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Abstract. The free expansion of a Bose–Einstein condensate is analyzed, assuming that the

single particle energy spectrum is modified due to some quantum structure of space time. The

condensate’s free velocity expansion leads in a natural way to a deformed uncertainty principle.

We show that large expansion times are required in order to amplify some possible traces of

the Planck scale regime. The analysis presented in this work opens up the opportunity to use

Bose–Einstein condensates as tools in quantum gravity phenomenology, with a solid experimental

basis.

1. Introduction
It is generally accepted that the single particle energy spectrum could be modified due to the
possible quantum structure of space time. In ordinary units the non–relativistic form of the
aforementioned modified dispersion relation can be expressed as follows [1, 2]

✏ ' mc2 +
p2

2m
+

1

2Mp

⇣
⇠1mcp+ ⇠2p

2 + ⇠3
p3

mc

⌘
. (1)

The parameters ⇠1, ⇠2, and ⇠3, are model dependent [1, 2, 3], and should take positive or negative
values close to 1 (see Ref. [4] for more details). In fact, the form of the energy dispersion relation
(1), was recently constrained by using high precision atom–recoil frequency measurements
[1, 2]. In this scenario, bounds for the deformation parameters of order ⇠1 ⇠ �1.8 ± 2.1 and
�3.8⇥ 109 < ⇠2 < 1.5⇥ 109 were obtained.

It is important to note here that the use of N-body systems as test tools in the search for
possible manifestations of Planck scale physics has become a very interesting line of research
[4, 5, 6, 7, 8, 9, 10, 11].

These works suggest that some relevant properties associated with Bose–Einstein condensates
could be used to obtain representative bounds on the deformation parameters associated with
quantum gravity models [9, 12] or for certain areas in the parameter space it is possible to
explore the sensitivity of these systems to Planck scale e↵ects [4, 5, 10, 11, 13, 14].

With this in mind, it is well know that when the trapping potential that confines the
condensate is turned o↵, the free velocity expansion of the cloud corresponds to the velocity
predicted by Heisenberg’s uncertainty principle [15, 16, 17]. This fact is one of several reasons
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why Bose–Einstein condensates are relevant systems in the analysis and estimation of possible
Planck scale e↵ects, since quantum gravity models suggest modifications to this principle
[18, 19, 20].

In Refs. [4, 5] we have analyzed the free velocity expansion of a Bose–Einstein condensate,
assuming that the energy per particle is modified due to some possible quantum structure of
space–time. As a consequence, we were able to deduce a modified uncertainty principle, of the
form:

�x�p � h̄

2
(1 + �⇤)� ↵⇤x+ . . . , (2)

where ↵⇤ = 2⇠1m2c/3
p
⇡Mp, Mp is the Planck mass, c is the speed of light, and m is the

mass of the particle and �⇤ ⌘ ⇠2m/Mp. We must mention that, as far as we know, this linear
modification had not previously been reported in the literature [18, 19, 20].

With this at hand, we are able to extend the analysis of the free expansion to more general
and realistic scenarios, in which the interaction between particles are present in the system.
Moreover, numerical analyses at di↵erent time scales in the free expansion were performed,
allowing us to determine the time scales in which possible e↵ects related to the quantum structure
of space time could be amplified. The analysis of the free expansion of the condensate at di↵erent
time scales shows that the more promising scenario corresponds to large expansion times, of order
of a few seconds, that can be in principle achieved in free fall experiments [17].

2. Modified uncertainty principle and free expansion
Let us calculate the modified energy associated with the system. The total energy of the system
with contributions of the deformation parameters ↵ and � is given by

E( ) =
Z

dr

"
h̄2

2m
|r (r)|2 + V (r)| (r)|2 + U0

2
| (r)|4

+ h̄↵| (r)|
q
|r|2| (r)|+ �h̄2|r (r)|2

#

, (3)

where  is the wave function of the condensate or the so–called order parameter, V (r) =
m!2

0r
2/2 is the external potential. The term U0 = 4⇡h̄2a/m models the interatomic potential,

a being the s–wave scattering length, i.e. only two–body interactions are taken into account.
Additionally, we have assumed that ⇠3 = 0.

In order to calculate the energy of the system at any time let us employ, as usual, the following
ansatz [15]

 (r) =
N1/2

⇡3/4R3/2
exp(�r2/2R2) exp[i�(r)], (4)

where N is the corresponding number of particles and �(r) is a phase related to particle flows in
the system. If the external potential V (r) is turned o↵ at t = 0, there is a force that changes R
and produces an expansion of the cloud [15]. It is straightforward to obtain the kinetic energy
EF by using the ansatz Eq. (4), with the result EF = 3Ṙ2Nm/4. Moreover, assuming that the
energy is conserved at any time, we obtain the following energy conservation condition associated
with our system
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where the dot stands for derivative with respect to time and R0 is the radius of the condensate
at time t = 0, which is approximately equal to the oscillator length aho = (h̄/m!0)1/2 in the
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non–interacting case. Otherwise, when interactions are present, we will assume that the initial
radius corresponds to the result for an isotropic trap [15]

