L , i.e.,
parametrizing the flavor mismatch between left up- and down-type quarks, the Yukawa
couplings can be written as

v√
2
Yu = mu.VCKM ,

v√
2
Yd = md,

v√
2
Ye = me. (2.64)

With this choice, the gauge and mass eigenstates for the d-type quarks and for the leptons
coincide. Including a right-handed neutrino representation N ∼ (1,1)0, a similar reasoning
could be applied in the lepton sector, leading to the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix [90, 91].

The number of parameters of the quark sector with Nf > 0 flavors can be obtained as
follows. The total number of real degrees of freedom is equal to the real dimension of the
flavor group U(Nf )Q × U(Nf )U × U(Nf )D, that is 3N2

f . Among them, 3N2
f − 1 freedoms

can be fixed to arbitrary values as the flavor group breaks down to U(1)B once Yukawa
couplings are introduced. The two Yukawa matrices contain 2×2N2

f real parameters, with
3N2

f − 1 of them that can be fixed using the flavor freedom. There therefore remains
4N2

f − (3N2
f − 1) = N2

f + 1 physical parameters, among which 2Nf are quark masses.
The NCKM ≡ (Nf − 1)2 remaining ones are thus the CKM parameters. In Nf dimensions,
there are C2

Nf
= Nf (Nf − 1)/2 Euler angles, i.e., CKM mixing angles here. The remaining

NCKM − C2
Nf

= (Nf − 1)(Nf − 2)/2 parameters are phases, i.e., explicit sources of CP-
violation in the quark sector. Therefore, as well-known, the number of phases is non-zero
only for Nf ≥ 3 flavors.
In the SM, the CKM matrix is a 3 × 3 unitary matrix hence parametrized by 3 angles

and a CP-violating phase,

VCKM ≡

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 ,

(2.65)

where sij = sin θij and cij = cos θij. In the Wolfenstein’s parametrization [92]:

s12 = λ, s23 = Aλ2, s13e
iδ =

Aλ3(ρ̄+ iη̄)
√

1− A2λ4

√
1− λ2[1− A2λ4(ρ̄+ iη̄)]

(2.66)

where the best-fit central values are A = 0.8227, λ = 0.22543, ρ̄ = 0.1504 and η̄ = 0.3540

[93, 94]. The expansion of VCKM at the order λ2 is worth writing explicitly,

VCKM =

1− λ2

2
λ O(λ3)

−λ 1− λ2

2
Aλ2

O(λ3) −Aλ2 1

+O(λ4), (2.67)

where the upper-left 2× 2 block is recognized as an approximation to the Cabibbo matrix.
While we experimentally observed that the CKM matrix is close to the unit matrix, i.e.,
that λ is a good expansion parameter, we lack a fundamental explanation of the CKM
parameters.
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adapted from [95]. Right panel: Experimental constraints in the (ρ̄, η̄) plane by the
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2.4.2 A delicate system

Unitarity of the CKM matrix implies in particular, among five other such relations,

V ∗udVub + V ∗cdVcb + V ∗tdVtd = 0. (2.68)

In the complex plane, this relation can be represented as a closed triangle whose opening
angles characterize the strength of CP-violation in the quark sector, all angles would indeed
vanish for δ = 0. It is conventional to normalize to unity one side of the triangle and define
the three opening angles as

α = arg
(
− VtdV

∗
tb

VudV ∗ub

)
, β = arg

(
−VcdV

∗
cb

VtdV ∗tb

)
, γ = arg

(
−VudV

∗
ub

VcdV ∗cb

)
, (2.69)

see left panel of Fig. 2.5. Large efforts have been dedicated to measure these triangles
experimentally as they provide a unique handle on the flavor sector of the SM and its
consistency. No deviation from the expected unitary behavior was ever observed, and the
large number of experimental results used to constrain these parameters are all compatible
and build together a perfectly consistent picture, see right panel of Fig. 2.5.
The areas of the 6 unitarity triangles are all identical and are equal to |J |/2 where J is

the Jarlskog invariant [96],

J
∑
m,n

εikmεjln = Im
[
VijVklV

∗
ilV
∗
kj

]
= c12c23c

2
13s12s23s13 sin δ = A2λ6η, (2.70)

where no sum other than that onm,n is implied and i, k (j, l) label the three up-type (down-
type) quark flavors. J controls the size of all CP-violating effects in the SM and is invariant
under the phase redefinition VCKM → DφVCKMDβ where DX ≡ Diag

(
eiX1 , eiX2 , eiX3

)
and

X1,2,3 ∈ [0, 2π]. In the Wolfenstein’s parametrization J is proportional to λ6, this illustrates
the smallness of CP-violating effects in the SM and attributes them mainly to the smallness
of the 3 mixing angles rather than to the smallness of δ. CP-violation in the SM is thus
deeply connected to flavor physics. In general, however, this does not have to be the case,
this link is an accidental property of the SM. More precisely, the SM is CP-conserving if
and only if MUMDJ = 0, where,

MU = (m2
u −m2

c)(m
2
c −m2

t )(m
2
t −m2

u), MD = (m2
d −m2

s)(m
2
s −m2

b)(m
2
b −m2

d). (2.71)
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Figure 2.6: Contribution to b→ sγ in the SM.

Indeed, were two quarks mass-degenerate, an extra-phase freedom would be present and
the CP-violating phase δ could be rotated away from the CKM matrix.
The only observable effects of the CKM matrix reside in the chargedW± currents, while

the neutral Z, γ and g currents are flavor diagonal. Indeed, acting on a general quark
representation (neglecting QCD interaction), the covariant derivative takes the form

Dµ = ∂µ l1− i g√
2

(
σ+W+

µ + σ−W−
µ

)
− i g

cW

(
σ3 −Qs2

W

)
Zµ − ieQAµ, (2.72)

where σ± = (σ1 ± iσ2)/2 and only the first and last term remain for the U and D SU(2)L
singlet quark representations. Once SU(2)L is broken, a GF transformation diagonalizing
both quark mass matrices can actually be performed and terms mixing up- and down-type
quarks acquire a CKM factor. The only term sensitive to the CKM matrix is thus

Qi /DQ ⊃ g√
2

(
uLγ

µdLW
+
µ + h.c.

) GF−−→ g√
2

(
uLVCKMγ

µdLW
+
µ + h.c.

)
. (2.73)

Flavor-changing neutral currents are thus absent at tree-level in the SM. The g and γ

mediated currents are flavor-conserving because of gauge symmetry, while the Z current is
only accidentally flavor-conserving: quarks that have the same electric charge also happened
to have the same SU(2)L charge before EWSB.
What about flavor changing neutral currents (FCNCs) at the one-loop level ? Such

processes are certainly possible and they should involve two ūidjW+ vertices with i 6= j.
Let us focus on b → s transitions for concreteness, see a diagram contributing to b → sγ

in Fig. 2.6 for instance. Focusing on the W loop structure, the amplitude for this diagram
is seen to be proportional to

M∝
∑
i=u,c,t

V ∗isVibf(mi/mW±) , (2.74)

where f(mi/mW±) is a Inami-Lim function [97]. At the first order in mi, this function can
be well approximated as

f(mi/mW±) ' C0 + C1
m2
i

m2
W±

+ . . . . (2.75)

The constant term vanishes in the amplitude by virtue of the unitarity of the CKM matrix,
while the first non-vanishing term is proportional to the fermion in the loop. The top
quark is thus expected to dominate this diagram. While this function has an intuitive
behavior in the heavy mW± → ∞ limit, i.e., the W boson decouples as expected, this is
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2.5 shortcomings of the standard model

not the case for the quarks. This is because for very large loop momentum, the equivalence
theorem states that W behaves as its corresponding Goldstone boson, which couples to
quarks proportionally to their mass, leading thus to a non-decoupling of heavy quarks.
One also observes that if all quarks were mass-degenerate, the one-loop amplitude would
vanish. This is the essence of the Glashow-Iliopoulos-Maiani (GIM) mechanism [98] which
reflects the unitarity of the CKM matrix. Even though allowed, the SM one-loop FCNC
are extremely suppressed due to their loop nature, the smallness of the off-diagonal CKM
entries and the GIM mechanism. Chirality suppression, i.e., Dirac mass insertion forced
by angular-momentum conservation, may as well contribute to this suppression.
Processes with FCNCs therefore constitute a leading probe of physics beyond the SM.

Indeed, new physics contributions may easily be several orders of magnitudes larger than
the SM expectation. The Bs → µ+µ− process is particularly interesting in this respect,
the SM prediction for the branching ratio is BR(Bs → µ+µ−) = 3.65 ± 0.23 × 10−9 [99]
making it a very rare decay subject to, e.g., large SUSY corrections [100–102]. In 2014,
the LHCb and CMS collaborations at CERN announced a joint analysis, describing their
observation of Bs → µ+µ− with a significance of 6.2σ, with a branching ratio of 2.8+0.7

−0.6 ×
10−9 [103], in perfect agreement with the SM prediction. The flavor sector of the SM
describes astonishingly well all experimental observations so far and successfully passed all
precision tests ever designed.
Interpreting all these flavor measurements in an EFT approach, the new heavy degrees

of freedom are integrated out at a scale Λ and the effects of new physics are parametrized
through Wilson coefficients scaling operators of dimension 5 or more. Considering the
contribution of an operator to a given flavor observable, fixing its Wilson coefficient to 1
and comparing with the actual measurement, generically gives a very strong constraint
on the scale Λ, forced to lie several orders of magnitudes above the TeV scale in order to
sufficiently suppress this new contribution [104–106]. This behavior is observed globally in
the flavor sector and this leads to the so-called flavor puzzle. Alternatively, fixing Λ around
the TeV scale requires very suppressed coefficients. In Section 6, we will introduce the idea
of Minimal Flavor Violation that generically reconciles these flavor observations with TeV
scale new physics.

2.5 shortcomings of the standard model

Though incredibly successful, the SM has numerous shortcomings of esthetical, theoretical
and observational nature. We already encountered several of them in our discussions so far.
The main esthetical issue is certainly the total arbitrariness of the particle content and

gauge group of the theory. Although all known particles and their quantum numbers man-
age to explain with unrivaled precision the vast majority of all experimental observations
ever performed, their origins are completely unknown. Could there be any reason why
the low-energy theory describing nature is described by the field representations given in
Table 1, with 3 flavor families ? These representations can appear automatically when
considering representations of larger gauge groups such as SU(5) and SO(10). In partic-
ular, the 16 representation of SO(10) contains precisely a full generation of fermions as
described in Table 1 with an additional right-handed neutrino. Whether such groups have
anything to do with the real world can only be determined experimentally, but this striking
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2.5 shortcomings of the standard model

coincidence is certainly something to keep in mind. The question of the gauge group then
comes, why does SU(3)c×SU(2)L×U(1)Y provide a good description of the microscopic in-
teractions below the TeV scale ? As the SM should be seen as an EFT, a larger gauge group
may be responsible for the fundamental interactions at larger energies. This leads to the
question of grand-unified theories (GUTs), see e.g. [107] for a comprehensive introduction.
There are, at least, two other reasons to be interested in GUTs at this level. The first one
has to do with gauge anomalies cancellation. In the SM, they vanish for quite a troubling
reason; the fermion electric charges are multiple of 1/(Nc = 3). Representations of larger
gauge groups may naturally explain this cancellation; in SU(5), the gauge anomalies van-
ish automatically when fermions in 5̄ and 10 representations are present while in SO(10)
the 16 representation is non-anomalous on its own. The second reason has to do with the
unification of gauge couplings at high energy. It is well known that evolving the SM gauge
couplings towards high scales does not lead to the unification of the three couplings but
still show a weak sign of convergence around 1013–1016 GeV. A quasi-perfect meeting of
the three gauge couplings at some scale would be a strong hint for the unification of the
three SM forces above this scale.

A second source of problem is the apparent arbitrariness of the SM parameters. The SM
cannot indeed predict the values of its parameters (9 fermion masses, 3 gauge couplings,
4 CKM parameters, 2 Higgs potential parameters + θQCD + possible neutrino masses and
mixings). Naive naturalness arguments moreover do not hold, though one could expect
all fermion masses to be of the order v, there is a strong hierarchy between the various
Yukawa couplings. In this respect, only the top mass can be seen as natural, as mt ' v/

√
2.

As discussed previously, the CKM matrix elements and the CP-violating phase are as well
not explained in the SM and have such a structure that they make it very challenging to
extend the flavor sector beyond the SM without facing contradiction with the experimental
measurements.
The accidental B and L conservations in the SM at tree-level are also interesting as they
are actually broken because of electroweak non-perturbative effects [39]. Despite the ex-
istence of B and L violation in theories beyond the SM at the renormalizable level, no
such process was ever observed experimentally (proton decay, neutrino-less double beta
decay as a probe of the Majorana nature of the neutrino etc.). Strong constraints then
arise on extended flavor sectors. Either the NP scale should be very high, which then leads
to quantum instability of the electroweak scale as discussed below, or the NP flavor struc-
ture should have a very fine-tuned structure as in the SM. The latter possibility will be
discussed in Section 6. The strong CP-problem, based on the non-observation of a neutron
electric dipole moment is also of this nature.
Finally, if the SM is considered as an EFT, the electroweak scale should generically be of
the order of the SM cut-off scale due to radiative corrections in the scalar sector not being
protected by any symmetry. In the absence of new physics, the existence of gravitational
interactions should still bring the electroweak scale towards the Planck scale ∼ 1018 GeV,
while in nature it lies around 102 GeV. Naturalness here would predict new physics around
the TeV scale in order to avoid a too large fine-tuning of the electroweak scale. The LHC
is precisely probing this region at the moment. One of the leading contender for the TeV-
scale new physics is certainly supersymmetry which, in the minimal viable realization,
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solves the hierarchy problem assuming extra degrees-of-freedom at the TeV scale. Techni-
cally, the Higgs mass gets protected from a chiral symmetry. Null-results in the searches
for supersymmetric phenomena at the LHC so far however increases this tension. Another
class of models that generically solves this problem relies on well-known mechanisms of
QCD. A new global strong sector is introduced that is spontaneously broken to a smaller
group (that can be partially gauged to recover the SM gauge group), under which the
observed Higgs would be a pseudo-Nambu-Goldstone boson (similar to the pions in QCD).
A natural cut-off scale is then given by the (inverse) size of the composite states (similar
to ΛQCD) and the Higgs mass gets protected by an approximate shift-symmetry. Extra-
dimension models with specific configurations can also solve the hierarchy problem. As of
today, in April 2016, no discovery of TeV-scale new physics was made by the LHC or any
other experiment.

So far, only esthetic imperfections have been considered. The SM has however also more
“down-to-earth” problems of experimental nature, some observations can simply not be
addressed within its framework. The first obvious one is the presence of gravity, neglected
in the SM. A unified description of all fundamental forces, if such a theory actually exists,
should unify both the QCD and electroweak with the gravitational interactions. Develop-
ments in this direction are conducted and the leading contender is certainly string theory
(historically, its discovery had actually nothing to do with the unification of gravity and
the SM, string theory originates from a lucky incident in the study of strong interactions).
Neutrino oscillations are as well not explained in the SM as we constructed it. One could
certainly just add right-handed neutrinos and construct a Dirac mass term for the neu-
trinos, but such particles have not been observed so far and the corresponding Yukawa
couplings would be extremely small. The see-saw mechanisms could be a way to explain
both of these problems [108].
Cosmological observations allow us to identify the various energy components present in
our Universe [109]; ∼ 5% of baryonic matter, ∼ 68% of a substance acting as a repulsive
gravitational force, the dark energy, and ∼ 27% of dark matter. The last component may
actually be given a massive particle interpretation. As such, it might be described within
the context of a particle physics theory and since it has not been directly observed, it must
be neutral under U(1)em and SU(3)c. Though neutrinos can be dark matter candidates in
the SM, their very small masses automatically make them a “hot dark matter” candidate,
i.e., in the early universe their kinetic energy was much larger than their mass. However,
the growth of small-scale formations (such as galaxies) requires a large “cold dark matter”
component, i.e., a slow moving component that does not run away from the gravitational
wells. As such, the SM neutrinos can only form a small fraction of the observed dark mat-
ter and new particles are needed to explain the observations (if dark matter really has a
particle nature). Finally, an important aspect not explained by the SM is the observation
of the baryon-antibaryon asymmetry in the Universe. Sakharov identified three conditions
that should be fulfilled at the time of baryogenesis in order to generate such an asymme-
try [110]. The first one is naturally that the baryon number B should not be conserved, i.e.,
there must exist reactions of the type X → Y + B where X and Y do not carry baryon
number while B does. In the SM, such transitions occur as briefly discussed in Section 1,
they are non-perturbative solutions called sphalerons. Beyond the SM, explicit B violation
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may be present at the renormalizable level, as is the case in GUTs because of gauge bosons
coupling to quarks and leptons simultaneously or in supersymmetric theories. The second
one is that the C and CP should not be exact symmetries. If C were an exact symmetry
then X → Y +B would happen at the same rate as the previous reaction and thus baryon
number would globally be conserved. This is however still not enough since the B-charged
particles can be either left- or right-handed fermions for instance, CP needs to be violated
as well. In the SM, CP is explicitly violated in the Yukawa sector, however the Jarlskog
invariant that tunes all CP violating phenomena is too small to account for this asymmetry
and new sources of CP-violation are needed. Finally, these transitions should happen out of
the statistical equilibrium, as otherwise, both X → Y +B and Y +B → X would happen
at the same rate, effectively washing away any baryon asymmetry. In the SM, during the
electroweak phase transition such an out-of-equilibrium state could have been realized had
the Higgs mass been smaller than 80 GeV [111].
While it is clear that any fundamental theory of particle physics should tackle these

problems to their roots, in the majority of this manuscript we do not attempt to do so. In
the next chapter we detail how to experimentally characterize the Higgs sector, while in the
next part of this manuscript, we make detailed phenomenological studies of the 2HDMs.
There, the 2HDMs are taken as an effective theory well suited to describe physics at the
LHC and not as a new fundamental picture. All in all, most of this manuscript is part of
a bottom-top strategy to refine our views of the EW sector.
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3
CONSTRAIN ING THE HIGGS SECTOR EXPERIMENTALLY

The first phenomenological studies of the Higgs boson appeared in the mid-1970’s, with [112]
opening the way. The experimental challenge to find this particle seemed immense as the
Higgs mass is not predicted by the theory, and thus, experiments could not know where
and what to look for precisely. Most of the phenomenological analyses focused on the
sub-GeV region at that time. Theoretical constraints on the mass, from triviality and sta-
bility bounds and unitarity arguments as discussed in the previous section, appeared a
couple of years later but still only provided a wide range of possibilities. Experimentally,
the strongest lower bound on the Higgs mass obtained during this period came from an
angular analysis of the neutron-nucleus scattering, which led to mh & 13 MeV [113]. It is
only in the late 1980’s that the LEP collaborations considered Higgs searches as a major
part of their physics objectives. Later completed with searches performed at the Tevatron
experiments, they opened the way towards the full-fledged confirmation of the SM.
In the following, we discuss the observed properties of the Higgs boson, in both the

pre- and post-LHC eras. An important characterization of the Higgs nature is provided
by determining its couplings to itself (Higgs self-couplings) and to other particles. As the
latter are uniquely predicted in the SM, all particles masses are indeed known, any observed
deviation from these predictions would be a tell-tale sign of new physics. We present a
formalism to describe these deviations and introduce the public code Lilith, a tool to
constrain new physics from Higgs measurements. A global fit to the LHC measurements is
then performed.
This chapter is partly based on the publications “Lilith: a tool for constraining new

physics from Higgs measurements” [114] in collaboration with Béranger Dumont and pub-
lished in European Journal of Physics C, and “Status of Higgs couplings after run 1 of
the LHC ” [115] in collaboration with Béranger Dumont and Sabine Kraml and published
in Physical Review D. In the latter paper, we performed a global fit to the latest Higgs
measurements as per Summer 2014, for the purpose of this manuscript, all results have
been updated with the final Run 1 results (data from September 2015).

3.1 pre-lhc constraints

3.1.1 Higgs searches at LEP

The first decisive searches for Higgs bosons are due to LEP, a e+e− collider operating
at CERN from 1989 to 2000. The three main production modes of the Higgs boson at
LEP are shown in Fig. 3.1. The direct e−e+ → h production mode is expected to have
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a very low cross-section as the hee coupling is extremely suppressed in the SM. The left-
most diagram, on-shell Z decay into hff̄ , is the dominant production mode for a light
Higgs boson, mh . mZ . The first run of LEP, at a center-of-mass-energy of

√
s = mZ ,

allowed all four L3, ALEPH, DELPHI and OPAL collaborations to collect a data sample
of around 1 million Z hadronic decays [116–119]. Due to the non-observation of a Higgs
boson originating from Z → hff̄ decays, lower bounds on the Higgs mass were derived,
the stronger one being from DELPHI, with a 95% confidence level (CL) lower bound of
58.4 GeV [117] in 1993.

e−
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h

Z

Z Z∗
Z∗

Z, W

e−, νe
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h

e−
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Figure 3.1: Higgs boson production at LEP.

Progressively, the LEP center-of-mass-energy was increased up to 207 GeV in 2000. For
mh > mZ , the direct decay of a Z in h is kinematically forbidden and the Higgs-strahlung
process, middle diagram of Fig. 3.1, dominates up tomh =

√
s−mZ . Above, the right-most

diagram, production through weak boson fusion, should take over. Despite some tantalizing
hints for a Higgs boson at a mass of around 114 GeV [120, 121], LEP collaborations could
not confirm this result in their joint analysis [17] and the lack of evidence translated into
a lower bound on the Higgs mass of 114.4 GeV at the 95% CL.
In parallel to the direct searches for the Higgs boson, the precise characterization of

electroweak observables allowed to derive indirect constraints on the Higgs mass (and
top mass). Radiative corrections to the W± and Z masses depend logarithmically on the
Higgs mass [122] and quadratically on the top mass. Before the top discovery [123], mt was
inferred from such a fit. With the experimental determination ofmt, the Higgs mass indirect
inference naturally became more accurate. Several low-energy and Z,W±-pole observables
are taken into account in the full fit; corrections to the Z decay widths, Z hadronic cross-
section and various asymmetries [Γ(Z → fLf̄L)− Γ(Z → fRf̄R)]/Γ(Z → ff̄) in particular.
Figure 3.2 shows the result of such a combined fit by the four LEP collaborations [19].
Precision electroweak observables clearly favor a light Higgs, very close to the lower bound
coming from direct searches. See [124] for an update or [125, 126] for fits by the Gfitter
collaboration before and after the Higgs discovery.
Although a new scalar particle could not be discovered, the LEP legacy is of great

importance as it provides, in particular, strong direct constraints on the properties of light
Higgs states; direct production of a light scalar state from a Z on/off-shell decay, possible
φ+φ−Z coupling where φ+(−) is a generic light CP-even (odd) state, bb̄φ+,− associated
production, double and triple production of the light states, constraints on charged Higgs
states and so on. They form a very rich set of constraints for the studies of extended Higgs
sectors. In particular, we will use them in our phenomenological studies of the two-Higgs-
doublet models presented in the second part of this manuscript.
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Figure 3.3: Higgs mass exclusion from the combined CDF and DØ analysis of July 2012 [18].

3.1.2 Higgs searches at the Tevatron

As discussed previously, the discovery of the top quark at the Tevatron was directly used
to infer information on the Higgs boson mass from the electroweak fit. With a center-
of-mass-energy of 1.96 TeV, the pp̄ collider also actively searched for direct signs of a
Higgs boson. Higgs production modes at the Tevatron are identical as at the LHC, the
relative contributions of the different production modes are however different in pp̄ and
pp collisions, and we refrain from expliciting them from now and refer to the next section
for more details. In July 2012, a joint analysis of the CDF and DØ results was performed
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with different channels combined together to increase the sensitivity to a possible scalar
state; h → bb̄,W+W−, ZZ, ττ and γγ [18]. A representative result of this analysis is
presented in Fig. 3.3. A SM Higgs boson with a mass within the intervals [100, 103] GeV
and [147, 180] GeV is excluded at the 95% CL. A broad excess of events is observed between
115 and 140 GeV, with the most significant local excess reaching locally 3σ (2.5σ globally)
for mh = 120 GeV, in agreement with the indirect LEP constraints. Disentangling the
various contributions of this signal, it was found that bb̄ is the dominant sub-contribution
to this excess, however the statistical significance of the signal was not enough to claim a
discovery.

3.2 constraints from the lhc

Despite several decades of intense experimental efforts at LEP and Tevatron, the Higgs
boson escaped detection up to 2012. While it probably would have taken large modifications
of the LEP infrastructures to increase the center-of-mass-energy and discover the 125 GeV
state, only time was lacking to the Tevatron. After some delay due to technical incidents,
the LHC started colliding protons on November 2009 at a center-of-mass-energy of 0.9 TeV,
the energy of each beam was then increasingly improved and reached 3.5 TeV per beam
in March 2010. Both ATLAS and CMS collected approximatively 5 fb−1 of luminosity at√
s = 7 TeV. In December 2011, the analysis of the full 7 TeV dataset by ATLAS [127]

and CMS [128] showed a ∼ 3σ hint for a Higgs boson with a mass mh ≈ 124–126 GeV.
Beginning of 2012, the LHC started colliding protons at

√
s = 8 TeV until the end of the

year. The LHC collaborations could finally announce the discovery of a Higgs boson in July
2012 at a mass of 125–126 GeV [14, 15] and the precise characterization of its properties
constituted the major efforts of the rest of the first run as we discuss in the following.

3.2.1 Higgs production at the LHC

In a hadronic collider, the SM Higgs boson has several production modes, depicted in the
left-panel of Fig. 3.4. The corresponding cross sections are shown in the right-panel of
Fig. 3.4 as a function of the center-of-mass-energy. Let us discuss them individually.

Gluon fusion (ggH)

Gluon fusion, gg → h, was quite early identified as the leading production mode in hadronic
colliders [129]. (Direct production from qq̄ → h is extremely suppressed as the heavy quark
content of protons is very small and the coupling to light u, d quarks is somehow negligi-
ble for collider phenomenology.) Despite being a loop-induced process, and thus naively
suppressed, this is the dominant Higgs production mode because of the large gg density in
hadrons (which depends on the collision center-of-mass energy) and the large coupling of
the Higgs to the top quark as discussed in Section 2.3.4. At the LHC, the gluon production
accounts for ∼ 86% of the total Higgs cross section (for

√
s = 8, 13 TeV).

As the dominant mode, it is crucial to know the SM prediction as accurately and precisely
as possible in order to conduct precision measurements of the Higgs boson properties. In
particular, loops of new colored particles may contribute to the ggH cross section or the
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Figure 3.4: Left panel: SM Higgs boson production modes in a hadronic collider; from left to
right and top to bottom: gluon-fusion (ggH), vector-boson-fusion (VBF), associated-
production with a vector boson (WH, ZH collectively denoted as VH) and associated
production with a pair of top or bottom quarks (ttH, bbH). Right panel: Correspond-
ing cross-sections for mh = 125 GeV as a function of the LHC center-of-mass-energy,
from the LHC-HXSWG [75–77]. The bands represent the theoretical uncertainties com-
ing from the QCD scale variation and parton distribution function + α3 uncertainties.

couplings of the Higgs to heavy quarks may not be as predicted in the SM. The gluon
fusion cross section is subject to very large QCD corrections, the next-to-leading-order
(NLO) result enhances the born result by approximatively 70% but is subject to very
large scale uncertainties [130, 131]. Next-to-NLO (NNLO) results were then obtained in
the infinite [132, 133] and finite [134] top mass limits, they showed a good convergence
of the perturbative series (enhancement of ∼ 15% in cross section as compared to the
NLO result) and reduced scale dependence. Regarding EW effects, NLO-EW corrections
were obtained in Ref. [135] and showed a ∼ 5% enhancement as compared to the QCD
NNLO result. Three-loop mixed QCD-EW corrections were obtained in Ref. [136]. Finally,
a large part of the last decade’s efforts was focused on the QCD next-to-NNLO calculation
which recently culminated with [137] in the infinite top mass limit and showed a quasi-
flat variation with the renormalization scale; there remains a small ∼ 2–3% residual scale
uncertainty.
As contrary to the other production modes, in gluon fusion, the Higgs boson is produced

alone and for mh = 125 GeV it predominantly decays to bb̄. Such a fully hadronic signal
cannot be singled out of the very rich hadronic environment of the LHC. Considering initial
state radiation or real QCD corrections to gg → h only worsens the situation. Therefore,
only final states with photons or leptons can be observed if h is produced through gluon
fusion. For the same reason, the large QCD background will make it difficult to observe
h → cc̄, while lighter quarks are expected to be produced with an insufficient rate to be
observed.
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Vector boson fusion (VBF)

Vector boson fusion, pp → qq′h, is the second production mode for a SM Higgs boson
above ∼ 85 GeV. For mh = 125 GeV, the VBF mode amounts to ∼ 7% of the total cross
section. The VBF cross section is known up to the NNLO in QCD and NLO in EW correc-
tions [138–141]. The scalar state is produced in association with two light forward quarks,
i.e., the two quarks propagate quite close to the beam lines, which upon hadronization
form two forward jets. As such, a central jet veto is imposed in the experimental analyses
in order to isolate the VBF mode from other production modes. Nevertheless, there exists
a contamination from gg → h+ 2j that cannot be entirely removed. The VBF production
mode provides, together with the VH mode, a direct way to measure the Higgs coupling
to massive electroweak gauge bosons. As discussed in Section 2.3, these couplings are an
essential piece of the SM EWSB mechanism and are linked to custodial symmetry. Many
BSM models predict modifications of these couplings, for instance in extended Higgs sec-
tors the couplings might be shared among the several states contributing to EWSB, or
custodial-violating models can change the ratio between the hW+W− and hZZ couplings.

Associated production with a massive vector boson or higgs-strahlung (WH+ZH=VH)

Associated production with a W± or Z [142] is an important mode to characterize the
Higgs properties as discussed for VBF previously. The cross section is known up to NNLO
in QCD and NLO in EW corrections [143–145]. The WH mode amounts to ∼ 60% of
the total VH cross section and thus dominates over the ZH mode because of the larger
phase-space and the additional degrees of freedom.

Associated production with a pair of top or bottom quarks (ttH, bbH)

Associated production with a pair of top quarks [146–150] or bottom quarks [151–154] is
a crucial production mode to characterize the Higgs boson as it provides a direct access
to the htt̄ and hbb̄ couplings (though the latter may also be probed in the h → bb̄ de-
cay). As discussed in Section 2.3, the top Yukawa coupling plays a very special role in the
stability of the Higgs potential and may be generically modified in BSM scenarios. The
latter assertion is particularly true in the case of the bottom Yukawa coupling in super-
symmetric models for instance, or more generally in Type II 2HDMs as will be discussed
in Section 4.1, where it can be sizably increased as compared to the SM prediction. We
note that for mh ≈ 125 GeV, the h → bb̄ partial width is the dominant one in the SM,
BR(h→ bb̄) ' 57%, a large modification of the hbb̄ coupling could therefore have important
consequences on all branching ratios to SM states. The ttH and bbH production modes are
well differentiated from the VBF mode which only involves light quarks originating from
the colliding hadrons. Also, for ttH, as the top quark decays before hadronization, there
cannot be any confusion with the VBF topology.
To finish this discussion, we show in Table 2 the increase in cross section of the various

production modes at the LHC 13 TeV as compared to 8 TeV. All σ13/σ8 ratios are quite
close to 2, with the notable exception of the ttH production mode due to a lucky kinematical
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Production mode ggH VBF WZ ZH ttH bbH total cross section
σ13/σ8 2.27 2.36 1.96 2.10 3.82 2.41 2.27

Table 2: Ratio of the (central values of the) main SM Higgs production cross sections at the
LHC 13 TeV as compared to the LHC 8 TeV for mh = 125.09 GeV, from the LHC-
HXSWG [75–77].
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Figure 3.5: Left panel: Local p-value in the Higgs search of the ATLAS collaboration [14]. The
individual contributions from the different channels h→ γγ, ZZ∗,WW ∗, bb̄, ττ (color
lines) and their combination (solid black line) are shown. Right panel: Same for the
CMS collaboration [15].

effect which will allow the second run of the LHC to probe the top Yukawa coupling more
precisely.

3.2.2 A Higgs discovery

The ATLAS collaboration, with 4.8 fb−1 of luminosity collected in 2011 at
√
s = 7 TeV and

5.8 fb−1 at
√
s = 8 TeV in 2012, and the CMS collaboration, with 5.1 fb−1 at

√
s = 7 TeV

and 5.3 fb−1 at
√
s = 8 TeV, announced the discovery of a new scalar state in the search

for a Higgs boson on July 4th, 2012 [14, 15]. The local significance of this discovery as a
function of the Higgs mass is shown in Fig. 3.5. Both collaborations reported at least a
5σ excess at a similar mass around 125.5 GeV when combining all channels. Looking at
the various contributions of the different channels included in these analyses, the h→ γγ,
and to a lesser extent h → ZZ∗ → 2` + 2` with ` = e, µ, are seen to drive this discovery.
Though for a SM Higgs the corresponding branching ratios are quite small, 2.27×10−3 and
(2.74× 10−2)× (6.73× 10−2)2 ' 1.24× 10−4 respectively, the corresponding signatures are
very clean as they clearly stand out of the QCD background. The h→ ZZ∗ → 4` signature
is in particular referred to as the “golden-channel” due to the excellent reconstruction of the
leptons properties in the ATLAS and CMS detectors. For this reason, these two channels
also provide the most precise determination of the Higgs mass, as the decay products
can be very well reconstructed. A combination of the 7 and 8 TeV datasets from the
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Figure 3.6: Higgs mass determination from a combination of the h → γγ and h → ZZ∗ → 4`

searches of ATLAS and CMS using the full Run 1 datasets [16]. The intersection of
the solid black line and the dashed horizontal line at −2 log Λ(mh) = 1 defines the
68% CL interval for the Higgs mass.

ATLAS and CMS collaboration lead to an impressive sub-percent determination of the
Higgs mass, mh = 125.09± 0.21 (stat)± 0.11 (syst) GeV [16], see Fig. 3.6. Turning to the
other channels, h → WW ∗ → `ν`ν suffers from the neutrino missing energy that does
not allow for a precise reconstruction of the Higgs mass, h → bb̄ is plagued by very large
QCD backgrounds and h → ττ suffers from both problems depending on the hadronic or
leptonic nature of the τ decays.

3.2.3 Quantum numbers

Following the discovery, a precise exploration and determination of the Higgs quantum
numbers were engaged. First, due to the Landau-Yang theorem [155, 156], the observed
state cannot be a spin-1 particle as it decays to two photons. The spin-2 hypothesis is
tested against the JP = 0+ by considering a general graviton-like resonance model. If
CP is conserved, the goal is to determine the CP-eigenvalue of the observed state, if it
is not, there could be a mixing between some CP-even and odd components that should
be quantified [157, 158]. Experimental discrimination between various spin and parity
hypotheses can be performed using angular distributions and correlations of the Higgs
decay products and/or of the particles produced in association with the Higgs. The main
handles being the Higgs decays into gauge bosons, h→ WW ∗ → `ν`ν, h→ ZZ∗ → 4` and
h→ γγ.
In order to discriminate the 0− hypothesis from the 0+, one can for instance use the

various angles of the ZZ∗ → 4` topology in the Higgs rest frame which are strongly sensitive
to the parity composition of h and provide a direct constraint on the hV V vertex tensor
structure. The invariant masses of the two lepton-pairs are also discriminating quantities.
Moreover, the angular correlations between the two VBF and gg+ 2j jets provide a probe
to the parity of the Higgs. Discrimination between 0+ from 0− may also be possible in the
h → ff̄ decays, where CP-odd contributions to the hff̄ vertex can be generated at tree-
level, while they necessarily are loop-suppressed in hZZ, hWW . Even if the 0+ hypothesis
is confirmed, a detailed study of the different hV V Higgs vertices is necessary in order to
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Constraint on a possible CP-mixing from a combination of the h → ZZ∗ and h →
WW ∗ channels in ATLAS [160].

test the SM tensor structure, 0+ terms such as hVµνV µν are indeed not present in the SM
but might be in BSM scenarios. In h → γγ, the θ∗ angle in the Collins-Soper frame [159]
can be used to discriminate between various JP hypotheses.
The ATLAS and CMS collaborations tested various spin and parity hypotheses using

the full Run 1 dataset in Refs. [160] and [161] respectively, see Fig. 3.7. The left panel
shows the CMS test-statistic qJP = −2 ln(LJP /L0+) for various JP hypotheses. For each
JP , the orange (blue) bar shows the expected qJP distribution under the hypothesis that
the observed particle is a 0+ (JP ) state. The observed qJP is represented by the black dot
for each JP hypotheses and is seen to fall rather close to the central values of the orange
bars. From that, the CMS collaboration is able to exclude any tested JP 6= 0+ hypothesis
with more than a 99% CL. The right panel of Fig. 3.7 shows a constraint from the AT-
LAS collaboration [160] on the mixing parameter (κ̃AVV/κSM) tanα that characterizes the
mixing between a CP-even and odd component, defined through

L ⊃ κSM cosα

[
1

2
ghZZZ

µZµ + ghWWW
+µW−

µ

]
h

−2 sinα

v

[
1

2
κ̃AZZZµνZ̃

µν + κ̃AWWWµνW̃
µν

]
h ,

(3.1)

where the SM case is recovered for α = 0 or κ̃AV V = 0. The obtained 95% CL interval
is (κ̃AVV/κSM) tanα ∈ [−2.18, 0.83] and is perfectly compatible with the vanishing SM
value. As there is now little doubt that h is mostly a 0+ state, these constraints on the
CP admixture are becoming very relevant and may indirectly signal the presence of an
additional state if a deviation from 0 is observed in the future.

3.2.4 Production and decay rates

The results of the Higgs searches at the LHC are given in terms of signal strengths, µ,
which scale the number of signal events expected for the SM Higgs, ns. For a given set of
selection criteria, the expected number of events is therefore µ · ns + nb, where nb is the
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expected number of background events, so that µ = 0 corresponds to the no-Higgs scenario
and µ = 1 to a SM-like Higgs. Equivalently, signal strengths can be expressed as

µ =
σ × A× ε

[σ × A× ε]SM
, (3.2)

where A × ε is the product acceptance times efficiency of the selection criteria. Two as-
sumptions can subsequently be made: first, the signal is a sum of processes that exist for
a 125 GeV SM Higgs boson, i.e., σ =

∑
X,Y σ(X)B(H → Y ) for the various production

modes X ∈ (ggH, VBF, VH, ttH) and decay modes Y ∈ (γγ, ZZ∗, WW ∗, bb̄, ττ , . . .).
Second, the acceptance times efficiency is identical to the SM one for all processes, that is
(A× ε)X,Y = [(A× ε)X,Y ]SM for every X and Y . These conditions require in particular that
no new production mechanism (such as pp→ A→ Zh, where A is a CP-odd Higgs boson)
exist and that the tensor structure of the couplings of the Higgs boson to SM particles
is as in the SM.6 Assuming moreover that the narrow-width-approximation holds, signal
strengths read

µ =

∑
X,Y (A× ε)X,Y σ(X)B(h→ Y )∑

X,Y (A× ε)X,Y σSM(X)BSM(h→ Y )
=
∑
X,Y

effX,Y
σ(X)B(h→ Y )

σSM(X)BSM(h→ Y )
, (3.3)

where the effX,Y are “reduced efficiencies”, corresponding to the relative contribution of
each combination for the production and decay of a Higgs boson to the signal. These can
be estimated from the A× ε obtained in a Monte Carlo simulation of individual processes.
In the case of an inclusive search targeting a given decay mode Y [i.e., ∀X, (A× ε)X,Y =

(A× ε)Y ], effY is equal to the ratio of SM cross sections, σSM
X /(

∑
X σ

SM
X ).

Both the ATLAS and CMS collaborations have measured such quantities throughout the
first run of the LHC [171, 172] in a wide variety of production and decay modes. Table 3
shows the various decay modes accessible to the LHC and their statistical significance if
already observed. As the µµ and Zγ have not been observed so far, the upper limit at the
95% CL on the corresponding rate is given.
Figure 3.8 shows a signal strength determination from a combination of the ATLAS

and CMS run 1 datasets [188]. On the left-panel is shown the determination of the µX
assuming that the partial widths of the observed state are as in the SM. All measurements
are in perfect agreement with the SM predictions with the exception of the ttH production
mode which shows a ∼ 2σ excess driven by the CMS measurement. Also shown is the
total signal strength, defined assuming that all cross sections and partial widths are scaled
universally by a factor µ. The combination results in µ = 1.09+0.11

−0.10 in agreement with
the SM prediction. Note that assuming that the SM production and decay modes of the
observed state are fixed to their SM values, this measurement puts a direct constraint
on additional production and/or decay modes. On the right-panel are shown the signal
strengths obtained assuming that all production cross sections of the observed state are as
in the SM. No deviation from the SM expectations is observed, with all measurements in
agreement at the ∼ 1σ level.

6 More general constraints on the Higgs properties can be obtained through the use of EFTs [162, 163],
pseudo-observables [164, 165] or, truly model-independently, through fiducial cross section measure-
ments [166–170].
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Channel
Statistical significance [σ]

ATLAS CMS
γγ 5.0 [173] 5.6 [174]

ZZ∗ → 4` 6.6 [175] 7.0 [176]
WW 6.8 [177, 178] 4.8 [179]
ττ 4.4 [180] 3.4 [181]
bb̄ 1.7 [182] 2.0 [183]
µµ σ(h→ µµ) < 7.0×SM [184] σ(h→ µµ) < 7.4×SM [185]
Zγ σ(h→ Zγ) < 11×SM [186] σ(h→ Zγ) < 9.5×SM [187]

Table 3: Higgs observed decay modes and their statistical significance. The µµ and Zγ modes
have not been observed so far, the upper limit at the 95% CL on the corresponding rate
is given instead. Adapted from [188].

The quantities presented in Fig. 3.8 are obtained by making a strong hypothesis on
either the production or decay of the observed state. As such, they are not completely
useful to derive significant constraints on the Higgs properties. As will be discussed in
details in the next section, signal strengths for given production times decay modes are
also measured. They provide very valuable information on the Higgs properties as the allow
to lift the degeneracies that the simple production or decay signal strengths lead to if used
in a global fit.

3.3 lilith: constraining new physics from higgs measurements

Precision measurements of the properties of the observed Higgs state are of utmost impor-
tance to assess its role in the breaking of the electroweak symmetry. They could reveal
a more complicated Higgs sector, indicating the presence of more elementary scalars or
compositeness of the observed particle, and could also shed light on a large variety of new
particles that couple to the Higgs boson. Conversely, precision measurements can be used
to rule out new physics scenarios affecting the properties of the Higgs boson.
That the mass of the observed Higgs boson is about 125 GeV is a very fortunate coinci-

dence as many decay modes of the SM Higgs boson are accessible with a modest integrated
luminosity at the LHC [77], see also Fig. 2.4. Hence, complementary information on the
properties of the Higgs boson was already obtained from the measurements performed
during Run 1 of the LHC at 7–8 TeV center-of-mass energy [171, 172]. A large variety
of models of new physics (both effective and explicit ones) can be constrained from the
measurements presented in terms of signal strengths. These results were used in a large
number of phenomenological studies in the past three years (see Refs. [115, 189–214] for a
sample of studies based on the full data collected at Run 1 up to January 2015).
It is however not straightforward to put constraints on new physics from the measured

signal strengths. Indeed, a large number of analyses have already been performed by the
ATLAS and CMS collaborations and they usually include several event categories, and
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Figure 3.8: Signal strengths from a combination of the ATLAS and CMS datasets [188]. Left panel:
Signal strengths for the different production modes assuming that all Higgs decays are
as in the SM. Also shown is the total signal strength µ determined assuming that all
production modes and decay modes are altered by a single scaling factor. Right panel:
Signal strengths for the different decay modes assuming that all production cross
sections are as in the SM.

present signal strength results in different ways. Extracting all necessary information from
the figures of the various publications is a quite tedious and lengthy task. Moreover, as the
full statistical models used by the experimental collaborations are not public, a number
of assumptions need to be made for constructing a likelihood. The validity of these ap-
proximations should be assessed from a comparison with the results provided by ATLAS
and CMS.
In order to put constraints on new physics from the LHC Higgs results, many groups have

been developing private codes, and a public tool, HiggsSignals [215], became available in
May 2013. HiggsSignals is a FORTRAN code that uses the signal strengths for individual
measurements, taking into account the associated efficiencies. In this section, we present
the public tool Lilith.7 It follows a different approach than HiggsSignals in that it uses as
primary input results in which the fundamental production and decay modes are unfolded
from experimental categories. This method was first introduced and used in Refs. [216, 217].
Lilith is a library written in Python, that can easily be used in any Python script as well
as in C and C++/ROOT codes, and for which a command-line interface is also provided.
The experimental results are stored in XML files, forming a database, which are easy to
modify and extend. The user input can be given in terms of reduced couplings or signal
strengths for one or multiple Higgs states, and is also specified in an XML format. Given
the experimental database, a global likelihood is constructed and then evaluated at the
user input. Using this quantity, constraints on the Higgs sector of various scenarios can be
obtained.

7 Lilith not only refers to a mythological female demon, it incidentally also stands for “light likelihood fit
for the Higgs”.
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In Section 3.3.1, we present the signal strength framework used to encode deviations
from the SM at the LHC, as well as the experimental results that we use as input in
Lilith. The parametrization of new physics effects on the observed Higgs boson, as well
as the derivation of signal strengths, are presented in Section 3.3.2. Some practical details
on how to use Lilith and the various XML formats defined are then given in Section 3.3.3.
Constraints derived from Lilith are validated in Section 3.3.4, and two concrete examples
of its capabilities are given in Section 3.3.5. Finally, prospects for Run 2 of the LHC are
discussed in Section 3.3.6.

3.3.1 From experimental results to likelihood functions

3.3.1.1 Signal strength measurements

Thanks to the excellent operation of the LHC and to the wealth of accessible final states
for a 125 GeV SM-like Higgs boson, the properties of the observed Higgs boson have been
measured with unforeseeable precision by the ATLAS and CMS collaborations already
during the Run 1 of the LHC at 7–8 TeV center-of-mass energy [171, 172]. LHC searches are
targeting the different combinations of production and decay modes of a Higgs boson. The
SM Higgs boson has several production mechanisms at a hadron collider, see Section 3.2.1:
gluon fusion, vector-boson fusion, associated production with an electroweak gauge boson
(W± or Z) and associated production with a pair of top quarks.8 Observation of these
production modes constrains the couplings of the Higgs to vector bosons and to third-
generation quarks (ggH, ttH). The main decay modes accessible at the LHC are h → γγ,
h → ZZ∗ → 4`, h → WW ∗ → 2`2ν, h → bb̄ and h → ττ (with ` ≡ e, µ). They can
provide complementary information on the couplings of the Higgs to vector bosons (from
the decay into ZZ∗, WW ∗, and γγ) and to third-generation fermions (from the decay into
bb̄, ττ , and γγ). Being loop-induced processes, gg → h and h → γγ also have sensitivity
to BSM colored particles and BSM electrically-charged particles, respectively.
The signal strength framework used by the ATLAS and CMS collaborations is based on

the general form of Eq. (3.3), hence on the assumption that new physics only results in a
modification of the production and decay rates of the observed state as compared to the SM
Higgs. This makes it possible to combine the information from various Higgs searches and
assess the compatibility of given scalings of SM production and/or decay processes from a
global fit to the Higgs data. This framework is very powerful as it can be used to constrain
a wide variety of new physics models (some examples can be found in Ref. [218]). This
is the approach that we will follow with Lilith. However, in order to derive constraints
on new physics, one first needs to construct a likelihood function from the signal strength
information given in the experimental publications. In particular, combining the results
from several Higgs searches is non-trivial and deserves scrutiny.

3.3.1.2 Event categories versus unfolded production and decay modes

The searches for the Higgs boson performed by the ATLAS and CMS collaborations are
divided into individual analyses usually focusing on a single decay mode. Within each

8 Current searches do not constrain the associated production with a pair of bottom quarks, whose SM cross
section is small and which is plagued with the very large QCD background.
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duction modes are unfolded from experimental categories, in the plane
(µ(ggH + ttH, Y ), µ(VBF + VH, Y )) for Y ∈ (γγ, ZZ∗, WW ∗, ττ , bb̄) [188].

analysis several event categories are then considered. They are in particular designed to
optimize the sensitivity to the different production mechanisms of the SM Higgs boson
(hence, they are characterized with different reduced efficiencies effX,Y ). In order to put
constraints on new physics from the results in a given event category, one needs to extract
the measurement of the signal strength and the relevant effX,Y information from the exper-
imental publication. For example, results of the CMS h → γγ analysis [174], in terms of
signal strengths for all categories, are shown in the left panel of Fig. 3.9. With the addition
of the reduced efficiencies effX,γγ, also given in Ref. [174], combinations of σ(X)B(h→ γγ)

can be constrained.
However, several problems arise when constructing a likelihood. First of all, as can

be seen on the left panel of Fig. 3.9, only two pieces of information are given: the best
fit to the data, that will be denoted as µ̂ in the following, and the 68% CL interval or
1σ interval. The full likelihood function category per category is never provided by the
experimental collaborations. Assuming that the measurements are approximately Gaussian,
it is however possible to reconstruct a simple likelihood, L(µ), from this information. In
that case, −2 logL(µ) follows a χ2 law. From the boundaries of the 68% CL interval, left
and right uncertainties at 68% CL, ∆µ− and ∆µ+, with respect to the best fit point can
be derived. The likelihood can then be defined as

− 2 logL(µ) =


(
µ−µ̂
∆µ−

)2

if µ < µ̂ ,

(
µ−µ̂
∆µ+

)2

if µ > µ̂ ,

(3.4)

with ∆µ− = ∆µ+ in the Gaussian regime. While this is often a valid approximation to the
likelihood, it should be pointed out that signal strength measurements are not necessarily
Gaussian, depending in particular on the size of the event sample. For h → ZZ∗ → 4` in
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particular, the small cross section and the split in different categories may lead to important
distortions from the Gaussian regime.
Barring this limitation, Eq. (3.4) can be used to constrain new physics. However, it

requires that at least the 68% CL interval and the relevant reduced efficiencies effX,Y
are provided by the experimental collaboration for every individual category. This is very
often, but not always, the case. Categories are sometimes defined without giving the cor-
responding signal efficiencies (as in, e.g., the CMS ttH analysis [219]), and/or the result
is given for a (set of) combined signal strength(s) but not in terms of signal strengths
category per category (as in the ATLAS ZZ∗ and ττ analyses [175, 180]). Such combined
µ should in general not be used because they have been obtained under the assumption of
SM-like production or decay of the Higgs boson as discussed earlier for the results shown
in Fig. 3.8. Whenever the effX,Y are not given in the experimental publications it is in
principle possible to obtain estimates from a reproduction of the selection criteria applied
on signal samples generated by Monte Carlo simulation. However, this turns out to be
a very difficult or impossible task. Indeed, searches for the Higgs boson typically rely on
complex search strategies, such as multivariate analysis techniques that are impossible to
reproduce in practice with the information publicly available. Whenever the information
on reduced efficiencies is not available, we are left to a guesswork, with a natural default
choice being that effX is equal to the ratio of SM cross sections, σSM

X /(
∑

X σ
SM
X ), which

would correspond to a fully inclusive search.
Constraining new physics from a single search category can already be a non-trivial

task and come with some uncertainty. However, more severe complications typically arise
when using several categories/searches at the same time, as is needed for a global fit to
the Higgs data. The simplest solution is to define the full likelihood as the product of
individual likelihoods,

L(µ) =
n∏
i=1

L(µi) ⇒ −2 logL(µ) =
n∑
i=1

−2 logL(µi) =
n∑
i=1

(
µi − µ̂i

∆µi

)2

, (3.5)

which assumes that all measurements are completely independent. We know that this is not
the case as the various individual measurements may share common systematic uncertain-
ties. They are two sorts of them: the shared experimental uncertainties, coming from the
presence of the same final state objects and from the estimation of the luminosity, and the
shared theoretical uncertainties, dominated by the contributions from identical production
and/or decay modes to the expected Higgs signal in different categories [220]. The estima-
tion of the experimental uncertainties in ATLAS should be largely independent of the one
in CMS, hence these correlations can be treated separately for measurements performed
by one collaboration or the other. Conversely, theoretical uncertainties are estimated in
the same way in ATLAS and CMS and should be correlated between all measurements.
In the case where all measurements are well within the Gaussian regime, it is possible

to take these correlations into account in a simple way, defining the likelihood as

− 2 logL(µ) = χ2(µ) = (µ− µ̂)TC−1(µ− µ̂) , (3.6)

where C−1 is the inverse of the n× n covariance matrix, with Cij = cov[µ̂i, µ̂j] (leading to
Cii = σ2

i ). However, the off-diagonal elements of this matrix are not given by the experi-
mental collaborations and are very difficult to estimate from outside the collaboration. This
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simple and compact expression for the likelihood is naturally only valid under the Gaussian
approximation; beyond that, the expression and the communication of the likelihood by
the experimental collaborations become more complicated.
An alternative way of constraining new physics from the experimental results is to con-

sider results in which the fundamental production and decay modes are unfolded from
experimental categories. These so-called “signal strengths in the theory plane” are defined
as

µ(X, Y ) ≡ σ(X)B(h→ Y )

σSM(X)BSM(h→ Y )
, (3.7)

where as before X labels the production mode and Y the decay mode of the Higgs boson.
These quantities can be estimated from a fit to the results in several event categories; as
the effX,Y will differ from measurement to measurement, complementary information on
various (X, Y ) couples can be obtained and break possible degeneracies. The resulting
signal strengths are then directly comparable to the predictions of a given new physics
model.
It has become a common practice of the ATLAS and CMS collaborations to present

such results in 2-dimensional likelihood planes for every decay mode. In that case, the
five production modes of the SM Higgs boson are usually combined to form just two
effective X modes, VBF + VH and ggH + ttH. The likelihood is then shown in the
(µ(ggH + ttH, Y ), µ(VBF + VH, Y )) plane. The combined ATLAS and CMS results in this
2-dimensional plane for Y ∈ (γγ, ZZ∗, WW ∗, ττ), as given in Ref. [188], are shown in the
right panel of Fig. 3.9. The solid contours delineate the 68% CL allowed regions. As the
unfolding of the individual measurements is done by the experimental collaborations them-
selves, all correlations between systematic uncertainties (both experimental and theoretical)
are taken into account for a given decay mode Y , and are encompassed in the correlation
between µ(ggH + ttH, Y ) and µ(VBF + VH, Y ). (Other 2-dimensional planes can be rele-
vant, depending on the sensitivity of the searches, for instance (µ(WH, Y ), µ(ZH, Y )) for
Y = bb̄.) This is a very significant improvement over the naive combination of categories
of Eq. (3.5), in which all measurements are assumed to be independent. Moreover, in this
approach, no approximation needs to be made because of missing information on the sig-
nal efficiencies or signal strengths category per category. This is why we chose to use the
results in terms of signal strengths in the theory plane as the primary experimental inputs
of Lilith.
A remark is in order regarding the grouping of the five production modes into just

two. First of all, grouping together VBF, WH and ZH is unproblematic for testing the vast
majority of the new physics models because custodial symmetry requires that the couplings
of the Higgs to W and Z bosons scale in the same way. Probing models that violate
custodial symmetry based on this input and on the inclusive breaking into the individual
production modes VBF,WH, and ZH, may lead to results that deviate significantly from
the ones using the full likelihood. This will be discussed and illustrated in Eq. (3.19) and
Section 3.3.4.2. The combination of the ggH and ttH production modes is more problematic
at first sight. While gluon fusion is dominated by the top-quark contribution in the SM,
this can be modified drastically if BSM colored particles are present. However, for all
decay modes except h → bb̄ (where gluon fusion-initiated production of the Higgs is not
accessible), the ttH production mode is currently constrained with much poorer precision
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than ggH because of its small cross section (being 150 times smaller than ggH at
√
s =

8 TeV [77]). Therefore, with the current data it is justified to take µ(ggH + ttH, Y ) =

µ(ggH, Y ) for all channels except h → bb̄, and µ(ggH + ttH, bb̄) = µ(ttH, bb̄) as discussed
previously.9

Finally, note that all results given in terms of signal strengths are derived assuming
the current theoretical uncertainties in the SM predictions. Hence, constraining a scenario
with different (usually larger) uncertainties from a fit to the signal strength measurements
is a delicate task. This issue will also be discussed, alongside with a possible solution, in
Section 3.3.6.

