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FAST/IOTA: a center for Accelerator Science and Technology R&D

Dedicated AST R&D facility with intensity- S -
frontier focus: take novel AST from concept, - '
to demonstration, to practice for HEP :

Also, high-impact, cross-office (DOE) R&D and
collaborator-driven programs; strong education
and training element

Real-time video of IOTA beam in
NIO optics on integer resonance

First demonstration of ILC cryomodule beam- &8
accelerating-gradient spec; 31.5 MeV/m (2017)

First demonstration of Nonlinear Integrable
Optics (2020); operation on integer resonance

First demonstration of Optical Stochastic
Cooling (2021); ~7000x increase In state-of-
the-art frequency bandwidth

First OSC
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Stochastic Cooling: an enabling technology for colliders and beyond

. before

microwuve
amplifier

correction
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1984 Nobel:
van der Meer &
Rubbia

Simon van der Meer (COOL 1993
workshop, Montreux):

“How then can cooling work? It must necessarily be
through deformation of phase space, such that
particles move to the center of the distribution and
(to satisfy Liouville) the empty phase space between
the particles moves outwards. Clearly, the fields that
do this must have a very particular shape, strongly
correlated with particle position. In fact, at least two
conditions must be satisfied:

1. The field that cools a particular particle
must be correlated with the particle’s phase-space
position. In short, the field must know where each
particle is.

2. The field that pushes a particular particle
towards the centre should preferably push the
empty phase-space around it outwards. It should
therefore treat each particle separately.

With stochastic cooling, these two conditions are
clearly corresponding to the function of the pickup
and kicker. Both must be wide-band in order to see
individual particles as much as possible.”
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OSC extends the SC principle to optical frequencies & bandwidths

(Transit-time OSC) beam

direction /
pickup
N undulator \\I Po

@

particle _
bypass _ -~

£

light optics
& amplifier

kicker ARV plates @
A : &

undulator AW ., P passive optics
' (this experiment)

103 — 10 increase in achievable stochastic cooling rate
(~10s of THz BW vs few GHz)

A.A.Mikhailichkenko, M.S. Zolotorev, “Optical stochastic cooling,” Phys. Rev. Lett. 71 (25), p. 4146 (1993)
M. S. Zolotorev, A. A. Zholents, “Transit-time method of optical stochastic cooling,” Phys. Rev. E 50 (4), p. 3087 (1994)
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1.

Each particle generates EM
wavepacket in pickup undulator

Particle’s properties are “encoded”
by transit through a bypass

EM wavepacket is amplified (or not)
and focused into kicker und.

Induced delay relative to wavepacket
results in corrective kick

Coherent contribution (cooling)
accumulates over many turns
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Position (mm)

OSC @ IOTA: a new state-of-the-art in particle-beam cooling

Optical Stochastic Cooling: first successful Experimental demonstration of optical
realization of stochastic cooling in the optical stochastic cooling
regime; Nature 08/11/22 O T o v, L & Wt e P Pt .

G. Stancari' & A. Valishev'

Accepted: 13 June 2022

100-MeV electrons in IOTA with an optical
wavelength of 950 nm

Demonstrated system bandwidth of ~30 THz;
>7000x higher than microwave SC

Demonstrated flexible, strong cooling for 1D, 2D
and 3D; Cooling ~10x stronger than synchrotron-
radiation damping with no amplification!

manuscript in preparation with other “beam” results
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Single-electron OSC also produced excellent results

high-resolution

dipole PMT
radiation _

longpass
SPAD filter

 First closed-loop interaction of a single relativistic &<
particle with its own radiation field

7

pickup & kicker
pulses

« Successfully resolved the underlying OSC
physics using a single electron as the probe

light path

)

.
W

(ns

L e =

amplitude

« Observe expected modulation of photon- — | o=

time (ms)

emission probability due to the OSC system

« Used the OSC force to freely manipulate the
single-particle action

« Excellent agreement between system
performance with single particle and with beam

« Manuscript in preparation
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A staged approach for OSC at IOTA
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* Non-amplified OSC (~1-um): simplified optics with strong cooling to enable early exploration

of fundamental physics; cooling rates, ranges, phase-space structure of cooling force, single
and few-particle OSC

« Amplified OSC (~2-um): OSC amplifier dev., amplified cooling force, advanced phase-space
control, QM noise in amplification + effect on cooling, diffusion/heating, etc...
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Amplified-OSC experiment is now under conceptual development

Higher-delay system: 6mm vs 0.6mm —

provides optics budget and stronger cooling beam

) ) direction
More complex bypass for balancing competing piokup /
requirements and enabling different operational T S
modes

particle

Good matching between electron optics and
light optics (i.e. matched transfer matrices)

