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Abstract Hawking’s area theorem is a fundamental result in black hole theory that
is universally associated with the null energy condition. That this condition can be
weakened is illustrated by the formulation of a strengthened version of the theorem
based on an energy condition that allows for violations of the null energy condition.
With the semi-classical context in mind, some brief remarks pertaining to the suitability
of the area theorem and its energy condition are made.
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1 Introduction

Many classic theorems of relativity are obtained by positing a number of local con-
ditions on the geometry of spacetime. These geometric conditions are inequalities
imposed, by fiat, on certain contractions of the Einstein or Ricci tensor. With the use
of Einstein’s equations, these geometric conditions become energy conditions that,
supposedly, represent certain energetic characteristics of matter residing in spacetime.
It is now understood, however, that these local energy conditions are violated by a
number of classical matter models and, moreover, that violations are ubiquitous in the
context of quantum field theory in both flat and curved spacetime.1 To put it another
way, the classic theorems aforementioned rely on assumptions not satisfied in con-
texts considered physically relevant. In view of this, we might wish to ask, for certain
theorems of interest, whether they can be formulated with weaker energy conditions.

1 See [4] for a foundational perspective on the status of energy conditions.
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The purpose of this paper is two-fold. To show that Hawking’s area theorem can be
strengthened as such, and, with the semi-classical context in mind, to interpret the
result presented. The definitions used here follow Wald [16].

It is instructive, before delving into the area theorem, to consider the well known
singularity theorems.2 There is, it seems, a common template to these theorems. Their
assumptions usually include an energy condition, a restriction on the causal properties
of the spacetime, and an initial or boundary condition, and their conclusions almost
always involve no more than the failure of non-spacelike geodesic completeness.
Raychaudhuri’s equation describing geodesic congruences is very useful in many
proofs of such theorems. In the four dimensional null irrotational case it reads

dθ

dλ
= −1

2
θ2 − σ 2 − Rabkakb (1)

with λ the affine parameter, σ the shear, θ the expansion and Rabkakb the Ricci tensor
twice contracted with a null vector ka tangent to the geodesic. Assuming the null
convergence condition, Rabkakb ≥ 0, or, with Einstein’s equations in four dimensions,
the null energy condition (NEC), Tabkakb ≥ 0, it follows that if the expansion θ

satisfies θ(λ0) < 0, then θ → −∞ within finite affine parameter λ ∈ (λ0,∞). This
behavior is sometimes referred to as geodesic focusing. The onset of geodesic focusing
signals the failure of certain geodesics to satisfy certain properties which, in other
circumstances, are associated with them. In the null case, a null geodesic focusing to the
future of a point signals the geodesic’s failure to remain on the boundary of the causal
future of that point, and in the timelike case, focusing signals the geodesic’s failure
to maximize proper time. Many proofs of singularity theorems work by setting up a
contradiction under the assumption that all null or timelike geodesics are complete. The
rough template is as follows. Assume that all null (or timelike) geodesics are complete
and deduce, under the energy and boundary or initial conditions, the onset of geodesic
focusing. Then, combining causal restriction and initial or boundary condition, show
that the focusing produced leads to a contradiction. Deduce, therefore, that not all null
(timelike) geodesics can be complete.

Tipler [14] was among the first to show that singularity theorems may be strength-
ened by way of weaker energy conditions. He defined these weaker energy conditions
as non-local restrictions on the integral, along certain types of null or timelike
geodesics, of various contractions of the Ricci or Einstein tensor. He showed that
these conditions were sufficient to cause focusing, and, thus, he was able to strengthen
certain singularity theorems without major amendments to the original arguments.
His observation was developed by many authors, and, in time, there arose a number
of various weaker energy conditions, and which now fall under the umbrella term
of average energy conditions. One example that continues to generate interest is the
average null energy condition (ANEC). This is, roughly speaking, the requirement

2 See [16] for an introduction.
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that

∫
γ

Rabkakbdλ ≥ 0

for some suitable class of null geodesics {γ } with ka a null vector tangent to the
geodesic.3

Though mathematically weaker, the physical interpretation of these average energy
conditions is still murky at best. Over the course of a long list of studies, it has been
found that many of the average energy conditions allowing for theorem-strengthening
are violated by classical matter models, and, less straightforwardly, in the context of
quantum field theory in curved spacetime (QFCTS).4 To put it another way, many
classic theorems of relativity do not, at present, cover a whole host of classical and
quantum matter models of physical interest. Efforts to better this situation are, natu-
rally, still ongoing.

