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1 Introduction

Despite the tremendous success of the ‘hot big bang’ model, the enigmatic nature of its initial
conditions requires a primordial epoch that is distinct from the current standard cosmological
model. Several qualitatively different scenarios (rapidly/slowly expanding/contracting; e.g., [1–
33]) have been proposed to account for this primordial universe, with the inflationary
scenario [1–5] being the most studied and perhaps the simplest and most unproblematic
candidate. However, the key to distinguishing these candidates lies in observational evidence.
Because each scenario may be realized by different models, among many properties of physics
beyond the standard model that might be measured in future observations, the ones that could
be used to directly pin down the type of scenario — instead of selecting models across different
scenarios — are those distinctively and model-independently predicted by each scenario.

So far, there are two promising candidates for such observables. One is primordial
gravitational waves [34–36], which are quantum fluctuations of the spacetime metric sourced
by the background evolution of the primordial universe. These could be detected through
the B-mode polarization in the cosmic microwave background (CMB) [37–39] and can
be used to model-independently distinguish certain scenarios that have slowly evolving
backgrounds from others with rapidly evolving backgrounds. Another candidate is primordial
standard clock signals [40–43], induced by classical or quantum oscillations of massive fields
in the primordial universe. These so-called ‘clock signals’ could be observed as scale- or
shape-dependent oscillatory components in correlation functions of the primordial density
perturbations [44, 45]. The pattern of these oscillations directly measures the time dependence
of the scale factor (see [46, 47] for short reviews) — arguably the defining property of the
scenario of the primordial universe.
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In this paper, we will be interested in models of primordial standard clocks in which the
signals are induced by the classical oscillations of massive fields, namely classical primordial
standard clocks [40, 41, 48–61]. Full models of classical primordial standard clocks have so far
only been explored within the context of the inflationary scenario [54, 55, 58–60]. While it is
possible to derive some model-independent properties of primordial standard clocks without
delving into the details of model constructions [40, 41], the examination of complete models
has proven to be valuable. Such studies not only provide examples with comprehensive
details that supplement the model-independent properties, but also increase the efficiency of
data comparison. Moreover, to compare with data, it would be important to not just use
the inflationary predictions but also predictions from different scenarios. To address this
gap, our paper aims to construct and analyze full models of classical primordial standard
clocks for an alternative scenario, namely the ekpyrotic scenario [6, 7]. This scenario posits
a primordial universe that undergoes a slowly contracting phase before experiencing a big
bounce and transitioning into standard big bang cosmology.

Classical primordial standard clock signals naturally fall within a broader category of
beyond-the-standard-model signals known as primordial features (see [62–65] for reviews).
Primordial features are components of the density perturbations that exhibit significant
scale dependence. Furthermore, full models of classical primordial standard clocks generate
different types of primordial features1 in addition to the clock signal, namely the sharp feature
signal induced directly by the feature that excites the oscillation of the massive field, as well
as its connection with the clock signal in terms of the signal profile. These include some
highly model-dependent aspects, or possibly other unforeseen model-independent aspects,
that can only be learned through full models.

Outline. This paper is organized as follows. We start by reviewing the ‘vanilla’ ekpyrotic
scenario in section 2, namely ekpyrotic cosmology without massive spectator fields. We
focus the presentation on the model that has become the canonical example in terms of
generating a nearly scale-invariant power spectrum of scalar perturbations. In section 3,
we introduce a massive field and couple it to ‘vanilla’ ekpyrosis. We assume that, during
the course of the background evolution, a sharp feature excites classical oscillation of the
massive field. We give several examples of such sharp features, and we gain some analytical
understanding on the background evolution of those fields and their effects on the other
background quantities. We then solve the background equations numerically for these
examples with different coupling functions and different model parameters, thus exploring the
phenomenology of massive spectator fields in ekpyrotic cosmology as thoroughly as possible.
We introduce linear cosmological perturbations in section 4 and derive the perturbed action
and equations of motion. Those equations are then solved analytically using the in-in
formalism, as well as numerically. In doing so, we compute the predicted features in the scalar
power spectrum for different standard clock implementations. We end with our conclusions
and a discussion in section 5.

1For examples of different scale-dependent features in ekpyrotic and other non-inflationary scenarios,
see [40, 41, 43, 48, 55, 66, 67].
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Summary of the main results. We provide a condensed summary of our results here
for the busy reader:

• A period of slow contraction (ekpyrosis) can support a massive spectator field, i.e., it is
possible to add a massive field to the theory and excite it such that the background
evolution is not disrupted.

• To classically excite a massive field in ekpyrosis, the direct coupling between the
ekpyrotic scalar and the massive scalar has to be field dependent and go to zero in the
past. Furthermore, the more stable background solutions are found when the coupling
goes to zero in the future as well since otherwise it can change the character of the
ekpyrotic scalar such that the massive field eventually dominates the background.

• If the coupling is quickly turned on and off again, the resulting corrections to the scalar
two-point function match the analytical templates of a classical primordial standard
clock, in particular the clock signal [40, 41], which clearly separates from the sharp
feature signal and which is very distinct from what one obtains in inflation. This
becomes a clear model-independent fingerprint of ekpyrotic cosmology.

• If the coupling remains for an extended period of time or if it is turned on and off
rather slowly, the clock signal gets entangled in a more complicated way with the sharp
feature signal, the latter of which is not a model-independent signature of ekpyrosis.

2 Review of ‘vanilla’ ekpyrotic cosmology

Let us begin by reviewing the basics of ekpyrotic cosmology (more can be found in reviews such
as [68, 69]). Originally motivated as a modulus in a higher-dimensional brane theory [6, 70],
the ekpyrotic scalar field ϕ has a steep, negative potential, which we parametrize2 as

V (ϕ) = −V0e−
√

2/p ϕ , (2.1)

with V0 > 0 and 0 < p < 1/3. The field has a canonical kinetic term and is minimally coupled
to Einstein gravity, and at the background level it is responsible for driving a smoothing
phase of slowly contracting cosmology. At the perturbation level, the ekpyrotic field generates
unenhanced blue spectra (and thus unobservable) of adiabatic scalar fluctuations and tensor
fluctuations.

The theory possesses a second scalar field, a massless field kinetically coupled to the
ekpyrotic field, which is solely responsible for the generation of the structures of our universe.
This spectator field χ is non-dynamical at the background level, but it generates a nearly
scale-invariant power spectrum of entropy (a.k.a. isocurvature) fluctuations on super-horizon
scales, which are later converted into curvature perturbations. The action of the full theory
reads [74–77]

S =
∫

d4x
√

−g

(
R

2 − 1
2(∂ϕ)2 − V (ϕ) − 1

2Ω2(ϕ)(∂χ)2
)

(2.2)

2One would like to derive the effective theory from a more fundamental, ultraviolet-complete one, such as
string theory. As for inflation, this might be challenging, though a priori not impossible — see, e.g., [71–73]
and references therein. We leave this issue aside in this work.
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in units of c = ℏ = 8πGN = 1, where R is the Ricci scalar of the metric tensor gµν with
determinant g. Also, (∂ϕ)2 is shorthand notation for gµν∂µϕ∂νϕ. The kinetic coupling
function Ω2(ϕ) is taken to have a similar functional form to the potential,

Ω2(ϕ) = e−
√

2/b ϕ , (2.3)

with some parameter 0 < b < 1/3, b ≈ p.
On a flat, homogeneous and isotropic cosmological background,

gµνdxµdxν = −dt2 + a(t)2δijdxidxj , (2.4)

the field equations read

3H2 = 1
2 ϕ̇2 + V (ϕ) + 1

2Ω2(ϕ)χ̇2 , (2.5a)

2Ḣ = −ϕ̇2 − Ω2(ϕ)χ̇2 , (2.5b)
ϕ̈ + 3Hϕ̇ + V,ϕ = ΩΩ,ϕχ̇2 (2.5c)

χ̈ + 3Hχ̇ = −2Ω,ϕ

Ω ϕ̇χ̇ , (2.5d)

where H ≡ ȧ/a defines the Hubble parameter, a dot is a derivative with respect to t, and
a comma denotes a partial derivative. At this point, ϕ = ϕ(t) and χ = χ(t), i.e., the scalar
fields are taken to be homogeneous. An immediate observation from (2.5d) is that if χ is
initially unexcited, the spectator field will stably remain so with χ̇ = 0 throughout [77, 78].
Then, the scale factor and ekpyrotic field follow the following scaling solution,

a(t) ∝ (−t)p , ϕ(t) =
√

2p ln
(

(−t)
√

V0
p(1 − 3p)

)
, (2.6)

for t < 0. The energy density of the ekpyrotic field scales as ρϕ ≡ ϕ̇2/2 + V (ϕ) ∝ a−2/p,
hence it dominates over matter components (e.g., the energy density of the vacuum, of
spatial curvature, dust, radiation, and anisotropies are proportional to a0, a−2, a−3, a−4,
and a−6, respectively). This suggests the ekpyrotic field smooths the universe through slow
contraction [79, 80], even if the universe was initially highly anisotropic and inhomogeneous.
This has been carefully studied using full numerical relativity techniques [81–90], confirming
the smoothing power and attractor nature of the theory. Often, it shall be useful to characterize
the background evolution by its equation of state,3 which we define as ϵ ≡ −Ḣ/H2. For
the scaling solution (2.6), this means ϵ = 1/p, and ekpyrosis corresponds to ϵ > 3 since
0 < p < 1/3, though smoothing is more easily achieved with ϵ ≫ 3 (i.e., 0 < p ≪ 1). This
is analogous to inflation, where ϵ is the slow-roll parameter, satisfying 0 < ϵ < 1, though
again typically one needs ϵ ≪ 1 (i.e., p ≫ 1).

3An equation of state is usually a property of a fluid, such as the ratio of a perfect fluid’s pressure to its
energy density, often denoted by w. In cosmology, though, if the universe is dominated by a single perfect fluid
with equation of state parameter w, then one can show through the Friedmann equations that ϵ = 3(1 + w)/2
— a simple linear relation. Therefore, while ϵ characterizes the background evolution of the universe, it is
naturally related to the matter’s equation of state through general relativity. When the matter sector consists
of several components, we shall say that ϵ characterizes the ‘effective equation of state’ of the system.
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Let us review the properties of the spectator field χ since it is the one solely responsible
for the generation of a nearly scale-invariant power spectrum of scalar perturbations. We
introduce a linear perturbation δχ(t, x) ≡ χ(t, x) − χ(t), but recalling the background χ(t)
remains at some fixed irrelevant constant value, we may well take χ(t) = 0, in which case the
scalar field is purely a perturbation, i.e., δχ(t, x) = χ(t, x). Thus, in what follows we shall
simply denote the entropy perturbation δχ by χ. Then working in the spatially flat gauge of the
metric, the χ part of the action (2.2) expanded to second order in cosmological perturbations
reads (after solving for the Hamiltonian and momentum constraints to eliminate the metric
perturbations of the lapse and shift, integrating by parts, and using the background equations
of motion to simplify)

S(2)
s = 1

2

∫
d3x dt a3Ω2(ϕ)

(
χ̇2 − a−2(∂iχ)2

)
. (2.7)

Defining the Mukhanov-Sasaki variable v ≡ zχ with z ≡ aΩ(ϕ), transforming to Fourier
space, going to conformal time with dτ ≡ a−1dt, and integrating by parts, the action can
be equivalently written as

S(2)
s = 1

2

∫
d3k dτ

(
v′2

k + z′′

z
v2

k − k2v2
k

)
, (2.8)

where a prime denotes a derivative with respect to τ , and where k denotes the Fourier
wavenumber (the subscript k on a perturbation variable indicates its Fourier transform).
From this, we obtain the standard equation of motion

v′′
k +

(
k2 − z′′

z

)
vk = 0 . (2.9)

In conformal time, the scaling solution (2.6) is

a(τ) ∝ (−(1 − p)τ)
p

1−p , ϕ(τ) =
√

2p ln
(

(−(1 − p)τ)
1

1−p

√
V0

p(1 − 3p)

)
, τ < 0 ,

(2.10)
from which follows

z = aΩ(ϕ) ∝ 1
(−τ)n

, n =
√

p/b − p

1 − p

b≈p
≈ 1 , (2.11)

and thus,

z′′

z
= n(n + 1)

(−τ)2 = ν2 − 1/4
(−τ)2 , ν = n + 1

2
n≈1≈ 3

2 . (2.12)

The solution to the resulting ordinary differential equation, v′′
k + (k2 − (ν2 − 1/4)/τ2)vk = 0,

which asymptotes the usual Bunch-Davies initial quantum vacuum,

vk(τ) kτ→−∞≃ 1√
2k

e−ikτ , (2.13)

is expressed in terms of the Hankel function of the first kind as

vk(τ) = −
√

−πτ

2 H(1)
ν (−kτ) , (2.14)

– 5 –
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up to an irrelevant phase. The resulting spectrum in the limit kτ → 0− can be checked to be

Ps(k) ≡ k3

2π2 |χk|2 = k3

2π2
|vk|2

z2 ∼ k3−2ν , (2.15)

where one has to be careful to pick the growing mode (−kτ)−ν in the super-horizon expansion
(kτ → 0−) of the Hankel function. Therefore, scale invariance is obtained if ν = 3/2, so if
n = 1, hence if b = p. The spectral index is, in fact,

ns − 1 = 3 − 2ν = 2(1 − n) = 21 −
√

p/b

1 − p

p≪1
≈ 2

(
1 −

√
p

b

)
, (2.16)

hence a red tilt is obtained if b < p (ever so slightly). In all numerical computation below,
we shall set b as a function of the numerical value for p such that ns ≈ 0.965 is obtained
according to (2.16), namely b/p ≈ 0.966.

It is important to stress at this point that the scalar power spectrum (2.15), which has
the desired amplitude and red tilt, represents the two-point correlation function of the entropy
perturbation χ. In other words, this is the power spectrum of an isocurvature perturbation,
not of the curvature perturbation R. What typically happens in ekpyrosis, though, is that
there is some kind of potential barrier or reheating surface at an angle in χ-ϕ field space,
which has the effect of converting the isocurvature perturbations into curvature perturbations
(see, e.g., [66, 76, 77, 91–100] for detailed analyses of this process). There are different ways
to model this conversion, but the generic outcome is that we may simply treat the entropy
spectrum Ps(k) as the power spectrum of curvature perturbation PR(k) at the onset of
standard big bang cosmology. This further rests on the assumption that it is possible to
have a stable non-singular transition from contraction to expansion — the bounce — and
that this transition does not affect the perturbations on large scales. Once again, a bounce
can be modelled in different ways, but successful realizations confirm the tendency of the
power spectra not to be affected by the bouncing physics (see, e.g., [98, 101–106]). We will
mention this again in the discussion section, but in this work we do not model and analyze
the conversion of isocurvature perturbations into curvature perturbations, nor the evolution
of the perturbations through a non-singular bouncing phase. We shall essentially assume
that the late-time, large-scale Ps(k) obtained at the end of ekpyrosis can be mapped onto
PR(k) at the onset of radiation-dominated expansion.

3 Standard clock models in ekpyrotic cosmology

3.1 Setup and analytical background solutions

Heavy fields should exist in ultraviolet completions of any primordial universe models. Similar
to inflation, we assume that the physics that gives rise to the low-energy effective theory of
the ekpyrotic cosmology is complicated enough so that there may be sharp features in the
potential or in field space that could excite classical oscillations of some of these heavy fields.
It is well known that, during inflation, the amplitude of heavy field oscillations redshifts
(at the same rate as pressureless matter), so inflationary cosmology can easily support such
small disturbances. However, the consequences in a contracting cosmology are much less
known and have not been well studied. So, the very first question we shall address in this

– 6 –
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work is whether a phase of a slowly contracting cosmology (i.e., ekpyrosis) can support the
existence of oscillating heavy fields. In other words, we shall explore different field theory
models, which incorporate a massive spectator field that will be classically excited in the
contracting phase, and analyze the background evolution of all the fields at play. Cosmological
perturbations will be addressed in the next section.

The general setup consists of general relativity and a multidimensional curved field space,

S =
∫

d4x
√

−g

(
R

2 − 1
2GIJ(ΦK)gµν∂µΦI∂νΦJ − V (ΦI)

)
, (3.1)

where our field space consists of ΦI = {ϕ, χ, σ}, i.e., the ekpyrotic background field ϕ, the
entropy field χ, and a new massive spectator scalar field σ (there could be several massive
fields, but we consider a single one for simplicity; this can be easily generalized). The potential
V and field-space metric GIJ can a priori depend on all the fields at play. The action (2.2) is
of this form, except it does not include any massive field σ. Taking (2.2) as our starting point,
we shall consider our full potential and field-space metric such that the action has the form

S =
∫

d4x
√

−g

(
R

2 − 1
2
(
1 + Ξ(ϕ)σ

)
(∂ϕ)2 − 1

2
(
1 + Υ(ϕ)σ

)
Ω2(ϕ)(∂χ)2 − 1

2(∂σ)2

− V (ϕ) − 1
2m2

σσ2
)

, (3.2)

where Ω2(ϕ) and V (ϕ) are the same ekpyrotic kinetic coupling (2.3) and potential (2.1) as
before, and mσ denotes the mass of the spectator field σ. Two new coupling functions Ξ(ϕ)
and Υ(ϕ) are introduced, which shall control the strength of the direct couplings in the kinetic
terms for ϕ (background) and χ (perturbations). The motivation for writing the couplings as
1 + Ξ(ϕ)σ and 1 + Υ(ϕ)σ is that σ should be a subdominant spectator field, hence its coupling
to other fields should be at the level of a perturbative correction. It should thus be the case
that Ξ(ϕ)σ and Υ(ϕ)σ remain smaller than unity for the theory to remain weakly coupled.

Note that the above does not exhaust all possible ways of adding a massive field σ to the
theory, but it is a fairly simple approach, hence it is our focus to start. Additional possibilities
shall be reserved for follow-up works. Likewise, beyond σ being a scalar, the coupling to
massive fields with non-zero spin could be the focus of future work.