Telescopic in-vacuum optics with tight focus in ,
amplifier and DOF suppression in undulators plates /" light optics
Longer wavelength for 1) amplifier Kicker P S ameiter
compatibility; 2) cooling range: partial undulator
compensation of higher delay; 3) reduced
requirements on bypass stability

Power gain ranging from 0dB to ~40dB;
corresponding to cooling times of O[1ms]

Will have CDR exploring all critical systems

drive laser

2% Fermilab
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transverse elements

Extensive bypass optimization effort

2.0

10

Physical bypass configuration should be complex enough

s (m)
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10+
to meet needs of all operational modes while still being y
physically realizable <
Extensive multi-objective optimization campaign using 4
cpymad (i.e. MADX) with genetic algorithms (CNSGA) in 2]
Xopt and Pymoo
Optimization on critical performance parameters for OSC
(mappings, rates, ranges, etc...)
Solutions will determine required bypass layout/contents
LI ELEN I P § e |
00 05 10 15 20 25 30 35 40 2 00 05 10 15 52(-;?1) 25 30 35 40

0.6
0.4
r0.2
r0.0 E
S
r—0.2
r—0.4
r—0.6
r—0.8
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
s (m)
0.075 6
0.6
0.050
0.4 5 E
Q
= 0.2 5 0.025 4 3
g © 2
£ 00 £ 0.000 32
. b o
X > wn
® -0.2 © _0.025 7 o
-0.4 =
~0.050 i
-0.6
-0.075 R
6
61 1.50]
5o
" 1251 \ 2
- — 4 g
T, g0 :
o 2 0.75 33
s s a
01 0.50 2 =
Q
2
21 0.25 .
0.00 o
-1000 -500 0 500 1000
y (um)
2& Fermilab



Iterative design process for integrated system is underway

« Beginning to iterate between solid-model considerations and bypass optimization

« Will most likely need: 1) new undulators, 2) additional outer quads, 3) new bypass quads (small),
3) additional multifunction correctors, 4) new bypass sextupoles.

« Will definitely need: 1) new vacuum envelope

« Might need: 1) new chicane dipoles (permanent-magnet based w/trims?)

nnnnnnnnnnnnnnn

2% Fermilab
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Overall light-optics design is relatively mature

» Positive-identity, telescopic optics with depth- N
of-field suppression; four lenses

» All lenses independently controllable in (x,y,z)
dimensions

+ MgF, optics for low group-velocity dispersion  SRSHliENe | _—e ¢
@ 2um (minimize pulse spreading) and good o o1
manufacturability

» Delay plates are also dichroic mirrors for
coupling pump laser in and out of the system

« Upstream plate fixed after alignment but can
be paired with external mirrors if additional
delay range is required

« “Bandolier” of amplifier crystals on 6-DoF
hexapod (in case of damage)

* *maintain compatibility with various amplifiers!
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OSC amplifier based on MgO:PPLN

13

Amplifier must be “single pass” (low delay)

Also needs low group-velocity dispersion and widest
gain bandwidth possible; should be well matched to
undulator fundamental

A PPLN OPA operating near “degeneracy” should
meet all requirements

Type-0 interaction (eee) in 5%MgO:PPLN

Operation at max temperature possible to reduce
photorefractive effect (damage mechanism); ~185 C

Accounting for all delay needs, a 3.86-mm crystal
length is possible: ~40dB of gain for expected
pump intensities.
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5% MgO:LiNbOs3: Collinear OPA @ Ap, = 1.064 um
L.= 3.86 mm; Ag= 3159 um; lp= 1.2 GW/cm?
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OSC simulations underway for integrated optical system

14

SRW simulations of full
optical system including
PPLN and computed gain

***Does not yet include any
frequency-dependent phase
shifts vs gain; will use
measurements once
available

Spatially integrated spectrum (single electron) at lens1 and KU center
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Developing amplifier and full optical system in the FAST laser lab
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Amplifier has been successfully prototyped and characterized

= \V,"‘,....:“.

=.

OPG: seed 1-um: pump(s)
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Low delay (~4mm) high-gain (~30dB) amplification achieved

1041
seed : = gain for 1GW/cm?
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OSC systems as a flexible tool for advanced beam manipulation

« The OSC force is very powerful and can be structured Interfering UR Transverse beam distribution
In space and time with great freedom (delay, gain,
optics, mapping, etc...). .