In the QFTCS context, there is growing evidence that the extent of the violation
of certain energy conditions is, in some sense, restricted. There is a whole body of
work dedicated to making this more precise. The idea is to produce certain kinds of
inequalities that represent the spatiotemporal constraints that (contractions of) renor-
malized stress energy tensors in various contexts of QFTCS obey.5 These inequalities
are known as quantum energy inequalities (QEI), and, in the best of cases, they have
been used either to prove the ANEC in certain circumstances or to constrain the prop-
erties of certain spacetime scenarios otherwise associated with violations of certain
more standard energy conditions. Examples include: Ford and Roman’s study of the
properties of traversable wormholes [9], Fewster, Olum, Pfenning QEI-proof of the
ANEC under certain circumstances [7], and Kontou and Olum QEI-proof under dif-
ferent circumstances [12].

Though QEI have undoubtedly lead to important insights, they have not yet permit-
ted the extension of certain classic relativity theorems to the semi-classical context.
Galloway and Fewster [6] recently proposed a study aiming to provide a step in
this direction. They formulated versions of Hawking’s cosmological and Penrose’s
collapse singularity theorems based on energy conditions allowing for, respectively,
violations of the strong and null energy conditions. Though inspired by QEI methods,
the conditions that stand in as energy conditions in their singularity theorems are not,
strictly speaking, QEI. On this point, it is worth noting that the relationship between
QEI and energy conditions remains not particularly well understood, with only a few
definitive results available. One example is [8] where Fewster and Roman show that
the existence of QEI is not necessary for the ANEC to be satisfied.

Galloway and Fewster arguments rely on new results establishing sufficient condi-
tions for focusing. Their strengthening of the Penrose and Hawking theorems proceed
without changing the spirit of the original arguments. They also consider a specific

3 More care in definitions is taken when we come to formulate the result.
4 See [4,5,15] for an expression of this fact and links to some of the relevant references.
5 See [5] for an introduction and links to various relevant references.
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matter model to illustrate how the NEC may be violated whilst satisfying their weak-
ened energy conditions. The specific lemma that we shall use is the following.

Lemma 1.1 Consider the initial value problem for z(t)

ż = z2

s
+ r

where r(t) is continuous on [0,∞), z(0) = z0 and s > 0 is constant. If there exists
c ≥ 0 such that

z0 − c

2
+ lim

T →∞ inf
∫ T

0
e−2ct/sr(t)dt > 0

then the initial value problem has no solution on [0,∞), where ‘no solution’ means
z(t) → ∞ as t → t−∗ < ∞.

2 A stronger area theorem

Hawking’s area theorem [10] is often considered to be one of the most important results
in black hole theory. It describes a fundamental property of dynamical black holes, it
underlies black hole thermodynamics and it bounds the amount of radiation that can
be emitted upon black hole collisions. Consider Ashketar and Krishnan’s remarks in
their recent well cited review on generalized black holes [1].

For fully dynamical black holes, apart from the ‘topological censorship’ results
which restrict the horizon topology [...], there has essentially been only one major
result in exact general relativity. This is the celebrated area theorem proved by
Hawking in the early seventies [...]: If matter satisfies the null energy condi-
tion, the area of the black hole event horizon can never decrease. This theorem
has been extremely influential because of its similarity with the second law of
thermodynamics.

The precise statement of the area theorem depends on a number of definitions for
which there are a number of possible choices. The definitions and the proof used
in theorem below are identical to those used by Wald [16]. This choice is made for
reasons of expediency. Note, however, that the following arguments apply to other
available formulations of the area theorem. For the area theorem to follow, we shall
to a new energy condition, the dANEC, which is inspired from Lemma 1.1 and which
we define as follows.

