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The hypothetical axion particle (of unknown mass) is a leading candidate for dark matter (DM).
Many experiments search for axions with microwave cavities, where an axion may convert into
a cavity photon, leading to a feeble excess in the output power of the cavity. Recent work has
demonstrated that injecting squeezed vacuum into the cavity can substantially accelerate the axion
search. Here, we go beyond and provide a theoretical framework to leverage the benefits of quantum
squeezing in a network setting consisting of many sensor-cavities. By forming a local sensor network,
the signals among the cavities can be combined coherently to boost the axion search. Furthermore,
injecting multipartite entanglement across the cavities— generated by splitting a squeezed vacuum—
enables a global noise reduction. We explore the performance advantage of such a local, entangled
sensor-network, which enjoys both coherence between the axion signals and entanglement between
the sensors. Our analyses are pertinent to next-generation DM-axion searches aiming to leverage a
network of sensors and quantum resources in an optimal way. Finally, we assess the possibility of
using a more exotic quantum state, the Gottesman-Kitaev-Preskill (GKP) state. Despite a constant-
factor improvement in the scan-time relative to a single-mode squeezed-state in the ideal case, the
advantage of employing a GKP state disappears when a practical measurement scheme is considered.

I. INTRODUCTION

The nature of Dark Matter (DM) poses an unsolved
mystery in physics. Axions (or axion-like particles) are
a well motivated DM hypothesis. Originally proposed to
address the strong CP problem [1–4], light pesudoscalars
are also common in top-down constructions of high en-
ergy physics [5, 6]. Such light bosonic fields may be pro-
duced in the early Universe in large occupation numbers
and pose a low average momentum in late times. The ax-
ion can hence be described today as a coherent state— a
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classical non-relativistic wave, oscillating at a frequency
set by the axion mass.

The energy density in the axion field is a good candi-
date to serve as the dark matter [7–9]. The axion dark
matter hypothesis can be tested experimentally in cav-
ity based searches [10] in which axions can convert to
photons in a quiet cavity mode in the presence of a back-
ground magnetic field, I.1 with searches actively ongoing
(e.g. ADMX [13, 14], HAYSTAC [15], ORGAN [16], and
CAPP [17]). The resonant frequency of the cavity mode

I.1 Axions are part of a broader class of wave-like DM models. An-
other DM model in this class are dark photons [11] which also
can serve a dark matter candidate (see e.g. [12]) and searched for
in electromagnetic cavities, though without the need for a mag-
netic field. Our results also generalize to dark photon searches,
as well as other wave-like candidates. However, we refer to axions
throughout the paper for brevity of presentation.
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must match the axion mass ma, an unknown parameter,
and should thus be scanned as part of the search. The
size of the cavity is parametrically set by the inverse axion
mass Lcav ∼ m−1

a . A challenge of axion cavity searches
lies in detecting a small displacement of the electromag-
netic field from the initial state, thus distinguishing the
faint signal from the noise. Enhancing the sensitivity to
small signals allows one to enhance the rate at which the
cavity frequency is scanned, leading to a more effective
search. Quantum resources and quantum measurement-
techniques can play a vital role here.

Quantum information science brings an unprecedented
capability in ultra-precise sensing [18–23]. Non-classical
phenomena such as entanglement and squeezing have
been utilized to improve the measurement precision of
various application scenarios including: bio-sensing [24],
radar target detection [25–27], the detection of gravita-
tional waves [28–31] and the search for dark matter [32–
38]. Indeed, a recent experiment [34] has utilized squeez-
ing in microwave cavity sensors to speed up the dark mat-
ter search by a factor of two despite loss and noise. How-
ever, quantum sensing has much more to offer: entan-
gling multiple sensors is known to fundamentally change
how the precision scales with the number of sensors,
from the standard quantum limit (imposed by the law-of-
large-numbers) to Heisenberg scaling attained via multi-
partite entanglement [18]. Moreover, entangled sensor-
networks enable distributed quantum sensing, thus per-
mitting an enhanced extraction of global properties of
the network [39–44].

In this work, we propose a design of entangled sensor-
networks for axion dark matter searches. A local network
of sensors can benefit the search thanks to a feature of the
axion dark matter signal that lies in its non-relativistic
nature. The virial velocity of dark matter in our galaxy is
of order v ∼ 10−3 in units of the speed of light. The mo-
mentum of axion particles mav, which sets the gradient
in the axion field, is parametrically suppressed compared
to the axion mass. In any moment in time the axion field
will change over a spatial length of order λ ∼ 103m−1

a ,
which is the signal coherence length. Since the size of
each cavity-based sensor is of order m−1

a , a local net-
work of sensors, sketched in Figure 1, will be subject
to a coherent axion signal common to all sensors within
the network. By forming a local sensor network, the sig-
nals from different cavities can be coherently combined to
boost the scan rate. Furthermore, injecting multipartite
entanglement across the cavities— generated by splitting
a squeezed vacuum— enables a global noise reduction,
leading to a further enhancement in the scan rate.

Our paper is organized as the following. Sec. II con-
tains the preliminary knowledge to prepare the presen-
tation of our main results (Sec. III) on entangled sensor-
networks. In Sec. II A, we provide some background on
dark matter and axions. In Sec. II B, we introduce a
quantum model of microwave cavities for dark matter
search. In Sec. II C, we revisit the Dicke radiometer
equation and give the figure of merit of a dark matter

𝜆 ≫ 𝑟̅

DM!?

FIG. 1. Illustration of entangled sensor-cavities within a
network-volume of radius r̄, taken to be much smaller than
the axion wavelength λ. Thanks to this hierarchy of scales,
the entire network experiences a coherent signal which can be
combined at the amplitude level. The cylinders represent the
cavities and the colored lines represent their entanglement.
The black solid lines represent joint processing of the mea-
surement to search for dark matter.

search system—the scan rate. In Sec. II D, we discuss
how squeezing can boost the scan rate, as proposed in
refs. [32, 33, 35]. In Sec. III, we introduce our quantum
network scheme, beginning with the ideal identical sen-
sor case in Sec. III A and generalizing to non-identical
case in Sec. III B. To fully explore quantum sensing tech-
niques, in Sec. IV we consider more exotic quanutm states
such as the Gottesman-Kitaev-Preskill (GKP) state [45],
which is shown to be valuable in sensing both quadra-
tures of displacements [46, 47]. More detailed tutorials
and analyses are provided in the appendices for further
reference.

II. PRELIMINARY

A. Axion Dark Matter

Amongst the many orders of magnitudes in mass that a
dark matter candidate can reside in, the ultralight regime
(with DM masses between 10−21 eV ∼ keV), with the
wave-like aspect of dark matter being more prominent,
is interesting in many respects. In particular, quantum-
noise-limited devices can play a critical role here in prob-
ing dark matter. In this regime, bosonic dark matter—
such as axions, scalar DM, dark photon etc.— are all pos-
sible dark matter candidates. The optimal experimental
setup in the search will depend on how they couple to
standard model particles.

Even within axion DM searches, one can consider var-
ious couplings, such as its coupling to spin or to electro-
magnetic fields. In a cavity-like setup, it is natural to
exploit its coupling to photons via the following interac-
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tion,

a

fa
Fµν F̃µν −→

a

fa
~E · ~B . (II.1)

Here a represents the dynamical axion dark matter field,
fa is the axion decay constant, and we have expressed
the general covariant interaction in terms of local quan-
tities in the laboratory, the electric and magnetic fields,
~E and ~B, respectively. This implies, for instance, in a

background magnetic field ~B, an axion DM will induce

an electric field ~E within the cavity [10]. We will consider
this standard approach in this work, though the principle
of leveraging a quantum network to benefit the scan rate
is applicable more generally to wave-like dark matter.

Many of the features that we discuss apply to any
wavelike dark matter, but we refer to the axion for con-
creteness. The local DM density in our region of the
Milky Way is approximately,

ρaxion ∼ 0.3−0.4 GeV/cm3. (II.2)

The local number density of ultralight DM with mass ma

is then

ρaxion

ma
∼ 1015

(
µeV

ma

)
cm−3 ∼ 1015

(
λ

km

)
cm−3.

(II.3)
Here λ is the De Broglie wave length of the cold dark
matter, ∼ (mav)−1 with a typical virial velocity of or-
der v ∼ 200 km/secII.1. Due to the large number density
of the axion field, locally, within a coherence time, the
axion DM behaves like a classical wave,

〈a〉(ma, ~k0, t) =

√
2ρaxion

m2
a

cos
(
ω0t+ ~k0 · ~x+ φa

)
.

(II.4)

Here
√

2ρaxion

m2
a

is the classical wave amplitude, φa is the

phase, ~k0 is the wave vector with |~k0| = 2π/λ, and

ω0 ≡
√
m2
a + |~k0|2 ∼ ma is the axion central frequency.

In reality, all parameters drift continuously with time,
however we work in a discrete approximation. Hence,
within a coherence time, the phase φa is fixed; while
above the coherence time, φa is completely random in
[0, 2π). Similarly, after a coherence time, the direction of
~k0 is expected to change by order one, its magnitude by
order 10−3ma, and thus, ω0 will change by order 10−6ma.
Therefore, the axion can effectively be thought of as a
coherent background source of frequency ma and band-
width of order ∆a ∼ ma/Qa, where Qa ∼ 106 is the
“axion quality factor”.

II.1 Since the dark matter halo is virialized, the dark matter has a ve-
locity distribution, usually assumed to be Maxwell–Boltzmann,
which is peaked around this velocity. Here we use natural units.
In SI units, λ = h/mav ∼ 0.8km, where h is the Planck’s con-
stant.

Physical Parameters Description

Qc Cavity quality factor

V Cavity volume

B Magnetic field

gaγ Axion-photon coupling

ma Axion mass

ρa DM energy density

∆a ∼ ma
Qa

Axion bandwidth, Qa ∼ 106

TABLE I. Description of physical parameters.

The axion De Broglie wavelength also sets a coher-
ence length for the axion field, above which spatial varia-
tions of the axion field become appreciable. Because the
earth moves through the DM halo with a similar veloc-
ity, the time the lab spends within a coherence length
is (mav

2)−1, which is the coherence length of the axion
signal.

In gist, the classical field in Equation (II.4) is a good
approximation within a coherence time. A more accurate
description is a superposition of nearly coherent waves
with a frequency spread of order 10−6 around the central
frequency of ma. It is thus sometimes said that the axion
is a coherent oscillator with a quality factor Qa ∼ 106. As
a result of, the phase φa in the approximate description
above drifts slowly and is randomized roughly every 106

periods or so.

The prevailing way to search for axion dark matter is
to place an electromagnetic cavity with a high quality

factor Qc in a static magnetic field ~B. Cavity modes in

which ~E · ~B 6= 0 will be excited by the coherent oscillating
axion background. The power of the axion induced signal
in the cavity is

Pcav ∼ g2
aγ

ρaxion

ma
B2V ηmin [Qc, Qa] (II.5)

where η is an order 0.1-1 form factor and V is the volume
of the cavity (see Table I for a summary of physical pa-
rameters). It is useful for our analysis to write the typical
(unitless) axion-induced displacement of the cavity field

δE ∼
√
Pcav

ma∆a
. (II.6)

The goal of the axion search is to sense this displace-
ment over the noise, be it thermal or quantum in nature.
With this effective description of the axion dynamics and
its interaction in a cavity, we now move on to writing a
quantum model for the detector to account for the rele-
vant effects.
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FIG. 2. Cavity model. (Top) Illustration of the various
couplings to the cavity: γm denotes the measurement-port
coupling parameter (with the input and output measurement
ports being accessible and controllable) for the âm mode; γ`
denotes intrinsic cavity loss via the â` mode; and γs deter-
mines the coupling strength between the cavity mode and
the axion-field mode âs (note γs � γm, γ`; cf. [32]). (Bot-
tom) An equivalent single-mode Gaussian quantum-channel
description which faithfully describes the input-output trans-
formation of the measurement-port mode, âm. Channel de-
composes into a thermal-loss channel with attenuation pa-
rameter |χmm|2 and thermal-noise parameter NT = 1 + 2n̄T ,
followed by a cavity-induced rotation by an angle θmm and a
random, axion-induced displacement.

B. Quantum model of a cavity

We utilize the workhorse cavity-setup described in
refs. [32, 33] to model the coupling of a hypothetical ax-
ion field to the electromagnetic mode of a (microwave)
cavity (see Fig. 2) and eventually develop a quantum
channel model for the input-output transformations of
the cavity. Mathematical details justifying this model
and channel decomposition are found below and in Ap-
pendix B. We emphasize that the model presented below
works for detection of any fluctuating classical field which
linearly drives the quantum field of a microwave cavity.
Thus, throughout the document, we use the terminology
“signal field” and “axion-field” interchangeably.

We model axion-to-photon conversion in a microwave
cavity by treating the axion-field as a coherent (within
the DM coherence time) linear-drive, which drives a
damped microwave cavity-mode at a feeble rate γs (a
signal conversion rate, with units of inverse seconds; its
connection to physics parameters are discussed in Ap-
pendix G). A transmission line running into and em-
anating from the “measurement-port” of the cavity al-

lows access to the cavity field. We assume full control of
the measurement-port in the sense that: 1) the coupling
rate between the cavity and the measurement-port, γm,
is tunable; 2) we can design and inject fields into the cav-
ity through the measurement-port input; and 3) we can
measure the quadrature variables of the measurement-
port output with homodyne or heterodyne detection. As
shown in Fig. 2, formally, the cavity model consists of
three input-output modes— the measurement-port âm,
the loss-port â` describing damping of the microwave cav-
ity, and the axion-field (linear drive) âs, respectively—
with only the measurement-port âm being experimen-
tally accessible. Here we have described each mode by
its annihilation operator.

The input-output relations for the system of modes
(âm, â`, âs) can be found in the spectral domain, in the
rotating reference frame of the cavity (rotating at cavity
resonance frequency ωc), resulting in the linear relation
(see Appendix B and ref. [32])

â
(out)
k (ω) =

∑
j∈{m,s,`}

χkj(ω)â
(in)
j (ω), (II.7)

where ω is the cavity detuning, with [âk(ω), â†j(ω
′)] =

2πδkjδ(ω−ω′) being the commutation relations for both
the input and output fields. Hence, âk(ω) has units of√

quanta/Hz. The linear susceptibility matrix, χ, has
been defined with matrix elements

χkj(ω) = δkj −
√
γkγj

γ/2 + iω
, (II.8)

where γ =
∑
j∈{m,s,`} γj is the total coupling rate. It can

be shown that
∑
j χ
∗
ijχjk = δik, and thus χ is a unitary

matrix which, in the quadrature basis (Q’s and P ’s; see
below), corresponds to a symplectic orthogonal transfor-
mation (see Appendix B for explicit details). The cor-
responding unitary dynamics is therefore Gaussian [48],
which will allow us to reduce the full, unitary dynamics of
the three-mode system to a single-mode quantum chan-
nel of the measurement-port mode, as we describe below.
Note that the forthcoming analyses are with respect to a
single detuned-frequency ω.

To simplify the signal-to-noise ratio (SNR) calcula-
tions, we model the continuous spectrum as a set of dis-
crete frequency modes with bin size inverse to the total
observation time II.2 and define the quadrature operators
for the measurement port,

Q̂m ≡
1√
2

(
âm + â†m

)
and P̂m ≡

i√
2

(
â†m − âm

)
,

(II.9)

so that the canonical commutation relations [Q̂m, P̂m] =

îI. Here it is understood that this definition holds for

II.2 See the supplemental materials of Ref. [27] for an example of
discretization.
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Model Parameters Description Connection to axion model

ω Cavity detuning (resonance at ω = 0) Frequency variable = ωc + ω

γ` Internal dissipation rate of cavity γ` ≡ ωc
Qc

γm Measurement-port coupling rate γm ≡ β ωcQc , with coupling β

γs Signal coupling rate; γs � γ`, γm γs ≡
g2
aγB

2η

4∆a

µs Signal amplitude µs ≡
√
ρaV
ma

T System temperature —

γ Loaded cavity linewidth γ ≈ γm + γ` = ωc
Ql

χij Complex coefficients of susceptibility matrix Equations (II.14) and (II.15)

θij Complex angles of susceptibility matrix Equations (B.14) and (B.13)

n̄T Bosonic thermal-occupation at temp. T Bose-Einstein distribution

NT Additive noise parameter; NT = 1 + 2n̄T Vacuum plus thermal noise

ns Occupation number of signal ns = ρaV
ma

number of axions in cavity

TABLE II. Cavity-model parameters are in the top half of the table. Several useful parameters that are derived in terms of
the model parameters are shown in the bottom half. Their connections to a few physical parameters can be found in Table. I.

both “in” and “out” modes. We now define the vector of
quadrature operators R̂m ≡ (Q̂m, P̂m)>. From which we
define the mean vector and the covariance matrix for the
measurement port (i.e. the vector of first moments and
matrix of second moments, respectively),

µm ≡
〈
R̂m

〉
(II.10)

(σm)ij ≡
〈{(

R̂m − µm
)
i
,
(
R̂m − µm

)
j

}〉
, (II.11)

where the index i corresponds to the ith entry of the
vectors, the expectation value is taken with respect to
some quantum state of the mode âm, and {·, ·} is the
symmetric, anti-commutator.