« The amplified-OSC system is being designed to enable
a robust program in exploring “distributions on demand” Longitudinal beam distribution

« Will develop and test advanced control policies using

Reinforcement Learning + surrogate models 00004 1T ©
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Optical Stochastic Crystallization: Targeting a demonstration of SSMB

19

Standard OSC maps particles’ energy deviations onto
appropriate energy corrections; creates attractors in
momentum

“OSX” creates attractors in both momentum and
longitudinal position simultaneously; these are
naturally locked to the beam structure itself

The strength of the OSX attractors increases
dramatically as they are populated... further populating
and cooling the attractors

Cooling may also extend to transverse planes if system
IS properly designed

Transverse cooling would also receive enhanced gain

05/19/24 J. Jarvis | IOTA/FAST | Fermilab
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A demonstration of OSX during amplified-OSC run is feasible

20

Need to develop simulation tools further and perform oo
systematic studies to understand requirements and oo § 5

delta

limitations; similar issues to other SSMB concepts

~0.0002 4 "HE

Initial simulations suggest that modest gain and
beam densities are sufficient to initiate crystallization

Beam manipulations (both simple and advanced)
may relax requirements further. ——————————————— ;..

delta

Once the crystallization starts, a reduced gain may

be sufficient to maintain the process

—0.0004 -

RL control policies may enable further optimizations
through complex, dynamic adjustments of bypass,

£ 2.5

lattice, RF and light optics
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Summary and Timeline

21

2024 2025 2026

A-OSC conceptual design

OSC program has been very successful so far;
the underlying physics of the method has been
carefully validated, explored and benchmarked

Amplifier R&D

hardware design and procurement

Sys. integration and installation

Amplified OSC is presently in the conceptual and
hardware-design phase

IOTA/FAST Run-6 (e) m
- . Shutdowns

The OSC amplifier is currently under

development in the FAST laser lab and high-gain
amplification (~1000x) has been successfully

2024 202 202
achieved in a high-fidelity prototype. 0 025 026

A-OSC conceptual design

Methods for OSC-based advanced beam

Amplifier R&D
manipulation are under development and will be ; hardware design and procurement
teSted du”ng the ampllfled-OSC run E Sys. integration and installation
- Vg
A successful amp_llfled-OSC_: program opens the % omsenst runs (o) TSI
way to an immediate experimental attempt at
SSMB via the OSX concepit. S 4 Shutdowns
2& Fermilab
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Reminder: OSC bypass maps momentum errors onto time delay

OSC bypass mechanism

Energy loss per turn

13.35 | =--SR
— OSC cooling

- = = 0OSC heating

13.3 |

-

Energy (eV)

13.25 |

« Lower (higher) energy particles take a longer
(shorter) path through the bypass and thus arrive |
at the entrance to the KU later (sooner) than the 1315 [ Lo="

1.0 05 0 05 1.0

reference particle \p /oo (10-3)

13.2 |

 There are also contributions from the transverse , Ap
elements of the mapping depending on the cAt~(Ms,D 52" + Mse >
dispersion at the exit of the PU undulator ' i
transverse longitudinal
3¢ Fermilab
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Some issues with an OPA at degeneracy for this application

* For a given pump phase, the signal is amplified

and its phase is relatively preserved; however,
this requires amplification of the corresponding
idler at a specific phase

Undulator wave packet already has definite
amplitude/phase relationships for all “signal-
idler pairs”

Using both sides of degeneracy may scramble
the wave packet’s “information;” can still
operate on one side of degeneracy at the
expense of system bandwidth; ~30% reduction
In Kick i1s expected

« Also, random pump phases (effectively due to

25

particle positions) will average total gain down
by ~3 dB; kick reduced by ~/2
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OSC simulations underway for integrated optical system

Transverse profile of UR at OPA center 1.4e+00

« FWHM of undulator radiation in | oump aperture

= vert. profile

1.2e+00

OPA ~100 um

1.0e+00

8.0e-01

« For pump with ~30ud in 200ps
and diameter of ~300 um,
should reach ~1GW/cm?
(required for high gain @ ~30- B
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« At the expense of integrated-

Transverse profile of UR at KU center 2.5e+01

0.75

system bandwidth, pump can be _* ===
focused further providingupto £ o
~1OGW/Cm2 }_,E o0 % 000 1.5e+01
- Damage threshold of PPLNis % 8025
the primary limitation: "

~7GW/cm? in the ~10ps regime

position (mm)
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: 3& Fermilab

26 05/19/24 J. Jarvis | IOTA/FAST | Fermilab



OSC simulations underway for integrated optical system

27

SRW simulations of full
optical system including

PPLN and computed gain _
£
E
***Does not include any 5
frequency-dependent phase &
shifts vs gain; will use
measurements once
available
Spatially integrated spectrum (single electron) at lens1 and KU center
! . E
z E
’ h Photon ;;rgy(eV) " v b
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OSC principle: corrective kick based on a particle’s error

