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We report recent results for the effects of the spins in binary systems of compact objects 
(black holes and/or neutron stars), obtained in the post-Newtonian framework at quadratic 
and cubic order in the spins. The new contributions enter at the third and third-and-a-half 
post-Newtonian order respectively, and further complete existing theoretical predictions for 
the graviational wave signals expected from these binaries. The treatment of higher orders in 
spins required an extension of the Lagrangian formalism for spinning point particles to the 
quadrupolar and octupolar orders. 

1 Introduction 

With the advent of a new generation of ground-based gravitational waves detectors such as LIGO, 
VIRGO and KAGRA, gravitational waves astronomy is expected to enter a new observational 
era. The most promising sources for these detectors are binary systems of compact objects, 
neutron stars and/or black holes. Among the different approaches to the joint problems of the 
dynamics and gravitational waves emission by such systems, the post-Newtonian theory provides 
analytical predictions, in the form of formal series, covering the long inspiraling phase of the 
system. Extending this framework to include the effects of the angular momentum (or spin) of 
the compact bodies has driven a lot of effort in the past few years, as they are expected to be 
significant for binaries containing black holes. 

Beyond the linear order in spin (or spin-orbit, SO), the terms quadratic in the spins (SS) 
enter at the second post-Newtonian order (2PN), and the cubic terms at the 3.5PN order. 
Recent results for the dynamics, derived by other authors, cover the 3PN (and partially 4PN) 
SS contributions 2,3,4,5,5,7 and the 3.5PN SSS 8 (as well as 4PN SSSS) terms. In the work we are 
reporting 9•10, using the multipolar post-Newtonian method 1 , which provides a comprehensive 
treatment of both the dynamics and the gravitational waves generation, we confirmed these 
results for the dynamics and extended them to compute the energy flux emitted in gravitational 
waves, thus predicting the phasing of the binary for circular orbits. These results will be useful to 
further improve post-Newtonian waveform templates used in the data analysis of the detectors. 



2 Lagrangian formalism for spinning point particles 

2. 1 Definitions 

The representation of the effects of the spins requires an extension of the point particle ap­
proximation. The approach we use here is based on a Lagrangian formalism, first introduced 
by Hanson&Regge 11 and Bailey&Israel 12. To represent the rotational degrees of freedom, an 
orthonormal tetrad EAµ is introduced, and the antisymmetric rotation coefficients are defined as 
(with a T the proper time, uµ the 4-velocity, and D/dT = uµ\l µ) 

(1) 

We make then the following ansatz for the action describing the particle's dynamics: 

(2) 

The couplings to the Riemann tensor and its derivative are included here to represent spin­
induced finite-size effects up to the octupolar order. From this general form of the Lagrangian, 
the linear momentum Pµ and the spin tensor Sµv are defined as conjugate momenta for the 
positional and rotational degrees of freedom, and the quadrupolar and octupolar moments Jµvpu 
and J>.µvpu as partial derivatives with respect to the curvature tensor, according to 

aL 
Pµ = auµ ' S = 2 aL 
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2.2 Equations of motion and stress-energy tensor 

J>.µvpu = - 12 --{)_L __ 

a\l;.Rµvpu 
(3) 

The equations of motion governing the dynamics are derived by varying the action with respect 
to the worldline and to the rotational degrees of freedom, and read 

(4) 

Introducing the number density n(x) = J dT84 (x-z)/Fg, with zµ the trajectory of the particle, 
the stress-energy tensor is obtained with a variation with respect to the metric as 

Tµv . = p(µuv)n - \1 [sp(µuvln] pole-d1pole P ' 
Tµv = !R(µ Jv)>.P"n - \1 \1 r�Jp(µv)"n] quad 3 >.pu P " 3 ' 

Tµv = (!11>-R(µ J v)€w + _!__17(µR rkrw) n oct 6 €P" ,\ 12 €TP" 

+ \l [(-!R(µ JIPlv)€>.u _ !R(µ Jv)p€>.u + !RP fµv)€M) n] P 6 €>.u 3 €>.u 3 €,\u 

+ \l;. \lp\l(T rnJ"p(µv)>.n] ' (5) 

where we separated the pole-dipole, quadrupolar and octupolar contributions. 

"See the original papers 9,lO for more details on the conventions. 



2.3 Spin-induced multipolar moments and conserved norm spin vector 

In the case of interest for us, where the extended-size structure of the compact bodies is only 
induced by their spin, it is possible to derive a unique structure for the quadrupolar and octupolar 
moments, given by 

Jµvpa = 31;;u[µsvJ .\s}Pua] 
m 

J,\µvpa = � [e,\[µuvJspa + e,\[pua]3µv - e,\[µsvJ [pua] - e,\[p3a] [µuv] 
4m2 

_3.\[µev] [pua] - 3.\[pea][µuvl] . (6) 

Here eµv = SµpSvP, and 1;;, ,\ are polarizability constants describing the structure of the compact 
object. Their value is 1 for black holes and must be determined numerically for neutron stars. 