We work in the Heisenberg picture and thus describe
the input-output dynamics of the mode âm by first

specifying the input moments (µ
(in)
m ,σ

(in)
m )— which is

equivalent to specifying the input quantum state to the
measurement port, assuming an initial Gaussian quan-
tum state— and then determine the Gaussian quan-

tum channel G : (µ
(in)
m ,σ

(in)
m ) → (µ

(out)
m ,σ

(out)
m ) where

(µ
(out)
m ,σ

(out)
m ) are the moments of the measurement-port

exiting the cavity. We note that, although the full trans-
formations implied by eq. (II.7) are unitary, the reduced
transformation induced by the channel G (which can
be derived from the full unitary transformation) is non-
unitary, due to our restriction to a single mode. Nonethe-
less, G serves as a valid quantum operation. Indeed, as
described in detail in Appendix B, we can decompose

the Gaussian quantum channel G into a concatenation of
three standard channels:

1. A thermal-loss channel LNTχmm , with attenuation pa-

rameter |χmm|2 and noise spectral-density param-
eter NT = 1 + 2n̄T ≥ 1, where n̄T is the bosonic,
thermal occupation number for a harmonic oscilla-
tor in equilibrium at temperature T and oscillating
at the detuned frequency ωc + ω. Physically, the
attenuation parameter |χmm|2 describes the abil-
ity of quanta injected into the cavity to efficiently
transfer to the output. The noise parameter NT
describes the noise added in this transfer process;
such a process always adds at least a unit of vac-
uum noise (hence, NT ≥ 1). For instance, near
the operating conditions (see, for instance, [33, 34])
ωc ≈ 2π× 7 GHz and T ≈ 35 mK, n̄T ≈ 1.1× 10−4;
the noise is thus vacuum-dominated.

2. A cavity induced phase-rotation Φθmm , where
θmm ≡ arg(χmm) is the relative angle between
the input and output fields of the measurement
port. This defines a natural reference frame for
the measurement-port fields, which we can go to
by applying the complementary phase shift Φ−θmm
to input fields prior to the cavity interaction. See
eqs. (B.13) and (B.14) and Appendix B for details
regarding the cavity-induced angle θmm (and θms
defined below).

3. An axion-induced displacement, Dν , where ν =
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|χms|O(θms)µs is the signal-amplitude to be read
out from the measurement port of the cavity. II.3

Here, |χms| is the absolute value of the (m, s) el-
ement of the susceptibility matrix χ, O(θms) is a
2×2 rotation matrix by the angle θms ≡ arg(χms),
and µs is the spectral-amplitude of the axion field
in phase-space (frequency dependence has been
dropped for brevity).

In gist, the quantum channel mapping the input to the
output is G = Dν ◦ Φθmm ◦ LNTχmm , where ‘◦’ means the
concatenation of quantum channels. In deriving this re-
sult, we have assumed the axion field to be a classical,
coherent field. However, it is easy to generalize this to
a classical ensemble (associated with the stochastic evo-
lution of the axion field in phase space), by specifying a
phase-space probability density function (PDF), p(µs),
for the axion field.

Utilizing the Gaussian formalism (see Appendices A
and B), we find a general expression for the measurement-
port output moments in terms of the input moments and
the channel parameters,

µ(out)
m = |χmm|O(θmm)µ(in)

m + |χms|O(θms)µs (II.12)

and

σ(out)
m = |χmm|2O(θmm)σ(in)

m O>(θmm)

+NT

(
1− |χmm|2

)
I2. (II.13)

For later reference, we write the relevant susceptibility
coefficients in terms of the original coupling rates,

|χmm|2 = 1− γmγ` + γmγs
(γ/2)2 + ω2

≈ (γm − γ`)2/4 + ω2

(γ/2)2 + ω2
,

(II.14)

|χms|2 =
γmγs

(γ/2)2 + ω2
, (II.15)

where we have expanded γ2 = (
∑
j∈{m,s,`} γj)

2 and used

the well-justified approximation γs � γm, γ`. To be
clear, the approximations are at O

(
γ2
s

)
. A plot of the sus-

ceptibility coefficients and the mixing-angles are shown
in Fig. 10 of Appendix B. We include a table of cavity-
model parameters that we use throughout the manuscript
in Table II.

C. Revisiting the Dicke radiometer equation and
the scan rate

In this section we derive the SNR for an axion search
(known as the Dicke radiometer equation [49]) and in-
troduce the standard figure of merit for the search, the

II.3 A typical readout displacement, ν, is related to the cavity dis-

placement, δE of eq. (II.6), via ν/δE ≈
√

γm/γ`
(1+γm/γ`)

2 , where

the approximation assumes Qa � Qc.

so-called scan-rate. For this purpose, we assume that the
input to the cavity consists of only thermal fluctuations,
which reduce to vacuum fluctuations at zero tempera-
ture. We extend this to other quantum inputs in later
sections. After describing the detection methods, we for-
mally introduce the scan-rate, which is the rate at which
one can tune the cavity-resonance frequency in search for
an axion-signal in frequency space. The scan-rate is an
important figure of merit because the mass of axion is un-
known, spanning a range covering at least three decades
(or more), and thus scanning over such a large range as
swiftly as possible is desirable.

We compute the SNR of the power-spectral-density
(PSD) in a homodyne detection scheme, when the
measurement-port input consists of thermal/vacuum

fluctuations only, i.e. µ
(in)
m = 0 and σ

(in)
m = NT I2. For

completeness, we present the heterodyne result in Ap-
pendix C.

1. Within the axion coherence time

We begin our analyses for detection within the coher-
ence time of the axion-field, taking the axion-signal as
unknown but coherent. A homodyne detection scheme
enables measurement of a single quadrature of an elec-
tromagnetic field, e.g., the Q-quadrature, at the fun-
damental quantum noise level. An optical homodyne
measurement consists of mixing the signal mode with a
strong local oscillator of the same frequency (i.e., a high-
amplitude laser of known phase) at a balanced beam-
splitter and measuring the difference in the intensities at
each output-port of the beam-splitter. In the context of
axion search in the microwave domain, a homodyne mea-
surement differs from that in the optical domain. In a
typical configuration for microwave homodyne measure-
ment, a high-gain phase-sensitive amplifier first ampli-
fies a selected quadrature without introducing additional
noise, followed by a phase-insensitive amplifier that fur-
ther boosts both quadratures. The amplified signal is
then multiplied with a microwave local oscillator on a
frequency mixer. A low-pass filter then rejects the high-
frequency components of the frequency mixer’s output,
leaving the measured quadrature on the baseband signal.

If we assume that mixing with the local-oscillator only
adds about NT amount of noise to the signal (which is
approximately vacuum-dominant anyways; NT ≈ 1 +
O
(
10−4

)
), we can use eqs. (II.12) and (II.13) directly to

find an expression for the homodyne SNR of the signal
power containing the axion signature,

SNR(hom) ≡ 〈Q̂m〉2

Var(Q̂m)
=
|χms|2|µs|2 cos2(φs + θms)

NT

=
γmγs|µs|2 cos2(φs + θms)

NT ((γ/2)2 + ω2)
,

(II.16)

where the quadrature variance Var(Q̂m) = NT , |µs| is
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the amplitude of the axion field, φs is the phase of the
axion field with respect to the Q-quadrature (in polar
coordinates), and θms is a cavity-induced rotation angle.

Here φs = φa + ~k0 · ~x, where ~x is the location of the
measurement device. Eq. (II.16) represents the expected
“single-shot” SNR, which we expect to hold within an
axion coherence time.

2. Long integration times

We now consider observation times TO � 1/∆a, where
∆a is the axion bandwidth, and derive the SNR of the
PSD at the cavity-detuned frequency ω. We shall as-
sume that there are (Shannon-Nyquist sampling) M =
2∆aTO � 1 independent and identically distributed sam-
ples of the power within a total time TO, from which we
may acquire a significant SNR via the law of large num-
bers.

Formally, denote the the measured (normalized) power
spectral-density along the Q-quadrature as P, which
takes on a random value for each detection interval. As
typical for DM-axion searches, we shall assume that,
over many detection intervals, the classical axion-field
undergoes a random walk about the origin in phase-
space. The phase-space PDF p(µs) is then a uniform,
bi-variate Gaussian distribution with zero mean and
uniform variance σs = 2nsI2 (i.e. ns = E[µ>s µs]/2
is the occupation-number spectral-density of the axion
field; see Appendix G for connection to physical param-
eters). Under this assumption, it is easy to see that the
sample-averaged power, taken over 2TO∆a samples, is
E[P ] = |χms|2ns, which one can ascertain by inspection
of eq. (II.16). Furthermore, due to the underlying Gaus-
sian statistics of both the homodyne detection results and
the phase-space PDF, we have that the power variance
of an individual, random sample is

Var(P) = 2
(

Var(Q̂m) + |χms|2ns
)2

≈ 2Var2(Q̂m),

(II.17)

where Var(Q̂m) can be taken directly from eq. (II.16).
The first term is due to the variance in measuring Q (in-
cluding thermal/vacuum fluctuations) while the second
term is the variance of the power due to the underlying
phase-space PDF p(µs). The factor of 2 out front is due
to the fact that the (uni-variate) PDF for Q is Gaussian
and thus Var(P) ∼ Var(Q2) = 2Var2(Q). In the approx-
imation, we have omitted the signal’s contribution to the
variance due to its relative smallness.

Combining these results with the assumption of
Nyquist-Shannon sampling M = 2∆aTO, we find an ex-
pression for the SNR about the detuned frequency ω,

SNR
(hom) ≈ γmγsns

NT ((γ/2)2 + ω2)︸ ︷︷ ︸
≡αQL(ω)

√
∆aTO, (II.18)

where we have defined the quantum-limited (QL) visibil-
ity αQL(ω), which refers to the intrinsic limit set by the
vacuum fluctuations of the modes. The SNR is peaked
on resonance and is given as,II.4

SNR
(hom)

ω=0 =
4γmγsns
NT γ2

√
∆aTO

=
γm/γ`

(γm/γ` + 1)2

4γsns
NT γ`

√
∆aTO.

(II.19)

This is just the Dicke radiometer equation [49], which
has peak sensitivity at critical coupling, γm/γ` = 1— a
known result; see e.g. [50, 51]. [It is common, in the
literature, to define the ratio β ≡ γm/γ`, but we bypass
this convention in the main text to avoid adding extra
notation.]

Using similar logic as above, one can show that hetero-
dyne has the same average SNR performance at the quan-
tum limit. In other words, heterodyne and homodyne
detection perform equally well when sampling a random
signal (at least in this setting, where phase-insensitive
amplifier noise is negligible; see Appendix C). We shall
henceforth drop the superscript labeling the detection
scheme and restrict ourselves primarily to homodyne
measurements. For later reference, we note that only ho-
modyne measurement benefits from quantum squeezing
and allows us to surpass the quantum limit.

3. Introducing the scan rate

We now review the (spectral) scan-rate. Our presenta-
tion follows a similar line of argument as that provided
in Appendix A of ref. [33], but we include it here for
completeness.

Since the DM-axion’s mass is unknown over a large fre-
quency range, a more relevant quantity than the SNR at a
given cavity-resonance setting is the frequency-integrated
SNR, SNRI, where the subscript “I” indicates integra-
tion over many resonance-frequencies. Given that one
spends a time TO at each resonance-frequency and takes
infinitesimal steps ε from one resonance-frequency to the
next, the SNRs at each resonance-frequency step add in
quadrature such that, upon using eq. (II.18), the SNR
around a single (detuned) frequency ω is

SNR 2
I =

∆aTO
ε

n∑
k=−n

α2(ω;ωc + kε)ε, (II.20)

where n is the number of tuning steps and α(ω;ω′) is the
visibility function for an arbitrary input state (not nec-
essarily the vacuum) when the resonant frequency is ω′.

II.4 See ref. [50] for a definition of the total signal-power (e.g., over
a band of frequencies), which includes the finite bandwidth of
the axion. The main results of that reference can likewise be
computed using the quantum cavity-model above by specifying
the lineshape of ns(ω) and calculating the total output signal
power.
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In other words, for a fixed frequency ω— that we arbi-
trarily measure with respect to some central resonance-
frequency, ωc, at k = 0— we square and sum the indepen-
dent contributions from each cavity resonance-frequency
setting.

Ideally, we can tune the resonance frequency contin-
uously, such that the ratio ε/2πTO converges to some
(optimal) non-zero value, assuming some desired target
SNR, ζSNR. The reason we expect this convergence is
that, as the tuning-step becomes smaller and smaller (re-
quiring also that n becomes larger), we need to spend
less and less time, TO, at a given resonance-frequency,
since contributions from the many tuning-steps, which
are infinitesimally far away, will contribute significantly
to the SNR. This leads to a natural definition of the
spectral scan-rate, R, via ε/2πTO → R ≡ dνc/dt in a
continuum limit (to be defined precisely below), where
dνc = dωc/2π denotes an infinitesimal change in the
resonance-frequency.II.5

We now impose a continuum limit on eq. (II.20) by
taking ε → 0 and n → ∞ whilst keeping the product
nε (practically on the order of a few bandwidths) and
the ratio R ≡ ε/2πTO fixed. Doing so, we have that
eq. (II.20) becomes,

SNR 2
I =

∆a

2πR

ˆ Ωmax

−Ωmax

α2(ω;ωc + Ω)dΩ. (II.21)

We now make a crucial observation: namely, α(ω;ωc +
Ω) = α(ω−Ω), where on the right-hand-side we omitted
the notation about the fixed resonant frequency ωc. In
other words, changing the resonance frequency, ωc, by an
amount Ω is equivalent to fixing ωc and evaluating the
SNR at the detuned frequency ω − Ω.

If we now implement a change of variables Ω′ ≡ ω−Ω in
eq. (II.21) and make the simplifying assumption Ωmax →
∞, the ω dependence in the integral above drops out
entirely. This substitution then reduces eq. (II.21) to the
average SNR of the grand spectrum. Therefore, assuming
a target value for the SNR of the grand spectrum, ζSNR,
we can solve for the scan-rate, R, required to achieve the
target,

R =
∆a

2πζ2
SNR

ˆ ∞
−∞

α2(Ω′)dΩ′, (II.22)

which is a frequency-independent result. This result is
fairly intuitive. For, consider increasing the target SNR,
ζSNR, while keeping all else fixed. Such necessarily re-
duces the scan-rate, as more observation time at each
resonance-frequency is required in order to reach the tar-
get.

II.5 This definition of the scan-rate is a priori dependent on the
chosen frequency ω, as a different amount of time is generally
required to reach a target SNR, ζSNR, depending on the value
of ω. However, for the cavity setup, this frequency dependence
drops out altogether, as we show explicitly in the main text.