3.3.1.3 Statistical procedure

We use signal strengths for pure production and decay modes as basic ingredients for the
construction of the Higgs likelihood in Lilith. However, the full likelihood in the µ(X, Y )

basis is not accessible as only 1- and 2-dimensional (1D and 2D) results are provided by
the experimental collaborations; therefore some of the correlations are necessarily missing.
In the currently available 1D and 2D results, the full likelihood is provided in some cases
in addition to contours of constant likelihood. This is extremely helpful since the commu-
nication of the results between the collaboration and the readers does not cause any loss
of information. Two examples from the CMS collaboration are given in Fig. 3.10. The 1D
likelihood as a function of µ(VH, bb̄) [221] is shown in the left panel.10 On the right panel,
the full likelihood in the 2D plane (µ(ggH + ttH, γγ), µ(VBF + VH, γγ)) [174] is shown
as a “temperature plot”. Moreover, we note that likelihood grids have been provided by
ATLAS in a numerical format on the 2D plane (µ(ggH + ttH, Y ), µ(VBF + VH, Y )) for
Y ∈ (γγ, ZZ∗,WW ∗) [222–224].
Any result given in terms of signal strengths can be used in Lilith. Whenever available,

we take into account the full likelihood information. The provision of numerical grids
for the di-boson final states by the ATLAS collaboration was an important step forward
in the communication of the likelihood. Unfortunately, they were derived with previous
versions of the analyses, and the same information has not been systematically given for
the corresponding final Run 1 results [173, 175, 177]. Moreover, in the CMS h → γγ

result shown in the right panel of Fig. 3.10, the Higgs boson mass has been profiled over
instead of being fixed to a given value, making the interpretation of the result very difficult.
Limitations of the current way of presenting signal strength results, as well as possible
improvements, will be discussed in Section 3.3.6, see also [225].
If only contours of constant likelihood (the 68% CL interval in 1D, 68% and 95% CL

contours in 2D) are present, assumptions about the shape of the likelihood have to be
made in order to reconstruct it in the full plane. The 1D case was already discussed above
and resulted in the likelihood of Eq. (3.4). In the 2D case, a natural choice is to use a

9 Constraints on the ttH production mode for decay modes other than bb̄ are taken into account indepen-
dently in Lilith, see Table 4.

10 Note that 2D results in the plane (µ(WH, bb̄), µ(ZH, bb̄)) also exist for this analysis [183]. Both results are
present in the database of Lilith.
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Figure 3.10: Signal strength results from the CMS collaboration. Left panel: 1D likelihood for the
X = VH, Y = bb̄ channel (red curve) [221]. Right panel: 2D temperature plot in the
(µ(ggH + ttH, γγ), µ(VBF + VH, γγ)) [174] plane.

bivariate normal (Gaussian) distribution. For two (combination of) production and decay
processes (X, Y ) and (X ′, Y ′), we obtain the following likelihood:

− 2 logL(µ) = (µ− µ̂)TC−1(µ− µ̂) , (3.8)

where µ =

(
µ(X, Y )

µ(X ′, Y ′)

)
, and C−1 =

(
a b

b c

)
is the inverse of the covariance matrix. Under

the bivariate normal approximation, the 68% and 95% CL contours (which are iso-contours
of −2 logL) are then ellipses and the information on a single contour suffices to reconstruct
the likelihood in the full plane: the parameters a, b and c, as well as µ̂(X, Y ) and µ̂(X ′, Y ′),
can be fitted from points sitting on the 68% CL or 95% CL contours as they have known
values of −2 logL (2.30 and 5.99, respectively). In the following, unless stated otherwise,
we choose to reconstruct the full likelihood from a fit to the 68% CL contour provided by
the experimental collaboration. Then, having more than one contour of constant likelihood
is very useful as it allows to check the validity of Gaussian approximation. This will be
presented in Section 3.3.4 for the experimental results included in the original database
of Lilith. Finally, the generalization of the previous equations would be trivial should
higher-dimensional likelihoods be published by the experimental collaborations.
A database of up-to-date experimental results is shipped with Lilith, along with rec-

ommended sets of results to use to build the likelihood. The default dataset of results
includes the latest measurements from the ATLAS and CMS collaborations. Its content as
of February 2015 (database 15.02) is displayed in Table 4. All considered 2D results are
in the plane (µ(ggH, Y ), µ(VBF + VH, Y )) except for Y = γγ in ATLAS, where only VBF
is considered instead of VBF+VH, and for Y = bb̄ in CMS, which is given in the plane
(µ(ttH, bb̄), µ(VH, bb̄)). The CMS 2D results are taken from the combination of Ref. [171],
and correspond to the individual results from Refs. [174, 176, 179, 181, 219]. We also take
into account all available searches on production in association with a top-quark pair, as
well as searches for invisible decays of the Higgs boson from both ATLAS and CMS. Note
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Collaboration Analysis Type Reference

ATLAS

h→ γγ, ZZ∗,WW ∗, ττ 2D contour [173, 175, 177, 180]
VH, h→ bb̄ 2D contour [182]
ttH, h→ bb̄ 1D interval [226]
ttH, h→ γγ 1D interval [173]

ZH, h→ invisible full 1D [227]

CMS
h→ γγ, ZZ∗,WW ∗, ττ 2D contours [174, 176, 179, 181]

h→ bb̄ 2D interval [171]
ttH, h→ γγ, ττ 1D interval [171]
ttH, h→ leptons 1D interval [219]

ZH + VBF, h→ invisible full 1D [228]
CDF & DØ VH, h→ bb̄ 1D interval [229]

Table 4: Recommended set of experimental results in the Lilith database version 15.02. This
set is used by default by Lilith to construct the experimental likelihood.

the presence of the CDF and DØ combined result for VH, h→ bb̄ [229]; only in this channel
the precision of the Tevatron result is comparable with the one of the LHC at Run 1.
All considered experimental results are given at a fixed Higgs mass in the [125, 125.6] GeV

range. Variations of the experimental results within this narrow interval are expected to
be small, hence limiting the inconsistencies when combining the results. However, it would
be desirable to take into account the variation of the results with mass. The final Higgs
likelihood is the product of the individual (1- or 2-dimensional) likelihoods. Validation
of the Higgs likelihood used in Lilith against official LHC results will be presented in
Section 3.3.4.

3.3.2 Parametrization of new physics

In order to assess the compatibility of a new physics hypothesis with the LHC measure-
ments presented in the previous section, one needs to compute the expected signal strengths
µ(X, Y ) [see Eq. (3.7)] for the relevant production mechanisms X and decay modes Y . This
can be achieved in a direct way from σ(X), σSM(X), B(h → Y ), and BSM(h → Y ), but
is often found to be impracticable. Indeed, in order to have well-defined signal strengths
(for which µ = 1 corresponds to the SM prediction) one should take the same prescription
for computing cross sections and branching fractions in the SM and in the considered new
physics scenario [77].
In most new physics scenarios only leading order (LO) computations are available.

Thus, all available NLO corrections to the SM predictions should be ignored. While this
leads to properly defined signal strengths, σNLO(X)/σSM

NLO(X) will typically differ from
σLO(X)/σSM

LO (X) (and similarly for branching ratios) as soon as one deviates from the SM
prediction. This is because the relative contributions of SM particles to the process will be
affected by the NLO corrections. For instance, higher-order corrections to the gluon fusion
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process will change the relative contribution of the top and bottom quark loops. Therefore,
considering LO or NLO cross sections will yield different µ(ggH, Y ) if new physics affects
the couplings of the Higgs to top and bottom quarks in a different way.
These two problems come from the parametrization of new physics effects from cross

sections and branching ratios but can be alleviated if new physics is instead parametrized
using reduced couplings. In Lilith, the user has the choice of parametrizing the new
physics effects directly in terms of physical quantities, i.e., cross sections and branching
ratios, or reduced couplings.

3.3.2.1 Scaling factors and reduced couplings

Introducing scaling factors C2
X (C2

Y ) as multiplicative factors to the cross section (partial
width) for each process X (Y ) as compared to the SM predictions11, the general signal
strength expression given in Eq. (3.3) can be rewritten as

µ =
∑
X,Y

effX,Y ×
σ(X)B(h→ Y )

σSM(X)BSM(h→ Y )
=
∑
X,Y

effX,Y ×
C2
Xσ

SM(X)

σSM(X)
× C2

Y ΓSM
Y

ΓSM
Y

× ΓSM
h∑

Y C
2
Y ΓSM

Y

=
1∑

Y C
2
Y BSM(h→ Y )

∑
X,Y

effX,YC
2
XC

2
Y , (3.9)

where ΓSM
h is the total decay width of the SM Higgs boson. The term

∑
Y C

2
Y BSM(h→ Y )

accounts for the scaling of the total width of the Higgs boson.
Furthermore, we introduce reduced couplings through the following Lagrangian,

L = g

[
CWmWW

µWµ + CZ
mZ

cos θW
ZµZµ

]
h

+ g

[
−Ct

mt

2mW

t̄t− Cb
mb

2mW

b̄b− Cc
mc

2mW

c̄c− Cτ
mτ

2mW

τ̄ τ − Cµ
mµ

2mW

µ̄µ

]
h ,

(3.10)

where CW,Z and Ct,b,c,τ,µ are bosonic and fermionic reduced couplings, respectively. In the
limit where they all go to 1, the SM prediction is recovered. Lighter fermions are not taken
into account here as their phenomenological impact on the SM Higgs sector is negligible.
At leading order in perturbation theory, the scaling factors CX and CY from Eq. (3.9) can
be directly identified with the reduced couplings Ci from Eq. (3.10) for production or decay
modes involving just one coupling to the Higgs boson. We obtain

C2
WH = C2

W , C2
ZH = C2

Z , C2
ttH = C2

t , C2
ff̄ = C2

f , C2
V V = C2

V , (3.11)

where f = b, c, τ, µ and V = W,Z. The last two scaling factors, Cff̄ and CV V , rescale the
Higgs partial widths Γ(h→ ff̄ , V V ∗), respectively.
For the remaining main processes (ggH and VBF production, decay into gg, γγ and Zγ),

there is no direct identification unless the Higgs couplings to all involved SM particles scale
in the same way. In the general case, the CX and CY for these processes will be given by a

11 The scaling factors Ci are also commonly denoted as κi [230].
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combination of reduced couplings Ci, weighted according to the contribution of the particle
i to the process. For the production mechanisms, we have

C2
ggH =

∑
i,j=t,b,c

CiCj σ
SM
ij (ggH)∑

i,j=t,b,c

σSM
ij (ggH)

, C2
VBF =

∑
i,j=W,Z

CiCj σ
SM
ij (VBF)∑

i,j=W,Z

σSM
ij (VBF)

, (3.12)

where the σSM
ij are the different contributions to the cross section in the SM. For i = j it

corresponds to the cross section contribution from the particle i alone, while i 6= j comes
from the interference between the particles i and j (in order to avoid double-counting,
these terms need to be counted only once in the previous sums). Similarly, the reduced
couplings for the gg, γγ, and Zγ loop-induced decay modes are computed as

C2
gg =

∑
i,j=t,b,c

CiCj ΓSM
ij (h→ gg)∑

i,j=t,b,c

ΓSM
ij (h→ gg)

, C2
γγ,Zγ =

∑
i,j=W,t,b,c,τ

CiCj ΓSM
ij (h→ γγ, Zγ)∑

i,j=W,t,b,c,τ

ΓSM
ij (h→ γγ, Zγ)

, (3.13)

where the ΓSM
ij are the SM partial widths of the process under consideration. In all cases,

all relevant SM contributions have been taken into account. As expected, the relative sign
of the reduced couplings will affect the interference terms. Moreover, the contributions ΓSM

i 6=j
may be negative on their own, this is the case for ΓSM

tW (h → γγ) for instance due to the
bosonic (fermionic) nature of the W± (t).
At LO, the various σSM

ij and ΓSM
ij can be obtained from tree-level amplitudes (for VBF)

or from the 1-loop amplitudes (for gg → h and h → gg, γγ, Zγ).12 It would naturally be
desirable to take into account the NLO corrections to the Higgs cross sections and partial
widths as they modify the relations CX,Y (Ci). This can be achieved in a simple way as
long as higher-order corrections only rescale the σSM

ij and ΓSM
ij that are already existing in

Eqs. (3.12)–(3.13), and do not induce new couplings to the Higgs boson. This is the case
for the QCD corrections, but not for the electroweak corrections (as the Higgs doublet is
charged under SU(2)L but not SU(3)c). Thus, as will be explained in Section 3.3.3.5, the
QCD corrections for all five processes of Eqs. (3.12)–(3.13) will be included in Lilith.
One last remark is in order. The signal strength framework requires that the signal in all

searches be a sum of processes that exist for the SM Higgs boson. However, new production
or decay modes may exist without spoiling the signal strength interpretation as long as they
do not yield sizable contribution in the current Higgs searches. Two particularly interesting
cases are Higgs boson decays into undetected particles, or into invisible particles. In the
first case, this new decay is simply missed by current searches (as would, e.g., be the case
for the decay of the Higgs into light quarks or gluons), while in the second case this new
decay mode gives rise to missing energy in the detector. As was discussed in Section 3.3.1.3,
invisible decays of the Higgs boson are constrained by current searches which are taken
into account in Lilith. In the presence of undetected or invisible decays, the width of the
Higgs boson becomes larger and modifies the signal strength predictions of Eq. (3.9) as
shown in Eq. (2.56),

µ(CX , CY ) −→ (1− Binvisible−Bundetected)µ(CX , CY ) . (3.14)

12 At LO, one obtains the same scaling for gluon fusion and for the decay into two gluons, CggH = Cgg.
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In Lilith, arbitrary invisible and/or undetected decays can be specified, as will be dis-
cussed in Section 3.3.3.5.

3.3.2.2 CP-violating admixtures

Lilith can also consider the case where the observed Higgs boson is a mixture of CP-even
and CP-odd states [157, 158]. The SM Higgs coupling to vector bosons has the form

V V h : CV
gM2

V

mW

gµν , (3.15)

where as above CV measures the departure from the SM: CV = 1 for a pure scalar 0+

(CP-even) state with SM-like couplings and CV = 0 for a pure pseudoscalar 0− (CP-odd)
state. In the fermion sector, we find the general scalar and axial structure of the Higgs
coupling to fermions. Concretely, we have

ff̄h : −f̄ [Re(Cf ) + i Im(Cf )γ5] f
gmf

2mW

, (3.16)

where in the SM one has Re(Cf ) = 1 and Im(Cf ) = 0, while a purely CP-odd Higgs would
have Re(Cf ) = 0 and Im(Cf ) = 1. Since m2

f � m2
h for f = b, c, τ , the partial decay widths

scale as Γ(h→ ff̄) ∝ Re(Cf )
2 + Im(Cf )

2 = |Cf |2 to a very good approximation [82]. This
is what is implemented in Lilith. Modifications of the production and decay rates due
to some CP-mixing mainly arise in loop-induced processes, in particular in the gg → h

and h → γγ rates. A test of the CP properties of the observed Higgs from a global fit to
the signal strengths was presented in [192, 231]. Following Ref. [192], at leading order the
Higgs rates normalized to the SM expectations can be written as

Γ(h→ γγ)

ΓSM(h→ γγ)
'

∣∣∣14CWA+
1 [mW ] +

(
2
3

)2
Re(Ct)

∣∣∣2 +
∣∣∣(2

3

)2 3
2
Im(Ct)

∣∣∣2∣∣∣14A+
1 [mW ] +

(
2
3

)2
∣∣∣2 ,

σ(gg → h)

σSM(gg → h)
=

Γ(h→ gg)

ΓSM(h→ gg)
' |Re(Ct)|2 +

∣∣∣∣32Im(Ct)

∣∣∣∣2 , (3.17)

with A+
1 [mW ] ' −8.32 for mh = 125 GeV is the loop form factor for the W± contribution.

For convenience, the contributions from lighter quarks have been omitted in the above
equations but are fully taken into account in Lilith.
In the case of ttH production, the approximation used above for the other fermions does

not hold since mt > mh. Instead, the cross section scales as

σ(ttH0+/−) ∝ Re(Cf )
2 + Im(Cf )

2 × σ(ttH0−)

σSM(ttH0+)
. (3.18)

Following Ref. [232], σ(ttH0−)/σSM(ttH0+) ≈ 1/3, this is what is considered in Lilith.
However, a significant coupling of the CP-odd component of the Higgs boson to top quarks
may modify the acceptance times efficiency compared to the SM value in searches for
the Higgs boson in association with a pair of top quarks [232, 233], i.e., (A × ε)ttH,Y 6=
[(A × ε)ttH,Y ]SM. As this cannot be taken into account in Lilith, such cases should be
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interpreted with care. Moreover, only after the end of Run 2 will the LHC have enough
sensitivity to probe CP violating effects in the h → ττ decays [234], and the product
(A × ε)X,ττ can thus be approximated by the SM one for now. Precise measurements at
Run 2 of the LHC could ultimately call for an implementation of CP-admixture effects at
NLO in Lilith.

3.3.3 Running Lilith

We give here an overview of how to use Lilith at a practical level. Full details can be
found in Section 4 of [114].

3.3.3.1 Getting started

Lilith is a library written in Python for constraining model of new physics against the
LHC results. The Lilith versions and databases of experimental results as well as all
necessary information can be found at

http://lpsc.in2p3.fr/projects-th/lilith.

The archive of Lilith can be unpacked in any directory. It contains a root directory called
Lilith-1.x/ where the following directories can be found:

• lilith/: the Python package itself. The Lilith application programming interface
(API) will be presented in Section 3.3.3.2.

• data/: contains the database of experimental results in XML format, as well as text
files for the recommended sets of results. Details are given in Section 3.3.3.4.

• userinput/: where parametrizations of new physics models, in the XML format de-
scribed in Section 3.3.3.5 can be stored. Some basic user input files that include
extensive comments are provided with the Lilith distribution.

• examples/: concrete examples on how to use Lilith for constraining new physics.
Two of them will be presented in detail in Section 3.3.5.

• results/: empty folder where results from Lilith can be stored.

The folder Lilith-1.x/ moreover contains run_lilith.py, the command-line interface
(CLI) of Lilith which will be presented in Section 3.3.3.3.

Lilith requires Python 2.6 [235] or more recent and has not been tested with the 3.X se-
ries. The standard Python scientific libraries, SciPy and NumPy [236], should furthermore
be installed. The easiest way to check if all dependencies of Lilith are correctly installed
is to try to compute the likelihood from an example file. This can be achieved by typing
to the shell, within the directory Lilith-1.x/, the command

python run_lilith.py userinput/example_couplings.xml �
Everything is correctly installed if basic information as well as the value of the likelihood
are printed on the screen.
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3.3.3.2 The Lilith application programming interface

Lilith provides an API from which all tasks (reading the user and the experimental input,
compute the likelihood, print the results in a file, etc.) can be performed, using the methods
described below. This is the recommended way of using Lilith. In order to be used in any
Python code (or in an interactive session of Python), the Lilith library, called lilith,
first needs to be imported. Once this is done, objects of the class Lilith can be created,
we present here the main methods and attributes of the API.

class lilith.lilith(verbose=false, timer=false)
Instantiate the Lilith class. The following public attributes are initialized:

exp_mu
list of experimental results read from the database,

couplings
list of reduced couplings for each Higgs particle contributing to the signal as
read from the user input,

user_mu
list of signal strengths for each Higgs particle contributing to the signal as read
(or derived from) the user input,

results
list of results after computation of the likelihood for each individual measure-
ment,

l
value of −2 logL.

lilith.readuserinput(userinput)
Read the string in XML format given as argument and fill the attribute couplings (if
the user input is given in terms of reduced couplings) or user_mu (if the user input
is given in terms of signal strengths).

lilith.readuserinputfile(filepath)
Read the user input located at filepath and call readuserinput().

lilith.readexpinput(filepath=default_exp_list)
Read the experimental input specified in a list file and store the results in exp_mu.
By default, the list file is data/latest.list, which gathers the recommended set of
experimental results.

lilith.computelikelihood(userinput=none, exp_filepath=none, userfilepath=none)
Evaluate the likelihood function from signal strengths derived from the user input
and the experimental results and store the results in the attribute results.

lilith.writeresults(filepath, slha=false)
Write the content of the attribute results at the location filepath in the XML format
(if slha=False) or the SUSY Les Houches Accord (SLHA)-like format [237].

A minimal example of use of the API is as follows:
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import lilith

lcal = lilith.Lilith()

lcal.readexpinput()

lcal.readuserinputfile(’userinput/example_mu.xml’)

lcal.computelikelihood()

print ’-2log(likelihood) =’, lcal.l �
The first two lines import the Lilith library into the global namespace and initialize the
computations. The three following lines successively read the default experimental input,
read the user input from the file userinput/example_mu.xml, and compute the likelihood.
Alternatively, they could be replaced with a single line,

lcal.computelikelihood(userfilepath=’userinput/example_mu.xml’) �
Finally, the value of −2 logL is printed on the screen on the last line.

3.3.3.3 Command-line interface

A command-line interface (CLI) is also shipped with Lilith for a more basic usage of
the tool. It corresponds to the file run_lilith.py located in the directory Lilith-1.x/.
The CLI can be called by typing to the shell (with current directory Lilith-1.x/) the
command

python run_lilith.py user_input_file (experimental_input_file) (options) �
where arguments in parentheses are optional.

The first argument, user_input_file, is the path to the user input file in the XML

format described in Section 3.3.3.5. New physics can be parametrized in terms of reduced
couplings or directly in terms of signal strengths. Examples are shipped with Lilith in
the directory userinput/. The second argument, experimental_input_file, is the path
to the list of experimental results to be used for the construction of the likelihood. If not
given, the latest LHC results (plus a Tevatron result) will be used (data/latest.list; its
content is given in Table 4). It is the recommended list of experimental results to be used
for performing a global fit.
If no option is given, basic information as well as the value of the likelihood and the

number of measurements are printed on the screen. A number of options are provided to
control the information printed on the screen and the output format, see [114] for details.

3.3.3.4 Experimental input

We have seen that the evaluation of the likelihood in Lilith requires the input of a list
of experimental results to be considered. It corresponds to a simple text file with a .list

extension listing the paths to experimental result files in XML format (each containing a
single 1D or 2D signal strength result). Lilith is shipped with the latest LHC Higgs
results (plus a Tevatron result), see Table 4 for the status in February 2015, in the form
of XML files present in subdirectories of data/. Moreover, several lists of experimental
results are provided in data/, with latest.list being the default list file. This is the one
recommended for a global fit to the LHC+Tevatron Higgs data. Every single experimental
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Attribute 1D interval full 1D 2D contour full 2D
dim "1" "1" "2" "2"

type "n" "f" "n" "f"

(prod) "ggH", "ttH", "VBF", "WH", "ZH", "VH", "VVH"

(decay)
"gammagamma", "ZZ", "WW", "Zgamma",

"tautau", "mumu", "bb", "cc", "invisible"

Table 5: Allowed values for the attributes of the <expmu> tag, in experimental files in XML format.
The four different formats of experimental data are defined by the mandatory dim and
type attributes.

result (1D or 2D) is stored in a different XML file. In this way, modifying and updating the
database is an easy process.
Before showing an explicit example, let us discuss the structure of the files. The root

tag of each experimental file is <expmu>. It has two mandatory attributes, dim and type,
that specify the type of signal strength result (1D interval, full 1D, 2D contour, or full 2D).
The possible values for the attributes are given in Table 5. In addition, the <expmu> tag
has two optional attributes: prod and decay. They can be given a value listed in Table 5
if the analysis under consideration is only sensitive to one production mode (e.g. ttH) or
to one decay mode (e.g. γγ) of the Higgs boson. Note that, if prod="VH" or prod="VVH"
is given as attribute to the <expmu> tag or to an <eff> tag, the relative contributions of
WH and ZH (for VH) and of WH, ZH and VBF (for VVH) will be computed internally
assuming an inclusive search, i.e., for VVH,

eff(X, Y ) =
σSM(X)

σSM(VBF) + σSM(ZH) + σSM(WH)
for X ∈ (VBF,WH,ZH) , (3.19)

where the cross sections are evaluated at the Higgs mass given in the <mass> tag using the
LHC-HXSWG results for the 8 TeV LHC [77].
In the general case, the prod and decay attributes can be omitted. Indeed, all relevant

efficiencies effX,Y can be specified in <eff> tags. For instance, one could specify efficiencies
in the following way

<eff prod="ggH" decay="WW">0.5</eff>

<eff prod="VBF" decay="WW">0.5</eff>

<eff prod="ggH" decay="tautau">0.5</eff>

<eff prod="VBF" decay="tautau">0.5</eff>

where all efficiencies for a given decay mode should sum up to 1. In the case of 2D signal
strengths (i.e. if dim="2" in <expmu>) the efficiencies should be given for both dimensions
(and separately add up to 1).

An explicit example of well-formed experimental input, for the results of the ATLAS
h→ ZZ∗ analysis [175], is given by

<expmu dim="2" type="n" decay="ZZ">
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<experiment>ATLAS</experiment>

<source type="published">HIGG-2013-21</source>

<sqrts>7+8</sqrts>

<mass>125.36</mass>

<CL>68%</CL>

<eff axis="x" prod="ggH">1.0</eff>

<eff axis="y" prod="VVH">1.0</eff>

<!-- (likelihood specification) -->

</expmu>

where the tags experiment, source, sqrts, CL provide optional information. If mass is
not given, a Higgs mass of 125 GeV will be assumed by default. The comment <!- (...)

-> indicates where the likelihood information should be placed. The four likelihood types
(interval or full, 1 or 2D) have a different format. For the 1D interval, the central value and
the left and right 1σ uncertainties should be provided as described in Eq. (3.4), while for
the 2D interval, the central value and the (a, b, c) parametrization of the (inverse of the)
covariance matrix should be specified as in Eq. (3.8). For the full likelihoods, an explicit
table of the form x = µ(X, Y ), (y = µ(X ′, Y )), z = −2 log(L) should be provided for 1D
(2D) results. This allows the specification of a likelihood with an arbitrary form as desired.

3.3.3.5 User model input

The user model input, parametrizing the new physics model under consideration, can be
given either in terms of signal strengths µ(X, Y ) directly [defined as in Eq. (3.7)], or in
terms of reduced couplings and scale factors. In the latter case, scale factors involving more
than one coupling to the Higgs boson that would be missing from the input are computed
automatically by Lilith assuming the presence of SM particles only, and signal strengths
are derived from the scale factors.

XML format for signal strengths

In the signal strengths mode, the basic inputs are the signal strengths defined as in Eq. (3.7).
An example of an (arbitrary) XML input file for the signal strengths mode is now presented.

<lilithinput>

<signalstrengths>

<mass>125.1</mass>

<mu prod="ggH" decay="gammagamma">1.1</mu>

<mu prod="ggH" decay="VV">1.3</mu>

<mu prod="ggH" decay="tautau">0.9</mu>

<mu prod="VVH" decay="gammagamma">1.2</mu>

<mu prod="VVH" decay="VV">1.1</mu>

<mu prod="VVH" decay="tautau">1.1</mu>
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<mu prod="ttH" decay="VV">1.0</mu>

<mu prod="ttH" decay="bb">1.0</mu>

<mu prod="ttH" decay="tautau">0.8</mu>

<redxsBR prod="ZH" decay="invisible">0.1</redxsBR>

<redxsBR prod="VBF" decay="invisible">0.0</redxsBR>

</signalstrengths>

</lilithinput>

• <lilithinput> is the root tag of the XML file, it defines a Lilith input file.

• The <signalstrengths> tag indicates that the user input is given in terms of signal
strengths.

• The <mass> tag defines the Higgs boson mass at which the likelihood should be
computed. It should be in the [123, 128] GeV range. This information is not used in
the calculations with the current experimental input, where results are only given for
a fixed Higgs mass.

• The signal strengths themselves are defined in <mu> tags. Two mandatory arguments
should be given:

– The prod attribute can be ggH, WH, ZH, VBF, ttH. For convenience, multi-particle
attributes have been defined. They are listed in Table 6.

– The decay attribute can be gammagamma, Zgamma, WW, ZZ, bb, cc, tautau, mumu.
Multi-particle labels can be found in Table 6.

Note that every <mu> tag can be omitted and in such case the SM unity value is
assumed.

• Finally, there is the possibility to specify an invisible or undetected branching ratio
in the <redxsBR> tag. This is defined as

redxsBR(X, inv./und.) =
σ(X)

σSM(X)
Binv./und. . (3.20)

If not given, the SM value will be assumed by default, i.e., 0.

Note that the signal strengths for several Higgs states contributing to the signal can be de-
fined by specifying an arbitrary number of <signalstrengths> ... </signalstrenths>

tags in the input. The signal strengths from each individual state contributing to the signal
will be stored and summed together. We neglect possible interferences between the differ-
ent states. An identifier for each particle can be given through the part attribute of the
<signalstrengths> tag.

XML format for reduced couplings

New physics can be parametrized in terms of scaling factors that can be identified as
(or derived from) reduced couplings, as was presented in Section 3.3.2. In this section we
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Attribute shortcut for...

prod
"VVH" "VBF", "WH", "ZH"
"VH" "WH", "ZH"

decay

"VV" "ZZ", "WW"
"ff" "cc", "bb", "tautau", "mumu"
"ll" "tautau", "mumu"
"uu" "cc"

"dd" "bb", "tautau", "mumu"

Table 6: Possible multi-particle attributes for the tag <mu> in the signal strengths mode.

present the user input in terms of reduced couplings. Before turning to the format of the
user input, we comment on the computation of couplings and of signal strengths. First of
all, as we have seen in Section 3.3.2.1, predictions for the Higgs boson can be obtained
from the reduced couplings CW , CZ , Ct, Cb, Cc, Cµ and Cτ appearing in Eq. (3.10). Scaling
factors for VBF production and loop-induced processes are functions of the Ci and can
be expressed in as Eqs. (3.12)–(3.13). In the following, we will consider two possible cases:
that these scaling factors are obtained from leading-order calculations (i.e. tree-level results
for VBF and one-loop analytical expressions for other processes), or including NLO QCD
corrections. The former case will be denoted as LO, the latter one as BEST-QCD. We comment
on the computations currently implemented in Lilith:

vbf
The contribution from the W boson, the one from the Z boson, and the interfer-
ence between them have been obtained from VBFNLO-2.6.3 [238] for Higgs masses
in the [123, 128] GeV range with (for BEST-QCD mode) and without (for LO mode)
NLO QCD corrections at the LHC 8 TeV, using the MSTW2008 parton distribution
functions [239]. The results for σSM

WW (VBF), σSM
ZZ(VBF) and σSM

WZ(VBF) as a function
of the Higgs mass are stored in text files shipped with Lilith.

ggH

The contributions from the three heaviest quarks (t, b, c) to the SM cross sec-
tion are taken into account. In the LO mode, we use analytical expressions [82].
In the BEST-QCD mode, those have been generated in the [123, 128] GeV range
with HIGLU [240] at the LHC 8 TeV with the MSTW2008 parton distribution func-
tions [239].

h → gg , γγ , Zγ

The relevant SM partial widths of these processes (taking into account particles
listed in Eq. (3.13)) are obtained from analytical expressions [82] in the LO mode. In
the BEST-QCD mode, those have been generated in the [123, 128] GeV range with
HDECAY [241] including the available QCD corrections.

However, the Lagrangian defined in Eq. (3.10) does not exhaust the possibilities for new
physics affecting the properties of the Higgs processes. One particularly interesting case is
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that BSM particles enter the loop-induced processes, such as gg → h and h → γγ . To
account for these cases, we allow for a direct definition of the scaling factors of the four
main loop-induced processes (gg → h and h → gg , γγ , Zγ), i.e., for a direct definition
of CggH and Cgg ,γγ ,Zγ . If some or all of the scaling factors are missing from the input,
they will be computed internally using Eq. (3.12)–(3.13), i.e., assuming that only SM
particles are involved. Finally, note that we use the SM branching ratios provided by the
LHC HXSWG [77], at the Higgs mass given in the user input, when computing the signal
strengths [see Eq. (3.9)].
The user input file for the Lilith reduced couplings mode has the following structure.

<lilithinput>

<reducedcouplings>

<mass>125</mass>

<C to="ZZ">1.0</C>

<C to="WW">1.0</C>

<C to="tt">1.0</C>

<C to="cc">1.0</C>

<C to="bb">1.0</C>

<C to="tautau">1.0</C>

<C to="gammagamma">1.0</C>

<C to="Zgamma">1.0</C>

<C to="gg">1.0</C>

<C to="VBF">1.0</C>

<precision>BEST-QCD</precision>

<extraBR>

<BR to="invisible">0.0</BR>

<BR to="undetected">0.0</BR>

</extraBR>

</reducedcouplings>

</lilithinput>

• <lilithinput> is the root tag of the XML file, it defines a Lilith input file.

• The <reducedcouplings> tag is specific to the reduced couplings mode. This is where
the reduced couplings are specified. The correspondence between the XML notation
and Eq. (3.10) is given in Table 7. Note the possibility to define common couplings
for the up-type fermions, down-type fermions, all fermions, and electroweak gauge
bosons.

• The tag <mass> defines the Higgs boson mass at which the likelihood should be
computed. The allowed range is [123, 128] GeV. This affects the computation of the
SM branching ratios and partial cross sections and widths as explained above. If it
is not given, a Higgs mass of 125 GeV is assumed.
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to attribute "tt" "bb" "cc" "tautau" "mumu" "WW" "ZZ"

corresponds to Ct Cb Cc Cτ Cµ CW CZ

to attribute "gammagamma" "Zgamma"
"gg"

"VBF"
for="prod" for="decay"

corresponds to Cγγ CZγ CggH Cgg CVBF

to attribute shortcut for...
"VV" "WW", "ZZ"
"ff" "tt", "cc", "bb", "tautau", "mumu"
"ll" "tautau", "mumu"
"uu" "tt", "cc"
"dd" "bb", "tautau", "mumu"

Table 7: Upper and middle tables: correspondence between the XML notation and that of Eq. (3.10).
Bottom table: common reduced couplings definitions.

• Regarding the effective coupling to a pair of gluons, NLO corrections affect gluon
fusion (ggH) and the decay into two gluons (h → gg) in a different way. Therefore,
scaling factors CggH and Cgg can be specified separately as

<C to="gg" for="prod">1.0</C>

<C to="gg" for="decay">1.05</C>

If for="all" is specified, the same coupling is assigned to the production and decay
modes. This is the default behavior if the for attribute is missing. Note however
that the effects of a modified Cgg coupling are very mild, it will only change the total
Higgs width by a small amount while it is not directly constrained experimentally.

• CP violation was presented in Section 3.3.2.2. In the LOmode, the fermionic couplings
Ct, Cb, Cc, Cτ can be given a real and an imaginary component. For the top quark for
instance, this can be specified as

<C to="tt" part="re">0.9</C>

<C to="tt" part="im">0.2</C>

If part="re|im" is not specified, the coupling is assumed to be purely real. In the
BEST-QCD mode, only the real part of the coupling is taken into account.

• The <precision> tag contains either BEST-QCD or LO. If not specified, or wrongly
spelled, the BEST-QCD mode is the default mode.

• The <extraBR> tag contains the declaration of the invisible or undetected branching
ratios (see Section 3.3.2).
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As in the case of input in terms of signal strengths, several tags <reducedcouplings> ...

</reducedcouplings> can be defined, corresponding to the case where several Higgs states
contribute to the observed signal around 125 GeV. These particles can also be given a name
with a part attribute to the <reducedcouplings> tag. An example of user input in terms of
reduced couplings is stored in userinput/example_couplings.xml for the case of a single
Higgs boson contributing to the signal, and in userinput/example_couplings_multiH.xml
for the case of two or more Higgs states.

3.3.4 Validation

Having explained how to use Lilith in the previous section, we now turn to the validation
of the likelihood derived from the experimental input shipped with the code. We begin
by discussing the validity of the bivariate normal distribution as an approximation to the
2D likelihood functions in the signal strength planes (µ(X, Y ), µ(X ′, Y ′)). The use of this
approximation is necessary whenever only contours of constant likelihood are provided in-
stead of the full information. Several coupling fits from the ATLAS and CMS collaboration
are then reproduced. The results from Lilith are compared to the official ones in order
to assess the validity of the likelihood used in Lilith.

3.3.4.1 Reconstruction of the experimental likelihoods

In the signal strength plane (µ(X, Y ), µ(X ′, Y ′)), an approximation to the likelihood func-
tion can be obtained assuming that the measurements follow a bivariate normal distribu-
tion, as explained in Section 3.3.1.3. Using the 68% CL contour provided by the experi-
mental collaboration, we reconstruct the shape of the likelihood and compare the location
of the best-fit point as well as the 68% and 95% CL contours with what is provided by
ATLAS or CMS.

Two examples are shown in Fig. 3.11: the reconstruction of the likelihood for the AT-
LAS WW ∗ [177] and the CMS γγ [174] final states. In both cases, we observe an excellent
agreement between the reconstructed likelihood and the official result. The 68% CL re-
gions are perfectly reproduced and the reconstructed best-fit points are very close to the
experimental ones. The extrapolation towards the 95% CL regions also shows very good
agreement. We find equally good agreements with all other decay modes (with the ex-
ception of h → ZZ∗), and we conclude that the Gaussian distribution is a very good
approximation to the true distribution.
The largest deviations from the normal approximation are expected to occur for final

states with low statistics since the counting of the events, that follows the Poisson dis-
tribution, has not yet entered the Gaussian regime. In particular, this is the case for the
ZZ∗ channel. In Fig. 3.12, we show the comparison between the Lilith reconstructed
likelihood in the ZZ∗ final state and the corresponding ATLAS and CMS ones. As can
be seen, the deviation of the ATLAS likelihood from the bivariate normal approximation
can be substantial. In particular, for negative µ(VBF + VH) the experimental likelihood
is cut, this is because the measured quantity is nexp = µ(VBF + VH).ns + nb and cannot
be negative, only the presence of a non-vanishing nb allows negative µ to be tested. In
the positive region of the plane (the one that is relevant), the approximation holds well
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Figure 3.11: Reconstruction of the experimental likelihood from a bivariate normal approximation
for the ATLAS WW ∗ search [177] (left) CMS γγ search [174] (right). The filled dark
and light gray contours show the 68% and 95% CL experimental contours while
the red and orange solid lines show the reconstructed likelihood contours. The blue
diamond and the black star indicates the experimental and reconstructed best-fit
points, respectively.
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Figure 3.12: Reconstruction of the experimental likelihood from a bivariate normal approximation
for the ATLAS [175] (left) and CMS [176] (right) h→ ZZ∗ searches. The filled dark
and light gray contours show the 68% and 95% CL experimental contours while
the red and orange solid lines show the reconstructed likelihood contours. The blue
diamond and the black star indicates the experimental and reconstructed best-fit
points, respectively.
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Figure 3.13: (Cγ , Cg) (left) and (CV , CF ) (right) fits using data from the ATLAS combina-
tion [242]. The red and orange filled surfaces correspond to the 68% and 95% CL
regions obtained by the ATLAS collaboration while the corresponding dashed lines
show the Lilith results. The black star indicates the position of the Lilith best-fit
point, the blue diamond is the ATLAS best-fit point and the white circle shows the
SM prediction.

near the best-fit point. However, going away from it, the reconstructed shape fails to re-
produce the ATLAS 95% CL contour at large µ(VBF + VH, ZZ∗). Due to non-Gaussian
effects, the reconstructed best-fit point is quite distant to the experimental one. For the
CMS case, the approximation holds to a better approximation. The reconstructed best-fit
point is very close to the experimental one and the shape of the 95% CL contour is very
well reproduced although a small shift in the µ(ggH + ttH, ZZ∗) direction is observed. As
argued in Section 3.3.6, provision of the full likelihood information would yield a significant
improvement over the normal approximation in such cases.

3.3.4.2 Comparison to Higgs coupling fits from ATLAS and CMS

In order to validate the approximate Higgs likelihood used in Lilith, we attempt to
reproduce coupling fit results from combination notes of ATLAS [242] and CMS [171].
Note that while the CMS combination [171] makes use of the final Run 1 results, a number
of analyses considered in the combination of the ATLAS results given in Ref. [242] have
been updated since then.
First, results for two benchmark scenarios proposed by the LHC-HXSWG in Ref. [230]

are presented. In the first scenario, SM-like tree-level couplings are assumed [i.e., all Ci = 1

in Eq. (3.10)] but two scaling factors are introduced: Cγ ≡ Cγγ (scaling h → γγ), and
Cg ≡ CggH = Cgg (scaling ggH production and h→ gg). In the second benchmark scenario,
two reduced couplings are introduced: CV ≡ CW = CZ , for the coupling of the Higgs boson
to a pair massive vector bosons, and CF ≡ Ct = Cb = Cc = Cτ , a universal coupling to
fermions. In this case, the effective coupling to gluons is simply CF , while Cγγ is a function
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of both CV and CF that can be obtained taking into account QCD corrections as discussed
in Section 3.3.3.5.
Let us first discuss the comparison with the ATLAS results, Fig. 3.13. In both scenarios,

very good agreement is observed between the results from ATLAS and the ones obtained
with Lilith. Both the reconstructed best-fit point and contours reproduce very well the
ATLAS results. The most significant deviation is a slight deformation of the 95% CL
region in the (Cγ, Cg) plane. The corresponding results for CMS are shown in Fig. 3.14.
CMS results are well reproduced with Lilith, even for the contour at 99.7% CL. Slight
shifts of the best-fit points and minor deformations of the contours are observed. The
overall agreement is nevertheless very good.
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Figure 3.14: (Cγ , Cg) (left) and (CV , CF ) (right) fits using data from the CMS combination [171].
The red, orange and yellow filled surfaces correspond to the 68%, 95% and 99.7% CL
regions obtained by the CMS collaboration while the corresponding dashed lines
show the Lilith results. The black star indicates the position of the Lilith best-fit
point, the blue diamond is the CMS best-fit point and the white circle shows the SM
prediction.

Let us move on to the 3-parameter fit (CW , CZ , CF ). As in the (CV , CF ) benchmark
scenario discussed above, a universal coupling to fermions is introduced, but instead of a
single coupling to vector boson we define separately the reduced coupling toW bosons, CW ,
and to Z bosons, CZ . Defining CWZ ≡ CW/CZ , a direct test of custodial symmetry can be
performed using the Higgs measurements alone. The 1-dimensional likelihood profile for
CWZ is shown in Fig. 3.15 for both the ATLAS and CMS combination.13

Although the ATLAS result is almost perfectly reproduced, a significant discrepancy is
observed in the case of CMS for CWZ > 1. This does not come as a surprise: several exper-
imental results were considered in the (µ(ggH + ttH, Y ), µ(VBF + VH, Y )) plane and the
breaking of VBF + VH into the individual production modes VBF, WH and ZH [assumed
to be inclusive, see Eq. (3.19)] becomes relevant whenever CW 6= CZ . Moreover, ATLAS

13 In general for a function −2 logL({Ci}, {Cj}), where {Ci}, {Cj} can be sets of parameters, the profile
likelihood −2 logL({Ci}) is obtained by minimizing the full function with respect to {Cj} for each {Ci}.
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Figure 3.15: 1D likelihood profiles of CWZ ≡ CW /CZ from a (CW , CZ , CF ) fit to the ATLAS [242]
(left) and CMS [171] (right) data and comparison to the official results. The ATLAS fit
considers both signs for the Higgs–fermion–fermion coupling and furthermore defines
CFZ ≡ CF /CZ . The results are given for both signs of CFZ .
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Figure 3.16: 1D likelihood profiles of Binvisible from a (Cγ , Cg,Binvisible) fit and comparison to the
ATLAS [242] (left) and CMS [171] (right) results.

results make use of the full numerical likelihood grids that were provided in Refs. [222–224]
while the bivariate normal approximation is used in the case of CMS. Thus, constraints
on models in which CW 6= CZ should be interpreted with care given the experimental
information being used as input to Lilith.
Finally, we present the result of a 3-parameter fit (Cγ, Cg,Binvisible) in terms of the 1D

profile likelihood of Binvisible in Fig. 3.16. A very good agreement is observed in ATLAS,
and in CMS for moderate values of Binvisible. As explained in Section 3.3.2.1, the presence
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3.3 lilith: constraining new physics from higgs measurements

of a branching ratio into invisible particles is constrained by direct searches for invisible
decays of the Higgs boson, and also by every Higgs search since it modifies the total Higgs
width and therefore scales all signal strengths collectively.

3.3.5 Examples of applications

Having validated the Higgs likelihood of Lilith from results obtained by the ATLAS and
CMS collaborations, we now turn to deriving constraints on specific new physics scenarios
using the latest LHC results as of February 2015. We leave a study of the latest LHC
results for the next section. The Python routines used to obtain these results are available
in the folder examples/python and will be described shortly.

3.3.5.1 Reduced coupling determination

As a first illustration of the use of Lilith, constraints on the benchmark scenario (CV , CF )

introduced previously. While the right panels of Figs. 3.13 and 3.14 showed results on this
scenario in the 2D plane (CV , CF ) using only ATLAS or CMS results, here we combine
the ATLAS and CMS results and derive 1D profile likelihood constraints on CV and CF .
Results are shown in Fig. 3.17.
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Figure 3.17: 1-dimensional likelihood profiles of CV (left) and CF (right) from a global fit of the
benchmark scenario (CV , CF ).

The Python routine used to obtain this result is CVCF_1dprofile.py and is provided
with Lilith. It can be executed from the Lilith-1.x/ folder with the command line

python examples/python/CVCF_1dprofile.py �
This example uses the class Minuit of the library iminuit [243], a Python implemen-

tation of the MINUIT [244] minimization library, in order to minimize −2 logL and derive
the 1D profile around the minimum. After having instantiated the Lilith class and read
the experimental data with,

lilithcalc = lilith.Lilith(verbose, timer)
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Figure 3.18: Contraints on (Cγ , Cg) (left) and (CV , CF ) (right) from a global fit to the Higgs data.
The red, orange and yellow filled surfaces correspond to the 68%, 95% and 99.7% CL
regions. The black star shows the position of the best-fit point.

lilithcalc.readexpinput(myexpinput) �
a function getL returning −2 logL(CV , CF ) is defined,

def getL(CV, CF):

myXML_user_input = usrXMLinput(mh=mh, CV=CV, CF=CF, precision=precision)

lilithcalc.computelikelihood(userinput=myXML_user_input)

return lilithcalc.l �
where the function usrXMLinput creates a XML user input string from CV and CF , for a
given precision mode precision. An object m of the class Minuit is then created,

m = Minuit(getL, CV=1, limit_CV=(0,3), CF=1, limit_CF=(0,3)) �
where the initial point of the minimization and the range of parameters are defined. The
function m.mnprofile is then called

xV, yV, rV = m.mnprofile("CV", bins=300, bound=(0., 2), subtract_min=True) �
and returns the 1D likelihood profile ∆(−2 logL(CV )) ≡ −2 log(L(CV )/L(best fit)) on
a given range of CV . Without the option substract_min=True, the “absolute” likelihood
−2 logL(CV ) would be returned instead. The parameter range in which ∆(−2 logL(CV )) <

1 (4) defines the 68% (95%) CL intervals of CV . The constraints on CF are derived in
the exact same way. In this scenario, the best-fit point is obtained for CV = 1.05 and
CF = 1.02. In 1D, i.e. profiling over the other parameter, the 68% (95%) CL intervals read
CV = [1.00, 1.09] ([0.96, 1.13]) and CF = [0.92, 1.12] ([0.83, 1.22]).
We also provide an example on how to derive constraints and produce figures for a 2D

parameter space. The left panel of Fig. 3.18 presents the 2D constraints obtained from
a global fit of the (Cγ, Cg) model presented above. The corresponding Python routine is
CgammaCg_2d.py. It can be executed from the Lilith-1.x/ folder with the command line

python examples/python/CgammaCg_2d.py �
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A scan of the (Cγ, Cg) parameter space is performed, and results are stored in the form

0.04040 0.00000 119.05462

0.04040 0.02020 119.00658

0.04040 0.04040 118.86261

0.04040 0.06061 118.62314

...... ...... ......

where the first, second and third columns contain the values of Cγ, Cg and −2 logL(Cγ, Cg),
respectively. For completeness, the 2D constraints on the (CV , CF ) benchmark scenario,
using the latest LHC measurements, are also presented in the right panel of Fig. 3.18.
They have been derived in the same way.