Noting that the coupling Υ(ϕ) does not affect the background scaling for χ (i.e., we can
still set χ(t) = 0 and this remains stable throughout, though this always needs to be checked
after the fact), we shall specify Υ(ϕ) only in the next section that addresses perturbations and
ignore χ altogether for the rest of this section. The background equations of motion become

3H2 = 1
2
(
1 + Ξ(ϕ)σ

)
ϕ̇2 + 1

2 σ̇2 + V (ϕ) + 1
2m2

σσ2 , (3.3a)

2Ḣ = −
(
1 + Ξ(ϕ)σ

)
ϕ̇2 − σ̇2 , (3.3b)(

1 + Ξ(ϕ)σ
)
(ϕ̈ + 3Hϕ̇) + V,ϕ = −1

2Ξ,ϕσϕ̇2 − Ξ(ϕ)σ̇ϕ̇ , (3.3c)

σ̈ + 3Hσ̇ + m2
σσ = 1

2Ξ(ϕ)ϕ̇2 . (3.3d)

At this point, we need to specify the form of Ξ(ϕ), and different couplings can be
considered. Each case is an example of a sharp feature that excites the classical oscillation of
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the massive field σ. The idea is that we wish σ to be initially unexcited, hence the coupling
should be zero at first and then acquire a constant value at some critical value in ϕ-space
(call it ϕ0) to trigger σ dynamics. The constant coupling may or may not remain forever
afterwards (it could stop after some other field value, ϕe), so we consider three cases,

Ξstep(ϕ) ≈ 1
ϱ

Θ(ϕ0 − ϕ) =

1/ϱ ϕ ≤ ϕ0

0 ϕ > ϕ0
, (3.4a)

Ξplateau(ϕ) ≈ 1
ϱ

Θ(ϕ0 − ϕ)Θ(ϕ − ϕe) =

1/ϱ ϕe ≤ ϕ ≤ ϕ0

0 otherwise
, (3.4b)

Ξbump(ϕ) ≈ 1
ϱ

Θ(ϕ0 − ϕ)Θ(ϕ − (1 − ε)ϕ0) ≈

1/ϱ ϕ ≈ ϕ0

0 otherwise
, 0 < ε ≪ 1 , (3.4c)

written in terms of the Heaviside step function Θ, whose convention is clear from the above.
Note that ϕ evolves from large to small field values according to the scaling solution (2.6)
[recall the early- and late-time limits correspond to t → −∞ and t → 0−, respectively]. In
every case, when the coupling is Ξ ≈ 1/ϱ, one can imagine the trajectory in curved field
space as being bent with curvature radius ϱ: the smaller the radius, the tighter the bending,
the bigger the coupling; and vice versa.

In all three cases, we set σ = σ̇ = 0 initially (i.e., at some field value ϕini > ϕ0). Thus
for this first interval, ϕini ≥ ϕ > ϕ0, we recover the scaling solution (2.6). From here on,
we denote by a bar the ‘unperturbed’ scaling solution (2.6) [i.e., ā, ϕ̄, H̄, etc., are given
according to (2.6)], and they indicate the background solutions when there is no massive
field contribution to the dynamics. Once ϕ is near ϕ0, the coupling becomes Ξ ≈ 1/ϱ, and
we see from (3.3d) that the massive field will receive an initial (centrifugal) force, thus
triggering σ oscillations at the bottom of the m2

σσ2 potential (perpendicular to the adiabatic
direction given by the ϕ trajectory). Thinking of σ(t) as being a subdominant contribution
to ϕ(t) ≡ ϕ̄(t) + ∆ϕ(t) and H(t) ≡ H̄(t) + ∆H(t), we can make a Born approximation to
evaluate the σ equation of motion when Ξ ≈ 1/ϱ as

σ̈ + 3H̄σ̇ + m2
σσ ≈ 1

2ϱ
˙̄ϕ2Θ(ϕ0 − ϕ) =⇒ σ̈ + 3p

t
σ̇ + m2

σσ ≈ p

ϱt2 Θ(t − t0) , (3.5)

where ϕ̄(t0) = ϕ0 defines t0. The above assumes the step coupling function (3.4a), but it is
useful to first analyze this case and then describe the plateau and bump cases (3.4b)–(3.4c)
later. The solution to the above equation can be expressed as the sum of a homogeneous
solution σ̄(t) and a particular solution σp(t), i.e., σ(t) = σ̄(t) + σp(t).

The two linearly independent solutions to the homogeneous equation

¨̄σ + 3p

t
˙̄σ + m2

σσ̄ = 0 (3.6)

are expressed in terms of the Bessel functions of the first and second kind as σ̄1(t) =
(−t)αJα(−mσt) and σ̄2(t) = (−t)αYα(−mσt), hence

σ̄(t) = c1σ̄1(t) + c2σ̄2(t) = (−t)α(c1Jα(−mσt) + c2Yα(−mσt)) , α ≡ 1 − 3p

2
p≪1
≈ 1

2 , (3.7)

– 8 –
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with integration constants c1 and c2. At early times, when the massive field is effectively
heavy, it oscillates according to

σ̄(t)
mσ |t|≫1

≃ 1
(−mσt)3p/2

(
c1 sin

(
−mσt + 3πp

4

)
− c2 cos

(
−mσt + 3πp

4

))
, (3.8)

where a constant factor has been absorbed in the integration constants. (This is the prototyp-
ical background evolution of heavy fields used for primordial standard clocks [40, 41, 54, 55].)
Oppositely at late times, when the massive field is effectively light, it scales according to

σ̄(t)
mσ |t|≪1

≃ c1 + c2(−mσt)1−3p , (3.9)

where again the integration constants have been rescaled. Importantly, the second term
above is a decaying mode, hence the homogeneous solution is asymptotically constant. The
contribution of the homogeneous solution to the massive field energy density ρσ ≡ σ̇2/2 +
m2

σσ2/2 in the different regimes can be expressed as

ρσ̄
mσ |t|≫1∼ 1/ā3 + (subdominant oscillations) , (3.10a)

ρσ̄
mσ |t|≪1∼ 1/ā6 . (3.10b)

This confirms that the homogeneous solution to the massive field remains a subdominant
contribution to the total energy density at all times, which is rather dominated by the
ekpyrotic field with ρϕ ∼ 1/ā2/p, 0 < p < 1/3.

When there is a constant coupling Ξ ≈ 1/ϱ present in the model, there is an additional
solution to the non-homogeneous equation (3.5),

σp(t) = σ̄2(t)Σ1(t) − σ̄1(t)Σ2(t) , (3.11)

where
Σ1(t) = p

ϱ

∫ t

dt̃
σ̄1(t̃)

t̃2W (t̃)
, Σ2(t) = p

ϱ

∫ t

dt̃
σ̄2(t̃)

t̃2W (t̃)
, (3.12)

together with the Wronksian

W (t) ≡ σ̄1(t) ˙̄σ2(t) − σ̄2(t) ˙̄σ1(t) = − 2
π

(−t)−3p , (3.13)

hence

Σ1(t) = −πp

2ϱ

∫ t

dt̃
Jα(−mσ t̃)
(−t̃)1+α

= −πpmα
σ

22+αϱ
G2,0

1,3

(
y2
∣∣∣ 1
0, 0, −α

)
, y ≡ −1

2mσt , (3.14)

and

Σ2(t) = πp

2ϱ

∫ t

dt̃
Yα(−mσ t̃)
(−t̃)1+α

= − πpmα
σ

22+αϱ sin(πα)

(
1F2(−α; 1 − α, 1 − α; −y2)

α2Γ(−α)y2α
+ cos(πα) G2,0

1,3

(
y2
∣∣∣ 1
0, 0, −α

))
. (3.15)
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In the above, the integrals of the Bessel functions involve special functions such as the
Meijer G-function and the generalized hypergeometric function pFq. Putting everything
together, we find

σp(t) = πp

4ϱ sin(πα)

(
Jα(−mσt)1F2(−α; 1 − α, 1 − α; −y2)

α2Γ(−α)yα

+ e−iπαyαJ−α(+mσt) G2,0
1,3

(
y2
∣∣∣ 1
0, 0, −α

))
, (3.16)

where the simplification cos(πα)Jα(−mσt) − sin(πα)Yα(−mσt) = e−iπαJ−α(+mσt) was used.
It is more enlightening to directly express the particular solution in the different limits

of interest:

σp(t)
mσ |t|≫1

≃ p
√

π

2α+3/2ϱ
Γ(−α) sec

(3πp

2

) 1
(−mσt)3p/2 sin

(
−mσt + 3πp

4

)
, (3.17)

which is of the same form as the homogeneous solution in the same early-time limit [cf. (3.8)],
i.e., oscillatory in t with frequency mσ and amplitude growing as 1/(−mσt)3p/2; and in
the late-time limit,

σp(t)
mσ |t|≪1

≃ − p

ϱ(1 − 3p) ln(−mσt) + C , (3.18)

which is slowly blowing up as mσt → 0−. The constant C is found to be approximately
equal to −γEp/ϱ in the small-p limit, where γE is the Euler-Mascheroni constant. This
latter scaling solution is comparable to that of the ekpyrotic field since its energy density
is ρσp ∼ t−2 ∼ 1/ā2/p ∼ ρϕ; however, it would never appear to dominate over ϕ within the
regime of validity of the approximations made here.

Imposing the initial conditions that σ = σ̇ = 0 right up to the critical time t0 determines
the integration constants c1 and c2 in (3.7), and the full solution is then found to be

σ(t) =
((

Σ2(t0) − Σ2(t)
)
σ̄1(t) +

(
Σ1(t) − Σ1(t0)

)
σ̄2(t)

)
Θ(t − t0) . (3.19)

Interestingly, in the limits where both mσt → −∞ and mσt0 → −∞, we find that σ(t) ≃ 0
at all times. This is because (3.17) depicts the same oscillatory behavior as (3.8) at early
times, so the two solutions must be precisely out of phase at critical time t0 in order to
match the initial conditions — in terms of (3.8) and (3.17), the initial conditions set c2 = 0
and c1 = −σp(t0)/σ̄1(t0), but then this means σ(t) = c1σ̄1(t) + c2σ̄2(t) + σp(t) = 0 for all
t ≥ t0. As such, even after the critical time the massive field remains at rest. This exact
cancellation disappears, however, as soon as one goes away from the limit mσt → −∞,
though it is hard to find a good approximation to the sub-leading contribution. Numerical
examples are shown later (see figure 6).

With the knowledge of the general σ(t) solutions (from an approximate, analytical
perspective), let us describe the resulting expected dynamics of the different scenarios defined
by the coupling Ξ(ϕ) in (3.4). In the case of a ‘step’ [eq. (3.4a)], σ is initially at rest at
the bottom of its potential since Ξ(ϕ) = 0 when ϕ > ϕ0. Once ϕ drops below ϕ0, then
Ξ(ϕ) ≈ 1/ϱ, and the σ equation of motion becomes (3.5), hence the resulting full solution
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is the sum of the respective homogeneous and particular solutions [cf. (3.19)]. Assuming
that near ϕ ≈ ϕ0 we are in a regime where mσ|t| ≫ 1, oscillations in σ may be suppressed,
and the exact behavior is given by a combination of Bessel, generalized hypergeometric, and
Meijer functions, which is more easily understood numerically in the next subsection. At late
times, the homogeneous solution σ̄ asymptotes a constant and effectively becomes massless
(with stiff equation of state), but the particular solution σp slowly grows without bound, with
an energy density growing at the same rate as that of the dominant background ekpyrotic
field. In itself, this implies that the massive field should not disrupt the background driven
by the ekpyrotic field ϕ, but rather it should effectively become an ekpyrotic field of its own
(with same effective equation of state as ϕ); σ would thus contribute to the total ‘ekpyrotic’
energy density, yet it would still be a subdominant component. The caveat, though, is that
this assumes no backreaction of the other fields, and as we will see numerically, the growth
of the massive field induces corrections to the background, which may in turn disrupt the
ekpyrotic domination and rather lead to ϵ → 3.

We can understand the above behavior from a qualitative perspective by recalling the
curved field space picture, where a constant coupling Ξ ≈ 1/ϱ creates a constant-radius
bend to the adiabatic ϕ trajectory as it rolls down its potential, while perpendicular to
this trajectory is the massive field potential direction. Because of the bending in ϕ, the
perpendicular direction for σ receives a centrifugal force, and at late times, together with the
Hubble anti-friction, the massive field is pushed always higher up its potential and has an
energy density scaling similar to the adiabatic ekpyrotic field. Interestingly, this is analogous
to what would happen in a similar situation in inflation. Indeed, we could imagine ϕ being a
slowly rolling inflaton, with sudden constant-radius bend in its trajectory, perpendicular to
which one has an m2

σσ2 massive field potential. In such a case, after the sharp transition,
the massive field would be excited and start oscillating, though at some shifted height on its
potential — this averaged height would remain constant, though, due to a balance between
the centrifugal force and the massive field potential. Due to Hubble friction in such a case,
the oscillations would damp down at late times, and one would be left with the massive
field staying at some non-zero constant value on its potential (i.e., away from the minimum),
effectively acting as a cosmological constant, thus contributing to the inflationary background.
Note in this case the massive field would never severely backreact onto the inflaton and
disrupt the inflationary background.

Back to our ekpyrotic scenario, we can then consider the case of a plateau coupling [given
by eq. (3.4b)]. We recover the same dynamics as for the step coupling, except that Ξ returns
to 0 at a later field value ϕe. Thus, once ϕ < ϕe, there is no external force term left in the σ

equation of motion, and we only recover the homogeneous solution (3.7), which is oscillating
(effectively pressureless) at early times [mσ|t| ≫ 1; eq. (3.8)] and frozen and asymptotically
constant (effectively massless) at late times [mσ|t| ≪ 1; eq. (3.9)]. The early-time regime for
the massive field in such a case (though after ϕ < ϕe) recovers the prototypical massive field
background oscillations of a primordial standard clock [40, 41, 54, 55].

In the case of a bump [eq. (3.4c)], we essentially only have the homogeneous solution
throughout. Indeed, the coupling is non-zero in a very small region in field space, so it only
acts as a trigger for the σ dynamics — σ then acts as a massive primordial standard clock field
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as long as mσ|t| ≫ 1. In the case of a step function for Ξ that is nearly instantaneously ‘turned
on and off,’ the particular solution (3.16) would simply determine the initial conditions for the
homogeneous solution (3.7). In a more realistic situation, the coupling is not instantaneous,
and we need to resort to numerical techniques to evaluate the full solution. Qualitatively,
viewed as a curved field space, the adiabatic trajectory effectively undergoes a sharp turn
in such a situation, with a straight trajectory before and after the turn. In contrast, in the
plateau scenario, the trajectory is straight, then it curves with a constant radius for some
field range [ϕe, ϕ0], before straightening again; and in the case of a step, the trajectory is
first straight and curved with constant radius forever afterwards. When the trajectory is
curved, the massive field effectively feels a centrifugal force.

In the evolution of the massive field σ, the freezing time that separates the regimes where
σ oscillates (when mσ|t| ≫ 1) and when it does not (when mσ|t| ≪ 1) can be quantified by
the horizon-exit time th-e, defined by mh(th-e) = mσ, where the notions of horizons and the
definition of mh(t) can be found in appendix A. As shown there, we find a horizon-exit time

th-e = −1 − p

mσ

p≪1
≃ − 1

mσ
, (3.20)

where the last approximation holds for slowly contracting backgrounds. This confirms
mσ|t| = 1 is a good divider for the early and late-time limits.

To support the above descriptions and analytical estimates, we turn to solving the full
set of coupled background equations numerically.

3.2 Numerical background solutions

3.2.1 Methodology

In order to solve the full background dynamics numerically, we first reexpress the coupling
function for the three scenarios of (3.4) as smooth functions. Indeed, while (3.4) are expressed
using the Heaviside function, this is unrealistic beyond an approximation, and in order to
use numerical techniques, we shall replace the Heaviside function by smooth variants. In
fact, we consider the following parametrizations,

Ξstep(ϕ) = 1
2ϱ

(
1 − tanh

(
ϕ − ϕ0

δ

))
, (3.21a)

Ξplateau(ϕ) = 1
2ϱ

(
tanh

(
ϕ − ϕe

δ

)
− tanh

(
ϕ − ϕ0

δ

))
, (3.21b)

Ξbump(ϕ) = 1
ϱ

exp
(

−(ϕ − ϕ0)2

δ2

)
, (3.21c)

where in each case δ is a real positive constant controlling the sharpness of the transitions
at ϕ0 and ϕe.

Since the time scales over which we wish to solve the background equations can span a
large number of orders of magnitude, it is useful to perform a change of time variable. A
common ‘logarithmic’ time function is the e-folding number, whose definition we take to be

dN ≡ d ln(a|H|) . (3.22)
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This is a more appropriate generalization of the inflationary e-folding time dN ≡ d ln a,
especially for contracting alternatives to inflation. Indeed, in a slowly contracting universe,
the scale factor barely changes, hence N ∼ ln a is not representative. Rather, the comoving
wavenumber k of fluctuating modes that later correspond to the CMB spans a range in
a|H|, and here it is H that evolves over many orders of magnitude (as opposed to inflation
where it is the scale factor that spans many orders of magnitude, while H is approximately
constant). We further make use of the effective equation of state parameter ϵ ≡ −Ḣ/H2. In
inflation, this is the usual slow-roll parameter, which is small and approximately constant. In
vanilla ekpyrosis, it is also approximately constant, but large. Indeed, the expected scaling
solution from (2.6) is ϵ̄ = − ˙̄H/H̄2 = 1/p > 3.