We emphasize that eq. (II.22) applies for general in-
put quantum-states (upon substituting a proper visibil-
ity, α(ω), which is dependent on the quantum state of
the modes). For vacuum input, we take the quantum-
limited visibility, αQL(ω), from eq. (II.18) to obtain the
quantum-limited scan-rate,

RQL ≈
2∆an

2
sγ

2
s

ζ2
SNRN

2
T γ`

(
γm
γ`

)2

(
γm
γ`

+ 1
)3 , (II.23)

where we have assumed that NT ≈ constant over the
integration range and have used γ ≈ γm + γ` (ignoring
the γs contribution). The optimal value for the scan-
rate R?QL is found at the over-coupled parameter setting

γm/γ` = 2, a known result in the ∆a � γ` regime [50–
53]. Note that this parameter setting differs from critical-
coupling, γm/γ` = 1, where the SNR at zero detuning
is maximal. The reason behind this difference is due
to the trade-off between bandwidth and sensitivity when
searching for an axion signal. Since the frequency-range
over which we expect to find an axion-signal is large, we
require that our cavity be fairly sensitive over a large
bandwidth, however increasing the bandwidth comes at
the price of decreasing the peak-sensitivity of the cavity
(see Fig. 10 in Appendix B for a visualization of this
trade-off). The scan-rate is a good figure of merit which
takes both the bandwidth and sensitivity into account.

D. Squeezing-enhanced dark matter search

The final part of the preliminary section is devoted
to summarizing a squeezing-enhanced scan introduced in
ref. [32] and developed and implemented in refs. [33, 34].
For completeness, we quote the results for the squeezing-
enhanced scan-rate, Rsq, just below and leave detailed
derivations to Appendix D.

A description of the setup introduced in ref. [33] is
shown in Fig. 3. A squeezed-vacuum is prepared and in-
jected into the cavity, reducing input noise fluctuations
along the squeezed quadrature. For instance, a (noisy)
squeezed-vacuum, with squeezing along the Q quadra-

ture, has a covariance matrix σ
(in)
m = NTdiag(1/G,G),

where G is the gain of the squeezer, NT represents the
initial noise fluctuations (including vacuum and thermal
fluctuations), and ‘diag’ denotes a diagonal matrix spec-
ified by the diagonal elements. Post-cavity interaction,
an anti-squeezer amplifies the output signal along the ini-
tially squeezed quadrature. This is beneficial considering
the potential noise added in signal-processing. As dis-
cussed in refs. [32, 33], squeezing does not increase the
peak-sensitivity on resonance but instead enhances the
off-resonance sensitivity. This off-resonance sensitivity-
enhancement yields an accelerated scan-rate proportional
to the amount of squeezing (see below).

In Appendix D, we derive the SNR (and thus the
visibility function) for squeezed-vacuum input. Using
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FIG. 3. Squeezing the measurement port prior to the cav-
ity interaction reduces input fluctuations in one quadra-
ture. Anti-squeezing after the cavity interaction amplifies
the axion-induced displacement in one quadrature relative
to noise added after the cavity interaction by, e.g., phase-
insensitive amplification.

the general eq. (II.22), we then compute the squeezing-
enhanced scan-rate, Rsq. A natural figure of merit is
the ratio of the squeezing-enhanced scan-rate, Rsq, to
the quantum-limited scan-rate, R?QL [see discussion sur-

rounding eq. (II.23) for precise definition of R?QL]. We
compute this ratio to be,

Rsq

R?QL

=
27
√
G
(
γm
γ`

)2

32

((
γm
γ`
−1

)2

4G + γm
γ`

)3/2
, (II.24)

in agreement with ref. [33]. This quantity has a maximum
corresponding to an optimal coupling of γm, which is
around γm/γ` ≈ 2G. In the limit of G � 1 and at
optimal coupling, γm/γ` ≈ 2G, the optimal squeezing-
enhanced scan-rate, R?sq, approaches R?sq/R?QL ≈ 0.7G.

Thus the scan-rate (approximately) scales linearly with
the squeezing gain.

Before moving forward, let us make a few final com-
ments. First, if measurement noise (originating from,
e.g., phase-insensitive amplification prior to detection) is
not too large, then we can omit the anti-squeezer in the
process (shown in Fig. 3 as S†) without loss of gener-
ality, as including such does not alter the performance
of the setup. From here on, unless otherwise stated, we
shall assume amplifier noise in the detector setup is neg-
ligible and thus omit the anti-squeezer. As a matter of
practice though, some form of amplification prior to mea-
surement is typically necessary to transform a very weak
or quantum-limited signal into something that is classi-
cally detectable. The anti-squeezer (or more generally,
a phase-sensitive amplifier) is thus a practical necessity
for homodyne detection. We further note that a phase-
insensitive amplifier cannot be used as a substitute for
the phase-sensitive amplifier in this scenario, as the for-
mer generally degrades the performance of homodyne de-
tection, even in the presence of squeezing. For more dis-
cussion on the effects phase-insensitive amplification to
homodyne detection, see Appendix C.

Second, a more practical (though formally equivalent)
implementation than the single-mode squeezed-vacuum
setup considered here is to use two-mode squeezing gen-
erated by a Josephson parametric amplifier (JPA) (see,

for instance, refs. [34, 54]). We note that using two-
mode squeezing can naturally resolve the cavity-induced
phase θmm. Therefore, frequency-dependent squeezing is
unnecessary in the microwave cavity setup to achieve a
quantum advantage. For completeness, we analyze the
two-mode squeezing setup in Appendix D and show its
equivalence in performance to the single-mode setup dis-
cussed here.

III. ENTANGLED SENSOR-NETWORKS FOR
DARK MATTER SEARCH

We extend the single-sensor model to a sensor-network
consisting of M cavities positioned at spatially distinct
locations, each of which couples to the same background
axion field. In general, the cavities can be in close prox-
imity or well-separated, but we primarily focus on a local
sensor network, as depicted in Fig. 1. This choice allows

us to neglect the position-dependent phase ~k0 · ~x and
hence maintain coherence among the sensors.

Define the set of M measurement-port input modes

{â(in)
mi }Mi=1, where the subscript i refers to the ith sensor-

cavity. The measurement-port output modes are likewise

defined, i.e., {â(out)
mi }Mi=1. Then, within the axion coher-

ence time, the quantum channel GM mapping the set of
input modes to the set of output modes is given by a
tensor product of the individual cavity channels,

GM =

M⊗
i=1

Dνi ◦ Φθmimi ◦ L
NTi
χmimi

. (III.1)

The subscript i here not only labels the individual cavi-
ties but also signifies the fact that each cavity may have
different operating conditions, loss rates, resonance fre-
quencies, etc.

We have thus reduced axion detection to a model
of displacement sensing with a sensor network, a topic
generally studied in the field of distributed quantum
sensing [39, 44], where continuous-variable multi-partite
entanglement— generated by passing a single-mode
squeezed-vacuum through a linear network— plays an
crucial role. Utilizing similar techniques as [39, 44],
we consider the situation depicted in Fig. 4, where a
squeezed-vacuum state is distributed to M local sensor-
cavities, which are coupled via passive arrays, W ′ (a
power-divider) and W (a power-combiner).III.1 We note
that the power-combiner, W , can be replaced by local
homodyne measurements and post-processing to achieve
the same performance.

Given this general setup, our goal is to maximize
the scan-rate of Eq. (II.22) by assuming control of the

III.1 In this section, we ignore the anti-squeezer at the end of the
protocol for the sake of brevity, as including such does not change
the main results.
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FIG. 4. A single-mode squeezed vacuum is distributed to
a network of M cavities which are coupled via passive ar-
rays, W ′ and W (a power-divider and power-combiner, re-
spectively). The network utilizes classical correlations be-
tween the axion-induced displacements at each cavity to co-
herently combine the signal fields into the primary output

mode, â
(out)
1 , and generate a larger signal amplitude. The

power-divider and power-combiner are optimally chosen to
maximize the signal and minimize the noise in the primary
mode. We have relabeled parameters in the diagram for
brevity: ηk ≡ |χmkmk |

2; θk ≡ θmkmk ; and αk is the com-
plex amplitude of the output signal (i.e., the axion-induced
displacement) of the kth cavity.

passive-arrays, W ′ and W , and by taking advantage of
input quantum resources as well as the classical correla-
tions of the axion signals between individual cavities. In
doing so (details provided below), we arrive at our main
result:

Main result— In the ideal scenario of a
susceptibility-matched sensor-network consisting of
M identical microwave cavities, the scan-rate of the
network scales as M2Rsq, where Rsq is the scan-rate of
a single squeezed cavity with the same level of squeezing.
This scaling is achieved by using one squeezer and one
homodyne detector— all situated on the “primary”
mode, â1— as well as a balanced M -mode power-
combiner, W , and a balanced M -mode power-divider,
W ′ = W−1.

Thus, in the ideal case, we achieve a performance en-
hancement of M2 by operating the network coherently
and making use of the classical correlations of the ax-
ion field. Moreover, we obtain a simultaneous boost
to the scan-rate (relative to the quantum limited case)
via multi-partite entanglement shared between the sen-
sors (generated from a single squeezed vacuum). We
also extend these results to a susceptibility-mismatched
network of non-identical sensor-cavities and discuss sub-
tleties that arise therein. Main derivations and discus-
sions leading to these results are just below.

For simplicity, we shall assume each cavity operates at
roughly the same temperature T , such that NTi ≈ NT ,

and for brevity, we introduce the temporary notation:
ηk ≡ |χmkmk |

2
and αk is defined as the complex ampli-

tude of the output signal such that |αk| ≡ |χmksk ||µsk |
and arg(αk) ≡ φsk+θmksk . We assume the phases θmkmk
can be practically resolved by utilizing the two-mode
squeezing setup discussed in Appendix D 1; we thus ig-
nore the phases θmkmk from hereon. Furthermore, we
shall assume that the radius of the network volume is
much smaller than the wavelength of the axion field, im-
plying that the axion field at all sensors are homogeneous,
i.e., the amplitude |µsk | = µs and phase φsk = φs, ∀ k.
We therefore ignore spatial variations of the axion field
across the network.III.2

Our derivations follow by stepping through the circuit
illustrated in Fig. 4, with focus on the primary mode
â1, which we assume is in a (noisy) squeezed-vacuum

state and squeezed along the Re(â
(in)
1 ) quadrature. The

other input modes are quiet and, thus, only populated
by uncorrelated thermal/vacuum fluctuations.

Consider the set of modes {b̂l} just after the power-
divider. The transformation from the input modes

{â(in)
k } to these intermediary modes is dictated by the

coefficients of the power-divider (the “weights”), {w′lk},
which obey the orthogonality relation

∑
k w
′
mkw

′ ∗
kn =

δmn. In terms of the input modes, the intermediary mode

b̂l can be written as,

b̂l =

M∑
k=1

w′lkâ
(in)
k = w′l1â

(in)
1 +

√
1− |w′l1|

2
ê

(in)
l , (III.2)

where we have singled-out the primary mode â
(in)
1

and defined the input “environmental mode” ê
(in)
l =∑M

k=2 w
′
lk/
√

1− |w′l1|
2
â

(in)
k , which is populated by the

uncorrelated thermal/vacuum fluctuations of the remain-

ing input modes, {â(in)
k }Mk=2.

Now consider the second set of intermediary modes

{b̂′l} just after the cavity interaction but before the power-
combiner W . Defining the environmental modes {êl},
which are introduced from cavity transmission loss, the

intermediary mode b̂′l can be written as,

b̂′l =
√
ηlb̂l +

√
1− ηlêl + αl, (III.3)

where b̂l is taken from eq. (III.2) and αl denotes the
axion-induced displacement at the lth cavity. Next,
we introduce the power-combining weights {wjl}, which
likewise obey an orthogonality relation

∑
k wmkw

∗
kn =

δmn. We then obtain a formal relation for the out-

put modes, â
(out)
j =

∑M
l=1 wjlb̂

′
l. Combining this relation

with eqs. (III.2) and (III.3) and choosing j = 1, we find
a generic expression for the output primary-mode of the
network,

III.2 In cases there the relative phase between difference cavities ~k0 ·~x
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â
(out)
1 =

M∑
l=1

(
(w1lw

′
l1

√
ηl) â

(in)
1︸ ︷︷ ︸

Squeezed noise

+w1l

√
1− |w′l1|

2√
ηlê

(in)
l + w1l

√
1− ηlêl︸ ︷︷ ︸

Thermal/vacuum noise

+w1lαl︸ ︷︷ ︸
Signal

)
, (III.4)

where we have identified the parts which contribute to
the signal and to the noise. Performing a homodyne mea-

surement along the real quadrature of â
(out)
1 then gives an

estimate of the signal power and the noise power. Hence,
understanding and manipulating this mode relation is of
primary significance to our forthcoming analyses.

From here, the objective is to optimize the weights,
w and w′, in order to maximize the scan-rate given by
homodyne measurement. As the exact optimization is
challenging, we take a two-step approach by first maxi-
mizing the signal and then minimizing the noise in the
output. A heuristic solution to the optimization for iden-
tical sensors is just below. A more formal derivation of
the optimization strategy (applied to the general case
of non-identical sensors) is given in Appendix F. In the
identical sensor case, the two-step optimization solution
is the exact solution due to symmetry; while in the non-
identical sensors case, we numerically show that the solu-
tion from the two-step optimization is close to the exact
optimal.

A. Identical sensors

For identical sensor-cavities, ηl = η and αl = α ∀ l;
thus, we have from Eq. (III.4)

â
(out)
1 =

√
η

(
M∑
l=1

w1lw
′
l1

)
â

(in)
1 + α

(
M∑
l=1

w1l

)
+ thermal noise. (III.5)

The signal amplitude along the homodyne-measurement
direction is given by

〈
Re
(
â

(out)
1

)〉
= |α|

M∑
l=1

|w1l| cos
(

argw1l + argα
)
.

(III.6)
Obviously, the amplitude is maximized for argw1l =
− argα, which aligns the quadrature measurement along
the direction of the axion-field displacement. However,
argα = φs + θms, where φs is the randomly fluctuat-
ing (and presumably unknown) phase of the axion field.
Hence, no choice of argw1l— other than the sensor-
independent choice argw1l = argw1 ∀ l— is beneficial for
the output signal if φs is unknown. In this sense, an

cannot be ignored, new protocols shall be investigated for effi-
cient scan.

arbitrary identical phase can be chosen for the weights
argw1l.

On the other hand, the magnitude of the weights
|w1l| should take on a specific value. Since each cav-
ity is displaced by an equivalent amount α, no cavity
is preferred, and thus it is necessary to choose uniform
weights, |w1l| = 1/

√
M . Assuming uniform weights, tak-

ing argw1l = 0 ∀ l, using the definitions |αl| ≡ |χmlal |µs
and argα ≡ φs, and averaging over the coherence time
of the axion-field leads to an expression for the average
signal power,

E
[〈

Re
(
â

(out)
1

)〉2
]

= E

(|α| M∑
l=1

|w1l| cos
(

argα
))2


= E

(|χms|µs M∑
l=1

cos (φs + θms) /
√
M

)2


=

(
M∑
l=1

1/
√
M

)2

|χms|2E
[
µ2
a cos2 (φs + θms)

]
= M |χms|2ns,

(III.7)

where we have used the fact that E[µ2
s cos2(φs + θms)] =

ns, for any angle θms that is independent of the random
variable φs. This result is just M times the signal power
of a single cavity, which is intrinsically derived from the
classical correlations of the axion-field displacements at
the various sensors. [Such scaling is not permissible with
independently operated sensors, which do not take ad-
vantage of the classical correlations of the field; see Fig. 6
for how this affects the scan-rate.]