3.3.5.2 Higgs constraints on superpartners of the tau lepton

Supersymmetric scalar partners of the tau leptons, known as staus, can have a substantial
contribution to the h→ γγ decay rate if they are light and have a large mixing [245, 246].
Constraints on the parameters controlling this new contribution can therefore be obtained
from the Higgs precision measurements. Here, we consider a very simplified scenario based
on the Minimal Supersymmetric Standard Model and assume that the only deviation
from the SM Higgs properties comes from the contribution of staus to the loop-induced
process h → γγ. More precisely, it is assumed that the supersymmetric partners of the
Higgs boson and of the remaining fermions are decoupled, that the second Higgs doublet is
phenomenologically irrelevant and that a Higgs mass of 125 GeV can be obtained for any
point of the analysis. In this case, the contribution from staus to the h→ γγ decay width
is parametrized by the two physical masses mτ̃1 and mτ̃2 (with mτ̃1 < mτ̃2), the mixing
angle θτ̃ and the ratio of vacuum expectation values for the two Higgs doublets, tan β. The
corresponding amplitude at leading order reads [82, 247]

Mτ̃
hγγ =

∑
i=1,2

gh τ̃ i τ̃ i(mτ̃1 ,mτ̃2 , θτ̃ , tan β)

m2
τ̃ i

AH0
(
(mh/(2mτ̃ i))

2
)

(3.21)

where the sum runs over the two stau mass-eigenstates, AH0 is a loop form factor and gH τ̃ i τ̃ i

is the Higgs–stau–stau coupling.
The effective Higgs–γ–γ reduced coupling can therefore be expressed as

Cγ(mτ̃1 ,mτ̃2 , θτ̃ , tan β) =

∣∣MSM
hγγ +Mτ̃

hγγ(mτ̃1 ,mτ̃2 , θτ̃ , tan β)
∣∣∣∣MSM

hγγ

∣∣ (3.22)

Note that the SM amplitude MSM
hγγ appears both in the numerator and denominator of

Eq. (3.22) since SM tree-level couplings are assumed.
Fixing tan β = 10 and the mass of the lightest stau mτ̃1 = 85, 100 GeV, we show

constraints in the plane (mτ̃2 , θτ̃ ) in Fig. 3.19. For θτ̃ = π/4, the 2-dimensional 95% CL
upper limit on mτ̃2 reads mτ̃2 < 360 (460) GeV for mτ̃1 = 85 (100) GeV. More generally,
the upper limit on mτ̃2 becomes weaker as mτ̃1 is increased.
The corresponding Python code is stau_gammagamma.py. It can be executed by typing

the following command line to the shell from the Lilith-1.x/ folder:
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Figure 3.19: Constraints on the staus masses and mixing angle in the (mτ̃2 , θτ̃ ) plane for mτ̃1 =

85 GeV (left) and mτ̃1 = 100 GeV (right) and tanβ = 10. The red, orange and
yellow filled surfaces correspond to the allowed 68%, 95% and 99.7% CL regions,
respectively.

python examples/python/stau_gammagamma.py �
The routine works as follows. Functions returning Cγ according to Eq. (3.22) and−2 logL(Cγ)

are defined. Since tan β and mτ̃1 are fixed, a 2-dimensional grid scan is then performed over
the two remaining parameters: for each couple (mτ̃2 , θτ̃ ), the corresponding ∆(−2 logL) is
obtained. The 2-dimensional 68%, 95%, 99.7% CL regions in the plane (mτ̃2 , θτ̃ ) are ob-
tained with ∆(−2 logL) < 2.3, 5.99, 11.83, respectively.
Note that direct searches from LEP [248] and vacuum metastability condition [249]

impose further constraints on this scenario. Moreover, this simplified SUSY scenario could
easily be generalized, e.g. by taking into account h → χ̃0

1χ̃
0
1. Light staus are especially

relevant in the case where χ̃0
1 is light in order to have a viable neutralino dark matter

candidate in the MSSM (see, e.g., Ref. [250] and references therein).

3.3.6 Prospects for Run 2 of the LHC

As discussed in Section 3.3.1, approximations necessarily need to be made when combining
signal strength results from several categories or several searches, making it necessary to
validate the approach. In Section 3.3.4, we have shown that we reproduce well the results
of coupling fits from ATLAS and CMS (separately). However, it is clear that the situation
will change as more statistics will be collected at Run 2 of the LHC.

Indeed, systematic uncertainties will then dominate over statistical uncertainties in the
majority of the channels. Missing correlations between systematic uncertainties (both theo-
retical and experimental) will thus become a more pressing issue. Moreover, more combina-
tions for production and decay of the Higgs boson, (X, Y ), will be determined with a good
precision. This will spoil the simple interpretation we have for a number of the results we
currently use, in particular for results given in the plane (µ(ggH + ttH, Y ), µ(VBF + VH, Y )).
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In the following, we recall the main limitations when using the information currently pro-
vided by the ATLAS and CMS collaborations for constructing a likelihood. We also discuss
new ways of presenting the LHC Higgs results in order to be able to construct a good ap-
proximation to the Higgs likelihood at Run 2 of the LHC. This paragraph partly collects
arguments put forward in “On the presentation of the LHC Higgs Results” [225] by a col-
laboration of theorists and experimentalists with the aim to maximize the impact of the
LHC Higgs results and their utility to the whole high-energy physics community.
First of all, in most cases only contours of constant likelihood (at least the 68% CL

interval or contour, sometimes contours at 95% CL) are provided by ATLAS and CMS.
This makes it necessary to extrapolate the likelihood assuming, most naturally, a Gaus-
sian shape. When using a given contour to extrapolate the likelihood, the validity of this
approximation can be tested from a comparison of the position of the best-fit point and
from contours provided by the experimental collaboration. This was done in Section 3.3.4.1,
where we concluded that the reconstruction is generally very good, although in some cases
asymmetrical effects are washed out (see, e.g., Fig. 3.12). However, in all cases, it induces
an unnecessary approximation. The ATLAS and CMS collaborations initiated some efforts
during Run 1 to provide the full likelihood information in 1D and 2D planes (see the right
panel of Fig. 3.10 and Refs. [222–224]).
Another issue is the dependence of the results on the assumed Higgs boson mass mh.

Currently, we use results given at a fixed Higgs mass. As not all results are provided at the
same mh, a slight inconsistency is introduced in the combination of the different results
(the assumed Higgs mass varies within a few hundreds of MeV). Official combination notes
allow us to get rid of this inconsistency, as all results are therein given at the same Higgs
mass. However, the dependence of the experimental results on the Higgs mass can be very
important for the high-resolution channels, that target decays of the Higgs boson into
charged leptons and photons (such as h → ZZ∗ → 4` and h → γγ). Therefore, it would
be highly desirable to have access to mass-dependent likelihood results.
Current results are presented in 1- or 2-dimensional projections, often corresponding to

the combination of production modes (in 2D, typically ggH + ttH and VBF + VH). As we
discussed earlier, this becomes a limitation as measurements get more precise, in which case
we would like to investigate deviations in all of the five production modes separately. For
such reasons, a total breakdown of the signal strength measurements in terms of the five
Higgs production modes (ggH, VBF, WH, ZH, ttH) would be a considerable step forward
regarding the interpretation of the LHC Higgs results. We would therefore like to advocate
the experimental collaborations to provide the likelihood as a function of the Higgs mass
and a full set of production modes, that is to say, in the

(mh, µ(ggH, Y ), µ(ttH, Y ), µ(VBF, Y ), µ(ZH, Y ), µ(WH, Y )) (3.23)

parameter space for each final state Y . For some final states, all five production modes
are certainly not constrained by the experimental searches and only lower dimensional
projections of this space would be relevant. Naturally this raises the question on the trans-
mission of this function from the experimental collaborations to the community. A simple
grid would be too cumbersome. If the full function cannot be provided numerically, a
smarter discretization should be developed (through Markov Chain Monte Carlo or a scan
along the eigenvectors of the covariance matrix for instance).
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Though this would solve most of the limitations currently faced, the notable issue of
correlations between the measurements of different decay modes would still remain. For
instance, theoretical uncertainties on gluon fusion production affect both the γγ and ZZ∗

final states, and simply multiplying the currently available likelihood functions to combine
them lead to a double counting of these uncertainties. Moreover, the profiling of the nui-
sance parameters describing systematic uncertainties may not be consistent as different
channels may pull them in different directions. Recently, an interesting proposal was made
in this direction in Ref. [251]. Provided experimental collaborations publish likelihoods
that are not profiled over a set of theoretical nuisance parameters of interest, but instead
given for a fixed scenario, it is then possible to build a “recoupled” likelihood incorporating
these uncertainties at the later stage. This has the advantage of not being restricted to
the Gaussian approximation. It would certainly be of great interest if the information in
the 2D plane (µ(ggH + ttH, Y ), µ(VBF + VH, Y )), or even better in the possibly 6D plane
discussed above, could be given without profiling over the theoretical uncertainties on the
Higgs signal. With the method presented in Ref. [251], one could then fully correlate the
theoretical uncertainties between the different channels and experiments, and modify these
uncertainties compared to what is done in ATLAS and CMS if desired.
The Higgs likelihood of Lilith obtained from the latest measurements at the LHC has

been thoroughly validated against ATLAS and CMS results and can be used to constrain
new physics. Future measurements at Run 2 of the LHC will, however, call for new ways of
presenting results in order to derive a good approximation to the Higgs likelihood. In par-
ticular, further disentanglement of the different production and decay modes will become
necessary. Moreover, correlations between systematic uncertainties, and in particular the
treatment of theoretical uncertainties, will become a more pressing issue. The structure
of the code is such that Lilith can easily be adapted to handle extended signal strength
information.

3.4 global fit of the higgs couplings after the run 1 of the lhc

We now provide an update of the global fits of the couplings of the 125 GeV Higgs boson
using the final results from the first run of the LHC using Lilith. The global likelihood
L is constructed using the database DB 15.09. We present a selection of results given in
terms of signal strengths, reduced couplings, and for the Two-Higgs-Doublet Models of
Type I and II assuming that the lighter CP-even state is the observed one.

Fits to various combinations of reduced Higgs couplings, i.e., Higgs couplings to fermions
and gauge bosons relative to their SM values, have been performed by the experimental
collaborations themselves, e.g. in Refs. [171, 172, 188]. Moreover, theorists combine the
results from ATLAS and CMS in global fits, see e.g. [194, 202] and references therein,
in order to test consistency with SM expectations and to constrain models with modified
Higgs couplings. In particular, the couplings of the observed Higgs boson could deviate from
the SM predictions due to the presence of other Higgs states mixing with the observed one
and/or due to new particles contributing to the loop-induced couplings.
In Ref. [194], a comprehensive analysis of the Higgs signal strengths and couplings and

implications for extended Higgs sectors was performed based on the experimental results
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as per Spring 2013. Since then, the final results from the first LHC run have been published
and a number of new measurements or updates of existing ones became available. In this
global fit, we use the final Run 1 results of both ATLAS and CMS. The complete list can
be found in Table 8.

Collaboration Analysis Reference

ATLAS

h→ γγ [173]
h→ ZZ∗ [175]
h→ WW ∗ [178]
h→ ττ [180]

VH, h→ bb̄ [182]
ZH, h→ invisible [227]

VBF, h→ invisible [252]
ttH, h→ multi-leptons [253]

ttH, h→ bb̄ [254]
ttH, h→ γγ [173]
h→ µµ [184]
h→ Zγ [186]

CMS
h→ γγ [174]
h→ ZZ∗ [176]
h→ WW ∗ [179]
h→ ττ [181]

VH, h→ bb̄ [183]
VBF, h→ bb̄ [255]

ttH, h→ γγ, multi-leptons [219]
ttH, h→ bb̄ [256]

ZH + VBF, h→ invisible [228]
CDF & DØ VH, h→ bb̄ [229]

Table 8: Experimental results used in the global fit. This list corresponds to the default set of
experimental results of the Lilith database 15.09. We note that this database contains
slightly more results than used in the official ATLAS+CMS combination [188], which
does take into account the Higgs to invisible measurements and the CMS VBF, h → bb̄

result in particular.

In the following, we provide an updated fit for i) the combined signal strengths, ii) the
most important reduced coupling fits, and iii) Two Higgs Doublet Models of Type I and
Type II, using the final LHC run 1 results.
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Figure 3.20: Combined signal strengths in the plane of (ggF + ttH) versus (VBF + VH) produc-
tion, on the left for the γγ, ZZ∗, WW ∗ and V V ∗ decay modes (the latter assuming
ZZ∗ = WW ∗), on the right for the bb̄ and ττ decay modes and their combination
bb̄ = ττ . The full (dashed) contours denote the 68.3% (95.4%) CL regions, derived
by combining the ATLAS, CMS and Tevatron results. The best-fit points are marked
as stars and the SM case by a black diamond.

3.4.1 Combined Signal Strengths

We begin by showing in Fig. 3.20 contours of constant confidence level for the combined
signal strengths in the µ(ggF + ttH) versus µ(VBF + VH) plane for different Higgs decay
modes.14 The left panel shows the bosonic channels H → γγ, WW ∗, ZZ∗ as well as V V ∗,
where V V ∗ ≡ ZZ∗+WW ∗, and the right panel shows the fermionic channels bb̄, ττ as well
as bb̄ = ττ . The combination of the ZZ∗ and WW ∗ decay modes is justified by custodial
symmetry, which implies that the HZZ and HWW couplings are rescaled by the same
factor with respect to the SM. The combination of the bb̄ and ττ decay modes is justified,
in principle, in models where one specific Higgs doublet has the same couplings, with
respect to the SM, to down-type quarks and leptons, although QCD corrections can lead
to deviations of the reduced Hbb and Hττ couplings from a common value.
All results show an excellent agreement with the SM. Compared to [194], uncertainties

have been significantly reduced for the fermionic channels, particularly for H → bb̄ in
ttH production. As for H → γγ, while previously small excesses were observed in ggF
by ATLAS and in VBF + VH by both ATLAS and (to a lesser extent) CMS, updated
results point to a SM-like behavior. Overall, this leads to a central value only slightly
larger than unity.
In the Gaussian approximation, we can derive a simple expression for −2 log(L) for each

decay mode j in the form of ellipses [194], see also Eq. (3.6),

χ2
j = aj(µ

ggF
j − µ̂ggF

j )2 + cj(µ
VBF
j − µ̂VBF

j )2 + 2bj(µ
ggF
j − µ̂ggF

j )(µVBF
j − µ̂VBF

j ) , (3.24)

where the upper indices ggF and VBF stand for (ggF + ttH) and (VBF + VH), respec-
tively, and µ̂ggF

j and µ̂VBF
j denote the best-fit points obtained from the measurements. The

14 Here the gluon fusion process is abbreviated as ggF.
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µ̂ggF µ̂VBF ρ a b c

γγ 1.25± 0.24 1.02± 0.43 −0.32 19.42 3.44 6.05

V V ∗ 1.07± 0.16 1.23± 0.33 −0.24 43.29 4.91 9.61

ZZ∗ 1.22± 0.33 1.18± 1.20 −0.58 13.70 2.17 1.04

WW ∗ 1.00± 0.18 1.22± 0.34 −0.17 30.63 2.80 8.70

bb̄ 1.44± 0.90 0.89± 0.27 0 1.24 0 13.52

ττ 0.80± 0.49 1.34± 0.36 −0.40 4.93 2.68 9.23

bb̄/ττ 1.06± 0.41 1.04± 0.22 −0.23 6.19 2.68 22.53

Table 9: Combined best-fit signal strengths µ̂ggF, µ̂VBF and correlation coefficient ρ for various
Higgs decay modes (with V V ∗ ≡ WW ∗, ZZ∗), as well as the coefficients a, b and c for
the approximate χ2 in Eq. (3.24).

parameters µ̂ggF, µ̂VBF, a, b and c for Eq. (3.24) (and, for completeness, the correlation
coefficient ρ) resulting from the Gaussian approximation of the experimental results are
listed in Table 9. Approximating −2 ln(L) in this form can be useful for applications that
aim at a quick assessment of the compatibility with the experimental data without in-
voking the complete likelihood calculation. In the fits presented below, we will apply the
full machinery of Lilith, i.e., we do not restrict ourselves to the Gaussian approximation
whenever we can go beyond.

3.4.2 Fits to reduced Higgs couplings

Let us now turn to the fits of reduced couplings. To this end, as was already done in
Eq. (3.10), we define scaling factors through the following Lagrangian,

L =g

[
CWmWW

µWµ + CZ
mZ

cos θW
ZµZµ

− CU
mt

2mW

t̄t− CD
mb

2mW

b̄b− CD
mτ

2mW

τ̄ τ

]
h , (3.25)

where the CI are scaling factors for the couplings relative to their SM values, introduced
to test possible deviations in the data from SM expectations. We set CW , CZ > 0 by
convention while custodial symmetry implies CV ≡ CW = CZ .
In addition to these tree-level couplings, we define the loop-induced couplings Cg and Cγ

of the H to gg and γγ, respectively. The contributions of SM particles to Cg and Cγ (as well
as the corrections to VBF production) are computed at NLO QCD from the given values
for CU , CD, CW and CZ following the procedure recommended by the LHC Higgs Cross
Section Working Group [230] (using grids generated from HIGLU [240], HDECAY [241], and
VBFNLO [257]). Alternatively, Cg and Cγ can be taken as free parameters. Finally, invisible
or undetected branching ratios can also be included in the fit.
Deviations from SM expectations can be divided into two categories: 1. modifications of

the tree-level couplings, as in extended Higgs sectors or Higgs portal models, and 2. vertex
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loop effects from new particles beyond the SM, modifying in particular Cg and/or Cγ. We
first discuss the former.

C
U

CD

Lilith 1.1.3, DB 15.09   CU, CD, CV

mH=125.09 GeV 0.6

 0.8

 1

 1.2

 1.4

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8
C

U
CV

Lilith 1.1.3, DB 15.09   CU, CD, CV

mH=125.09 GeV 0.6

 0.8

 1

 1.2

 1.4

 0.6  0.8  1  1.2  1.4

C
g

Ca

Lilith 1.1.3, DB 15.09   CU, CD, CV

mH=125.09 GeV 0.6

 0.8

 1

 1.2

 1.4

 0.6  0.8  1  1.2  1.4

Figure 3.21: Fits of CU , CD and CV (left and middle panels) and resulting Cg versus Cγ (right
panel). The red, orange and yellow areas are the 68.3%, 95.4% and 99.7% CL regions,
respectively. The best-fit points are marked as white stars. Invisible or undetected
decays are assumed to be absent.

Figure 3.21 shows results for a 3-parameter fit of CU , CD, CV , assuming custodial sym-
metry and taking CU , CD > 0. We note that at the 95.4% CL in 2D, CU and CV are
constrained within roughly ±20%; the uncertainty on CD is about twice as large. The
fact that µ̂ggF

γγ and µ̂VBF
V V lie somewhat above one (cf. Fig. 3.20 and Table 9) leads to a

slight preference for CV > 1. The best fit is obtained for CU = 1.02, CD = 0.99 and
CV = 1.04, resulting in Cg = 1.02 and Cγ = 1.05. All these reduced couplings are however
consistent with unity at the 1σ level. In 1D, i.e., profiling over the other parameters, we
find CU = [0.93, 1.12] ([0.83, 1.22]), CD = [0.86, 1.13] ([0.72, 1.27]), and CV = [0.98, 1.11]

([0.91, 1.17]) at the 68.3% (95.4%) CL. Correspondingly, for the loop-induced couplings,
Cg = [0.92, 1.12] ([0.83, 1.23]) and Cγ = [0.96, 1.13] ([0.87, 1.21]).
To test possible deviations from custodial symmetry, we next define CWZ ≡ CW/CZ

and perform a 4-parameter fit of CU , CD, CZ , CWZ . In 1D, we find CWZ = [0.87, 1.08]

([0.79, 1.24]) and CZ = [0.96, 1.18] ([0.85, 1.28]) at the 68.3% (95.4%) CL, see Fig. 3.22.
The corresponding 68.3% and 95.4% CL intervals for CW are [0.96, 1.10] and [0.89, 1.17].

Figure 3.22: 1-dimensional profiles of CZ and CWZ from the 4-parameter fit of CU , CD, CZ , CWZ .
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3.4 global fit of the higgs couplings after the run 1 of the lhc

Direct Higgs measurements hence provide a significant constraint on deviations from cus-
todial symmetry. Since values of CW and CZ greater than 1 cannot be excluded at the
moment, the direct Higgs measurements still allow for the possibility that the observed
state contains a component coming from Higgs representations higher than doublets or sin-
glets. Indeed, for singlets or doublets, the reduced couplings CW,Z are necessarily smaller
or equal to the SM unity value.
So far, we considered deviations of the tree-level reduced couplings from unity, but no

extra loop contributions to the effective couplings to gluons and/or photons. If instead we
fix CU,D,V but allow Cg and Cγ to vary freely, corresponding to loop contributions ∆Cg, ∆Cγ
from new physics, we obtain the result shown in Fig. 3.23. (In this case, Cg,γ ≡ Cg,γ+∆Cg,γ,
with Cg,γ the contribution from SM particles.)

6
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Figure 3.23: As Fig. 3.21 but for a 2-parameter fit of Cg and Cγ ; in the left panel ∆Cg = Cg − 1,
∆Cγ = Cγ − 1 (SM values of CU , CD, CV ), while in the right panel CU , CD, CV are
fixed to their best-fit values and hence ∆Cg = Cg − 1.02, ∆Cγ = Cγ − 1.05.

The left panel corresponds to the case where CU = CD = CV = 1; here the best-fit point
has ∆Cg = 0.01 and ∆Cγ = 0.08. The right panel shows the situation when CU , CD, CV
are fixed to the best-fit values previously obtained: CU = 1.02, CD = 0.99, CV = 1.04;
in this case the best-fit point has ∆Cg = −0.04 and ∆Cγ = 0.04. In both cases, the SM
solution ∆Cg = ∆Cγ = 0 lies perfectly well within the 1σ contour.
The current status of invisible (unseen) decays is as follows: (all limits are at the

95.4% CL)

• for SM-like couplings, BRinv < 0.09 (BRnew < 0.10);

• for CU,D,V = 1 but Cg, Cγ free, we find BRinv < 0.15 (BRnew < 0.17);

• for free CU , CD, CV but CV < 1, we find BRinv < 0.16 (BRnew < 0.19); this increases
to BRinv < 0.22 when CV is unconstrained (in this case no limit on BRnew can be
obtained [194]).

• for free Cγ, Cg, CW , CZ , Ct, Cb, Cτ with CW , CZ ≤ 1, we find BRinv < 0.22 (BRnew <

0.32).
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m =125.09 GeVh m =125.09 GeVh

Figure 3.24: Fits of cos(β − α) versus tanβ for the 2HDM of Type I (left) and of Type II (right)
for mh = 125.09 GeV. The yellow, orange and red areas are the 68.3%, 95.4% and
99.7% CL regions, respectively. Effects of the extra Higgs states (such as h→ AA or
the charged Higgs contribution to h→ γγ) are assumed to be absent.

3.4.3 Two-Higgs-doublet models

In view of the discussion above it is clear that models with an extended Higgs sector will be
significantly constrained by the data. In particular, it is interesting to consider one of the
simplest of such extensions of the SM, namely the two-Higgs-doublet models of Type I and
Type II. The basic parameters describing the couplings of the neutral Higgs states to SM
particles are only two at tree-level: the CP-even Higgs mixing angle α and the ratio of the
vacuum expectation values, tan β = vu/vd. The couplings, normalized to their SM values,
of the light CP-even state h to vector bosons (CV ) and to up- and down-type fermions (CU
and CD) are functions of α and β as given in Table 10; see e.g. [258] for details. The Type I
and Type II models are distinguished only by the pattern of their fermionic couplings.

Type I and II Type I Type II
Higgs CV CU CD CU CD

h sin(β − α) cosα/ sin β cosα/ sin β cosα/ sin β −sinα/ cos β

Table 10: Tree-level couplings CV , CU , CD of the lighter CP-even state h in Type I and Type II
2HDMs.

To investigate the impact of the current Higgs data on 2HDMs, we vary α in [−π/2, π/2]

and β in ]0, π/2[. We implicitly assume that there are no contributions from non-SM parti-
cles to the loop diagrams for Cγ and Cg. In particular, this means our results correspond to
the case where the charged Higgs boson, whose loop might contribute to Cγ, is decoupled.
The results of the 2HDM fits are shown in Fig. 3.24 in the case that the observed state

at 125.09 GeV is the lighter CP-even state h. In the case of the Type I model, we note
a broad valley along the SM limit of cos(β − α) = 0, which is rather flat in tan β. For
tan β & 2, at 95.4% CL |cos(β − α)| can be as large as ∼ 0.35; only for tan β � 1, one is
forced to | cos(β − α)| ≈ 0. The situation is quite different for the Type II model. Here we
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observe two narrow valleys in the tan β versus cos(β − α) plane. The first one lies along
the SM solution cos(β−α) = 0; the largest deviation here occurs around tan β ≈ 1, where
cos(β − α) ≈ 0.13 is allowed at 95.4% CL; for both tan β � 1 and tan β � 1 one is forced
into | cos(β − α)| ≈ 0. The second minimum is a banana-shaped valley with tan β & 4 (7)
and cos(β − α) . 0.28 (0.45) at 68.3% (95.4%) CL. This corresponds to a solution with
CD ≈ −1, while CU ≈ 1, the so-called wrong-sign Yukawa coupling region [259].
In both Types, the SM limit | cos(β−α)| ≈ 0 cannot be excluded since the measurements

are all in agreement with the SM predictions. This so-called alignment limit is a major
topic of the next part of this manuscript.

3.4.4 Summary of the main results

We presented an update of the global fits of the 125 GeV Higgs boson using all publicly
available experimental results at the end of the first run of the LHC. The fits were per-
formed using Lilith-1.1.3 with the database DB 15.09. Our results can be summarized
as follows:

1. The final ATLAS and CMS results for the different decay channels do not exhibit
any deviation from the SM expectations, in particular for h→ γγ we get µ̂ggF+ttH

γγ =

1.25± 0.24 and µ̂VBF+VH
γγ = 1.02± 0.43 with a correlation of ρ = −0.32. This can be

compared to the official ATLAS+CMS combination [188] which obtains µ̂ggF+ttH
γγ =

1.19+0.28
−0.25 and µ̂VBF+VH

γγ = 1.05+0.44
−0.41. While, as explained in Section 3.3, the official

results cannot be exactly reproduced due to the lack of experimental information,
the agreement is nevertheless very good.

2. In the CU , CD, CV reduced coupling fit, we found CU = 1.02±0.10, CD = 0.99±0.14

and CV = 1.04 ± 0.07; in terms of the loop-induced couplings this corresponds to
Cg = 1.02 ± 0.10 and Cγ = 1.05 ± 0.08 (in 1D), in perfect agreement with the SM
predictions.

3. Custodial symmetry can also be tested. We found CWZ = 0.96+0.12
−0.09 in the CU , CD,

CZ , CWZ fit, hence compatibility with custodial symmetry at the 1σ level.

4. Assuming SM-like couplings, the limit for invisible decays is BRinv < 0.09 at 95.4% CL.
This changes to BRinv < 0.22 when CU , CD, CV are allowed to vary.

5. In the general Cγ, Cg, CW , CZ , Ct, Cb, Cτ ,BRnew fit, we find BRnew < 0.32 at 95.4% CL.
The upper limit from the official ATLAS+CMS combination is BRnew < 0.34 [188].

6. In the context of 2HDMs, barring loop contributions from the charged Higgs, the
95.4% CL limits in 1D are sin(β − α) > 0.95 in Type I and sin(β − α) > 0.92 (0.99)
in Type II (requiring CD > 0).

The results presented in the points 2, 3, 4 and 6 cannot be compared to the ATLAS+CMS
official combination as the corresponding fits have not been performed in Ref. [188]. To
provide an additional comparison with Ref. [188], we perform a 2-parameter fit of CF
and CV . The comparison of the Lilith and official ATLAS+CMS fits can be found in
Fig. 3.25. Though slightly more constraining for low values of CF , the Lilith fit reproduces
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Figure 3.25: Fit of CV and CF and comparison to the official ATLAS+CMS combination [188].

with a good agreement the ATLAS+CMS result. For this specific plot, since the results
contained in the database DB 15.09 do not match exactly those used in the ATLAS+CMS
combination (see caption of Table 8), the CMS VBF, h → bb̄ result [255] was not used in
our fit (the h→ invisible results have no impact on the current fit). This leads to a small
improvement in the agreement with the official result.
With this slightly modified Lilith database, DB 15.09∗, the determination of the BSM

branching ratio BRnew in the general fit (Cγ, Cg, CW , CZ , Ct, Cb, Cτ ,BRnew), summarized
in point 5, is affected and the 95% CL limit becomes BRnew < 0.35 which improves the
agreement with the ATLAS+CMS result.
While the direct measurements of the Higgs properties constrain sizably parts of the

2HDMs parameter space, this is just one of the numerous constraints that should be eva-
luated in order to fully assess the viability of these models. In the next chapter, we discuss
in detail the phenomenology of the 2HDMs.
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Part II

TWO-H IGGS -DOUBLET MODEL
PHENOMENOLOGY

In this second part of the manuscript, we study the phenomenology of the CP-
conserving two-Higgs-doublet models focusing on two aspects: the alignment
limit and the presence of light Higgs states. Since the properties of the observed
Higgs state are close to the Standard Model ones, we study the limit in which
one of the two CP-even mass-eigenstates is aligned with the direction of the
vacuum expectation values, hence automatically providing it Standard Model-
like properties. Interestingly, this limit can be achieved with non-decoupled
scalar states. After a general presentation of the theoretical framework, we
study in detail the phenomenology of the alignment without decoupling limit
and discuss the future prospects for observation of the extra scalar states at
the Run 2 of the LHC. A focus on the regions with light Higgs bosons, below
60 GeV, is then given. Since both CP-even mass-eigenstates can be identified
with the observed state, these two cases are systematically investigated and
lead to a vast phenomenology.

Dans cette seconde partie du manuscrit, nous étudions la phénoménologie des
modèles à deux doublets de Higgs conservant CP, en nous concentrant sur
deux aspects : la limite d’alignement et la possible présence de bosons de Higgs
légers. Étant donné que les propriétés du boson de Higgs observé sont similaires
à celles prédites par le Modèle Standard, nous étudions la limite dans laquelle
l’un des deux états propres de masse pair sous CP, est aligné dans la direction
des valeurs moyennes dans le vide des deux doublets de Higgs, ce qui lui con-
fère automatiquement des propriétés proches de celles du Modèle Standard. De
manière intéressante, cette limite peut être achevée sans découplage des autres
états scalaires. Après une présentation générale du cadre théorique, nous étu-
dions en détail la phénoménologie de cette limite d’alignement sans découplage
et présentons les perspectives d’observation des états scalaires supplémentaires
pour la seconde période d’exploitation du LHC. Nous nous concentrons dans
la suite à l’étude des bosons de Higgs légers, au-deçà de 60 GeV. Puisque les
deux états propres de masse pairs sous CP peuvent être identifiés avec le boson
observé au LHC, nous étudions systématiquement ces deux possibilités dans
nos analyses, ce qui mène à une vaste phénoménologie.
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4
TWO-H IGGS -DOUBLET MODELS : THEORETICAL FRAMEWORK

Though the observed Higgs properties show no significant deviation from the SM predic-
tions, there is no conceptual reason for why the Higgs sector should be as minimal as in
the SM. Theoretically, an extended Higgs sector is very attractive and, if experimentally
confirmed, would deepen our comprehension of the EWSB mechanism at work in nature.
One of the simplest extension of the SM Higgs sector is that of the 2HDM. The idea of

adding a second Higgs doublet to the SM was first introduced by T.D. Lee [260], as an at-
tempt to find new sources of T/CP violation, either explicit or spontaneous. As mentioned
earlier, new sources of CP violation are needed to achieve a viable scenario of baryogenesis,
making the 2HDMs particularly attractive. The development of supersymmetry and of the
Peccei-Quinn mechanism as a possible solution to the strong CP problem, then lead to a
large literature on the study of multi-doublet Higgs sectors in general.
Here, we consider the non-supersymmetric CP-conserving 2HDM as an effective model

relevant for LHC phenomenology. Though it may seem surprising not to consider CP-
violation in a model originally constructed for this purpose, we do not aim at solving the
baryogenesis problem here or any other problem of the SM, neither do we consider the
2HDM as a fundamental theory. We thus take an agnostic point of view and make no
assumption on the origin of the model.
As shown in the previous chapter, the observed Higgs state has properties very similar

to the SM one. In multi-doublet Higgs sectors, the alignment limit is a particular parame-
ter space region in which one of the Higgs mass eigenstates aligns in field space with the
direction of the scalar field vacuum expectation values, and its couplings automatically
approach those of the SM Higgs boson. Naturally, this state can then be identified as the
observed Higgs boson. A large part of the next chapter will be dedicated to a phenomeno-
logical study of this limit. Here, after a general presentation of the 2HDM, the theoretical
structure of the alignment limit is discussed in details.
Parts of the following discussions are based on the publications “Scrutinizing the align-

ment limit in two-Higgs-doublet models: mh = 125 GeV ” [261] and “Scrutinizing the align-
ment limit in two-Higgs-doublet models. II. mH = 125 GeV ” [262] both in collaboration
with John F. Gunion, Howard E. Haber, Yun Jiang and Sabine Kraml, and published in
Physical Review D.

4.1 the two-higgs-doublet models

In this section, we review the theoretical structure of the 2HDM. Comprehensive reviews of
the model can be found in, e.g., [258, 263–265]. In order to avoid tree-level Higgs-mediated
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FCNCs, we will impose a Type-I or II structure on the Higgs-fermion interactions. This
structure can be naturally implemented [266, 267] by imposing a softly-broken discrete Z2

symmetry on the dimension-four terms of the Higgs Lagrangian. Nevertheless, the absence
of tree-level Higgs-mediated FCNCs is maintained, and FCNC effects generated at one loop
are all small enough to be consistent with phenomenological constraints over a significant
fraction of the 2HDM parameter space [268–271].
Even with the softly-broken discrete Z2 symmetry, new CP-violating phenomena in the

Higgs sector are still possible, either explicitly due to a physical complex phase that cannot
be removed from the scalar potential parameters or spontaneously due to a CP-violating
vacuum state. Here, we shall assume that these CP-violating effects are absent, in which
case one can choose a basis of scalar doublet Higgs fields such that all scalar potential
parameters and the two neutral Higgs field vacuum expectation values are simultaneously
real. Moreover, we will assume that only the neutral Higgs fields acquire non-zero vacuum
expectation values, i.e., the scalar potential does not admit the possibility of stable charge-
breaking minima [272, 273].

4.1.1 The Z2-basis

The general 2HDM is obtained by adding a second Y = +1 weak doublet of complex scalar
fields to the SM, we note Φ1 and Φ2 the two doublets,

Φi =
1√
2

( √
2φ+

i

vie
iξi + φi + iηi

)
, (4.1)

where φ+
i are complex scalar fields, and φi and ηi are the CP-even and -odd components

of the doublets, respectively. In principle, both doublets can acquire a complex vev,

〈Φ0
i 〉 = vie

iξi/
√

2 , (4.2)

where i = 1, 2, Φ0
i denotes the neutral component of the i-th doublet, vi ∈ R and 0 ≤ ξi ≤ π.

Note that we explicitly require that the vacuum is invariant under U(1)em; the charged
components do not acquire a vev. By a suitable U(1)Y gauge transformation, the phase of
one of the two doublets can always be chosen to be real and positive, say v1 ≥ 0 and ξ1 = 0.
In the following, we will furthermore assume that v2 ≥ 0 and ξ2 = 0, i.e., both vev are
simultaneously real and positive, this is possible if the model does not exhibit spontaneous
CP-violation. Conditions for the lack of explicit and spontaneous CP-violation will be
discussed in Section 4.1.2, but for the moment, we assume that a fully CP-conserving
model can be constructed.
The two doublets have kinetic terms

∑
i=1,2(DµΦi)

†(DµΦi) where the covariant derivative
is defined exactly as in the SM. Therefore, the masses of the Z andW± bosons are expressed
in terms of v1 and v2 as

m2
W± =

g2(v2
1 + v2

2)

4
, m2

Z =
(g2 + g′2)(v2

1 + v2
2)

4
, (4.3)

and a comparison with Eqs. (2.11) and (2.13) shows that v2
1 + v2

2 = v2. A convenient way
to parametrize this relation is obtained by introducing the angle β as

v1 = v cos β , v2 = v sin β , (4.4)
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where β ∈ [0, π/2] since v1,2 ≥ 0. Note that tan β = v2/v1 has in general no physical mean-
ing since one is free to perform a redefinition of the two doublets: (Φ1,Φ2)T → U(Φ1,Φ2)T

where U is a 2 × 2 unitary matrix. Basis-independent methods for the 2HDM were de-
veloped [274–276], leading in particular to Feynman rules free of tan β. It is only when
considering a specific model that a preferred basis may be singled out, in which case tan β

is promoted to a physical parameter. In particular, asking for certain Higgs-fermion in-
teractions to vanish in a preferred basis makes tan β physical [275]. In the following, we
will not employ basis-independent methods but will only work in models where a physical
distinction between the two doublets is present.
The most general renormalizable, Lorentz and gauge invariant scalar potential with these

two Higgs doublets can be written as

V2HDM = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − [m2
12Φ†1Φ2 + h.c.] + 1

2
λ1(Φ†1Φ1)2 + 1

2
λ2(Φ†2Φ2)2

+λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+
{

1
2
λ5(Φ†1Φ2)2 +

[
λ6(Φ†1Φ1) + λ7(Φ†2Φ2)

]
Φ†1Φ2 + h.c.

}
, (4.5)

where m2
12, λ5,6,7 are in principle complex parameters. As announced previously however,

we will assume that all the parameters are real in order to avoid explicit CP-violation. More-
over, the softly-broken Z2 symmetry that we will impose in order to forbid Higgs-mediated
tree-level FCNCs, Φi → (−1)i−1Φi, leads to λ6 = λ7 = 0. The softly-breaking term is the
dimension-2 operator parametrized by m2

12. This basis of scalar doublets, (Φ1,Φ2), is called
the Z2-basis. Under these restrictions, minimizing the potential with respect to v1 and v2

leads to the conditions

m2
11 = m2

12tβ − 1
2
v2
(
λ1c

2
β + λ345s

2
β

)
, (4.6)

m2
22 = m2

12t
−1
β − 1

2
v2
(
λ2s

2
β + λ345c

2
β

)
, (4.7)

where the shorthand notations sx ≡ sinx, cx ≡ cosx and tx ≡ tanx are used and λ345 ≡
λ3 + λ4 + λ5.
Since the EWSB mechanism is the same as in the SM, only with two doublets sharing

the breaking, we expect 8−3 = 5 physical scalar states. From Eq. (4.5) it is straightforward
to derive the tree-level masses of the physical states of the model. For the pseudoscalar A
and charged H± states,

m2
A = m2 − λ5v

2 , (4.8)

m2
H± = m2

A +
1

2
v2(λ5 − λ4) , (4.9)

where,

m2 ≡ m2
12

sβcβ
. (4.10)

In the CP-even sector, the components from the two doublets generically mix according
to the squared-mass matrix

M2 ≡
(

λ1v
2c2
β + (m2

A + λ5v
2)s2

β

[
λ345v

2 − (m2
A + λ5v

2)]sβcβ[
λ345v

2 − (m2
A + λ5v

2)
]
sβcβ λ2v

2s2
β + (m2

A + λ5v
2)c2

β

)
. (4.11)
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The two CP-even mass-eigenstates h and H are found by diagonalizing this matrix, intro-
ducing the mixing angle α,(√

2 Re Φ0
1 − v1√

2 Re Φ0
2 − v2

)
=

(
φ1

φ2

)
=

(
cα −sα
sα cα

)(
H

h

)
= Rα

(
H

h

)
, (4.12)

where,

Rα ≡
(
cα −sα
sα cα

)
. (4.13)

This then leads to
m2
H,h = 1

2

[
M2

11 +M2
22 ±∆

]
, (4.14)

where mH ≥ mh by definition and the non-negative quantity ∆ is defined by

∆ ≡
√

(M2
11 −M2

22)2 + 4(M2
12)2 . (4.15)

The mixing angle α, which is defined modulo π, can easily be evaluated from Eqs. (4.11)
and (4.12). It is often convenient to restrict the range of this mixing angle to |α| ≤ π/2.
In this case, cα is non-negative and is given by

cα =

√
∆ +M2

11 −M2
22

2∆
=

√
M2

11 −m2
h

m2
H −m2

h

, (4.16)

and the sign of sα is given by the sign ofM2
12. Explicitly,

sα =

√
2M2

12√
∆(∆ +M2

11 −M2
22)

= sgn(M2
12)

√
m2
H −M2

11

m2
H −m2

h

. (4.17)

In deriving Eqs. (4.16) and (4.17), we have implicitly assumed that mh 6= mH . The mass-
degenerate case is singular; in this situation, the angle α is undefined since any two linearly
independent combinations of h and H can serve as the physical states. In the rest of this
manuscript, we will not consider this case further.

4.1.2 CP-violation in the 2HDM scalar sector

We go back to the general scalar potential Eq. (4.5) and analyze conditions for CP-violation.
Let us first discuss the conditions for the lack of explicit CP-violation in the general 2HDM.
Such an analysis should in principle be carried in a basis-independent way, since going into
a different basis for the doublets through a U(2) transformation generically introduces new
phases. They have first been carried through with such methods in Refs. [274, 277–281].
More general or recent discussions of CP-violation in the 2HDMs can be found e.g. in
Refs. [158, 273, 282–287]. Here, conditions for CP-conservation in the 2HDM are derived
in a basis dependent way [264], they turn out to be sufficient but not necessary condi-
tions [281].
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CP is explicitly conserved whenever there exists a basis in which all the parameters
are simultaneously real. The scalar potential is given by Eq. (4.5), and performing the
rephasing Φ2 → e−iξ leads to the following ξ-dependent terms,

V ⊃ −e−iξm2
12Φ†1Φ2 +

1

2
e−2iξλ5(Φ†1Φ2)2 + e−iξ

[
λ6(Φ†1Φ1) + λ7(Φ†2Φ2)

]
Φ†1Φ2 + h.c. (4.18)

The parameters in front of each operator can thus be complex and be written as m2
12 =

|m2
12|eiαm and λ5,6,7 = |λ5,6,7|eiα5,6,7 . The potential will then be explicitly CP-conserving

if there exists a rephasing of all the terms such that the dependence on ξ completely
disappears, i.e.,

ξ = αm + nmπ , (4.19)
2ξ = α5 + n5π , (4.20)
ξ = α6,7 + n6,7π , (4.21)

where nm,5,6,7 are integers. Fixing ξ as in the first equation, such as to make m2
12 real, yield

(2αm − α5) = (n5 − 2nm)π =⇒ Im
[
(m2

12)2λ∗5
]

= 0 , (4.22)
(αm − α6,7) = (n6,7 − nm)π =⇒ Im

[
m2

12λ
∗
6,7

]
= 0 , (4.23)

which are all satisfied if α5,6,7 = 0, i.e., if all parameters of the general 2HDM scalar
potential are real.
Spontaneous CP-violation occurs whenever a CP-symmetry of the Lagrangian is not

conserved by the vacuum. Technically, writing 〈Φ0
1〉 = v1/

√
2 (always possible because

of U(1) gauge symmetry) and 〈Φ0
2〉 = v2e

iξ2/
√

2, this would mean that in the vacuum
ξ2 6= 0, π. In the vacuum, assuming explicit CP-conservation, the ξ2 dependent terms of
the scalar potential takes the form

〈V〉 ⊃ −m2
12v1v2 cos ξ2 +

1

4
λ5(v1v2)2 cos(2ξ2) +

1

2
(λ6v1 + λ7v2)v1v2 cos ξ2 . (4.24)

The first and second derivatives of 〈V〉 with respect to cos ξ2 are

∂〈V〉
∂ cos ξ2

= −m2
12v1v2 + λ5(v1v2)2 cos ξ2 +

1

2
(λ6v1 + λ7v2)v1v2 , (4.25)

∂2〈V〉
∂(cos ξ2)2

= λ5(v1v2)2 . (4.26)

While the curvature of the potential at the minimum imposes λ5 > 0, the first derivative
imposes ∣∣∣∣m2

12 −
1

2
(λ6v

2
1 + λ7v

2
2)

∣∣∣∣ < λ5v1v2 , (4.27)

as the condition for the presence of spontaneous CP-violation in the 2HDM. For λ6 = λ7 =

0, the region of the 2HDM that we will consider as a consequence of the Z2 symmetry,
using Eq. (4.8) for determining the mass of A in the spontaneous CP-violating case leads
to m2

A < 0 as may have been expected. This existence of such a tachyonic direction indeed
leads to an instability of the scalar potential which then develop a CP-violating vacuum.
For all analyses performed in this section, we enforce CP-conservation, i.e., we require
that all parameters of the scalar potential are real and that m2

A > 0 (we will indeed only
consider the case λ6 = λ7 = 0 in the following).
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4.1 the two-higgs-doublet models

4.1.3 The Higgs basis

Though we chose tan β to be a physical parameter, it is still possible to redefine the two
scalar doublets and go a basis in which the full vev resides entirely in one doublet [274, 279].
This is the Higgs-basis (H1, H2), for which the doublets vevs are thus

〈H0
1 〉 = v/

√
2 > 0 , 〈H0

2 〉 = 0. (4.28)

Looking back at Eq. (4.4), (H1, H2) can are therefore defined as(
Φ1

Φ2

)
≡
(
cβ −sβ
sβ cβ

)(
H1

H2

)
= Rβ

(
H1

H2

)
. (4.29)

As H1 carries the full vev, it must contain the Goldstone bosons that will form the longi-
tudinal component of the Z and W± bosons. It can thus be parametrized as

H1 =
1√
2

( √
2G+

v + h1 + iG0

)
, (4.30)

where G+ and G0 are the SM Goldstone fields. The field h1 is not a mass-eigenstate, it will
actually mix with the neutral CP-even component of H2, the later being parametrized as

H2 =
1√
2

(√
2H+

h2 + iA

)
, (4.31)

where H+ is the charged Higgs field and A the CP-odd scalar field.
Comparing Eqs. (4.12) and (4.29), we see that(

H

h

)
= R−1

α

(
φ1

φ2

)
= R−1

α Rβ

(
h1

h2

)
= Rβ−α

(
h1

h2

)
, (4.32)

or more explicitly,

H = (
√

2 ReH0
1 − v)cβ−α −

√
2 ReH0

2 sβ−α , (4.33)
h = (

√
2 ReH0

1 − v) sβ−α +
√

2 ReH0
2 cβ−α , (4.34)

and β − α can thus be interpreted as the CP-even mixing angle in the Higgs basis. As
such it will play a crucial role in the phenomenology of the CP-even sector. In particular,
the couplings of H and h to electroweak gauge bosons will be driven by cβ−α and sβ−α
respectively, since these are the factors that respectively project theH1 component, e.g. the
doublet with the full vev, out of H and h.
The scalar potential in the Higgs basis can be written as

V = Y1H
†
1H1 + Y2H

†
2H2 + Y3[H†1H2 + h.c.] + 1

2
Z1(H†1H1)2 + 1

2
Z2(H†2H2)2 + Z3(H†1H1)(H†2H2)

+ Z4(H†1H2)(H†2H1) +
{

1
2
Z5(H†1H2)2 +

[
Z6(H†1H1) + Z7(H†2H2)

]
H†1H2 + h.c.

}
. (4.35)

As performed explicitly previously for the Z2-basis, it is possible to find a rephasing of H2

such that all potential parameters are real, in which case the scalar potential and Higgs

96



4.1 the two-higgs-doublet models

vacuum are CP-conserving. Henceforth, we will always adopt such a real basis. Note that
no rephasing of H1 is permitted since by assumption the vev v is real and positive. The
relation between the Z2-basis parameters and the Higgs basis parameters are obtained as
follows for λ6 = λ7 = 0,

Z1 ≡ λ1c
4
β + λ2s

4
β + 1

2
λ345s

2
2β , (4.36)

Z2 ≡ λ1s
4
β + λ2c

4
β + 1

2
λ345s

2
2β , (4.37)

Zi ≡ 1
4
s2

2β

[
λ1 + λ2 − 2λ345

]
+ λi , (for i = 3, 4 or 5) , (4.38)

Z6 ≡ −1
2
s2β

[
λ1c

2
β − λ2s

2
β − λ345c2β

]
, (4.39)

Z7 ≡ −1
2
s2β

[
λ1s

2
β − λ2c

2
β + λ345c2β

]
, (4.40)

and,

Y1 = m2
11c

2
β +m2

22s
2
β −m2

12s2β , (4.41)
Y2 = m2

11s
2
β +m2

22c
2
β +m2

12s2β , (4.42)
Y3 = 1

2
(m2

22 −m2
11)s2β −m2

12c2β . (4.43)

Since there are five non-vanishing λi and seven non-vanishing Zi, there should be some
relations between the Zi, specifically, the following two identities are satisfied if β 6= 0, 1

4
π,

1
2
π [288]:15

Z2 = Z1 + 2(Z6 + Z7) cot 2β , (4.44)
Z345 = Z1 + 2Z6 cot 2β − (Z6 − Z7) tan 2β , (4.45)

where Z345 ≡ Z3 + Z4 + Z5. Furthermore, at the scalar potential minimum, Y1 and Y2 can
be expressed in terms of the Z1 and Z6 as

Y1 = −1
2
Z1v

2, Y3 = −1
2
Z6v

2 . (4.46)

The masses of the physical scalar states can easily be obtained from the scalar potential
Eq. (4.35),

m2
H± = Y2 + 1

2
Z3v

2 , (4.47)
m2
A = m2

H± + 1
2
(Z4 − Z5)v2 , (4.48)

and the two CP-even physical masses are obtained from the squared-mass matrix

M2
H =

(
Z1v

2 Z6v
2

Z6v
2 m2

A + Z5v
2

)
. (4.49)

Upon diagonalization, the CP-even scalar masses are expressed as

m2
H,h = 1

2

[
m2
A + (Z1 + Z5)v2 ±∆H

]
, (4.50)

15 For β = 0, 1
2π, the Z2-basis and the Higgs basis coincide, in which case Z6 = Z7 = 0 and Z1, Z2, Z345

are independent quantities. For β = 1
4π, the two relations are Z1 = Z2 and Z6 = Z7, and Z345 is an

independent quantity.

97



4.1 the two-higgs-doublet models

where
∆H ≡

√[
m2
A + (Z5 − Z1)v2

]2
+ 4Z2

6v
4 . (4.51)

The off-diagonal term may be expressed as

|Z6|v2 =
√(

m2
H − Z1v2)(Z1v2 −m2

h

)
. (4.52)

The three squared-mass matrix elements can be expressed in terms of the physical CP-even
masses and the mixing angle β − α,

Z1v
2 = m2

hs
2
β−α +m2

Hc
2
β−α , (4.53)

Z5v
2 = m2

Hs
2
β−α +m2

hc
2
β−α −m2

A , (4.54)
Z6v

2 = (m2
h −m2

H)sβ−αcβ−α , (4.55)

which then lead to

m2
h = m2

A +

(
Z5 + Z6

sβ−α
cβ−α

)
v2 =

(
Z1 + Z6

cβ−α
sβ−α

)
v2 , (4.56)

m2
H = m2

A +

(
Z5 − Z6

cβ−α
sβ−α

)
v2 =

(
Z1 − Z6

sβ−α
cβ−α

)
v2 . (4.57)

The two above equations are not singular in the cβ−α, sβ−α → 0 limits because Z6 is
proportional to sβ−αcβ−α, see Eq. (4.55). Note also that Eq. (4.55) implies that

Z6sβ−αcβ−α ≤ 0 , (4.58)

because of the definite mass hierarchy between H and h. Having established a convention
where 0 ≤ β ≤ 1

2
π, we are no longer free to redefine the Higgs basis field H2 → −H2.