- OSC is based on energy exchange between a 1o Pweeping through optical delay) ’
particle and its undulator-radiation field I
. . . T WS INCAN AN AN a0 —— W5
« Sign and magnitude of correction depends on £ 0 z
particle’s momentum error | cectontectoryin A3
S 10 Kicker ) 5>
« Transit-time OSC produces longitudinal (energy) : I
cooling, but system can be configured for 1D, 2D or ~ ,, =~ TEenesadmes o ooemy Tf
3D COOIlng z position (m)
Energy exchange vs. z-position
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What makes (“simple”) OSC challenging?

1. Beam and PU light must overlap through the KU d PU lightin KU
The undulator light is ~200 um wide
Want angle between light and beam at < ~0.1 mrad

2. Beam and PU light must arrive ~simultaneously for maximum effect
Absolute timing should be better than ~0.3 fs

y position (mm)
1

1111111

-0.2 . _00 0.2
X position (mm)

The entire delay system corresponds to ~2000 fs
3. The electron bypass and the light path must be stable to much
smaller than the wavelength
Arrival jitter at the KU should be better than ~0.3 fs
This means total ripple+noise in chicane field must be at the ~mid 10-° level o T e OSE dampng: Be =00

4. Practical considerations of design and integration
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First OSC experiment successfully explored essential

First OSC: April 20, 2021; End of Run#3: Aug 29, 2021
Successfully achieved OSC in 1D, 2D and 3D configs
100 MeV energy; 108 electrons down to a single electron
1-um design wavelength and no optical gain

~30-THz Bandwidth for the integrated OSC system

Simple optical system with single lens, delay plates
and a total delay of ~0.65 mm

Initial results reported in 08/11/22 issue of Nature

Delay stage Delay stage lens stage
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Optics and in-vacuum motion for passive OSC

2% Fermilab
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OSC system demonstrated excellent performance and expected structure

Optical delay (pm) Optical delay (pm)

-15 -10 -5 0 5 10 -1 0 1 -15 -10 =5 0 5 10

B T o
- o o
:E SRLUUTTNNN R L ¢ J U t U U“W\N\j\/\l\zg %

« Delay scan over entire OSC overlap region (~30A)

« OSC alternates between cooling and heating modes

« Strong simultaneous cooling is observed for all three planes

« Envelope corresponds to ~30-THz bandwidth (~7000x greater than conventional stochastic cooling)
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OSC force was an order of magnitude larger than SR damping

37

(3D OSC toggle)
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Accounting for intrabeam scattering, total OSC force is ~9x stronger than the longitudinal
SR damping

~60% of the expected value from detailed simulations of the undulator radiation
(accounting for known losses); subsequent OSC simulations suggest agreement to ~10%

Similar strength for 2D and 1D configurations

2% Fermilab
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Clear observation of expected OSC zone structure
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For 1D cooling mode with a high-intensity beam, we can also observe the much

weaker 2"d-order cooling zone

Increased intrabeam scattering to high amplitudes populates this zone

@ : fundamental cooling zone

@ : 2"%-order cooling zone

OSC force for nonzero amplitudes: (As =8,Ax=0,Assg =1, Axsg = 0.5)
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Clear observation of expected OSC zone structure
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(e.g) OSC in the 2D (z,x) configuration

In “heating” mode, expect two high-amplitude
attractors

(1): high synchrotron amplitude, low betatron
amplitude

(2): high betatron amplitude, low synchrotron
amplitude

(Sweeping through optical delay)

OSC force for nonzero amplitudes: (As =8,Ax=8,Assg =1, Axsr = 0.5)

@r&‘

6.00
I4.00

Transverse and longitudinal projections for heating mode of 2D OSC
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New, all-fiber pump laser from Optical Engines

« Was originally developed for next-gen laser notcher

 New system was tested at manufacturer under conditions
required for amplified OSC experiment

 Demonstrated: ~200-ps pulses @ 7.5 MHz; ~33 uJ/pulse
(250-W avg output) — I.e. can pump every turn

<

* Very clean spectrum, ¢,~0.1nm, under operational conditions  original laser system for
FNAL linac laser notcher

« Performance limited by heating of fiber and mirror

« Some testing also performed at ~1% duty factor; some
Increase in performance is possible with additional effort

« Arbitrary turn-by-turn programmability: enabling capability
for advanced beam control experiments

OE spectral measurement @250W
2& Fermilab
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Integrated energy density at first Lens: eV/mm? Integrated energy density at L2: eV/mm?
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