To minimize the noise power, we have to optimally

utilize the squeezing injected into the â
(in)
1 mode. In

other words, we must ensure that (1) all of the squeezing
is along the direction of the homodyne measurements,

Re(â
(out)
1 ), and (2) the squeezing is distributed properly

to all the sensor cavities. Now we previously assumed
that the phases θmkmk can be practically resolved via
the two-mode squeezing setup laid out in Appendix D 1.
We thus justifiably ignored these phases in our analy-
sis. This (partially) ensures no excess noise from anti-
squeezing will appear in the measured quadrature, how-
ever we must also choose argw′l1 = − argw1l when di-
viding the input and combining the signals to further
avoid anti-squeezing noise. These observations follow
by inspection of first term eq. (III.5). To accomplish

(2), we choose uniform weights, |w′l1| = 1/
√
M , for the



12

power-divider, W ′, since all cavities perform equally well
and should thus get an equal share of squeezing. Ob-
serve that, with these choices, W ′ = W−1. Considering

that the â
(in)
1 mode is in a (noisy) squeezed-vacuum state

and environmental modes are filled with thermal/vacuum
fluctuations, the noise power becomes

Var
(

Re
(
â

(out)
1

))
= NT (η/G+ 1− η)

= NT

(
|χmm|2/G+ 1− |χmm|2

)
,

(III.8)

which is just the (squeezed) noise power of a single cavity.
Combining eqs. (III.7) and (III.8), and substituting the

explicit expressions (II.15) and (II.14) for χms and χmm,
we obtain the SNR after integrating over many axion
coherence-times,

SNRM ; ideal =

E
[〈

Re
(
â

(out)
1

)〉2
]

Var
(

Re
(
â

(out)
1

)) √∆aTO

=
M |χms|2ns

NT

(
|χmm|2/G+ 1− |χmm|2

)√∆aTO

=
Mγmγsns

NT

(
(γ/2)2+ω2−γmγ`)

G + γmγ`

)√∆aTO,

(III.9)

which is M times the SNR of a single cavity when a
(noisy) squeezed-vacuum state is injected into it; see
eq. (D.3). Therefore, given the squeezing-enhanced scan-
rate for a single cavity, Rsq from eq. (II.24) and the def-
inition of scan rate in eq. II.22, an M -cavity scan-rate of
M2Rsq is achievable, as claimed.

We want to emphasize that such a performance is
achieved by just utilizing a single squeezed-vacuum in-
put, which is split into equal copies to entangle the M
sensors. Another approach to achieve the same perfor-
mance with separable sensors would require M copies of
squeezed vacuum together with coherent post-processing
of the signals. In this sense, our proposed distributed
sensing scheme reduces the number of squeezers from M
to one, at the cost of requiring tunable, passive couplings
(e.g., W ′) between the cavities.

B. Non-identical sensors with the same resonance
frequencies

Ideally, we want the scenario described just above—
a coherent quantum sensor-network consisting of many
identical copies of a single, spectacular cavity. How-
ever, practical realizations are often far from this ide-
ality and discrepancies between sensors naturally arise.
Any such differences— originating from, e.g., differing
intrinsic quality-factors, axion-photon conversion rates,

etc.— generally cause a susceptibility-mismatch between
the cavities, leading to varying signal and noise outputs
across the network. A further detriment is the fact that
the output signal-amplitudes will have relative phases
due to the susceptibility-mismatch, quantified by differ-
ences in the cavity-induced angles {θmksk}, causing non-
optimal interference of the amplitudes when attempting
to power-combine the signals.

Here, we discuss this more general case of non-identical
sensors and systematically analyze near-optimal power-
dividing and power-combining strategies, which maxi-
mize the signal and minimize the noise in the output
power. We examine a two-sensor network as a pedagog-
ical example and go on to assess the scan-rate perfor-
mance of a M -sensor quantum network in this generic
setting. In what follows, we shall assume that each
sensor-cavity within the network has the same resonance
frequency but differ in other aspects, e.g., by their intrin-
sic linewidths (intrinsic quality factors). Identical reso-
nance frequency is not only optimal for enhancing the
scan-rate, but also required so that cavity-induced phase
shifts can be resolved by matching the center frequency
of a JPA squeezed-source to the resonance frequencies
(see Appendix D 1).

1. Near-optimal weights: theoretical analysis

The expression to consider is the output amplitude

â
(out)
1 of eq. (III.4). From the discussions in the identical-

sensors case, it should be apparent that, to maximize the
signal power, we must maximize the signal-amplitude,
which is a weighted sum of the amplitudes from all the
cavities, with respect to the weights {w1k}. To minimize
the noise, we must make optimal use of the squeezing in-

jected into the â
(in)
1 mode by optimizing with respect to

the weights {w′1k}. We first maximize the signal along the
direction of the homodyne measurement. Then, condi-
tioned on the signal optimization, we minimize the noise.
Detailed derivations are supplied in Appendix F. Results
of the derivations and brief explanations are given below.

To maximize the signal-power in the primary mode

â
(out)
1 , we appropriately combine the signal-amplitudes

from each cavity based on their relative contributions to
the signal as well as resolve any potential phase differ-
ences between amplitudes which would otherwise lead to
destructive interference. Such an optimization (explicitly
provided in Appendix F) leads to the following expression
for the the power-combiner weights,

w1k =
|χmksk |√∑M
j=1

∣∣χmjsj ∣∣2 e−iθmksk . (III.10)

For identical sensors, |χmksk | = |χms|, implying that

w1k = 1/
√
M , as shown in the previous section.

From here, we can calculate the signal power. First,
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define the quantity,

〈〈
|χms|2

〉〉
1/M
≡

(∑M
k=1 |w1k||χmksk |

)2

M

=

∑M
k=1 |χmksk |

2

M
,

(III.11)

which [after using eq. (III.10)] is the uniform average of

|χms|2, due to this particular choice of weights. The
signal power is then,

E
[〈

Re
(
â

(out)
1

)〉2
]

= E

( M∑
k=1

|w1k||χmksk |

)2

µ2
s cos2 φs


= M

〈〈
|χms|2

〉〉
1/M

ns,

(III.12)

which is just M times the average signal-power of a cav-
ity in the network. Furthermore, this result is provably
better than uniformly combining the signals. Indeed, if
we chose uniform weights (|w1k| = 1/

√
M), then the sig-

nal power would scale as 〈〈|χms|〉〉21/M , which is always

less than or equal to
〈〈
|χms|2

〉〉
1/M

.

To minimize the noise, we make optimal use of squeez-
ing. Our attention is thus on the first term in eq. (III.4)—
the squeezed noise. We must ensure that the squeez-
ing is distributed to (1) modes with the highest cavity
transmission, such that a maximal amount of squeezing
is utilized, and (2) modes which contribute most to the
output signal. This draws us to the following choice for
the power-dividing weights (again, see Appendix F for
details),

w′k1 =
|χmksk ||χmkmk |√∑M
j=1

∣∣χmjsj ∣∣2∣∣χmjmj ∣∣2 eiθmksk . (III.13)

From the above equation, we can calculate an ex-
pression for the noise power. Before doing so, recall
ηl ≡ |χmm|2 and define the quantity,

〈〈
|χmm|2

〉〉
w2
≡

(
M∑
l=1

|w1l||w′l1|
√
ηl

)2

=

∑M
l=1 |χmlal |

2|χmlml |
2(∑M

j=1

∣∣χmjsj ∣∣2) , (III.14)

where the equality follows by substituting eqs. (III.10)

and (III.13) into the above. Observe that
〈〈
|χmm|2

〉〉
w2

is the average of |χmm|2 with respect to the distribution

|w1l|2 (hence the subscript, w2). Using this definition
along with eq. (III.4), we find, after some algebra, the

total noise power,

Var
(

Re
(
â

(out)
1

))
= NT

(〈〈
|χmm|2

〉〉
w2
/G+ 1−

〈〈
|χmm|2

〉〉
w2

)
.

(III.15)

The first term is due to squeezing of the â
(in)
1 input mode,

while the second and third terms follow from the fact
that the other M − 1 uncorrelated, quiet input-modes

contribute a total amount of NT (1−
〈〈
|χmm|2

〉〉
w2

) ther-

mal/vacuum fluctuations to the output noise-power.
The SNR is then formally given by the ratio of the

signal power expressed in eq. (III.12) to the noise power
expressed in eq. (III.15),

SNRM ; {w,w′} =

M
〈〈
|χms|2

〉〉
1/M

ns

NT

(〈〈
|χmm|2

〉〉
w2
/G+ 1−

〈〈
|χmm|2

〉〉
w2

) .
(III.16)

2. Example: two sensor-cavities

We briefly analyze the simple example of a two-sensor
network where the sensor-cavities differ only by their in-
trinsic linewidths, γ`1 and γ`2 , assuming a ratio γ`2/γ`1 =
3. We take a squeezing gain value of G = 4 and choose
over-coupled values of γmk ≈ 2Gγ`k for all k. Under
these settings, we plot the squared SNR in Fig. 5 for
various choices of the weights to maximize the scan-rate
(details below). In general, choosing optimal or near-
optimal weights leads to a higher (on-resonance) peak-
sensitivity and a modestly improved scan-rate (see next
section) compared to naively choosing uniform weights.

The theoretical near-optimal SNR (light-blue curve
in Fig. 5) is taken from eq. (III.16). The frequency-
dependent optimal-weights (dark-blue triangles) are ob-
tained numerically via maximizing the scan-rate; in other
words, we find arg max{w,w′} SNR2({w,w′};ω), leading
to an optimal pair of weights, w and w′, for each fre-
quency ω, from which the scan rate can be calculated.
Uniform weights (black curve) are |w| = |w′| = 1/

√
M .

Though not shown explicitly, we observe that increas-
ing/decreasing the ratio of the linewidths, γ`2/γ`1 , leads
to poorer performance of uniform weights compared to
all other schemes (i.e., pushes the black curve further
down with respect to the other curves in Fig. 5).

Interestingly, we are able to numerically find
a set of near-optimal weights which are fre-
quency independent (red curve). We obtain these
weights from the SNR of the grand-spectrum via
arg max{w,w′}

´
SNR2({w,w′};ω)dω, where the weights

{w,w′} in the integrand are assumed to be independent
of the frequency ω. For the two-sensor case, this
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FIG. 5. SNR of a squeezed two-cavity network in coherent op-
eration (i.e. coherently combining output signal-amplitudes).
Intrinsic linewidths of the cavities (and thus intrinsic qual-
ity factors) chosen to differ by a factor of 3. Squeezing
for a gain value of G = 4. Black curve denotes uniform
weights, |w| = |w′| = 1/

√
2. Light-blue line denotes theo-

retical sub-optimal weights of eqs. (III.10) and (III.13). Red
line denotes numerically obtained frequency-independent sub-
optimal weights. Blue triangles denote numerically-obtained
optimal weights for each frequency. Observe close agreement
between the numerically-obtained optimal and the theoret-
ically derived optimal (blue triangles and light-blue curve,
respectively).

amounts to a numerical optimization over two parame-
ters, w11 and w′11 (w12 can be found from the constraint∑2
k=1 |w1k|2 = 1; likewise for w′k2). We suspect that

frequency-independent, near-optimal weights likewise
exist for the general M -sensor case, for which 2(M − 1)
optimal parameters need be found.

The important take-away from the two sensor-cavities
example is that the theoretically derived weights from
the two-step optimization, eqs. (III.10) and (III.13), are
close to optimal. Also close to optimal are the frequency-
independent optimized weights (red curve in Fig. 5),
which is more attractive from a experimental standpoint.

3. Scan-rate performance for multi-cavity network

We now assess the scan-rate performance of a general,
non-identical M -sensor cavity network. As the theoret-
ically derived weights from the two-step optimization,
eqs. (III.10) and (III.13), are near-optimal (see Fig. 5),
we utilize these in the forthcoming analysis to benchmark
performance. The main results are succinctly plotted in
Fig. 6. Data shows the scaling of the scan-rate with the
number of sensors M when the network is in coherent
operation (blue/black lines) versus a network of inde-
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FIG. 6. Scaling of the (normalized) scan-rate with the num-
ber of sensors M in the network (log-log plot). Cavities in
the network differ by their intrinsic linewidths, which fall
uniquely and uniformly within the interval γ` ∈ [1, 3]. Solid
lines correspond to squeezed input at gain G = 4. Dashed
lines correspond to zero squeezing, G = 1. For a network
of independent sensors, each sensor must be independently
squeezed. Observe quadratic scaling of the scan-rate with M
for a coherent network of sensors versus linear scaling with
M for a network of independent sensors (i.e. the slope of the
former is about twice that of the latter).

pendent sensors (red lines). The plot also shows relative
performance with (solid lines) and without (dashed lines)
squeezing. Even when the network is non-ideal, in the
sense that individual cavities have different levels of per-
formance, one can still achieve substantial performance
enhancement from squeezing and a (near) quadratic scal-
ing in the number of sensors M under coherent operation
of the network.

We note that, for the example parameters of of Fig. 6,
there is about a 5% difference in relative performance
between the scan-rate for uniform weights (black curves
in Fig. 6) compared to the scan-rate for the theoreti-
cal optimal weights (blue curves). We thus generally
expect modest performance enhancement (depending on
the amount of inhomogeneity in the network) when the
power-dividers and power-combiners are optimized ac-
cordingly.

Another important aspect that we want to consider is
the potential interference between signal amplitudes from
each cavity when we combine them. Interference will oc-
cur, for instance, if the cavity-induced angles {θmksk}
of the axion signals are non-negligible or not locally re-
solved. As resolving such angles adds additional com-
plexity to the power-dividing/combining strategy, we
want to gain some intuition on how detrimental signal
interference can be to the SNR if such phases are not
taken care of. Consider a set of weights {w1k} that do
not resolve the angles θmksk . One can derive an expres-
sion for the signal power for these sets of weights, similar
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to relation (III.12),

E
[〈

Re
(
â

(out)
1

)〉2
]

= E

( M∑
k=1

|w1k||χmksk | cos(φs + θmksk)

)2

µ2
s


= ns

(
M∑
k=1

|w1k|2|χmksk |
2

+
M∑
i,j
i6=j

|w1i||w1j ||χmiai |
∣∣χmjsj ∣∣ cos

(
θmiai − θmjsj

))

(III.17)

The first summation is just the average power of a single
cavity in the network. The second summation contains
interference terms between the signal amplitudes.

To estimate the effects of interference on the scan-
rate, we consider a superficial example. First, to single-
out the interference effects, we operate at the quantum
limit (i.e., zero squeezing, G = 1), as squeezing does not
effect the signal-power. Second, we assume each cav-
ity to differ only in their intrinsic linewidths, which we
choose to fall uniquely and uniformly within the inter-
val γ` ∈ [1, 3] (measured with respect to the smallest
linewidth, taken arbitrarily as unity). We use this as
an input into eq. (III.17), square the resulting expres-
sion, and integrate over frequencies to obtain an esti-
mate for the scan-rate, assuming either uniform weights
|w1k| = 1/

√
M or the near-optimal weights of eq. (III.10)

without the phase factor. To estimate relative perfor-
mance, we normalize the results with respect to the near-
optimal scan-rate when the phases {θmksk} are corrected.

We find that, for a spread of linewidths γ` ∈ [1, 3],
interference causes a relative ∼ 3 − 5% decrease in
the scan-rate compared to when the phases are com-
pletely corrected. We furthermore find a notable differ-
ences in performance between choosing uniform weights
versus choosing near-optimal weights when interference-
effects are present, at about the 2% level for this exam-
ple. A more exhaustive and systematic study of signal-
interference effects in the scan-rate performance can be
accomplished using our formalism (e.g., relying on a more
realistic model for inhomogeneities within the network),
however we leave this problem to future, experimentally-
driven research.

IV. GKP-ENHANCED AXION SEARCH

Finally, we consider a more exotic quantum resource—
the GKP state [45]—in a dark-matter search. We de-
scribe how, in the ideal case, the GKP-enhanced scan
can enhance the scan-rate by a constant factor relative
to a squeezing-enhanced search with the same amount of
squeezing, however, we also show a practical no-go for

GKP-enhanced scan when ancillary measurement noise
is taken into consideration.

The potential benefits of this new strategy de-
rive from the non-Gaussian resource consumed in its
implementation— the GKP state. Colloquially, the
canonical GKP-state is a grid in phase-space, with un-
ambiguously identifiable lattice-points separated by

√
2π.

One can simultaneously measure the Q and P quadrature
variables of the GKP state mod

√
2π (ignoring practical

noise sources), due to the
√

2π translation-invariance of
grid [45, 46]. The Heisenberg uncertainty principle holds

good due to the mod
√

2π structure [45].
Practically though, if a displacement of the grid oc-

curs, one must infer in what direction (say, left or right
for a 1D displacement) and with what magnitude the dis-

placement occurs, however due to the
√

2π translation-
invariance, this inference is ambiguous if the displace-
ment is close to (or known up to) half a lattice spacing,√
π/2. IV.1 This ambiguity, however, is not a problem

for very small displacements (and fairly low amount of
noise), such as an axion-induced displacement, as we now
discuss. For further details regarding the GKP state, see
Appendix E; see also ref. [47] for applications of GKP in
general distributed-sensing scenarios.