Note that we can relate derivatives with respect to t to derivatives with respect to
N through the chain rule and the identity Ṅ = H(1 − ϵ). The equations of motion (3.3)
can thus be reexpressed as

(3 − ϵ)H2 = V (ϕ) + 1
2m2

σσ2 ,

ϵ

(1 − ϵ)2 = 1
2
(
1 + Ξ(ϕ)σ

)
(ϕ,N )2 + 1

2(σ,N )2 ,

(
1 + Ξ(ϕ)σ

)(
ϕ,N N +

(3 − ϵ − ϵ,N
1 − ϵ

)
ϕ,N

)
+ V,ϕ

(1 − ϵ)2H2 = −1
2Ξ,ϕσ(ϕ,N )2 − Ξ(ϕ)σ,N ϕ,N ,

σ,N N +
(3 − ϵ − ϵ,N

1 − ϵ

)
σ,N + m2

σσ

(1 − ϵ)2H2 = 1
2Ξ(ϕ)(ϕ,N )2 . (3.23)

Setting our initial conditions at N = 0 with the massive field at rest at the bottom of
its potential, σ(N = 0) = σ,N (N = 0) = 0, we can set the background according to the
scaling solution,

H̄(N ) = Hini exp
( N

1 − p

)
, ϕ̄(N ) =

√
p

2

(
− 2N

1 − p
+ ln

(
p

1 − 3p

V0
H2

ini

))
, (3.24)

so in particular ϵini ≡ ϵ(N = 0) = ϵ̄ = 1/p. We thus infer ϕ,N (N = 0) = −
√

2p /(1 − p),
together with

ϕini ≡ ϕ(N = 0) =
√

p

2 ln
(

p

1 − 3p

V0
H2

ini

)
, (3.25)

or equivalently,

Hini ≡ H(N = 0) = −
√

pV0
1 − 3p

exp
(

− ϕini√
2p

)
. (3.26)

In this section, unless otherwise stated we always set ϕini = 50, V0 = 10−8, and the transition
sharpness parameter is fixed to δ = 10−3.

3.2.2 Bump-like coupling function

Let us start by solving the equations for the case of a bump in Ξ [eq. (3.21c)]. This is first
depicted in figure 1, where we set ϕ0 = 43.5, ϱ = 0.01, and mσ = 2 × 108|Hini| and vary p

from 1/6 to 1/9. Thus, curves of different color represent different scaling equations of state
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Figure 1. Bump with ϕ0 = 43.5, ϱ = 0.01, and mσ = 2 × 108|Hini|. Descriptions in the text.

from ϵ̄ = 6 to ϵ̄ = 9. The panel on the left-hand side shows the evolution of the ekpyrotic field
ϕ, the Hubble parameter in absolute value |H|, the change in the equation of state compared
to the scaling solution ∆ϵ ≡ ϵ − ϵ̄, and the massive field σ, all as functions of the e-folding
number N . The value of ϕ0 is depicted by the horizontal dash-dotted gray line in the top plot,
hence when the solid colored curves first cross that line, the coupling kicks in and triggers
massive field oscillations, as can be seen in the bottom plot. The time when this happens for
the different values of p is depicted by the vertical dotted colored lines. From the scaling
solution (3.24), ϕ̄(N0) ≈ ϕ0 gives an approximation for the critical e-folding time N0 as

N0 ≈ (1 − p)
(

− ϕ0√
2p

+ 1
2 ln

(
p

1 − 3p

V0
H2

ini

))
. (3.27)

The horizon-exit time is indicated by the vertical dashed gray line, and as we can see, the
massive field oscillations stop at that time, and σ simply approaches a constant to the future.
Combining (3.20) and the scaling solution (3.24),

Nh-e ≈ (1 − p) ln
(

mσ

(1 − p)|Hini|

)
(3.28)

is a good approximation for the e-folding horizon-exit time.
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Figure 2. Massive field evolution for a bump with p = 1/8, ϕ0 = 43.5, ϱ = 0.01, and mσ = 2×108|Hini|.
The full numerical solution is compared to analytical estimates in terms of the Bessel functions and in
terms of the sine and cosine functions.

The panel on the right-hand side of figure 1 presents the same solutions as on the left,
but zooming in the time range during which the massive field is excited. Also, the change in
the equation of state is plotted on a logarithmic scale, and similarly, the top two plots show
the relative change in the ekpyrotic field |∆ϕ/ϕ̄| = |(ϕ − ϕ̄)/ϕ̄| and in the Hubble parameter
|∆H/H̄| = |(H − H̄)/H̄|. Of those background quantities, the equation of state appears to
be the one that is the most sensitive to the massive field oscillations, i.e., it is the one that
receives the most oscillations due to backreaction from σ. The Hubble parameter and the
ekpyrotic field also receive corrections (again of oscillatory type), though not as significant.

From an analytical point of view, the fact that the scaling solutions for H and ϕ are not
affected much by the massive field oscillations justifies the Born approximation previously
done to estimate the σ solutions.4 This can be seen in figure 2, which shows the comparison
between the numerical solution for σ and the analytical estimates, both in terms of the full
Bessel functions Jα, Yα [eq. (3.7)] and in terms of the trigonometric sin, cos functions that
are an early-time approximation to the Bessel functions [eq. (3.8)]. For this plot, we use
p = 1/8 and the same parameter values for ϕ0, ϱ, and mσ as in figure 1. To plot the analytical
expressions (3.7) and (3.8), we used the numerical solution to determine the value of the
integration constants c1, c2, by matching the numerical and analytical solutions (and their
first derivatives) at the onset of σ oscillations (depicted by the vertical dotted green line). We
also resorted to the scaling approximation H̄ = p/t and its expression (3.24) in terms of the e-
folding number to write t in terms of N . At early times (before the horizon-exit time depicted
by the vertical dashed gray line), we see that the oscillations are well described by either
the Bessel functions or the trigonometric functions. After horizon exit, the trigonometric
functions are no longer particularly good approximations, but the analytical solution in terms
of Bessel functions applies and still matches very well the numerical solution.

Turning to figure 3, we explore the effect of changing the other model parameters. The
value of ϕ0 is varied in the left panel (keeping p = 1/11, ϱ = 0.01, and mσ = 108|Hini| fixed),
the value of ϱ is varied in the middle panel (keeping p = 1/11, ϕ0 = 44.5, and mσ = 108|Hini|
fixed), and the value of mσ is varied in the right panel (keeping p = 1/11, ϱ = 0.01, and

4This is true as long as the theory remains weakly coupled, which is to say that |σ| ≪ ϱ, hence ϱ should
not be taken to be too small. The effect of changing ϱ will be discussed shortly.

– 15 –



J
C
A
P
0
9
(
2
0
2
4
)
0
2
6

10−8

10−7

10−6

|∆
φ
|/φ̄

φ0 = 45.5

φ0 = 45.0

φ0 = 44.5

10−5

10−4

|∆
H
/H̄
|

10−6

10−3

|∆
ε|/
ε̄

10 12 14 16 18
N

10−5

10−3

|σ
|

10−12

10−9

10−6

log10 % = −2

log10 % = −1

log10 % = 0

10−10

10−8

10−6

10−4

10−10

10−6

10−2

12 14 16 18
N

10−7

10−5

10−3

10−8

10−7

10−6

log10
mσ
|Hini| = 8.0

log10
mσ
|Hini| = 8.6

log10
mσ
|Hini| = 9.2

10−5

10−4

10−8

10−5

10−2

12 14 16 18
N

10−6

10−5

10−4

10−3

Figure 3. Bump with p = 1/11 in all these cases. Left: ϱ = 0.01 and mσ = 108|Hini| are kept fix,
but ϕ0 is varied. Center: ϕ0 = 44.5 and mσ = 108|Hini| are kept fix, but ϱ is varied. Right: ϱ = 0.01
and ϕ0 = 44.5 are kept fix, but mσ is varied. More descriptions in the text.

ϕ0 = 44.5 fixed). In each panel, the top three plots depict the relative difference in ϕ, H, and ϵ

between their full numerical solution and their scaling analytical approximation. The bottom
plot shows the evolution of the massive field (in absolute value to use a logarithmic scale).

Looking at the left planel of figure 3, we see that changing ϕ0 has the effect of changing
the critical time at which the massive field is excited (depicted by the vertical dotted lines
of color). Since ϕ̇2 approximately grows as 1/t2, the later the coupling kicks in, the larger
the trigger force term on the right-hand side of the massive field equation (3.3d), which is
proportional to ϕ̇2. Therefore, while the massive field has the same frequency of oscillation
at any given time regardless of ϕ0, the amplitude of the oscillations is larger the smaller
ϕ0 is (i.e., the later the massive field is excited). Interestingly, a larger amplitude in |σ|
leads to marginally larger backreaction in the other background quantities. Indeed, the
induced oscillations in ϕ and H are more pronounced the smaller ϕ0 is, but the overall relative
correction remains of the same order. In all cases, the oscillations stop at the same horizon-exit
time, depicted by the vertical dashed gray line, and σ approaches a constant at late times.

Looking at the middle panel of figure 3, it is straightforward to understand that the
coupling parameter ϱ controls the amplitude of the massive field oscillations and of the
induced oscillations in the other background quantities. Indeed, the smaller ϱ is (recall,
a smaller ‘turning radius’ means a larger coupling), the larger the relative changes in ϕ,
H, and ϵ, and the larger |σ| becomes. We can see here the limitation of increasing the
coupling constant (decreasing ϱ) since the backreaction on ϵ could become important. The
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case ϱ = 0.01 indicates a ∼ 1% relative change in ϵ right after the trigger time (depicted
by the vertical dotted gray line). This is reasonable, but a bigger coupling (by a couple
more orders of magnitude) could start disrupting the ekpyrotic nature of the background —
this can also be the case with a sustained coupling (the cases of plateau and step functions
for the coupling) as we will see shortly.

In the right panel of figure 3, we see that changing the mass of the massive field has three
effects: (1) at any given time, the larger mσ is, the larger the frequency of oscillations in σ

is; (2) the larger mσ is, the smaller the amplitude in oscillations is; and (3) the larger mσ

is, the longer the oscillations last (i.e., the later the horizon-exit time becomes, as depicted
by the vertical dashed colored lines). There is some analytic understanding to these three
effects since: (1) the σ oscillation frequency is well approximated by mσ [recall (3.8)]; (2) the
amplitude in σ oscillations is approximately controlled by 1/m

3p/2
σ [again according to (3.8)];

(3) the horizon-exit time is roughly Nh-e ∼ ln(mσ/|Hini|) [recall (3.28)]. Those three effects on
σ directly translate into effects in the other background quantities, i.e., changing mσ changes
the frequency, size, and duration of the oscillations in ϕ, H, and ϵ (to varying degrees).

3.2.3 Plateau- and step-like coupling function

Figures 1 to 3 cover the phenomenology of the bump coupling function Ξ, so we now turn to
figures 4 and 5, which present the results in the case of a plateau function for Ξ [eq. (3.21b)].
In figure 4, we fix ϕ0 = 44.5, p = 1/11, ϱ = 0.01, and mσ = 108|Hini|, but vary the value of ϕe,
i.e., the width of the plateau coupling function, which controls how long the coupling remains
before shutting off. We denote the field-space width when the coupling is ‘on’ by ∆ϕΞ ≡ ϕ0−ϕe.
The left panel of figure 4 presents the same information as in the panels of figure 3. In
particular, the vertical dashed gray line depicts the horizon-exit time. An important addition,
though, is the vertical dash-dotted colored lines, which depict the times at which ϕe is crossed,
i.e., when it is that the coupling Ξ is shut off. Different values of ∆ϕΞ are shown, which show
cases where the coupling is turned off both before and after the horizon-exit time.

Looking at the case ∆ϕΞ ≡ ϕ0 − ϕe = 0.01 in the left panel of figure 4 (the blue curve),
we see that a very narrow plateau produces more or less the same evolution as a bump
coupling function does (the blue curve here resembles, both qualitatively and quantitatively,
the blue curve in the middle panel of figure 3, which has the same parameter values). As the
plateau coupling is made wider, say the orange curve with ∆ϕΞ = 0.5, we already start seeing
important differences. Indeed, the coupling has the effect of pushing σ to greater values
(though still with some oscillations), and correspondingly, it leads to greater corrections in ϵ,
H, and ϕ. This lasts until ϕe is crossed, after which we recover the same evolution as in the
bump case (when the coupling is switched off). The later the coupling is switched off (the
wider the plateau), the greater the effect is — one effectively looses the oscillatory behavior in
σ and instead the massive field eventually gets to disrupt the ekpyrotic background. Indeed,
we can see for the very wide plateaus that the relative change in the equation of state can
reach order unity. This can be explicitly seen in the right panel of figure 4, where we plot the
actual values of ϕ, H, and ϵ. It is clear that the longer the coupling is sustained, the smaller
the equation of state can become (asymptotically approaching ϵ = 3, i.e., the equation of
state of a massless scalar field). However, as long as the coupling switches off eventually (e.g.,
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Figure 4. Plateau with ϕ0 = 44.5, p = 1/11, ϱ = 1, and mσ = 108|Hini| kept fix. The value of ϕe is
varied, and the legend shows the corresponding values for ∆ϕΞ ≡ ϕ0−ϕe. More descriptions in the text.

near N ≈ 33.5 for the pink curve), the background will be driven back to its ekpyrotic scaling
solution (this is the strength of the attractor nature of the ekpyrotic field). That being said,
if we have a step coupling function for Ξ [eq. (3.21a)], where ϕe is effectively pushed to −∞,
then the ekpyrotic background will be resolutely disrupted.

Figure 5 presents more examples of a plateau coupling. We exceptionally use a different
value for ϕini as stated in the caption (this will be reused in the next section), but we note
that this does not qualitatively affect the results. As in figure 4, we make ∆ϕΞ incrementally
larger (starting in the bottom plot and then going to the upper plot), and we see that when
the coupling is ‘on’ the massive field has small oscillations at the same time as being pushed
up its potential. These oscillations have the characteristic frequencies and envelops of the
‘standard clock’ oscillations, but the evolution of the average values is very different and they
keep growing. When the coupling is turned off (depicted by the dash-dotted vertical lines of
color), the field falls at the bottom of its potential and undergoes standard clock oscillations
with increasingly larger amplitude the longer the coupling is ‘on’ (since the field is ‘released’
from higher). When the coupling is turned off too close to the freezing time (depicted by
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Figure 5. Plateau with ϕini = 19.5, ϕ0 = 13.2, p = 1/11, ϱ = 1, and mσ = 109.8|Hini| kept fix. The
value of ϕe is varied, and the legend shows the corresponding values for ∆ϕΞ ≡ ϕ0 − ϕe. The top plot
shows the logarithmic value of the absolute value of the massive field to have a better appreciation of
the oscillations on a large range of scales. In contrast, a linear scale is used in the bottom plot when
∆ϕΞ is smaller.

the vertical dashed gray line), so when ∆ϕΞ ≳ 2, the massive field does not get to have any
standard clock oscillations after the coupling is turned off.

Let us show a first example of step coupling function in figure 6, though this is really the
same thing as a plateau before ϕe is reached. Let us focus our attention on the time interval
before the backreaction becomes too large, e.g., looking at the pink curve in figure 4 we are
only looking at the interval 10 ≲ N ≲ 30. Figure 6 presents the solution as a function of the
physical t, instead of N , in order to ease the comparison with analytical approximations. The
solid blue curve shows the full numerical solution, while the dashed orange curve shows the
full analytical estimate, which is the sum [eq. (3.19)] of the homogeneous solution (3.7) and
the particular solution (3.16) (which were derived under the assumption of no backreaction
on H and ϕ). To better understand the solution, we plot the homogeneous (dotted purple)
and particular (dash-dotted cyan) solutions separately in the top-left panel of figure 6. This
shows the behavior we alluded to before: the homogeneous and particular solutions, which
are essentially both oscillating as sin(−mσt) [recall eqs. (3.8) and (3.17)], are nearly exactly
out of phase, hence the oscillations are mostly cancelled out. Recall this is to be expected
in the limit where both mσ|t| and mσ|t0| are very large, and generally in such a case, the
‘initial conditions’ at t0 are fully set by the particular solution due to the coupling term.
Recall also that this is specific to the fact that we take the massive field to be classically
at rest (σ = σ̇ = 0) before being classically excited. What is left after ‘cancellation’, i.e.,
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Figure 6. Step with ϕini = 50, ϕ0 = 44.5, p = 1/11, ϱ = 1, and mσ = 108|Hini|. The full numerical
solution for the massive field σ is compared to its analytical solution, which is the sum of a homogeneous
solution and a particular solution. More descriptions in the text.

the full solution that is the sum of the homogeneous and particular solutions, is a growing
function for σ with small wiggles. This is better seen on a logarithmic scale for σ — see the
bottom-left plot of figure 6. On the right panel (now on a log-log scale), we contrast the
full solution to the late-time analytical approximation (3.18) (dotted green). As expected, it
is a good approximation at very late times. The early/late-time divide is the horizon-exit
time depicted by the vertical dashed gray line as before.

Given the understanding of the competition between the homogeneous and particular
solutions when the coupling Ξ ≈ 1/ϱ remains present, we present in figure 7 many more
examples of a step coupling function. We set ϕ0 = 44.5 in every case, but vary p, ϱ, and mσ.
The orange curve of figure 7 corresponds to the solution shown in figure 6, which exhibits
very few oscillations, but we see that different values of p, ϱ, and mσ generally lead to more
oscillations, though again with the pattern that the force term pushes the massive field up
its potential in average (and monotonically after horizon exit — the horizon-exit times are
depicted by the vertical dashed lines). As in the previous examples (figures 5 and 6), these
oscillations have the same frequencies and envelops as those of the standard clocks, but their
average values keep growing due to the constant coupling to the ekpyrotic field. In all cases,
we can see that the backreaction on the background is quite significant, as the initially large
equation of state is disrupted and forced down to ϵ = 3, asymptotically — this is most explicit
in the inset plot, which shows the value of ϵ instead of the relative difference. In the late-time
limit, as long as the coupling term remains present, the displacement of the massive field can
eventually become super-Planckian, which may signal the breakdown of the effective field
theory [107–111]. From the late-time analytical estimate of the particular solution, eq. (3.18),
we estimate the field displacement to be given by ∆σ ∼ (p/ϱ)∆N in the small-p limit. The
smaller p is, the longer the regime of validity of the effective field theory; the same thing
can be said (as expected) the smaller the coupling is (so the larger ϱ is).
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Figure 7. Step with ϕ0 = 44.5, but varying p, ϱ, and mσ as shown by the legend. As before, the
dotted vertical lines indicate the critical times N0, while the dashed ones indicate the horizon-exit
times Nh-e. The top plot shows the relative difference in the equation of state, while the inset shows
the actual value of ϵ.