Consequently, the sign of Z6 is meaningful in this convention.
To complete the set of Eqs. (4.53)–(4.55), we give the expressions of the rest of the Zi

in terms of the physical masses and the mixing angles,

Z2v
2 = m2

h(sβ−α + 2cβ−α cot 2β)2 +m2
H(cβ−α − 2sβ−α cot 2β)2 − 4m2 cot2 2β ,(4.59)

Z3v
2 = m2

hs
2
β−α +m2

Hc
2
β−α + 2(m2

h −m2
H)cβ−αsβ−α cot 2β + 2(m2

H± −m2) , (4.60)
Z4v

2 = m2
Hs

2
β−α +m2

hc
2
β−α +m2

A − 2m2
H± . (4.61)

Z7v
2 = 2

(
m2
hc

2
β−α +m2

Hs
2
β−α −m2

)
cot 2β + (m2

h −m2
H)sβ−αcβ−α . (4.62)

4.1.4 Yukawa interactions

In the Z2-basis, the more general Yukawa Lagrangian reads

−LY =
∑
i=1,2

QLYU,iΦ̃iuR +QLYD,iΦidR + LLYE,iΦieR + h.c.

=
∑
i=1,2

QL

(√
2mU,i

vi

)
Φ̃iuR +QL

(√
2mD,i

vi

)
ΦidR + LL

(√
2mE,i

vi

)
ΦieR + h.c.,

(4.63)
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where the sum is over the two Higgs doublets, all gauge, flavor and Lorentz indices are
omitted for clarity, and the fermion mass matrices are introduced as

mf,i =
viYf,i√

2
. (4.64)

Since the two scalar doublets Φi=1,2 have the same quantum numbers, they can both
couple to the fermion bilinears QLdR, QLuR and LLeR with different Yukawa couplings.
This is quite problematic as this generically induces tree-level FCNCs through neutral
Higgs exchange. This can most easily be observed in the Higgs basis, where the Yukawa
Lagrangian reads

−LY = QL

(
ỸUH̃1 + ρUH̃2

)
uR+QL

(
ỸUH1 + ρUH2

)
dR+LL

(
ỸEH1 + ρEH2

)
eR+h.c.,

(4.65)
where

Ỹf = cβYf,1 + sβYf,2,

ρf = −sβYf,1 + cβYf,2,
(4.66)

and f = U,D,E. Since H1 is the SM-like doublet, i.e., it has the full vev, the matrices
Ỹf can be identified with the SM Yukawa couplings. The ρf matrices hence only con-
tribute to the Higgs-fermion interactions and not to the fermion masses. Now, since Ỹf

and ρf are linearly independent, diagonalizing the former by going to the fermion mass
eigenstate basis will not simultaneously diagonalize the latter, hence non-diagonal Higgs-
fermion interactions are a generic feature of the general 2HDM. This completely general
Yukawa sector is sometimes referred to as the Type III 2HDM in the literature. With
arbitrary parameters, the tree-level contributions to flavor observables are generally very
large and in conflict with flavor experimental observations. A popular ansatz proposed by
Cheng and Sher [289] to overcome this problem consists in expressing the ρf matrices
in the fermion mass eigenstate basis in terms of geometric means of the fermion masses,
ρijf = λij

√
mi
fm

j
f/v where no sum on i, j is understood. This naturally suppress undesir-

able FCNCs effects upon a possible tuning of the λij. We won’t pursue the analysis of this
model further here.
Natural flavor conservation [266, 267] is a solution to the problem of tree-level FCNCs.

A Z2 symmetry is imposed on the dimension-four terms of the Higgs scalar potential in
the Z2-basis under which the two doublets transform as (Φ1,Φ2) → (Φ1,−Φ2) and the
quark fields have non trivial transformations as well. This then forbids both Φi to couple
simultaneously to a given fermion bilinear [see Eq. (4.63)] and as a result, either Y1

f or Y2
f

should vanish for each f . The Ỹf and ρf matrices become then proportional to each other
and can be diagonalized simultaneously. Higgs mediated tree-level FCNCs are thus absent.
There are only four independent choices of the fermion charges under the Z2 symmetry,
they lead to the so-called Type I, II, X and Y models as exhibited in Table 11.
From these charge assignments, the Higgs-fermion couplings can be computed in terms

of α and β. We show this explicitly in the Type I and II models for the neutral states. A
summary of these results can be found in Table 12. The Type X, Y and the charged Higgs
couplings are not considered in the rest of this document but can be obtained in the exact
same fashion.
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Φ1 Φ2 QL, LL uR dR eR Conditions
Type I + − + − − − Y(U,D,E),2 = 0

Type II + − + − + + YU,2 = 0, Y(D,E),2 = 0

Type X (lepton specific) + − + − − + Y(U,D),1 = 0, YE,2 = 0

Type Y (flipped) + − + − + − Y(U,E),1 = 0, YD,2 = 0

Table 11: Four possible Z2 charge assignments that forbid tree-level Higgs-mediated FCNC effects
in the 2HDM [290].

From Table 11, the Yukawa Lagrangian in Type I reads

−L I
Y = QLYU,2

[
sβH̃1 + cβH̃2

]
uR +QLYD,2 [sβH1 + cβH2] dR

+ LLYE,2 [sβH1 + cβH2] eR + h.c.
(4.67)

Developing the SU(2)L products and keeping only terms involving the CP-even states yields

−L I
Y ⊃

∑
f=u,d,e

fLYf,2 [sβ(h1 + v) + cβh2] fR + h.c. (4.68)

Projecting on the Higgs mass eigenstates, see Eq. (4.32),

−L I
Y ⊃

∑
f

fL

(
Yf,2√

2

)
[(sβcβ−α − cβsβ−α)H + (sβsβ−α + cβcβ−α)h+ v2] fR + h.c.

=
∑
f

fL

(
Yf,2√

2
sα

)[
sα
sβ
H +

cα
sα
h+ v

]
fR + h.c.

=
∑
f

fL

(mf,2

v

)[sα
sβ
H +

cα
sα
h+ v

]
fR + h.c.

(4.69)

Finally, going in the fermion mass eigenstate basis, the matrices mf ≡mf,2 can be identi-
fied to their SM counterparts and Eq. (4.69) thus describes the mass generation of all SM
fermions and their interactions with the physical h, H Higgs states. The reduced couplings
CH,h
f in Type I can be straightforwardly read as

CH
F ≡ CH

U = CH
D = CH

E =
sinα

sin β
,

Ch
F ≡ Ch

U = Ch
D = Ch

E =
cosα

sin β
,

(4.70)

and are seen to be universal for all fermions. Similarly, for the couplings to A, developing
Eq. (4.67) and keeping only the terms proportional to A,

L I
Y ⊃ uL

(mU,2

v

)
(− cot β)(iA)uR + dL

(mD,2

v

)
(cot β)(iA)dR

+ eL

(mE,2

v

)
(cot β)(iA)eR + h.c.

(4.71)
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The reduced couplings CA
f can be therefore defined as

CA
U = − cot β ,

CA
D = CA

E = cot β .
(4.72)

We now consider the Type II case. A look at Table 11 shows that the Type II up-type
quarks have the same behavior as in Type I, we therefore only consider the down-type
quarks and leptons in the following. The Yukawa Lagrangian reads

−L II
Y ⊃ QLYD,1 [cβH1 − sβH2] dR + LLYE,1 [cβH1 − sβH2] eR + h.c. (4.73)

Developing the SU(2)L products and keeping only terms proportional to h1 and h2,

−L II
Y ⊃

∑
f=d,e

fLYf,1 [cβ(h1 + v)− sβh2] fR + h.c.

=
∑
f=d,e

fL

(
Yf,1√

2

)
[(cβcβ−α + sβsβ−α)H + (cβsβ−α − sβcβ−α)h] fR + h.c.

=
∑
f=d,e

fL

(mf,1

v

)[cα
cβ
H − sα

cβ
h

]
fR + h.c.

(4.74)

The reduced couplings therefore read,

CH
D = CH

E =
cosα

cos β
,

Ch
D = Ch

E = − sinα

cos β
.

(4.75)

To determine the A couplings, we isolate the terms proportional to A in Eq. (4.73),

L II
Y ⊃ −dLYD,1(−sβ)(iA)dR − eLYE,1(−sβ)(iA)eR + h.c.

= dL

(mD,1

v

)
(tan β)(iA)dR + eL

(mE,1

v

)
(tan β)(iA)eR + h.c. (4.76)

Therefore,
CA
D = CA

E = tan β . (4.77)

Note that since CH,h,A
D = CH,h,A

E in both Types I and II, we will commonly refer to both
couplings as CH,h,A

D from now on. The subscript D thus now refers to the down-type
fermions rather than down-type quarks.
To finish, we obtain the couplings of the neutral Higgs states to the massive gauge bosons.

For H and h, we already discussed them in the paragraph following Eq. (4.32),

CH
V = cos(β − α), Ch

V = sin(β − α) . (4.78)

The sum of these squared couplings equals to 1. This is a generic property of general
multi-doublet and -singlet Higgs sectors and is valid when the sum is taken over all Higgs
states that couple to V V [258]. For Higgs bosons originating from a higher dimensional
representation of SU(2)L, the reduced coupling to V V can exceed 1. Finally, CA

V = 0

because A belongs to H2 which does not couple to the Z or W± since 〈H2〉 = 0.
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Table 12: Tree-level vector boson couplings CV (V = W,Z) and fermionic couplings CU and CD
to up-type and down-type fermions respectively, normalized to their SM values for the
two scalars h,H and the pseudoscalar A in Type I and Type II 2HDMs.

Types I, II Type I Type II
Higgs V V up-type down-type up-type down-type
h sin(β − α) cosα/ sin β cosα/ sin β cosα/ sin β −sinα/ cos β

H cos(β − α) sinα/ sin β sinα/ sin β sinα/ sin β cosα/ cos β

A 0 cot β − cot β cot β tan β

All of the above results are summarized in Table 12. Important insights can be gained
by re-expressing the various trigonometric functions appearing in the reduced couplings as

Ch,I
F = Ch,II

U = cosα/sin β = sin(β − α) + cos(β − α) cot β, (4.79)
Ch,II
D = −sinα/cos β = sin(β − α)− cos(β − α) tan β, (4.80)

CH,I
F = CH,II

U = sinα/sin β = cos(β − α)− sin(β − α) cot β, (4.81)
CH,II
D = cosα/cos β = cos(β − α) + sin(β − α) tan β. (4.82)

The precise role of sβ−α and cβ−α and the connection with the so-called alignment limit will
be discussed in details in Section 4.2. In Type II, the coupling of the CP-even states to down-
type fermions can be tan β enhanced. This is particularly relevant phenomenologically.
Indeed, identifying either h or H as the observed state, the partial width Γ(h/H → bb̄)

accounts for the major part of the corresponding total width, hence a tan β dependence
may sizably affect all production and decay rates.
Moreover in Type II, as previously observed in Fig. 3.24, there exists a parameter regime

in which CD has an opposite sign relative to CU and CV ; the wrong-sign Yukawa regime.
For the h couplings, this happens for sin(β + α) ≈ 1, and in the exact limit: Ch

D = −1,
Ch
U = 1 and Ch

V = (t2β − 1)/(t2β + 1). Consistency with the Higgs measurements requires
Ch
V close enough to unity and hence sufficiently large tβ (Ch

V & 0.95 for tβ > 6). For the H
couplings, this happens for cos(β+α) ≈ 1. This interesting possibility might be probed by
the precision measurements of the signal strengths. Indeed, this would lead to a change of
sign of the interference between the top and bottom loops in the gluon-fusion production
process or in the decay into two photons for instance, and hence modify the SM predicted
rates [259]. As we will see in the next chapter, direct production of the pseudoscalar A
followed by the decay into ττ also probes this possibility.
In principle, there also exists a situation in which the coupling to up-type fermions in

Type II has an opposite sign with respect to CD and CV . However, such a possibility is
excluded at more than the 5σ level by the h → γγ signal rate measurements. Indeed,
considering that all reduced couplings are equal to 1 as in the SM with the exception of
CU which is set to −1, leads to Cg ≈ 1.06 and Cγ ≈ 1.53. Such a large enhancement of the
γγ coupling is completely excluded by LHC measurements as can be seen in Fig. 3.21 for
instance.
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4.1.5 Theoretical constraints

Before delving into the details of the alignment limit, let us discuss theoretical constraints
on the 2HDMs. First, the positivity condition requires the scalar potential to be bounded
from below in any directions of the scalar field space. Conditions on the 2HDM parameters
in the λ6 = λ7 = 0 case are given by [291],

λ1 > 0, λ2 > 0, min(λ3, λ3 + λ4 − λ5) > −
√
λ1λ2 . (4.83)

Alternatively, in terms of the Higgs basis parameters,

Z1 > 0, Z2 > 0, Z3 > −
√
Z1Z2 , (4.84)

are necessary conditions for the positivity of the potential.
Another question is that of the vacuum stability. In the beginning of this section, we

explicitly chose to work in a U(1)em-conserving vacuum. However, there might in princi-
ple exist solutions in which vacua of different nature co-exist. References [272, 292, 293]
showed that such a case was actually impossible in the 2HDM. It was also shown that
two electric charge conserving vacua may however co-exist, quantum tunneling may then
happen towards the deeper vacuum if we lived in such a false vacuum. There exists a simple
relation to check whether a given minimum is the global one [293]. Defining k = (λ1/λ2)1/4,
if D > 0, where

D = m2
12(m2

11 − k2m2
22)(tan β − k) , (4.85)

then our vacuum is necessarily the global one. Though it is then trivial to check the absolute
stability of a given vacuum, in the phenomenological studies presented in the next chapter,
we chose not to discard parameter space points with D < 0. Such vacua may indeed be
metastable, with a lifetime longer than the Universe age. More fundamentally, as previously
discussed, we do not make any assumption about the high-energy origin of the 2HDM as
an effective theory. For this reason, we do not know the full scalar potential at all energies
and new physics effects may stabilize a D < 0 vacuum with a small lifetime.
In order to preserve perturbativity and tree-level unitarity [294–299], the dimensionless

couplings Zi cannot be taken arbitrarily large. Specifically, in our analyses, we demand
perturbativity of the quartic Higgs couplings by requiring them to be smaller than 4π. Tree-
level unitarity depends, as discussed in Section 2.3.3 for the SM Higgs boson, on the high-
energy scattering of scalar and longitudinal gauge boson states. Reference [298] provided
the necessary and sufficient conditions in the 2HDM for tree-level unitarity under the form
of upper bounds on eigenvalues of scattering-matrices. These matrices solely depend on
combinations of the λi parameters and this is what we impose in our subsequent analyses.
Imposing unitarity at the tree-level is enough in weakly coupled models, as contrary to
strongly interacting models where the contributions of higher-orders to the scattering-
matrices become larger and larger. All in all, the combination of the perturbativity and
tree-level unitarity naturally induces upper bounds on the |λi| and |Zi|. Though they are
generically O(1) constants, it is possible for some of them to be as large as ∼ 10 without
violating any low-energy constraints. Taking the λi, or alternatively the Zi, significantly
larger than O(1) will lead to Landau poles at an energy scale below the Planck scale [300–
303]. However, as mentioned previously, we shall take an agnostic view by treating the
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2HDM as an effective low-energy theory with no assumption on its behavior at higher
energies and thus ignore the possible presence of such Landau poles.

4.2 the alignment limit

As noted in a previous subsection, the Higgs basis doublet H1 behaves precisely as the
SM one. Thus, if one of the neutral CP-even Higgs mass eigenstates is approximately
aligned with

√
2 ReH0

1 − v, then its properties will approximately coincide with those of
the SM Higgs boson. The alignment limit is then defined as the limit in which one of the two
neutral CP-even Higgs mass eigenstates aligns with the direction of the scalar field vacuum
expectation values. Defined in this way, it is clear that the alignment limit is independent
of the choice of basis for the two Higgs doublet fields. Nevertheless, the alignment limit is
most clearly exhibited in the Higgs basis. In light of Eqs. (4.33) and (4.34), the alignment
limit corresponds either to the limit of cβ−α → 0 if h is identified as the observed SM-like
Higgs boson (hereinafter referred to as the h–125 scenario), or to the limit of sβ−α → 0 if
H is identified as the SM-like Higgs boson (H–125 scenario). In this case, the W± and Z
gauge bosons dominantly acquire their masses from this state, and its coupling to W+W−

(and ZZ) tends toward its SM value, CV → 1, see Table 12. As we will see, the alignment
limit is most easily attained in the decoupling limit [264], where all the other non-SM-like
Higgs scalars of the model are heavy. However, the alignment limit of the 2HDM can also
be achieved in a parameter regime in which one or more of the non-SM-like Higgs scalars
are light (and in some cases very light). This region of alignment without decoupling is a
primary focus of this part of the manuscript.
Very important insights about the alignment limit might be gained from the explicit

expressions of cβ−α and sβ−α. This can be done either directly from Eqs. (4.53) and (4.55)
or by using Eqs. (4.16) and (4.17) with α replaced by α − β. Since Z6sβ−αcβ−α ≤ 0 [see
Eq.(4.58)], the sign of the product sβ−αcβ−α is fixed by the sign of Z6. However, since
β − α is only defined modulo π, we are free to choose a convention where either cβ−α or
sβ−α is always non-negative.16 A convenient choice of convention is dictated by the form of
the couplings of the neutral CP-even Higgs bosons to V V (where V V = W+W− or ZZ).
When identifying h as the observed state, we will always use the convention in which sβ−α
is non-negative since Ch

V = sβ−α. In this case,

cβ−α = − sgn(Z6)

√
Z1v2 −m2

h

m2
H −m2

h

=
−Z6v

2√
(m2

H −m2
h)(m

2
H − Z1v2)

, (4.86)

where we have used Eq. (4.52) to obtain the second form for cβ−α in Eq. (4.86). Alter-
natively, when identifying H as the SM-like state, we use a convention where cβ−α is
non-negative and in that case,

sβ−α = − sgn(Z6)

√
m2
H − Z1v2

m2
H −m2

h

=
−Z6v

2√
(m2

H −m2
h)(Z1v2 −m2

h)
. (4.87)

Moreover, from Eq. (4.49), we can derive equivalent conditions that yield a SM-like Higgs
boson. Since

√
2 Re H0

1 − v should be an approximate mass eigenstate, the mixing of H0
1

16 Such a convention, if adopted, would replace the convention employed in Eq. (4.16) in which cα is taken
to be non-negative.
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and H0
2 should be subdominant, which implies that either |Z6| � 1 and/or m2

A + Z5v
2 �

Z1v
2, Z6v

2. Moreover, if in addition m2
A + Z5v

2 > Z1v
2, then h is SM-like, whereas if

m2
A + Z5v

2 < Z1v
2, then H is SM-like. In both cases, the squared-mass of the SM-like

Higgs boson is approximately equal to Z1v
2.

4.2.1 A Standard Model-like Higgs

Consider first the h–125 scenario. It follows from Eq. (4.86) that the alignment limit can
be achieved in two ways: (i) Z6 → 0 or (ii) mH � v. The case of mH � v (or equivalently
Y2 � v) is called the decoupling limit in the literature. More precisely, we are assuming
thatm2

H � |Z6|v2. Since Z6 is a dimensionless coefficient in the Higgs basis scalar potential,
we are implicitly assuming that Z6 cannot get too large without spoiling perturbativity
and/or unitarity as we discussed previously. One might roughly expect |Z6| <∼ 4π, in which
case mH � v provides a reasonable indication of the domain of the decoupling limit. In
this limit, mH ' mA ' mH± , so the heavy scalar states can integrated out below the scale
of mH . The effective Higgs theory below the scale mH is a theory with one Higgs doublet
and corresponds to the SM Higgs sector. Thus not surprisingly, h is a SM-like Higgs boson.
However, it is possible to achieve the alignment limit even if the masses of all scalar states
are similar in magnitude, this happens the limit of Z6 → 0 with mH = O(v). This is
the very attracting case of alignment without decoupling that will be analyzed in the next
chapter. This possibility was first noted in [264] and further clarified in [263, 304]. Finally,
if both |Z6| � 1 and mH � mh are satisfied, the alignment is even more pronounced and
such a limit might be referred to as the double alignment limit.
In the H–125 scenario, we have m2

A+Z5v
2 < Z1v

2, |sβ−α| � 1 and m2
H ' Z1v

2. Looking
back at Eq. (4.87), there is only one way to achieve |sβ−α| � 1, that is Z6 → 0. Indeed,
the denominator of Eq. (4.87) cannot be arbitrarily large since mH > mh by definition and
Z1 cannot be larger than roughly 4π. This scenario hence does not have a decoupling limit.
This is intuitively clear since the low-energy effective Higgs theory necessarily contains at
least one additional scalar state, h. The masses of A and H± are then typically of the order
v since m2

A + Z5v
2 < Z1v

2 and m2
H± = m2

A − 1
2
(Z4 − Z5)v2 [see Eq. (4.47)]. Nevertheless,

a parameter regime exists in which A and/or H± can be considerably heavier than H. To
see how this can arise, we rewrite the A and H± masses as follows,

m2
A = m2

Hs
2
β−α +m2

hc
2
β−α − Z5v

2 , (4.88)
m2
H± = m2

Hs
2
β−α +m2

hc
2
β−α − 1

2
(Z4 + Z5)v2 . (4.89)

Consequently,

mA � mH , mH± , if Z5 is large and negative and |Z4 + Z5| <∼ O(1) , (4.90)
mH± � mH , mA , if Z4 + Z5 is large and negative and |Z5| <∼ O(1) , (4.91)
mA , mH± � mH , if both Z5 and Z4 + Z5 are large and negative , (4.92)

under the condition that the magnitudes of Z4 and Z5 are consistent with tree-level uni-
tarity bounds and that m2

A + Z5v
2 < Z1v

2 is satisfied. None of these three cases above
however corresponds to a decoupling limit, since in each case the light scalar state h is
still present. Note that in the parameter regime where Eqs. (4.90) or (4.91) is satisfied, a
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second scalar state beyond h may be present whose mass lies below mH = 125 GeV. If the
conditions of Eq. (4.90) are satisfied, then mH± < mH if (Z4 +Z5)v2 > −2(m2

H −m2
h)c

2
β−α

[see Eq. (4.89)]. Similarly, if the conditions of Eq. (4.91) are satisfied, then mA < mH if
Z5v

2 > −(m2
H −m2

h)c
2
β−α [see Eq. (4.88)].

4.2.2 Couplings in the alignment limit

By definition, in the alignment limit the coupling of the SM-like Higgs to ZZ and W+W−

tends to 1 while the other CP-even state becomes partially gauge-phobic (though the
XV V interactions are suppressed, XXV V couplings may be non-vanishing, where X is
the 125 GeV state).
Looking back at the fermionic reduced couplings Eqs. (4.79)–(4.81), we see that, as

expected, in the exact alignment limit, the reduced couplings of the SM-like state go to
their SM values. However, if tan β � 1, then the alignment limit is realized for the Type-II
Yukawa couplings to down-type fermions only if |cβ−α| tan β � 1 (|sβ−α| tan β � 1) if
h (H) is the SM-like state. That is, if |cβ−α| � 1 (|sβ−α| � 1) but |cβ−α| tan β ∼ O(1)

(|sβ−α| tan β ∼ O(1)), then the hV V (HV V ) couplings and the htt̄ (Htt̄) couplings are SM-
like whereas the hbb̄ (Hbb̄) and hτ+τ− (Hτ+τ−) couplings deviate from their SM values.
The approach to the alignment limit is said to be delayed when tan β � 1. We denote
this phenomenon as the delayed alignment limit [259, 264, 305, 306]. This phenomenon
has very important phenomenological consequences as will be shown in the next chapter.
Similar considerations can also apply if cot β � 1; however, this region of parameter space
is disfavored as the corresponding htt̄ (Htt̄) coupling quickly becomes non-perturbative if
cot β is too large. For this reason, we won’t pursue further the exploration of the small
tan β region and restrict ourselves to tan β > 0.5 in the subsequent analyses.
Finally, we examine some trilinear Higgs self-couplings. Using the results of Ref. [264]

(see also Ref. [275]), the three-Higgs vertex Feynman rules (including the corresponding
symmetry factor for identical particles but excluding an overall factor of i) are given by:

ghhh = −3v
[
Z1s

3
β−α + Z345sβ−αc

2
β−α + 3Z6cβ−αs

2
β−α + Z7c

3
β−α
]
, (4.93)

gHHH = −3v
[
Z1c

3
β−α + Z345cβ−αs

2
β−α − 3Z6sβ−αc

2
β−α − Z7s

3
β−α
]
, (4.94)

ghH+H− = −v
[
Z3sβ−α + Z7cβ−α

]
, (4.95)

gHH+H− = −v
[
Z3cβ−α − Z7sβ−α

]
. (4.96)

The trilinear Higgs couplings expressed in terms of the physical Higgs masses can be found
in Appendix B of [261]. Let us first consider the Higgs self-coupling in the approach to the
alignment limit in the h–125 scenario. Equations (4.56) and (4.93) yield,

ghhh = gSM
hhh

[
1 +

2Z6

Z1

cβ−α +

(
Z345

Z1

− 2Z2
6

Z2
1

− 3

2

)
c2
β−α +O(c3

β−α)

]
, (4.97)

where the self-coupling of the SM Higgs boson is given by

gSM
hhh = −3m2

h

v
. (4.98)
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Note that this is a tree-level result and possibly large radiative corrections can be present
in the alignment limit [307, 308]. Remember that in the alignment limit, m2

h ' Z1v
2, which

implies that Z1 ' 0.26. It is convenient to make use of Eq. (4.86) to write cβ−α = −ηZ6

where

η ≡ v2√
(m2

H −m2
h)(m

2
H − Z1v2)

=


O(1) , for m2

H ∼ O(v2),

O
(
v2

m2
H

)
� 1 , in the decoupling limit.

(4.99)

Equation (4.97) then yields

ghhh = gSM
hhh

{
1 +

[(
Z345 − 3

2
Z1

)
η2 − 2η

]
Z2

6

Z1

+O(η3Z3
6) +O(η2Z4

6)

}
. (4.100)

In the decoupling limit (where η � 1),

ghhh = gSM
hhh

{
1− 2ηZ2

6

Z1

+O(η2Z2
6)

}
. (4.101)

It follows that ghhh is always suppressed with respect to the SM in the decoupling limit,
indeed Z1 > 0 by positivity of the potential [see Eq. (4.84)]. In the double decoupling
limit where η � 1 and |Z6| � 1, Eq. (4.101) shows that the deviation of ghhh from the
corresponding SM value is highly suppressed.
In contrast, in the alignment limit without decoupling, |Z6| is significantly smaller than 1

and η ∼ O(1). It is now convenient to use Eq. (4.45) to eliminate Z345,

ghhh = gSM
hhh

{
1+

[(
Z7 tan 2β− 1

2
Z1

)
η2−2η

]
Z2

6

Z1

+(2 cot 2β−tan 2β)η2Z
3
6

Z1

+O(Z3
6)

}
, (4.102)

where the term above designated by O(Z3
6) contains no potential enhancements in the limit

of s2β → 0 or c2β → 0. Given that η ∼ O(1) in the alignment limit without decoupling, the
form of Eq. (4.102) suggests two ways in which ghhh can be enhanced with respect to the SM.
For example if tan β ∼ 1, then one must satisfy (Z7−Z6)η tan 2β >∼ 2+ 1

2
Z1η. Alternatively,

if tan β � 1, then one must satisfy Z6η cot 2β >∼ 1 + 1
4
Z1η (the latter inequality requires

Z6 < 0, since cot 2β < 0 when 1
4
π < β < 1

2
π). In both cases, ghhh > gSM

hhh is possible even
when |Z6| and |Z7| are significantly smaller than 1. Indeed, both of the above alternatives
correspond to Z345 � Z1 and ηZ345 � 1 in Eq. (4.100).
Similarly, if H is the SM-like state, Eqs. (4.57) and (4.94) yield

gHHH = gSM
HHH

[
1− 2Z6

Z1

sβ−α +

(
Z345

Z1

− 2Z2
6

Z2
1

− 3

2

)
s2
β−α +O(s3

β−α)

]
, (4.103)

where the self-coupling of the SM Higgs boson is given by

gSM
HHH = −3m2

H

v
= −3v

(
Z1 − Z6

sβ−α
cβ−α

)
. (4.104)

We first define sβ−α = −ηZ6 where

η ≡ v2√
(m2

H −m2
h)(Z1v2 −m2

h)
(4.105)
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is a positive O(1) parameter. In the approach of the alignment limit,

η =
v2

|m2
A + (Z5 − Z1)v2| +O(Z2

6) , (4.106)

and therefore, after re-expressing Z345 in terms of Z6,

gHHH = gSM
HHH

{
1 +

[(
Z7 tan 2β − 1

2
Z1

)
η2 + 2η

]
Z2

6

Z1

+ (2 cot 2β − tan 2β)η2Z
3
6

Z1

+O(Z3
6)

}
,

(4.107)
where the term designated by O(Z3

6) contains no potential enhancements in the limit of
s2β → 0 or c2β → 0. The HHH coupling can thus be either suppressed or enhanced with
respect to the SM. For example gHHH > gSM

HHH is possible in two cases. If tan β ∼ 1, then
one must satisfy (Z7 −Z6)η tan 2β >∼ 1

2
Z1η − 2. Alternatively, if tan β � 1, then one must

satisfy Z6η cot 2β >∼ 1
4
Z1η − 1. In both cases, the HHH coupling is enhanced even when

|Z6| is significantly smaller than 1.
Of great phenomenological importance is the hH+H− coupling when h is the SM-like

state. In the alignment limit,

ghH+H− = −v
[
Z3 +O(cβ−α)

]
, (4.108)

approaches a finite nonzero value, with or without decoupling. This is relevant for the
analysis of the one-loop process h → γγ, which has a contribution that is mediated by
a H± loop. In the decoupling limit, the charged Higgs loop amplitude is suppressed by a
factor of O(v2/m2

H±) relative to the W± and the top quark loop contributions. However,
in the alignment limit without decoupling, the charged Higgs loop is parametrically of the
same order as the corresponding SM loop contributions, thereby leading to a shift of the
h→ γγ decay rate from its SM value. This is in stark contrast to the behavior of tree-level
Higgs couplings, which approach their SM values in the alignment limit with or without
decoupling.
Similarly, and extending the discussion, if H is the SM-like state,

gHH+H− = −v
[
Z3 +O(sβ−α)

]
. (4.109)

Although we expect mH± <∼ O(v) over most of the 2HDM parameter space when H is a
SM-like Higgs boson, there exists a parameter regime [cf. Eqs. (4.91) and (4.92)] in which
mH± � mH . Moreover, a heavy charged Higgs mass is required in Type II to avoid conflict
with the observed rate for b → sγ [309]. In light of Eqs. (4.47) and (4.48), let us suppose
that Y2 � Z3v

2 where Z3 is large [say, of O(10)] but still consistent with the unitarity
bounds. Then, in order to satisfy the inequality m2

A + Z5v
2 < Z1v

2 required for H to be
the SM-like state, Z4 +Z5 must be negative and its magnitude must be large (but not too
large in order to satisfy the unitarity bounds). It then follows that m2

H± ' 1
2
Z3v

2, in which
case Eq. (4.96) yields

gHH+H− ' −2m2
H±

v
+O(sβ−α) , (4.110)

in the approach to the alignment limit. One can also obtain Eq. (4.110) by expressing
gHH+H− in terms of the Higgs masses and the squared-mass parameter m2 = m2

12/(sβcβ)

defined in Eq. (4.10). Inserting Eqs. (4.60) and (4.62) into Eq. (4.96) yields

gHH+H− = −1

v

{[
m2
H + 2(m2

H± −m 2)
]
cβ−α − 2 cot 2β(m2

H −m 2)sβ−α

}
. (4.111)
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In the alignment limit where cβ−α → 1 (or equivalently, Z6 → 0),

gHH+H− = −1

v
(m2

H + 2m2
H± − 2m2) +O(sβ−α) , (4.112)

where mH ' 125 GeV. In the parameter regime where mH± is large [such that Y2 � Z3v
2

as discussed above Eq. (4.110)], it follows that m2 ∼ O(v2). Thus, in the alignment limit
with mH± large compared to v, one again obtains the asymptotic result of Eq. (4.110).

Denoting the one-loop H → γγ amplitude normalized to the corresponding SM value by
CH
γ , the coupling given in Eq. (4.110) matches precisely the HH+H− interaction term of

Lint = − gmt

2mW

ttH + gmWW
+
µ W

µ−H − gm2
H±

mW

H+H−H , (4.113)

given in Eq. (2.15) of [258]. Hence, we can immediately obtain an estimate for CH
γ in the

alignment limit by employing the asymptotic forms for the contributions to the H → γγ

amplitude, AHi (corresponding to a particle in the loop with spin i = 0, 1
2
, 1) given in

Eq. (2.21) of [258] and discussed in Section 2.3.4,

CH
γ =

AH0 + AH1 + 3e2
tA

H
1/2

AH1 + 3e2
tA

H
1/2

≈ 0.94 , (4.114)

where et = 2
3
is the charge of the top quark in units of e, AH0 = 1

3
, AH1/2 = 4

3
and AH1 = −7.17

A more complete calculation taking into account finite-mass effects yields a very similar
result, CH

γ ' 0.95. That is, the contribution of the charged Higgs loop asymptotically
yields a 5% reduction in CH

γ . In contrast, in the case of lighter charged Higgs boson masses
(which are allowed in Type I), the approximate form for the HH+H− coupling given in
Eq. (4.110) and the asymptotic form for AH0 employed in Eq. (4.114) are no longer valid.
In particular, in the approach to the alignment limit, gHH+H− ' −vZ3. When Z3 > 0 [as
in Eq. (4.110) where Z3 ∼ 2m2

H±/v2], the charged Higgs loop interferes destructively with
the W boson loop. However, for small values of mH± there exist regions of the 2HDM
parameter space where Z3 < 0, which then yields an HH+H− coupling of the opposite
sign. In this case, the charged Higgs boson loop interferes constructively with theW boson
loop, thereby generating a value of CH

γ > 1. Using Eq. (4.112), it follows that the sign flip
of gHH+H− occurs roughly when 2m2 > 2m2

H± + m2
H . In practice, as we shall see in the

next chapter, positive values of m2 do not exceed about (150 GeV)2, which implies that a
light charged Higgs boson with a mass of about mH± < 160 GeV is required for CH

γ > 1.
The non-decoupling of the charged Higgs contribution and the possible sign flip in gHH+H−

was also addressed in Appendix B of [207].
Finally, as will be shown in the next chapter, the Higgs-gauge boson vertices AZh and

AZH are very interesting phenomenologically. Their expressions are given by

gAZh =
gcβ−α

2 cos θW
, gAZH =

−gsβ−α
2 cos θW

, (4.115)

and their behavior in the alignment limit is trivial.

17 These asymptotic forms are valid when 4m2
i /m

2
H � 1, where mi is the mass of the particle in the loop.

Nevertheless, these approximations work quite well even for the t-quark and the W boson.
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4.2.3 Can alignment be natural ?

Before concluding these theoretical developments, we examine another theoretical distinc-
tion between the decoupling limit and alignment limit without decoupling. The SM Higgs
sector is famously unnatural [310, 311], in particular, a fine tuning of the Higgs sector
squared-mass parameter is required in order to explain the observed value of the vev. The
2HDM generically requires two separate and independent fine tunings. In addition to iden-
tifying v ≈ 246 GeV, which fixes the values of Y1 and Y3 through the potential minimization
conditions Eq. (4.46), one must also perform a second fine-tuning to fix the squared-mass
parameter Y2 to be of O(v2). Thus, in the h–125 scenario, the regime of the decoupling
limit (where Y2 � v2) is less fine-tuned than the general 2HDM, since the natural value
for Y2 is the ultraviolet cutoff of the theory beyond which new physics presumably enters.
As long as the extra Higgs scalars (whose squared masses are of order Y2) are sufficiently
massive, then h will be a SM-like state. As discussed previously, such a limit does not exist
in the H–125 scenario.
In contrast, in the case of alignment without decoupling (or in the double decoupling

limit), we have |Z6| � 1, which is a finely-tuned region of the 2HDM parameter space
(beyond the two tunings discussed above) unless we can demonstrate that Z6 = 0 is a
consequence of an enhanced symmetry of the theory. The possibility of a natural imple-
mentation of alignment has been previously treated in Ref. [312]. In the absence of Higgs–
fermion Yukawa couplings, it is sufficient to consider the symmetry properties of the scalar
potential. Note that we have already imposed a softly-broken Z2 symmetry, which yields
λ6 = λ7 = 0 in the original basis. In addition, we observe that Z6 = Z7 = 0 [which also
implies that Y3 = 0 in light of minimization conditions Eq. (4.46)] corresponds to an exact
Z2 symmetry in the Higgs basis, Hi → (−1)i−1Hi.
The conditions Z6 = Z7 = 0 can be implemented in three ways. If s2β = 0, then only

one of the two Higgs fields acquires a non-zero vev. This means that the Z2-basis and the
Higgs basis coincide, in which case the original Z2 symmetry is unbroken and transmitted
to the Higgs basis. If λ6 = λ7 = 0 and s2βc2β 6= 0, then setting Z6 = Z7 = 0 in Eqs. (4.39)
and (4.40) yields λ1 = λ2 = λ345. Such a scalar potential exhibits a softly-broken CP3
symmetry, one of the three possible generalized CP symmetries that can be imposed on
the 2HDM [313].18 Finally, if the scalar potential exhibits an exact CP2 symmetry, defined
in Ref. [313], or equivalently there is a basis in which the Z2 discrete symmetry (Φ1 → +Φ1,
Φ2 → −Φ2) and a second Z2 interchange symmetry (Φ1 ←→ Φ2) coexist [274, 313], then
it follows that λ6 = λ7 = 0, λ1 = λ2 (with λ5 real), m2

11 = m2
22 and m2

12 = 0. In this
case, Eqs. (4.6) and (4.7) yield tan β = 1.19 The latter can be maintained when the CP2
symmetry is softly broken such that m2

12 6= 0. Using Eqs. (4.39) and (4.40) then yields
Z6 = Z7 = 0. Thus, in the absence of the Higgs-fermion Yukawa couplings, Z6 = 0 is a
consequence of an enhanced symmetry of the scalar potential, in which case the regime of

18 If m2
12 = 0 in Eq. (4.5) in addition to λ6 = λ7 = 0, then the Z2 discrete symmetry (Φ1 → +Φ1, Φ2 → −Φ2)

is exact. In this case, Z6 = Z7 = 0 implies that λ1 = λ2 = λ345 and m2
11 = m2

22 [the latter via Eq. (4.43)],
and corresponds to an exact CP3 symmetry of the scalar potential. This restriction of scalar potential
parameters has also been obtained in Ref. [312].

19 Here we assume that λ1 6= λ345, otherwise the CP2 symmetry is promoted to the CP3 symmetry previously
considered.
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alignment without decoupling and the double decoupling regime are both natural in the
sense of ’t Hooft [314].
If we now include the Higgs-fermion Yukawa coupling, we can still maintain the symmetry

of the scalar potential in special cases. If the Z2 symmetry transformation is defined in the
Higgs basis such that H2 is odd (i.e., H2 → −H2) and H1 and all fermion and vector fields
are even, then the resulting model corresponds a Type I 2HDM with s2β = 0, which we
recognize as the inert 2HDM (IDM) [291, 315, 316]. In light of the above discussion, we see
that the alignment limit is exact in the IDM and

√
2H0

1 − v is identified as the SM Higgs
boson, which can either be the lighter or the heavier of the two CP-even Higgs bosons. If we
perturb the IDM by taking Z6 and Z7 small, then either h or H will be approximately SM-
like. The phenomenology of the IDM has been treated in detail in [317–319] and won’t be
pursued further here. In the case of s2β 6= 0, we would need to extend the (softly-broken)
CP3 or CP2 symmetry of the scalar potential to the Higgs-fermion Yukawa sector. As
shown in [320], no phenomenologically acceptable CP2-symmetric model exists. A unique
softly-broken CP3-symmetric 2HDM does exist with an acceptable fermion mass spectrum;
however this model does not appear to be phenomenologically viable due to insufficient CP-
violation and potentially large FCNC effects [320]. Hence, for generic choices of the 2HDM
parameters, the regime of alignment without decoupling and the double decoupling regime
must be regarded as more finely tuned than the generic 2HDM. Note that Refs. [312, 321]
discuss the existence of various symmetries of the 2HDM that lead to a natural alignment
without decoupling limit, the simplest one being a custodial SO(5) broken by the m2

12 term,
hypercharge and Yukawa effects. It however puts important restrictions on the 2HDM
spectrum that we do not want to introduce in our subsequent studies.
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5
AL IGNMENT L IMIT AND L IGHT HIGGSES AT THE LHC

After the theoretical presentation of the 2HDM and its alignment limit in the previous
chapter, we perform here detailed phenomenological analyses of this limit in the context
of the Type I and Type II models and in both the h–125 and H–125 scenarios. Taking
into account all relevant flavor and collider constraints, we contrast the phenomenological
consequences of the alignment limit with and without decoupling. Contrary to naive ex-
pectations, the properties of the SM-like state may be sizably affected in this limit and
patterns of Higgs couplings deviations may hint at an extended Higgs sector. Naturally,
the most direct way to experimentally verify the 2HDM structure would be an observation
the extra-states.
The first section of this chapter gives a description of the general setup of the analyses;

the strategy, the constraints considered and the tools that have been used. The two next
sections respectively describe the results obtained in the study of the alignment limit in
the h–125 and H–125 scenarios. Finally, following the non-decoupling idea, we study the
possible existence of light Higgs states with masses below about 60 GeV in the last section.
This chapter constitutes an updated version of the analysis performed in “Scrutinizing

the alignment limit in two-Higgs-doublet models: mh = 125 GeV ” [261] that takes into
account more recent searches for heavy Higgs bosons from the ATLAS and CMS collabo-
rations and corrects a numerical bug and “Scrutinizing the alignment limit in two-Higgs-
doublet models. II. mH = 125 GeV ” [262] both in collaboration with John F. Gunion,
Howard E. Haber, Yun Jiang and Sabine Kraml, and published in Physical Review D. The
last section is based on “Light Higgs bosons in Two-Higgs-Doublet Models” [322] in col-
laboration with John F. Gunion, Yun Jiang and Sabine Kraml and published in Physical
Review D.

5.1 setup of the analyses

First, let us note that an extensive review of the status of 2HDMs of Type I and Type II was
given in [207, 208] and interpretations of the recently discovered Higgs boson at 125 GeV
in the context of the 2HDMs were also studied in Refs. [199, 303, 323–327]. Previous
studies of alignment without decoupling scenarios in the light of the LHC Higgs results
were conducted in [328–330]. The specific case of additional light Higgs states in 2HDMs
with mass below 125/2 GeV will be discussed in a subsequent section.

Considering experimental as well as theoretical uncertainties, the expected precision
for coupling measurements at the 13 TeV LHC after collecting 300 fb−1 of data is about
4–6% for the coupling to gauge bosons, and of the level of 6–13% for the couplings to
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5.1 setup of the analyses

fermions [331]. The precision improves by roughly a factor of 2 at the high-luminosity run
of the LHC with 3 ab−1 of luminosity. At a future e+e− international linear collider (ILC)
with

√
s = 250 GeV to 1 TeV, one may measure the couplings to fermions at the percent

level, and the coupling to gauge bosons at the sub-percent level [331].
We take this envisaged ∼ 1% accuracy on CV as the starting point for the numerical

analysis of the alignment limit. Concretely, we will investigate the parameter spaces of
the 2HDMs of Type I and Type II assuming that the observed 125 GeV state is h (H),
the lighter (heavier) of the two CP-even Higgs bosons in these models, and imposing
that Ch

V = sβ−α > 0.99 which corresponds to |cβ−α| . 0.14 (CH
V = cβ−α > 0.99 which

corresponds to |sβ−α| . 0.14) using the non-negative sβ−α (cβ−α) convention.
Imposing a softly-broken Z2 symmetry (Φ1 → +Φ1, Φ2 → −Φ2) on the scalar potential

given in Eq. (4.5) which sets λ6 = λ7 = 0, the free parameters of the 2HDM scalar potential
can be chosen to be the four physical Higgs masses mh,mH ,mH± ,mA, the mass term m2

12,
the ratio of the two Higgs vacuum expectation values tan β and the mixing angle α of the
CP-even Higgs squared-mass matrix. The vev modulus

√
v2

1 + v2
2 is naturally fixed by the

W± and Z masses and identified as the SM vev v ≈ 246 GeV. In the subsequent analyses,
we choose the following ranges for the scan,

α ∈ [−π/2, π/2], tan β ∈ [0.5, 60], m2
12 ∈ [−(2000 GeV)2, (2000 GeV)2],

mH± ∈ [m∗, 2000 GeV], mA ∈ [5 GeV, 2000 GeV], (5.1)

where m∗ is a lower bound on the charged Higgs mass originating either from the LEP
direct searches [332] or constraints from B-physics; mainly from the Z → bb̄ (Rb), εK ,∆mBs ,
B → Xsγ and B → τν constraints [268–271, 309]. In particular, the latest bound on the
charged Higgs mass in Type II is mH± > 480 GeV at 95% CL [309], based on the observed
rates for radiative B-meson decay, B → Xsγ. Both h and H can have the same properties
as the SM Higgs and thus serve as possible candidates for the observed SM-like Higgs state.
In the h–125 scenario, we will consider mh ≡ 125.5 GeV20, taking

mH ∈ [129.5 GeV, 2000 GeV] . (5.2)

As mentioned in Section 4.1.1, the degenerate case mh ' mH is not considered in this
manuscript. Instead, we require a 4 GeV mass splitting between h and H in order to avoid
H contamination of the h signal. Similarly, in the H–125 scenario, mH = 125.5 GeV, and

mh ∈ [10 GeV, 121.5 GeV] . (5.3)

Regarding the definition of the mixing angle, the α range chosen in Eq. (5.1) covers the
full 2HDM, subject to the restrictions made on the other parameters. In order to be in
the alignment limit, we only generate points that have CV ≥ 0.99 for the SM-like state.
However, there exist values of tβ such that cβ−α and/or sβ−α can take on either sign. It is
a simple matter to translate to the non-negative sβ−α or cβ−α conventions that we want
to impose in the h–125 and H–125 scenarii respectively. For example, given any 2HDM

20 Having performed the analyses before the publication of the ATLAS and CMS combination of the Higgs
mass which reports a central value of 125.09 GeV [16], we use 125.5 GeV as the observed Higgs mass in
the following.
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parameter point (α, β) with −1
2
π ≤ α ≤ 1

2
π and 0 < β < 1

2
π (actually the β range is a bit

smaller in our analyses since we only consider values of tβ between 0.5 and 60), one can
compute the values of sβ−α and cβ−α. Then, to convert to the convention of non-negative
cβ−α for instance, one would simply replace

(sβ−α, cβ−α)→ (−sβ−α,−cβ−α) (5.4)

if cβ−α is initially negative. This can be achieved by shifting α→ α+ π. Only the relative
sign of sβ−α and cβ−α is indeed physical.
We perform a flat random scan over this parameter space using the public code 2HDMC [333]

for a precise state-of-the-art computation of the couplings and decay widths of the various
Higgs states. Only points satisfying positivity of the scalar potential, coupling perturbativ-
ity and tree-level unitarity are retained. We also require the S, T , and U Peskin-Takeuchi
parameters [334] to be compatible with their corresponding values derived from electroweak
precision observables [335]. These constraints are also checked by means of 2HDMC.
Next, we impose constraints from the non-observation of Higgs states other than the

one at 125 GeV. From the LEP direct searches for light Higgs states, we consider the
cross-section upper limits on e+e− → Z + h/H and e+e− → A+ h/H from [17] and [336]
respectively. For very light A below 9.5 GeV, the limits from Upsilon decays [337] are
important, for which we follow the implementation in NMSSMTools4.6.0 [338]. Moreover,
we consider the limits from CMS on light pseudo scalars decaying into µ+µ− [339] in the
mass range mA = 5.5–9 GeV and 11.5–14 GeV, which are relevant in particular in Type II
models. The recent CMS constraint [340] on neutral Higgs bosons with masses between
25 GeV and 80 GeV, produced in association with a pair of b quarks, followed by the decay
into ττ , is also applied in our analysis. We find that this constraint eliminates a substantial
part of the Type II parameter space at large tan β.
When applicable, limits from LHC searches for additional heavy Higgs states are also

taken into account. These include the model-independent limits from the searches for H →
ZZ(∗) → 4` from ATLAS [341] and CMS [176] and for H → ZZ(∗) → 2`2ν from CMS [342]
for the h–125 scenario. These limits are however easily evaded since Ch

V = sβ−α > 0.99,
while the HV V coupling is suppressed, |cβ−α| . 0.14. More important are the limits from
the A → ττ and h/H → ττ searches in gluon-fusion or associated production with a
pair of b quarks from ATLAS [343] and CMS [344]. These are particularly relevant in the
large tan β region of the Type II models where a significant enhancement of the down-type
fermion coupling to the neutral Higgs states occurs. The h/H → bb̄ search from CMS [345]
is also imposed. Finally, we take into account the recent CMS result [346] on the search for
a new heavy resonance decaying to a Z boson and a light resonance, followed by Z → `+`−

and the light resonance decaying to bb̄ or ττ . A very important feature of this analysis is
that the masses of the two resonances are left as free parameters. This analysis is sensitive
to light resonances with masses down to ∼ 35 GeV. The cross section upper limit for the
``bb̄ final state in the plane of the masses of the two resonances then puts a very severe
constraint on sizable regions of our analyses. In the context of the 2HDM, this search
can indeed be interpreted as A → Z + h/H or H → Z + A (since in both scenarii h is
below or at 125.5 GeV, h → Z + A is only opened when mA . 35 GeV, a region that
the analysis is not sensitive to yet). The corresponding ATLAS search for A → Z + h/H

with Z → `` and h/H → bb̄ or ττ [347] assumes a SM-like h/H with a fixed mass of
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5.2 the h–125 scenario in the alignment limit

125 GeV and does not provide a constraint as strong as the CMS search. To evaluate all
these constraints, production of the h/H and A via gluon-gluon fusion and via associated
production with a pair of bottom quarks are computed at NNLO QCD21 accuracy using
SusHi-1.3.0 [348], while the vector-boson fusion mode for the h/H is computed at NLO
with VBFNLO-2.6.3 [238].

Signal strength constraints coming from the precise measurements of the properties of
the 125 GeV state are taken into account by means of Lilith 1.1.2. We require each point
of the analysis to be allowed at the 95% CL from a global fit to the Higgs measurements
as performed in Section 3.4. The CL is derived from the log-likelihood ratio

∆(−2 lnL)(P) = −2 lnL(P/2̂HDM), (5.5)

where L is the likelihood constructed by Lilith using up-to-date signal strength measure-
ments, P represents the set of parameters of the tested point and 2̂HDM the best-fit point
of the model. The Lilith database 15.04 is used for this analysis. It contains all the latest
Higgs signal strengths measurements from ATLAS [173, 175, 180, 182, 184, 186, 227, 254,
349, 350] and CMS [171, 174, 176, 179, 181, 183, 219, 228, 256] as of April 2015 and a
combined DØ and CDF result [351]. Unless stated otherwise, all parameter space points
shown in the following satisfy all of the latest constraints.