The GKP-enhanced protocol consists of the follow-
ing steps (see Fig. 7): 1) A GKP state is prepared and
sent through a phase-insensitive amplifier Ag, with gain

g = 1/|χmm|2 chosen in such a way to convert the cav-
ity transmission-loss to additive Gaussian noise; 2) the
amplified GKP-state is injected into a microwave cav-
ity, where an axion-induced displacement of the cavity
field occurs [Note here we have gone back to the rotated
frame for a single cavity.]; 3) the output of the cavity
(the signal, a displaced GKP state) is coupled via the
SUM-gate to an ancilla-mode prepared in an ancillary
GKP-state; 4) homodyne detection is performed along
the Q-quadrature of the GKP-ancilla and along the P -
quadrature of the signal-mode. The independent mea-
surements are then combined in quadrature to infer the
SNR.

For simplicity in this initial presentation, we shall as-
sume added noise (vacuum-added noise from the cavity,
intrinsic noise in the imperfect GKP resource-states etc.)
is much smaller than half the lattice-spacing of the GKP
grid,

√
π/2. In this regime, we can safely make a Gaus-

sian approximation for the modes and focus our atten-
tion to a particular lattice point of the GKP grid (the
origin in phase-space) about which all displacements are
measured with respect to. We shall return to this ap-
proximation later. We can then describe a GKP state
in terms of its Wigner function restricted to the origin,

IV.1 For instance, if a displacement of
√
π+ ε to the right occurs, say

along the Q-quadrature, then one cannot distinguish this from a
displacement of

√
π − ε to the left due to the

√
2π translation-

invariance of the GKP state. One can deal with this by making
a biased decision based on which case is most likely to occur.
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FIG. 7. GKP-enhanced search. A GKP state is prepared and
injected into the microwave cavity. Just prior to injection,
the input mode is amplified by a (quantum-limited) phase-
insensitive amplifier Ag with gain chosen as g = 1/|χmm|2,
which converts the cavity-transmission loss to additive Gaus-
sian noise— a necessary addition when using GKP states.
The output mode of the cavity, which is slightly displaced
due to the axion-field, then interacts via the SUM-gate with
an ancillary mode prepared in a GKP state. Finally, orthog-
onal homodyne measurements are performed on each mode.

which is a Gaussian function with moments (µGKP = 0

mod
√

2π,σGKP), where the covariance matrix

σGKP =
NT
G

I2. (IV.1)

Observe that we have included initial thermal fluctua-
tions that may be present during GKP-state prepara-
tion. Following convention, we define the squeezing of
the GKP state in dB as sdB ≡ 10 log(G). Intuitively, the
local-variance of the GKP-state, σGKP, represents the
typical size of the fluctuations of a lattice-point on the
GKP-grid, due to the finite squeezing used to prepare the
GKP state (plus initial thermal fluctuations).

For a (quantum-limited) amplifier of gain g, the GKP
state just before entering the cavity gets mapped to
σGKP → gσGKP +(g−1)I2. Choosing g = 1/|χmm|2 and
using the general input-output eqs. (II.12) and (II.13),
the output of the cavity can be found,

µ(out)
m = |χms|O(θms)µs (IV.2)

σ(out)
m =

NT
G

I2 + 2NT

(
1− |χmm|2

)
I2, (IV.3)

where it is understood that µ
(out)
m is defined mod

√
2π.

We shall drop the modulo dependence for brevity. Ob-
serve that extra vacuum noise has been added to the
output (seen as a factor of 2 in σ

(out)
m above) from phase-

insensitive amplification. The cavity output then couples
via the SUM-gate to the GKP ancilla, which has local
moments (µanc = 0,σanc = NT /GancI2), leading to a
formal expression for the reduced moments,

SUM : µ(out)
m → µ(out)

m ,σ(out)
m → σ(out)

m + ΠPσancΠP ,
(IV.4)

µanc → ΠQµ
(out)
m ,σanc → σanc + ΠQσ

(out)
m ΠQ,

(IV.5)

where ΠQ = diag(1, 0) and ΠP = diag(0, 1) are pro-
jections along the Q quadrature and P quadrature of

the respective single-mode spaces. Since µanc = 0, we
see that the mean vector of the signal goes unchanged
while the mean vector of the GKP-ancilla gets translated
along the Q-quadrature by the Q-component of the sig-

nal, ΠQµ
(out)
m . We also observe a shuffling of Q- and

P -quadrature noises between the signal and the ancilla.
Written out explicitly, the noise in the P (Q) quadrature

of the signal (ancilla) is NT /Geff + 2NT (1 − |χmm|2),
where 1/Geff ≡ 1/G+ 1/Ganc.

After coupling the signal to the ancilla, the Q quadra-
ture of the ancilla and P quadrature of the signal are
then measured. The variances of these measurements
add in quadrature, which— after integrating over a co-
herence time of the axion field— leads to an estimate for
the SNR for GKP-enhanced search,

SNRGKP ≈
2γmγsns

NT

((
(γ/2)2+ω2

Geff

)
+ 2γmγ`

)√∆aTO,

(IV.6)
where the approximation indicates the Gaussian approx-
imation for the GKP state, which is valid whenever the
displacements and noise are much smaller than

√
π/2.

Observe that the GKP-enhanced detection cannot in-
crease the peak SNR. This is easily seen in the infinite
squeezing limit. In this limit, the first term in the de-
nominator vanishes, and the factors of two in the nu-
merator and denominator of the remaining terms cancel,
leading to the same peak SNR as the critically-coupled,
quantum-limited scenario.

We now consider two limiting cases of the GKP-
enhanced search and analyze its performance relative to
a squeezing-enhanced search, when the squeezing G is
taken as equal for each search method. In the first case,
we relax the noise assumption about the ancillary mea-
surement and assume that it is negligible. In this limit, it
is shown that a GKP-enhanced search has a scan-rate (al-
most) double that of a squeezing-enhanced search when
the squeezing levels of each are comparable. In the sec-
ond case, we include the effects of ancillary measurement
noise and show a practical no-go in terms GKP-enhanced
performance. This results places strict constraints on any
practical performance-enhancements to be gained from
GKP states when searching for a random signal, at least
within the framework of the cavity model presented here.

A. Case 1: Negligible measurement-noise

Assuming a negligible amount of ancillary
measurement-noise, we show that the GKP-enhanced
scan performs about twice that of a squeezing-enhanced
scan, in principle, when the squeezing levels for each
method are comparable. If the GKP ancillary noise
is negligible, then Ganc � G and therefore Geff = G.
Substituting this value into the SNR of eq. (IV.6), we
find the scan-rate of the GKP-enhanced search relative
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FIG. 8. Comparison of scan-rate for squeezing-enhanced
search [eq. (II.24)] and GKP-enhanced search [eq.(IV.7)] as a
function of the ratio γm/γ` for several representative values of
the squeezing in dB, sdB = 10 log10(G). There exists optimal
values for γm depending on the squeezing level (γm/γ` ≈ 2G
for squeezing-enhanced and γm/γ` ≈ 4G for GKP-enhanced,
respectively). We consider equal squeezing for each search
method at sdB = 10, 13 dB (corresponding to G = 10, 20).
The curves for the GKP-enhanced search are for negligible
ancillary-measurement noise and correspond to the Gaussian
approximation for the GKP state.

to the optimal quantum-limited search,

RGKP

R?QL

=
27
√
G
(
γm
γ`

)2

8

((
γm
γ`

+1
)2

4G + 2γmγ`

)3/2
. (IV.7)

We plot this ratio in Fig. 8 and compare with the
squeezing-enhanced search. The optimal coupling value
for the GKP case is γm/γ` ≈ 4G. At this optimal set-
ting and in the large squeezing limit, the above ratio
reduces to R?GKP/R?QL ≈ 1.4G and thus R?GKP/R?sq ≈
2GGKP/Gsq, which comes from the analysis just below
eq. (II.24). Here we have explicitly notated the squeezing
levels in the GKP-enhanced scan and squeezing-enhanced
scan by GGKP and Gsq, respectively. Therefore, when the
squeezing levels for each scan method are comparable—
i.e., GGKP ≈ Gsq— the GKP-enhanced scan asymptoti-
cally outperforms the squeezing-enhanced scan by about
a factor of 2.

In Fig. 9, we show a more detailed comparison between
the two search methods by considering the ratio of the
scan-rates evaluated at their respective optimal-coupling
values, R?GKP/R?sq. The dashed-line is the theoretical
prediction for GKP-enhanced scan-rate from the Gaus-
sian analysis just presented, while the solid error-revised
curve takes into consideration the mod

√
2π-structure of

the GKP grid (and thus deviations from Gaussianity).
See Appendix E for further details of the latter. Observe
that the asymptotic enhancement-value of 2 is reached
in the large-squeezing limit. Two further observations
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FIG. 9. GKP-enhanced scan-rate enhancement relative
to squeezing-enhanced scan, for negligible GKP-ancillary
measurement-noise. Vertical axis is the ratio between the
GKP-enhanced scan-rate, R?GKP, and squeezing-enhanced
scan-rate, R?sq, evaluated at their respective optimal-coupling
values, γm/γ` ≈ 4G and γm/γ` ≈ 2G, respectively, assuming
equal squeezing level G for each.

are noteworthy: (1) When the squeezing is greater than
10dB, the discrepancy between the Gaussian approxima-
tion and the actual estimate is quite small (. 10%);
(2) There is a “break-even” point at ≈8dB of squeez-
ing when the GKP-enhanced scan begins to outperform
the squeezing-enhanced scan.

Before moving to the next section, we point out that
we are comparing the two schemes with the same level of
squeezing, while the GKP state has more energy than the
squeezed vacuum state. We have chosen such a compar-
ison as the level of squeezing represents the capability of
state-engineering and an energy constraint is irrelevant
in our sensing scenario.

B. Case 2: Non-negligible measurement-noise

In the case where the GKP-ancilla has the same noise
as the GKP-state injected into the cavity, Ganc = G,
which is perhaps the most practical case, we find that
there is a practical no-go when it comes to performance
enhancement of a GKP-enhanced search versus a single-
mode squeezing-enhanced search. The reason is that,
in GKP-enhanced detection, although one can measure
both quadrature variables of the signal and thus gain a
factor of 2, the noise also gets increased by (more than)
a factor of 2, due to the noise in the ancilla and noise
from the amplifier that is required to convert the cavity-
transmission loss to additive Gaussian noise. In partic-
ular, from the previous analysis, the noise in the P (Q)
quadrature of the signal (ancilla) just after the SUM-

gate is 1/Geff +2(1−|χmm|2) where, without loss of gen-
erality, we have assumed vacuum-dominated noise and
thus set NT = 1. Assuming an ancilla GKP-state which
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is identical to the GKP-state that is injected into the cav-
ity, we have Geff = G/2, and thus the quadrature noise

is 2
(

1/G+ 1− |χmm|2
)

. Observe that the noise in the

single-mode squeezing case is |χmm|2/G + 1 − |χmm|2.

Since 0 ≤ |χmm|2 ≤ 1, there is (more than) twice as much
quadrature noise in the GKP-enhanced detection than
the squeezing assisted detection. In the GKP-enhanced
detection, the factor of two from the noise cancels out the
factor of two in the signal which was acquired from mea-
suring both quadrature variables. One can also see this
by comparing eqs. (D.3) and (IV.6) when Geff = G/2.
Therefore, the GKP-enhanced scan does no better (if not
worse) than the single-mode squeezing-enhanced scan in
this practical limit.

V. CONCLUSIONS AND DISCUSSIONS

In this work, we propose a compact, entangled sensor-
network to accelerate the search for ultra-light, bosonic
dark-matter particles. By coherently combining the sig-
nals from each sensor in the network, the sensor-network
enjoys a ∼M2 scaling of the scan-rate versus the number
of sensors M , compared to ∼ M scaling for an indepen-
dent set of sensors (imposed by the law of large num-
bers). By utilizing entanglement between the sensors—
generated by splitting and distributing a single squeezed-
vacuum, the sensors further enjoy a boosted scan-rate
from squeezing (scaling as ∼M2G in the high-squeezing
limit, where G is the gain of the squeezed-vacuum). We
would like to point out that one can also realize the same
performance by having individual squeezing at each cav-
ity, however, at the cost of requiring M squeezers for the
M sensors. On the other hand, our proposed distributed
sensing scheme achieves the same performance only uti-
lizing a single squeezer, at the cost of requiring tunable,

passive couplings between the cavities. Furthermore,
our results may be immediately pertinent to multiple-
cell haloscopes searching for DM in higher mass regions
[55, 56]. Squeezing can be properly distributed to the
multiple-cells in the cavity, and the output amplitudes
can be coherently combined to surpass the quantum-
limited search in such setups, as discussed in our paper.

We have focused on a sensor network distributed in
a small volume, as we are mostly concerned with the
initial search for dark matter particles. In the future,
distributing the sensors at distance will enable extrac-
tion of more information about dark matter, as discussed
in refs. [57, 58]. Furthermore, assuming a functional
(continuous-variable) quantum network [59, 60] with
microwave-optical quantum transduction [61, 62], one
can consider utilizing long-baseline interferometry [63]
on the microwave signals to boost the detection of finer
characteristics of dark matter, after the existence of dark
matter particles has been confirmed. We defer these fas-
cinating analyses to future work.
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Appendix A: Quick tutorial on Gaussian states and
transformations

In this paper, the relevant interactions between, say,
n modes of an electromagnetic field (axion-induced or
otherwise) are quadratic in the annihilation and creation

operators, âj and â†j , where j ∈ {1, 2, . . . , n}. Further-
more, the quantum states involved are mostly Gaussian
(i.e., states generated by quadratic Hamiltonians); and
even for non-Gaussian states such as the GKP state,
the Gaussian approximation provides valuable insights.
Such characteristics beg the use of the Gaussian formal-
ism [48, 64], which is an efficient formalism that reduces
the dynamics of an n-mode quantum state to matrix mul-
tiplication between a set of 2n × 2n matrices (encoding
the dynamics) acting on the 2n × 1 mean vector and
2n× 2n covariance matrix (to be described below) of the
quantum state. We briefly review some relevant features
of the Gaussian formalism below. The interested reader
may consult refs. [48, 64] for more details.

Given the annihilation and creation operators, âj and

â†j , define the quadrature operators

Q̂j ≡
1√
2

(
âj + â†j

)
and P̂j ≡

1√
2

(
â†j − âj

)
, (A.1)

such that [Q̂j , P̂k] = iδjk ∀ j, k, where we have let ~ = 1.
Now define the 2n× 1 vector of quadrature operators,

R̂ ≡ (Q̂1, P̂1, Q̂2, P̂2, . . . , Q̂n, P̂n)>, (A.2)

where the transpose is with respect to the vector space,
not the operator space. The commutation relations can
therefore be written as,[
R̂j , R̂k

]
= iΩjk where Ω = In ⊗

(
0 1
−1 0

)
, (A.3)

where In is the n × n identity matrix. The matrix Ω is
known as the symplectic form and encodes the canonical
commutation relations between the quadrature operators
of all n modes.

We now define the mean vector, µ (the vector of first
moments), and covariance matrix, σ (the matrix of sec-
ond moments), of an n-mode quantum state ρ̂ as,

µj ≡ Tr
(
R̂j ρ̂

)
(A.4)

and σjk ≡ Tr
({
R̂j − µj , R̂k − µk

}
ρ̂
)
, (A.5)

where {·, ·} denotes the symmetric anti-commutator. If ρ̂
is a Gaussian state, then the mean vector and the covari-
ance matrix completely determine all properties of the
state. For example, a single-mode thermal state of mean
quanta n̄ has zero first moments and covariance matrix
(1 + 2n̄)I2.

Any unitary operation Û acting on the n-mode bosonic
Hilbert space and generated from a Hamiltonian which
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is quadratic in the quadrature operators corresponds to
2n × 2n symplectic matrix, S. The symplectic matrix
acts linearly on the vector of quadrature operators such
that: if R̂(in) represents the quadrature operators of the
input modes, then the quadrature operators of the output
modes, R̂(out), are found by matrix multiplication, i.e.,
R̂(out) = SR̂(in). One calls the matrix S symplectic since
it preserves the symplectic form, SΩS> = Ω. Taking the
input/output transformation together with the definition
of the first and second moments [eq. (A.5)], one finds the
output moments in terms of the input moments,

µ(out) = Sµ(in) and µ(out) = Sσ(in)S>. (A.6)

Eq. (A.6) holds for arbitrary input states, though such is
sufficient to completely describe Gaussian states.