To complement the above results, let us present the evolution of the respective energy
densities in figure 8. We define the energy densities by writing the Friedmann constraint
equation (3.3a) as 3H2 = ρϕ + ρσ, so ρϕ = (1 + Ξ(ϕ)σ)ϕ̇2/2 + V (ϕ) and ρσ = σ̇2/2 + m2

σσ2/2.
Upon solving the full set of background equations numerically, figure 8 depicts how the
coupling between ϕ and σ leads to energy exchange between the two fields. Keeping p, ϕ0,
ϱ, and mσ fixed, we show the cases of a bump (top left), small plateau (top right), large
plateau (bottom left), and step (bottom right). In the bump case, it is quite clear that
σ always remains sub-dominant compared to ϕ, i.e., it is a spectator field, whose energy
density grows more slowly than the background field. When −mσt ≫ 1, σ acts as a heavy
field, whose equation of state averages that of pressureless matter (ρσ ∼ a−3), while after
freezing (−mσt ≪ 1; −mσt ∼ 1 is the vertical dashed line), σ acts as a massless field with
stiff equation of state (ρσ ∼ a−6). This is in agreement with (3.9). For a small plateau, the
same conclusions are reached, except when the plateau coupling is present — reading the
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Figure 8. Evolution of the ekpyrotic field’s energy density ρϕ in orange and of the massive field’s
energy density ρσ in green as functions of the scale factor a (normalized by an arbitrary initial scale,
aini). Since the universe contracts, forward evolution is read from right to left. The model parameters
are: ϕini = 50, ϕ0 = 44.5, p = 1/10 (so ϵ̄ = 10), mσ/|Hini| = 108, and ϱ = 1. A bump coupling
function is used for the top left plot; a plateau coupling function is used for the top right and bottom
left plots, with ∆ϕΞ = 0.5 and ∆ϕΞ = 5.5, respectively; and a step coupling function is used in the
bottom right plot. We add a vertical dashed line to denote the freezing time, and in the plateau cases,
we add a vertical dash-dotted line to denote when the plateau coupling shuts off. We also add dashed
gray lines to represent the standard scaling of an ekpyrotic field (ρ ∝ a−2ϵ̄), massless field (ρ ∝ a−6),
and massive field (ρ ∝ a−3).

plot from right to left, this corresponds to the interval from the time σ is excited until the
vertical dash-dotted line. In that interval, ρσ grows in average at least as fast as ρϕ, if not
faster. This is even more explicit for the larger plateau, where one can see that, as long as
the coupling is ‘on’, ϕ effectively ‘decays’ and ‘sources’ σ. Indeed, ρσ grows faster than ρϕ,
and ρϕ eventually deviates from its standard background scaling (its effective equation of
state decreases). In this example, this happens until the two fields have nearly the same
energy density, but then, as soon as the coupling is turned off, ρϕ sharply goes back to its
ekpyrotic scaling, while σ goes back to being a spectator (effectively massless by that point).
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In the case of a step coupling, as the coupling is always present after exciting σ, ρσ eventually
dominates over ρϕ, and both eventually scale as a−6. This is why ϵ approaches 3 in figure 7.

Now that we presented successful realizations of a massive spectator field classically excited
in a phase of ekpyrotic contraction and described the possible background phenomenology,
we turn to the exploration of the cosmological perturbations and what corrections a massive
field induces on the usual correlation functions.

4 Standard clock signals in ekpyrotic cosmology

4.1 Perturbation equations

Let us begin with action (3.2) again, and going beyond the FLRW background, let us
introduce cosmological perturbations. In addition to χ(t, x), which we now reintroduce
since it is solely a perturbation [recall the discussion above (2.7)], we perturb the other
two scalar fields and the metric as

ϕ(t,x) = ϕ(t)+δϕ(t,x) , σ(t,x) = σ(t)+δσ(t,x) ,

gµνdxµdxν = −
(
1+2Φ(t,x)

)
dt2+2a(t)B,i(t,x)dxidt+a(t)2(1−2Ψ(t,x)

)
δijdxidxj . (4.1)

Note that the focus here is on scalar perturbations of the metric, i.e., we are ignoring vector
and tensor perturbations in this current work.5 Let us work in the spatially flat gauge,
where Ψ ≡ 0, so that all propagating perturbation degrees of freedom are characterized by
the field fluctuations δϕ (the non-amplified blue adiabatic perturbation), δσ (perturbations
of the massive spectator ‘clock’ field), and χ (the amplified nearly scale-invariant entropy
perturbation). In this case, the perturbed action to second order reads6

S(2) = 1
2

∫
d3k dta3

((
1+Υ(ϕ)σ

)
Ω2(ϕ)

(
χ̇2

k− k2

a2 χ2
k

)

+ ˙δσ
2
k−Fσ δσ2

k+
(
1+Ξ(ϕ)σ

)( ˙δϕ
2
k−Fϕ δϕ2

k

)
+2Ξ(ϕ)ϕ̇δσk

˙δϕk−Fσϕ δσk δϕk

)
, (4.2)

where ϕ and σ are understood to denote only the background quantities ϕ(t) and σ(t). In
the above, we defined

Fσ ≡ k2

a2 + m2
σ + 2m2

σ

H
σσ̇ − σ̇4

2H2 + σ̇2
(

3 −
(
1 + Ξ(ϕ)σ

)
ϕ̇2

2H2

)
, (4.3a)

Fϕ ≡ k2

a2 + 2 ϕ̇

H
V,ϕ +

(
1 + Ξ(ϕ)σ

)(
3ϕ̇2 − σ̇2ϕ̇2

2H2

)
−
(
1 + Ξ(ϕ)σ

)2 ϕ̇4

2H2

+
V,ϕϕ + 1

2Ξ,ϕϕσϕ̇2

1 + Ξ(ϕ)σ +
Ξ,ϕσ̇ϕ̇ − Ξ,ϕV,ϕσ − 1

2Ξ2
,ϕσ2ϕ̇2

(1 + Ξ(ϕ)σ)2 , (4.3b)

Fσϕ ≡ 2 σ̇

H
V,ϕ − Ξ,ϕϕ̇2 +

(
1 + Ξ(ϕ)σ

)(
2m2

σ

H
σ + 6σ̇ − σ̇3

H2

)
ϕ̇ −

(
1 + Ξ(ϕ)σ

)2 σ̇ϕ̇3

H2 . (4.3c)

5This is certainly justified since we recall that in ekpyrotic cosmology vector perturbations are negligible
and tensor perturbations are unobservable (they have a deeply blue spectrum).

6The derivation of the second-order action may be found in appendix B. In short, we transformed to
Fourier space, eliminated the perturbations of the lapse Φ and shift B using the Hamiltonian and momentum
constraints, integrated by parts, and simplified using the background equations of motion. Note that the
subscript k on a perturbation variable indicates its Fourier transform, and k represents the wavenumber.
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Recall χk is the entropy fluctuation that acquires near scale invariance (it is later converted
to curvature perturbations), and hence it is the perturbation for which we wish to find the
correction due to the (often oscillatory) massive field σ. We can define s ≡ Ω(ϕ)

√
1 + Υ(ϕ)σ χ

and v ≡ as ≡ z̃χ — so z̃ = aΩ(ϕ)
√

1 + Υ(ϕ)σ = z
√

1 + Υ(ϕ)σ , recalling from below (2.7)
the definition z ≡ aΩ(ϕ) — such that we can write the χk part of the above perturbed
action exactly as in (2.8), simply with z replaced by z̃. The equation of motion for the
Mukhanov-Sasaki variable vk is then as before [eq. (2.9)], with z replaced by z̃. The time
dependence of the effective frequency, controlled by z̃′′/z̃, depends on up to the second
derivative of a, ϕ, and now σ as well if the coupling Υ(ϕ) is non-zero. We thus see that
the induced oscillations at the background level [in a, ϕ, and explicitly σ (and derivatives
thereof)] may induce oscillations in the perturbations (in v, so equivalently in χ). Concretely,
if we investigate the χk equation of motion, which we may express as

χ′′
k + (z̃2)′

z̃2 χ′
k + k2χk = 0 , (4.4)

we note that the coefficient of the first-derivative term, χ′
k, is separable as

(z̃2)′

z̃2 = (z2)′

z2 + Υσ

1 + Υσ

(Υ′

Υ + σ′

σ

)
,

(z2)′

z2 = 2H −
√

2
b

ϕ′ , (4.5)

where H ≡ a′/a is the conformal Hubble parameter. Further separating the background
quantities into their scaling behavior plus perturbations due to the massive field as H =
H̄ + ∆H and ϕ = ϕ̄ + ∆ϕ (so also z = z̄ + ∆z), we find

(z̃2)′

z̃2 = (z̄2)′

z̄2 + 2∆H −
√

2
b

∆ϕ′ + Υσ

1 + Υσ

(Υ′

Υ + σ′

σ

)
, (4.6)

where
(z̄2)′

z̄2 = 2H̄ −
√

2
b

ϕ̄′ = p −
√

p/b

1 − p

(2
τ

)
(4.7)

is the contribution that yields the unperturbed near scale-invariant power spectrum derived
in section 2, which we now call P̄s(k). The other terms in (4.6) are now present due to the
massive field oscillations, either explicitly through σ and σ′ or implicitly through ∆H and
∆ϕ′. Those will generate corrections to the power spectrum, ∆Ps(k). Of course, ∆H and
∆ϕ′ are related to σ and σ′ by the background equations of motion (3.3), but it is difficult
to simplify (4.6) analytically any further. Interestingly, even if we did not include a direct
σ-χ coupling in the Lagrangian (so imagining taking Υ ≡ 0), the above shows that there
would still be a correction to the power spectrum due to the induced oscillations in H and
ϕ′. Whether it is the implicit oscillations (due to the gravitational coupling) or the explicit
oscillations in the massive field (due to a direct σ-χ coupling) that contribute the most to
the power spectrum depends in a non-trivial way on the relative size of the couplings Ξ and
Υ. In other words, whether for instance Υσ′/(1 + Υσ) dominates over ∆H and ∆ϕ′ is hard
to determine other than numerically at this point.

The challenge is thus to solve for the perturbations to find what are the induced oscillations
due to the presence of the massive field. As for the background, we shall explore the analytical
and numerical avenues separately; this constitutes the next two subsections.
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4.2 Analytical results

4.2.1 General considerations

Let us begin with a short comment about the (generally coupled) {δϕk, δσk} perturbations
in (4.2). When the massive field σ is left unexcited at the bottom of its potential [when
Ξ(ϕ) = 0, so σ(t) = 0], the action reduces to

S
(2)
{δϕ,δσ} = 1

2

∫
d3k dt a3

(
˙δϕ

2
k −

(
k2

a2 + V,ϕϕ − 2H2(3ϵ − ϵ2 + ϵη)
)

δϕ2
k

+ ˙δσ
2
k −

(
k2

a2 + m2
σ

)
δσ2

k

)
, (4.8)

where we defined η ≡ ϵ̇/(Hϵ). Note that this is the usual second-order perturbed action for a
general adiabatic field with an uncoupled massive spectator field (see, e.g., [112]). Using the
background equations in such a case, we note V,ϕϕ − 2H2(3ϵ − ϵ2 + ϵη) = −(1/4)H2η(6 −
2ϵ + η + 2η(2)), where η(2) ≡ η̇/(Hη). Thus, for the scaling background solution where the
equation of state ϵ is constant, we have η = 0, hence this term vanishes. The resulting
equations of motion are

δ̈ϕk + 3H̄ ˙δϕk + k2

ā2 δϕk = 0 , δ̈σk + 3H̄ ˙δσk +
(

k2

ā2 + m2
σ

)
δσk = 0 . (4.9)

Imposing a Bunch-Davies vacuum in the limit −kτ → ∞ and assuming a slowly contracting
background (in fact, let us take the p → 0+ limit to simplify the argument), the mode
functions remain in their Bunch-Davies states throughout time (as for tensor modes). The
solutions can be expressed as |δϕk|2 ≃ |δσk|2 ≃ (2k)−1, hence Pδϕ(k) ≃ Pδσ(k) ≃ k2/(2π)2.
Such vacuum blue spectra are not observable on cosmological scales, so one would normally
simply neglect the ϕ and σ perturbations altogether.

Then, assuming the addition of a non-zero background coupling Ξ excites the massive
field σ without disrupting the ekpyrotic scaling solution, we may expect the δϕ and δσ blue
spectra to only receive small oscillatory corrections, which would still be unobservable. Even
if the background coupling were large and the σ oscillations had a significant amplitude,
inducing say O(1) corrections to the ekpyrotic scaling background, we could expect O(1)
oscillatory corrections to the power spectra, but those would not affect the previous conclusion.
Indeed, corrections that could lead to observable signals in the power spectrum would have
to be, explicitly reinserting the units, O(M2

Pl/k2
cmb), where the CMB scales are 10−4 ≲

kcmb/Mpc−1 ≲ 1, i.e., more than 50 orders of magnitude away from the Planck scale.
Accordingly, we shall not investigate further the evolution and spectrum of δϕk and δσk

and simply ignore the perturbations to the ϕ and σ fields from here on. In other words,
the focus shall be on the observable χk perturbations. We will comment some more on
δσ fluctuations and quantum standard clocks in the discussion section, though. For the
rest of this section, we derive analytical results for the classical clock signal as well as an
example of sharp feature signal.

According to (3.2), the massive field and entropy field essentially interact via the action

Sσχ =
∫

d4x
√

−g

(
−1

2
(
1 + Υ(ϕ)σ

)
Ω2(ϕ)(∂χ)2

)
. (4.10)
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The coupling function Υ(ϕ) can in general be time dependent (i.e., ϕ dependent). This would
introduce feature signals in addition to the ones induced by the field σ. Therefore, let us
consider a simple case with a constant coupling Υ(ϕ) = 1/Λ > 0. This leads to the following
simplified second-order action [essentially rewriting the σ-χ part of (4.2), now in real space]

S(2)
σχ = 1

2

∫
d3x dτ z2

(
1 + σ

Λ

)(
χ′2 − (∂iχ)2

)
≡
∫

d3x dτ L(2) , (4.11)

where we recall z = aΩ(ϕ), and where ϕ and σ indicate the background solutions ϕ(τ) and
σ(τ) as before. The energy scale Λ can be interpreted as a scale proportional to the radius of
the turning trajectory in χ-σ field space. Alternatively, it can be interpreted as a generic
cutoff scale in an effective field theory perspective (see, e.g., [61]), where the dimension-5
operator σ(∂χ)2 is suppressed by 1/Λ.

Let us write the quadratic Lagrangian as

L(2) = L(2)
0 + δL(2) , (4.12)

with

L(2)
0 = 1

2z2
(
χ′2 − (∂iχ)2

)
, (4.13a)

δL(2) = 1
2

σ

Λz2
(
χ′2 − (∂iχ)2

)
. (4.13b)

The effect of σ on the primordial power spectrum is perturbative as long as |δL(2)| ≪ |L(2)
0 |,

which is guaranteed if |σ|/Λ ≪ 1. The associated Hamiltonian densities7 can be calculated
as follows:

H(2)
0 = 1

2z2
(
χ′2

I + (∂iχI)2
)

; (4.14a)

H(2)
I = −1

2
σ

Λz2
(
χ′2

I − (∂iχI)2
)

. (4.14b)

Indeed, the Hamiltonian density is defined in terms of χ and its conjugate momentum density
πχ, where the relation between χ′ and πχ is as follows:

πχ ≡ ∂L(2)

∂χ′ =
(

1 + σ

Λ

)
z2χ′ =⇒ χ′ ≃

(
1 − σ

Λ

) 1
z2 πχ . (4.15)

Therefore, the Hamiltonian density is

H(2) = χ′πχ − L(2) = 1
2

(
1 + σ

Λ

)
z2
(
χ′2 + (∂iχ)2

)
= 1

2

(
1 + σ

Λ

)
z2
((

1 + σ

Λ

)−2 1
z4 π2

χ + (∂iχ)2
)

. (4.16)

This yields the kinematic (H(2)
0 ) and interaction (H(2)

I ) Hamiltonian densities,

H(2)
0 = 1

2z2
( 1

z4 (πI
χ)2 + (∂iχI)2

)
, (4.17a)

H(2)
I = −1

2
σ

Λz2
( 1

z4 (πI
χ)2 − (∂iχI)2

)
, (4.17b)

7It shall be clear from context whether H is the conformal Hubble parameter or a Hamiltonian density.
Note, also, that the sub-/superscript ‘I’ indicates the interaction picture and is not a running index.
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where πχ and χ are replaced by the variables in the interaction picture, πI
χ and χI , respectively,

which evolve with H(2)
0 . Finally, we use one of Hamilton’s equations to replace πI

χ with χ′
I ,

χ′
I = ∂H(2)

0
∂πI

χ

= 1
z2 πI

χ , (4.18)

which results in (4.14).
Now we formulate the expected signals in terms of corrections to the power spectrum

using the in-in formalism. The χ two-point correlation function is

⟨χ̂2⟩ = ⟨0|
(

T̄ e
i
∫ τe

−∞ dτ H(2)
I

)
χ̂(τe)2

(
Te

−i
∫ τe

−∞ dτ H(2)
I

)
|0⟩ , (4.19)

where (T̄ ) T stands for the (anti-)time-ordering operator and where τe corresponds to the
conformal time at the end of the ekpyrotic phase. To extract and isolate the correction due
to σ oscillations in H(2)

I , we shall treat H(2)
0 as unperturbed by the presence of massive field

oscillations. Specifically, this shall mean replacing z = aΩ(ϕ) by z̄ = āΩ(ϕ̄). Then, we assume
a mode function χ̄k for the Fourier-space quantized χ̂k as

χ̂k(τ) = χ̄k(τ) b̂k + χ̄∗
k(τ) b̂†

−k , (4.20)

where b̂†
−k and b̂k are the usual creation and annihilation operators; χ̄k is related to the

unperturbed canonically normalized mode function v̄k [given by (2.14)] as

χ̄k(τ) = v̄k(τ)
z̄(τ) . (4.21)