R0 =
⇣ 2
⇡

⌘1/10
 
Na

aho

!1/5

aho. (6)

We remark that R is function of time, i.e., R corresponds to the radius at time t, see (5). If we
set ↵ = � = 0 then we recover the usual solution in the non interacting case [15] which is given
by

R2(t) = R2
0 +

⇣ h̄

mR0

⌘2
t2. (7)

Notice that in the usual case, ↵ = � = 0, v0 = h̄/mR0 is defined as the velocity expansion
of the condensate, corresponding to the velocity predicted by Heisenberg’s uncertainty principle
for a particle confined within a distance R0 [15]. Thus, in the usual case ↵ = � = 0, the width
of the cloud at time t can be written in its usual form R2(t) = R2

0 + (v0t)2.
It is interesting to note that when interactions are neglected we are able to obtain an analytical

solution for Eq. (5) when R >> R0 together with ↵ ⌧ 1 and � ⌧ 1. In such a scenario we
obtain

R2
↵,�(t) = R2

0 +

"
h̄2

m2R2
0

⇣
1 + 2m�

⌘2
� ↵

8

3
p
⇡

h̄

mR0

#

t2. (8)

If we set � = 0, the result obtained in Ref. [4] is recovered. Thus, we may recognize the free
velocity expansion as a function of the deformation parameters ↵ and �, which is given by

(v↵,�0 )2 =
h̄2

m2R2
0
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⌘2
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3
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Since the corrections caused by ↵ and � are small the following expansion is justified:

(v↵,�0 ) ⇡ h̄

mR0
(1 + 2m�)� ↵

4

3
p
⇡
. (10)

Then, the velocity expansion corresponds to the following deformed Heisenberg uncertainty
principle

�x�p � h̄

2
(1 + �⇤)� ↵⇤x+ . . . , (11)

where we have defined �⇤ ⌘ ⇠2m/Mp and ↵⇤ ⌘ ⇠12m2c/3
p
⇡Mp together with R0 = x.

Let us now analyze the velocity expansion of our condensate by solving Eq. (5) numerically
at any time and taking into account the interactions among the particles within the system.
In doing so, we will use some experimental values of interest related to the condensate, i.e.,
N ⇠ 104 � 106 particles, !0 ⇠ 10� 106 Hz, a ⇠ 10�9 m, and m ⇠ 10�26 kg [21]. Together with
Mp ' 2.18 ⇥ 10�8kg, h̄ ⇠ 6.623 ⇥ 10�34Js, and c ⇠ 3 ⇥ 108m/s. Finally, we assume that the
values for the deformation parameters are those reported in Refs. [1, 2].

There are three cases of interest: a) When ↵,� and U0 are di↵erent from zero. b) For
↵ = � = 0 and U0 = 4⇡h2a/m and c) when ↵,�, U0 = 0

In Figure 1 the numerical solutions for the modified velocity for the cases a) and b) are
illustrated. The velocity in case c) is the usual result for an ideal gas and so we show only the
cases a) and b).
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Figure 1. Left : Velocity expansion of the condensate at early times for the cases a) and b)
are shown in the upper plot. Scenario a) is represented by the solid line and scenario b) is
represented by the dashed line. The plot below represents the evolution at early times.
Right : The velocity expansion at large time scales of order t ⇠ 4 sec is plotted above, the plot
below represents the free expansion with the same time scale (Figures taken from Ref. [5]).

3. Discussion
Summarizing, we note that at very early expansion times, there is a period in which the velocity
seems to be dominated by the deformation parameters. However, we estimate that this short
period of expansion of order t ⇠ 7.7⇥10�6 sec may not be accessible from the experimental point
of view, since the results of [16] o↵er accessibility at the order of milliseconds, i.e., three orders of
magnitude bigger than the expansion time obtained here. Conversely, for large expansion times
up to t ⇠ 4 sec, there is a region in which the presence of the deformation parameters modified
the velocity expansion in a way that may be significant, even when interactions are present.

Concerning the experiment performed in [17], it was proven that for su�ciently large
expansion times, the system operates deeply in the linear regime, i.e., almost as in the non-
interacting case. In this experiment it was shown by measuring the free velocity expansion
at large times that the evolution of the condensate can be independent of interactions during
extended free fall experiments. Each of the above scenarios shows that the modified free velocity
expansion leads to deformations of Heisenberg’s uncertainty principle which are around two
orders of magnitude smaller than the typical case [5]. This fact could be tested, in principle,
in the laboratory, by searching for deviations in the free velocity expansion of the condensate.
However, we remark that according to our results, large expansion times are required. This
analysis opens a very important branch of research concerning the search for traces of quantum
gravity in low energy earth based experiments.
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