One can extend the discussion to include non-unitary
dynamics in the Gaussian context, when the system of
interest interacts (via quadratic interactions) with an in-
accessible (Gaussian) environment. This leads to the
general notion of a Gaussian completely-positive, trace-
preserving (CPTP) map— better known as a (bosonic)
Gaussian quantum channel. It can be shown that one
can completely describe a Gaussian quantum channel, G,
by two 2n× 2n real matrices, X and Y (the scaling ma-
trix and noise matrix, respectively) and a displacement
vector ν, such that

µ
G→Xµ+ ν and σ

G→XσX> + Y , (A.7)

where Y + iΩ ≥ iXΩX> is the only condition that the
scaling matrix and noise matrix must satisfy in order
for the above transformations to correspond to a proper
Gaussian quantum channel.

Interestingly, we can provide a unitary extension of
the quantum channel G which corresponds to a sym-
plectic matrix S acting jointly on the system A, with
input mean and covariance (µs,σs), and an “environ-
ment” E, with mean and covariance (µE ,σE). To make
correspondence with the scaling matrix and noise matrix
from above, we write the symplectic matrix in block form,
S =

(
A B
C D

)
whereA encodes the internal system dynam-

ics and B encodes the coupling to the environment. It
is then straightforward to show that one can associate
the quantum channel G with the symplectic matrix S,
provided that

X = A, Y = BσEB
>, and ν = BµE . (A.8)

Appendix B: Quantum model of the cavity

Here we provide details regarding our single-mode
quantum-channel description for the input-output dy-
namics of an electromagnetic cavity.

1. Brief background

We consider a damped cavity, defined by the mode
Â with (free) Hamiltonian Ĥc = ~ωcÂ†Â, where ωc is

the cavity resonance-frequency, linearly coupled to a set
of memoryless (Markovian) “bath” modes. We model
the full interaction between the cavity mode and the
input/output modes of the bath with the Heisenberg-
Langevin equations (see, for instance, Appendix E.2 from
the arXiv version of ref. [65]) in the rotating reference
frame of the cavity,

dÂ

dt
= −γ

2
Â+

∑
j∈{m,s,`}

√
γj â

(in)
j , (B.1)

where γ is the damping rate of the cavity which satisfies

γ =
∑
j∈{m,s,`} γj , and â

(in)
j represent the input modes

that transfer energy within the cavity through their re-
spective ports; see Fig. 2 for an illustration. Here,

the Markovian assumption is that [â
(in)
j (t), â

(in) †
k (t′)] =

δjkδ(t− t′). Note that â
(in)
j has units

√
quanta/second.

Though there is no explicit coupling between the ports,
the cavity mode acts as an intermediary, allowing for an
effective energy transfer from, e.g., the signal port, âs,
to the measurement port, âm. After interaction with the
cavity, the ports then exit the cavity as output modes—
carrying the transferred energy either through inaccessi-
ble ports, such as the loss port â` and signal-field port
âs, or through the accessible measurement port âm. Each
output mode satisfies the time-dependent relation [65]

â
(out)
j (t) = â

(in)
j (t) +

√
γÂ(t). (B.2)

After passing to the spectral domain by a Fourier trans-
formation, one can solve eq. (B.1) for the spectral ampli-

tude of the cavity-mode Â and substitute that expression
into eq. (B.2). The results are equations (II.7) and (II.8)
of the main text.

2. Channel reduction

We now reduce the input-output relations of eq. (II.7)
for the 3 modes (âm, âs, â`) to a single-mode input-output
channel for the lone measurement port âm. First, define
the vector of annihilation and creation operators for the
input and output modes,

â ≡ (âm, â
†
m, âs, â

†
s, â`, â

†
`)
>. (B.3)

Now let χij = |χij |eiθij , where {θij} are the angles of the
complex susceptibility-matrix elements, which are only
non-zero off-resonance; see e.g. eqs. (B.13) and (B.14).
An explicit expression for the susceptibility coefficient is
in eq. (II.8). From the definition (B.3) and the input-
output transformation (II.7), it is easy to show that,

â(out) = χ̃â(in), (B.4)

where

χ̃ =

|χmm|eiθmmσz |χms|eiθmsσz |χm`|eiθm`σz

|χms|eiθmsσz |χss|eiθssσz |χs`|eiθs`σz

|χm`|eiθm`σz |χs`|eiθs`σz |χ``|eiθ``σz

 ,

(B.5)
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with σz being the 2 × 2 Pauli-z matrix. We can go to
the quadrature basis R̂ = (Q̂m, P̂m, Q̂s, P̂s, Q̂`, P̂`)

> via

a unitary transformation R̂ = Ū â, where

Ū = diag(ū, ū, ū) and ū =
1√
2

(
1 1
−i i

)
. (B.6)

From here, the input-output relations in the quadrature
basis follows,

R̂(out) =
(
Ū χ̃Ū †

)
R̂(in), (B.7)

with the symplectic orthogonal transformation Ū χ̃Ū †

given explicitly by,

Ū χ̃Ū † =

|χmm|O(θmm) |χms|O(θms) |χm`|O(θm`)
|χms|O(θms) |χss|O(θss) |χs`|O(θm`)
|χm`|O(θm`) |χs`|O(θs`) |χ``|O(θ``),


(B.8)

where O(θij) is a 2 × 2 symplectic orthogonal matrix
corresponding to a rotation by an angle θij . To reduce
the dynamics to a single-mode channel description, we
first need to provide the scaling matrix, X, and noise
matrix, Y , which one can derive by using eq. (A.8) and
making the equivalences A = |χmm|O(θmm) and B =(
|χms|O(θms) |χm`|O(θm`)

)
(note that B is a 2 × 4

rectangular matrix).
To make further progress, we make some simplifying

(though physically reasonable) assumptions about the
“environmental” modes âs and â`. First, we assume
that the axion port and loss port (âs and â`) are inde-
pendent and that their input covariance matrices consist
only of thermal fluctuations at temperature T , such that
σE = NT I4δ(0), where NT = (1 + 2n̄T ) B.1 and n̄T =
1/(e(ωc+ω)/T−1) in natural units (~ = kB = 1), where ωc
is the cavity resonance frequency. Second, we assume the
signal field, referred to as mode âs, to be a classical co-
herent field with amplitude |µs| ∼

√
quanta/second/Hz

and phase φs, such that the input mean-vector for the
signal port is µs = |µs|(cosφs, sinφs)

>. The mean vec-
tor for the loss port is taken to be the zero vector. From
these assumptions, we have that

µE = µs ⊕ 0` and σE = NT I4. (B.9)

Using eq. (A.8), we calculate an expression for the
noise matrix,

Y ∝ BB>

=
(
|χms|O(θms) |χm`|O(θm`)

)(|χms|O>(θms)
|χm`|O>(θm`)

)
=
∑
k 6=m

|χmk|2I2

=
(

1− |χmm|2
)
I2.

B.1 This follows from the fact that
〈
â

(in) †
j (ω)â

(in)
j (ω′)

〉
∝ δ(ω−ω′).

We shall drop the Dirac delta-distribution for brevity.

For the first equality, we used the correspondence B =(
|χms|O(θms) |χm`|O(θm`)

)
; for the second equal-

ity, we used the orthogonality of the O matrices; and
for the third equality, we used the unitarity relation∑
j χ
∗
ijχjk = δik. After performing similar calculations

for the scaling matrix X and displacement ν, we thus
find,

X = |χmm|O(θmm), (B.10)

Y = NT

(
1− |χmm|2

)
I2, (B.11)

and ν = |χms|O(θms)µs, (B.12)

where the angles, θms and θmm, are defined through the
susceptibility coefficients [see eq. (II.8)] via

sin θms =
ω√

γ2/4 + ω2
(B.13)

and

sin θmm =
ωγm√

((γm − γ`)2/4 + ω2) (γ2/4 + ω2)
. (B.14)

The expressions (B.10)-(B.12) correspond to a
thermal-loss channel LNTχmm— with the (cavity) trans-

mission parameter |χmm|2 and noise parameter NT =
1 + 2n̄T— followed by a (unitary) phase-shift channel
Φθmm and a (unitary) displacement channel Dν . See
Fig. 2 for an illustration. The full quantum-channel de-
scribing the input-output relations for the measurement
port therefore decomposes as,B.2

G = Dν ◦ Φθmm ◦ LNTχmm , (B.15)

as eluded to in the main text. Using the general moment
transformations (A.7) together with the channel decom-
position of eqs. (B.10)-(B.12), the input-output relations
for the first and second moments of the measurement
port are found to be

µ(out)
m = |χmm|O(θmm)µ(in)

m + |χms|O(θms)µs, (B.16)

and

σ(out)
m = |χmm|2O(θmm)σ(in)

m O(θmm)>

+NT

(
1− |χmm|2

)
I2, (B.17)

which agree with eqs. (II.12) and (II.13) of the main text.
We point out that we can cancel out the angle, θmm, by
applying a phase-rotation Φ−θmm on the measurement-
port input fields prior to the cavity interaction. [In the
quantum setting, by utilizing two-mode squeezing, this
angle can automatically be taken care of without any
extra phase rotation, as we explain in Appendix D 1.]

B.2 Note that the order of the loss channel L and the phase-shift Φ
can be swapped, since these transformations commute.
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FIG. 10. (Left) Plot of cavity the transmission |χmm|2 (blue curves) and the axion-photon transmission |χms|2 (red curves);
|χms|2 governs the signal behavior. (Right) Plot of mixing angles, θmm (blue curves) and θms (red curves). Solid lines
correspond to critical coupling γm = γ`. Dashed lines correspond to the over-coupling, γm = 2γ`. We have arbitrarily chosen
γs = 10−6γ` to obtain curves for |χms|2.

For reference, a plot of the cavity transmission,
|χmm|2, and the signal-cavity coupling |χms|2 is shown
in Fig. 10, as well as a plot of the sine of the mixing-
angles, sin θmm and sin θms. Peaks in sin θmm appear at
ω? = ±

√
(γ2
m − γ2

` )/2, at which point Im(χmm) → ±1.
However, as we approach critical-coupling and cavity-
resonance, γm → γ` and ω → 0, there is sharp transition
in the phase due to the two competing limits. Observe
that as ω → ±∞, θmm → 0 and θms → ±π/2.

Appendix C: Homodyne vs. heterodyne detection

We calculate the SNR inferred from heterodyne detec-
tion and show that the result is equivalent to a homodyne
detection scheme when the signal is random. However,
we show that this equivalence breaks whenever a phase-
insensitive amplifier is introduced just prior to detection.

Heterodyne detection consists of (non-linearly) mixing
the signal mode with a strong local-oscillator of a differ-
ent frequency and measuring the corresponding output
intensities. In this optical domain, this process is equiva-
lent to first splitting the signal beam at a balanced beam-
splitter into two (assuming vacuum-noise or low thermal-
noise at the other input port of the beam-splitter), ap-
plying a relative phase-shift of π/2 to one output of the
beam-splitter, and subsequently performing a homodyne
detection on each signal— thus allowing one to measure
both quadrature variables, Q and P . Since one can sim-
ply sum the SNRs inferred from each detector (i.e., the
SNRs of the independent homodyne measurements add
in quadrature), it would appear that, in principle, a het-
erodyne detection scheme can have some benefit over the
homodyne scheme. This intuition is not generically true
however, since, in the example just described, the sig-
nal power arriving at each detector is half of the initial
signal, due to the balanced beam-splitters.

Quantitatively, assuming that each beam-splitter in
the heterodyne detection scheme adds NT noise, we can
find an expression for the SNR of the power for a hetero-
dyne detection scheme directly from eqs. (II.12),

SNR(het) ≡ 1

2

(
〈Q̂m〉2

Var(Q̂m)
+
〈P̂m〉2

Var(P̂m)

)

=
1

2

|χms|2µ2
s

NT

=
1

2

γmγsµ
2
s

NT ((γ/2)2 + ω2)
.

(C.1)

Observe that the difference between homodyne and het-
erodyne detection schemes is the angle dependence in the
cos2 φs term for the former and the factor of 1/2 for the
latter. Though, for a completely random signal, these
detection schemes perform equally well after uniformly
averaging over the phase φs.

1. Phase-insensitive amplification noise

For a weak signal (as is the case for an axion signal), it
is common to add a (high-gain) linear amplifier just prior
to measurement in order to make the signal classically de-
tectable [66]. Here, we show that the addition of a phase-
insensitive amplifier to the detection-chain leads hetero-
dyne detection to be the preferred detection method ver-
sus homodyne detection. When performing homodyne
measurements, it is thus pertinent to relegate most am-
plification to phase-sensitive amplification, which does
not contribute additional noise to the measured quadra-
ture.

A (single-mode) phase-insensitive amplifier channel,
Ag, with gain g ≥ 1, is a Gaussian quantum channel
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which, given the first and second moments µ and σ,

Ag : µ −→ √gµ (C.2)

σ −→ gσ +NA(g − 1)I2, (C.3)

where NA ≥ 1 parameterizes the number of noisy quanta
introduced into the signal (NA = 1 for a vacuum- or
“quantum-limited” amplifier). In what follows, we shall
simply assume that the amplifier adds the same amount
of noisy quanta as all other non-unitary processes that
we have considered so far and thus set NA = NT .

Assuming an initially quiet cavity mode (i.e., no driv-
ing or squeezing), the input moments to the amplifier
channel, which originate from the output of the cavity,
are µ = |χms|O(θms)µs and σ = NT I2. The output mo-
ments of the amplifier are then,

µ(out) =
√
g|χms|O(θms)µs, (C.4)

σ(out) = NT (2g − 1)I2. (C.5)

The SNR for homodyne detection, after averaging over
the coherence time of the axion field, is then,

SNR
(hom)

g =

(
g

2g − 1

)
|χms|2ns
NT

, (C.6)

where ns = E[µ2
s/2], we have maintained the form

of χms, and omitted the sampling factor
√

∆aTO for
brevity.

For heterodyne detection, it is straightforward to
show that phase-insensitive amplification does not al-

ter the SNR; in other words, SNR
(het)

g = SNR
(het)

g=1 =

|χms|2ns/NT . Therefore,

1

2
≤

SNR
(hom)

g

SNR
(het)

g

=
g

2g − 1
≤ 1, (C.7)

where the lower-bound is found in the high-gain limit and
the upper-bound is achieved at g = 1. Hence, heterodyne
detection is the preferred detection method when high-
gain phase-insensitive amplification is used. Though, this
is not the case when squeezing is present in the homodyne
setup.

Appendix D: SNR for squeezing-enhanced search

We explicitly calculate the SNR for the squeezing-
enhanced protocol introduced in ref. [33] and imple-
mented in ref. [35]. In what follows, to make optimal
use of squeezing, we work in the natural reference frame
of the measurement-port fields and thus set θmm = 0. An
illustration of the setup, in the rotated frame, is shown
in Fig. 3.

The protocol starts by initially squeezing the input
noise along one quadrature, say the Q-quadrature, by

an amount 1/G where G ≥ 1. Assuming initial ther-
mal equilibrium at the measurement port, this corre-

sponds to taking the input moments as µ
(in)
m = 0 and

σ
(in)
m = NTdiag(1/G,G). Substituting these expressions

into eqs. (II.12) and (II.13), one easily finds the output
moments of the cavity (just before the anti-squeezer).
We do not provide the explicit expression for this penul-
timate step, however after some thought, one deduces
that the initial squeezer reduces the measurement-port
input noise (relative to the signal) by a factor G along
the Q-quadrature. On the other hand, non-unity reflec-
tion from the cavity introduces (vacuum/thermal) noise
to the measurement-port output, which we cannot reduce
further with external operations (other than cooling the
system and/or reducing the loss).