The mode function v̄k is consistent with an initial Bunch-Davies quantum vacuum (2.13)
and in the super-horizon limit follows

v̄k(τ)kτ→0−
≃ −

√
−πτ

2

(
1 + i cot(πν)

Γ(1 + ν)

(−kτ

2

)ν

− i
Γ(ν)

π

(−kτ

2

)−ν
)

≃ i
√

−πτ

2
Γ(ν)

π

(−kτ

2

)−ν

, (4.22)

where we recall from (2.11)–(2.12) that ν = 1
2(1 − 3p + 2

√
p/b )/(1 − p), which follows from

writing z̄′′/z̄ = (ν2 − 1/4)/τ2. In the last equality of (4.22), we used the fact that for
ν > 0 only the term ∝ (−kτ)−ν is growing. Note from this that v̄∗

k(τ) ≃ −v̄k(τ) [and hence
χ̄k(τ) ≃ −χ̄∗

k(τ)] in the super-horizon limit.
Let us go back to (4.19) and expand the time-evolution operators to first order. We have

⟨χ̂2⟩ = ⟨0|χ̂(τe)2|0⟩ + 2 Im⟨0|χ̂(τe)2
∫ τe

−∞
dτ H(2)

I (τ)|0⟩ + · · · , (4.23)

where · · · stands for higher-order contributions of the interaction Hamiltonian. In Fourier
space and using (4.14b), we have

⟪χ̂kχ̂−k⟫ ≃ |χ̄k(τe)|2 − Im
(

χ̄k(τe)2
∫ τe

−∞
dτ

σ

Λ z̄2
(
χ̄′∗2

k − k2χ̄∗2
k

))
≃ |χ̄k(τe)|2

(
1 + Im

∫ τe

−∞
dτ

σ

Λ z̄2
(
χ̄′∗2

k − k2χ̄∗2
k

))
, (4.24)
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where the double angular brackets indicate a correlator without the delta function, i.e.,
⟨χ̂kχ̂−k⟩ ≡ ⟪χ̂kχ̂−k⟫(2π)3δ(3)(0). In the second line above, we used the late-time approxima-
tion |χ̄k(τe)|2 ≃ −χ̄k(τe)2. If we define the χ dimensionless power spectrum according to

Ps(k) ≡ k3

2π2⟪χ̂kχ̂−k⟫ , (4.25)

the unperturbed power spectrum is then

P̄s(k) ≃ k3

2π2 |χ̄k(τe)|2 . (4.26)

From (4.24), we thus find the correction to the power spectrum due to the massive field,
∆Ps(k) ≡ Ps(k) − P̄s(k), satisfies

∆Ps

P̄s
≃ Im

∫ τe

−∞
dτ

σ

Λ z̄2
(
χ̄′∗2

k − k2χ̄∗2
k

)
. (4.27)

Let us already calculate the mode function structure of the integrand explicitly for future use:

z̄2
(
χ̄′∗2

k − k2χ̄∗2
k

)
= π

4 k2τ
(
H(1)

ν (−kτ)2 − H
(1)
ν−1(−kτ)2

)∗ −kτ≫1≃ −ikeiπνe2ikτ . (4.28)

In the second equality, we used the large-argument asymptotic form of the Hankel functions.

4.2.2 Clock signal from oscillatory background

In order to evaluate (4.27), we must specify a background solution for σ(τ). Motivated by
our previous analytical approximations of the background, we could use (3.19), though we
recall the expression was fairly complicated with several combinations of special functions.
Therefore, we will rather consider a simplified situation. Specifically, let us consider the case
of a bump coupling function, which as explained in section 3.1 approximately leads to only the
homogeneous solutions σ̄1, σ̄2 in (3.7), which are Bessel functions. For further simplification,
we will assume that for the purpose of evaluating (4.27) it is justified to assume −mσt ≫ 1,
so that we may instead use (3.8). Thus, we may express the function we wish consider as

σ(t) ≃ Θ(t − t0) σ0

(
t0
t

)3p/2
sin[−mσ(t − t0)] , (4.29)

where σ0 is an amplitude, which would generally have to be determined numerically. Note
that since we expect σ = 0 right until the critical time t0 when the bump coupling occurs,
we do not consider any additional phase in the above sine function.

The above function exhibits oscillations in σ extending to arbitrarily late times, where
the approximation −mσt ≫ 1 would break down. However, the main contribution to the
power spectrum signal in (4.27) comes from a sub-horizon stationary point of the integrand,
where the massive field σ and the entropy field χ resonate [40, 113]. Indeed, since σ ∼ e−imt

in the sub-horizon regime, the integral of (4.27) [also using the sub-horizon limit (4.28)]
is schematically of the form ∫

dτ e2ikτ−imt , (4.30)

– 28 –



J
C
A
P
0
9
(
2
0
2
4
)
0
2
6

which is dominated by the stationary point where d
dτ (2kτ − mt) = 0 ⇔ 2k/a = m. Thus,

resonance occurs at early times, and the integral is dominated at some instance in time
where the approximations −mσt ≫ 1 and −kτ ≫ 1 are expected to hold [the latter being the
justification for using (4.28) in (4.27)]. We shall soon explicitly check under what conditions
this is indeed true, i.e., that resonance occurs before the horizon-exit time. Still, for the
time being it shall be reasonable to consider (4.29) on the whole interval −∞ < τ < τe
for the purpose of evaluating (4.27).

It is practical to recast the trigonometric function (4.29) in terms of exponentials. Further
converting to conformal time [recall −t ∝ (−τ)1/(1−p)], we have

σ(τ) ≃ Θ(τ − τ0)
(

− iσ0
2

(
τ0
τ

) 3p
2(1−p)

exp
[
iµp

((
τ

τ0

) 1
1−p

− 1
)]

+ c.c.

)
, (4.31)

where we defined

µ ≡ −mσ

H0
= −mσt0

p
, (4.32)

and c.c. indicates complex conjugation. Substituting the above and (4.28) in (4.27), we
are left with evaluating

∆Ps

P̄s
≃ σ0

2Λ Im
[
−ieiπν

∫ τe

τ0
dτ ke2ikτ

(
−i

(
τ0
τ

) 3p
2(1−p)

exp
[
iµp

((
τ

τ0

) 1
1−p

− 1
)]

+ c.c.

)]

= σ0
2Λ Im

[
eiπν

∫ x0

xe
dx A(x)

(
eif+(x) − eif−(x)

)]
, (4.33)

where we performed a change of variable to x ≡ −kτ in going to the second line and defined

A(x) ≡
(

x0
x

) 3p
2(1−p)

, f±(x) ≡ ∓µp

((
x

x0

) 1
1−p

− 1
)

− 2x . (4.34)

Naturally x0 ≡ −kτ0 and xe ≡ −kτe.
We perform the x integrals by using the stationary phase (or saddle-point) approximation,

which generally states that

∫ x2

x1
dx A(x)eif(x) ≃ A(xres)

√
2π

±f,xx(xres)
exp

[
if(xres) ± i

π

4

]
, (4.35)

for some functions A(x) and f(x) such that f,x(xres) = 0 and as long as x1 < xres < x2
(the integral is approximately zero otherwise). In the above, the + sign (the − sign)
applies when f,xx(xres) > 0 [when f,xx(xres) < 0]. The saddle-point approximation is most
precise when x1 → −∞ and x2 → ∞, or at least when x1 ≪ xres ≪ x2. If we assumed
σ(t) ∼ |t|−3p/2 sin(mσ|t|) for all t ∈ (−∞, ∞), then it would be perfectly justified to use the
saddle-point approximation as stated, and this is how one derives the usual standard clock
signal [40]. In our situation, we shall make a similar assumption computationally, but we
shall ensure the resonance point lies within the finite integral limits through a Heaviside
step function.
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We find that the integral involving f+(x) in (4.33) has no real resonance point and thus
approximately vanishes, while the integral involving f−(x) admits one resonance point at

xres = x0

(2(1 − p)x0
µp

) 1−p
p

, (4.36)

as long as xres < x0, i.e., if

x0 <
µp

2(1 − p) . (4.37)

We may define k0 ≡ −1/τ0 as the mode which exits the horizon at the critical time τ0, so
that x0 = k/k0. We may further define

Kres ≡ µp

1 − p
k0 = mσ

mh0
k0 = a0mσ , (4.38)

mh0 ≡ mh(t0) [recalling (A.12)], and a0 ≡ a(t0), such that the condition (4.37) for resonance
becomes

2k < Kres , (4.39)

or k < kres with kres ≡ Kres/2. We then find

xres
x0

= τres
τ0

=
( 2k

Kres

) 1−p
p

, (4.40)

implying that larger k-modes resonate earlier in the contracting phase. The condition (4.39)
thus ensures resonance indeed occurs after the massive field starts oscillating, τres > τ0.

The condition (4.39) is not the only one to guarantee resonance. Indeed, we also need
to make sure that resonance occurs before the k-mode exists the horizon, i.e., τres < τ⋆ ≡
−1/k ⇔ −kτres > 1, as well as before the massive field stops oscillating, i.e., τres < τh-e.
Thus, requiring τres(k) < min{τh-e, τ⋆(k)} sets a lower bound on k. One can check that
τres(k) < τh-e is equivalent to k > kh-e/2, where

kh-e ≡ ah-emσ =
(

µp

1 − p

)1−p

k0 =
(

mσ

mh0

)1−p

k0 (4.41)

and ah-e ≡ a(τh-e). Similarly, τres(k) < τ⋆(k) is equivalent to k > kh-e/21−p, and τ⋆(k) ≷ τh-e
is equivalent to k ≷ kh-e. Also, for there to be massive field oscillations in the first place, we
had better have τ0 < τh-e, which is equivalent to demanding [combining (4.32) and (3.20)]

µ >
1 − p

p
⇔ mσ > mh0 . (4.42)

Putting everything together, we arrive at different possible sufficient conditions for there
to be resonance:

(1) kh-e < k < kres, i.e., (
µp

1 − p

)1−p

k0 < k <
µp

2(1 − p)k0 , (4.43)

provided
µ > 21/p 1 − p

p
; (4.44)
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(2) kh-e/21−p < k < kh-e < kres, i.e.,

(
µp

2(1 − p)

)1−p

k0 < k <

(
µp

1 − p

)1−p

k0 <
µp

2(1 − p)k0 , (4.45)

provided µ is again respecting (4.44);

(3) or kh-e/21−p < k < kres < kh-e, i.e.,

(
µp

2(1 − p)

)1−p

k0 < k <
µp

2(1 − p)k0 <

(
µp

1 − p

)1−p

k0 , (4.46)

provided

21 − p

p
< µ < 21/p 1 − p

p
. (4.47)

Case (1) implies τ0 < τres < τh-e < τ⋆, while cases (2) and (3) imply τ0 < τres < τ⋆ < τh-e. A
necessary and sufficient condition may then simply be written as kh-e/21−p < k < kres, i.e.,

(
µp

2(1 − p)

)1−p

k0 < k <
µp

2(1 − p)k0 , (4.48)

provided

µ > 21 − p

p
⇔ mσ > 2mh0 . (4.49)

Considering k-modes that fit in the range (4.48), we can put everything together and
obtain

A(xres) =
(

µp

2(1 − p)x0

)3/2
=
(

Kres
2k

)3/2
, (4.50a)

f−(xres) = −µp

(
p

1 − p

(2(1 − p)x0
µp

)1/p

+ 1
)

= −µp

(
p

1 − p

( 2k

Kres

)1/p

+ 1
)

, (4.50b)

f−,xx(xres) = 4
µ

(
µp

2(1 − p)x0

)1/p

= 4
µ

(
Kres
2k

)1/p

, (4.50c)

hence (4.33) becomes

∆Ps

P̄s
≃ − σ0

2Λ Im
(

eiπνΘ(x0 − xres)A(xres)
√

2π

f−,xx(xres)
exp

[
if−(xres) + i

π

4

])

= Θ(Kres − 2k) σ0
2Λ

√
πµ

2

( 2k

Kres

)− 3
2 + 1

2p

sin
(

µ
p2

1 − p

( 2k

Kres

)1/p

+ µp − π

(
ν + 1

4

))
.

(4.51)

Note that the Heaviside function appears from the saddle-point approximation of the integral
and ensures 2k < Kres, but the lower bound on k that we derived in (4.48) came from physical
grounds other than the integral itself (making sure resonance occurs in the sub-horizon
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τ0 τres τh-eτ?

mh

mσ

k/a

K/a

Kres/a

kh-e/a

Figure 9. Depiction of the resonance between the quantum fluctuations in χk of physical wavenumber
k/a (in blue) and the massive field oscillations (in red), which occurs at a time τres when K/a = mσ,
where K ≡ 2k. The fluctuations in χk freeze at horizon-exit time τ⋆, while the massive field oscillations
freeze at horizon-exit time τh-e. The horizon scale mh is shown in green, and kh-e and Kres represent
modes that set lower and upper bounds on K-modes that can undergo resonance. The horizontal axis
should be thought of as the logarithm of the conformal time (in absolute value), while the vertical
axis represents energy scales on a logarithmic scale.

regime), hence it does not appear in the expression above. We shall thus include another
Heaviside function by hand8 in the final expression,

∆Ps

P̄s
≃ Θ

(
Kres − 2k

)
Θ
(

k − kh-e
21−p

)
σ0
2Λ

√
πmσ

2|H0|

( 2k

Kres

) 1−3p
2p

sin
(

p2

1 − p

mσ

|H0|

( 2k

Kres

)1/p

+ φ

)

= Θ
(
kres − k

)
Θ
(

k − kh-e
21−p

)
σ0
2Λ

√
πmσ

2|H0|

(
k

kres

) 1−3p
2p

sin
(

p
mσ

mh0

(
k

kres

)1/p

+ φ

)
, (4.52)

where the phase has been gathered in φ ≃ pmσ/|H0|+π/4+(ns −1)π/2 (recall ν ≃ 2−ns/2 ≈
3/2). This result is in agreement with the model-independent derivation of [40, 41, 54, 55],
and the k dependence of the envelope of the clock signal corresponds to the case of a direct
coupling [54, 55]. An important property here is that the k dependence in the phase of
the clock signal is given by the inverse function of a(t) ∝ (−t)p. This is how primordial
standard clocks work essentially.

A sketch of an example of the relevant scales in this calculation is shown in figure 9 to
provide more intuition about the resonance process. A mode χk has a physical wavenumber

8Note that the approximation would not be so bad even without this Heaviside function, because ∆Ps/P̄s

is approaching zero very fast for k < kres as the amplitude scales as (k/kres)1/(2p)−3/2 — recall the power is a
large number when p ≪ 1.
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k/a that is depicted in thick solid blue. This k-mode is approximately oscillating as exp(−ikτ)
on sub-horizon scales and freezes on super-horizon scales after τ⋆ = −1/k. This is schematically
represented by the thin solid blue curve oscillating on top of the k/a line. The horizon scale
mh is depicted in green. In comparison to this k-mode, a massive field of mass mσ (this
scale is shown by the thick red line) oscillates from the critical time τ0 until its horizon exit,
at τh-e, approximately as exp[±imσ(−t)] ∼ exp

[
±imσ(−τ)1/(1−p)

]
— this is schematically

represented by the thin red curve. The resonance between the two oscillations occurs at
τres, that is when 2k/a = mσ, and induces a clock signal in the correlations of χk. We use
the notation K ≡ 2k, and we represent this mode as a dotted line and its corresponding
oscillatory behavior, e−iKτ , as an overlaid thin solid curve again. We can see that the
frequency of these oscillations indeed matches that of the massive field at τres, hence the
resonance when K/a = mσ. The range of k-modes that can undergo resonance may be
expressed as 2pkh-e < K < Kres (note 2pkh-e ≈ kh-e when p ≪ 1), hence for visual purposes
Kres is depicted as a dash-dotted line and kh-e as a dashed line in figure 9. The former crosses
mσ at the time τ0, while the latter crosses both mσ and mh at the time τh-e.

4.2.3 Sharp feature signal from step background

In this subsection, we analytically study the signature of a sharp feature alone, trying to
isolate the effect of the massive field being suddenly excited. An illustrative example is a
step in the massive field’s vacuum expectation value, which can be parametrized as

σ(τ) = σ0Θ(τ − τ0) . (4.53)

In fact, if one has a bump coupling function at the background level, which triggers massive
field oscillations without a continued driving force, then equation (3.9) showed that σ tends
to a generally non-zero constant at late times, i.e., after horizon exit. Thus, (4.53) captures
this late-time dynamics as well, though the late-time value of σ(τ) might not be exactly the
same as the sudden shift, σ0, received at the trigger time τ0.

Similar to the calculation of the clock signal above, we use (4.27) to calculate the
correction to the power spectrum. Thereby, we wish to evaluate

∆Ps

P̄s
≃ σ0

Λ Im
∫ τe

−∞
dτ Θ(τ − τ0)z̄2

(
χ̄′∗2

k − k2χ̄∗2
k

)
. (4.54)

Using (4.28), this becomes
∆Ps

P̄s
≃ −πσ0

4Λ k2 Im
∫ τe

τ0
dτ τ

(
H(1)

ν (−kτ)2 − H
(1)
ν−1(−kτ)2

)
, (4.55)

and using the closed form of the above integral9 we obtain
∆Ps

P̄s
≃ −πσ0

4Λ Im
[
ikτ

[
(cot(πν) − i)Jν−1(−kτ) + csc(πν)J1−ν(−kτ)

]
H(1)

ν (−kτ)
]τe

τ0
. (4.56)

9The closed form of the relevant integral is given by∫
dτ τ

(
H(1)

ν (−kτ)2 − H
(1)
ν−1(−kτ)2

)
= − i

πk2

(
2 − πkτ

[
(cot(πν) − i)Jν−1(−kτ)

+ csc(πν)J1−ν(−kτ)
]
H(1)

ν (−kτ)
)

.