5.2 the h–125 scenario in the alignment limit

5.2.1 Parameter space

Let us start by reviewing the allowed parameter space under all constraints discussed
previously. Figure 5.1 shows the crucial relation between |Z6 |, |cβ−α | and mH , illustrating
the different ways alignment can occur with and without decoupling. Since |Z6 | = |(m2

H −
m2
h)sβ−αcβ−α |/v2, it exhibits a clear dependence on the H–h mass difference, and steeply

drops towards zero in the limit |cβ−α | → 0. When mH is of the order of 1 TeV, one needs
to be extremely close to sβ−α = 1 to have small |Z6 |—for instance |Z6 | ≈ 10−3 requires
|cβ−α | ≈ 6 × 10−5 for mH = 1 TeV. In contrast, for a lighter H , the departure of sβ−α
from 1 can be more important. It is in principle always possible to obtain arbitrarily small
values of |Z6 | if one pushes sβ−α arbitrarily close to 1. For the purpose of the numerical
analysis, we limit ourselves to |cβ−α | ≥ 10−5 and have checked that this captures all the
phenomenology of the |cβ−α | → 0 limit. Interestingly, as mH becomes large, we observe
that the decoupling limit sets a stronger upper limit on |cβ−α | than the one set in the
numerical scan (|cβ−α | . 0.14). Observing a heavy mH & 850 GeV at the LHC would
thus provide a better-than-1% indirect determination of the h-coupling to electroweak
gauge bosons in the framework of these scenarios.
The range of mA is also interesting. In principle mA can be above or below mh,H and

even mA < mh/2 is possible and consistent with all the constraints as will be detailed
in Section 5.4. However, once mH is fixed, the allowed range of mA is limited (and vice
versa) as illustrated in Fig. 5.2. We see that in both Type I and Type II, if the scalar H is

21 The NNLO corrections for ggF are only computed for the top quark loop, as those for the bottom quark
loop are very small.
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Figure 5.1: |cβ−α| versus mH in Type I (left) and Type II (right) with log10 |Z6| color code. Points
are ordered from high to low log10 |Z6| values.22

heavy and decoupled, the same is true for the pseudoscalar A. Conversely, if H is light, say
below 600 GeV, then A must be below about 800 GeV. Furthermore, it appears that for
|cβ−α| <∼ 10−3 (or, equivalently, small |Z6|) mH < mA is favored. This can be understood
from Eq. (4.54), since the m2

hc
2
β−α term therein is always quite small, the mass ordering

between mH and mA is largely determined by the sign of Z5. The value of Z5, in turn,
is driven by λ5, which according to our analysis tends to be negative for small cβ−α. The
absence of points over a large region of lowmH,A in Type II is in part due to the H,A→ ττ

limits [343, 344], which eliminate a large swath of parameter space with CD
h ≈ −1 and

mA ' 150–350 GeV, and to the CMS H → ZA search [346] which eliminates points down
to mA ≈ 60 GeV (with a mild dependence on mH). We note that the surviving points with
mA . 60 GeV have tan β < 2. In addition, the charged Higgs mass limit, mH± > 480 GeV,
in Type II [309], results in the elimination of the remaining quadrant withmH,A . 400 GeV
(actually up to mH ≈ 430 GeV for very light mA). In general, the non-trivial correlation
between the extra states masses comes from the T parameter contraint which limits the
maximum amount of mass splitting between these states. Perturbativity and unitarity,
which result in upper bounds on the various λi or Zi, can also play a role.

The interrelation between mA, mH and mH± is illustrated in Fig. 5.3. The two panels
show mH versus mA with color-coding according to mH± , with the ordering going from
high (blue) to low (red) mH± values. While the correlation of mH± with mH and mA is
somewhat different in Type I and Type II, in both models a light charged Higgs below
500–600 GeV requires that the H and A also be not too heavy, with masses below about
800 GeV. We also find that for any given mH± there is a lower limit on mH and mA: for
mH± ∼ 1 TeV, also mH,A are of that order. In turn, when mH and mA are in the non-
decoupling regime, mH± cannot be much heavier. The absence of points in the light mass

22 In this and subsequent figures, we give 3d information on a 2d plot by means of a color code in the third
dimension. To this end, we must choose a definite plotting order. Ordering the points from high to low
values in the third dimension, as done for log10 |Z6| in Fig. 5.1, means that the highest values are plotted
first and lower and lower values are plotted on top of them. As a consequence, regions with low values
may (partly) cover regions with high values. The opposite of course hold when ordering from low to high
values.
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Figure 5.2: mH versus mA in Type I (left) and Type II (right) with the color code indicating
the value of log10 |cβ−α |. Points are ordered from high to low log10 |cβ−α |. The
dashed lines are isolines of Z5=4 (upper line), 0 (middle line) and −4 (lower line) for
|cβ−α | = 0.015 (varying |cβ−α | from 0 to 0.14 has no visible effect on them).

0 200 400 600 800 1000 1200
mA [GeV]

200

400

600

800

1000

1200

m
H
[G

eV
]

2HDM Type I, mh =125.5 GeV

250

500

750

1000

1250

1500

1750

m
H
±
[G

eV
]

0 200 400 600 800 1000 1200
mA [GeV]

200

400

600

800

1000

1200

m
H
[G

eV
]

2HDM Type II, mh =125.5 GeV

500

750

1000

1250

1500

1750

m
H
±
[G

eV
]

Figure 5.3: mH versus mA in Type I (left) and Type II (right) with the color code indicating the
value of mH± . Points are ordered from high to low mH± .

region mH,A . 400 GeV in Type II (but not for Type I), already noted in the previous
paragraph, is due to the fact that in the Type II model B-physics requires mH± >∼ 480 GeV

and at low mA the precision electroweak T parameter constraint would be violated if mH

differs very much from mH± . As also mentioned above, an additional band with mA ≈ 150–
350 GeV is cut out by the H,A → ττ limits. We will see that this corresponds to a large
extent to the wrong-sign Ch

D solution with large tan β in Type II.

5.2.2 Couplings of the SM-like state h

The next question to address is to quantify the range of variations allowed for the couplings
of the 125.5 GeV state in the approximate alignment limit where Ch

V ≈ 1. In particular,
recall that in this analysis we impose sβ−α > 0.99 with mh = 125.5 GeV, without requiring
however that the other couplings of h are SM-like. To answer this question, we first show
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Figure 5.4: |cβ−α | versus C h
F in Type I (left) and |cβ−α | versus C h

U in Type II (right) with mH

color code. Points are ordered from low to high mH . The points with C h
U ≈ 1 and

|cβ−α | > 0.03 are the points for which C h
D ≈ −1.
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Figure 5.5: |cβ−α | versus C h
D in Type II with mH color code for the full C h

D range (left) and
zooming on the C h

D > 0 region (right). Points are ordered from low to high mH .

in Fig. 5.4 the dependence of the reduced couplings to (up-type) fermions, Ch
F ≡ Ch

U = Ch
D

in Type I (Ch
U in Type II) on |cβ−α|. The mass of the heavier scalar H is shown as a

color code. We see that when mH is light, for only 1% deviation from unity in Ch
V , Ch

U

can deviate as much as about 10% (20%) from unity in Type I (Type II). Inverting the
plotting order of mH (not shown), it is interesting to note that these deviations are largest
for mH ≈ 700–800 GeV while slightly more constrained for lighter mH . On the other hand,
in the decoupling limit the deviations in Ch

U are more constrained, with a maximum of 5%

for mH & 1.2 TeV in both Type I and Type II. It is also interesting to observe how quickly
alignment leads to SM-like couplings: for |cβ−α| <∼ 10−2 the deviations in Ch

U are limited
to just a few percent no matter the value of mH .
The situation is quite different for the coupling to down-type fermions, Ch

D, in Type II,
see Fig. 5.5. First of all, the possible deviations are larger than for Ch

U , with Ch
D ranging

from about 0.70 to 1.15 even for |cβ−α| ∼ 10−2. This is an illustration of the delayed
approach to the alignment limit at large tβ as discussed below Eq. (4.82). Let us recall
indeed that Ch

D = sβ−α− cβ−αtβ. This will drive the whole phenomenology of the scenario;
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sizable deviations of Ch
D from 1 lead to possible large deviations in the signal strengths even

for quite small |cβ−α| since the h→ bb̄ partial width accounts for the majority of the total
decay width. We note that Ch

D = 1 is not possible unless |cβ−α| is very small (again a few
times 10−3 or smaller) as a consequence of the lower bound imposed on tβ of 0.5. For the
larger positive deviation of Ch

D possible (up to ∼ 1.12), only points with mH . 750 GeV
are observed. On the contrary, Ch

D values which are substantially smaller than 1 can be
achieved in both the decoupling and non-decoupling regimes except for a small island of
points located around Ch

D ≈ 0.8 and |cβ−α| ≈ 0.1 that is achieved only for mH . 400 GeV.
Thus, for instance, a discovery of a light H state in association with a measured value
of Ch

D ∼ 0.8 would give an indirect way to probe sub-percent deviation of Ch
V in this

Type II scenario. On the contrary, this also illustrates how, in a given framework, the
precise measurements of the Higgs properties may provide indirect hints on the presence
of new states.
Finally, for light mH the sign of Ch

D relative to Ch
V and Ch

U can be opposite to the
corresponding SM value. This is realized for not so small values of |cβ−α| ≥ 0.07, i.e. at
the boundary of what we consider as the alignment limit, for 330 GeV ≤ mH ≤ 660 GeV,
350 GeV ≤ mA ≤ 660 GeV and 0.22 ≤ |Z6| ≤ 0.90. For the points in this region, the
up-type coupling is very close to 1, corresponding to the few isolated points observed in
the right panel of Fig. 5.4. As discussed in [259], the eventual precision reached in LHC
Run 2 will allow one to either confirm or eliminate the wrong-sign coupling possibility using
precise signal rate measurements of h in a few channels. Should the wrong-sign coupling
be confirmed, one would expect to also see A signals (plus perhaps H signals) in the above
mass range, thereby providing a confirmation of this scenario. (The cross sections for A
and H signals will be discussed in Section 5.3.5.) Since the wrong-sign solution occurs at
large tan β, it should be noted that this region is already much affected by the A → ττ

searches when A is produced in association with a pair of bottom quarks.
The tan β dependence of the fermion couplings of h is shown in Fig. 5.6. We see that large

tan β leads to Ch
F very close to 1 in Type I and Ch

U very close to 1 in Type II. However
in Type II, at large tan β, small cβ−α is not enough to drive Ch

D → 1: the approach
to SM-like coupling is delayed. Note also that the wrong-sign Ch

D solution in Type II
requires tan β & 10 and Ch

V ≈ 0.9994 (which is experimentally indistinguishable from
exact alignment).
The loop-induced coupling to photons, Ch

γ , is presented in Fig. 5.7. Even at very small
cβ−α, Ch

γ can deviate substantially from 1. This is due to the charged-Higgs contribution
to the hγγ coupling. This contribution can be large with either sign, positive or negative,
in Type I, while in Type II large contributions are always negative and suppress Ch

γ [259].
Note in particular the Type II points with Ch

γ ≈ 0.95 associated with the wrong-sign Ch
D

cases for which the charged Higgs loop contribution does not decouple and always leads
to a suppression. Regarding the loop-induced coupling to gluons, in the Type I model, Ch

g ,
is equal to Ch

F , the dependence of which on |cβ−α| was presented in Fig. 5.4. In the case
of Type II, Ch

g and Ch
U are very similar despite the difference between up- and down-type

couplings, due to the fact that the b-loop contribution to Ch
g is rather small. The one

exception in the case of Type II arises for the wrong-sign scenarios for which the b-loop
contribution changes sign and interferes constructively with the t-loop contribution. In this
case, Ch

g is always enhanced and Ch
g ∼ 1.06, this was also first discussed in Ref. [259].
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Figure 5.6: Fermionic couplings versus tanβ in Type I (upper panel) and Type II (lower panels)
with |cβ−α| color code. Points are ordered from high to low |cβ−α|.
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Figure 5.7: |cβ−α| versus Chγ in Type I (left) and Type II (right) with mH color code. Points are
ordered from low to high mH .

While the exceedingly small deviations in Ch
V that we consider here will not be directly

accessible at the LHC, precision measurements of the other couplings together with a
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Figure 5.8: |cβ−α | versus the reduced triple Higgs coupling Chhh in Type I (left) and Type II
(right) with mH color code. Points are ordered from high to low mH values.

measurement of, or a limit on, mH,A can be used for consistency checks and for eventually
pinning down the model realized in nature. Of special interest in this context is also the
triple Higgs coupling. The dependence of Chhh ≡ ghhh/g

SM
hhh on cβ−α and mH is shown in

Fig. 5.8. It is quite striking that large values of Chhh > 1 (up to Chhh ≈ 1.7 in Type I
and up to Chhh ≈ 1.35 in Type II) can be achieved in the non-decoupling regime, roughly
mH . 600 GeV, for |cβ−α| values of the order of 0.1, whereas for heavier mH , Chhh is
always suppressed as compared to its SM prediction. These features were explained in the
discussion below Eq. (4.97). This cannot be seen directly in Fig. 5.8, but we verified that
points with mH > 630 GeV never have Chhh > 1 as expected in the decoupling limit. Note
also that for mH ≈ 1 TeV, Chhh approaches the SM limit of 1 as |cβ−α| decreases more
slowly than is the case for lighter mH ; substantial deviations Chhh < 1 are possible as long
as |cβ−α| is roughly greater than a few times 10−2. This comes from the (2Z6/Z1)cβ−α term
in Eq. (4.97): since Z6cβ−α is always negative (in our non-negative sβ−α convention), Z1

is positive by positivity of the potential, and since Z6 can be sizable when mH ≈ 1 TeV,
see Fig. 5.1, this can lead to a suppression as extreme as Chhh ≈ 0.1. (For mH & 1 TeV
the deviations are smaller in part because the possible range of cβ−α is limited as seen
in Fig. 5.1.) For very light mH , on the other hand, Z6 is much smaller and hence the
deviations with Chhh < 1 are more limited. For mH . 250 GeV we find Chhh ' 0.80–1.40

in Type I and Chhh ' 0.95–1.13 in Type II. This is at the limit of what can be measured,
as the expected precision is about 50% at the high-luminosity options of the LHC and the
ILC with 500 GeV, and about 10–20% at a 1–3 TeV e+e− linear collider with polarized
beams [331].
The relation between the triple Higgs coupling gHhh, |cβ−α| and mH is presented in

Fig. 5.9. In Type I, large values of gHhh can be achieved in the non-decoupling regime for
|cβ−α| of the order 10−1. This is also true in Type II, though the range of gHhh is somewhat
smaller. We observe moreover that for given |cβ−α| . 10−1, the achievable Hhh coupling
grows with mH . Nonetheless, as will be shown in Section 5.3.5, the H → hh decay is only
relevant below the tt̄ threshold. Moreover, in the exact alignment limit, the Hhh coupling
vanishes.
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Figure 5.9: |cβ−α| versus the triple Higgs coupling gHhh in Type I (left) and Type II (right) with
mH color code. Points are ordered from high to low mH values.

5.2.3 Signal strengths of the SM-like state h

The variations in the couplings to fermions discussed above have direct consequences for
the signal strengths of the SM-like Higgs boson. Since the results depend a lot on the
fermion coupling structure, we examine this separately for Type I and Type II.
Let us start with Type I. Figure 5.10 shows the signal strengths for gluon-gluon fusion

and decay into γγ (µhgg(γγ)23, left panel), and decay into ZZ∗ (µhgg(ZZ∗), right panel).
Recalling that Ch

F varies between 0.87 and 1.11 in Type I and comparing with Fig. 5.7,
it is clear that the variation in µhgg(γγ) comes to a large extent from the charged Higgs
contribution to the γγ loop. Even for |cβ−α| → 0, large deviations from 1 can occur due to
a sizable charged Higgs contribution or the presence of a light pseudoscalar mA < mh/2

that increases the SM-like Higgs total width. On the other hand, in the decoupling limit,
the charged Higgs loop is small and Ch

γ is largely determined by the relative size of the
top and bottom loops compared to the W loop (which enters with opposite sign). On the
contrary, Ch

g is solely determined by the size of the t and b loop contributions. One finds
numerically that the hγγ coupling is slightly more suppressed than the hgg coupling is
enhanced, so that µhgg(γγ) . 1 in the decoupling regime.
In contrast, µhgg(ZZ∗) shows less variation, µhgg(ZZ∗) = [0.92, 1.04] if the h → AA

decay channel is closed, with small excursions around 1 allowed in the decoupling limit. It
also exhibits a less distinct dependence on mH compared to µhgg(γγ). The reason is that
µhgg(ZZ

∗) is driven by Ch
F and tan β, as illustrated in Fig. 5.11. The dependence on Ch

F

is clear as larger (smaller) Ch
F leads to larger (smaller) cross section for gg → h. The

dependence on tan β results from an interplay between the top (which drives the gg → h

cross section) and bottom (which drives the total h width) Yukawa couplings both given by
Ch
F = sβ−α + cβ−α/tβ. The scattered points with suppressed µhgg(ZZ∗) are those where the

h→ AA decay mode is open and increases the total width. An analogous picture emerges
for the VBF-induced hττ signal strengths, since µhVBF(ττ) = µhgg(ZZ

∗) in Type I.
In Type II, we find that the situation is quite different. Here, the signal strengths are

driven by both the top quark coupling, which impacts Ch
g , and by the bottom Yukawa

23 We switch from the notation µ(X,Y ) of Eq. (3.7) to µX(Y ) to denote the signal strengths.
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Figure 5.10: Signal strengths in Type I for the 125.5 GeV state, for gg → h → γγ (left) and
gg → h→ ZZ∗ (right) with mH color code. Points are ordered from low to high mH

values. Points with µhgg(ZZ∗) < 0.92 are ones for which h→ AA decays are present,
so that the total h width is increased, which suppresses this particular channel’s rate.
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Figure 5.11: Signal strength for gg → h→ ZZ∗ in Type I for the 125.5 GeV state with ChF (left)
and tanβ (right) color code. Points are ordered from low to high ChF and tanβ values.

coupling Ch
D, which also enters Ch

g and, often of greatest importance, determines the h→ bb̄

decay width. In Fig. 5.12 we show the signal strengths µhgg(γγ), µhgg(ZZ∗) and µhVBF(ττ) in
Type II comparing the dependence on mH (left panels) to the dependence on |Ch

D| (right
panels). Note that themH dependence of the signal strengths reflects themH dependence of
Ch
D in Fig. 5.5. As a consequence, µhgg(γγ) and µhgg(ZZ∗) can be enhanced in the decoupling

regime, with values going as high as 1.4–1.5 (mainly due to suppression of the total h width),
to be compared to the current model-independent 95% CL limits of µhgg(γγ) ∈ [0.76, 1.69]

and µhgg(ZZ∗) ∈ [0.71, 1.80]. Suppression is also possible, reaching a level of µhgg(γγ) =0.74–
0.76 for low mH if |cβ−α| > 0.01 but limited to 0.9 for large mH & 1250 GeV. For all mH ,
the amount of possible suppression decreases systematically with decreasing |cβ−α|. For
µhVBF(ττ) the behaviour is exactly opposite. For completeness we note that the horizontal
bar at |cβ−α| ∼ 10−1 is the Ch

D < 0 region, and the scattered points are those where
the h → AA decay is open. Finally note that as |cβ−α| decreases, the signal strengths in
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Figure 5.12: Signal strengths in Type II for the 125.5 GeV state with mH (left) and |ChD| color
code. Points are ordered from low to high mH and |ChD| values.

Type II converge to 1 much more slowly than in Type I. This is a consequence of the
delayed alignment of Ch

D to 1 in Type II when tan β is large. An additional effect arises in
µhgg(γγ) due to the charged Higgs loop contribution to the h→ γγ amplitude. In particular,
there exists an intermediate range of charged Higgs masses for which ghH+H− ' −2m2

H±/v

[cf. Eq. (4.110)], which yields a constant non-decoupling contribution that suppresses the
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Figure 5.13: Correlations of signal strengths in Type I, on the left illustrating the dependence on
mH , on the right illustrating the dependence in |cβ−α |. Points are ordered from low
to high mH values (left) and high to low |cβ−α | values (right).

h → γγ amplitude [259] (see also [352, 353]). Indeed, even for values of |cβ−α| as low as
10−4, this signal strength does not converge to 1 until mH (and thus mH±) is above about
1 TeV.

Putting everything together we find quite distinct correlations of signal strengths in both
Type I and Type II that depend on whether the additional Higgs states are decoupled or
not. This is illustrated in Fig. 5.13 for Type I and in Fig. 5.14 for Type II. In both figures,
the panels on the left show the dependence on mH while the panels on the right show
the dependence on |cβ−α| for the non-decoupling regime with mH ≤ 600 GeV. We note
that there are definite combinations of signal strengths that cannot be reached in the
decoupling regime. A measurement of such values would be a very strong motivation to
look for additional light Higgs states. In turn, when the masses of additional light Higgs
states are measured, signal strength correlations as shown in Figs. 5.13 and 5.14 can help
pin down the model. Furthermore, for mH ≤ 600 GeV even in the apparent alignment
limit |cβ−α| → 0 there can be deviations in the signal strengths from unity that cannot be
mimicked by decoupling.
Examples for Type I are the suppression of both µhgg(γγ) and µhgg(ZZ∗), or the combina-

tion µhgg(γγ) > 1 with µhgg(ZZ∗) ≈ 1. The former case is also present in Type II for lightmH ,
while the latter does not occur at all in Type II. More concretely, in the decoupling regime
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Figure 5.14: Correlations of signal strengths in Type II, on the left illustrating the dependence on
mH , on the right illustrating the dependence in |cβ−α |. Points are ordered from low
to high mH values (left) and high to low |cβ−α | values (right).

of Type II, µhgg(γγ) ≈ µhgg(ZZ
∗), whereas for light mH one can have µhgg(γγ) < µhgg(ZZ

∗)

even if |cβ−α| is very small (comparing Fig 5.14, top row, left vs. right). Another example
is the simultaneous suppression or enhancement of µhgg(γγ) and µhVBF(γγ) in Type I, that
is not possible in the decoupling regime (cf. Fig 5.13, bottom left). In Type II, one can
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have a simultaneous enhancement, up to 1.45 of µhgg(γγ) and µhVBF(γγ) in the decoupling
regime, but simultaneous suppression is limited to ∼ 0.9–0.95 (cf. Fig 5.14, middle left);
simultaneous suppression to a level of ∼ 0.8 is however possible in the alignment limit for
mH <∼ 300 GeV, i.e. well away from the decoupling regime. Precise enough signal strength
measurements could therefore provide strong hints that we are in the alignment without
decoupling regime of a 2HDM even if no additional Higgs states are discovered at that
time.

5.2.4 Probing H and A at the LHC

Let us now turn to the prospects of discovering the additional neutral states. The two
important production modes at the LHC are gluon fusion, gg → X, and the associated
production with a pair of b-quarks, bb̄X, with X = A,H. The production modes involving
electroweak gauge bosons are suppressed in the alignment limit for H, and non-existent at
tree-level for A. The correlations of the gg → X and bb̄X cross sections at the 13 TeV LHC
in the non-decoupling regime mH ≤ 600 GeV are shown in Fig. 5.15 for the Type I model
and in Fig. 5.16 for the Type II model. We show the points that pass all present constraints
(in beige) and highlight those that have a very SM-like Higgs state by constraining all the
following signal strengths to be within 5% or 2% of their SM values, respectively, denoted
as SM±5% (in red) and SM±2% (in dark red),

µhgg(γγ), µhgg(ZZ
∗), µhgg(ττ), µhV BF (γγ), µhV BF (ZZ∗), µhV BF (ττ), µhV H(bb̄), µhtt̄(bb̄) . (5.6)

We start the discussion with production of A in Type I, shown in the left panel of
Fig. 5.15. There is a strong correlation between the two production modes, gluon fusion
and bb̄ associated production, which stems from the fact that the relevant couplings are
the same up to a sign: CA

U = −CA
D = cot β. The larger spread in σ(bb̄A) observed for

σ(gg → A) > 10−2 pb comes from the fact that for mA . 2mt the bb̄A cross section grows
faster with decreasing mA than that of gg → A. Therefore, along a line of fixed σ(gg → A)

in the plot, a point with higher σ(bb̄A) has a smaller mA. Overall, however, σ(gg → A)

is always at least about two orders of magnitude larger than σ(bb̄A). The points with
largest cross sections, σ(bb̄A) ≈ 10 pb and σ(gg → A) ≈ 1000 pb, correspond to the case
mA < mh/2 presented in more details in a next section. One feature of this region is that
µhgg(γγ) and µhgg(ZZ∗,WW ∗) always differ from each other by about 10%. Constraining all
h signal strengths of Eq. (5.6) within 5% of unity therefore eliminates these points. Other
points with high cross sections, but not in the very light pseudoscalar region, would also
be eliminated by the SM±5% or SM±2% requirements. However, in this non-decoupling
regime of mH ≤ 600 GeV, points with sizeable cross sections up to 0.2 pb for σ(bb̄A) and
up to about 40 pb for σ(gg → A) still remain even at the SM±2% level. At this same
SM±2% level, the smallest σ(gg → A) is about 0.1 fb.
Regarding the production of the scalar H in Type I, shown in the right panel of Fig. 5.15,

the correlation is even stronger between σ(bb̄H) and σ(gg → H) since both are driven by
the same fermionic coupling CH

F = sinα/ sin β. Note that, as in the A case, the gluon-
fusion cross section is always larger than that for bb̄ associated production. Sizable cross
sections are still allowed under the SM±2% constraint, which implies that in the non-
decoupling regime there is a strong possibility of detecting a second scalar state at the
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Figure 5.15: σ(bb̄X) versus σ(gg → X) for X = A (left) and X = H (right) in Type I at the
13 TeV LHC in the alignment without decoupling limit, mH ≤ 600 GeV, satisfying
all present constraints (in beige) as well as points for which the signals strengths
from Eq. (5.6) are within 5% and 2% of the SM predictions (in red and dark red,
respectively). The dashed lines indicate σ(bb̄X) = σ(gg → X).
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Figure 5.16: As Fig. 5.15 but for Type II.

LHC. The structure of CH
F is however such that the coupling can equally well be very

much suppressed, leading to extremely small cross sections. We will come back to this
point below.
The corresponding results for Type II are presented in Fig. 5.16. In contrast to Type I,

both bb̄ associated production and gluon–gluon fusion modes for Type II are in princi-
ple important since either can be dominant in different regions of the parameter space.
There is only modest correlation between the two production modes due to the more com-
plex structure of the Type II fermionic couplings. For A production, one clearly sees the
mA < mh/2 region as the detached scattered points with very large cross sections. As for
Type I, these points disappear under the SM±5% constraint. Still, even for SM±2%, cross
sections for bb̄A close to 1 pb and around 20 pb for gg → A can be achieved (although
not simultaneously). For H production a similar picture emerges, with the maximal cross
sections however being a factor of a few smaller than for A production. The minimal cross
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Figure 5.17: Cross sections in Type I (left) and Type II (right) for gg → X at the 13 TeV LHC
as functions of mX for X = A (upper row) and X = H (lower row) with tan β

color code. In all four plots, points are ordered from low to high tan β .

sections in this mH < 600 GeV non-decoupling regime for the A and H are correlated
in a way that is very favorable for discovery during Run 2 of the LHC. For example, if
σ(gg → A) takes on its minimum SM±2% value of a few fb then σ(bb̄A) >∼ 80 fb, whereas
if σ(bb̄A) takes on its minimal value of few×10−1 fb then σ(gg → A) ≈ 300 fb. These cross
section levels imply that the A should be discoverable in at least one of the two production
modes even in the extreme alignment limit. Analogous arguments hold for H production.
Before considering specific decay channels of A and H, we present in Fig. 5.17 the gluon-

fusion cross sections in Type I and Type II as functions of mA and mH at the 13 TeV LHC.
Here, the color code shows the dependence on tan β. In Type I, the gg → A cross section is
proportional to cot2 β. A cross section of 1 (0.1) fb is guaranteed for mA as large as ≈ 600

(850) GeV. On the other hand, the gg → H cross section in Type I is proportional to
(CH

F )2 and can take on extremely small values for mH . 850 GeV. The reason is that, in
this region, the reachable values of cβ−α are high enough such that a cancellation between
the two terms of CH

F = sβ−α − cβ−α/tβ occurs and leads to an almost vanishing coupling.
In contrast, for mH & 850 GeV, this cancellation is not possible as the values of cβ−α are
forced to be smaller in the decoupling limit as can be seen in Fig. 5.1. In Type II, the A
production cross section can be very large in the very low mA region and more generally,
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5.2 the h–125 scenario in the alignment limit

any mass smaller than 1.1 TeV gives a gg → A cross section larger than 1 fb. For gg → H,
a cross section > 1 (0.1) fb is guaranteed up to mH ≈ 850 GeV (1.2 TeV). From these
considerations, the prospects for discovering the additional neutral states look promising
should alignment be realized without decoupling.
Let us now turn to specific signatures. Figure 5.18 presents the cross sections for gg →

A → Y for Y = γγ, ττ, tt̄ in Types I and II. Note that the y-axis is cut off at 10−7 pb.
Although much lower values of the cross section are possible, we do not show these lower
values since they will not be observable at the LHC. (With perfect efficiencies and ac-
ceptances, a 10−7 pb cross section would only lead to 0.3 event with 3 ab−1 of collected
luminosity.) As expected, for the γγ and ττ final states, the cross sections fall sharply above
the tt̄ threshold, with the noticeable exception of the A→ ττ decay in Type II due to the
strong constraints from LHC direct searches that exclude points with large corresponding
cross section. For the A → γγ decay, cross sections of 0.1 fb are reachable for mA . 470

GeV (mA . 530 GeV) in Type I (Type II) but not guaranteed. The maximal cross section
is approximatively 30 fb in Type I and 100 fb in Type II (not considering the mA ≤ mh/2

region). In both Types I and II, the gg → A→ ττ cross section can be substantially larger.
In Type I, 0.1 fb is reachable for mA . 600 GeV, while in Type II mA . 550 GeV guaran-
tees a cross section larger than 0.1 fb. In both cases, very large cross sections are predicted
at low mA. The gg → A → tt̄ cross section peaks around 100 pb in both Types I and II
and is guaranteed to be larger than 0.1 fb in Type II for 350 . mA . 600 GeV. These
sizable cross sections therefore provide interesting probes of the extended Higgs sector in
the alignment limit.
In evaluating the potential for the discovery of A via the tt̄ final state, it is noteworthy

that gg → A → tt̄ strongly interferes with the pp → tt̄ SM background, which yields a
peak-dip structure in the tt̄ invariant mass distribution [354–356]. One should also consider
the set of complementary modes, tt̄A associated production in Types I and II, and bb̄A

associated production in Type II, followed (in both cases) by A→ tt̄, as recently explored
in [327, 357, 358].
The corresponding results for the H cross sections are presented in Fig. 5.19. Sizable

values of σ×BR are possible in both Types I and II but heavily suppressed values are
still possible for most of the cases. Only in Type II, for H → ττ (as well as for H → tt̄),
is the corresponding cross section guaranteed to be larger than 0.1 fb for mH . 460

GeV (mA ≈ 400 GeV). Note that, for both Types I and II, the cross sections for A/H
decays into a muon pair are related to the A/H → ττ ones through the suppression factor
(mµ/mτ )

2 ≈ 1/280.
Non-standard production modes of the SM-like state, through A → Zh and H → hh,

are presented in Fig. 5.20. While these can be interesting discovery modes for the A and/or
H, their cross sections can also be extremely suppressed. For gg → A → Zh, the tan β

dependence, which follows the dependence of the gg → A cross section shown in Fig. 5.17,
explains a part of this suppression. Moreover, the AZh coupling is proportional to c2

β−α
which is suppressed in the alignment region. Nevertheless, the gg → A→ Zh cross section
can be larger than 100 fb for mA . 600 GeV in both Types I and II. The gg → H → hh

cross section, as expected, attains its maximum below the tt̄ threshold in both Types I
and II and can reach about 10 pb at low tan β. For any mH , the cross section can however
also be extremely suppressed.
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Figure 5.18: Cross sections times branching ratio in Type I (left) and in Type II (right) for gg →
A → Y at the 13 TeV LHC as functions of mA for Y = γγ (upper panels), Y = ττ

(middle panels) and Y = tt̄ (lower panels) with tanβ color code. Points are ordered
from low to high tanβ.

A comment is in order here on the possible “feed down” (FD) [207, 359] to the pro-
duction of the 125 GeV state through the decay of heavier Higgs states, which might
modify the observed signal strengths. Given a specific channel, this issue was approxi-
mately addressed in [207] by imposing limits on the maximal amount of signal coming
from the decay of heavier scalar states into h. For instance, the A→ Zh decays contribute
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Figure 5.19: Cross section times branching ratio in Type I (left) and in Type II (right) for gg →
H → Y at the 13 TeV LHC as functions of mH for Y = γγ (upper panels), Y = ττ

(middle panels) and Y = tt̄ (lower panels) with tanβ color code. Points are ordered
from low to high tanβ.

to the µZH(Y ) signal strengths and a limit on σ(gg → A → Zh)/σ(gg → Z∗ → Zh)

was then applied. Specifically the FD contamination to the Zh associated production and
to gg + bb̄h production was restricted to 30% and to 10% respectively. Imposing these
conditions here would remove the points with σ13(gg → A) × BR(A → Zh) & 0.2 pb
and σ13(gg → H) × BR(H → hh) & 2 pb in Fig. 5.20. This is, however, a maximally
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Figure 5.20: Cross sections times branching ratio in Type I (left) and in Type II (right) for gg →
X → Y at the 13 TeV LHC as functions of mX for X,Y = A,Zh (upper panel) and
X,Y = H,hh (lower panel) with tanβ color code. Points are ordered from low to
high tanβ.

conservative constraint for two reasons. Firstly, the amount of FD is computed without
accounting for any reduced acceptance of such events into the 125 GeV signal as a result
of the experimental cuts used to define the gg → h, bbh or Z∗ → Zh channels. Secondly, it
puts individual limits on specific production×decay modes instead of including all signal
strengths in a global fit, which is the approach followed in this paper. Indeed, when directly
adding the contribution of gg → A → Zh to the Zh signal strength in the global fit, it
turns out that only cross sections of σ13(gg → A) × BR(A → Zh) & 1.6 pb are definitely
excluded. This still assumes that the signal acceptance of the experimental analysis is the
same for gg → A → Zh as for gg → Z∗ → Zh, which should however be a reasonable
approximation, as the main difference would be the Zh invariant-mass distribution, which
is not used as a selection criterion in this case. The contribution of H → hh to the h signal
strengths is a more difficult question, as here the acceptances (in each final state considered
in the experimental analyses) will certainly be different from those of single h production.
A detailed study based on event simulation would be necessary to better understand the
impact of FD on the 125 GeV Higgs signal.
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Finally, if the mass splitting is large enough, A→ ZH, H → ZA, and H → AA decays
offer intriguing possibilities for discovering the extra non-SM-like neutral Higgs states in
the regime of approximate alignment without decoupling. In Fig. 5.21, the cross sections for
gg → A→ ZH, gg → H → ZA and gg → H → AA are exhibited. Large gg → A→ ZH

cross sections are obtained for large mA−mH splitting.24 Looking back at Fig. 5.2 one sees
that, in both Type I and Type II, the splitting can only be large for mA . 650 GeV. This
explains the preponderance of low mH points with cross sections up to 20 pb (6 pb) in
Type I (II) for mA . 650 GeV. (In Type II the mH± > 480 GeV constraint allows a large
enoughmA−mH mass splitting only formA & 350 GeV.) However, gg → A→ ZH can also
be heavily suppressed; since the AHZ coupling is proportional to sβ−α, this suppression is
a purely kinematical effect.
Turning to the H → ZA and H → AA signatures, in Type I we observe a depleted area

for mH > 300 GeV and cross sections of the order of 0.1 pb. In this region, tan β = 2–10

and Z5 is small or negative leading to H and A masses for which the H → ZA, AA decays
are kinematically forbidden [cf. Eq. (4.57)]. In the region below, tan β > 10 and Z5 can be
large enough to achieve mH > mA + mZ and/or mH > 2mA, but nevertheless the cross
section is small because of the tan β dependence of σ(gg → H), see Fig. 5.17. The distinct
branch with gg → H → ZA and gg → H → AA cross sections larger than about 1 pb,
on the other hand, has tan β . 2 and λ5 ≈ 0. Here, the term proportional to sin 2β in
Eq. (4.38) gives a large enough Z5 > 0 so that the H → ZA and/or H → AA decay is
kinematically allowed. The small tan β leads to a large gg → H production cross section,
see again Fig. 5.17. In Type II, gg → H → ZA and gg → H → AA cross sections can also
be large (even above 1 pb for H → ZA) in the non-decoupling regime. However, due to
the charged Higgs mass constraint these processes are allowed only for mH & 430 GeV. A
detailed phenomenological analysis of the A→ ZH and H → ZA decays at the LHC was
performed in Ref. [361].
Last but not least, due to the kinematic constraint mH ≥ 2mA and the non-trivial

correlation between mH and mA observed in Fig. 5.2, the H → AA channel is only open
for mH . 700 GeV. In Type I the branch of points with cross sections ranging from
about 10−1 pb to 10 pb is mainly populated by mA ≤ 100 GeV points with relatively low
tan β . 10. In Type II, essentially only points with low mA . 60 GeV and tan β . 2

experience the H → AA decays. This channel thus offers an interesting probe to the low
mA region.
Finally, let us take a moment to consider the 750 GeV potential signal observed by both

ATLAS and CMS in the di-photon channel in December 2015 [362, 363]25. The experimental
results suggest a cross section of about 5–10 fb. It is then clear from the upper panels of
Figs. 5.18 and 5.19 that the simplest explanation in the context of 2HDMs, i.e., a 750 GeV
H or A decaying to γγ, does not work. The predicted cross section in the 2HDM is simply
too low to account for the observed signal by a few orders of magnitude. This can of
course easily be solved by adding extra (vector-like) quarks that can enhance both the
gluon-fusion production of H or A and their γγ branching ratio. However there may exist

24 A large splitting mA−mH ' v can be motivated by the possibility of a strong first order phase transition
in 2HDMs [360].

25 With increased luminosity, the ATLAS and CMS collaborations announced in August 2016 that this excess
has significantly weakened [364, 365], hinting strongly for a statistical fluctuation interpretation.
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Figure 5.21: Cross sections times branching ratio in Type I (left) and in Type II (right) for Higgs-
to-Higgs signatures at the 13 TeV LHC, in the upper panel gg → A → ZH with
mH color code, and in the middle and lower panels for gg → H → ZA and gg →
H → AA, respectively, with mA color code. Points are ordered from high to low mA

or mH , with the exception of the H → ZA, and H → AA plots in Type II, where
points are ordered from low to high mA.

a possibility in the minimal 2HDM to explain this signal. As we were just discussing, the
H → AA cross section can be quite large in both Type I and Type II. A 750 GeV H state
decaying into two very light and boosted pseudoscalars, which then each decay into two
collimated photon could then perfectly well mimic the observed signal. This signature was
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5.2 the h–125 scenario in the alignment limit

discussed in various analyses [366–372]. However in the 2HDM, as seen previously, this
only happens for mH . 700 GeV. This bound might be opened by slightly weakening the
theoretical constraints imposed that partially control the non-trivial correlation between
mA and mH presented in Fig. 5.2. The large A→ γγ branching ratio can then be achieved
in various ways [369]. For instance mA could be just below 2mµ, the µµ threshold, so that
the only open decay channels would be A → e+e− and A → γγ while maximizing the
size of the muon loop contribution to γγ. Another way would be to make A mix with π0

or η, which would insure sizable diphoton branching ratio. One should then make sure
that such boosted pseudoscalars, with potential small total width, decay before or within
the ATLAS and CMS electromagnetic calorimeters, their decay length might indeed be
quite large. The viability of this explanation within the 2HDM should however be carefully
assessed.

5.2.5 Alignment in the h–125 scenario: summary

We specifically investigated the phenomenological consequences of alignment without de-
coupling and contrasted them to the decoupling case. Two aspects are interesting in this
respect: one being precision measurements of the couplings and signal strengths of the
SM-like Higgs boson at 125 GeV, the other being the ways to discover the additional Higgs
states of the 2HDM when they are light. Allowing for 1% deviation from unity in Ch

V ,
which corresponds to the ultimate expected LHC precision at high luminosity, the main
results can be summarized as follows.
In the alignment limit without decoupling, despite Ch

V being very close to 1, the fermionic
couplings of the 125 GeV Higgs can deviate substantially from the SM values. Concretely,
Ch
U can deviate as much as about 10% (20%) from unity in Type I (Type II), and Ch

D

as much as 30% in Type II. While Ch
U rather quickly approaches 1 with increasing mH

and/or cβ−α → 0, the approach of the bottom Yukawa coupling to its SM value in the
alignment limit is delayed in Type II, with Ch

D ≈ 0.70–1.15 even for |cβ−α| ∼ 10−2. Large
values of Ch

D > 1 are associated with light H,A. Moreover, for 330 GeV ≤ mH ≤ 660 GeV

and 350 GeV ≤ mA ≤ 660 GeV, there is an allowed region with Ch
D ≈ −1 ± 0.2; this

“wrong-sign” solution can be tested decisively at Run 2.
The trilinear hhh coupling can also exhibit large deviations. Large values of Chhh > 1

(up to Chhh ≈ 1.7 in Type I and up to Chhh ≈ 1.35 in Type II) can be achieved in the
non-decoupling regime mH . 600 GeV, for |cβ−α| of the order of 0.1, whereas for heavier
mH , Chhh is always suppressed as compared to its SM prediction. The suppression can be
about 50% for mH of ∼ 1 TeV and much larger for lighter mH .
For the ratios µhX(Y ) of the X → h → Y signal rates relative to the SM prediction,

we found distinct correlations of these signal strengths in both Type I and Type II that
depend on whether the additional Higgs states are decoupled or not. In fact, in the regime
of alignment without decoupling, there are characteristic combinations of the µhX(Y ) signal
strengths that cannot be mimicked by the decoupling limit. However, it is of course also
possible that all signal strengths converge to 1 even though the additional Higgs states are
very light.

A decisive test of the alignment without decoupling scenario would of course be the
observation of the additional Higgs states of the 2HDM in the mass range below about
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5.3 the H –125 scenario in the alignment limit

600 GeV. We delineated the many possibilities for such observations. While there are no
guarantees in the case of the Type I model, in the Type II model there is always a definite
lower bound on the gg → A,H → ττ cross sections at the LHC at any given mA. For low
tan β ∼ 1, this lower bound is still of order 0.1 fb for mA ∼ 500 GeV, a level that we deem
likely to be observable at the LHC during Run 2. For high tan β, the lower bound is roughly
two orders of magnitude higher and only falls below the 0.1 fb level for mA,H >∼ 1.2 TeV,
which is already in the decoupling region. Moreover, while in Type I gluon-gluon fusion
is always dominant for H or A production, in Type II both bb̄ associated production
and gluon-gluon fusion modes are in principle important since either can be dominant in
different regions of the parameter space.
Finally, Higgs-to-Higgs decays of the non-SM-like states (A→ ZH, H → ZA, H → AA)

also open intriguing possibilities for testing the regime of alignment without decoupling,
with cross sections often in the range of 1–10 pb (although they can also be quite sup-
pressed). Particularly promising are gg → H → ZA and gg → H → AA in Type II for
light pseudoscalars below about 100 GeV; for such a light A,mH can be at most ∼ 650 GeV,
and σ × BR values for these channels typically range from 10 fb to 10 pb.

5.3 the H–125 scenario in the alignment limit

We now turn to the H–125 scenario. As a small reminder, we now suppose that H is the
SM-like state with a mass of mH = 125.5 GeV and a reduced coupling to gauge bosons
CH
V = cβ−α > 0.99 in order to be close to the alignment limit. By convention cβ−α is here

non-negative while sβ−α can have both signs. An important phenomenological difference
as compared to the h–125 scenario is that there always exists a light scalar, h, with mass
below mH .

5.3.1 Parameters

We start by illustrating the parameter space of the analysis. Figure 5.22 shows the relation
between mh, |sβ−α | and log10 |Z6 |. The expected correlation between the three parame-
ters is clearly observed. In particular, larger values of mh imply smaller |Z6 | for the same
value of |sβ−α |, and for each mh, log10 |Z6 | can be as small as desired if |sβ−α | is allowed
to be correspondingly small. Here, as in the h–125 scenario, we only show results down
to |sβ−α | = 10−5. Because of the absence of a decoupling limit, |Z6 | does not exceed
∼ 10−1.5 in our scan. This illustrates that in the scenario under consideration, alignment
is solely controlled by the smallness of |Z6 |. Note also that the region of mh ≤ 1

2
mH

requires subtle correlations among the 2HDM parameters to ensure that BR(H → hh)

is sufficiently small to be in agreement with the experimental constraints, as will be dis-
cussed in more details in the next section. This explains the relatively low density of
points in this region. On the other hand, the higher density of points seen in Type II for
mh ∈ [80 GeV , 90 GeV] arises because light neutral states X = h, A with masses below
80 GeV are severely constrained by the CMS bb̄X with X → τ τ search [340],26 while

26 The CMS analysis given in [340] considers only pp → bb̄A production with A → ττ . However, the same
limit should also apply to pp→ bb̄h with h→ ττ ; see e.g. [373].
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5.3 the H –125 scenario in the alignment limit

Figure 5.22: |sβ−α | versus mh in Type I (left) and Type II (right) with log10 |Z6 | color code.
Points are plotted in the order of high to low log10 |Z6 | values.

Figure 5.23: mH± versus mA in Type I (left) and Type II (right) with mh color code. Points are
ordered from high to low mh values. The right plot shows the whole parameter space
scanned over for Type II, with the horizontal line indicating the limit on the charged
Higgs mass, mH± > 480 GeV. The points below this line are not considered in the
rest of the analysis.

masses above 90 GeV are also constrained by the ATLAS [343] and CMS [344] searches
for X → ττ decays in both the gg → X and bb̄X production modes. No search has ever
explored the 80–90 GeV region.
The relation between the three free Higgs masses,mA,mH± andmh is shown in Fig. 5.23.

The absence of a decoupling limit results in an upper bound on the CP-odd and charged
Higgs masses, mA,mH± . 630 GeV, which depends on the allowed values of cβ−α. Indeed,
without the cβ−α ≥ 0.99 constraint that we imposed to focus on the alignment scenario, one
would find instead mA,mH± . 800 GeV, where the bound is saturated for sβ−α ' 0.7 [207].
Perturbativity and unitarity conditions, the fact that the Zi cannot be too large, as well
restrain the possible range of mA and mH± as can be seen from Eqs. (4.88) and (4.89).
The characteristic correlation between mA and mH± is a consequence of the precision
electroweak measurements, primarily the T parameter [334]. In Type II, a large part of the
parameter space is excluded by weak radiative B meson decays for which agreement with
observations sets a strong lower bound on the charged Higgs mass, mH± > 480 GeV at
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5.3 the H –125 scenario in the alignment limit

95% CL [309]. The combination of this constraint and the EW precision observables then
sets a bound on the CP-odd Higgs mass. We find that mA & 420 GeV, which of course
rules out the region of mA ≤ 1

2
mH in Type II. We also note that this forces the CP-odd

and charged Higgs states to be relatively close in mass.
In contrast to Type II, in Type I the charged Higgs mass is much less impacted from

flavor physics constraints [265, 269]. For mH± . 160 GeV, the CP-odd state can have
any mass below 630 GeV in Type I, as shown in the left panel in Fig. 5.23. Moreover,
whereas mh ≤ 1

2
mH can only be found for mA,mH± & 400 GeV in Type II, such a light

h is possible for most of the allowed combinations of mA and mH± in Type I—with the
notable exception of the light mA ≤ 1

2
mH region, since LEP constraints imply that A and

h cannot both have a mass below 1
2
mH simultaneously [322]. However, there are narrow

bands at the border of the allowed mA vs. mH± region that unambiguously lead to values
of mh & 100 GeV. One such region is the blue band in the left panel of Fig. 5.23 with
mA & 350 GeV and mH± <∼ 200 GeV. Such mass correlations may be used to predict or
cross-check the validity of the scenario in the case that two or three extra Higgs states
are discovered in the future. Finally, as discussed in Ref. [322] and presented in the next
section, mh values below about 60 GeV are only possible for tan β <∼ 2 in Type II. Hence,
if such a low mass h is observed and its properties require a high value of tan β, then the
Type II model would be eliminated.

5.3.2 Impact of the CMS A→ Zh search

Before going on with the results description, let us discuss a very important constraint on
the H–125 scenario. Both ATLAS and CMS have performed searches at

√
s = 8 TeV for a

new heavy resonance decaying to a Z boson and a light resonance, with the Z decaying to
`` = ee, µµ and the light resonance decaying to bb̄ or ττ . While the ATLAS analysis [347]
required that the light resonance be consistent with the observed 125 GeV Higgs boson,
the CMS analysis [346] treated the masses of the two resonances as free parameters and
published limits on cross section times branching ratios as functions of the two masses. We
can therefore use this CMS result as a constraint on the A→ Zh channel in our study.
For values of mA ' 200–600 GeV, which is the mass range of particular interest for our

analysis, the 95% CL limit on σ(gg → A → Zh) × BR(Z → ``) × BR(h → bb̄) obtained
by CMS is about 100 fb for mh ' 40–45 GeV, corresponding to the lowest mh considered
in [346]. For heavier mh, the limit is about 100 fb at mA ≈ 200 GeV going down to about
5 fb at mA ≈ 600 GeV. The limit on σ(gg → A→ Zh)× BR(Z → ``)× BR(h→ ττ) has
a weaker impact; most of the points excluded by the ``ττ search channel are also excluded
by the ``bb̄ channel. Nonetheless, in Type I there is a small corner of parameter space at
tan β ≈ 2 and mA . 400 GeV that is mostly constrained by the A → Zh → ``ττ CMS
limit. All in all, this leads to very severe constraints on the 2HDM in the alignment limit
with mH ≈ 125 GeV, cutting out whole slices of parameter space, in particular at low
tan β since the CA

U coupling, which drives the gluon-fusion production of A, is proportional
to cot β. The reason for such a strong exclusion in this scenario is that, here, the h state
is light and thus has a very large branching ratio to bb̄, close to 90%, in the major parts
of the parameter space. In Fig. 5.24, we show the projections of the scan points onto the
tan β versus mA plane for both Type I and Type II.
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Figure 5.24: Projection of the scan points in the plane tanβ vs. mA, on the left for Type I, on
the right for Type II. The red points are consistent with all constraints used in this
analysis, while the underlying black points are those which are solely excluded by
the CMS A→ Zh (Z → ``, h→ bb̄, ττ) search [346] after all other constraints have
been applied.

The red points are consistent with all constraints used in this paper, while the underlying
black points are those which are excluded by the CMS A → Zh (Z → ``, h → bb̄, ττ)
limits [346] after all other constraints have been applied. We see that the A → Zh limit
from Run 1 excludes a whole slice of parameter space at low tan β and mA above about
300 GeV. The surviving red points with mA > 400 GeV and tan β < 2 have mh . 40 GeV.
As a result, some of the subsequent analysis plots will show disconnected islands of points.
Had the CMS analysis been sensitive to light resonance masses below 40 GeV, the entire
parameter space with mA > 400 GeV and tan β . 2 may have been ruled out.

5.3.3 Couplings of the SM-like state H

Regarding the properties of H, Fig. 5.25 shows the possible variation of the coupling to
up-type fermions, CH

U = CH
D ≡ CH

F in Type I and CH
U in Type II. Deviations from unity

ranging from −12% to +8% are possible in Type I for |sβ−α| ≈ 0.14, while in Type II the
deviations range from −7% to +20%. As expected, in both types CH

U quickly approaches
unity as |sβ−α| decreases. It is interesting to note that, while CH

U = sinα/ sin β in both
Type I and Type II, the actual values that can be reached are different in the two models
because of constraints involving the down-type coupling. The largest deviations occur for
large h–A mass splitting, when mh is below 60 GeV, while mA is close to its upper bound
and tan β very close to 1. In Type I, there is also another region with mh <

1
2
mH at larger

values of tan β, although this is only achieved when |sβ−α| & 10−2. This is seen as the
narrow banana-shaped red strip with CF ≈ 1–1.01 in the upper left panel of Fig. 5.25.
Also noteworthy are the gaps between the regions filled with valid scan points, these are
caused by the CMS limits [346] on A→ Zh→ ``bb̄ (and ``ττ) and will appear in many of
the subsequent figures.
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Figure 5.25: |sβ−α| versus reduced fermionic coupling CHF in Type I (left) and CHU in Type II
(right). In the upper two panels, the color code shows the dependence on mh; in the
lower two panels the dependence on mA, with points ordered from high to low mh

and mA values, respectively. Note that the color scales for mA are different for Type I
and Type II because of the very different allowed ranges of mA.