An important feature of the formalism is the requirement of a supplementary spin condition, 
corresponding to fixing the worldline inside the rotating body. We choose the covariant condition 
PvSµv = 0, which allows the definition of a spin covector as 

S- - 1 Pv spa µ - --Eµvpa-2 m (7) 

By introducing a tetrad ( uµ, eaµ) ,  one can then define a spin vector of conserved Euclidean norm 
Sa = eaµ Sµ, which will obey a precession equation of the form s = n x s. 

3 Post-Newtonian dynamics and emission of gravitational waves 

3.1 Multipolar post-Newtonian formalism 
Equipped with the multipolar point particle respresentation of spinning extended objects de­
scribed above, we were able to use the general framework of the multipolar post-Newtonian 
formalism (MPN) 1 to derive new results at the SS 3PN and SSS 3.5PN orders. Introducing 
the metric perturbation hµv = y=ggµv - 17µv, with 1/µv the background Minkowski metric, in the 
harmonic gauge Dvhµv = 0, the gravitational field equations take the form 

(8) 

where Aµv contains the non-linearities in h, and Tµv is the multipolar stress-energy tensor (5). 
The MPN formalism contains (i) a near-zone iteration of the Einstein equation (8) , where 

the full metric is parametrized by a set of potentials which are iteratively solved for, and then 
plugged in the equations of motion ( 4); (ii) a vacuum iteration of (8) outside the source, allowing 
the calculation of the radiative moments UL, VL, parametrizing the waveform at infinity, in terms 
of source moments h, JL containing both the matter source and the gravitational field. 

When iterating the near-zone metric, we use the Hadamard regularization to give sense to 
distributional sources such as (5) . The conserved energy can then be deduced from the results 
for the dynamics obtained in (i), and the emitted energy flux is computed from the radiative 
moments obtained in (ii) as (where L stands for a multi-index ii . . .  ie) 

(9) 

3.2 Results 
After reduction in the center-of-mass frame, and specialization to the case of circular orbits 
with no eccentricity nor precession, the results for the conserved energy E and the flux :F can be 



written as series in the PN expansion parameter x = (Gmw/c3)213, with w the orbital frequency: 

1 2 [ 3/2 eso 2 ess 1/2 esss J E = -2mvc x 1 + xeNs + x Gm2 + x G2m4 + x G3m6 
+ 0(8) , 

:F = 32v2 
c5 5 [1 + xf + x3f2 !so + 2 fss + x1f2 fsss + 0(8)] . 5G x NS Gm2 x G2m4 G3m6 

(10) 

The complete expressions for the new coefficients are too long to be displayed here and can be 
found for esss and fsss in eqs. (6. 17) and (6.19) of9, and for ess and fss in eqs. (3.33) and (4.14) 
of 10 . The balance equation :F = -dE /dt can then be used to derive the frequency evolution of 
the binary with time, and ultimately the expected phasing of the gravitational wave signal. 
Table 1 gives an illustration of the contribution of each PN term in this phasing. 

LIGO/Virgo 
Newtonian 

lPN 
1.5PN 

2PN 
2.5PN 

3PN 

3.5PN 

4PN 

10M0 + l.4M0 
3558.9 
212.4 

-180.9 + 1 14.0xi + 11.7x2 
9.8 - 10.5xf - 2.9x1x2 
-20.0 + 33.8x1 + 2.9x2 

2.3 - 13.2x1 - L3x2 
- L2xi - o.2x1x2 

-1.8 + 1 ux1 + o.8x2 + (SS) 
-0.7x� - o.3xh2 

(NS) - 8.0x1 - 0.7x2 + (SS) 

10M0 + 10M0 
598.8 
59.1 

-51.2 + l6.0x1 + l6.0x2 
4.0 - 1 . lxf - 2.2x1x2 - l .l x2 

-7. 1 + 5.7x1 + 5.7x2 
2.2 - 2.6x1 - 2.6x2 

-o.1xi - o.2x1x2 - o.1x§ 
-0.8 + l.7x1 + L 7x2 + (SS) 

-0.05x� - o.2xh2 - o .2x1x� - o.o5x� 
(NS) - l.5x1 - l.5x2 + (SS) 

Table 1 :  Contribution of each PN order to the number of cycles of a gravitational wave signal for typical neutron 
star /black hole and black hole/black hole systems, between an entry frequency in the dectector band of lOHz and 
the Schwarzschild ISCO r = 6M. We assume circular orbits and aligned spins, and XA stands for the dimensionless 
Kerr parameter. All contributions known to date are included (except absorption terms accross the horizon) . 
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