– 33 –



J
C
A
P
0
9
(
2
0
2
4
)
0
2
6

Keeping leading-order terms in −kτ0 ≫ 1, −kτe ≪ 1, and ν ≈ 3/2, we finally find

∆Ps

P̄s
≃ − σ0

2Λ(1 + cos(−2kτ0)) = − σ0
2Λ

(
1 + cos

(2k

k0

))
. (4.57)

This matches what has been derived for the sharp feature in [40], up to a phase — the
expression goes as 1 − cos(2k/k0) in [40]. Note that both approximated results assume
−kτ0 ≫ 1, so they do not approximate well the corrections to the super-horizon modes
−kτ0 ≪ 1, even though the result in [40] vanishes in the limit kτ0 → 0− coincidentally.
Nevertheless, one can check that the full expression (4.56) goes to zero in the deep infrared.

Sharp features in inflationary models also induce oscillatory signals with the same
sinusoidal running as in (4.57), though with model-dependent phases and envelops [114]. As
shown in [40], unlike the clock signals, such running behavior remains qualitatively the same
for both inflationary and non-inflationary scenarios.

The full signal in ∆Ps/P̄s is then expected to be some combination of a sharp feature
[e.g., (4.57)] and a clock signal [e.g., (4.52)], but a proper understanding of the superposi-
tion of signals requires numerical techniques, which is the subject of the next subsection.
Nevertheless, there is a universal relation between the sharp feature signal and the clock
signal: recalling (4.38), we have [40, 41, 54, 55]

2kres
k0

= p

1 − p
µ = mσ

mh0
(4.58)

as the ratio of the clock signal resonance wavenumber to the sharp feature horizon-exit
wavenumber.

4.3 Numerical results

4.3.1 Methodology

The equation we wish to solve numerically is v′′
k + (k2 − z̃′′/z̃)vk = 0, with the usual Bunch-

Davies initial conditions, and where we recall z̃ = aΩ(ϕ)
√

1 + σ/Λ. Numerically, it is useful
to rewrite the differential equation as a function of the e-folding number N rather than
the conformal time τ . Using the identities N ′ = aH(1 − ϵ) and N ′′ = (aH)2(1 − ϵ)(1 −
ϵ − ϵ,N ), we find

vk,N N + 1 − ϵ − ϵ,N
1 − ϵ

vk,N +
(

k2

(aH)2(1 − ϵ)2 − z̃,N N
z̃

− 1 − ϵ − ϵ,N
1 − ϵ

z̃,N
z̃

)
vk = 0 . (4.59)

Since we need a(N ), another equation must be solved numerically beforehand, namely
a,N = a/(1 − ϵ). [With no massive field, the solution is ā(N ) = aini exp(N /(1 − ϵ̄)), where
aini ≡ a(N = 0).] The equation of motion for vk can alternatively be written in terms
of χk = vk/z̃ as

χk,N N +
(1 − ϵ − ϵ,N

1 − ϵ
+ 2 z̃,N

z̃

)
χk,N + k2

(aH)2(1 − ϵ)2 χk = 0 , (4.60)

where we can re-express the coefficient of the first-derivative term, χk,N , as

1 − ϵ − ϵ,N
1 − ϵ

+ 2 z̃,N
z̃

= 1 + 2 − ϵ,N
1 − ϵ

−
√

2
b

ϕ,N + σ,N
Λ + σ

. (4.61)
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Since (4.60) involves fewer derivatives on z̃ than (4.59), and since the effects of the massive
field oscillations are mainly captured by the time dependence of z̃, we choose to solve the
χk equation directly rather than solving the equation for vk and then transforming to χk.
This has shown to be more robust in terms of numerical accuracy.10

As the perturbations emerge from sub-horizon scales, the initial conditions at NBD are
set by the Bunch-Davies (BD) state as

vk(NBD) = 1√
2k

e−ikτ̄(NBD) , vk,N |NBD
= − i

āH̄(1 − ϵ̄)

√
k

2 e−ikτ̄

∣∣∣∣∣∣
NBD

, (4.62)

together with the relations

χk(NBD) = vk(NBD)
z̃(NBD) , χk,N |NBD

= vk

z̃

(
vk,N
vk

− z̃,N
z̃

)∣∣∣∣
NBD

. (4.63)

Note that we make sure to always set the initial Bunch-Davies vacuum before the massive field
contribution kicks in, i.e., NBD < N0, so that the scaling solution is a good approximation
for a, H, and ϵ initially. We also need τ̄(N ), which we can get from the scaling solution as
τ̄(N ) = τinie

−N , with τini ≡ τ(N = 0) = p/((1 − p)ainiHini). Moreover, we always choose the
time NBD such that the mode is sufficiently sub-horizon, i.e., such that k/(a(NBD)|H(NBD)|)
is some constant factor, orders of magnitude larger than unity. Then, fluctuations exit the
horizon at a time N⋆ when k = a(N⋆)H(N⋆); we expect N⋆ ≈ ln[k/(aini|Hini|)] according
to the scaling solution. The final time Nfinal at which the power spectrum is evaluated

— Ps(k) = k3|χk(Nfinal)|2/(2π2) — is determined such that the mode is sufficiently super-
horizon, i.e., such that k/(a(Nfinal)|H(Nfinal)|) is some constant factor, orders of magnitude
smaller than unity. Finally, the correction to the power spectrum is evaluated following

∆Ps

P̄s
(k) = Ps(k) − P̄s(k)

P̄s(k)
, (4.64)

where the unperturbed power spectrum is taken to be the standard power-law function,
P̄s(k) = As(k/kpivot)ns−1. The tilt is set as explained below (2.16), and the amplitude is
read from the full numerical power spectrum Ps at some sufficiently large pivot scale (small
kpivot) where we do not expect any deviation from a power-law.11

4.3.2 Sharp bump

Let us present a first example of correction to the power spectrum (4.64) numerically computed
following the above methodology. In figure 10, the model parameters are p = 1/10, ϕini = 19.5,
ϕ0 = 13.2, mσ = 5 × 109|Hini|, and ϱ = 1, for the bump-like Ξ coupling. The background
evolution corresponding to this case has not been shown in the previous section, but closely

10Since χk freezes while |vk| grows on super-horizon scales, it is often preferable anyway, numerically
speaking, to solve the χk equation rather than the vk equation after Hubble crossing. This is done, e.g., in [115]
in the case of inflation. Formally, though, it is completely equivalent to solve either the vk or χk equation.

11This is well justified: smaller k-modes exit the horizon at earlier times, so kpivot is chosen such that it
exits the horizon before τ0 when the massive field gets excited. In other words, for k ≪ −1/τ0 = k0, we expect
∆Ps(k) ≃ 0.
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Figure 10. Plot of the relative deviation from an unperturbed power-law power spectrum as a
function of comoving wavenumber k in arbitrary units (see text for explanation). The blue curve is the
result of a numerical computation, while the pink curve, mostly hidden behind the blue curve, is an
analytically motivated fit to the numerical result (see text for further details). The model parameters
are p = 1/10, ϕini = 19.5, ϕ0 = 13.2, mσ = 5 × 109|Hini|, ϱ = 1 (bump coupling function), and
Λ = 0.01, which translates into the following: mσ ≈ 2.19×10−14, |H0| ≈ 5.74×10−18, σ0 ≈ 8.7×10−7,
µ ≈ 3.81 × 103, kres ≈ 2.67 × 10−15, and kres/k0 ≈ 211.7. Horizontally, note that a logarithmic scale
is used for k ≲ 10−16, while a linear scale is used for larger k-values. The separation is delineated by
the vertical thin black solid line. The vertical gray dotted line denotes the value of k0 ≈ 1.26 × 10−17,
and the vertical gray dash-dotted line denotes the value of kres.

resembles the blue curves in the left- and right-hand panels of figure 3, qualitatively speaking,
in the sense that σ undergoes many high-frequency oscillations. The small value of ϕ0 implies
the oscillations in σ are triggered when the background Hubble scale is quite high in absolute
value (recall the ϕ vs |H| relation that can be inferred from the left-hand panel of figure 1). In
turn, this implies that the k-modes that undergo resonance and lead to oscillatory features in
the power spectrum are on very small scales. In figure 10, this corresponds to modes k ≳ 10−18

in Planck units. Note, however, that this is a purely arbitrary choice, which was made for
the purpose of improving numerical stability. Yet, in principle, the exact same signal could
be shifted to arbitrarily smaller k-values, simply by exciting the massive field earlier in the
evolution when |H| was smaller (i.e., taking a larger value of ϕ0). Therefore, at fixed mσ/|Hini|,
the units of the k values in the power spectra shown hereafter should be viewed as arbitrary.

Figure 10 presents the result of a fully numerical computation (in blue): for a range
of k-modes, the full mode equation (4.60) is solved numerically given a numerically solved
background, as described earlier. In pink, we contrast the numerical result with the expected
result from the analytical estimates derived in section 4.2. Specifically, this curve represents
the sum of the expected standard clock signal (4.52) and sharp feature signal (4.57). We use
the same model parameters as in the numerical computations, but we allow for two parameters
to be free: the overall amplitude, set by σ0, and the phase of the oscillatory signals. While σ0
can be approximately read off numerically from the amplitude of the first σ oscillation after it
has been triggered, this will lead to an analytical amplitude in ∆Ps/P̄s that is in the correct
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ballpark, but it will not be a precise fit. By allowing σ0 to be free and fitting it to the full
numerical ∆Ps/P̄s, σ0 is modified by an O(1) factor, and one gets a much better overall fit.
Likewise for the phases: we start with the analytically predicted phases, but correct them by
a small factor that we determine by fitting the analytical functions to the numerical result.

The two types of signals that are expected, the clock and the sharp feature signals, can
be easily distinguished in figure 10. First, the clock signal is the largest oscillatory feature,
which we expect to be within the interval kh-e/21−p ≈ 1.56 × 10−15 ≲ k ≲ kres ≈ 2.67 × 10−15.
This is indeed where the clock signal manifests itself the most, but upon closer inspection of
the plot, the clock signal seems to fade below 10−15. Also, something that is not captured
by the leading-order analytical estimate is the damping of the signal for k > kres, to the
right of the vertical gray dash-dotted line, damping that appears to be exponential in k.
Second, overlaid on top of the clock signal are the sharp feature oscillations of constant (and
much higher) frequency, but of smaller amplitude. The analytical sharp feature signal was
derived assuming k ≫ k0, but the numerical result shows that not much signal appears until
k ≳ 5 × 10−16, more than an order of magnitude larger than k0 ≈ 1.26 × 10−17. One could
ask how much the mixing between the clock and sharp feature signals could be altered if we
changed the different coupling parameters. We now turn to this question.

In figure 11, we use the same model parameters as in figure 10, except for the couplings:
we reduce the turning radius ϱ in ϕ-σ space by two orders of magnitude, hence the background
coupling parameter that controls the amplitude of the σ oscillations is enhanced by two orders
of magnitude; and we reduce the χ-σ coupling Λ−1 at the perturbation level by two orders of
magnitude (top plot) and turn it off completely (bottom plot). We note that there is very
little difference between ϱ = 0.01 and Λ = 1 (top plot of figure 11) versus ϱ = 1 and Λ = 0.01
(figure 10). Indeed, according to our analytical estimates (4.52) and (4.57), the amplitude of
the oscillatory signals in ∆Ps/P̄s is controlled by the ratio σ0/Λ ∼ (ϱΛ)−1, where σ0 is more
or less proportional to 1/ϱ. Since the product ϱΛ is the same in the two plots, the signals
are very similar, and the relative amplitude of the clock and sharp feature signals is thus
expected to always be the same, i.e., both amplitudes are expected to be proportional to
(ϱΛ)−1. Naturally, the overall amplitude of the signal can be modified by changing (ϱΛ)−1 as
long as one remains under perturbative control, which is to say that |σ| ≪ min{Λ, ϱ}.

There is one major difference between the top plot of figure 11 and figure 10, though:
for k ≲ 1.5 × 10−15, the sharp feature oscillations are not damped, and in fact, they grow
in amplitude as k approaches k0 (the vertical dotted gray line) with a decreasing frequency,
until the signal goes to 0 for smaller k-values (as expected). This effect is not captured by
our analytical estimates. Indeed, as can be seen in the lower plot of figure 11, turning off the
χ-σ coupling by sending Λ → ∞ results in no clock signal and no sharp feature signal due to
χ-σ interactions. However, what appears is a different type of sharp feature signal, solely
due to gravitational interactions, i.e., through the time dependence of ϵ in the χk equation of
motion.12 We recall in the middle panel of figure 3 that increasing the background coupling

12This could also be seen from the in-in formalism following the same methodology as in section 4.2,
separating the equation of state as ϵ = ϵ̄ + ∆ϵ in the expression for z and finding the resulting interaction
Hamiltonian. One would then need to analytically find ∆ϵ to compute ∆Ps/P̄s. We leave this for future work,
but for some model-independent estimates, see [40, 41].
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Figure 11. Same model parameters as in figure 10, except ϱ = 0.01 for the background coupling
(correspondingly σ0 ≈ 8.7 × 10−5) and for the perturbation coupling we have Λ = 1 in the top plot
and Λ → ∞ (decoupling limit) in the bottom plot.

1/ϱ increases the amplitude of the oscillatory corrections to the background equation of
state ϵ. Therefore, it is the oscillations in ϵ in that case that resonate with χk and lead
to oscillations in the power spectrum as seen near k0 in figure 11. We checked that, in all
the examples shown in this section, turning off the direct perturbation coupling by sending
Λ → ∞ always leads to some oscillatory signal, i.e., the gravitational interaction is always
present, though its effect is subdominant in most instances (for the choice of parameters
explored, i.e., when 1/ϱ is small enough that |∆ϵ|/ϵ̄ remains very small).

When the direct χ-σ coupling is turned on, say with Λ = 1 as in the top plot of figure 11,
we must emphasize that the fit between the analytical estimates and the numerical results is
quite good when zooming on the respective regimes of the sharp feature and clock signals.
We demonstrate this in figure 12, which shows the same results as in the top plot of figure 11,
but where specific k-ranges are selected to highlight the sharp feature signal (top plot of
figure 12) and the clock signal (bottom plot of figure 12). The frequency, amplitude, and
phase of both signals are quite well fit, modulo the slight scale dependence in the top plot
due to the mixture of sharp feature and clock signals, and modulo the damping of the clock
signal for k > kres (to the right of the vertical dash-dotted gray line), which is not captured
by our leading-order analytic estimate.

Putting the emphasis on the clock signal and the sharp feature signal due to a direct
χ-σ coupling, let us show more examples similar to figure 10 with ϱ = 1 and Λ = 0.01. In
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Figure 12. Same as the top plot of figure 11, but emphasizing two separate k-ranges: the top plot
highlights the sharp feature signal, while the bottom plot highlights the clock signal. As before, the
blue and pink curves are the numerical and analytical results, respectively.

figure 13, we use the same value for mσ/|Hini| and ϕ0, but we set p = 1/11, which results in
mσ ≈ 2.43 × 10−15, |H0| ≈ 1.27 × 10−18, σ0 ≈ 2.1 × 10−6, µ ≈ 1.92 × 103, kres ≈ 3.18 × 10−16,
and kres/k0 ≈ 96. Thus, this case has in effect a slightly smaller value of mσ and µ, and
the ratio kres/k0 is smaller as per (4.58). Therefore, figure 13 resembles figure 10 (recall
the k units should be viewed as arbitrary), except for a few main differences: the smaller
µ value in figure 13 implies a smaller clock signal frequency at any given k, and as such,
there are fewer clock signal oscillations in the power spectrum; and the ratio kres/k0 being
smaller implies a smaller spacing between the dotted (k0) and dash-dotted (kres) vertical
gray lines, and as such, there is more of a mix between the clock and sharp feature signals,
though they are still quite distinct from one another.

These effects can be isolated and amplified by using the same parameters as in figure 10
and just lowering the mass parameter, set by mσ/|Hini|. Figures 14, 15, and 16 show such
examples, where one sees the effect of having successively lower values of mσ, µ, and kres/k0
(in fact, one can compare figures 10, 13, 14, 15, and 16, which all have successively lower
values of mσ, µ, and kres/k0). As those are lowered, we see fewer clock signal oscillations, a
smaller relative difference between the amplitude of the clock and sharp feature signals, and
a tightened window between the dotted and dash-dotted vertical gray lines.

Some related observations: in figure 14, it is interesting to note that the damping of the
clock signal to the right of kres is less severe than in the examples with larger values of µ,
precisely because of the smaller relative difference between the amplitude of the clock and
sharp feature signals. Note, once again, that, besides knowing it is sinusoidal oscillation,
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Figure 13. Same parameters as in figure 10, except with p = 1/11, hence mσ ≈ 2.43 × 10−15,
|H0| ≈ 1.27 × 10−18, σ0 ≈ 2.1 × 10−6, µ ≈ 1.92 × 103, kres ≈ 3.18 × 10−16, and kres/k0 ≈ 96.
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Figure 14. Same parameters as in figure 10, except for mσ = 109|Hini|, hence mσ ≈ 4.37 × 10−15,
σ0 ≈ 5.2 × 10−6, µ ≈ 7.62 × 102, kres ≈ 5.34 × 10−16, and kres/k0 ≈ 42.

we cannot quite capture the phase of the oscillation analytically since, in particular, the
analytically predicted sharp feature signal is out of phase with the numerical result to the
right of the clock signal. We further observe that in figures 15 and 16, kres/k0 is so small
there is barely a single clock signal oscillation, and in figure 16 this is to the extent that the
sharp feature signal only manifests itself for k > kres. Also, note that in these cases even in
the analytical approximations there are very few oscillations in the clock signals.