Immediately proceeding the cavity interaction, we ap-
ply an anti-squeezer to the output of the cavity, which
amplifies the Q-quadrature by a factor G, leading to the
final output moments,

µ(f)
m = |χms|diag(G, 1/G)O(θms)µs (D.1)

σ(f)
m = NT |χmm|2I2 +NT

(
1− |χmm|2

)
diag(G, 1/G).

(D.2)

We see that the signal, as well as the cavity-noise term

(i.e., the second term in σ
(f)
m ), has been amplified along

the Q-quadrature by a factor G relative to the input noise

(the first term in σ
(f)
m ). These observations suggest some

benefit to the squeezing protocol, as long as we restrict
ourselves to measurements along the squeezed quadra-
ture, Q.

We now calculate the SNR after a large observation
time as a function of the squeezing G. After some alge-
bra, we find the expression,

SNRsq =
γmγsns

NT

(
(γ/2)2+ω2−γmγ`)

G + γmγ`

)√∆aTO,

(D.3)
which is consistent with the results of ref. [33]. Note that
this reduces to the quantum-limited result of eq. (II.18)
at G = 1 (no squeezing). Using this equation and the
relationship between the SNR and the scan-rate (see
eq. (II.23)), one finds the squeezing-enhanced scan-rate
quoted in the main text, eq. (II.24).

As pointed out in refs. [32, 33], independently of
squeezing, the SNR above has a maximum ∝ γs/γ`
at cavity resonance ω = 0 and at critical coupling
γm = γ`. Unfortunately, no amount of squeezing can
push beyond this maximum, no matter the choice of the
measurement-port coupling parameter γm. Physically,
this is because the measurement-port susceptibility coef-
ficient, χmm, which dictates the transfer of quanta from
the measurement-port input to the measurement-port
output, vanishes at these parameter settings. See Fig. 10
for an illustration of this point. Therefore, when oper-
ating on-resonance and at critical coupling, no quanta
incident on the measurement-port input— whether it be
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FIG. 11. Squeezing-enhanced search with two-mode squeez-
ing generated by a JPA [34, 54]. To highlight the equiva-
lence to the single-mode squeezing setup (see Fig. 3), we have
decomposed the JPA squeezer into sub-elements consisting
of single-mode squeezers on the individual modes a(ω) and
a(−ω). Observe that we squeeze along Q quadrature of the
a(ω) mode and along the P quadrature of the a(−ω) mode
initially.

from squeezed-vacuum or initial thermal fluctuations—
transfers to the measurement-port output. This estab-
lishes an intrinsic sensitivity limit on the peak SNR,
which one can only increase by either decreasing the
loss in the cavity or decreasing the operating temper-
ature or both. On the other hand, squeezing can sig-
nificantly increase the bandwidth over which the SNR
is close to its peak value. To quickly see this, we can
take the infinite squeezing limit of eq. (D.3) and observe
that limG→∞ SNRsq ∝ γs/γ`, which is independent of
the cavity detuning, ω. Increasing the bandwidth while
maintaining peak-sensitivity is why squeezing can help
DM-axion searches.

1. Practical implementation to resolve
cavity-induced phase shift

Instead of single-mode squeezing, we can use two-mode
squeezing generated by a Josephson Parametric Ampli-
fier (JPA) [54]. The JPA is pumped with a strong field
centered on twice the cavity resonance (ωpump = 2ωc)
and generates photon-pairs in a two-mode squeezed vac-
uum state that are split in frequency across the cavity
resonance— with one photon at frequency ωc+ω and its
partner at ωc − ω (ω is the detuning). The two-mode
squeezed state generated by this process is then injected
into the cavity. As we shall show, a benefit of using
two-mode squeezed vacuum, as opposed to single-mode
squeezed vacuum, is that it naturally resolves the cavity-
induced phase θmm. Squeezing via a JPA was used in
the recent axion-search demonstrations of [33, 34].

A schematic of the setup is shown in Fig. 11. For sim-
plicity, we have not included an anti-squeezer (a “JPA
amp”) after the cavity interaction, as including such in
this setting would not change the forthcoming results for
the SNR. Our goal is to show that the variance of the out-
put (specifically, Var(Q) of the upper mode and Var(P )
of the lower mode) is independent of θmm— without in-
troducing an external phase-shift— but otherwise equiv-
alent to the single-mode squeezing case described previ-
ously, up to some small subtleties. To accomplish this

goal, we track the covariance matrix through the circuit
depicted in Fig. 11.

Assuming initial thermal equilibrium of both modes at
temperature T , the covariance matrix just after the JPA
squeezer but prior to the cavity interaction is,

σ1 ≡
NT
2

(
I2 −I2
I2 I2

)(
e−2rσz 0

0 e2rσz

)(
I2 I2
−I2 I2

)
(D.4)

= NT

(
cosh(2r)I sinh(2r)σz

sinh(2r)σz cosh(2r)I

)
, (D.5)

where σz is the Pauli-z matrix. The above covariance
matrix is that of a (noisy) two-mode squeezed vacuum.
To find the covariance matrix after the cavity interac-
tion, we make two observations: First, we note that
|χmm(−ω)| = |χmm(ω)|— i.e. the cavity transmission
is the same for each mode; see Fig. 10 for an illustration.
Second, θmm(−ω) = −θmm(ω)— i.e. the cavity-induced
rotation is an odd function of frequency; see eq. (B.14).
Now define the phase-rotation matrix,

V ≡
(
O[θmm(ω)] 0

0 O[θmm(−ω)]

)
=

(
O[θmm(ω)] 0

0 O>[θmm(ω)]

)
,

(D.6)

where the second line follows since θmm is an odd function
of frequency. From thus, the covariance matrix just after
the cavity interaction is found,

σ2 = |χmm(ω)|2V σ1V
> + (1− |χmm(ω)|2)I4

= |χmm(ω)|2σ1 + (1− |χmm(ω)|2)I4.
(D.7)

The identity V σ1V
> = σ1 can be derived from using the

definitions of σ1 and V above, but this actually follows
from the simple fact that OσzO = σz for any 2 × 2
real, orthogonal matrix O. We have thus shown that the
output covariance matrix of the cavity is independent of
the angle θmm.

Now we evaluate the variances of the quadrature mea-
surements. Applying the second beam-splitter— situ-
ated just after the cavity interaction— undoes the beam-
splitter interaction within the JPA squeezer, thereby
reducing the output covariance matrix (prior to mea-
surements) to a direct sum of independent single-mode
squeezed states,

σ(out) = |χmm(ω)|2
(
e−2rσz ⊕ e2rσz

)
+ (1− |χmm(ω)|2)I4. (D.8)

We see that homodyne measurements along the Q
quadrature of mode â(ω) and along the P quadrature
of mode â(−ω) have equal variances, which are given by

Var
[
Q̂(ω)

]
= Var

[
P̂ (−ω)

]
= |χmm(ω)|2e−2r + 1− |χmm(ω)|2.

(D.9)
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Upon defining the gain, G ≡ e2r, this result is equiva-
lent to the single-mode squeezing case (without the anti-
squeezer at the end).

Now to identify the signal. First, observe that
|χms(−ω)| = |χms(ω)|; see Fig. 10 for an illustration.
Second, observe that θms(−ω) = −θms(ω) (similar to
θmm), which follows from eq. (B.13). From these ob-
servations and upon inspecting Fig. 11, we immediately
write down the output signal,

µ(out) ≡

Final beam-splitter︷ ︸︸ ︷
1√
2

(
I2 I2
−I2 I2

) Axion-induced displacement︷ ︸︸ ︷(
|χms(ω)|O[θms(ω)]µs
|χms(−ω)|O[θms(−ω)]µs

)
=
|χms(ω)|√

2

(
I2 I2
−I2 I2

)(
O[θms(ω)]µs
O>[θms(ω)]µs

)
=
|χms(ω)|√

2

(
O[θms(ω)]µs +O>[θms(ω)]µs
O>[θms(ω)]µs −O[θms(ω)]µs,

)
(D.10)

where µs ≡ µs(cosφs, sinφs)
> is the axion field.

From here, we find the signal amplitudes from the
quadrature measurements,〈

Q̂(ω)
〉

=
√

2|χms| cos (θms(ω))µs cosφs, (D.11)〈
P̂ (−ω)

〉
=
√

2|χms| sin (θms(ω))µs cosφs. (D.12)

Observe that,

〈
Q̂(ω)

〉2

+
〈
P̂ (−ω)

〉2

= 2|χms(ω)|2µ2
s cos2 φs,

(D.13)

=⇒ E
[〈
Q̂(ω)

〉2

+
〈
P̂ (−ω)

〉2
]

= 2|χms(ω)|2ns.

(D.14)

with the last equation being the average signal power.

Using the fact that the SNRs for Q̂(ω) and P̂ (−ω) add
in quadrature for each detection step and integrating over
many axion coherence times, we find the SNR of the PSD

at the detuned frequency ω,

SNRJPA =

E
[〈
Q̂(ω)

〉2
]

Var
(
Q̂(ω)

) +

E
[〈
P̂ (−ω)

〉2
]

Var
(
P̂ (−ω)

)
√∆aTO

=
2γmγsns

NT

(
(γ/2)2+ω2−γmγ`)

G + γmγ`

)√∆aTO,

(D.15)

where eqs. (II.14) and (II.15) have been used to expand
χmm and χms explicitly. This result is twice the SNR for
the single-mode squeezing assisted search; see eq. (D.3).
The factor of two comes from the fact that we are us-
ing two frequency modes. The performance of the JPA
approach (per mode) is thus equivalent to that of the
single-mode squeezing case. The real difference here is
that we did not have to explicitly take care of the phase
θmm.

a. Effect of resonance-frequency fluctuations

We qualitatively investigate how a fluctuating cavity-
resonance frequency affects the output noise power of the
cavity when squeezing is present. Such fluctuations will
generally introduce some anti-squeezing into the signal,
due to the fluctuations induced in the angle θmm. We can
model this by assuming that the JPA pump-frequency is
fluctuating.

That is, consider the JPA pump to be at frequency
Ωp. The JPA then generates photon-pairs with frequen-
cies (Ωp/2− ωc)± ω in the cavity-rotating frame, where
ω is the detuning from cavity resonance. Let us assume
that Ωp is a Gaussian random variable with mean 2ωc
and standard deviation σc. Define ε ≡ Ωp/2 − ωc, such
that 〈ε〉 = 0 and

〈
ε2
〉

= σ2
c where ε ∼ N (0, σc) is Gaus-

sian distributed. The input modes to the cavity are then
a(ε± ω). The relevant cavity parameters for each mode
are |χmm(ε± ω)| and θmm(ε±ω). We calculate the vari-
ance in the Q quadrature of the â(ε + ω) output-mode
(assuming this quadrature was squeezed initially), find-
ing

Var
[
Q̂(ε+ ω)

]
= NT |χmm(ε+ ω)|2

(
e−2r

(
1 + cos [θmm(ε+ ω) + θmm(ε− ω)]

2

)

+ e2r

(
1− cos[θmm(ε+ ω) + θmm(ε− ω)]

2

))
+NT

(
1− |χmm(ε+ ω)|2

)
. (D.16)

A similar relation holds for Var[P̂ (ε− ω)].

We thus see that anti-squeezing appears in the noise

power (the term proportional to e2r) when frequency-
fluctuations are present, which can be detrimental to per-
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formance if the fluctuations are too large. We aim to es-
tablish a qualitative condition on the size of these fluctu-
ations. Let us focus our attention on this anti-squeezing
term in the above expression.

Firstly, note that θmm(ε − ω) = −θmm(ω − ε) due
to the oddness of θmm. Using this fact, we can expand
the argument of the cosine assuming the fluctuations are
small, leading to the qualitative relation,

θmm(ε+ ω) + θmm(ε− ω) = θmm(ω + ε)− θmm(ω − ε)
∼ (∂ωθmm)ε.

(D.17)

Now the typical scale associated with changes in cavity
quantities is the intrinsic linewidth, γ`; hence, ∂ωθmm ∼
1/γ`. If we substitute this qualitative expression into
anti-squeezing term of eq. (D.16) and expand the cosine
to first non-trivial order in its argument, we find that
the anti-squeezed noise scales as e2rε2/γ2

` ∼ e2rσ2
c/γ

2
` ,

where σc is the typical size of the frequency fluctua-
tions. For the anti-squeezed noise to contribute much
less than thermal/vacuum fluctuations, we require that

e2rσ2
c/γ

2
` � 1 =⇒ σc � e−rγ`. Recall that er =

√
G,

where G is the gain of the squeezer. Once this constraint
is no longer satisfied, the anti-squeezed noise roughly
becomes the size of a thermal/vacuum fluctuation (the
squeezing part can nonetheless tend to zero for large r),
and the quadrature variance reduces approximately to
the vacuum case without squeezing, at which point any
performance enhancement gained by squeezing is com-
pletely lost.

A more stringent condition is to require the anti-
squeezed noise to be much smaller than the squeezed
noise, leading to the stronger constraint σc � e−2rγ`. In
this regime, anti-squeezing is completely negligible com-
pared to all other noise terms in the quadrature variance.

Appendix E: Details on the GKP-enhanced search

We provide some background and technical details re-
garding GKP states, the SUM-gate detection method,
and error-analyses for deviations from the Gaussian anal-
ysis described in the main text.

1. Description of the GKP state

The GKP state was originally developed for quantum
error correction as a way to protect quantum informa-
tion (hosted in qubits [45] or other bosonic systems [67])
from noise. Heuristically, the ideal, canonical GKP-state
|GKP〉 is an infinite lattice in the phase-space of a bosonic
mode, which is translation invariant with respect to shifts
in the Q or P quadrature by an amount

√
2π. Due to the

translation-invariant property of the GKP state in phase-
space, it is possible to simultaneously and precisely mea-
sure both quadrature variables, Q and P , modulo

√
2π.

This is essentially due to the fact that each lattice point
on the GKP-grid is infinitely squeezed along both the Q
and P directions, which is most evident when we write
out the canonical GKP state in the Q and P quadrature
bases [45, 46, 67],

|GKP〉 ∝
∑
n∈Z

∣∣∣n√2π
〉
q

=
∑
n∈Z

∣∣∣n√2π
〉
p
, (E.1)

where |·〉q (|·〉p) represents a Q-quadrature (P -

quadrature) basis state. This state however is unnor-
malizable, as infinite squeezing in each quadrature leads
to an infinite number of quanta in the perfect GKP-state.
We shall instead concern ourselves with finite GKP states
constrained to a finite-region in phase space, defined as

|GKP∆〉 ∝ e−∆2n̂ |GKP〉 , (E.2)

up to normalization, and 1/∆ is the effective radius in
phase-space (emanating from the origin) which supports
the GKP grid. The above state is pure, however it is eas-
ier to deal with its noisy version, which is an incoherent
mixture of GKP states [68],

NσGKP
(GKP) ∝ˆ

R2

dµ exp
(
−µ>σ−1

GKPµ
)
D̂µ |GKP〉〈GKP| D̂†µ, (E.3)

where σGKP = 2
(

1+e−∆2

1−e−∆2

)
I2 ≡ I2/G. One can multi-

ply σGKP by a factor of NT = 1 + 2n̄T to include initial
thermal fluctuations in GKP state-preparation. Observe
that the above description is a perfect GKP state going
through an additive noise channel with equal noise added
to each quadrature. We write the state in this seemingly
complicated way as it is easier to generalize to arbitrary
Gaussian processes acting on the GKP state that we con-
sider later.

2. SUM-gate

In the GKP-enhanced detection strategy, we couple the
signal-mode, described by quadrature operators Q̂ and P̂ ,
to an ancilla-mode in a GKP state, described by quadra-
ture operators Q̂anc and P̂anc, via the unitary operation,

ŜUM = exp(−iQ̂P̂anc), which acts on the quadrature
operators as,

ŜUM : Q̂→ Q̂, P̂ → P̂ − P̂anc,

Q̂anc → Q̂anc + Q̂, P̂anc → P̂anc.

(E.4)

It is easy to derive a symplectic-matrix representation
of the SUM-gate and its inverse, which we immediately
write in 2× 2 blocks as

SUM =

(
I2 −ΠP

ΠQ I2

)
(E.5)

and SUM−1 =

(
I2 ΠP

−ΠQ I2

)
, (E.6)
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where ΠQ = diag(1, 0) and ΠP = diag(0, 1) represent
projections along the Q quadrature and P quadrature of
the respective modes.