The possible variation of the coupling to down-type fermions, CH
D , in Type II is shown

in Fig. 5.26. Let us first consider the left panel. As in the h–125 scenario, there are two
possibilities: one where CH

V , CH
U and CH

D all have the same sign, and one where CH
D has

opposite sign relative to CH
U and CH

V [259]. In the normal (same) sign region, deviations
from the predicted SM coupling in the range of roughly −30% to +12% are possible even
for rather low |sβ−α| ≈ 5 × 10−3, as long as the H → hh decay mode is closed. If the
H → hh decay contributes to the total width, then CH

D is confined to the range [0.83, 1.08]

and quickly converges to unity as |sβ−α| decreases. The gap between the red and the
yellow/green/blue points is again caused by the CMS limits on A → Zh. On the other
hand, the opposite-sign region, CH

D ∈ [−1.1,−0.7], requires sβ−α . −0.04 due to the fact
that sβ−α and tan β are correlated in Type II as illustrated in the right panel of Fig. 5.26.
We see that CH

D = cβ−α + sβ−αtβ & 1 for sβ−α & 0 but decreases below 1 when sβ−α turns
negative. Consequently, for moderately negative sβ−α and large enough tan β, CH

D flips
sign. Values of |CH

D | . 0.7 are excluded by the fit of the signal strengths, but the opposite-
sign solution with CH

D ≈ −1 is still phenomenologically viable. The region of tan β & 50

is excluded because of the strong constraints on A → ττ decays from ATLAS [343] and
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Figure 5.26: In the left panel, we exhibit |sβ−α | versus CH
D in Type II. The color code shows the

dependence on mh, with points ordered from high to low mh values. In the right
panel, we exhibit sβ−α vs. tan β with the color code showing CH

D ordered from high
to low values.

CMS [344]; see also [207]. The CP-odd scalar mass mA does not have much influence since
it can only vary over the very limited range 420–630 GeV in Type II.
The tan β dependence of the fermionic couplings, shown in Fig. 5.27, is also noteworthy.

In both Type I and Type II, sizable deviations from CH
U = cβ−α− sβ−α/tβ = 1 are possible

only for small tan β. In Type II, CH
U very quickly converges to 1 once tan β & 7–8 because

the allowed range of sβ−α decreases with increasing tan β, as can be seen in the right panel
of Fig. 5.26. In Type I, the convergence of the fermionic couplings to their SM values is
less pronounced due to the fact that, even for tan β = 60, the full |sβ−α| range considered
is allowed. For CH

D in Type II, the situation is quite different, as this coupling is given by
cosα/ cos β instead of sinα/ sin β. For the normal-sign region, as soon as tan β is at least
moderate in size, tan β ≈ 10, CH

D saturates the full range allowed by the measured signal
strengths, even for small values of |sβ−α| of a few times 10−3. In contrast, as discussed in the
previous paragraph, the opposite-sign solution is only possible for large enough negative
sβ−α, concretely sβ−α . −0.04, cf. the right panel of Fig. 5.26. Overall, in these plots,
the impact of the CMS limit on A → Zh is even more striking than in Fig. 5.25, as it
excludes most points with tan β ≈ 1.2–1.8 in Type I and the entire range of tan β ≈ 1.5–2

in Type II. Note however that in both Types, points with smaller tan β are not excluded.
Most of these points have mA & 400 GeV and mh . 40 GeV; a region not probed by the
current CMS analysis.
Turning to the loop-induced Higgs couplings to gluons and to photons, we first note

that the H coupling to gluons, CH
g , is dominated by the top-quark loop, and its behavior

is thus practically the same as that of CH
U in Figs. 5.25 and 5.27. We therefore do not

show separate plots for CH
g . However, as in the h–125 scenario, an exception occurs for the

opposite-sign CH
D solution, for which the b-loop contribution interferes constructively with

the t-loop contribution, resulting in CH
g ≈ 1.06.

The structure of the coupling to photons, CH
γ , is more complicated. Here, the main

contributions come from W± and top-quark loops as in the SM, as well as from loops
with charged Higgs bosons. The W± and top-quark loops contribute with opposite signs.
The H± loop typically also has the opposite sign relative to the W± loop and can thus
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Figure 5.27: Fermionic couplings versus tanβ in Type I (upper panel) and Type II (lower panels)
with |sβ−α| color code. Points are ordered from high to low |sβ−α|.

substantially suppress CH
γ even at very small sβ−α. (Positive interference of theW± andH±

loops is however possible for low mH± , as noted at the end of Section 4.2.2.) The net effect
on CH

γ is shown in Fig. 5.28. In particular, we observe a large variation in CH
γ in Type I,

where the charged Higgs boson can be light. For |sβ−α| . 10−2 and mH± & 500 GeV,
we find CH

γ ≈ 0.95 in both Type I and Type II, in agreement with the expected 5–6%
reduction of CH

γ relative to the SM in the limit |sβ−α| → 0 with heavymH± [cf. Eq. (4.112)].
For |sβ−α| & 10−2 (but still assuming that mH± is large), this reduction can be more
or less than 5% depending on the sign of m2 ≡ m2

12/(sβcβ). The dependence on m2 is
illustrated explicitly in Fig. 5.29. Note however, that while m2 < 0 can reach values as
large as −(350 GeV)2

[
−(200 GeV)2

]
in Type I [Type II], respectively, m2 > 0 does

not exceed ∼ (150 GeV)2. Therefore, in Type II where mH± > 480 GeV, CH
γ is always

below 1 (although one will need linear collider precision to pin this down with sufficient
accuracy [374]). In contrast, in Type I, for mH± . 160 GeV a value of m2 between about
(60 GeV)2 and (120 GeV)2 can lead to a switch in sign of gHH+H− , giving CH

γ > 1. Of
course such a light charged Higgs boson can also (and in fact more easily) suppress CH

γ ,
down to CH

γ ≈ 0.8, irrespective of the value of |sβ−α|.
Finally, we consider the trilinear HHH coupling, which is useful for consistency checks

of the model, provided it can be measured precisely enough. The dependence of CHHH ≡
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Figure 5.28: |sβ−α | versus CH
γ in Type I (left) and Type II (right) with mh color code (upper

panels) and with mH± color code (lower panels). Points are ordered from high to
low mh in the upper panels and from low to high mH± in the lower panels.

Figure 5.29: As for Fig. 5.28 but showing the dependence of CH
γ on m ≡ sign(m)

√
|m2 |. Points

are ordered from high to low m.

gHHH/g
SM
HHH on |sβ−α| and mh (top panels) as well as mA (bottom panels) is shown in

Fig. 5.30. In Type I, similarly to Chhh in the non-decoupling regime of the h–125 scenario,
large values of the triple Higgs coupling beyond 1 can be achieved for |sβ−α| values of
the order of 0.1. However, there is no direct analog to the decoupling regime of the h–
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Figure 5.30: Reduced triple Higgs coupling CHHH in Type I (left) and Type II (right), in the top
panels with mh and in the bottom panels with mA color coding. Points are ordered
from high to low m, mh or mA values.

Figure 5.31: As in Fig. 5.24 but in the plane |sβ−α | vs. CHHH .

125 scenario, where the triple Higgs coupling was always suppressed as compared to its
SM prediction. Instead, here, CHHH can be enhanced or suppressed for any value of mA.
However, most of the points which might have had CHHH � 1 are associated with tan β ≈
1–2, which is precisely the range eliminated by the CMS limits on gg → A → Zh. In the
end we are left with CHHH ≈ 0.8–1.2 in Type I and CHHH ≈ 0.9–1.02 in Type II. Without
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the gg → A→ Zh limits, we find that values up to CHHH ≈ 1.4 would actually be allowed,
see Fig. 5.31.
In Type I, the possible variation is less important for smaller mA, in particular for mA

below about 100 GeV. Moreover, we note that CHHH ≤ 1 for mh . 60 GeV in both Type I
and Type II. Finally, the smallest values of CHHH < 1 in Type I are found for large tan β,
while in Type II CHHH converges to 1 with increasing tan β.

5.3.4 Signal strengths of the SM-like state H

The variations in the couplings to fermions discussed above have direct consequences for
the signal strengths of H. In Type I, the signal strengths in the H → γγ decay mode are
driven by the value of mH± , while for the H → V V ∗ (V V ∗ = ZZ∗,WW ∗) and H → ττ

decay modes they depend mostly on CH
F , as illustrated in Fig. 5.32. Notice that the CH

F

dependence in the ZZ∗ mode is opposite for gg fusion and vector boson fusion production.
In the case of VBF, a smaller value of CH

F implies a smaller bb̄ partial width and therefore
a larger ZZ∗ branching ratio, whereas in gg production CH

F determines the size of the
top-quark loop contribution which is enhanced for a larger value of CH

F . In contrast, in
Type II, the signal strengths are always dominantly driven by CH

D , as it determines the
H → bb̄ partial width. This is illustrated in Fig. 5.33. In this case, the dependence is always
the same for gg and VBF production.

Figure 5.32: Signal strengths in Type I versus | sin(β − α)| with mH± and CHF color codes.
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Figure 5.33: Signal strengths in Type II versus | sin(β − α)| with mH± and CHF color codes. The
horizontal bars near |sβ−α| ≈ 0.1 arise from the opposite-sign CHD solution.

Putting everything together we find quite distinct correlations of signal strengths as shown
in Fig. 5.34 for Type I and in Fig. 5.35 for Type II. It is especially noteworthy that even in
the deep alignment limit, the signal strengths can significantly differ from the correspond-
ing SM predictions. Moreover, certain combinations can only be reached for specific ranges
of mh and/or mA values. For example, µHgg(γγ) ' µHVBF(γγ) ≈ 0.7 requires mh & 60 GeV

in Type I while it is not reached at all in Type II. Likewise, a suppression of µHgg(γγ)

while µHVBF(γγ) & 1 would point towards a somewhat heavy A in Type I with a slight
departure from strict alignment, while again this combination is not possible in Type II.
Another example is the relation between µHgg(γγ) and µHgg(ZZ∗). In the alignment limit in
Type II we expect µHgg(γγ)/µHgg(ZZ

∗) ' 0.9, with both enhancement or suppression of the
individual µHgg(γγ), µHgg(ZZ

∗) with respect to the SM being possible. In Type I, there is a
band in which this ratio also applies (for all mh) and the signals are always suppressed. For
values of mh >∼ 60 GeV in Type I, in the deep (near) alignment limit we find µHgg(ZZ∗) ≈ 1

(∈ [0.95, 1.02]), while µHgg(γγ) can range from 0.64 to 0.98 (1.4). An analogous discussion
is possible for µHgg(ττ) versus µHgg(γγ).
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5.3 the H –125 scenario in the alignment limit

In general, when H → hh or H → AA decays are kinematically allowed, these (so far)
unobserved decay modes suppress the H branching ratios into SM final states, thus leading
to a simultaneous suppression of all the µHX(Y ) even in the deep alignment regime. This
is apparent in all the correlations shown in Figs. 5.34 and 5.35, in particular it is most
notably visible as the upward-sloping diagonal lines of points in the µHgg(ZZ∗) vs. µHgg(γγ)

and µHgg(ττ) vs. µHgg(γγ) plots for Type I. (However, note that in Type II due to the non-
universal nature of the Yukawa couplings the signal strengths can also be larger than 1
when the H → hh decay mode is open.)

Comparing these results with the h–125 scenario case, it seems very difficult to dis-
tinguish the h–125 scenario from the H–125 one with signal strength measurements and
coupling fits alone. One possibility for such a distinction might be that the measured values
point towards Type I or Type II but are excluded by A→ Zh in the case ofmH ≈ 125 GeV

for a particular model type. Such a result would obviously favor themh ≈ 125 GeV scenario.
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5.3 the H –125 scenario in the alignment limit

Figure 5.34: Examples of correlations between signal strengths in Type I. The top panels show
µHVBF(γγ) vs. µHgg(γγ), the upper middle panels show µHVBF(ZZ∗) vs. µHgg(ZZ∗), the
lower middle panels show µHgg(ZZ

∗) vs. µHgg(γγ) and the bottom panels show µHgg(ττ)

vs. µHgg(γγ). The color code indicates, from left to right, the dependence on |sβ−α|,
mh and mA. Points are ordered from high to low |sβ−α|, mh and mA values.

150
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Figure 5.35: Examples of correlations between signal strengths in Type II. The top panels shows
µHVBF(γγ) vs. µHgg(γγ), the upper middle panels show µHVBF(ZZ∗) vs. µHgg(ZZ∗), the
lower middle panels show µHgg(ZZ

∗) vs. µHgg(γγ) and the bottom panels show µHgg(ττ)

vs. µHgg(γγ). The color code indicates, from left to right, the dependence on |sβ−α|,
mh and mA. Points are ordered from high to low |sβ−α|, mh and mA values. Note
that the correlations look the same in the first two rows of plots (i.e., for VBF vs.
gg production in γγ or ZZ∗ final state) but the actual µ values are different. The
opposite-sign CHD solution is visible as a separate narrow line with: |sβ−α| ≈ 0.1 (left-
hand panels), mh >∼ 65 GeV (middle panels) and mA ∈ [420, 630] GeV (right-hand
panels).
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5.3 the H –125 scenario in the alignment limit

5.3.5 Probing h and A at the LHC

Direct detection of the extra scalar states would naturally be the most direct way to identify
a 2HDM structure. Here, we discuss the prospects to observe either h or A at the 13 TeV
LHC. The correlations of the gg → X and bb̄X cross sections with X = h,A are shown in
Fig. 5.36 for the Type I model and in Fig. 5.37 for the Type II model with the beige color
code representing all points that satisfy the present constraints and the red and dark red
ones, representing points that have a SM-like state H with signal strengths within 5% and
2% of their SM values respectively.

Figure 5.36: σ(bb̄X) versus σ(gg → X) for X = h (left) and X = A (right) in Type I at the 13 TeV
LHC for points satisfying all present constraints (in beige) as well as points for which
the signals strengths from Eq. (5.6) are within 5% and 2% of the SM predictions (in
red and dark red, respectively). The dashed lines indicate σ13(bb̄X) = σ13(gg → X).

Figure 5.37: As in Fig. 5.36 but for Type II.

As expected for the production of h and A in Type I, shown in Fig. 5.36, there is a
strong correlation between the gluon fusion and bb̄ associated production cross sections
since the couplings controlling their sizes are the same (up to a sign in the case of the A);
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5.3 the H –125 scenario in the alignment limit

Ch
U = Ch

D = cosα/ sin β and CA
U = −CA

D = cot β, respectively. On the full parameter space,
σ(gg → A) dominates over σ(bb̄A).
Turning to Type II, for the pseudoscalar production, either the bb̄A or the gg → A cross

section can be dominant depending on the size tan β due to the fact that CA
D ∝ 1/CA

U ∝
tan β. Also, as already noted in Ref. [207], the H–125 scenario can be either eliminated
or confirmed when the LHC measurements of signal strengths reach a precision about 5%.
This could also be observed in the (µgg(ZZ∗), µgg(γγ)) correlation shown in Fig. (5.35).

Before considering specific decay channels, we present the gluon-fusion and bb̄A cross
sections, as functions of mh and mA in Type I and Type II at the 13 TeV LHC in Fig. 5.38.
A cross section of 1 fb is guaranteed for mA up to the maximum possible mass of approx-
imatively 600 GeV. At very small mA and low tan β it can reach 100 pb (recall that the
gg → A cross section is proportional to cot2 β in Type I). On the other hand, the gg → h

cross section in Type I is proportional to (Ch
F )2 and can take on extremely small values. The

reason is that sβ−α can take either sign and its values are such that a perfect cancellation
between the two terms of Ch

F = sβ−α + cβ−α cot β can occur at large tan β. For mh <
1
2
mH ,

this cancellation is also possible, but for most points tan β is small and the cross section
can be as large as 5× 103 pb at mh ∼ 10 GeV. In Type II, any phenomenologically viable
mass in the range 420–630 GeV gives a gg → A cross section larger than 30 fb with values
as large as 10 pb possible for tan β . 1. Moreover, note that the tan β dependence is
opposite for bb̄A compared to gg → A so that one or the other cross section is always large,
as illustrated in the right panel of Fig. 5.37. As for h in Type II, the smallest gg → h

cross section is of order 8 pb at mh ≈ 120 GeV, with values as large as 4–6 × 103 pb for
mh ∼ 80–90 GeV at very large tan β. As previously mentioned, large values of tan β are ex-
cluded for mh < 80 GeV and mh > 90 GeV because of the severe constraints from h→ ττ

decays. For values of mh <
1
2
mH , for which tan β must be small, the gg → h cross section

takes a minimum value of approximatively 100 pb reaching 2 × 103 pb at mh ≈ 10 GeV.
To summarize, the prospects for observing the h are good in Type II, while the prospects
for discovering the A look promising in both Type I and Type II.
Turning now to specific to specific signatures, the cross sections for gg → h → Y with

Y = γγ and ττ in Types I and II are exhibited in Figure 5.39. In Type II, gg → h → γγ

cross sections of at least 1 fb are guaranteed if mh <
1
2
mH . In this same region one finds

that σ(gg → h → γγ) > 0.1 fb in Type I if tan β < 2. For mh >∼ 1
2
mH , cross sections

in the γγ final state can reach 10 fb (3 fb) in Type I (Type II), though they can also be
much lower, especially in Type I. The behavior of σ(gg → h → ττ) is similar with cross
sections above 1 pb over the full mh range in Type II, and also in Type I if tan β is small
enough. Existing limits on σ(gg → h → γγ) at 8 TeV from CMS for mh = 80–110 GeV

are roughly 0.05–0.1 pb at 68% CL [375]. Thus, we expect that future Run 2 data will
eventually provide a sensitive probe in this channel, which will be particularly interesting
if the analyses can be extended to cover the whole mh range down to about 10 GeV.
The cross sections for A production with decays into SM channels, A→ γγ, ττ, tt̄, are

presented in Fig. 5.40. In Type I, the gg → A → γγ (ττ) cross section can be as large
as roughly 15 fb (10 to 1 pb), respectively, for mA ∈ [60, 200] GeV, with minimum values
that would still be potentially observable for mA <∼ 100 GeV for a very large integrated
luminosity. We also note a narrow band of non-excluded points with mA between 10 and
60 GeV, with very large gg → A→ ττ cross sections formA ≈ 10 GeV. FormA ∈ [200, 2mt]
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5.3 the H –125 scenario in the alignment limit

Figure 5.38: Cross sections in Type I (left) and Type II (right) for gg → X as functions of mX

for X = h (upper panels) and X = A (middle panels) with tanβ color code. The
bottom panels depict the cross sections for bb̄A production as function of mA with
tanβ color code. In all six plots, points are ordered from high to low tanβ.

the A cross section is small in both the γγ and ττ channels, and the tt̄ cross section is
either zero or very tiny. Once mA > 2mt, a very substantial gg → A→ tt̄ cross section (up
to about 0.3 pb for tan β > 2 and roughly 0.1–6 pb for tan β < 2) is possible for small tan β,
but as tan β increases this cross section declines rapidly. Turning to Type II, we see that
observation of the A in the γγ final state will be, at best, extremely difficult. In contrast,
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5.3 the H –125 scenario in the alignment limit

Figure 5.39: Cross sections times branching ratios in Type I (left) and in Type II (right) for
gg → h→ Y at the 13 TeV LHC as functions of mh for Y = γγ (upper panels) and
Y = ττ (lower panels) with tanβ color code. Points are ordered from high to low
tanβ.

observation of bb̄A production with A→ ττ may be possible at large tan β. Moreover, bb̄A
production is useful for observing the A → tt̄ decay in Type II. The cross section (not
shown) ranges from 60–0.2 fb for mA ' 420–630 GeV, with only little dependence on tan β.
The cross section for gg → A→ tt̄ is sizeable (up to 8 pb) for very small tan β, but below
0.1 pb for tan β & 2.
While the sizable cross sections discussed above provide interesting probes of the ex-

tended Higgs sector in the alignment limit, the non-standard signatures of A→ Zh and/or
A→ ZH shown in Fig. 5.41 appear to be even more promising. In Type II, there is a strict
lower bound on the gg → A → Zh cross section, with values above 1 pb at small tan β

and at least of order 25 fb at large tan β even at the maximal value of mA = 630 GeV.
In Type I, at low tan β the gg → A → Zh cross sections fall in the range ∼ 1 pb to
20 pb while at large tan β this cross section could be as small as ∼ 0.1 fb (or even smaller
for mA < 220 GeV). Given that the Run 1 searches in this channel remove a significant
portion of the low tan β 2HDM Type I and Type II points, it seems certain that Run 2
results would either be substantially more constraining or reveal a signal.
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5.3 the H –125 scenario in the alignment limit

Figure 5.40: Cross sections times branching ratios in Type I (left) and in Type II (right) for
A → Y signatures at the 13 TeV LHC as functions of mA with Y = γγ (upper
panels), Y = ττ (middle panels) and Y = tt̄ (lower panels) with tanβ color code.
Points are ordered from high to low tanβ.

The cross sections for gg → A→ ZH are typically at least a factor of 100 smaller than
those for the Zh final state. Nevertheless, the A→ ZH decay could provide an additional
probe of the small-to-intermediate tan β regime, but will likely be unobservable at large
tan β in both Type I and Type II.
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5.3 the H –125 scenario in the alignment limit

Figure 5.41: Cross sections times branching ratios in Type I (left) and in Type II (right) at
the 13 TeV LHC as functions of mA for gg → A → Zh (upper panels) and for
gg → A → ZH (lower panels) with tan β color code. Points are ordered from low
to high tan β .

A large gg → A→ ZH cross section could potentially have a substantial impact on the
µHZH(Y ) signal strength through the so-called "feed-down" effects [207, 359], parametrized
here by µFDZH ≡ σ8(gg → A→ ZH)/σ8(qq̄ → ZH). However, we observe that this effect is
small in both Types I and II, where µFDZH < 0.16, 0.06, respectively, for all points, implying
that our global fit of the H properties is not affected by the feed-down.
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5.3 the H –125 scenario in the alignment limit

5.3.6 Alignment in the H–125 scenario: summary

With the H mass eigenstate being approximately aligned with the direction of the scalar
field vacuum expectation value in field space, its coupling to the W and Z bosons tends
towards the SM value, CH

V → 1. Allowing for at most a 1% deviation from unity in CH
V ,

we found that deviations in the couplings to fermions of 10–20% are possible while main-
taining consistency at 95% CL with the LHC Run 1 Higgs measurements. While CH

F in
Type I and CH

U in Type II rather quickly approach unity as |sβ−α| → 0, the approach of
the bottom Yukawa coupling to its SM value in the alignment limit is delayed in Type II,
with CH

D ' 0.72–1.12 even for values of |sβ−α| ≈ 10−2. Moreover, there can be significant
deviations from 1 in the loop-induced coupling to photons: Cγ ' 0.80–1.17 (0.88–0.97) in
Type I (II). In the case of Type I, the reason for the larger range of Cγ and for its extending
also to values above 1 is that the charged Higgs can be light. All these variations in the
couplings feed into distinctive behaviors of the signal strengths. Thus, even in the deep
alignment regime, where one might naively expect everything to be very SM-like, precise
measurements of the signal strengths at 125 GeV can help determine the existence of the ex-
tended Higgs sector. Furthermore, correlations between signal strengths are characteristic
for the model and can point towards a 2HDM of Type I or Type II.
Distinguishing the h–125 scenario from the H–125 one with signal strength measure-

ments and coupling fits alone however seems very difficult, unless one finds values that
are excluded by the A→ Zh search in the mH ≈ 125 GeV case. Preferably, and certainly
more definitively, one would wish to observe the second CP-even scalar, h. We observed
an upper limit on the masses of the CP-odd and the charged Higgs of mA,H± . 630 GeV,
suggesting that all the extra Higgs states of the 2HDM are at least kinematically accessible
at the LHC in this setup. While we did not study the potential for observing the H±, direct
detection of the h and/or A might be possible in a variety of production × decay channels.
Most exciting and enticing is the channel gg → A→ Zh which would reveal the presence
of both the h and A simultaneously. The associated cross section at

√
s = 13 TeV is at least

20 fb (and can be as large as 10 pb) in Type II. In Type I, σ(gg → A→ Zh) is also large,
10 fb to 30 pb, over most of the parameter space, although for very large tan β it can drop
below 1 fb in the ranges mA ' 90–250 GeV and mA & 500 GeV. The searches for A→ Zh

with Z → `` and h→ bb̄ or ττ are therefore excellent probes for discovering or excluding
the 2HDM scenarios with a SM-like H, provided that they are performed without requiring
a SM-like h with mh = 125 GeV. In fact, CMS has already performed such a search for
A → Zh at

√
s = 8 TeV for general mA and mh values (down to 40 GeV), and the limits

they obtained are among the most severe constraints for the scenario studied in this paper.
Other channels of high interest include gg → h → γγ (for mh . 90 GeV) as well as

gg → h → ττ (or µµ) in Type II. The γγ channel may also reveal a light A in Type I
if tan β is small. Moreover, gg → A → ττ (or µµ) can be used to search for a light A in
the 10–250 GeV mass range in Type I, while in Type II it would be preferable to exploit
the bb̄A production mode to search for the same A decays (over the relevant mass range
of mA ' 420–630 GeV).
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5.4 light higgs states

Going further in the possibility of light additional states, we address the seemingly extreme
case in which the h (H) is the SM-like 125 GeV state and the A (A and/or h) are lighter
than 125 GeV, in particular light enough that the SM-like state can decay into them.
Such decays generically have a large branching ratio (early references are [376], [377] and
[258]) and would conflict with the measured signal strengths unless the Higgs-to-Higgs-pair
branching ratio is below about 0.1–0.3 as shown in the global fit performed in Section 3.4,
depending on the model.27 A large survey of exotic Higgs decays may be found in [378].
Only by tuning the model parameters so that the SM-like Higgs has very small coupling to a
pair of lighter Higgs bosons can such a small branching ratio be achieved. Nonetheless, this
is a parameter space window that is not yet totally excluded and that has many interesting
special features, including rather large predicted cross sections for direct production of the
light Higgs boson(s).
Let us note that these scenarios are not achievable in the MSSM because of the strong

interrelations of the Higgs potential parameters required by supersymmetry; a light A
is simply not consistent within the MSSM when the h has mass 125 GeV (unless the
Higgs sector is CP-violating). MSSM scenarios in which the H has mass of 125 GeV

and mA,mh are below mH have been constructed [379], but those to date do not have
mA,mh < 125/2 GeV. In the NMSSM, scenarios with a light a1 and/or h1 are possible
in light of the current data [380–383] but they typically imply small cross sections for
production of the light Higgs boson.28

The key consideration here is the magnitude of the coupling of the SM-like Higgs to a
pair of the other Higgs bosons; ghAA, gHAA and gHhh given by

ghAA = −v
[
(Z3 + Z4 − Z5)sβ−α + Z7cβ−α

]
, (5.7)

gHAA = −v
[
(Z3 + Z4 − Z5)cβ−α − Z7sβ−α

]
, (5.8)

gHhh = −3v
[
Z1cβ−αs

2
β−α + Z345cβ−α

(
1
3
− s2

β−α
)
− Z6sβ−α(1− 3c2

β−α)

Z7c
2
β−αsβ−α

]
. (5.9)

A simple estimate of this magnitude required to satisfy the undetected branching ratio
constraint can be obtained. In terms of gY XX , where Y is the SM-like Higgs and X is the
A for Y = h and either the A or h for Y = H, one can define

R(XX) ≡ Γ(Y → XX)

Γ(Y → bb)
' 1

12K

(
gY XXv

mYmb

)2
β(mX)

β3(mb)
, (5.10)

where β(mX) =
√

1− 4m2
X/m

2
Y and the factor K accounts for QCD corrections and

running quark mass. Taking mY = 125 GeV and assuming purely SM-like couplings for
Y , the constraint BR(Y → XX) = Γ(Y → XX)/(Γ(Y → XX) + ΓSM

tot ) <∼ 0.3 translates

27 Recall that in Section 3.4, the fit to the 2HDMs did not take into account the contribution of the charged
Higgs bosons. Such additional freedom generally weakens the upper bound on BSM width contribution of
the 125 GeV state.

28 NMSSM scenarios with a light a1 and/or h1 that appears in the decay of a SM-like Higgs (e.g. h2 → a1a1,
where h2 is SM-like) have a large literature, the original study being [384].
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into R(XX) . 0.7, where we have used Γ(Y → bb) ≈ 0.6 ΓSM
tot as in the SM for simplicity.

Using the SM-predicted value K ≈ 0.6, we find that |gY XX | <∼ 15 GeV is required for
mX = 62 GeV, which goes down to |gY XX | <∼ 5 GeV for mX ' 10− 40 GeV. We will see
that such a small gY XX is a very strong constraint — without parameter tuning |gY XX | is
most naturally of the order of a TeV.
Let us note that the results presented in this section have not been updated with the

most recent ATLAS and CMS results, and correspond to the original analysis presented
in Ref. [322]. We will however comment on a particularly important result from CMS for
this analysis: the search for the pseudoscalar A in the bb̄A,A → ττ channel in the mass
range mA = 25–80 GeV [340].

5.4.1 Light pseudoscalar in the h–125 scenario

In this scenario, only A can be lighter than the SM-like state. Trading the Zi for the
physical masses, Eqs. (4.53)–(4.55) and (4.59)–(4.62), the hAA coupling is expressed as,

ghAA =
1

2v

[(
2m2

A −m2
h

) cα−3β

s2β

+
[
8m2

12 − s2β

(
2m2

A + 3m2
h

)] cβ+α

s2
2β

]
(5.11)

where in the exact alignment limit, sβ−α = 1,

ghAA =
2m2 − 2m2

A −m2
h

v
. (5.12)

Given that |ghAA| must be very small to have small BR(h→ AA), we see that in this limit
2m2 ' m2

h + 2m2
A is required. While no symmetry motivates this particular choice, it can

certainly be satisfied and we find many allowed points of this nature. In the SM limit, the
interrelations of the parameters in this region are illustrated in Fig. 5.42. This shows the
combined impact of perturbativity and the requirement of small BR(h→ AA). The large
solid filled regions are those allowed by perturbativity for various different values of mH .
The regions surrounded by dashed lines are those consistent with BR(h→ AA) ≤ 0.3, with
the central solid line corresponding to BR(h→ AA) = 0 (or equivalently ghAA=0 here), for
the various mA values coded as shown in the upper-right corner of the plot. We see that the
higher the value of mH , the smaller the tan β that is required by perturbativity. Imposing
both perturbativity and BR(h → AA) ≤ 0.3 strongly constrains m12 ≡ sgn(m2

12)
√
|m2

12|
as well as tan β. Roughly, m12 ' 30–100 GeV and tan β . 10 are the phenomenologically
viable ranges.

Going away from the strict SM limit, there is also another parameter region that gives
small |ghAA| through a cancellation between the first and second terms in Eq. (5.11). This
can be achieved when sin(β+α) is close to one and allows also for larger m2

12. As described
at the end of Section 4.1.4, this requires that tan β is not too small. Indeed, in this limit,

Ch
V = sβ−α →

tan2 β − 1

tan2 β + 1
, (5.13)

where Ch
V
>∼ 0.95 is realized, as approximatively required by the LHC Higgs measurements,

if tan β >∼ 6. As discussed previously, the sin(β + α) ≈ 1 region leads to a coupling of
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Figure 5.42: In the exact alignment limit, regions of the m12 vs. tanβ parameter space consistent
with perturbativity for variousmH values (see in-figure color code in lower-left corner)
and with BR(h→ AA) < 0.3 for the indicated values of mA shown in the upper-right
corner. These results apply to both the Type I and Type II 2HDM. The perturbatively
acceptable region also extends to m2

12 < 0, but this region is not presented since
Eq. (5.12) would give large |ghAA| and therefore large BR(h→ AA).

the SM-like state to down-fermions of opposite sign as compared to the coupling to gauge
bosons and up-type fermions. There is therefore an interesting link between the wrong-sign
Yukawa regime and the presence of a light pseudoscalar state.

An overall view of the allowed low-mA points in m12 vs. cos(β +α) space for the Type I
and Type II 2HDMs is provided by Fig. 5.43, and in the tan β vs. sinα plane in Fig. 5.44.
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Figure 5.43: Phenomenologically viable points with mA ≤ mh/2 in the m12 vs. cos(β + α) plane,
for 2HDM Type I (left) and Type II (right). The cyan points realize the small ghAA
condition close to the alignment limit, with 2m2 ' m2

h + 2m2
A as shown in Fig. 5.42.

The orange points have sin(β + α) ∼ 1, small cos(β + α) < 0 and tanβ & 5.

The cyan points have sβ−α ≈ 1, cos(β+α) > 0 and modest m12, while the orange points
are those with sin(β+α) ∼ 1, small cos(β+α) < 0, tan β > 5 and m12 > 0. (The opposite
case with m12 < 0 and cos(β + α) > 0 could also lead to the necessary cancellations
in Eq. (5.11) but turns out to be excluded by the 125 GeV Higgs signal constraints.)
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Figure 5.44: Same as Fig. 5.43 but in the tanβ vs. sinα plane. The solid black and purple lines
indicate sβ−α = 1 and sin(β + α) = 1, respectively. The dashed black (purple) lines
are iso-contours of values of sβ−α (sin(β + α)) as indicated on the plots.
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Figure 5.45: Allowed points in the BR(h → AA) vs. ghAA plane, on the left for Type I, on the
right for Type II. The value of mA is colour-coded as indicated by the scales on the
right of the plots.

In Fig. 5.44, points to the right of the sin(β +α) = 1 curve have cos(β +α) < 0 and those
to the left have cos(β+α) > 0. The requirement of small ghAA (coupled with m12 > 0) thus
creates a very sharp boundary between acceptable vs. non-acceptable parameter points.
In the Type II model the orange points correspond to the wrong-sign Yukawa coupling
Ch
D ≈ −1, whereas the cyan points have Ch

D > 0.
For completeness, we show in Fig. 5.45 the explicit values of BR(h→ AA) vs. ghAA for

the allowed points. We see that ghAA is indeed tightly constrained to small values of the
order of 10 GeV. Note that the allowed range for BR(h→ AA) is different for Type I and
Type II models because of the different structure of the h couplings to fermions.

Having understood the constraints on this scenario, we now pursue the implications for
LHC phenomenology. In Fig. 5.46 we plot the reduced couplings of h to gluons and to
photons, Ch

g vs. Ch
γ . The suppressed values of Ch

γ come from the negative contribution of
the charged Higgs to the hγγ loop-induced coupling. In the exact alignment limit, sβ−α = 1,

ghH±H± = ghAA − (λ5 − λ4)v = ghAA − 2(m2
H± −m2

A)/v . (5.14)
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Figure 5.46: As Fig. 5.43 but for Chγ vs. Chg .
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Figure 5.47: Signal strengths µhgg(V V ) vs. µhgg(γγ) for the Type I and Type II models. The orange
points are, as for previous plots, the points with sin(β + α) ∼ 1.

The first term, ghAA, has to be small as discussed above and the second term is always neg-
ative because mH± is necessarily larger than about 80 GeV due to direct LEP constraints.
To illustrate the impact on observables, we plot in Fig. 5.47 the signal strengths for

gg → h → V V versus gg → h → γγ, i.e., µhgg(V V ) vs. µhgg(γγ). Our first observation
is that µhgg(γγ) is suppressed for all points in Type I as well as for the orange points in
Type II. The observed deviations from the SM predictions of unity are of course consistent
with current data, since this was a requirement of the scan, but it is obvious that future
higher precision measurements will strongly constrain these scenarios. Remarkably — and
in contrast to the case when mA > mh/2 — it is impossible to simultaneously achieve
µhgg(γγ) = 1 and µhgg(V V ) = 1 in either Type I or Type II when mA ≤ mh/2 as contrary
to the general 2HDM case (see Fig. 2 of [208] for comparison). Thus, this scenario will be
excluded should the Higgs observations converge sufficiently close to the SM expectations.
Figure 5.48 shows BR(h → AA) vs. the signal strength µhgg(γγ). From the left plot we

can directly see that in Type I a precise measurement of this signal strength gives an upper
bound on the allowed h → AA branching ratio. For instance, if µhgg(γγ) is measured to
be within 10% of unity, this means BR(h → AA) <∼ 0.01. Conversely, a measurement of
µhgg(γγ) ' 1 combined with detection of h→ AA decays implies that the Type II model is
strongly preferred and that the wrong-sign Yukawa solution (orange points) is excluded.
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Figure 5.48: BR(h→ AA) vs. µhgg(γγ) for the Type I and Type II models.

Let us now turn to the question of the size of the cross sections for A production with
decays to the potentially observable ττ and µµ final states. Figure 5.49 shows the gluon
fusion and bb̄ associated production cross sections at

√
s = 8 TeV times BR(A → ττ).

As can be seen, the A → ττ signal can have quite substantial cross sections over the
whole mass range considered. The cross sections for the A → µµ signal have exactly the
same shape but are about a factor 280 lower. For reference, naive estimates suggest that,
before cuts and efficiencies, for the existing 8 TeV data set with integrated luminosity of
L ' 20 fb−1, a cross section of order 10 pb (200, 000 events) should be observable in the ττ
final state while 0.1 pb (2000 events) should be observable in the µµ final state, especially
in the case of bb̄ associated production by using modest pT b-tagging. From Fig. 5.49,
we observe that these levels are reached in the case of Type II for essentially the entire
mA ≤ mh/2 region in the case of gluon fusion and for the orange points in the case of bb̄
associated production.29 The cross sections for the orange points are very large and should
produce readily observable peaks.
Based on this analysis, the CMS collaboration has initiated a dedicated search for

bb̄A,A → ττ in the mA = 25–80 GeV mass range [340], see Fig. (5.50). As expected,
their sensitivity to the wrong-sign solution points is impressive and the majority of these
points are actually excluded by the analysis. More than an order of magnitude in sensitiv-
ity should be gained in order to begin to probe they cyan points with low tan β. In Type I
many of the cyan points have a gluon fusion cross section at the probably observable 10 pb

(0.1 pb) level in the ττ (µµ) final states and the orange points have cross sections that are
almost certainly too small for detection in the Run 1 data set. We also observe that the
CMS search is not sensitive to the bb̄A channel in Type I, the predicted cross sections are
at least an order of magnitude smaller than the current experimental exclusion.
Finally, we note that running at higher energies will not straightforwardly improve the

sensitivity to the low mA region, as the cross sections at 13–14 TeV are barely a factor
2 larger than those at 8 TeV. Therefore, one will need to accumulate more statistics via
higher total integrated luminosity.

29 Recall from Fig. 5.44 that the orange points can have high tanβ while the cyan points have quite modest
tanβ values. This implies that the bb̄ coupling in the Type I (Type II) model is suppressed (enhanced).
As a result, the orange points have the smallest (largest) cross sections in the case of Type I (Type II).
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Figure 5.49: Cross sections at
√
s = 8 TeV for light A production from gluon fusion (top row) and

bb̄ associated production (bottom row) in the ττ final state. The cross sections for
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5.4.2 Light (pseudo-)scalars in the H–125 scenario

We first note that in the H–125 scenario of Type II the combination of B-physics con-
straints and EW precision observables impose a strong lower bound on A, above∼ 400 GeV,
as shown in Fig 5.23. Only h can thus have a mass below mH/2 in Type II. In contrast, in
the Type I model either mA or mh can be smaller than mH/2, but LEP limits imply that
they cannot be simultaneously light. This follows from the fact that the HV V coupling and
the ZhA coupling are both proportional to cβ−α. Thus, for a SM-like H, i.e., |cβ−α| ≈ 1 as
required by signal strengths measurements, the ZhA coupling is nearly maximal and the
Z∗ → hA cross section is too large, barring phase-space suppression, to be in agreement
with the LEP measurements.

In practice we can therefore consider the H → AA and H → hh cases independently
of one another. With this in mind, we turn to the conditions for achieving small trilinear
couplings in order to evade too large BR(H → AA) or BR(H → hh). Analogous to
Eq. (5.11) we find

gHAA =
1

2v

[(
2m2

A −m2
H

) sα−3β

s2β

+
[
8m2

12 − s2β

(
2m2

A + 3m2
H

)] sβ+α

s2
2β

]
(5.15)

and
gHhh = −1

v
cβ−α

[
2m2

12

s2β

+

(
2m2

h +m2
H −

6m2
12

s2β

)
s2α

s2β

]
. (5.16)

One class of scenarios is easily understood by taking the strict limit of cβ−α = 1, yielding

gHXX =
2m2 − 2m2

X −m2
H

v
, X = h,A . (5.17)

Analogous to the h–125 case, m2 should be small and positive to achieve small enough
|gHXX |. The interplay of the requirements of perturbativity and of small |gHXX | is illus-
trated in Fig. 5.51. We see that for mh ≤ 60 GeV, small tan β below about 2 is required.
If A is below mH/2 but not h however, there is a bit more freedom and tan β can go up
to 10–15, tightly related, however, with m12 for any given value of mA.
As in the h–125 scenario, sufficiently small |gHXX | can also be achieved by resorting to

cancellations between the various terms in Eq. (5.15) and Eq. (5.16). Here, the cβ−α = 1

term shown in Eq. (5.17) is positive for larger m12 values than those shown in Fig. 5.51
and can be canceled by the remaining term(s) for cos(β + α) ≈ 1.
Putting everything together, including the experimental constraints, we end up with the

situation shown in Fig. 5.52. The top row shows allowed points in the m12 vs. tan β plane
(analogous to Fig. 5.51); the bottom row displays these same allowed points in the tan β

vs. sinα plane. As explained at the beginning of this section, in Type I either h or A can
be light (but not both) while in Type II only h can be light. To distinguish these two
cases, points with mA < mH/2 are shown in red and points with mh < mH/2 in blue.
Considering first the top row of plots we see that, in agreement with Fig. 5.51, there is a
small allowed region with mh < mH/2 at m12 ' 60–80 GeV and tan β <∼ 2. This region
occurs for both Type I and Type II, although it is more constrained in Type I. In Type I
there is moreover a diagonal strip of allowed points with mA < mH/2 at tan β ' 2 − 12,
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Figure 5.51: Constraints in them12 vs. tanβ plane for theH–125 case in the exact alignment limit.
The shaded regions are those allowed by perturbativity for mh values indicated in
the lower-left corner of the plot. The narrow strips between the dashed lines have
BR(H → XX) < 0.3 for mA < mH/2 or mh < mH/2 (the regions are the same
for the two cases) with the color code for the X = h or A masses given in the
upper-right corner of the plot. The solid line in the middle of the dashed ones shows
BR(H → XX) = 0 or equivalently here gHXX = 0.

as expected from Fig. 5.51. The points below this strip are mostly cos(β + α) ≈ 1 points
for which cancellations occur and they can have both mA < mH/2 or mh < mH/2. Note
that no such points survive in Type II.
In Fig. 5.53, we take a closer look at the allowed points in the mh vs. mA plane for

Type I. We see that indeed no points survive in the region where both mh and mA are
below mH/2. As mh increases, some low mA points appear, but these correspond to either
mA <∼ 12 GeV for which there are no published limits at large mh on e+e− → Z∗ → hA

or to mA >∼ 40− 50 GeV and mh >∼ 90 GeV i.e., sufficiently close to LEP threshold as to
escape limits on the hA final state by virtue of suppressed cross section. Between 15 GeV

and 40 GeV, LEP limits are strong enough to eliminate most of the points. It is also
worth noting that the cyan points with sinα > 0 and the orange points with sinα ≈ −1

occupy rather distinct parts of the mh vs. mA plane. In particular, if a light scalar with
mh < 60 GeV plus a pseudoscalar with mA < 400 GeV were discovered, this would fix
sinα ≈ −1 in Type I.
Let us now explore the phenomenological consequences of the H–125 scenario for the

LHC. To this end, we first show in Fig. 5.54 the relation between the signal strengths for the
high-resolution channels µHgg(V V ) versus µHgg(γγ). As in the h–125 case, quite substantial
deviations from the SM values of unity are possible. With the increased precision expected
at Run 2, the Higgs measurements at the LHC should be sensitive to such deviations.
Moreover, as in the h–125 scenario, the exact SM case µHgg(γγ) = µHgg(V V ) = 1 cannot be
obtained in these scenarios with light h or A. Though not shown here, this tension with
SM-like signal strengths is also apparent in the µHVBF(γγ) vs. µHgg(γγ) plane. Should the
signal strength measurements for either of these pairs converge to values that lie within
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Figure 5.52: Phenomenologically viable points in the H–125 scenario with light (pseudo-)scalars
in the Type I (left) and Type II (right) models. The upper row shows the projection
onto the m12 vs. tanβ plane for comparison with Fig. 5.51. The lower row shows the
tanβ vs. sinα plane, including contours of constant cos(β±α) and sin(β+α). In all
four plots, the red points have mA ≤ mH/2 while the blue points have mh ≤ mH/2.

10% of their SM values the H–125 scenarios withmh ormA belowmH/2 will be excluded.30

For completeness we show in Fig. 5.55 the Higgs-to-Higgs-pair BR(H → XX), X = h or A,
versus µHgg(γγ). Despite the existing Run 1 constraints, the branching ratios can be sizeable
and it is thus interesting to look for these decays.
The most important issue is whether or not the existing 8 TeV, L = 20 fb−1 data set

could be sensitive to this scenario by looking for the light h or A in the ττ or µµ final
states. The relevant plots are given in Fig. 5.56. Since tan β cannot be large in the Type II
model (see Fig. 5.52) and there is no tan β enhancement of the bb̄ coupling in the Type I
model, it is mostly gluon fusion that is relevant. σ(gg → X) × BR(X → ττ) exceeds the
required 10 pb (or 0.1 pb for decays into µµ) in particular for the light h case, X = h. Light
pseudoscalars (possible only in Type I) have smaller cross sections and will be harder to
detect. Concretely, only for gluon fusion with A→ ττ and mA <∼ 12 GeV does one obtain
a cross section as large as 10 pb in the ττ channel, though for mA > 40 GeV cross sections
are still between 1 pb and 10 pb.

30 Comparing with Fig. 7 of [208] we see that this tension with SM-like signal strengths is much less in the
general H–125 case with heavier h,A.
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Figure 5.54: Signal strengths µHgg(V V ) vs. µHgg(γγ) for the Type I and Type II models. Points with
mA ≤ mH/2 are shown in red and points with mh ≤ mH/2 in blue.
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Figure 5.55: Branching ratios of H → XX (X = h,A) decays vs. µHgg(γγ) for the Type I and
Type II models. Points with mA ≤ mH/2 are shown in red and points with mh ≤
mH/2 in blue.

A final comment concerns the issue of vacuum stability in these scenarios. As shown in
[293] and already mentioned in Section 4.1.5, the 2HDM minimum is the global minimum
only if D ≡ m2

12(m2
11 − k2m2

22)(tan β − k) > 0, where k = (λ1/λ2)1/4. However, given
that D < 0 may still correspond to a metastable vacuum, we have chosen not to require
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Figure 5.56: Cross sections at the 8 TeV LHC for light X = h,A production from gluon fusion
(upper row) and bb̄ associated production (lower row) in the ττ final state. The blue
points are for X = h, the red points for X = A.

D > 0; one would need to compute the corresponding vacuum lifetime, which was beyond
the scope of this study. We note that were we to require D > 0 this would eliminate only a
small percentage of the h–125 scenario points, but would exclude about 20% of the points
in the H–125 scenario.

5.4.3 Conclusions: light states and the alignment limit

We have considered 2HDM scenarios of Type I and Type II in which the A or h has
mass below one-half that of the observed 125 GeV SM-like Higgs state, when the lat-
ter is identified with either the lighter CP-even h or heavier CP-even H. Though signal
strength measurements of the 125 GeV state lead to non-negligible tuning between the
2HDM parameters, this region is perfectly sound phenomenologically and we investigated
its signatures at the LHC. In the scenarios under consideration, the signal strengths of
the ∼ 125 GeV Higgs boson can actually not all be SM-like. Should the signal strength
measurements in the high-resolution γγ and V V channels converge to their SM values to
within 10% or better, then these scenarios could be excluded. Moreover, in the h–125 case,
surprisingly large gluon fusion and bb̄ associated production cross sections are possible for
a light pseudoscalar in the 10–60 GeV mass range. A recent CMS analysis investigated the
bb̄A,A→ ττ channel in the low-mass region and lead to the exclusion of a large portion of
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the previously allowed parameter space. We eagerly await for new results from the second
run of the LHC.
Overall, one finds ample motivation from these 2HDM scenarios for the experimental

exploration of channels with Higgs particles with masses below about 60 GeV in the ττ
and µµ final states. If sufficient sensitivity is reached and nothing is observed, then many
of the 2HDM scenarios explored in this analysis will be eliminated. On the other hand, if
such a light Higgs is detected then models such as the MSSM will be eliminated and a
strong preference in favor of, e.g., a general 2HDM or the NMSSM will arise.
More generally, it is possible that the observed 125 GeV Higgs boson appears SM-like

due to the alignment limit of a multi-doublet Higgs sector. This does not necessarily imply
that the additional Higgs states of the model are heavy, and they could in fact be lighter
than 60 GeV. Such realization of the alignment limit, if realized in nature, would lead to
exciting new effects to be probed at Run 2 of the LHC. The precision measurements of
the 125 GeV state properties can be used to discriminate between the Yukawa structure
of the 2HDM and more importantly, can act as indirect probes of the extra scalar states.
We also identified several channels of interest for the near-future that could provide severe
constraints on the 2HDM parameter space. For instance, in the H–125 scenario, the A→
Zh channel has a lower bound on the cross section that is very favorable for a total
exclusion, or possible discovery, during the next few years.
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Part III

M IN IMAL FLAVOR VIOLATION IN THE
MIN IMAL SUPERSYMMETRIC

STANDARD MODEL

In this part, the idea of flavor alignment as a solution to the flavor puzzles
present beyond the Standard Model is discussed. Going further, the Minimal
Flavor Violation hypothesis is defined as a minimal and natural breaking of
the flavor symmetry. We enforce it in the R-parity violating Minimal Super-
symmetric Standard Model, which remarkably allows the model to pass all
flavor bounds, including the tight constraints on the proton lifetime. Our focus
here will be to analyze the evolution of the baryonic R-parity violating cou-
plings under the renormalization group. If present, the flavor alignment might
originate from a very high scale, where a fundamental flavor mechanism takes
place. It is then crucial to understand whether such an alignment could hold
down to the low-scales.