There is one additional noticeable effect the analytical function cannot capture, which is
the fact that we are left with a (negative) offset in ∆Ps/P̄s that approaches a constant toward
large k-values in figures 15 and 16. The reason for this offset is due to the background freezing
of σ when mσ becomes significantly smaller than mh, the horizon scale. (In section 4.2.2, we
assumed σ to be purely sinusoidal, which did not take into account its late-time freezing; a
refined analytical treatment could use Bessel functions.) As we saw in figures 1 and 2, as well
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Figure 15. Same parameters as in figure 10, except for mσ = 5.3×108|Hini|, hence mσ ≈ 2.32×10−17,
σ0 ≈ 9.85 × 10−6, µ ≈ 403.9, kres ≈ 2.83 × 10−16, and kres/k0 ≈ 22.44.
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Figure 16. Same parameters as in figure 10, except for mσ = 108|Hini|, hence mσ ≈ 4.37 × 10−16,
σ0 ≈ 5.4 × 10−5, µ ≈ 76.2, kres ≈ 5.34 × 10−17, and kres/k0 ≈ 4.2.

as equation (3.9), σ approaches a constant at late times, and the value of this constant —
let us call it σlate — sensitively depends on the phase of the oscillation at horizon crossing.
Thus, σlate depends on t0, th-e, as well as mσ, ϱ, and all other model parameters [recall (3.27)
and (3.28)] in a non-trivial way. In some cases, |σlate| can be somewhat larger than σ0; see,
e.g., the red curve in figure 1. It turns out this offset was rather small in comparison to
the dominant clock signal in the cases of figures 10, 11, 13, 14, though still discernible upon
closer inspection (compare the heights of the blue and pink curves in the high-k limit). In
figures 15 and 16, the offset is definitely noticeable (especially in figure 16), indicating that
σlate has a relatively large effect in comparison to the clock signal. We generally expect
Ps(k) ∝ k3|vk|2/z̃2, with z̃2 ≈ (1 + σ/Λ)z̄2 when the direct coupling dominates over the
gravitational coupling, so a constant deviation from zero, σlate ̸= 0, at late times (assuming
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Figure 17. Background solution for the massive field σ as a function of the e-folding number N in
the case of a mild bump, i.e., the coupling function Ξ is taken according to (3.21c) as in figures 1, 2,
and 3, but the sharpness parameter δ is multiplied by a factor of 5. The other parameters are the
same as in figure 10, i.e., p = 1/10, ϕini = 19.5, ϕ0 = 13.2, mσ/|Hini| = 5 × 109, except for the turning
radius, which we take to be ϱ = 10−3 here.

|σlate| ≪ Λ) implies Ps(k) ≃ (1 − σlate/Λ)P̄s(k) at large k, hence

∆Ps

P̄s

k≫kres−−−−→ −σlate
Λ . (4.65)

We have numerically checked that (4.65) indeed holds from reading off the approximate value
of σlate in the background numerical solutions and comparing −σlate/Λ to the offset seen in
the above figures. We note that, while the offset is always present, it is most discernible when
mσ is small (and correspondingly when µ and kres/k0 are also small), because then there is
little k-space for the clock signal to comparatively grow in amplitude. However, irrespective
of the clock signal, the significance of the offset (4.65) is solely controlled by σlate/Λ, which
does not depend on mσ in any obvious and direct way.

4.3.3 Mild bump

In the previous subsection, we saw examples where the clock signal was generally the most
dominant signal (e.g., figure 10). As we will further discuss in the next section, detecting such
a clock signal would have profound implications since it would be a very strong indication that
primordial perturbations were generated in an ekpyrotic phase of contraction. The region of
parameter space where the clock signal is the most ‘isolated’ is when mσ, µ, and kres/k0 are
sufficiently large. So far we have studied the case where Ξ is a bump-like (Gaussian) coupling
function, i.e., at the background level, the coupling between σ and ϕ is quickly turned on and
off; recall (3.21c). As mentioned at the end of section 3.2.1, the sharpness parameter δ has
always been fixed to 10−3. In this subsection, we will explore what happens if the transition
is made less sharp, i.e., if it is milder, by looking at larger values of δ.

Let us first understand the effect of a milder bump at the background level. An example
is shown in figure 17, where δ = 5 × 10−3 (five times larger than before). Already, one can see
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the effect of a wider, longer bump: when the heavy field is excited, it does not immediately
start oscillating as a massive clock according to (3.8) with initial amplitude σ0; instead, at
first it ‘slowly’ goes up and down its potential while the trajectory turns in field space. This
is the larger and wider peak at around N ∼ 12.6 in figure 17. Once the ‘bending’ is done,
the massive field settles into its standard oscillatory behavior at the bottom of its potential,
and this yields the subsequent oscillations that match (3.8). Note that, in general, a milder
transition results in a smaller initial amplitude σ0 for the oscillations, hence in figure 17 we
purposely amplified the coupling constant to 1/ϱ = 103 (note that |σ|/ϱ remains < 1 at all
times). In this example, one reads off σ0 ≈ 2.88 × 10−5.

Let us then explore the resulting perturbations and how the power spectrum is modified.
In figure 18, we solve for the perturbations with a σ-χ coupling constant 1/Λ = 0.01 (top)
and with no direct coupling (only gravitational; bottom). In the former case, we notice that
the clock signal is still present in the range 10−15 ≲ k ≲ 2.7 × 10−15 as in figure 10, but
the sharp feature signal is somewhat different. Indeed, it now has an envelope that is itself
oscillatory; for example, it peaks at around k ∼ 0.75 × 10−15 with an amplitude that is about
half of the clock signal’s amplitude and has a trough at around k ∼ 1.6 × 10−15. The signal
from the purely gravitational coupling (bottom plot in figure 18) is subdominant, but also has
an interesting sharp feature pattern (with no apparent clock signal). Note that the analytical
fit shown in the figure in pink only considers the estimated clock signal (4.52), i.e., we did
not include the estimated sharp feature signal (4.57) since it cannot capture the envelope
evolution. This is not surprising since the step function (4.53) becomes less appropriate to
model a smooth transition. We expect the reason for the modulated envelop of the sharp
feature signal to be an interference between two sharp feature signals, introduced at the
start and at the end of the bump, respectively. As such, the oscillating wavelength of the
envelop decreases as the width of the bump increases.

The sharp feature signal can be even more important if we further increase the δ

parameter, i.e., if we further smooth the Ξ coupling, as shown by figure 19. The sharp feature
signal has an even more complex envelope evolution, and it dominates in amplitude over the
clock signal. Note that a significant fraction of the sharp feature signal here comes from the
gravitational coupling (as can be seen in the bottom plot). This is due to the fact that we
kept a very tight turning radius (ϱ = 10−3), despite the transition being smoother. (The
background evolution for σ is very similar to that of figure 17, except the first peak is even
wider.) Interestingly, despite the large amplitude of the sharp feature, its signal and the clock
signal are still very distinct from one another: the sharp feature signal seems to decay just
fast enough for the clock signal to stand out in the interval 2 × 10−15 ≲ k ≲ kres. This is in
stark contrast with the full model examples studied in the inflationary scenario, where the
sharp feature and clock signals are typically much more entangled [55].

Let us comment more on this last observation. In inflation, the amplitudes of the sharp
feature and clock signals are similar in the transition region. This means that, in data analyses,
if one only uses the analytic clock signal template, one would get significant misrepresentation.
In the ekpyrotic models here, we seem to see the opposite trend. In nearly all examples, the
sharp feature signals always already decay away before they reach the clock signals. In fact,
one could have thought that the transition would have been more complicated than in the
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Figure 18. Perturbations for the background shown in figure 17 — see the caption of that figure for
the parameter values. The analytical curve in pink only accounts for the clock signal.
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Figure 19. Same model parameters as in figure 18, except δ is twice as large, i.e., δ = 10−2.
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Figure 20. The model parameters are the same as in figure 13, i.e., p = 1/11, ϕini = 19.5, ϕ0 = 13.2,
mσ/|Hini| = 5 × 109, ϱ = 1, and Λ = 0.01, except δ is varied. Curves of different color represent
different values of δ as indicated by the legend. The bottom plot is a zoom-in of the top plot — the
range of the vertical axis is ten times smaller — for the sake of better visualizing the larger δ values
(we further make the cyan and red curves stand out by reducing the opacity of the other curves).

inflation case, because in the ekpyrotic models, the clock signals lie in the k-region that has
k < kres and so are closer to the sharp feature signals. (In inflation, the clock signals lie in
the k-region that has k > kres.) But despite this, they decay before they reach the clock
signals. This is good news for the data analyses, because we can use the analytic template
of the clock signals more reliably than in inflation.

Starting from k = kres, an inflationary clock signal runs to larger k, while an ekpyrotic
clock signal runs to smaller k. Although the clock signal in ekpyrosis decays fast [towards
smaller k as k(1−3p)/(2p) according to (4.52)], it runs to smaller values of k (i.e., towards the
sharp feature signal) in the first place. This is why the separation of the signals has more to
do with the fact that, in ekpyrosis, the sharp feature signal somehow decays faster (towards
larger k) or has a smaller amplitude than in inflation.

Two things might be at play here that offer an explanation: the size of δ and µ. For
the former, we saw that the transition sharpness controls the heights of the first σ peak
and thus the amplitude of the sharp feature signal compared to the clock signal. For the
latter, we saw that the mass-to-Hubble ratio µ controls the ratio kres/k0, i.e., the relative
separation between the two signals. Therefore, let us explore a little more how varying
these parameters affects our conclusions.

In figure 20, we use parameter values that yield µ ≈ 1.92 × 103 and kres/k0 ≈ 96, while
in figure 21 we have µ ≈ 7.62 × 102 and kres/k0 ≈ 42 (see their respective captions), and in
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Figure 21. The model parameters are the same as in figure 14, i.e., p = 1/10, ϕini = 19.5, ϕ0 = 13.2,
mσ/|Hini| = 109, ϱ = 1, and Λ = 0.01, except δ is varied as in figure 20. The bottom plot is a zoom-in
of the top plot also as in figure 20.

both figures curves of different color show the results for different values of δ. The trend
we observe is that the larger δ is (so the smoother the transition is), the smaller the clock
signal is, especially relative to the sharp feature signal. In figure 20, we see that when
δ > 10−2, we get to a point where the sharp feature and clock signals start mixing with
one another a little more. This is even more the case in figure 21 since we recall a smaller
kres/k0 ratio implies fewer clock oscillations and a clock signal that gets closer to the sharp
feature signal in k-space. Thus, for δ > 2.5 × 10−2 in figure 21, the clock signal is barely
distinguishable from the sharp feature signal.

From these examples, a conclusion is that determining how much the two signals mix
cannot be answered in a model-independent way, emphasizing the importance of studying
full models. On the other hand, the full model examples studied so far in inflation all have
relatively small kres/k0, of order O(10); so it is worth examining higher values of kres/k0
for the inflationary scenario, like what we did here, to see if the two types of signals would
become less mixed or remain the same.

4.3.4 Plateau and step

Let us end our survey with plateau-like and step-like coupling functions. As we saw in
section 3.2.3, the behavior of the massive field σ at the background level can be quite different
when the σ-ϕ coupling remains ‘on’, as opposed to being quickly switched ‘on and off’ as with
a bump-like coupling function. Indeed, the coupling resulted in some sort of centrifugal force
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pushing the massive field up its potential, modulated by some small oscillations along the way.
At the background level, such oscillations are very different from ‘standard clocks’ oscillating
as ∼ sin(−mσt). In fact, recall from section 3.1 that the sum of the homogeneous solutions
[∼ sin(−mσt) at early times] and particular solutions involved some complicated cancellations
among special functions, which were hard to track analytically. Correspondingly, we do not
have analytical insight into the expected signal at the perturbation level. Nevertheless, we can
expect the following: the figures of section 3.2.3 showed that the longer the coupling remained
‘on’, the higher up its potential σ was pushed, and the more the ekpyrotic background scaling
solution was disrupted. In fact, for a step-like coupling function, for which the coupling always
remains ‘on’ after the transition at ϕ0, we expect the effective background equation of state ϵ

to asymptote 3, and for such an equation of state we do not expect a near scale-invariant
scalar power spectrum for χ [unless the coupling function Ω(ϕ) is adjusted, but we do not wish
to do that]. Therefore, we can expect the modes that exit the horizon at late times (large-k,
small-scale modes) to receive a large ∆Ps correction. We will confirm this numerically below.

Figure 22 shows the numerical results for ∆Ps/P̄s given the background solutions already
shown in figure 5, namely for a plateau-like coupling function Ξ(ϕ) of increasing field-space
width ∆ϕΞ. All other parameters are kept fixed (see the caption of figure 22 for their values).
We recall from figure 5 that the larger ∆ϕΞ is, the higher up the potential σ gets before
oscillating at the bottom of its potential, and the higher the amplitude of these oscillations.
This explains why the larger ∆ϕΞ is in figure 22, the larger the overall amplitude of ∆Ps/P̄s.

An important thing we notice from figure 22 is that, despite the background massive field
eventually undergoing ‘standard clock oscillations’ once the coupling turns off (as long as
this happens before freezing, so if ∆ϕΞ ≲ 2; again, recall figure 5 and the discussion around
it), the perturbations do not exhibit a clear-cut standard clock signal as for the bump-like
coupling we have seen in the previous subsections. Indeed, even when the plateau is somewhat
narrow (say the blue curve with ∆ϕΞ = 0.2), the standard clock signal that we recognize just
to the left of the vertical dash-dotted gray line (depicting kres) is somewhat altered — both
its frequency dependence and its envelope behavior. One particular reason is the following:
recalling figure 5, σ in all the examples undergoes the same small oscillations after the critical
time while being pushed up to higher values. These (‘non-standard’) oscillations lead to a
feature that is different from the standard clock signal, but which is very much in the same
k-window. We note that this signal is always there — even in the top plot showing the
larger values of ∆ϕΞ, one can see some small wiggle just to the left of kres indicative of these
oscillations — but it is engulfed by some larger oscillatory feature, which we discuss next.

For smaller ∆ϕΞ values in the bottom plot, we notice the presence of some kind of
secondary sharp feature signal. However, as ∆ϕΞ is increased, this signal is washed out, and a
more important oscillatory signal appears, peaking in amplitude at around k ∼ 0.33 × 10−15.
As ∆ϕΞ is increased, the frequency of these oscillations shrinks, while their amplitude grows.

The reason the sharp feature signals are more complicated in the plateau case is that the
plateau introduces two sharp features. One at the start of the plateau and another at the
end. We have already seen some effects of this in the bump case, but in the plateau case, the
two sharp features are more separated in scales and strength, and the net effect becomes very
different. From figure 5, we can see that the end of plateau introduces a sharp edge in the
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Figure 22. Plots of the relative deviation from an unperturbed power-law power spectrum as a
function of comoving wavenumber k in arbitrary units when the background coupling function Ξ
is a plateau-like function (3.21b) of various widths ∆ϕΞ ≡ ϕ0 − ϕe. The corresponding background
solutions for σ have been shown in figure 5 — the color coding is the same. We recall the model
parameters are ϕini = 19.5, ϕ0 = 13.2, p = 1/11, ϱ = 1 and mσ = 109.8|Hini|, and we further set
Λ = 0.01 here. Note that the three plots have three different vertical ranges that cover different orders
of magnitude as ∆ϕΞ is varied.

evolution of the σ field, and this sharp feature is more pronounced than the one at the start of
the plateau. Moreover, the oscillation amplitude of the σ field is also more pronounced after
the end of the plateau than the beginning of the plateau. Therefore, in the plateau case, we
should really treat the mode that exits the horizon at the time when the plateau ends as k0.

In the top plot of figure 22, we see that the correction to the power spectrum can become
O(1) the larger ∆ϕΞ is. In fact, increasing the plateau width even more, and certainly
with a step-like coupling function, we obtain a very large correction to the power spectrum,
eventually deviating completely from being just red-tilted. This was to be expected given the
backreaction at the background level we alluded to when the coupling remains ‘on’ for long
enough. While we do not show the small-k regime on a logarithmic scale in figure 22, we can
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nevertheless mention that ∆Ps/P̄s still goes to 0 below k0 (the vertical dotted gray line).
Let us end by mentioning that while the signals found in figure 22 are not necessarily

desired for the sake of finding standard clocks and model-independent evidence of ekpyrosis,
they still represent interesting phenomenology, which could deserve further attention in
follow-up work.

5 Discussion and conclusions

In this paper, we constructed the first full models of classical primordial standard clocks
in an alternative to inflation, specifically in the slowly contracting ekpyrotic scenario. Our
setup consisted in introducing a coupling between the ekpyrotic field ϕ and a massive field σ

though an operator of the form σ(∂ϕ)2. Thinking of the adiabatic trajectory as the bottom
of an inclined valley in field space, the massive field is initially at rest, but a turning of the
valley gives some initial momentum for σ to start oscillating on the slopes perpendicular
to the adiabatic trajectory. We investigated the observational signatures of this entire
process, motivated by the significant implication arising from the signature of an oscillating
massive field. The setup and questions we asked here are very similar to quasi-single field
inflation [116] (see [62, 112] for reviews) and many constructions of classical primordial
standard clocks in inflation [55, 58–60].

When the turning occurs over a short time scale, which is to say that the operator σ(∂ϕ)2

is quickly turned on and off through a field-dependent coupling Ξ(ϕ), and if the massive field
is sufficiently heavy at that moment in time (compared to the background horizon mass scale),
then it starts oscillating in the standard way to lead to a clock signal in the power spectrum.
Such a signal would be a telling sign of an ekpyrotic phase of contraction. However, when
the coupling term Ξσ(∂ϕ)2 remains present for a sufficiently long time with constant Ξ, the
standard clock oscillations are highly modulated during their evolution. Correspondingly, the
clock signals get more mixed with other signals, and as such, they become more difficult to be
disentangled. In such cases, we find a vast phenomenology of features in the power spectrum
besides the clock signal, none of which would be model-independent evidence of ekpyrosis to
the same extent as a clear-cut clock signal. We leave for future study the question of whether
or how any potential clock signals could be clearly separated in this case.

At the background level, there is already a clear difference between inflation and a
contraction alternative when it comes to implementing a classical primordial standard clock.
Indeed, in inflation the horizon scale mh is nearly constant, hence if mσ ≫ mh initially, σ

remains heavy at all times. In a contracting scenario, any massive field would be ‘heavy’
as long as mh is sufficiently small initially. However, this does not hold forever, and as
the universe contracts and mh becomes large, massive fields eventually become ‘light’, with
mσ ≪ mh. For these reasons, inflation probes massive fields with a nearly constant energy
scale, as a ‘cosmological collider’ [116, 117], whereas a contracting alternative scans massive
fields over a vast range of energy scales, as a ‘particle scanner’ [43].