3. Joint distribution

We formally derive the joint PDF for two imperfect
GKP states which are coupled via a SUM-gate. This is
precisely the situation for GKP-enhanced axion-search,
where the output of the cavity (in a noisy GKP state)
couples to an imperfect GKP ancilla via the SUM-gate
just before homodyne measurements are performed on
each mode. Consider modes 1 and 2 in noisy GKP-states
NYk(GKP) with noise matrices Yk = ykI2, where yk ≥ 0
and k ∈ {1, 2}. Defining Y ≡ ⊕2

k=1Yk, the joint state
can then be written as,

NY (GKP⊗2) ∝ˆ
R4

dµ exp
(
−µ>Y −1µ

)
D̂µ

(
|GKP〉〈GKP|⊗2

)
D̂†µ,

(E.7)

where, for instance,

Y −1 =

( y2

y1+y2
I2 0

0 y1

y1+y2
I2

)
. (E.8)

We now apply a two-mode SUM-gate, formally resulting
in the correlated state

NY (GKP⊗2)→ ŜUM
(
NY (GKP⊗2)

)
ŜUM

†
. (E.9)

Two simplifying observations are in order. Firstly, the
perfect GKP-states are invariant under the SUM-gate,
i.e.,

ŜUM
(
|GKP〉〈GKP|⊗2

)
ŜUM

†
= |GKP〉〈GKP|⊗2

.

(E.10)
Secondly, since the SUM-gate is a symplectic transfor-
mation, the action of SUM on the Weyl operators D̂µ
can be taken care of by a redefinition of the integration
variable,

µ′ ≡ (SUM−1)>µ (E.11)

where SUM−1 (without a hat) is the inverse of the sym-
plectic matrix for the SUM-gate from eq. (E.6). Note
also that dµ = dµ′ since SUM is a symplectic transfor-
mation. Upon defining a new noise matrix,

Y ′ ≡
(
SUM−1

)>
Y
(
SUM−1

)
, (E.12)

it follows that,

ŜUM
(
NY (GKP⊗2)

)
ŜUM

†
= NY ′(GKP⊗2), (E.13)

where the noise-matrix Y ′ is the covariance matrix for
the multi-variate Gaussian PDF of the two-mode state.

In the GKP-enhanced detection scheme, orthogonal
homodyne measurements are performed on the signal and
the ancilla, respectively; in the notation here, this corre-
sponds to a quadrature measurement P1 of mode 1 and
Q2 of mode 2, discarding the other quadratures Q1 and
P2. The reduced PDF of the measurement outcomes, af-
ter discarding Q1 and P2, is uncorrelated in the remain-
ing variables P1 andQ2. Thus, measurements along these
quadrature directions are independent and described by
uni-variate Gaussian PDFs.

4. Error analysis

We consider the error in our ideal Gaussian approxima-
tion for the GKP-state as a general function of additive
Gaussian noises, which leads to the error-revised curve
in Fig. 9. Note that all the practically relevant noise
sources— cavity-added vacuum-noise, thermal noise, im-
perfect GKP resource-states— can be converted to ad-
ditive Gaussian noises; see, e.g., ref. [69] for details of
such a conversion. Further, since our detection strat-
egy consists of independent homodyne measurements on
the signal and ancilla and since the noises added to the
Q and P quadrature variables are equivalent, it is suffi-
cient to restrict ourselves to one quadrature, say the Q
quadrature, in the current analysis. The PDF describing
fluctuations of the GKP grid (of the signal or the ancilla)
due to noise is given by a Gaussian distribution,

py(q) =
1
√
πy

e−
q2

y , (E.14)

where 〈q2〉 = y/2 is the variance (
√
y/2 is the standard

deviation). For instance, cavity-transmission losses cor-

respond to y/2 = (1− |χmm|2). With the modulo struc-
ture of the GKP grid in mind, we provide a strategy to es-
timate an unknown displacement, which has been previ-
ously analyzed in the applications of continuous-variable
quantum error correction [67] and distributed quantum
sensing [47]. The estimator q̃ for a given displacement q
is chosen as,

q̃ = R√2π(q) ≡
∑
n∈Z

(q − n
√

2π)

× I
(
q ∈ [(n− 1/2)

√
2π, (n+ 1/2)

√
2π]
)
, (E.15)

where

I
(
q ∈ [(n− 1/2)

√
π, (n+ 1/2)

√
π]
)

={
1 q ∈ [(n− 1/2)

√
2π, (n+ 1/2)

√
2π]

0 else
, (E.16)

is an indicator function [67]. The value n
√

2π quanti-
fies how many lattice-spacings the displacement q is from
the origin at n = 0. The relative displacement from the
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FIG. 12. Plot of the (square of the) estimated SNR, S̃NR, to
its Gaussian counterpart 2ε2s/y as a function of the squeezing
G when the additive noise y obeys eq. (E.19). An arbitrar-
ily low value of εs = .001 was chosen for the axion-induced
displacement to generate the plot. This choice does not ap-
preciably change the analysis for all εs . .1.

nth lattice-point, q − n
√

2π, then lies within half a lat-
tice spacing

√
π/2 of this point. Assuming an unknown

axion-induced displacement of εs ≡ |χms|µs sinφs along
the Q-quadrature, an estimate for the kth moment is
then,

〈q̃k〉 ≡
∑
n∈Z

ˆ (n+1/2)
√

2π

(n−1/2)
√

2π

dq py(q − εs)(q − n
√

2π)k,

(E.17)
where the axion-induced displacement has been absorbed
into the mean for the PDF. When

√
y, εs �

√
π, 〈q̃〉 ≈ εs

and Var(q̃) ≈ y/2, and the Gaussian approximation for
the GKP state holds good.

From this estimation strategy, we can estimate the

SNR for the power, which we formally define as S̃NR ≡
〈q̃〉2 /Var(q̃). We wish to compare this estimation to
its Gaussian counterpart of 2ε2s/y, within the relevant
scenarios/parameter-regimes discussed in the main text,
in which case 2ε2s/y reduces to eq. (12). To do so, we

make the correspondence y = 1/G+2(1−|χmm|2), which
is the additive noise in the GKP-enhanced search sce-
nario. See Fig. 7 and accompanying analysis. Upon op-
timization of the scan-rate, in general, the squeezing G
and the cavity-transmission |χmm|2 are related, however
from the Gaussian analysis, we find an optimal-coupling
of γm/γ` ≈ 4G, from which the following relation may
be derived,

1− |χmm|2 =
4G(

(4G+1)2

4 + ω2
) ≤ 16G

(4G+ 1)2
, (E.18)

where we have taken the on-resonance (ω = 0) value as
a worst-case approximation. We shall assume this value
from hereon to simplify the analyses. The additive noise

then reduces to a simple function of the squeezing,

y = 1/G+
32G

(4G+ 1)2
. (E.19)

Since the scan-rate scales as the square of the SNR, the

relevant quantity to consider is S̃NR
2
. Figure 12 shows

the deviation of the estimated SNR, S̃NR, relative to
its Gaussian counterpart, 2ε2s/y, as a function of the
squeezing in dB. For squeezing levels above 10dB, there

is less than a 10% discrepancy between S̃NR [evaluated
via eq. (E.17)] and the Gaussian approximation for the
GKP state [i.e. eq. (IV.6)]. We note that, at 10dB of
squeezing, y ≈ .3.

Finally, considering the (optimal) GKP-enhanced
scan-rate, R?GKP, from the Gaussian analysis, eq. (IV.7),
we can estimate the optimal error-revised GKP-enhanced

scan-rate R̃?GKP by the following. Let S̃NRGKP be the
SNR evaluated from the estimation procedure just pre-
sented and SNRGKP be the SNR taken from the Gaussian
analysis [eq. (IV.6)]. Then,

R̃GKP ∝
ˆ

dω S̃NR
2

GKP

=

ˆ
dω SNR

2

GKP

(
S̃NRGKP

SNRGKP

)2

≥

(
S̃NRGKP

SNRGKP

)2

ω=0

ˆ
dω SNR

2

GKP,

where we use the fact that there is a maximal amount of
vacuum noise on resonance, ω = 0, at which point the

ratio S̃NRGKP/SNRGKP is the smallest. Now observe
that,

RGKP ∝
ˆ

dω SNR
2

GKP,

where RGKP is the scan-rate from the Gaussian analysis.
It thus follows that,

R̃?GKP ≥

(
S̃NRGKP

SNRGKP

)2

R?GKP (E.20)

where it is understood that the pre-factor is evaluated at
ω = 0 and γm/γ` ≈ 4G (the optimal point inferred from
the Gaussian analysis). The error-revised (solid) curve
referred to in Fig. 9 corresponds to the estimate on the
right-hand side of eq. (E.20).

Appendix F: Derivation of near-optimal weights

We provide detailed derivations of the near-optimal
weights— eqs. (III.10) and (III.13) in the main text—
for a distributed network of quantum sensor-cavities.
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Consider the signal amplitude along the real quadra-

ture of â
(out)
1 from eq. (III.4),

∑M
k=1 Re(w1kαk). Recall

that, by definition, αk = |χmksk |µsei(φs+θmksk ) and so

Re(w1kαk) = |w1k||χmksk |µs cos (argw1k + φs + θmksk) .
(F.1)

Assuming the axion-phase, φs, is random an unknown,
the amplitude is otherwise maximized in the phase vari-
able for the choice argw1k = −θmksk . This choice sup-
ports complete constructive interference between the out-
put signal-amplitudes of the cavities when combining
them, which, if left unaccounted for, would lead to a
reduction in the total signal-power.

For argw1k = −θmksk , the total output amplitude∑M
k=1 Re(w1kαk) ∝

∑M
k=1 |w1k||χmksk |, up to a sensor-

independent factor µs cosφs. Thus, to further maximize

the signal, we must maximize
∑M
k=1 |w1k||χmksk | with

respect to the (magnitude of) the weights |w1k|, subject

to the orthogonality constraint
∑M
k=1 |w1k|2 = 1. Define

the Lagrange function,

L =

M∑
k=1

|w1k||χmksk | − λ

(
M∑
k=1

|w1k|2 − 1

)
, (F.2)

where λ is a Lagrange multiplier. Optimizing the La-
grangian with respect to the weights, ∂|w1k|L = 0, sug-
gests that w1k ∝ |χmksk |. Imposing the orthogonality
condition on the weights supplies the pre-factor, from
which one obtains,

w1k =
|χmksk |√∑M
j=1

∣∣χmjsj ∣∣2 e−iθmksk , (F.3)

in accordance with eq. (III.10) of the main text.
We now minimize the output noise power. For brevity,

we temporarily define the real number cl ≡ |w1l||w′l1|
√
ηl

and the phase ϕl ≡ argw1l+argw′l1. A quick calculation

shows that the â
(in)
1 mode contributes the following to the

real quadrature of the â
(out)
1 mode,

Re
(
â

(out)
1

)
=

M∑
l=1

cl Re
(

eiϕl â
(in)
1

)
+ . . .

=
M∑
l=1

cl

(
cosϕl Re

(
â

(in)
1

)
− sinϕl Im

(
â

(in)
1

))
+ . . . ,

(F.4)

where the dots represent contributions from thermal/-
vacuum noise.

Assume that we squeeze along the real quadrature of

the input, Re(â
(in)
1 ). The above relation tells us there

there will be a contribution from anti-squeezing, as well
as squeezing, when performing homodyne measurements
along real quadrature of the output if ϕl 6= 0. The anti-
squeezed portion will cause an increase in the noise. To

neutralize this increase in noise, we must set ϕl = 0.
Using the result that argw1l = −θmlal from eq. (III.10),
the preceding argument implores use to choose argw′l1 =
θmlal for the power-dividing weights.

With the phases resolved, we minimize the noise
with respect to the magnitude of the power-dividing
weights, |w′1l|. To accomplish this task, we maximize the
function

∑
l=1 |w1l||w′l1|

√
ηl [coming from the first term

in eq. (III.4)], subject to the orthogonality constraint∑M
l=1 |w′l1|

2
= 1. Define the Lagrange function,

L =
∑
l=1

|w1l||w′l1|
√
ηl − λ

(
M∑
l=1

|w′l1|
2 − 1

)
, (F.5)

where λ is the Lagrange multiplier. Assuming the power-
combining weights are set by eq. (III.10) and optimizing
the Lagrangian with respect to the weights, ∂|w′k1|L = 0,

implies that |w′k1| ∝ |w1k|
√
ηk. Imposing the orthogonal-

ity condition on the weights supplies the pre-factor, from
which we obtain

w′k1 =
|χmksk ||χmkmk |√∑M
j=1

∣∣χmjsj ∣∣2∣∣χmjmj ∣∣2 eiθmksk , (F.6)

in accordance with eq. (III.13) of the main text.

Appendix G: Making contact with classical cavity
language

For a continuous spectrum, we define the axion signal
field number spectral-density as〈

â†s(ω)âs(ω
′)
〉

= 2πnsδ(ω − ω′). (G.1)

Note that under this convention, the commutation rela-
tion [âs(ω

′), â†s(ω)] = 2πδ(ω′−ω). The time domain field
operator is therefore

âs(t) =

ˆ
dω

2π
âs(ω)eiωt, (G.2)

which satisfies the commutation relation [âs(t
′), â†s(t)] =

δ(t − t′). Here, âs(t) has unit of
√

quanta/second and

âs(ω) has unit of
√

quanta/HZ. Hence, ns has units
quanta/second/HZ. The axion-induced signal field flux
is 〈

â†s(t)âs(t)
〉

=

ˆ
dω

2π
ns ≈ ns∆a. (G.3)

Therefore, the signal power coming out of the cavity from
the measurement port, in units of energy/second, is

Psig ≈ |χms(0)|2~ωcns∆a

=
4γm/γ`

(γm/γ` + 1)2
~ωcns∆aγs/γ`,

(G.4)
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where ωc is the cavity resonance-frequency (equal to the
axion mass, assuming the axion is resonant with the
cavity). Note that the signal power, Psig, is related
to the power inside the cavity, Pcav of Eq. (II.5), via
Psig ≈ Pcavβ/(1 + β)2, where β ≡ γm/γ` and the ap-
proximation holds for Qa � Qc.

To express the axion-conversion rate γs in terms of
physical parameters, we consider the classical expression
for signal power,

Psig =
β

1 + β
g2
aγ

ρa
ma

B2V ηQeff , (G.5)

where Q−1
eff = (1 + β)Q−1

c + Q−1
a ; Qc and Qa are the

intrinsic cavity and axion quality factors, respectively.
Note that the readout/measurement process introduces
additional loss, which is captured by β = γm/γ`. The
combination Q−1

l ≡ (1 + β)Q−1
c is often referred to as

the loaded quality factor. Here, ma is the mass of the
axion, which is equal to the resonant frequency of the
cavity signal mode ωc; ρa is the local axion dark matter
density; gaγ is the coupling constant of mass dimension
−1; B is the magnetic field; V is the volume of the cavity;
and η is the geometrical overlap between cavity mode and
the axion dark matter field.

To relate (G.5) to (G.4), we define the coupling γs
between the axion and a cavity photon to be

γs = (gaγB
√
η)22πδ(ω −ma)

finite ∆a−−−−−−→ (gaγB
√
η)2 1

4∆a
.

(G.6)
We also identify ns = ρaV/ma as the flux of axions per
axion bandwidth to be found inside the cavity. We now
rewrite (G.4) as

Psig =
4γm/γ`

(γm/γ` + 1)

~ωc
γ
ns∆aγs (G.7)

where γ ≈ γ` + γm can be identified as the total width

of the cavity given by ωc/Qeff , and γm/γ`
(γm/γ`+1) is the same

as β/(1 + β).
Equation (G.4) is completely general with respect to

any signal field with occupation number ns and coupling
rate γs. For instance, if the signal comes from dark-
photon dark-matter that has a mass mA′ and the kinetic
mixing ε with photons, then one may take,

γs
dark photon−−−−−−−−→ (εmA′

√
η)2 1

4∆A′

ns
dark photon−−−−−−−−→ ρA′V/mA′ ,

(G.8)

where ∆A′ represents the bandwidth of the dark-photon.