Dans cette partie, l’idée d’alignement de la saveur est discutée comme une so-
lution aux problèmes de saveur au-delà du Modèle Standard. L’hypothèse de
Violation Minimale de la Saveur est ensuite définie comme une brisure minimale
et naturelle de la symétrie de saveur, et est implémentée dans le Modèle Stan-
dard Sypersymétrique Minimal avec violation de la parité R. Remarquablement,
cela permet au modèle d’être en accord avec toutes les contraintes de saveur,
en particulier celles particulièrement fortes sur la durée de vie du proton. Notre
but principal ici est d’analyser l’évolution des couplages violant la parité R et
le nombre baryonique sous le groupe de renormalisation. Une telle étude est
en effet primordiale étant donné que l’alignement de saveur, si présent dans la
nature, devrait émerger d’un mécanisme dynamique fondamental de la saveur
à très haute énergie. Il est ainsi déterminant de savoir si un tel alignement de
la saveur est conservé à basse énergie.
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6
MIN IMAL FLAVOR VIOLATION AND SUPERSYMMETRY

As discussed in Section 2.4, the SM Yukawa sector is highly non-generic and presents
large hierarchies among its parameters. Moreover, there are wide classes of flavor violating
processes that are highly suppressed for several accidental reasons. So far however, in the
flavor sector, no persisting large deviation from the SM predictions has been observed. New
sources of flavor violation should therefore either originate from new high scale phenomena,
which would then require an immense fine tuning to live with the quantum instability
of the electroweak scale and would raise the hierarchy problem, or it should be highly
non-generic if the NP scale is relatively light. Decoupling of NP is certainly possible but
not very satisfying theoretically or even for less pragmatic reasons; we sure would like to
directly observe new phenomena at energy scales that we can currently probe. The latter
possibility, on the contrary, is something that might be more acceptable. After all, the SM
flavor sector is itself very tuned and we should accept the possibility that a similar amount
of tuning is also present in the NP flavor structures. It is not difficult to realize that a kind
of alignment of the NP structures with the SM Yukawa sector would automatically soften
the flavor problem.
In this chapter we make use of the SM flavor symmetry in order to define a framework

in which such alignment, or possibly misalignment, of the new sources of flavor violation
with the SM flavor sector can easily be identified. Going further, this can be used to define
a naturalness criterion for flavor structures and it even gives a well-defined way to enforce
flavor naturalness in a given NP scenario: this is the Minimal Flavor Violation (MFV)
hypothesis [385, 386]. We then describe how MFV is implemented in a specific model that
suffers largely from flavor issues otherwise: the Minimal Supersymmetric Standard Model
(MSSM). Our focus will be on the renormalization group properties of the minimally flavor
violating MSSM. Clearly, if such a flavor alignment takes place it should be generated at
a high scale, presumably at the scale where yet-unknown fundamental dynamics should
generate all flavor structures. It is then important to check whether this alignment holds
at low scales and thus, whether we could expect MFV to have any direct observable conse-
quences. Specifically, we will present a study of the baryon number violating dimension-4
operator in the MSSM based on “Baryonic R-Parity Violation and its Running” [387], in
collaboration with Christopher Smith and published in JHEP.
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6.1 a flavor alignment

6.1.1 Restoring the flavor symmetry

Let us recall that the SM fermion kinetic terms have a large global symmetry under which,
for a given quark representation, the different quark flavors can be mixed into one another.
Specifically, the flavor symmetry group GF consists of a U(Nf = 3) factor for each fermion
representation,

GF =
[
U(3)Q × U(3)U × U(3)D

]
×
[
U(3)L × U(3)E

]
≡ Gq

F ×Gl
F , (6.1)

whereGq
F andGl

F are defined as the subgroups acting on quarks and leptons respectively. In
the SM the flavor symmetry is only broken, explicitly, in the Yukawa sector and this leads to
the physical distinction between fermion flavors. The flavor group can also be schematically
factorized as GF = SU(3)5× U(1)5. The five independent U(1)Q,U,D,L,E factors can be
linearly transformed into the equivalent set U(1)B,L,Y,PQ,E, where PQ is the Peccei-Quinn
charge while Y is the hypercharge (under which the Higgs doublet is not charged in contrast
to the gauge hypercharge). The charges of the different fermion representations under these
abelian groups are given in Table 13. Out of these five U(1)’s, only two are non-anomalous:
Y and B − L. This will however have no consequence for our following considerations, a
particularly clear discussion of these matters can be found in Ref. [106].

U(1)B U(1)L U(1)PQ U(1)Y U(1)E
Q 1/3 0 0 1/3 0
U -1/3 0 1 -4/3 0
D -1/3 0 1 2/3 0
L 0 1 0 1 0
E 0 -1 -1 2 1

Table 13: Charges of the different fermion representations under a specific linear combination of
the five U(1) flavor factors. Under the original U(1)5, the charges are simply diagonal.
The linear transformation between the two bases is then B = (Q−U−D)/3, L = L−E,
PQ = U +D + E and Y = (Q− 4U + 2D)/3− (L− 2E).

Under aGF transformation, the Yukawa Lagrangian takes the following form [recall Eqs.(2.59)
and (2.58)],

−LYukawa
GF−−→ Ug†UYugQQH +Dg†DYdgQQH̃ + Eg†EYegLLH̃ + h.c. , (6.2)

and is clearly not invariant. The flavor symmetry can however be formally recovered if the
Yukawa couplings are given non-trivial transformations under GF , i.e., they are promoted
to spurions; non dynamical fields that have a specific transformation under GF . Even
though it is an artificial construction, a better understanding of the effects of the GF
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breaking will be gained using this formalism.31 Generally, promoting order parameters to
spurions allows to write new operators in terms of the spurions while formally realizing the
original symmetry. Freezing them to their physical values (background values) afterwards,
captures the effects of the explicit symmetry breaking. Here, the Yukawa couplings should
transform as

Yu → gUYug
†
Q, Yd → gDYdg

†
Q, Ye → gEYeg

†
L , (6.3)

in order to recover flavor invariance of the SM. Defining Xu,d ≡ Y†u,dYu,d for future conve-
nience, we note that,

Xu,d → gQXu,dg
†
Q , Yu,dY

†
u,d → gU,D(Yu,dY

†
u,d)g

†
U,D . (6.4)

Alternatively we can write,

Yu ∼ (3̄,3,1)GqF , Yd ∼ (3̄,1,3)GqF , Ye ∼ (3̄,3)GlF , (6.5)

where 3 and 3̄ are the fundamental representation of the flavor SU(3)’s and its conjugate,
respectively. This represents the directions of the GF breaking by the Yukawa couplings.
In this notation, we only keep track of the spurion behavior under the non-abelian group
part. According to Eq. (6.4), Xu ∼ Xd, i.e., they have the same transformation under
GF . Once all terms formally invariant under GF are written, spurions should be frozen to
their physical values for numerical evaluation. Here we have two choices (see e.g. Eq. (2.64)
and text around): either going to the basis in which the up-type quark mass eigenstates
are aligned with the gauge eigenstates, the up-basis, or going to the basis in which the
down-quark mass and gauge eigenstates are aligned, the down-basis :

up-basis:
v√
2
Yu = mu,

v√
2
Yd = md.V

†
CKM ,

v√
2
Ye = me , (6.6)

down-basis:
v√
2
Yu = mu.VCKM ,

v√
2
Yd = md,

v√
2
Ye = me . (6.7)

In both bases, the lepton Yukawa matrix is diagonal, Ye = Diag(ye, yµ, yτ ), as we have not
included flavor mixing in the lepton sector (absence of right-handed neutrinos).

6.1.2 Using the flavor symmetry in the Standard Model

Under the spurious transformation of the Yukawa couplings, the SM is formally invari-
ant under GF but what can we gain from that ? At the dimension-4 level, all operators
inducing flavor violation are naturally all already present in the SM, these are the terms
present in LYukawa. Having recovered the flavor symmetry hence does not provide any more
information about the structure of flavor violation at this level. It is however very useful
to gain insights about higher-order operators.

31 This approach is widely used in the study of effective QCD models after the chiral symmetry SU(3)L×
SU(3)R is explicitly broken due to quark mass terms. The quark mass matrix is promoted to a spurion
by allowing it to transform under the chiral group. Lagrangian terms formally invariant under the chiral
symmetry are written in terms of the spurion and the explicit effects of chiral symmetry breaking are
obtained by setting the mass matrix to its background value Diag(mu,md,ms).
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For instance, let us go back to the b→ sγ transition. At dimension-6, the operator with
the right structure is the following,

O7 = e
cIJ

Λ2
DIσµνQ

JH̃F µν (6.8)

where σµν = 1
2
i[σµ, σν ], I, J are flavor indices, c is a Wilson coefficient and Λ the scale

at which this effective operator is generated. Clearly, this operator is not GF invariant
since DQ→ Dg†DgQQ 6= DQ. Let us use the spurion formalism introduced in the previous
paragraph in order to formally recover GF invariance. This can be achieved if the Wilson
coefficient carries a non-trivial flavor structure, cIJ 6∝ δIJ , specifically it should transform
as,

c→ gDcg
†
Q , (6.9)

i.e., c ∼ YD according to Eq. (6.3). There is actually an infinite number of terms that have
the right transformation property,

c = YdQ8 , (6.10)

where Q8 transforms as Q8 → gQQ8g
†
Q ∼ (8,1,1)GqF , i.e., it is an octet under SU(3)Q.

Following Eq. (6.4), Q8 has the general form,

Q8 =
+∞∑
n=0

2n∑
i=1

xn,i P(i)
n (Xu,Xd) , (6.11)

where P(i)
n (Xu,Xd) is the i-th polynomial term with degree n and xn,i is a complex number.

The polynomial degree is defined as the total number of Xu and Xd powers, there are
indeed 2n such terms for a given order n. For instance, P(i)

0 = { l1}, P(i)
1 = {Xu,Xd},

P(i)
2 = {X2

u,XuXd,XdXu,X
2
d} and P(i)

3 = {X3
u,X

2
uXd,XuXdXu,XdX

2
u}+{Xu ↔ Xd}. All

these terms transform as SU(3)Q octets as desired. Of course terms with high powers of the
fundamental octets Xu and Xd are numerically suppressed by the generally small Yukawa
couplings and Xu can be considered dominant over Xd (if their respective coefficients are
of the same order). Going back to O7, the dominant terms in the expansion of the Wilson
coefficient can therefore be written as

c = Yd

(
c1 l1 + c2Y

†
uYu + . . .

)
. (6.12)

Such series are dubbed flavor expansions. Studying down-type quark transitions, it is more
convenient to go in the down-basis, in which case c takes the form,

v√
2
c = md

(
c1 l1 + c2V

†
CKM

2m2
u

v2
VCKM + . . .

)
. (6.13)

After EWSB and picking the terms contributing to b → sγ yield (the first term is flavor-
diagonal and thus does not contribute),

O7 ⊃ e
c2

Λ2

∑
i=u,c,t

[
2m2

i

v2
(mbV

∗
ibVis)

]
× b̄RσµνsLF µν

' e
c2

Λ2

[
2m2

t

v2
(mbV

∗
tbVts)

]
× b̄RσµνsLF µν . (6.14)
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The mb factor is the expected chirality-flip factor. The CKM structure that is found,
V ∗tbVts, is exactly the one that would have been obtained by computing the amplitude
of the corresponding Feynman diagram. This approach therefore predicts accurately the
SM scaling of flavor violating processes. This should be no surprise. Since the Yukawa
couplings are the only source of flavor breaking in the SM, this approach is actually exact
in the SM. This example illustrates how the MFV hypothesis can generically reconcile
flavor observables with TeV scale new physics. Due to the CKM scaling, the scale Λ is
now allowed to take small values, whereas it should have been several orders of magnitude
above the TeV scale were the Wilson coefficient c of order 1 [104, 106].

6.1.3 Minimal Flavor Violation

Beyond the SM, new sources of flavor breaking may be present. The program that we have
previously performed in the SM can be extended to larger flavor sectors. First, the new
flavor structures and their GF breaking directions need to be identified, the appropriate
spurious transformations of these new structures can then easily be determined. In this
theory, expressing the non-renormalizable operators in terms of the new spurions and the
Yukawa couplings accurately predicts the flavor scaling of the operators. Of course, in order
to make definite predictions, the physical background values of the BSM flavor structures
should be known, which is generally not the case. The MFV hypothesis will allow us to
write these unknown flavor structures in terms of the Yukawa couplings.

An important guidance to keep in mind is the possible high scale dynamics behind the
breaking of GF . Above a certain scale MFlavor, the flavor symmetry may be exact but is
spontaneously broken by the dynamics of a finite set of fundamental flavor fields. Acquiring
vevs, the low-energy flavor structures might arise in this way. A simple realization of this
idea is the Froggatt-Nielsen mechanism [388] that can reproduce the large mass hierarchies
of the Yukawa couplings. However in the presence of flavor structures beyond the Yukawa
sector, a more complicated setup could be present. If such a mechanism is at work in
nature, we could expect a possible redundancy in the low-energy flavor structures, as they
all originate from the same fundamental flavor sector [106]. Let us consider for instance a
fundamental flavor structure F that gives rise to two low-energy structures L1 and L2 that
break GF in the same directions, i.e., L1 ∼ L2. We can thus write,

L1 = a1 l1 + a2F + a3F
2 + a3F

3 + . . . , L2 = b1 l1 + b2F + b3F
2 + b3F

3 + . . . (6.15)

In that case, L2 can be expressed in terms of L1 (or the other way around),

L2 = c1 l1 + c2L1 + c3L
2
1 + . . . (6.16)

Due to the common flavor structure at high-scale, the low-energy structures can be ex-
pressed in terms of each other. Assuming that L1 is known experimentally but not L2,
this can be used to predict the structure of the unknown flavor structures. In particu-
lar, the perturbative convergence of the expression above may be such that only the first
terms are enough to fully capture the structure of L2, this would require Tr(F) . 1 (when
properly normalized). Of course the coefficients ai and bi are actually unknown (but could
be presumably calculable in the high-energy theory). A naturality criterion can now be
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defined. These expressions are deemed natural if the ai and bi coefficients are of order 1,
which means that the low-energy hierarchies are directly determined by the fundamental
structure of F. In that case, the ci coefficients will also be of order 1.
We can now use this to state the MFV hypothesis [385, 386]: the GF symmetry is only

broken by the Yukawa couplings, in a natural way. Technically, the flavor symmetry should
be formally restored by promoting all flavor structures to spurions, the new BSM flavor
couplings are then expressed as natural expansions of the Yukawa spurions. This means
that if there exists a new structure X with a given spurious transformation, then,

X =
∑
i

xiOi , (6.17)

where the Oi are polynomials constructed out of the Yukawa couplings only (minimality
condition) transforming as X (Oi ∼ X ∀i) and all coefficients xi are of order 1 (naturalness
condition). The minimality condition can be motivated by the possible low-energy flavor
redundancy between all flavor structure; it would then be possible to express the unknown
BSM structures in terms of the known ones. Clearly, it is a minimal breaking of GF in
the sense that only the known and necessary flavor structures describing the observed
fermions masses and mixings are used to break GF . For instance, if X → gUXg†U , then
X = YuQ8Y

†
u where the octet coefficients should be of order 1. This does not mean that

the Yukawa couplings are more important or more fundamental than the unknown flavor
structures, but this solely reflects the possible redundancy. The MFV hypothesis leads to
a direct transmission of the SM flavor hierarchies to the BSM sector, hence automatically
suppress the contributions to flavor violating processes and soften the flavor puzzles [389–
391].

Following Eq. (6.11), the octet term has actually an infinite number of terms. It has how-
ever been shown that this series can be partially resummed into 17 independent terms [392].
The Cayley-Hamilton theorem is used to prove this result: a generic n×n matrix M cancels
its characteristic polynomial. In particular, for a 3× 3 matrix,

M3 − Tr(M)M2 +
1

2

[
Tr(M)2 − Tr(M2)

]
M− det(M) l1 = 0 . (6.18)

The third power of the matrix can therefore be expressed in terms of lower powers, with
the expansion coefficients being related to the traces of powers of M which are all of
order 1 if the trace of M also is [the determinant can be expressed as traces of powers of
M by taking the trace of Eq. (6.18)]. Therefore, the reduction of flavor expansions using
the Cayley-Hamilton theorem is compatible with MFV since no large coefficients can be
generated in this process. The 17 terms are clearly too much to describe a generic octet
Q8, only 9 complex terms are needed to build a generic basis of the 3×3 complex matrices.
The octet can be redefined by taking the 9 leading terms, i.e. there terms that involve the
least powers of Yukawa couplings,

Q8 = q1 l1+q2Xu+q3Xd+q4X
2
u+q5X

2
d+q6{Xu,Xd}+iq7[Xu,Xd]+iq8[X2

u,Xd]+iq9[X2
d,Xu] .

(6.19)
By construction, the coefficients of the flavor expansions are basis-independent, i.e.,

they have the same numerical values in all flavor bases (in the up-basis and down-basis for
instance). They thus provide a very convenient and unambiguous way to parametrize flavor
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structures. It should be realized that requiring natural expansion coefficients is a strong
constraint. For instance, projecting a generic 3 × 3 matrix on Eq. (6.19) will generate
very large coefficients qi because of the very hierarchical structure of the 9 terms. For
a given flavor expansion, if experimental constraints indicate the presence of very large
expansion coefficients, this would signal the presence of a new type of flavor structure, not
aligned with the Yukawa couplings and probably originating from a different fundamental
flavor sector. On the contrary, very small coefficients would indicate that the MFV flavor
suppression is not enough and that a stronger fine tuning in the new flavor structures
is present. All in all, these flavor expansions provide a well-defined naturalness criterion
for flavor structures, where BSM flavor structures are considered natural if they contain
Yukawa-like hierarchies.

To summarize, let us recall the main properties and advantages of the flavor expansions:

1. As long as the coefficients are left free, any complex or hermitian matrix can be
projected onto the flavor expansions. There are as many free coefficients as there are
free parameters [393]. At this level, flavor expansions can thus be seen as a completely
generic parametrization of flavor structures.

2. Once the flavor expansions are obtained, the MFV hypothesis is immediate to for-
mulate: the naturality criterion simply requires all the coefficients to be of O(1) or
smaller. By contrast, the coefficients are in general much larger than one whenever
a new flavor structure not precisely aligned with the Yukawa couplings is present.

3. In practice, when none of the coefficients is large, many terms in these expansions
can be dropped because X2

u,d ' Tr(Xu,d)Xu,d with the flavor trace Tr(Xu,d) . 1. In
addition (when tan β is not large for supersymmetric models), terms involving Xd

are negligible compared to those involving Xu. In those cases, this procedure offers
a simple phenomenological parametrization for a fully realistic flavor sector.

4. Because of the SM-like suppression of most of the flavored processes, the MFV hy-
pothesis allows to reconcile the flavor sector with TeV scale new physics, making it
phenomenologically very attractive.

6.2 the minimal supersymmetric standard model under mfv

In the following, we implement the MFV hypothesis in the R-parity violating Minimal Su-
persymmetric Standard Model (MSSM). We start by briefly introducing the supersymme-
try algebra and the construction of the MSSM. The general construction of the superspace
formalism, the natural framework to build supersymmetric theories, and the technical
construction of supersymmetric gauge theories are not reviewed here. A comprehensive
presentation can be found in, e.g., Ref. [394].

6.2.1 The supersymmetry algebra

The supersymmetric generators Qα and Q†α̇ are objects belonging in the (1/2,0) and
(0,1/2) representations of the Lorentz algebra, respectively, i.e., supersymmetry is ge-
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nerated by spinorial (super)charges. Acting on a bosonic state, a supersymmetry transfor-
mation leads to a fermionic state and vice-versa. Here, we only consider one set of super-
symmetric generators. In addition to the Poincaré algebra already discussed in Section 1,
the N = 1 supersymmetry algebra reads

{Qα, Q
†
α̇} = 2σµαα̇Pµ , (6.20)

{Qα, Qβ} = {Q†α̇, Q†β̇} = 0 , (6.21)

[Qα, P
µ] = [Q†α̇, P

µ] = 0 , (6.22)

where σµ = ( l1, σi). Irreducible representations of the supersymmetry algebra form super-
multiplets, they contain both bosonic and fermionic states. The number of bosonic and
fermionic degrees of freedom is the same within a given supermultiplet: nF = nB. More-
over, the generators of the (possible) internal symmetries of the theory commute with the
supersymmetric ones, schematically

[
Q

(†)
α , T a

]
= 0, such that all states in a given super-

multiplet have the same gauge quantum numbers. In order to build the minimal realistic
supersymmetric model, two kinds of supermultiplets are needed.

• The chiral supermultiplet: on-shell, it consists of one Weyl spinor ψα (nF = 2) and
two real scalars (nB = 2). The two real scalars are naturally embedded into one
complex scalar φ. Off-shell, an additional auxiliary complex scalar field F needs to
be included in order to match the fermionic degrees of freedom nF = 4. In other
words, an auxiliary field is needed to close the supersymmetry algebra off-shell as
well as on-shell.

• The vector supermultiplet: on-shell, it consists of one massless spin-1 vector boson Aµ
(nB = 2) and a Weyl spinor λα (nF = 2) dubbed gaugino. Off-shell, an auxiliary real
scalar field D is introduced. Vector multiplet will be used to embed gauge bosons in
the MSSM. As such, the corresponding gaugino will transform under a self-conjugate
representation of the gauge group and are Majorana fermions.

The field representation of a supermultiplet is called a superfield. Explicit expressions for
the supercharges and the superfields can be found in [394].
One of the most important consequences of Eq. (6.22) is that [Q(†), P 2] = 0. Since

P 2 = −m2, all particles within a given supermultiplet have actually the same mass. This is
in striking contradiction with experimental observations if we were to embed each SM state
into a supermultiplet since no copy of the known particle spectrum has ever been observed.
Therefore if supersymmetry is present at all in nature, it must be a broken symmetry at
low-energy, i.e., Qα|0〉 6= 0 and Q†α̇|0〉 6= 0. The vacuum expectation value of the trace of
Eq. (6.20) then yields,

〈0|(P 0 = H)|0〉 =
1

4

∑
α=1,2

(
‖Qα|0〉‖2 + ‖Q†α|0〉‖2

)
≥ 0 . (6.23)

In a supersymmetric theory, the vacuum energy is therefore exactly vanishing. The in-
equality shows that the vacuum energy of a theory that underwent spontaneous breaking
of supersymmetry is strictly positive.
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Superfields Spin-0 Spin-1/2 SU(3)c SU(2)L U(1)Y L B
Q (ũL, d̃L)T (uL, dL)T 3 2 +1/3 0 1/3
U ũ∗R (uR)c 3̄ 1 −4/3 0 -1/3
D d̃∗R (dR)c 3̄ 1 +2/3 0 -1/3
L (ν̃, ẽL)T (ν, eL)T 1 2 −1 1 0
E ẽ∗R (eR)c 1 1 +2 -1 0

Hu (H+
u , H

0
u)T (H̃u

+
, H̃u

0
)T 1 2 +1 0 0

Hd (H0
d , H

−
d )T (H̃d

0
, H̃d

−
)T 1 2 −1 0 0

Superfields Spin-1/2 Spin-1 SU(3)c SU(2)L U(1)Y L B
g g̃ g 8 1 0 0 0
W (W̃ 1, W̃ 2, W̃ 3)T (W 1,W 2,W 3)T 1 3 0 0 0
B B̃ B 1 1 0 0 0

Table 14: (Super)field content of the MSSM. The L and R subscripts of the scalar-fermions are
simply a reminder of their superpartners, the SM fermions. Three copies of the fermionic
supermultiplets Q,U,D,L,E should be considered.

6.2.2 The particle content

The MSSM is minimal in the sense that it is the supersymmetric gauge theory based on the
SM gauge group and particle content that introduces the least number of supermultiplets.
Its superfield content of the MSSM is summarized in Table 14.
Each SM particle should be embedded into a supermultiplet. To achieve that, one should

remember that supersymmetry and gauge symmetry commute so that all states of a su-
permultiplet are in the same gauge representation. Since the SM is a chiral theory, the
known fermions should be embedded in chiral supermultiplets. Vector multiplets indeed
transform under self-conjugate representations of the gauge group and thus cannot provide
chiral fermions. For each fermion generation, we therefore introduce five chiral supermulti-
plets Q,U,D,L,E that describe the SM fermions and their superpartners, the sfermions.
The latter are scalar flavored particles. All gauge bosons belong to different (self-conjugate)
vector supermultiplets, their superpartners are (self-conjugate) Majorana fermions dubbed
gauginos.32 Finally, in the Higgs sector, while in the SM the doublet H can couple to both
up- and down-type fermions, using the self-conjugacy property of the 2 representation of
SU(2), this is not possible in supersymmetric models. Indeed, imposing supersymmetry
gives rise to strong constraints on the possible interactions of the various fields. Interac-
tions terms are obtained from the derivatives of a (dimension-3) holomorphic function of

32 Motivated by a continuous R-symmetry and N = 2 supersymmetry, Dirac gauginos may also be consid-
ered [395–397], they require extra degrees of freedom, i.e., extra supermultiplets in the adjoint representa-
tion of the gauge groups.
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6.2 the minimal supersymmetric standard model under mfv

chiral superfields, the superpotentialW .33 A non-holomorphic superpotential would explic-
itly break supersymmetry. This means that complex conjugate chiral superfields cannot
appear in W . Two different doublets with opposite hypercharge Y = ±1 are then needed,
one coupling to up-type fermions and the other to down-type fermions. This gives rise to
a Type II 2HDM structure. The phenomenology of the Higgs sector will however be very
different from the one described in Section 4 since the particle content is extended and
the λi parameters of the 2HDM potential are all fixed by supersymmetry: they are related
to gauge couplings (see Ref. [398] for a recent study about 2HDMs with a supersymme-
tric ultraviolet completion and their phenomenological consequences). Alternatively, since
a single Higgs superfield contains additional chiral fermions, the gauge anomaly coming
from the triangle diagram with 3 hypercharge currents, that is absent in the SM, will arise.
A second Higgs doublet with opposite hypercharge should is then needed in order to cancel
the anomaly, it automatically couples to down-type fermions.
After EWSB, particles with the same quantum numbers will mix. The bino, neutral wino

and neutral Higgsinos will form 3 weakly interacting mass eigenstates, the neutralinos. The
charged winos and charged Higgsinos form charginos. The gluino do not mix since it is the
only fermion being in a SU(3)c octet. Finally, squarks will also mix between themselves,
in full generality three 6× 6 mass matrices need to be considered. These are given in the
bases (ũIL, ũ

I
R)I=1,2,3, (d̃IL, d̃

I
R)I=1,2,3 and (ẽIL, ẽ

I
R)I=1,2,3 for instance.

6.2.3 Flavor interactions

Supersymmetric interactions

The most general renormalizable, Lorentz and gauge invariant superpotential that can be
built from the MSSM particle content is

W = U IYIJ
u Q

JHu +DIYIJ
d Q

JHd + EIYIJ
e L

JHd + µHuHd

+
1

2
YIJK
lle LILJEK + YIJK

lqd LIQJDK + µ′ILIHu

+
1

2
YIJK
udd UIDJDK

(6.25)

where I, J,K are flavor indices and all gauge contractions are implicit. The first three
terms are Yukawa-like terms, they in particular lead to the fermion mass matrices after
EWSB when the two Higgs doublets develop their vevs vu ≡ v sin β and vd ≡ v cos β.34

33 Specifically, terms derived from the superpotential are given by

Lsusy ⊃ −
1

2

∂2W
∂Φi∂Φj

ψiψj + h.c.− ∂W
∂Φi

∂W†

∂Φ†
i

, (6.24)

where Φi are the chiral superfields of the theory, ψi is the fermionic component of Φi and after derivation
with respect to the superfields, the remaining superfields are understood to be replaced by their respective
scalar component. The first term thus leads to scalar-fermion-fermion vertices while the second leads to
quartic scalar vertices.

34 It should be noted that the supersymmetric scalar potential is non-negative, hence it does not break the
EW symmetry. It is only through the addition of soft-breaking terms (next paragraph) that EWSB can
be triggered, mostly through radiative corrections to the soft-breaking Higgs masses [394].
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6.2 the minimal supersymmetric standard model under mfv

Therefore, the down-type Yukawa coupling has a tan β enhancement factor as compared to
the up-type one. In the large tan β regime, the down-type Yukawa entries can therefore be
of the same order as the up-type ones. The µ term is the only supersymmetric dimensionful
parameter of the MSSM, as such it should naturally lie near the cut-off scale of the theory,
presumably many orders of magnitude higher than the EW scale, near the GUT or Planck
scale. However, considerations on the particle spectrum indicate that µ should actually be
quite close to the EW scale. This is the µ-problem of the MSSM. All terms in the second
line violate lepton number by one unit (∆L = 1) and the term in the third line violates
baryon number by one unit (∆B = 1): lepton and baryon number violations are present
at the renormalizable level in the MSSM. Due to the anti-commutativity of the SU(2) and
SU(3) products, YIJK

lle is antisymmetric under I ↔ J and YIJK
udd under J ↔ K.

Generic lepton and baryon number violating structures are worrisome. In particular the
Ylqd and Yudd couplings can mediate fast proton decay. For instance, p→ e+π0 may occur
through Y11I

udd (controlling ud→ d̃∗IR ) and Y11I
lqd (controlling d̃∗IR → e+ū). Upper bounds on

the proton lifetime in different channels then impose severe constraints on the product of
these two couplings, |Y11I

uddY
11I
lqd | . 10−26 for squark masses around 300 GeV [399]. Clearly,

for light squarks, these flavor structures cannot be generic and they should involve very
large hierarchies. Since proton decay necessarily violates both lepton and baryon numbers,
it is sufficient that either one of the corresponding couplings is forbidden or very hierarchical
in flavor space. Discrete symmetries can be imposed to forbid these operators [400, 401].
R-parity [400] is usually considered as a definitive part of the MSSM. It is a multiplicative

quantum number defined as,
R = (−1)3(B−L)+2s (6.26)

where s is the spin of the particle. The SM particles and the five Higgs bosons have R = +1

while all other particles have R = −1. If R is conserved, the second and third lines of the su-
perpotential (6.25) are forbidden: these interactions are R-parity violating (RPV). R-parity
can arise from the spontaneous breaking of a U(1)B−L gauge theory for instance [402]. How-
ever in the MSSM, enforcing it is arbitrary and is just meant to ensure proton stability.
R-parity has however other very strong consequences in the phenomenology of the MSSM.
As is well-known, see e.g. [399] for a review, it forces superparticles to be present in pairs in
all vertices, and thus renders the lightest superparticle (LSP) perfectly stable. In colliders,
supersymmetric events are accompanied by a significant amount of missing energy carried
away by the LSP. On the other hand, if R-parity is not exact, the LSP decays and these
missing energy signatures are simply not there. Bounds on the superparticle masses cru-
cially depend on the R-parity conservation hypothesis and can be significantly weakened
if re-interpreted in the context of R-parity violating scenarios. Moreover, with R-parity,
lepton and baryon number conservations are only realized at the dimension-4 level and
there exists dimension-5 operators allowed by R-parity that still mediate proton decay:
W5 ⊃ QQQL + UUDE [401]. An additional discrete symmetry, the baryon triality [403],
should be imposed in order to forbid these terms. Clearly, this is not very satisfactory. As
we will understand in the following, the MFV hypothesis predicts a long proton lifetime in
the presence of R-parity violating interactions [389] and therefore constitutes a perfectly
viable alternative to R-parity in the MSSM.
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Supersymmetry-breaking interactions

At low-energy, supersymmetry is a broken symmetry. Several dynamical breaking mecha-
nisms have been proposed (gauge mediated [404–408], anomaly mediated [409, 410], gravity
mediated supersymmetry breaking [411–414] etc.) but for phenomenological purposes, it
is mostly sufficient to parametrize the effects of supersymmetry breaking by introducing
all possible soft breaking terms [415]. Soft meaning that we do not want to spoil the su-
persymmetric solution to the Higgs mass hierarchy problem by introducing terms that will
lead to genuine quadratic divergences. Instead, introducing solely dimensionful new pa-
rameters will not affect sizably the ultraviolet behavior of the theory. For the RPV-MSSM
without ∆L = 1 couplings (this will be motivated later) the soft-breaking Lagrangian
reads:

Lsoft =− 1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.

)
−m2

HuH
∗
uHu −m2

Hd
H∗dHd − (bHuHd + h.c.)

− Q̃†I(m2
Q)IJQ̃J − L̃†I(m2

L)IJ L̃J − Ũ I(m2
u)IJ Ũ †J − D̃I(m2

d)IJD̃†J − ẼI(m2
e)IJẼ†J

−
(
Ũ IAIJ

u Q̃
JHu − D̃IAIJ

d Q̃
JHd − ẼIAIJ

e L̃
JHd + AIJK

udd ŨID̃JD̃K + h.c.
)
.

(6.27)

These terms explicitly introduce mass splittings between the SM particles and their su-
perpartners. M1,M2 and M3 are gaugino mass terms, m2

Hu
and m2

Hd
are the soft breaking

Higgs mass terms and b is the soft-term associated to µ. In the second linem2
Q,m2

L,m2
u,m2

d
and m2

e are the hermitian sfermion squared mass matrices. In the third line Au,Ad and
Ae are trilinear couplings, they are 3 × 3 matrices in flavor space and are analog to the
Yukawa couplings for the sfermions. Audd is the soft-term associated to the Yudd coupling.

While the general supersymmetric Lagrangian is very constrained and has a limited
number of new parameters, the soft-breaking Lagrangian possesses O(100) new parameters.
All flavor structures are a priori generic. At the same time, many of these parameters are
constrained by the now precise data from flavor physics. Assuming that superparticles are
not far heavier than about 1 TeV, squark mixing cannot be large and R-parity violation
must be limited. In an attempt at systematically embedding these constraints, the MFV
hypothesis is particularly well suited.

6.2.4 Enforcing Minimal Flavor Violation

As the MSSM does not contain any additional generational fermion, its kinetic terms are
invariant under the same flavor symmetry group as in the SM, GF = U(3)5. Within a
given chiral superfield, the fermion and scalar component should transform identically un-
der GF because of supersymmetry. The transformations given in Eq. (2.58) can therefore
be interpreted here as the GF transformations of the Q,U,D,L,E superfields. In order
to promote the MSSM flavor couplings to spurions, only the flavor structure of the cor-
responding operators matter. Therefore, in order to find the spurious transformations of
both the supersymmetric and non-supersymmetric couplings, we can look at the flavor
structure of the superpotential Eq. (6.25) and of the softly supersymmetry breaking La-
grangian Eq. (6.27), disregarding the fact that the involve objects of very different nature
(superfields and fields).

186



6.2 the minimal supersymmetric standard model under mfv

The baryonic R-parity conserving sector

When non-vanishing, all the flavor couplings break the U(3)5 flavor symmetry, which means
that they vary when (s)fermions undergo U(3) rotations in flavor space. Since quark mass
terms originate from the Yukawa couplings Yu,d, this freedom is in general used to bring all
but either the up- or the down-type left-handed quarks to their mass eigenstates as shown
in Section 2.4. The lepton sector is trivial as long as neutrinos are considered massless, i.e.,
Ye can always be brought into a diagonal form. Obviously, performing the same unitary
rotations on both quark and squark fields redefines the different (s)quark flavor structures.
Denoting the singular value decompositions for the Yukawa couplings as V u,d

R Yu,d†V
u,d
L ,

see Eq. (2.61), the V u,d
R matrices find their way into the flavor structures when rotating

U → UV u†
R and D → DV d†

R . Except if a flavor model is prescribed, V u,d
R,L are unknown

matrices so there is a numerical ambiguity in defining the whole flavor sector.
As described in Section 6.1, to ensure the independence on the flavor basis, the RPC

soft-breaking terms are written as manifestly GF symmetric polynomial expansions in the
Yukawa spurions. As the MSSM Yukawa couplings present in the superpotential Eq. (6.25)
have the same flavor structure as in the SM, their spurion transformations are the same as in
the SM and are given in Eq. (6.5). Only then are we certain that performing GF rotations
of the (s)fermion fields leaves invariant the expansion coefficients. Specifically, because
both Yu and Yd transform non-trivially under SU(3)Q, the most generic expansions are
constructed using the SU(3)Q octet Q8, see Eq. (6.19), where its nine independent terms
are indeed sufficient to project an arbitrary complex matrix.
The GF transformations of the soft-breaking flavor couplings are inferred from Eq. (6.27),

m2
Q

GF−−→ gQm2
Qg
†
Q, m2

U
GF−−→ gUm2

Ug
†
U , m2

D
GF−−→ gDm2

Dg
†
D,

Au
GF−−→ gUAug

†
Q, Ad

GF−−→ gDAdg
†
Q.

(6.28)

Their respective flavor expansions are therefore,

m2
Q/m

2
q = aq1 l1 + aq2 Xu + aq3 Xd + aq4 X2

u + aq5 X2
d + aq6 {Xu,Xd}

+ bq1 i[Xu,Xd] + bq2 i[X
2
u,Xd] + bq3 i[Xu,X

2
d] , (6.29a)

m2
U,D/m

2
u,d = au,d1 l1 + Yu,d (au,d1 l1 + au,d2 Xu + au,d3 Xd + au,d4 X2

d,u + aq5 {Xu,Xd}) Y†u,d

+ Yu,d (bu,d1 i[Xu,Xd] + bu,d2 i[X2
u,Xd] + bu,d3 i[Xu,X

2
d]) Y†u,d , (6.29b)

Au,d/Au,d = Yu,d (cu,d1 l1 + cu,d2 Xu + cu,d3 Xd + cu,d4 X2
u + cu,d5 X2

d + cu,d6 {Xu,Xd}
+ cu,d7 i[Xu,Xd] + cu,d8 i[X2

u,Xd] + cu,d9 i[Xu,X
2
d]) , (6.29c)

where Au,d and mq,u,d set the soft-breaking scales. Note that the octet definition and the
hermicity of m2

Q,U,D force the aq,u,di and bq,u,di coefficients to be real. MFV is then easily
enforced by requiring all expansion coefficients to be of order 1 or less. This allows the
MSSM to pass all current flavor constraints [391], including electric dipole moments [390].
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The leptonic R-parity conserving and violating sectors

We briefly discuss the leptonic sector, see Ref. [389] for a complete discussion. The con-
struction of the flavor expansions for the baryonic-RPV coupling is more involved, and
Section 6.3 is dedicated to their study.
The only Yukawa coupling charged under the leptonic flavor subgroup Gl

F is Ye and
transforms as Ye ∼ (3̄,3)GlF . The flavor expansions of m2

L,E and Ae can then be readily

written, defining Xe ≡ Y†eYe

GlF−−→ gLXeg
†
L,

m2
L/m

2
l = al1 l1 + al2 Xe + al3 X2

e , (6.30a)
m2

E/m
2
e = ae1 l1 + Ye (ae2 l1 + ae3 Xe)Y

†
e , (6.30b)

Ae/Ae = Ye (ce1 l1 + ce2 Xe + ce3 X2
e) . (6.30c)

Since we only have Ye at our disposal, the flavor expansions are more compact. Higher order
terms can straightforwardly be recast into the first three terms using the Cayley-Hamilton
theorem for 3 × 3 matrices Eq. (6.18). Since Ye is diagonal, none of the structures can
mediate flavor violation.
Looking back at the MSSM superpotential, there is a RPC flavor coupling that we have

not discussed so far: W ⊃ µ′ILIHu. However, since L ∼ (3,1)GlF , µ
′ should transform as

(3̄,1)GlF which simply cannot be expressed in terms of Ye. Therefore, under MFV, in the
MSSM with a minimal neutrino sector, the µ′ coupling is forbidden and the same applies
for the leptonic-RPV couplings of Eq. (6.25). An additional spurion is needed to render
the lepton sector non-trivial. For instance, a seesaw mechanism [108] can be implemented
as follows. Heavy right-handed neutrinos superfields are introduced in the superpotential
with a Majorana mass term:

Wseesaw =
1

2
N IMIJ

R N
J +N IYIJ

ν L
JHu (6.31)

where, for simplicity, MR = MR l1. The right-handed neutrino fields are integrated out,
yielding

Wseesaw ⊃
1

2
v2
uνLYT

ν (M)−1YννL (6.32)

after EWSB. This is a neutrino mass term with mν ' v2
u/MR. The neutrino mass spurion

is defined as
Υν ≡ vuY

T
ν (M)−1Yν

GF−−→ g∗LΥνg
†
L (6.33)

and along with Y†νYν , all the ∆L = 1 terms can now be made GF invariant. In the RPV
sector, each term in the subsequent MFV expansions turns out to contain at least one Υν

and Ye contracted with some εIJK tensors from the flavored SU(3)’s. Since Υν ∼ O(mν/vu)

and the ε tensors necessarily involve the light fermion generations, MFV predicts a very
large suppression of the ∆L = 1 couplings. This is why MFV is reconcilable with the
extremely tight bounds on the proton lifetime and can be considered as an alternative to
R-parity [389]. In the following, we stick to the minimal lepton sector and the ∆L = 1

couplings will therefore not be considered.
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6.2.5 Renormalization group evolution

All parameters present in Lsoft [Eq. (6.27)] fundamentally emerge from a dynamical break-
ing of supersymmetry at a very high scaleMX . Assuming that the mechanism behind MFV
takes also place at this scale, we should expect the RPC soft-breaking flavor structures
to be given by Eqs. (6.29) [and (6.30)] at MX . Unless the flavor model is specified, the
coefficients at the scale MX are unknown but requiring MFV leads to order 1 coefficients.
In the following, we will assume that only the most minimal flavor structures are generated,
i.e., only the first term of each expansion. There still remain several unknown soft-breaking
scales, mq,u,d and Au,d, which are not fixed by the flavor-breaking mechanism or even the
supersymmetry-breaking one. However, the latter can actually lead to relations among
the different scales. In the following, we will inspire ourselves from the minimal super-
gravity (mSUGRA) parametrization, coming from minimal scenarios of gravity mediated
supersymmetry breaking, which predicts that all the mq,u,d are equal and the Au,d as well.
The non-flavored part of Lsoft, the Higgs and gaugino masses, are also subject to some
constraints. Specifically, at the scale MX , the soft-breaking parameters are given by,

Au = A0Yu, Ad = A0Yd, Ae = A0Ye, Audd = A0Yudd,

m2
Q = m2

L = m2
u = m2

d = m2
e = m2

0 l1, m2
Hu = m2

Hd
= m2

1,

M1 = M2 = M3 = M1/2 ,

(6.34)

where A0 is a common trilinear mass, m0 and m1 scalar masses and M1/2 a common
gaugino mass. Note that we chose here to split the squarks and Higgs masses at MX by
introducing two mass scales m0 and m1. In the constrained-MSSM (based on mSUGRA),
the mass scales are actually equal m0 = m1. We moreover impose an extra condition on
the RPV sector: the soft-breaking coupling Audd is proportional to the supersymmetric
Yudd couplings at MX . For the flavor structures, we will impose these relations in the
super-CKM basis, in which either the up-type or down-type quarks are brought to their
mass eigenstates, and the squarks fields are rotated as their respective quark fields.
The theory is now fixed at MX , presumably near the GUT or Planck scale, but what we

would really like to know are its predictions close to the EW scale. All these parameters
should therefore be evolved down to these lower scales with their respective renormalization
group (RG) equations. Under the RG, supersymmetric parameters form a closed system
under the RG, i.e., they do not feel the presence of the soft-breaking terms. On the con-
trary, the supersymmetric parameters do affect the running of the soft-breaking ones. The
two-loop MSSM RG equations, including the RPV and soft-breaking sectors, have been
obtained in Refs. [416, 417].
In the lepton sector, since the initial conditions at MX are flavor diagonal and that

there is no PMNS matrix, the corresponding structures stay diagonal at every scales. On
the contrary, in the quark sector, even though some structures are diagonal at MX , off-
diagonal contributions will be generated by the running and will be tuned by the CKM
matrix elements. In terms of the flavor expansions Eqs. (6.29), this means that even though
there might be only one non-vanishing coefficient at MX , all the coefficients are expected
to be generated by the RG running. Since the flavor expansions can be defined at any
scale, the RG evolution of the corresponding flavor structures can be encoded into that
of their expansion coefficients. In Refs. [392, 418], it was shown that the RPC coefficients

189



6.3 baryonic r-parity violation and its running

exhibit infrared “quasi”-fixed points compatible with MFV (i.e., no large coefficients are
generated), meaning that the coefficient values at low-scale are mostly insensitive to the
initial conditions at the MX scale. Their specific low-scale values actually depend on the
soft-breaking scales A0,m0,M1/2 and on tan β, hence the denomination “quasi”-fixed points
as opposed to true fixed points. This means that the previously listed parameters are
enough to determine the low-scale flavor sector, and that the specifics of the fundamental
flavor model actually do not matter much. Moreover, since the low-scale values of the
coefficients are natural, MFV could only be effective at the low-scale while the flavor
sector at MX could present large deviations from the Yukawa hierarchies. In this case,
low-scale MFV would have been generated or reinforced by the RG running. Interestingly,
the RPV coefficients also show a similar behavior, as we will now discuss.

6.3 baryonic r-parity violation and its running

In the present analysis, our goal is to study the behavior of the minimally flavor violating
RPV couplings in the quark sector under the RG evolution. Indeed, if valid, MFV is likely
to derive from a new flavor dynamics taking place at a very high scale (see e.g. Refs. [419–
423]), and it is crucial to check whether it survives down to the low scale. We will see
that this survival severely constrains the formulation of MFV, and in particular the viable
flavor symmetry group. At the same time, once these constraints are in place, MFV is not
only stable, it is even radiatively reinforced through the evolution.
Before being able to delve into the numerics of the evolution, we must set up the for-

malism. The first task is to construct a flavor-symmetric reparametrization of the RPV
couplings in terms of the Yukawa couplings. At that stage, the RPV couplings need not sat-
isfy MFV. Actually, this reparametrization provides a unique way to specify fully generic
RPV couplings independently of the flavor basis chosen for the (s)quark fields, and thus
extends to the RPV sector the procedure proposed in Refs. [390, 424]. This is presented
in Section 6.3.1. With this tool in hand, the second step is to impose MFV. In the RPC
sector, this was very easy: the reparametrization had to be natural, hence must involve at
most O(1) coefficients [392]. In the RPV sector, however, we find that this O(1) criterion
is neither stable nor well-defined. The reasons for this and the conditions under which con-
sistency is recovered are detailed in Section 6.3.2. Once these initial steps are completed,
the numerical study of the RG evolution is undertaken in Section 6.3.3. Special emphasis
is laid on the holomorphic implementation of MFV, as proposed in Ref. [425], for which
we prove several unique features, most notably the RG invariance.

6.3.1 Generic RPV couplings

Let us now construct the expansions for the RPV couplings W ⊃ 1
2
YIJK
udd U

IDJDK . Con-
sidering the transformation of the UDD structure,

U IDJDK → (Ug†U)I(Dg†D)J(Dg†D)K (6.35)

it is clear that the flavor expansion of Yudd should involve SU(3) flavor epsilon tensors in
order to render the overall term Gq

F invariant. Since there are three SU(3) factors in Gq
F ,
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we can consider the three simplest terms that can be constructed out of the corresponding
epsilon tensors,

(YQ
udd)

IJK 3 εLMN
Q YIL

u YJM
d YKN

d , (6.36a)

(YD
udd)

IJK 3 εLJKD (YuY
†
d)
IL , (6.36b)

(YU
udd)

IJK 3 εIMN
U (YdY

†
u)
JM(YdY

†
u)
KN , (6.36c)

where either the epsilon tensor of SU(3)Q, SU(3)D, or SU(3)U is used, respectively noted
εQ, εD or εU . Let us check explicitly the GF invariance of the superpotential based on the
flavor expansion with the εD term for instance,

2W ⊃ εAJKD (YuY
†
d)
IAU IDJDK

GF−−→ εAJKD (gU)IB(YuY
†
d)
BC(g†D)CAUD(g†U)DIDE(g†D)EJDF (g†D)FK

= Det(g†D)εCEFD δDB(YuY
†
d)
BCUDDEDF

= Det(g†D)εAJKD (YuY
†
d)
IAU IDJDK

(6.37)

this is invariant only if Det(g†D) = 1, i.e., gD ∈ SU(3)D rather than the full U(3)D. The
same applies for the other terms. Therefore, the flavor expansions can only be written if at
least one of the quark U(1)’s is explicitly broken. We will come back to this point in the
following.
Given that a generic Yudd introduces nine arbitrary complex parameters, the simplest

polynomial expansions require nine independent terms. From the three terms given in
Eq. (6.36), the most general expansions are obtained by inserting in all possible ways the
SU(3)Q octet Q8, Eq. (6.19). At this stage, because of the epsilon contractions, some redun-
dant terms remain. The final step is to remove them and identify the minimal set of nine
independent terms using the matrix identities derived from the Cayley-Hamilton theorem.
Such identities permit to get rid of many terms. Taking for example the εLMN

Q YIL
u YJM

d YKN
d

structure, any SU(3)Q octet insertion acting on Yd can be moved to act on Yu using either,

εLMN
Q YIL

u [(YdQ8)JMYKN
d + YJM

d (YdQ8)KN ]

= εLMN
Q (Yu [Tr(Q8)−Q8])IL YJM

d YKN
d ,

(6.38)

where the two terms on the left-hand side enforce YIJK
udd = −YIKJ

udd , or,

εLMN
Q YIL

u (YdQ8)JM(YdQ8)KN

= εLMN
Q

(
Yu

[
Q2

8 − Tr(Q8)Q8 + 1
2
Tr(Q8)2 − 1

2
Tr(Q2

8)
])IL

YJM
d YKN

d .
(6.39)

The right-hand side retains a manifestly SU(3)Q invariant form since Q8 transforms as an
octet. Therefore, octets need to act on the Yu factor only, and the final set of nine terms
can be chosen as (remember Xu,d ≡ Y†u,dYu,d)

(YQ
udd)

IJK = εLMN
Q

(
Yu(λ

q
11 + λq2Xu + λq3Xd + λq4X

2
u + λq5X

2
d + λq6{Xu,Xd}

+ λq7i[Xu,Xd] + λq8 i[X
2
u,Xd] + λq9i[Xu,X

2
d])
)IL

YJM
d YKN

d , (6.40)

where λq1,...,9 are nine free complex parameters. A similar reduction can be done starting
from Eq. (6.36b), leading to the alternative basis
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(YD
udd)

IJK = εLJKD

(
Yu(λ

d
11 + λd2Xu + λd3Xd + λd4X

2
u + λd5X

2
d + λd6{Xu,Xd}

+λd7i[Xu,Xd] + λd8i[X
2
u,Xd] + λd9i[Xu,X

2
d])Y

†
d

)IL
. (6.41)

Finally, for the last structure, Eq. (6.36c), all octet insertions but those involving YdXdY
†
u

and YdX
2
dY
†
u can be moved to the first index, and we remain with 12 possible terms. This

time, there seems to be some latitude in the identification of the basis. For reasons that
will be detailed below, the best choice is to keep two such Xd insertions (which have to be
antisymmetrized under J ↔ K):

(YU
udd)

IJK = εLMN
U

(
λu11 + Yu(λ

u
21 + λu4Xu + λu5Xd + λu7X2

d)Y
†
u

)IL
(YdY

†
u)
JM (YdY

†
u)
KN

+ εLMN
U

(
Yu(λ

u
8{Xu,Xd}+ λu9i[Xu,Xd])Y

†
u

)IL
(YdY

†
u)
JM (YdY

†
u)
KN

+ εIMN
U λu3

(
(YdXdY

†
u)
JM(YdY

†
u)
KN + (YdY

†
u)
JM(YdXdY

†
u)
KN
)

+ εIMN
U λu6(YdXdY

†
u)
JM(YdXdY

†
u)
KN , (6.42)

where the coefficients are ordered according to the number of Yukawa spurions.
The RPV soft-breaking term Audd transforms exactly like Yudd under the SU(3)3 sym-

metry, so admits the same expansions, up to a pre-factor A0 setting the soft-breaking scale,
and of course a priori different coefficients. Therefore,

(AQ
udd)

IJK = A0 ε
LMN
Q

(
Yu(κ

q
11 + κq2Xu + κq3Xd + κq4X

2
u + κq5X

2
d + κq6{Xu,Xd}

+κq7i[Xu,Xd] + κq8i[X
2
u,Xd] + κq9i[Xu,X

2
d])
)IL

YJM
d YKN

d , (6.43)

and similarly for AU,D
udd .

6.3.2 The MFV limit for the RPV couplings

At this stage, one may wonder why three different bases, Eqs. (6.40), (6.41), and (6.42), are
constructed to parametrize Yudd while any one of them is sufficient to project a completely
arbitrary set of YIJK

udd couplings. Generalizing, it is clear that there is an infinity of equally
valid bases of nine terms, at least from a mathematical point of view.

Though this is indeed true when these bases are just meant to parametrize generic cou-
plings, the situation changes when MFV is enforced. Indeed, we must make sure that the
MFV limit is stable and well-defined. More precisely, if a flavor coupling is expressed as
a combination of Yukawa spurions with the adequate symmetry properties and O(1) co-
efficients, then by definition it satisfies the MFV requirement. Thus, once projected on a
specific choice of basis, it must give back O(1) coefficients only. This is trivial if that par-
ticular combination of Yukawa spurions is part of the basis, but not automatic otherwise,
as we now explore.

Internal stability of the epsilon contractions

Within a given basis, i.e., for a given epsilon structure, the stability is ensured by the
systematic use of the Cayley-Hamilton theorem. For example, if MFV holds, then 〈Q8〉 in
Eq. (6.38) and (6.39) is at most of O(1), hence can be absorbed into the coefficients with-
out upsetting their scaling [392]. Therefore, both the YQ

udd and YD
udd bases are internally
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consistent. On the other hand, the YU
udd basis must contain the λu3 and λu6 terms instead

of, for example, εLMN(Yu[X
2
u,d,Xd,u]Y

†
u)
IL(YdY

†
u)
JM(YdY

†
u)
KN . If λu3 and λu6 were not

part of the YU
udd basis, the other terms could not reproduce them with only O(1) coeffi-

cients because there is no matrix identity relating them. The converse holds though: the
εLMN(Yu[X

2
u,d,Xd,u]Y

†
u)
IL(YdY

†
u)
JM(YdY

†
u)
KN structures are so suppressed numerically

(12 powers of Yukawa couplings) that no large coefficients are generated when projected
on the YU

udd basis of Eq. (6.42).