The fact that heavy fields eventually become light in a contracting cosmology comes at
a price, though. For example, there is an issue of stability for non-attractor models such
as the matter bounce scenario (see, e.g., [118–121] and references therein for a discussion of
the issue and possible resolutions, as well as [103, 122, 123] regarding further challenges).
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Slow contraction (ekpyrosis), though, has the advantage of being an attractor like inflation,
hence one may not have to worry about massive fields potentially disrupting the background
evolution and the leading-order nearly scale-invariant power spectrum of scalar perturbations.
In that sense, any massive field (whether effectively heavy or light) is just a spectator. We
have shown this to be indeed true, although only when the interaction term σ(∂ϕ)2 does not
remain present for too long, because otherwise σ drifts (as opposed to in inflation, where it
would damp out and settle down) and eventually backreacts on ϕ to the extent that ϕ no
longer acts as an ekpyrotic field (instead, all fields become effectively massless).

We should stress that this last conclusion is quite specific to our classical primordial
standard clock implementation, i.e., having an operator σ(∂ϕ)2, which may or may not
remain present. This is in no way exhaustive and unique. One could certainly think of
alternative models, which would not involve such an operator and which would thus not
have the same issue13 — for instance, one could explore the massive field as coupling to
the background through operators of the form ∂σ∂ϕ, σ2R, etc. We have explored a few
alternative phenomenological implementations of massive scalar fields classically excited in a
phase of ekpyrotic contraction, but we left them out for follow-up work, which could also
explore the phenomenology of massive particles of different spin (e.g., fermions, vector fields,
etc.), as well as perhaps more fundamental constructions (e.g., string theoretic).

A key conclusion of our work is that a sharp bump coupling leads to clear-cut, easily
distinguishable sharp feature and clock signals. A further important conclusion is that
whenever we find a clock signal, this signal has a frequency dependence and a characteristic
envelop,

∆Ps

P̄s
∼
(

k

kres

) 1−3p
2p

sin
[
p

mσ

mh0

(
k

kres

)1/p
]

, (5.1)

which robustly correspond to what is expected from a slowly contracting cosmology with
0 < p ≪ 1 (and which is in some ways exactly opposite of what one has in inflation with
p ≫ 1). In fact, the analytical estimates we derived are quite accurate in describing the sharp
feature and clock signals for a sharp bump coupling function as long as mσ/mh0 = Kres/k0 is
large. Thus in that regime, the analytical estimates may be used to construct robust templates
for the sake of searching for such signals in data. At small mσ/mh0, though, the analytical
estimates become less accurate, and one needs to solve the full model to compute the correct
signal (which further motivates this work). We note that while having a very large mass
compared to the horizon scale at the start of the oscillations leads to more oscillations in the
clock signal, it would also make the signal harder to detect, because it increases its frequency,
hence one would require more angular resolution in the observations. On the other hand, low
frequency signals are easier to detect, but small-mσ/mh0 signals have very few oscillations
or even just a spike. Yet, this might still be distinctive evidence of ekpyrosis as we do not
know of any other models (including other than ekpyrotic and alternative features such as

13Let us emphasize that this is not a critical issue of the ekpyrotic scenario in itself; it is simply a challenge
for implementing classical primordial standard clocks. In fact, more complete and realistic models of ekpyrosis
have a potential V (ϕ) that goes to 0 as the bounce is approached at late times (i.e., ekpyrosis is followed by a
phase of kinetion; see, e.g., [68, 124, 125]), thus in that sense having an evolution from ϵ ≫ 3 to ϵ → 3 is not
problematic at all; it is rather desired and expected.
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sharp ones) that would produce such a signal. It will be interesting to determine given some
observational forecast what ranges of mσ/mh0 values we may be able to probe in the future.

The conclusion that the sharp feature and clock signals are distinct from one another
is somewhat dependent on the sharpness of the transition: we found that the smoother the
transition, the more the two signals can mix. More work could be done to better understand
the model dependence of this aspect of the results in both inflation and ekpyrosis. Let us
stress that, in this work, the clock analytical template is found to be good for both sharp
and smooth bumps as long as mσ/mh0 is large, but the sharp feature signal is definitely
more complex for smooth bumps (regardless of the value of mσ/mh0). And regardless of the
transition sharpness, a generic prediction of the bump coupling is a constant shift in the
amplitude of the power spectrum at large k. This is due to the freezing of the massive field
to a non-zero constant value at late times, hence the presence of the operator σΩ2(ϕ)(∂χ)2

in the perturbation sector leads to a constant offset in the amplitude of the power spectrum
on small length scales. Such a prediction could be easily tested with data, though this would
be specific to this particular model. Similarly to the previous discussion, one could further
explore different ways the massive field can couple to the cosmological perturbations. Most
of our focus has been on a direct coupling between σ and the isocurvature perturbation χ,
but other avenues could be further explored. A gravitational coupling always appears to be
present, though in this work we find its effect to be less important than a direct coupling,
and the gravitational coupling seems more efficient in producing sharp feature signals than
clock signals. Certainly, in the future it would be interesting to have a better analytical
understanding of the signals due to a pure gravitational coupling in the present model and
to better understand how this compares to the situation in inflation.

Let us recall that primordial standard clocks have been proposed to provide model-
independent evidence of the evolution of the scale factor during the primordial phase, but
this proposal first came from parametrized estimates of the behavior of massive fields in some
given background. Actual models of primordial standard clocks in inflation supported the
proposal, but it is the first time we can address how this fares in comparison to an actual
model in a non-inflationary scenario. In general, we confirm that a clear-cut clock signal
would be proper evidence of a given scenario over another. More specifically, we showed
that if a massive field is properly classically excited, it leads to a signal in the two-point
function that robustly discriminates between ekpyrosis and inflation. This is crucial since, as
we stressed in our introduction, very few predictions have this power.

There are some caveats since we made some simplifying assumptions in our computations.
For instance, we ignored any χ potential term at reheating and did not model the conversion
of isocurvature perturbations (χ) into curvature perturbations (R). This process is known
to produce non-Gaussianities, and it would be interesting to determine how the presence of
features affects the process. In fact, it would be important to support the conclusion of [66]
that features in Ps(k) are imprinted in PR(k) after conversion. Relatedly, a critical issue
in alternatives to inflationary is how the density perturbations survive through the bounce.
Explicitly evolving the perturbations through a non-singular bouncing model and checking
the assumption that the predicted ∆Ps/P̄s at the end of ekpyrosis translates into ∆PR/P̄R
at the onset of radiation-dominated expansion should be done in the future. Nevertheless, we
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believe that standard clock signals should be quite robust against the details of the bounce,
as the key information is in the scale dependence of the oscillatory phases.

Something else that we ignored in this work is the effect of other perturbations, such
as δσ and δϕ. The latter is typically subdominant compared to χ in standard ekpyrotic
cosmology. We expect this to still hold in the presence of massive fields and the same to be
true for δσ. Nevertheless, it would be interesting to study the full effect of σ perturbations
in future work [i.e., σ(t) + δσ(t, x)] and in particular looking at purely quantum effects,
namely quantum standard clocks (e.g., [42]). Indeed, quantum standard clocks have only
been explored in alternatives to inflation in [42, 43, 67], and once more it would be relevant
to have a better understanding of the robustness of their predictions in actual models to see
how things compare to inflation. There has been a lot of work on quantum standard clocks
or cosmological collider physics in the context of inflation, but again with the prospect of
finding new ways of discriminating whole scenarios of the very early universe, more work
should be done on non-inflationary theories. In particular, for both classical and quantum
standard clocks, a lot of information is encoded in higher correlation functions beyond the
power spectrum, e.g., in the bi- and trispectra. In general, studying non-Gaussian signals
due to the presence of massive fields in alternatives to inflation is largely unexplored.

We end with a list of follow-up questions that could further deserve attention:

• What if we put in the standard model or some particles beyond the standard model
— how can we couple things consistently, are some massive fields excited, do we get
specific clock signals, and how does it compare to inflation such as in [126, 127]? In
particular, it would be interesting to have a relation between the mass and energy
ranges of the theories and the observable scales (e.g., in terms of the CMB angular
scale ℓ or large-scale structure wavenumber k) where we would expect to find these
signals. It would also be interesting to explore the signatures of massive fields beyond
the power spectrum, in primordial non-Gaussianities; and in cases with or without sharp
features, with contributions from either classical or quantum oscillations of massive
fields. Overall, these questions are similar to those asked in the program of cosmological
collider physics for inflation [42, 61, 116, 117, 126–213].

• It would be interesting to explore if primordial features in ekpyrosis, such as the
ones studied here or other types of features, may be used to explain certain feature
candidates in the CMB, such as the low-ℓ dip and high-ℓ wiggle (such as explored
in [54, 55, 59, 60, 214–223]) or various anomalies (as explored in [67, 224]).

• How can we improve templates for the sake of data fitting (as in, e.g., [48, 54, 55, 58–
60, 67]) to better account for the phenomenology of features found in this work?

• What is the prospect of detecting clock signals in the future (building on, e.g., [64, 225–
231]) and is a certain kind of clock signal (inflationary, ekpyrotic, etc.) more easily
detectable due to the specific frequency dependence?

• What about non-standard clocks, i.e., massive fields with non-constant (time-dependent)
mass? Is it always possible to engineer a model (see [40, 56, 57, 232]) that would mimic
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the standard clock signal of another scenario, or is this unrealistic/unrealizable? If
possible, it would be important to construct the full models; and if not, to what extent
could this be done?

• What about different models of ekpyrosis altogether, e.g., models that do not have any
entropic field χ and where it is the adiabatic field ϕ that acquires near scale invariance
(see, e.g., the model of [233–235]) — can one consistently implement standard clocks in
such models and do they predict the same clock signals?

• What about other alternatives to inflation, like slowly expanding ones (e.g., [12–14, 21,
22, 24]) or holographic ones (e.g., [23, 25, 26])? Can there be heavy spectator fields in
such theories and what are their effects and predicted signals?

The future will be bright if progress in these directions can be achieved, and this will be
beneficial for both inflationary cosmology and its alternatives since the common goal is to
find robust evidence for the actual origin of our universe.
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A Types of horizons

Let us review the different notions of horizon that are relevant in this work. First, there is
the scale at which a massive field freezes and stops oscillating. In a flat FLRW background
with scale factor a(t), the equation of motion of a minimally coupled homogeneous massive
scalar field σ(t) of mass mσ is

σ̈ + 3 ȧ

a
σ̇ + m2

σσ = 0 . (A.1)
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Here, t is the physical time, and ˙ ≡ ∂t. In terms of conformal time τ (where dτ ≡ a−1dt,
′ ≡ ∂τ ), the equation of motion is

σ′′ + 2a′

a
σ′ + m2

σa2σ = 0 . (A.2)

Letting ς ≡ aσ, the equation becomes

ς ′′ +
(

m2
σa2 − a′′

a

)
ς = 0 . (A.3)

This is the equation of a simple harmonic oscillator with time-dependent frequency ω(τ)
satisfying

ω2 = m2
σa2 − a′′

a
. (A.4)

The transition time when ς (and equivalently σ) goes from oscillating (when ω2 is dominated
by m2

σa2) to being frozen (when ω2 is dominated by a′′/a) is the moment when m2
σa2 = |a′′|/a.

We thus use this to define the ‘mass’ (reciprocal length or frequency) of the corresponding
horizon scale,

mh(τ) ≡

√
|a′′|
a3 . (A.5)

Using a(τ) = (−τ)
p

1−p (assuming a contracting cosmology here with τ < 0 and 0 < p <

1), one has

a′′

a3 = −p(1 − 2p)
(1 − p)2 (−τ)− 2

1−p , (A.6)

and one can verify that the Hubble parameter, H ≡ ȧ/a = a′/a2, satisfies

H(t) = − p

(1 − p)(−τ(t))− 1
1−p . (A.7)

Therefore, we can write

mh(t) =
√

|1 − 2p|
p

|H(t)| =
√

p|1 − 2p|
|t|

p≪1
≃

√
p

|t|
(A.8)

as the mass of the horizon.
Note that the same horizon scale determines whether adiabatic fluctuations in a constant

equation of state background (contracting with 0 < p < 1) are oscillating or frozen. Indeed,
they follow

u′′
k +

(
k2 − a′′

a

)
uk = 0 , (A.9)

where uk denotes the normalized mode function of an adiabatic fluctuation with comoving
wavenumber k. Accordingly, the freezing of adiabatic modes occurs when k2 = |a′′|/a, so
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when their physical wavenumber q ≡ k/a equates mh as defined above. If we define the
corresponding comoving scale as kh ≡ amh, then we notice that

kh(τ) =
√

p|1 − 2p|
(1 − p)|τ |

p≪1
≃

√
p

|τ |
. (A.10)

A mode that acquires scale invariance (whether adiabatic or entropic) satisfies v′′
k + (k2 −

2/τ2)vk = 0, in which case the horizon scale associated with freezing is simply kh =
√

2 /|τ |.
An alternative definition of horizon, used in [40, 55], is the horizon scale defined by

m−1
h (t) ≡ a(t)

∫ 0

t

dt̃

a(t̃)
= −a(t)τ(t) , (A.11)

in which case one can deduce

mh(t) = 1 − p

p
|H(t)| = 1 − p

|t|
p≪1
≃ 1

|t|
, kh ≡ amh = 1

|τ |
. (A.12)

The integral in (A.11) should be taken assuming a(t) ∝ (−t)p in a contracting cosmology
(t < 0, 0 < p < 1) that ends in a big crunch at t = 0. In this case, (A.11) is the event
horizon [241]. In reality, a bounce would occur before a crunch is reached for the model to
be realistic, in which case there may be no such concept as an event horizon. Nevertheless,
as long as one is far away from the bouncing time, i.e., deep in the contracting phase when
modes of observational relevance would freeze, the above captures a relevant notion of horizon.
(It is the same story as in quasi-de Sitter inflation, where the event horizon of de Sitter
satisfies mh = H, kh = 1/|τ |; recall a(τ) = −1/(Hτ) for de Sitter.)

For concreteness, we follow the convention of [40, 55] and use (A.12) as the definition of
the horizon scale throughout this work. As such, the horizon-exit time of a massive field is

th-e = −1 − p

mσ

p≪1
≃ − 1

mσ
, (A.13)

which is the solution to when mh(t) = mσ ⇔ −mσt ≃ 1. Likewise, the horizon-exit time of a
perturbation is when kh(τ) = k ⇔ −kτ = 1; we shall often denote this time as τ⋆ = −1/k.
Note, though, that these are not quite the same as the freezing times according to (A.8)
and (A.10); the scales differ by a factor of about 1/

√
p . Naturally, in the limit p → 0+ one

recovers Minkowski, hence there is no freezing time, only oscillations. However, for some
reasonable values of p (e.g., 1/20 ≲ p ≲ 1/3), the difference may be O(1), akin to the

√
2

difference between (A.12) and the expected freezing scale of a scale-invariant mode. In any
case, the concept of freezing time is somewhat imprecise, in the sense that it is never a
sharp transition. It is rather more of a smooth transition for which it is difficult to pinpoint
exactly where oscillations stop. This can be seen explicitly in analytic solutions that involve
the Bessel or Hankel functions.

B Second-order action

Let us briefly review how one derives (4.2). Starting from the full action (3.2) and expanding
the fields according to (4.1) in the spatially flat gauge (Ψ ≡ 0) up to second order in
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perturbations yields

S(2) = 1
2

∫
d3xdta3

((
−6H2+(1+Ξσ)ϕ̇2+σ̇2

)
Φ2+2

(
−2HΦ+(1+Ξσ)ϕ̇δϕ+σ̇ δσ

)∂2B

a2

+(1+Ξσ)
(

˙δϕ
2− (∂iδϕ)2

a2

)
+(1+Υσ)Ω2

(
χ̇2− (∂iχ)2

a2

)
+ ˙δσ

2− (∂iδσ)2

a2

−
(

V,ϕϕ− 1
2Ξ,ϕϕσϕ̇2

)
δϕ2−m2

σ δσ2+Ξ,ϕϕ̇2 δσ δϕ+2Ξϕ̇δσ ˙δϕ+2Ξ,ϕσϕ̇δϕ ˙δϕ

−2Φ
(

σ̇ ˙δσ+
(

m2
σσ+ 1

2Ξϕ̇2
)

δσ+(1+Ξσ)ϕ̇ ˙δϕ+
(

V,ϕ+ 1
2Ξ,ϕϕ̇2σ

)
δϕ

))
. (B.1)

The expanded action also has the following contribution,

1
2

∫
d3x dt a3

((∂i∂jB)2

a4 − (∂2B)2

a4

)
,

but this combination is a boundary term, hence we omit it in the expression. We also
performed integration by parts of the form

∫
∂iδϕ ∂iB = −

∫
δϕ ∂2B (and similarly with δϕ

replaced by δσ). In the above, we notice that the perturbations of the lapse (Φ) and of
the shift (B) appear as Lagrange multipliers (no time derivatives act on them), hence we
can solve for the corresponding constraints (the Hamiltonian and momentum constraints,
respectively). The solutions to the constraints read

Φ = 1
2H

(
(1 + Ξσ)ϕ̇ δϕ + σ̇ δσ

)
, (B.2a)

∂2B

a2 = − 1
2H

(
(1 + Ξσ)ϕ̇ ˙δϕ + σ̇ ˙δσ

)
− 1

4H2

(
(1 + Ξσ)ϕ̇(6H2 − σ̇2) − (1 + Ξσ)2ϕ̇3

+ 2HV,ϕ + Ξ,ϕσϕ̇2H
)
δϕ − 1

4H2

(
(6H2 − (1 + Ξσ)ϕ̇2)σ̇ − σ̇3 + 2Hm2

σσ + Ξϕ̇2H
)
δσ .

(B.2b)

Upon substituting these solutions back into the perturbed action to eliminate the lapse and
shift perturbations, we obtain an action that solely depends on the dynamical degrees of
freedom χ, δϕ, and δσ. Doing some more integration by parts to eliminate terms like δϕ ˙δϕ

and using the background equations of motion (3.3) to simplify the expression, we finally
arrive at equation (4.2). We expressed it in Fourier space for later convenience, but the
expression in real space is just as straightforwardly deduced.
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