Definition 2.1 A spacetime (M, g) satisfies the damped averaged null energy con-
dition (dANEC) if along each future complete affinely parametrized null geodesic
γ : [0,∞) → M , there exists a non-negative constant c ≥ 0 such that

lim
T →∞ inf

∫ T

0
e−ct Ric(γ ′, γ ′)dt − c

2
> 0
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where γ ′ is a tangent vector for γ .

Theorem 2.1 Let (M, gab) be a four-dimensional strongly asymptotically predictable
spacetime that satisfies the dANEC. Let �1 and �2 be spacelike Cauchy surfaces for
the globally hyperbolic region Ṽ with �2 ⊂ I +(�1) and letH1(2) = H ∩�1(2), where
H denotes the event horizon, i.e., the boundary of the black hole region of (M, gab).
Then the area of H2 is greater or equal to the area of H1

Proof The argument is a straightforward application of Galloway and Fewster’s
Lemma 1.1 with the original arguments by Hawking, which are as in [16] in this
formulation. We start by showing that the expansion θ of the null generators of H is
everywhere non-negative.

Suppose θ < 0 at p ∈ H . Let � be a spacelike Cauchy surface for Ṽ passing
through p and consider the two-surface H = H ∩ �. Since θ < 0 at p, we can
deform H outward in a neighborhood of p to obtain a surface H′ on � which enters
J−(J +) and has θ < 0 everywhere in J−(J +). However, by the same argument as in
proposition 12.2.2 of [16], this leads to a contradiction as follows. Let K ⊂ � be the
closed region lying between H and H′, and let q ∈ J + and with q ∈ J̇+(K ). Then
the null geodesic generator of J̇+(K ) on which q lies must meet H′ orthogonally.

However, this is impossible since, by θ < 0 on H′, the null generator of J̇+(K ),
eg., γ , will have a conjugate point before reaching q. This follows from consid-
ering Raychaudhuri’s equation for irrotational null congruences, equation (1), and
identifying it with the equation of Lemma 1.1. That is, take s = 2, z = −θ(t),
r(t) = Ric(γ ′, γ ′)+2σ 2 where θ(t) is the null expansion relevant to the null geodesic
γ . We now have an initial value problem as in Lemma 1.1 with z(0) = −θ(0) > 0. By
the dANEC and the non-negativity of σ 2, it follows that the conditions of Lemma 1.1
are satisfied, and so there occurs a focal point within finite affine parameter from γ (0).

It now follows that θ ≥ 0. By standard properties [16], each p ∈ H1 lies on a future
inextendible null geodesic, η, contained in H . Since �2 is a Cauchy surface, η must
intersect �2 at a point q ∈ H2. Thus, we obtain a natural map from H1 into a portion
of H2. Since θ ≥ 0, the area of the portion of H2 given by the image of H1 under this
map must be at least as large as the area of H1. In addition, since the map need not be
onto, the area of H2 may be even larger. Thus, the area of H2 cannot be smaller than
than of H1. 
�
Remark 1 We have chosen an energy condition based on the work of Galloway and
Fewster because we find it to be both state of the art and neatly amenable to clas-
sical field models violating the NEC. In section 6 of their paper [6], they construct
such a model which, by inessential modifications, is straightforwardly applicable to
theorem 2.1. We note that other conditions similar in form to the ANEC for semi-
complete geodesics could have been used, eg., Roman’s condition [13] in his version
of Penrose’s theorem.

Remark 2 Recent studies [3] have shown that there are, in both Hawking [10] and
Wald’s [16] formulation of the area theorem, lacunas in the form of unstated or unde-
sirable assumptions of differentiability of the horizon. These deficiencies have been
overcome in formulations of much more sophisticated area theorems [3]. Indeed, the
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authors in [3] mention that the assumptions of the area theorem in [16] are satisfied
under their conditions. It is worth noting that the strengthening offered here generalizes
to these superior area theorems.