Incompatibility between epsilon contractions

The stability of MFV within a given basis can be ensured, but not that between the bases
with different epsilon contractions. Consider for example the identity:

εLMN(YuY
†
dYd)

ILYJM
d YKN

d = det(Yd)ε
LJK(YuY

†
d)
IL . (6.44)

It shows that projecting the λd1 structure of the YD
udd basis on the YQ

udd basis just produces
the λq3 term, but that λq3 = λd1/ det(Yd). With det(Yd) ≈ 10−10 tan3 β, it is clear that
both λd1 and λq3 cannot be simultaneously of O(1). Thus, what is MFV for one basis is not
necessarily MFV for another basis.
At this stage, there are two possible ways to restore a well-defined MFV principle. Either

we combine terms from the three bases to construct a fully general one, or we constrain
the possible U(1) breakings. For example, if only U(1)Q is broken, then only the YQ

udd basis
is allowed. Indeed, once U(1)D and U(1)U are enforced, all the terms of the YD

udd and YU
udd

bases are forbidden, since they involve an epsilon tensor acting in either SU(3)D or SU(3)U .
This latter alternative will be followed here, because allowing for the simultaneous presence
of different U(1)-breaking terms would cause also other difficulties, as detailed below.

Compatibility with the R-parity conserving MFV expansions

When constructing the expansions of the soft-breaking terms, Eq. (6.29), the invariance
under U(3)3 is enforced. In principle, if the invariance under SU(3)3 is imposed instead,
additional terms should occur in their expansions, like for example

(m2
D)IJ/m2

0 3 εLMN
Q YAL

u YIM
d YKN

d × εRJKD (YdY
†
u)
RA , (6.45)

or

(m2
D)IJ/m2

0 3 εLMN
Q YAL

u YIM
d YKN

d × εRSTQ Y†RAu Y†SJd Y†TKd

= εLMN
Q εRSTQ YIL

d XRM
u XSN

d Y†TJd .
(6.46)

In this latter case, having two epsilons simultaneously acting on SU(3)Q actually preserves
the corresponding U(1)Q symmetry, so this term must be redundant with those already
present in Eq. (6.29). This can be checked explicitly by simplifying the epsilon contractions
while maintaining the flavor symmetry manifest as

εLMNεRST YIL
d XRM

u XSN
d Y†TJd

= (Yd [{Xu,Xd} − Tr(Xd)Xu − Tr(Xu)Xd + Tr(Xd)Tr(Xu)− Tr(XuXd)] Y
†
d)
IJ .

(6.47)
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On the contrary, the term of Eq. (6.45) does not match those already present in Eq. (6.29).
Even worse, if projected onto the MFV basis of Eq. (6.29), it generates large non-MFV
coefficients. So, if one insists on the pure SU(3)3 invariance, with all the U(1) simultaneously
broken, the usual MFV basis for the R-parity conserving soft-breaking terms has to be
extended.
It should be stressed that this is not just a matter of principle. Through the RG evolution,

the soft-breaking terms receive corrections from the RPV couplings. For example, the one-
loop β function of m2

D contains [416, 417]

(βm2
D

)IJ 3 Y†AIBudd YACB
udd (m2

D)CJ . (6.48)

Therefore, if Yudd or Audd contain epsilon tensors acting in different SU(3) spaces, terms
similar to that in Eq. (6.45) will occur. In that case, MFV would only be maintained
through the RG evolution provided additional terms are included in the expansions of
Eq. (6.29). For the time being, we prefer not to follow that route. We thus stick to the
terms in Eq. (6.29), but must allow for only a single flavored U(1) to be broken when
constructing the expansions for the RPV couplings Yudd and Audd.

U(1) phases and Yukawa background values

In Section 2.4, we stated that it is always possible to perform U(3)3 rotations to reach a
basis where, e.g., vuYu =

√
2mu · VCKM and vdYd =

√
2md.35 However, only the invari-

ance under SU(3)3 can be used in the construction of the Yudd expansion. Because of this
mismatch, these expansions may not fully fulfill their role of rendering Yudd independent
of the flavor basis: the unknown phases corresponding to the broken U(1) may affect the
coefficients.
Let us be more precise. The singular value decompositions of the Yukawa couplings are

V u,d†
R Yu,dV

u,d
L = mu,d

√
2/vu,d , VCKM = V u†

L V d
L , (6.49)

where mu,d are diagonal and positive-definite, V u,d
R ∈ U(3)U,D and V u,d

L ∈ U(3)Q. Clearly,
V u
L and V u

R are defined up to a diagonal matrix of phasesDu = diag(exp(iαu1), exp(iαu2), exp(iαu3)),
since mu = D†muD, and similarly for the down sector. Requiring that mu,d have real and
positive entries only and that VCKM is conventionally phased remove five linear combina-
tions of the six phases. At that stage, det(V u

L ) = det(V d
L ) 6= det(V u

R ) 6= det(V d
R) in general,

and they all depend on the remaining sixth phase. Therefore, it is always possible to force
either V u,d

L ∈ SU(3)Q, or V u
R ∈ SU(3)U , or V d

R ∈ SU(3)D, but not more than that. Said
differently, we need at least an exact SU(3)Q⊗ U(3)U⊗ U(3)D, U(3)Q⊗ SU(3)U⊗ U(3)D,
or U(3)Q⊗ U(3)U⊗ SU(3)D flavor symmetry to reach the up- or down-basis.
Since two out of the three U(1)’s of U(3)3 have to remain exact, only the epsilon tensor of

a single SU(3) can occur in the expansions of the RPV couplings. This constraint prevents
the phases of the expansion coefficients from depending on the flavor basis. For example,
if both YQ

udd and YD
udd are present, then the phases of the YQ

udd coefficients depend on
arg(det(V u,d

L )) and those of YD
udd on arg(det(V d

R)), but both arg(det(V u,d
L )) and arg(det(V d

R))

cannot be set to zero in general. Therefore, for this and the other reasons discussed above,
we will restrict our attention to scenarios where only a single U(1) is broken in the rest of
the study.

35 The actual argument was developed in the framework of the SM, but it applies equivalently to the MSSM.
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Broken U(1)Q Broken U(1)D Broken U(1)U
ds sb db ds sb db ds sb db

u

c

t

 10−14 10−9 10−11

10−12 10−7 10−7

10−7 10−6 10−6


 10−9 10−9 10−9

10−5 10−7 10−5

0.1 10−6 10−4


 10−12 10−6 10−8

10−13 10−9 10−10

10−14 10−13 10−14


Table 15: Typical hierarchies for the modulus of the Yudd couplings (in the super-CKM basis)

at the low scale under MFV with either U(1)Q, U(1)D, or U(1)U broken, and when
tanβ = 10. Because YIJK

udd is antisymmetric under J ↔ K, its entries can be put in a
3×3 matrix form with I = u, c, t and JK = ds, sb, db. Hierarchies for the RPV trilinear
coupling Audd/A0 are similar.

6.3.3 Renormalization group evolution

In the previous section, we have seen that simply asking for MFV to have a chance to
remain valid through the running brings a strong restriction on its formulation. Only one
U(1) can be broken at a time. Consequently, there are only three possible patterns of
hierarchies for the RPV couplings when MFV is valid, and those depend only on tan β.
For example, with tan β = 10, both Yudd and Audd/A0 scale as in Table 15.
In the present section, we investigate in details the evolution of the coefficients. We start

with the broken U(1)Q scenario, whose main interest is to cover the special case of holomor-
phic MFV [425]. As a result, we will see that this scenario has several unique properties, not
shared by any other couplings under MFV. By contrast, the behavior of the broken U(1)D
or U(1)U scenarios is more in line with that of the RPC soft-breaking terms [392, 418].
This will be illustrated for the broken U(1)D case only. A detailed analysis of the U(1)U
case is not very useful since it is similar. In addition, looking at Table 15, this scenario is
much less interesting phenomenologically. First, the (s)top couplings are the largest when
U(1)D is broken, but never exceed O(10−13) for U(1)U . Such a large Ytds

udd coupling of or-
der 0.1 in the broken U(1)D scenario leads to the very interesting same-sign top quark
signature [426–434] at the LHC but would therefore essentially disappear in the U(1)U
broken scenario, and be replaced by the more challenging two or three light-jet resonances.
Second, the couplings involving the up quark are the largest when U(1)U is broken, hence
the superparticles have to be heavier to pass the current bounds on the proton lifetime
or neutron oscillation. Finally, note that in all three scenarios some RPV couplings are
tiny. This can indirectly constrain the supersymmetric mass spectrum because the squark
lifetimes have to be short enough to circumvent R-hadron signatures [425, 430].
The RG evolution of the Audd couplings will also be discussed for the broken U(1)Q

and broken U(1)D scenarios, though briefly. Indeed, the impact of Audd is very limited
phenomenologically. Whenever an Audd coupling is large, the corresponding Yudd coupling
is also large. So, if a squark can decay into two other squarks through Audd, it can also
decay to the corresponding quarks through Yudd with a larger available phase-space. For
this reason, except maybe for a slight reduction in the RPV branching ratios to quark
final states, even a relatively large Audd coupling does not significantly affect the RPV
signatures at the LHC.
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Throughout this section, to illustrate the evolution of the RPV expansion coefficients in
a realistic setting, we use a mSUGRA-like parameter point described in the next paragraph.
We select the boundary conditions at the GUT scale so that, in the RPC case, the Higgs
boson mass is close to 125 GeV. The impact of the RPV couplings on the particle spectrum
is in general limited since most RPV couplings are very suppressed, hence will be neglected
here.

6.3.3.1 Numerical procedure and mass spectrum

Throughout this analysis, we illustrate the behavior of the RPV couplings using a mSUGRA-
like scenario with tan β = 10 at the low scale. At the GUT scale, the boundary conditions
are set as m1/2 = m0 = −A0/2 = 1 TeV, m2

Hu
= m2

Hd
= (1.2m0)2 and m2

Q,U,D,L,E = m2
0 l1,

Au,d,e = A0Yu,d,e. We do not fully unify the scalar masses in order to reproduce more easily
the observed Higgs boson mass. Specifically, in the RPC case, running these values through
SPheno 3.2.4 [435, 436], the Higgs sector mass spectrum is mh ≈ 123 GeV together with
mA ≈ mH ≈ mH± ≈ 2.0 TeV, while the spectrum is

mg̃ = 2.2 TeV , mχ̃± = (0.82, 1.5) TeV , mχ̃0 = (0.43, 0.82, 1.5, 1.5) TeV , (6.50)
mũ = (1.4, 1.9, 2.2, 2.2, 2.2, 2.2) TeV , md̃ = (1.9, 2.1, 2.1, 2.1, 2.2, 2.2) TeV , (6.51)
mẽ = (1.0, 1.1, 1.1, 1.2, 1.2, 1.2) TeV , mν̃ = (1.2, 1.2, 1.2) TeV . (6.52)

Let us stress that this benchmark is not tailored to induce an interesting phenomenology
at the LHC but rather, to illustrate the behavior of the RPV structure under the RG. To
find interesting benchmarks for the LHC is certainly interesting, but beyond our scope
here.
Turning to our numerical analysis, the one-loop RG equations [416, 417] are solved with

custom Mathematica programs between MSUSY ≡ 1 TeV and MX ≡MGUT . We check that
they agree at the percent level with SPheno in the CP- and R-parity conserving case. In
the RPC case, at the low scale, the expansion coefficients for the RPC soft-breaking terms
are compatible with MFV, with for example [see Eq. (6.29)]

aqi = (4.8, −3.0, −2.4, 0.27, 0.87, 0.93, 0.003, −0.004, −0.004) , (6.53)

This, combined with the heavy superparticle masses ensure that all the flavor observables
are in check in this scenario.
The SM parameters are set at MZ and run up to MSUSY using the two-loop RG equa-

tions [437]. The RPV couplings Yudd and Audd are set at the GUT scale in a basis-
independent way through their expansion coefficients. The multiscale boundary conditions
Yu,d,e[MSUSY] and Yudd[MGUT], with in addition Yudd[MGUT] = F (Yu,d,e[MGUT]) for some
expansion F , are imposed iteratively. Starting with Y0

udd[MSUSY] = F (Yu,d,e[MSUSY]), a
few iterations permit to find the input value Yudd[MSUSY] that evolves up to the desired
F (Yu,d,e[MGUT]). This is rather fast since only the supersymmetric parameters are involved
at that stage.
We do not derive the RG equations for the expansion coefficients of Yudd (nor of Audd).

Instead, their evolutions are obtained indirectly by projecting Yudd[MQ] on one of the bases
written in terms of Yu,d[MQ] at various intermediate scalesMQ. This means each time solv-
ing a linear system of nine equations, one for each of the independent entries of Yudd[MQ].
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In practice, this is trickier than it seems because of the very large hierarchies involved. For
example, the largest and smallest couplings of εLMN(YuX

2
u)
ILYJM

d YKN
d are 22 orders of

magnitude apart (because of a factor m4
u/m

4
t ). Both the evolution and the matching at

MGUT are therefore performed with a high numerical precision within Mathematica.

6.3.3.2 RG invariance of MFV holomorphy

The holomorphic restriction of MFV proposed in Ref. [425] originates from the hypothesis
that the flavor symmetry is dynamical at some scale MFlavor. There, the Yukawa spurions
would either be true dynamical fields, or they would be directly related to those of this
unknown flavor dynamics. At the same time, supersymmetry requires the superpotential
to be holomorphic, so Yudd must be insensitive to Y†u and Y†d above the scale MFlavor. The
most general flavor-symmetric expansion is then very simple, since there is only one way
to write Yudd in terms of Yu and Yd:

YIJK
udd = λ εLMN

Q YIL
u YJM

d YKN
d . (6.54)

The holomorphic restriction thus respects MFV under the SU(3)Q⊗ U(3)U⊗ U(3)D flavor
group. With only U(1)Q broken, it respects all the requirements discussed in the previous
section and MFV is stable and well defined.
However, the scale MFlavor at which holomorphy is imposed could be very high. Even if

MFV is in itself stable, whether holomorphy is a reasonable approximation at the low scale
is not obvious. Indeed, the RG equations of the Yukawa and Yudd couplings are coupled:36

d

dt
YIJ
u = YKJ

u γU
I

UK + YIJ
u γ

H2
H2

+ YIK
u γQ

J

QK
, (6.55)

d

dt
YIJ
d = YKJ

d γD
I

DK + YIJ
d γ

H1
H1

+ YIK
d γQ

J

QK
, (6.56)

d

dt
YIJK
udd = YIJL

udd γ
DK

DL + YILK
udd γ

DJ

DL + YLJK
udd γ

UI

UL , (6.57)

where t = logQ2. At one loop, γUIUJ , γ
DI

DJ , and γQ
I

QJ
all involve “non-holomorphic” spurion

insertions. For example, γQ
I

QJ
contains Y†uYu and Y†dYd terms. The consequence for the soft-

breaking terms is well-known: even starting from universal squark masses m2
Q = m2

U =

m2
D = m2

0 l1 at the unification scale, the whole series of coefficients in Eq. (6.29) end up
non-zero at the low scale. One would expect the same to happen for the Yudd coupling:
the whole series of coefficients in Eq. (6.40) would appear at the low scale.
Remarkably, the holomorphy of Yudd holds at all scale because all these non-holomorphic

effects precisely cancel out. This can be checked analytically:

d

dt
YIJK
udd =

d

dt
(λεLMN

Q YIL
u YJM

d YKN
d )

= λεLMN
Q

(
d lnλ

dt
YIL
u YJM

d YKN
d +

dYIL
u

dt
YJM
d YKN

d + YIL
u

dYJM
d

dt
YKN
d + YIL

u YJM
d

dYKN
d

dt

)
= YIJK

udd

(
d lnλ

dt
+ γQ

P

QP
+ γH2

H2
+ 2γH1

H1

)
+
d

dt
YIJK
udd . (6.58)

36 We follow the notations of Ref. [416, 417], with a slight change of conventions in the indices.
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To reach the last line, the following identity derived from the Cayley-Hamilton theorem
was used,

γQ
P

QP
εLMN = εPMNγQ

P

QL
+ εLPNγQ

P

QM
+ εLMPγQ

P

QN
. (6.59)

Then, the whole evolution of the holomorphic Yudd can be encoded into a single coefficient:

dλ

dt
= −λβλ , βλ = γQ

P

QP
+ γH2

H2
+ 2γH1

H1
. (6.60)

The linear dependence of dλ/dt over λ ensures the RG invariance of λ = 0, when R-parity
is unbroken. The beta function βλ involves only purely left-handed anomalous terms: its
sole role is to compensate for the left-handed evolutions of the Yukawa couplings, since
Yudd evolves according to right-handed anomalous terms only. It is important to realize
that while MFV holomorphy is an RG invariant property of Yudd, these couplings are far
from invariant numerically. Not only is the coefficient evolving, but the Yukawa couplings
on which Yudd is defined are themselves scale-dependent.
At the one-loop order, the beta function of the coefficient λ is [416, 417]

βλ =
1

32π2
(4〈Y†uYu〉+ 7〈Y†dYd〉+ 2〈Y†eYe〉 − g2

1 − 9g2
2 − 8g2

3) , (6.61)

where g1, g2, and g3 are the U(1)Y , SU(2)L, and SU(3)c gauge couplings (with the SU(5)
normalization for the hypercharge). The leading order RG equation of λ can easily be
solved. Indeed, the evolution of the Yukawa couplings depends quadratically on Yudd,
whose maximal entry in the holomorphic case is about λ× 10−4 when tan β ≈ 50. Except
for very large non-MFV values of the coefficient, the impact of Yudd on Yu,d is completely
negligible. So, the ratio between the coefficients at the GUT scale andMSUSY is immediately
found once the RPC evolution of the Yukawa and gauge couplings is known,

λ[MSUSY]

λ[MGUT]
= exp

{
−
∫ logM2

GUT

logM2
SUSY

βλ(t)dt

}
≈ exp

{
− 1

32π2

∫ logM2
GUT

logM2
SUSY

(4y2
t − 9g2

2 − 8g2
3)dt

}
RPC

.

(6.62)
Numerically, the right-hand side has only a very weak dependence on the rest of the MSSM
parameters. Though the sensitivity is a bit enhanced by the exponential, we find that with
MSUSY ≈ 1 TeV, the ratio is quite stable, varying within 1/5 and 1/4. For the point
considered in this analysis, we get λ[MSUSY]/λ[MGUT] ≈ 0.22. Note though that the Yudd

couplings are nevertheless larger at the low scale because the decrease of λ is more than
compensated by the increase of the Yukawa couplings.
The other RPC parameters are also insensitive to Yudd when λ is of O(1), as well as

to the RPV soft-breaking term Audd when its overall mass scale is of the same order as
that of Au and Ad (i.e., all are tuned by the same A0 parameter, see Eq. (6.34)). Indeed,
under these assumptions and since holomorphy does not apply to soft breaking terms, Audd

admits an expansion of the form in Eq. (6.43) with the nine κqi coefficients of O(1) or less.
Numerically, all the Audd couplings are then very suppressed compared to Au and Ad.
On the other hand, Yudd does affect Audd significantly. Even starting from AIJK

udd [MGUT] =

0, it is radiatively induced entirely through Yudd and end up sizeable at the low scale. For in-
stance, with λ[MGUT] = 1 and κqi [MGUT] = 0, we find that the MFV coefficients at MSUSY

for Audd are
κq1,2,3[MSUSY] = (0.36, −0.12, 0.12) , κq4,...,9 . 10−3 . (6.63)
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Figure 6.1: Evolution of the leading coefficients for the trilinear couplings Audd in the holo-
morphic scenario, with λ[MGUT] = 1, together with κqi [MGUT] = κδia where κ =

{−4,−1, 0, 1, 2, 5} and a = 1 (left), a = 2 (middle), and a = 3 (right). The cen-
tral curves (in red) correspond to the purely radiative generation, with the values at
MSUSY = 1 TeV given in Eq. (6.63).

The first three coefficients scale linearly with λ[MGUT], so κq1[MSUSY] stays of the order of
λ[MSUSY]. The radiative feeding of Audd by Yudd is thus quite intense; it is impossible to
have AIJK

udd [MSUSY] ≈ 0 once λ[MGUT] is turned on. Also, note that even though the leading
coefficient is the largest, even a radiatively-induced Audd[MSUSY] is not holomorphic at the
low scale. In addition, these values are rather stable. If one starts with a non-vanishing
Audd at the GUT scale, the RG evolution pushes the κqi coefficients back to the same values
as in Eq. (6.63). As shown in Fig. 6.1, this fixed-point behavior is impressively effective for
the subleading coefficients. Thus, in the holomorphic case, not only Yudd[MSUSY] depends
on the single input parameter λ[MGUT], but to a good approximation also Audd[MSUSY]

since λ[MGUT] defines the fixed-point values of Eq. (6.63).

6.3.3.3 Holomorphy as an attractor

If Yudd is not holomorphic at some scale, it will remain so at all scales since the subleading
expansion coefficients λqi of YQ

udd are non-zero. Looking back at Eq. (6.40), it is clear that
these coefficients do not multiply RG invariant structures. Rather, through the evolution,
all of these coefficients contribute a priori to all the others.
What is remarkable is that the holomorphic scenario of Ref. [425] emerges as an infrared

(IR) fixed point. Specifically, starting from some non-zero λqi 6=1 at the GUT scale, they all
evolve towards much reduced values at the low scale. For example, starting with

λqi [MGUT] = (1, 1, 1, 1, 1, 1, 1, 1, 1) , (6.64)

the leading coefficient evolves by itself, while all the others are suppressed by more than
an order of magnitude:

λqi [MSUSY] = (0.221, 0.049, 0.031, 0.079, 0.023, 0.025, 0.013, −0.005, 0.007)

+ i(0.000, 0.000, 0.000, 0.000, −0.001, 0.001, 0.003, 0.008, 0.003) . (6.65)

This convergence towards zero is effective even when the starting values λqi 6=1[MGUT] are
much larger than one, as illustrated in Fig. 6.2 for λq2 and λq3. The scaling between the
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Figure 6.2: Evolution of the leading coefficients of Yudd in the broken U(1)Q scenario. At the
GUT scale, λqi [MGUT] = λδi1 (left), λqi [MGUT] = δi1 +λδi2 (middle), and λqi [MGUT] =

δi1 + λδi3 (right), with λ = {−8,−3,−1, 0, 1, 2, 4, 10}. The left-hand plot corresponds
to the pure holomorphic case, and shows the factor ∼ 5 reduction, see Eq. (6.62). The
other two plots show that the sub-leading coefficients always converge towards zero,
i.e., Yudd runs towards a pure holomorphic form.

values at the GUT and SUSY scale is mostly linear, with for example λqi 6=1[MGUT] ∼ O(100)

leading to λqi 6=1[MSUSY] ∼ O(1). This observation has an important corollary: if any of the
λqi 6=1 is O(1) or larger at the low-scale, then they necessarily evolve towards non-MFV
values at the GUT scale.

This behavior is similar to that of the coefficients of the RPC soft-breaking terms dis-
cussed in Refs. [392, 418], but for two differences. First, it is much more pronounced in the
present case. The IR values are very small, λqi 6=1[MSUSY]� 1, while the RPC soft-breaking
coefficients are O(1) at the low scale in general. Second, the values of the IR fixed points
of all the λqi 6=1 are trivially independent of the SUSY parameters since they are simply zero.
On the contrary, for the RPC soft-breaking terms, the IR values depend on the MSSM
parameters (gluino mass, scalar masses, etc), hence were dubbed “quasi” fixed points in
Ref. [392].
The presence of this unique and true fixed point is of immediate phenomenological

relevance. If MFV is active at some very high scale and if U(1)Q is broken, then to an
excellent approximation, Yudd[MSUSY] is holomorphic at the low scale since the subleading
coefficients λqi 6=1[MSUSY] are tiny. The non-holomorphic corrections to Yudd[MSUSY], which
are in any case rather suppressed since they involve more Yukawa couplings, are thus
entirely negligible and the whole baryonic RPV sector can be parametrized by a single
parameter.

6.3.3.4 Comparison with the broken U(1)D case

To illustrate how peculiar is the behavior of YQ
udd, we perform the same analysis with YD

udd

instead. To start with, let us evolve down the leading YD
udd structure, i.e., λdi [MGUT] = δ1i.

At the low-scale, the whole series of nine coefficients is generated:

λdi [MSUSY] = (0.54, 0.10, 0.25, 0.06, 0.09, 0.02, 0.03, 0.04, 0.00)

+ i(0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.03, −0.03, 0.03) . (6.66)
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Figure 6.3: Evolution of the leading coefficients of Yudd in the broken U(1)D scenario. At the
GUT scale, λdi [MGUT] = λδi1 (left), λdi [MGUT] = δi1 +λδi2 (middle), and λdi [MGUT] =

δi1 + λδi3 (right), with λ = {−8,−3,−1, 0, 1, 2, 4, 10}. For the left-hand plot, |λ| is
limited to be less than about 5, otherwise the large Ytds coupling renders the RGE
numerically unstable. For the other two, the central curves (in red) correspond to the
purely radiative generation, with the values at MSUSY = 1 TeV given in Eq. (6.66).

For comparison, if we now set all the YD
udd coefficients to one at the GUT scale,

λdi [MGUT] = (1, 1, 1, 1, 1, 1, 1, 1, 1) , (6.67)

we find the low-scale values,

λdi [MSUSY] = (0.54, 0.22, 0.32, 0.32, 0.16, 0.14, 0.11, 0.09, 0.03)

+ i(0.00, 0.00, 0.00, 0.00, 0.01, 0.00, 0.01, −0.16, 0.11) . (6.68)

These examples show that MFV is preserved through the running, but the subleading
coefficients are not particularly reduced at the low scale. Compared to the broken U(1)Q
scenario, the leading coefficient λd1 still evolves essentially independently of the others but
the λdi 6=1 do not converge towards zero. This can be seen in Fig. 6.3, where the evolutions
of λd1, λd2, and λd3 are shown for various boundary conditions. Though a strong convergence
of λd2 and λd3 towards their purely radiative values of Eq. (6.66) is apparent, these are not
true fixed points. Indeed, being finite, they must necessarily depend on the specific MSSM
scenario. In other words, for a different choice of MSSM parameters, λd2 and λd3 would run
towards different values.

The existence of these IR fixed points implies that MFV at the low scale does not
necessarily transcribe into MFV at the high scale. In view of Fig. 6.3, it is clear that low
scale values of a few units for λd2 or λd3 correspond to large non-MFV values at the GUT
scale. So, imposing that MFV remains valid at all scales requires λdi [MSUSY] . 1 when
λd1[MGUT] = 1. Note also that at the GUT scale, λd1[MGUT] cannot exceed a few units,
because otherwise YD

tds[MGUT] > 1 and perturbativity collapses. In this respect, it must
be stressed that when λd1[MGUT] ≈ 1, the impact of YD

udd on the Yukawa couplings and on
the soft-breaking terms is far from negligible. Given that the mSUGRA parameters used
throughout this work are quite fine-tuned to get a viable mass spectrum in the R-parity
conserving case, especially a Higgs boson mass of around 125 GeV, the above numerical
evaluations should be understood as illustrations for the behavior of the coefficients.
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Figure 6.4: Evolution of the leading coefficients for the trilinear couplings Audd in the broken
U(1)D scenario. At the GUT scale, λdi [MGUT] = δi1 and κdi [MGUT] = κδia where
κ = {−4,−1, 0, 1, 2, 5} and a = 1 (left), a = 2 (middle), and a = 3 (right). The
central curves (in red) correspond to the purely radiative generation, with the values
at MSUSY = 1 TeV given in Eq. (6.69).

Finally, in the soft-breaking sector, the radiative generation of AD
udd from YD

udd is even
stronger than in the holomorphic case, with for example

κdi [MSUSY] = (0.89, −0.12, 0.69, 0.02, 0.23, −0.06, 0.04, 0.06, 0.01)

+ i(0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.05, −0.05, 0.09) , (6.69)

when starting with κdi [MGUT] = 0 and λdi [MGUT] = δi1. If we instead allow for non-zero
values for the AD

udd[MGUT] coefficients, their low-scale values all respect the MFV principle,
and a quasi-fixed point behavior is again apparent, see Fig. 6.4.
All in all, the evolution of the scenario based on U(3)Q⊗ U(3)U⊗ SU(3)D is less simple

than for the one based on SU(3)Q⊗ U(3)U⊗ U(3)D, which is very peculiar because of the
presence of the holomorphic true fixed point. Still, the behaviors of the coefficients of YD

udd

and AD
udd remain rather smooth, MFV is preserved down from the GUT scale, and quasi-

fixed points in the IR are apparent (the same could be said for YU
udd and AU

udd in the broken
U(1)U scenario). Actually, this is perfectly in line with the behaviors of the coefficients of
the RPC sector [392, 418].

6.3.4 Summary

We have analyzed the behavior of the R-parity violating couplings under the renormaliza-
tion group evolution. Particular emphasis is laid on the MFV restriction since it permits to
naturally pass all the bounds from proton decay or neutron oscillations even for relatively
light superparticles [389]. To this end, the formulation of the MFV hypothesis in the RPV
sector first had to be made more precise and robust.
A basis-independent parametrization of generic baryonic R-parity violating couplings

was constructed, in a similar way to that for the R-parity conserving soft-breaking terms
of the slepton sector in Ref. [390] and of the squark sector in Ref. [424]. It trades the
18 independent RPV couplings for 18 free expansion parameters, whose numerical values
are independent of the flavor basis chosen for the (s)quark fields. As such, they thus fully
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encode the RPV sector. In particular, they permit to describe the whole RG evolution of
the RPV couplings.
We have shown that in order to impose MFV on the whole R-parity violating MSSM

and at vastly different scales, it is necessary to restrict the flavor symmetry group. Out of
the U(3)3 symmetry of the (s)quark kinetic terms, only one U(1) can be broken at a time.
If not the case, the O(1) naturality criterion for expansion coefficients becomes ambiguous
and issues with the usual MFV expansions in the R-parity conserving sector arise. On
the other hand, once properly set, the multi-scale MFV hypothesis is rather resilient. The
RG evolution of the RPV expansion coefficients displays striking infrared fixed or quasi-
fixed point behavior, ensuring that MFV at the low scale arises even from far from-MFV
scenarios at the unification scale. The corollary also holds: if the expansion coefficients at
the low scale are O(1) but far from their (quasi-) fixed points, then MFV is lost at the
unification scale. In these respects, the RPV sector behaves very similarly to the R-parity
conserving soft-breaking sector [392, 418].
Finally, we have explored the RG behavior of the holomorphic MFV scenario. First, we

proved analytically that the holomorphic restriction is RG invariant. This has far-reaching
consequences. In particular, it implies that holomorphy acts as a powerful infrared attractor
for the RG evolution. If present at the high scale, all the non-holomorphic corrections evolve
towards zero at the low scale. Whether exact or approximate, low-scale holomorphy thus
systematically emerges as the phenomenological paradigm once the broken flavored U(1)
is that of the quark doublet.
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7
CONCLUS IONS

As of May 2016, the LHC has just re-started to collect data at 13 TeV and the ATLAS
and CMS experiments are expected to deliver new results in Summer 2016. The next few
months, or years for sure, will shape the future of particle physics for the decades to come,
and ultimately, of our comprehension of the electroweak symmetry breaking mechanism
realized in nature. If a discovery near the TeV scale is made, and its link to the electroweak
sector is confirmed, this may be the long-sighted hint for a natural solution to the SM
hierarchy problem. Deviations of the SM predictions may also indirectly point out the
presence of new physics, in particular in the Higgs couplings and in the flavor sector. Of
course such discoveries are not guaranteed and null-results from future LHC analyses would
dramatically affect the level of fine-tuning needed to interpret the hierarchy between the
electroweak and Planck scales.
As of now, all eyes are on the tantalizing di-photon excess observed by both ATLAS [362]

and CMS [363] in December 2015 at a common mass of around 750 GeV. With only a
handful of observed events, little is actually currently known about the properties of this
potential signal. Similar excesses in the ZZ or Zγ channels in particular, though not ob-
served so far, would strongly hint at a particle interpretation of this signal and would put
aside the statistical fluctuation interpretation. The next release of analyses at 13 TeV will
prove decisive for such an interpretation. The best case scenario would be an increase of the
significance of the excess, associated with observations in the previously evoked channels.
The announcement of this di-photon excess generated a tremendous reaction from the phe-
nomenology side, with hundreds of (variations of) models explaining this excess proposed
in a few weeks. An important conclusion derived from these studies is that the minimal
versions of models solving the hierarchy problem are generally inconsistent with this sig-
nal, and more baroque versions are needed. Taking quite a different direction, together
with Christopher Smith, we proposed a three-body interpretation of this excess without
invoking a 750 GeV state, A → Bγγ where A and B could be either scalars, fermions or
vectors, this was published in Physics Letters B under the title “Could the width of the
diphoton anomaly signal a three-body decay ? ” [438]. This special kinematic configuration,
along with other ones, were later further characterized from a collider perspective with An-
dreas Goudelis, Sabine Kraml, Kentarou Mawatari and Dipan Sengupta in “Characterising
the 750 GeV diphoton excess” [439], published in Journal of High Energy Physics. Despite
their physical content, these studies were not presented in this manuscript as the signal
they describe may very soon be considered as a mere statistical fluke. On the contrary, a
confirmation of this signal may rule out the 2HDM scenarios described in Chapter 5. In
August 2016, with increased luminosity, the ATLAS and CMS collaborations updated this
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di-photon search [364, 365] and found an important decrease of the significance of this
excess, hinting strongly to a statistical fluctuation interpretation of the December 2015
anomaly.
The observed Higgs boson is certainly a direct window to the hypothetical new physics

present beyond the SM and the precision study of its properties is one of the main goal
of the LHC program. In the first part of this thesis manuscript, we described how the
measurements of the Higgs production and decay rates at colliders can provide crucial
information on new physics models. To this end, the public tool Lilith was developed
and presented. Lilith uses as primary experimental inputs signal strengths in physical
categories, i.e., in pure production and decay modes space. Modifications of the Higgs rates
can then consistently be taken into account in this framework through the parametrization
of the signal strengths by reduced couplings. Theoretically, this requires that the underlying
interaction operators between the Higgs boson and other SM particles have the same
Lorentz tensor structure as in the SM, or that operators with a different tensor structure
have small effects. The latter operators would indeed imply distortions of the kinematic
distributions of the Higgs boson and its decay products, which would consequently modify
the acceptance and efficiency of the experimental selection cuts and thus invalidate the
interpretation of the signals strengths. Using Lilith, we performed a global fit to the
final results of the first run of the LHC in a variety of benchmark scenarios, taking into
account the possibility of invisible or undetected new decay channels. No deviation from
the SM expectations was observed. The current uncertainties on the reduced couplings
range within 20 to 40% depending on their nature and on the benchmark model, thus still
leaving sizable room for possible deviations to be probed in the second LHC run.
In the second part of the manuscript, we were interested in the possibility that the low-

energy Higgs sector is comprised of two weak doublets. The two-Higgs-doublet model was
used here as a possible effective model relevant for LHC physics. In multi-doublet Higgs
sectors, there is a special limit in which one of the CP-even mass eigenstates aligns with
the direction of the vacuum expectation values of the various doublets in field space. This
alignment limit immediately confers SM-like properties to this state. The presence of extra
scalar states, such as the charged Higgs bosons, can however lead to sizable modifications
of these properties, yet to be observed. As the Higgs couplings are observed to be very
close to the SM ones, the alignment limit of the 2HDM is a very well motivated parameter
space region. Here, taking into account all relevant experiment constraints, we focused on
the alignment limit of the Type I and Type II 2HDMs and explored their phenomenologies
at the 13 TeV LHC. The two CP-even Higgs mass eigenstates of the 2HDM can in principle
be identified with the 125 GeV observed state and both these cases were systematically
analyzed in detail. The alignment limit does not require a decoupling of the extra Higgs
states. Instead, they can be quite light and hence directly accessible at the LHC. We
also considered the seemingly extreme case in which the 2HDM spectrum exhibits one
or two scalar states light enough such that the 125 GeV state could decay into them.
We identified a number of channels that could provide severe or even total exclusion of
some of the scenarios investigated here, through the next few years of LHC measurements.
Precision measurements of the observed Higgs properties were also shown to significantly
probe these scenarios.
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The SM flavor sector, through its Yukawa couplings and the CKM matrix, is impressively
successful. So far, no deviation from its predictions was ever confirmed experimentally. On
phenomenological grounds, flavor structures beyond the SM should therefore either be effec-
tively harmless, which is the case if the new flavored particles are decoupled, or they should
be highly hierarchical. We have argued that the Yukawa couplings are already highly non-
generic in the SM and a similar amount of fine tuning could therefore also be acceptable for
these new flavor structures. In particular, if they were somehow aligned with the Yukawa
couplings, the flavor puzzles present beyond the SM would be significantly softened. In
the last part of the manuscript, we have defined the Minimal Flavor Violation hypothesis,
as a way to systematically enforce this flavor alignment in a well-defined manner, using
a symmetry principle. An important motivation for it could be found in the hypotheti-
cal fundamental mechanism at the origin of the flavor structures. Since this mechanism
presumably takes place at a very high scale, the stability of the flavor alignment down to
low-scales should explicitly be checked. In principle, there is indeed no reason why it should
hold under the renormalization group. Only if it does, could the flavor puzzles truly be
softened. We performed this RG evolution study for the baryonic R-parity couplings of the
MSSM. After constructing the required flavor expansions for these couplings, we showed
that MFV was not only present at low-scales for reasonable high-scale initial conditions, it
was even reinforced through the RG evolution. The holomorphic MFV scenario was in par-
ticular shown to enjoy remarkable properties under the RG. As a consequence, the broken
U(1)Q scenarios at low energy were shown to be parametrizable with a single parameter to
a very good precision, due to the powerful holomorphic infrared attractor. All in all, this
gives a clear motivation for the possibility of low-scale baryon number violation.
With about fifteen orders of magnitude separating the TeV and Planck scales, new

physics has a significant latitude to kick in. Present days are however crucial for funda-
mental physics, with the LHC probing unexplored territories with unprecedented energy
reach and precision. At any time in the next few weeks, months or maybe years, a dramatic
conceptual change of our vision of nature may arise if naturalness arguments are of any
guide. Let us hope to see null-results turning to hints, hints turning to discoveries, and the
Standard Model’s title losing its meaning very soon.
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Version française

En Mai 2016, le LHC vient de recommencer à acquérir des données à une énergie de centre
de masse de 13 TeV. Les collaborations ATLAS et CMS devraient annoncer de nouveaux
résultats durant l’été 2016. Les prochains mois, ou années pour sûr, vont être décisifs pour
le futur de la physique des particules et, au final, pour notre niveau de compréhension du
mécanisme à l’origine de la brisure de la symétrie électrofaible réalisé dans la nature. Si une
découverte à l’échelle du TeV est réalisée, et que son lien avec le secteur électrofaible est
avéré, cela pourrait être l’indice tant attendu d’une possible solution naturelle au problème
de la hiérarchie du Modèle Standard (MS). Des déviations des prédictions du MS pour-
raient également indirectement signaler la présence de nouvelle physique, en particulier
dans les couplages du boson de Higgs et dans le secteur de la saveur. Bien entendu, ces dé-
couvertes ne sont en aucun cas garanties et des résultats nuls des analyses futures du LHC
pourraient dramatiquement affecter le niveau d’ajustement nécessaire pour interpréter la
hiérarchie entre l’échelle électrofaible et celle de Planck.
Actuellement, tous les regards sont portés sur l’excès di-photon observé par ATLAS [362]

et CMS [363] à une masse commune d’environ 750 GeV. Avec seulement un petit nombre
d’évènements observés, les propriétés de ce signal potentiel sont peu connues. Des excès
similaires dans les canaux de désintégration en ZZ, Zγ ou jj en particulier, non observés
jusqu’à présent, renforcerait la réalité de ce signal et pourrait balayer l’hypothèse d’une
simple fluctuation statistique. Les prochaines analyses à 13 TeV vont être décisives et
devraient définitivement confirmer ou infirmer la présence d’une telle particule. Dans le
meilleur des cas, la significance du signal di-photon augmenterait avec l’ajout de nouvelles
données et des excès similaires seraient observés dans les canaux évoqués précédemment.
L’annonce de ces résultats a provoqué un engouement exceptionnel de la part des phénomé-
nologistes, avec des centaines de (variations de) modèles proposés en quelques semaines afin
d’expliquer ce signal. Une importante conclusion tirée des ces nombreuses études est que les
version minimales des modèles résolvant le problème de hiérarchie ne parviennent générale-
ment pas à expliquer ce signal potentiel, et des versions plus élaborées sont nécessaires.
Prenant une direction assez différente, avec Christopher Smith, nous avons proposé une
explication basée sur une désintégration à trois corps qui ne fait pas intervenir de particule
à 750 GeV, A → Bγγ où A et B peuvent être des scalaires, fermions ou vecteurs. Cette
étude a été publiée dans Physics Letters B sous le titre “Could the width of the diphoton
anomaly signal a three-body decay ? ” [438]. Cette configuration cinématique particulière,
ainsi que plusieurs autres, ont été caractérisées plus en détails dans le cadre d’une étude avec
Andreas Goudelis, Sabine Kraml, Kentarou Mawatari and Dipan Sengupta dans “Charac-
terising the 750 GeV diphoton excess” [439], publiée dans Journal of High Energy Physics.
Malgré le contenu physique des ces études, celles-ci n’ont néanmoins pas été présentées
dans ce manuscrit puisque le signal qu’elle caractérisent pourrait se révéler n’être qu’une
simple fluctuation statistique. Au contraire la confirmation de ce signal pourrait exclure
les scénarios de modèles à deux doublets de Higgs présentés en Chapitre 5. En Août 2016,
avec plus de luminosité, ATLAS et CMS n’ont pu confirmer la présence de cet excès dans
le canal di-photon [364, 365], ce qui suggère fortement la présence d’une simple fluctuation
statistique dans les analyses de Décembre 2015 .
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Le boson de Higgs est une fenêtre directe sur la nouvelle physique attendue au-delà du
MS et la mesure précise de ses propriétés est l’un des objectifs principaux du LHC. Dans
la première partie de ce manuscrit de thèse, nous avons décrit comment les mesures de ses
taux de production et désintégration pouvaient apporter des informations cruciales sur les
modèles de nouvelle physique. A cet effet, l’outil public Lilith a été développé et décrit.
Lilith utilise comme inputs expérimentaux les signal strengths dans l’espace des modes
de production et de désintégration physiques. Les modifications de ces taux peuvent être
décrites de manière consistante en paramétrant les signal strengths à l’aide de couplages
réduits. Formellement, cela nécessite que les opérateurs à l’origine de ces modifications
aient la même structure de Lorentz que les opérateurs du MS, ou que les opérateurs qui
n’ont pas cette même structure aient des effets faibles. Ces derniers opérateurs mèneraient
en effet à des modifications des distributions cinématiques du Higgs et de ses produits de
désintégration, ce qui modifierait les efficacités et acceptances des analyses expérimentales
et invaliderait l’interprétation des signal strengths. À l’aide de Lilith, nous avons effectué
une étude globale des couplages du Higgs dans différents scénarios à l’aide des résultats
finaux de la première période d’exploitation du LHC. Aucune déviation par rapport aux
prédictions du MS n’a été observée. Les incertitudes actuelles sur les couplages réduits se
situent dans la fourchette 20–40% suivant leurs natures et le scénario considéré, ce qui
laisse toujours une place non négligeable à de possibles effets de nouvelle physique.
Dans la seconde partie de ce manuscrit, nous nous sommes intéressé à la possibilité

que le secteur de Higgs à basse énergie comprenne deux doublets de Higgs. Le modèle
à deux doublets de Higgs (M2DH) a été utilisé ici comme un modèle effectif pertinent
pour la physique du LHC. Dans les modèles à plusieurs doublets de Higgs, il existe une
limite particulière où l’un des états propres de masse est aligné dans la direction des
valeurs moyennes dans le vide des différents doublets. Cette limite d’alignement confère
automatiquement à cet état des propriétés proches de celles du boson de Higgs du MS.
La présence de particules scalaires supplémentaires, telles que les bosons de Higgs chargés,
peut néanmoins modifier ces propriétés de façon non négligeable. Etant donné que le boson
de Higgs observé est compatible avec celui du MS, la limite d’alignement du M2DH est une
région très motivée phénoménologiquement. En prenant en compte toutes les contraintes
expérimentales pertinentes, nous nous sommes concentré sur cette limite dans le cadre du
M2DH de Type I et Type II, et avons exploré leurs phénoménologies respectives. Dans le
M2DH, les deux états propres de masse pairs sous CP peuvent être en principe identifiés
avec le boson de Higgs observé au LHC, nous avons ainsi systématiquement analysé ces
deux possibilités dans nos études. La limite d’alignement n’est pas équivalente à la limite
de découplage, où les états scalaires supplémentaires sont découplés. Au contraire, ces états
peuvent être légers et ainsi directement accessibles au LHC. Nous avons également étudié
le cas où l’un ou deux de ces états ont une masse inférieure à environ 60 GeV, de façon
à ce que le boson de Higgs observé puisse se désintégrer en une paire de ces particules.
Nous avons identifié des canaux pouvant mener à l’exclusion (quasi-) totale de certains des
scénarios étudiés dans les prochaines années au LHC. Les mesures de précision du Higgs
sont également très sensibles à ces scénarios.
Le secteur de la saveur du MS, à travers ses couplages de Yukawa et de la matrice CKM,

a un succès expérimental impressionnant. Jusqu’à présent, aucune déviation de ses prédic-
tions n’a jamais été confirmée. Les structures de la saveur au-delà du MS doivent ainsi
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conclusions

soit ne pas avoir d’effets phénoménologiques considérables, ce qui est le cas si les nouvelles
particules de saveur sont découplées, ou elles doivent être extrêmement hiérarchiques. Les
couplages de Yukawa du MS étant eux même hautement non-génériques, un ajustement
équivalent des nouvelles structures de saveurs devrait être considéré comme acceptable. En
particulier, si elles étaient d’une certaine manière alignées avec les couplages de Yukawa,
alors les problèmes de la saveur seraient grandement résolus. Dans la dernière partie de
ce manuscrit de thèse, nous avons défini l’hypothèse de Violation Minimale de la Saveur
(VMS), comme un moyen d’assurer systématiquement l’alignement de saveur, de façon
bien définie, à l’aide d’un principe de symétrie. Une motivation importante pour cette
hypothèse peut se trouver dans le mécanisme (hypothétique) fondamental à l’origine des
structures de la saveur. Puisqu’un tel mécanisme prend certainement place à très haute
énergie, la stabilité de l’alignement de saveur jusqu’à basse énergie doit être explicitement
vérifiée afin de garantir la résolution des problèmes de saveur. En principe, cet alignement
pourrait en effet être perdu lors de l’évolution des structures à basse énergie sous le groupe
de renormalisation (GR). Nous avons effectué cette analyse pour les couplages violant la
parité R et le nombre baryonique dans le Modèle Standard Supersymmetrique Minimal
(MSSM). En premier lieu, nous avons construit le cadre théorique nécessaire pour imposer
l’hypothèse VMS dans le MSSM et avons par la suite montré que l’hypothèse VMS était
non seulement effective à basse énergie, en partant de conditions initiales assez génériques
à haute énergie, mais qu’elle était même accentuée voire générée par l’évolution sous le GR.
L’étude du scénario holomorphique a montré qu’il possédait des propriétés remarquables
sous le GR. En conséquence, les scénarios avec U(1)Q brisé sont paramétrables à basse
énergie à l’aide d’un unique paramètre à une très grande précision, cela est dû au scé-
nario holomorphique agissant comme un attracteur puissant dans l’infrarouge. Au final, la
possibilité de la violation du nombre baryonique à basse énergie est très motivée.
Avec près de quinze ordres de magnitude séparant l’échelle du TeV et l’échelle de Planck,

la physique au-delà du MS dispose d’une très grande latitude pour entrer en action. La
période actuelle est néanmoins cruciale pour la physique fondamentale puisque que le LHC
est en train d’explorer des territoires inconnus avec une précision et des énergies jamais
atteintes auparavant. A tout moment dans les quelques prochains mois, ou peut-être années,
un changement conceptuel majeur de notre vision de la nature pourrait avoir lieu si les
arguments de naturalité ont une quelconque signification. Espérons voir des résultats nuls
devenir des excès, des excès devenir des découvertes, et voir le titre du Modèle Standard
déchu de son sens.
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Higgs sector characterization and aspects of the flavor puzzle

Abstract: The Standard Model (SM) of particle physics stands as the most successful
description of the fundamental interactions between elementary particles. The discovery
of a Higgs boson, at a mass of 125 GeV, in July 2012 at the Large Hadron Collider
(LHC), marked its ultimate confirmation. However, various observational and theoretical
problems lie in the heart of the SM, with the majority of them linked to the Higgs sector.
Being a scalar, the Higgs boson is subject to very large radiative corrections and this
ultimately leads to the electroweak hierarchy problem. One of the main goals of the LHC
program is to precisely probe the Higgs sector, in order to characterize the mechanism at
the origin of the breaking of the electroweak symmetry and test possible solutions to the
hierarchy problem. The Higgs sector is also responsible for the generation of the fermion
masses, as it induces the Yukawa couplings. The SM flavor sector is highly hierarchical
and this leads to flavor puzzles in theories beyond the SM.
The first part of this thesis is dedicated to the precise characterization of the Higgs sec-

tor. In particular, the public tool Lilith is presented, which allows to derive constraints
on new physics models based on the Higgs measurements at colliders. It is then used
to perform global fits of the Higgs couplings in the context of various scenarios. In the
second part, the phenomenology of two-Higgs-doublet models is studied in the light of
the results from the first run of the LHC. The so-called alignment limit is explored in
detail, as well as the possible presence of light scalar states. Finally, in the last part of this
thesis, the Minimal Flavor Violation hypothesis is introduced as a possible solution to
the flavor puzzles beyond the SM. Enforcing it in the Minimal Supersymmetric Standard
Model, the renormalisation group evolution of the baryonic R-parity violating couplings
is then studied in detail.

Caractérisation du secteur de Higgs et aspects du problème de la saveur

Résumé: Le Modèle Standard (MS) de la physique des particules s’est imposé comme
étant la description la plus précise des interactions fondamentales entre les particules
élémentaires. La découverte d’un boson de Higgs, avec une masse de 125 GeV, en Juillet
2012 au Large Hadron Collider (LHC), en a marqué sa confirmation définitive. Cependant,
de nombreux problèmes observationnels et théoriques sont au coeur du MS, la plupart liés
au secteur de Higgs. Etant une particule scalaire, le boson de Higgs souffre de très grandes
corrections radiatives, ce qui déstabilise l’échelle électro-faible et mène au problème de
hiérarchie. L’un des buts principaux du LHC est d’explorer précisément le secteur de
Higgs, afin de caractériser le mécanisme à l’origine de la brisure de la symétrie électro-
faible et de tester de possibles solutions au problème de hiérarchie. Le secteur de Higgs
est également responsable de la génération des masses des fermions dans le MS, par le
biais des couplages de Yukawa. Ces couplages sont extrêmement non génériques et cela
mène aux problèmes de la saveur au delà du MS.
La première partie de cette thèse se concentre sur la caractérisation précise du secteur

de Higgs. En particulier, le code public Lilith est présenté, il permet de dériver des
contraintes sur des scénarios de nouvelle physique à l’aide des mesures des propriétés
du boson de Higgs en collisionneurs. Une analyse des couplages du boson de Higgs
dans le contexte de plusieurs scénarios est ensuite effectuée. Dans la seconde partie,
la phénoménologie des modèles à deux doublets de Higgs est étudiée à la lumière des
résultats de la première période d’exploitation du LHC. La limite d’alignement, ainsi
que la possible présence de bosons de Higgs légers, sont étudiées en détail. Finalement,
dans la dernière partie de cette thèse, l’hypothèse de Violation Minimale de la Saveur
est introduite comme une solution potentielle aux problèmes de la saveur au delà du
MS. Appliquée au Modèle Standard Supersymétrique Minimal, l’évolution des couplages
baryoniques violant la parité R sous le groupe de renormalisation est analysée en détail.
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