Remark 3 The exponential damping in the integrand shows that boundary effects
are crucial in determining whether area non-decrease obtains. Provided there occurs
positive contributions to the null contractions of the Ricci tensor near the horizon, the
condition may be satisfied even if negative contributions persist for arbitrarily long
segments of the null geodesic away from the horizon. That is: the area may be non-
decreasing even if there are large violations to the standard ANEC for semi-complete
geodesics.

Remark 4 A number of other standard theorems about black holes can be strength-
ened in the way described. The list includes results describing the location of trapped
surfaces, marginally trapped surfaces, apparent horizons and so on. Our focus on the
area theorem is owed to the obvious tension it generates with the idea of Hawking
radiation.

Remark 5 As a final point, this conclusion seems to dovetail nicely with what emerges
from the generalized black holes framework.6 In that framework, area non-decrease
results are obtained for trapping, isolated and dynamical horizons upon assuming that
the NEC holds within a neighborhood of the relevant horizon. We note, then, that
the dANEC will be satisfied if there occurs, in the immediate vicinity of the horizon,
sufficiently positive contributions to the integrand. With that being said, the relation
between global and quasi-local types of horizons is still yet to be fully understood,
and so these area non-decrease behaviors ought not to be identified. The parallel is
nevertheless worth underlining.

3 Discussion

There is now a certain conventional wisdom regarding the tension between Hawking
radiation and the area theorem. Consider, for instance, the remarks made by Visser
[15] and, respectively, Bousso and Engelhart [2].

The very fact that Hawking evaporation occurs at all violates the area increase
theorem...for classical black holes. This implies that the quantum process under-
lying the Hawking evaporation process must also induce a violation of one or
more of the input assumptions used in proving the classical area increase theo-
rem. The only input assumption that seems vulnerable to quantum violation is
the assumed applicability of the null energy condition.

Hawking’s theorem holds in spacetimes obeying the null curvature condition,
Rabkakb ≥ 0 for any null vector ka . This will be the case if the Einstein equations
are obeyed with a stress tensor satisfying the NEC, Tabkakb ≥ 0. The NEC is
satisfied by ordinary classical matter, but it is violated by valid quantum states

6 See [11] for an introduction.
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(e.g., in the Standard Model). In particular, the NEC fails in a neighborhood
of a black hole horizon when Hawking radiation is emitted. Indeed, the area of
the event horizon of an evaporating black hole decreases, violating the Hawking
area law.

Galloway and Fewster show that their energy condition leads, under the relevant con-
ditions, to null geodesic incompleteness. Their argument is classical and standard
except for the particular form of the energy condition that is used. One may consider
whether their results provide evidence in favor of singularities occurring in the semi-
classical context, and, likewise, whether the area theorem is relevant to the study of
semi-classical black holes. We recall, on this point, that a precise and rigorous under-
standing of the sense in which the area theorem fails in the semi-classical context is
still unavailable. In any case, in view of the almost unchallenged view that black holes
do in fact radiate in various semi-classical contexts, there are at least two kinds of
possible attitudes: either none of the standard arguments are fully applicable and we
must await further progress, or, the standard arguments apply in the sense that it is
only the energy condition component of the various theorems that need generalization
to the QFTCS context. In the former case, the theorem above provides no particularly
new information. As for the latter, there seem to be two further sub-possibilities. There
may arise conflicting results whereby a model satisfies an energy condition permitting
an area theorem (similar, perhaps, to the one above) despite being one for which evap-
oration is expected. In that case, then, the typical argument in favor of evaporation is
in contradiction. The other possibility is that everything remains harmonious in the
sense that models satisfying energy conditions that lead to an area theorem end up
being precisely those in which area decrease by evaporation is not expected. Results
in either direction would be fruitful.

The view adopted by the author is that neither case seems to be substantiated by
precise and rigorous arguments, and, moreover, that current understanding is still some
way away from identifying exactly what in the area theorem fails semi-classically.
Further understanding of this issue is likely to be provided by a better understanding of
a number issues including, for instance, the type of energy conditions that are suitable
in the context of QFTCS, the effects of back-reaction, the trans-Planckian problem,
and the various links between event horizons and analogous entities occurring in the
generalized black holes framework.
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